
University of Alberta

D e c o m p o s it io n a n d C o o r d in a t io n o f La r g e -s c a l e O p e r a t io n s

O p t im iz a t io n

by

Ruoyu Cheng

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of

the requirements for the degree of Doctor of Philosophy.

in

Process Control

Department of Chemical and Materials Engineering

Edmonton, Alberta

Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-32937-5
Our file Notre reference
ISBN: 978-0-494-32937-5

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“There is no substitute fo r hard work.”

- Thomas A. Edison

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Nowadays, highly integrated manufacturing has resulted in more and more large-scale

industrial operations. As one of the most effective strategies to ensure high-level operations

in modem industry, large-scale engineering optimization has garnered a great amount of

interest from academic scholars and industrial practitioners.

Large-scale optimization problems frequently occur in industrial applications, and many

of them naturally present special structure or can be transformed to taking special structure.

Some decomposition and coordination methods have the potential to solve these problems

at a reasonable speed. This thesis focuses on three classes of large-scale optimization

problems: linear programming, quadratic programming, and mixed-integer programming

problems. The main contributions include the design of structural complexity analysis for

investigating scaling behavior and computational efficiency of decomposition strategies,

novel coordination techniques and algorithms to improve the convergence behavior of

decomposition and coordination methods, as well as the development of a decentralized

optimization framework which embeds the decomposition strategies in a distributed

computing environment. The complexity study can provide fundamental guidelines to

practical applications of the decomposition and coordination methods.

In this thesis, several case studies imply the viability of the proposed decentralized

optimization techniques for real industrial applications. A pulp mill benchmark problem is

used to investigate the applicability o f the LP / QP decentralized optim ization strategies,

while a truck allocation problem in the decision support of mining operations is used to

study the MILP decentralized optimization strategies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I believe that a journey is easier when you travel together. This thesis is the result of four

years of work whereby I have been accompanied and supported by many people. I really

appreciate this opportunity to express my sincere gratitude for all of them.

First and foremost, I would like to thank Dr. Fraser Forbes, my PhD supervisor and the

department chair, for all his seasoned guidance, great encouragement, deep insight, and

patient help during the years that we have been through. He might not realize how much

I have learned from him, and I would have been lost without him. I will never forget his

advice on explaining things in plain language, from which I have benefited greatly in my

research work and later on industrial practice. Besides being an excellent supervisor, Fraser

has always been a good friend to his students as well. I am really glad that I have come to

know Fraser in my life.

It is difficult to overstate my gratitude to Dr. San Yip, my PhD co-supervisor, who

always kept an eye on the progress of my work and was available whenever I needed his

advice. He always made me feel welcome to ask him questions, no matter how busy he

was, or how silly the questions were. Many good ideas in this thesis came out from the

large amount of discussion with San. He is another essential person who helped make this

thesis possible.

I would also like to thank the other members of my PhD supervisory committee, who

have m onitored m y work and put a lot o f effort in reading and providing m e w ith invaluable

comments at earlier stages of this work: Dr. Ming Zuo and Dr. Guohui Lin. I also

appreciate the suggestions and encouragement from Dr. Biao Huang and Dr. Sirish Shah,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

who have always been very generous to offer me any help in my studies.

In my office at the University of Alberta, I was surrounded by knowledgeable and

friendly people who helped me every day. I would like to say thanks to Dr. Zhengang

Han, Yutong Qi, Fangwei Xu, Adrian Fuxman, and Rumana Sharmin, for establishing such

a stimulating work environment and always being so active and helpful in our discussions.

In addition, so many thanks to Bob Barton and Jack Gibeau for their excellent computer

and network support.

I would like to say thanks to the many scholars from other universities, who provided me

with valuable information which allowed me to see a bigger picture of this research area.

I must not forget to mention: Dr. James Rawlings, Dr. Frank Doyle, Dr. Ivar Ekland, Dr.

Rong Chen, Dr. Mehmet Mercangoz, and Dr. Francesca Fumero.

This research has been supported and funded by various organizations including the

Department of Chemical and Materials Engineering at the University of Alberta, NSERC,

and Syncrude Canada Limited. I thank them all for their confidence in me. Particularly,

I would like to express my gratitude to Dr. James Kresta and Mr. Gary Anthieren from

Syncrude, for their inspiring support throughout my research.

Lastly, and most importantly, I wish to express my deepest gratitude to my parents, who

formed part of my vision and taught me the good things that really matter in life. I shall be

grateful all my life to my wife, Liping, who shares both happiness and sadness with me. It

was her love, understanding and patience that supported my hard work during the past few

years.

In addition to the above, the thesis is also dedicated to those who have inspired, guided

and helped this humble being.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

1.1 Overview of Large-scale Optimization.. 2

1.1.1 Optimization of Large-scale O perations.. 2

1.1.2 Solving Large-scale Optimization Problems...................................... 4

1.2 Research S co p e ... 7

1.3 Thesis Overview .. 10

2 Decomposition Strategies for Large-scale Linear Programming 12

2.1 Background... 13

2.1.1 Linear Programming.. 13

2.1.2 Dantzig-Wolfe Decomposition Principle.. 15

2.2 Column Generation Techniques ... 18

2.2.1 Single-column vs. Multi-column G enera tion20

2.2.2 Dantzig-Wolfe Decomposition A lgorithm s..22

2.2.3 Discussions... 23

2.3 Complexity Study..24

2.3.1 Theoretical A nalysis.. 25

2.3.2 Empirical Studies.. 28

2 .4 Chapter S u m m a ry ...37

3 Decomposition Strategies for Large-Scale Quadratic Programming 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Background..40

3.1.1 Decomposition Strategies for Nonlinear Program m ing....................... 40

3.1.2 Extension of Dantzig-Wolfe Decomposition..41

3.1.3 Discussions..44

3.1.4 Price-driven Coordination M eth o d s ..45

3.2 An Efficient Price Update S chem e... 46

3.2.1 Newton’s Method.. 46

3.2.2 Jacobian E valuation .. 47

3.2.3 Step Size Determination.. 49

3.2.4 Algorithmic Statem ent... 50

3.2.5 Discussions.. 51

3.3 Economic Interpretation of Coordination M echanism 53

3.4 Complexity Study... 55

3.4.1 Theoretical A nalysis.. 56

3.4.2 Empirical Studies... 60

3.5 Chapter Summary.. 77

4 Coordinated, Decentralized MPC 79

4.1 Background.. 80

4.1.1 MPC Target C alculation.. 80

4.1.2 Plant-wide M P C .. 83

4.1.3 Coordinated MPC ... 84

4.2 Coordination of Decentralized M P C .. 86

4.2.1 Coordination through a Coordinator.. 86

4.2.2 Identification of Linking Constraints.. 86

4.3 Dantzig-Wolfe Decomposition and Plant-wide M PC...................................... 90

4.3.1 Illustrative Case S tu d ie s .. 90

4.4 Price-driven Coordination and Plant-wide M P C ... 98

4.4.1 A Pulp Mill Benchmark Process..98

4.4.2 Price-driven Coordination for Plant-wide Control...............................100

4.5 Chapter Summary...105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Extension to Large-scale Mixed-integer Programming 106

5.1 Background.. 107

5.1.1 Complexity Issues in M I P ..108

5.1.2 Decomposition Strategies for Mixed-integer Programming................108

5.1.3 Subgradient Optimization Techniques..110

5.1.4 Primal Solution R eco v ery ..I l l

5.2 Enhancements on Subgradient Algorithms... 112

5.2.1 Improved Subgradient Search Directions ... 113

5.2.2 An Enhanced Subgradient A lgorithm ... 121

5.2.3 Discussions.. 126

5.3 Complexity Study...127

5.3.1 Theoretical A nalysis...128

5.3.2 Empirical Studies...128

5.4 Approaches to Primal Solution Recovery.. 135

5.4.1 Primal Solution Recovery Heuristics.. 136

5.4.2 A Decentralized Optimization Framework... 139

5.5 Case Study: Truck Allocation Problem... 142

5.5.1 Application P roblem ...142

5.5.2 Decentralized Optimization with C oordination..................................144

5.5.3 Illustrative Case S tu d y ..146

5.5.4 Discussions..150

5.6 Chapter Summary...152

6 Conclusions and Future Work 154

6.1 Summary and Conclusions..154

6.2 Suggestions for Future W o rk .. 157

Bibliography 161

A Structural Empirical Studies 171

A.l Dantzig-Wolfe Decomposition A lgorithm ... 171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. 1.1 Linear Programming Problem Instance G eneration.......................... 171

A. 1.2 Monte Carlo Simulations... 172

A.2 Price-driven Coordination Algorithm...173

A.2.1 Quadratic Programming Problem Instance G eneration173

A.2.2 Monte Carlo Simulations..175

A.3 Improved Subgradient Optimization A lgorithm ...177

A.3.1 Binary Integer Programming Problem Instance Generation 177

A.3.2 Monte Carlo Simulations...178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Performance of different price-update strategies... 52

4.1 Performance comparison of different plant-wide MPC target calculation

approaches for interacting MIMO system s.. 94

4.2 Performance comparison of different plant-wide MPC target calculation

approaches for interacting MIMO unit n e tw o rk ... 97

4.3 Important CV weightings... 101

4.4 QP-based MPC target calculation performance comparison............................ 102

5.1 Parameters for trucking.. 149

5.2 Other param eters... 149

5.3 Different optimization strategies for truck allocation problem 149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 D-W decomposition m echanism .. 17

2.2 Worst-case behavior..26

2.3 D-W decomposition: CCN vs. number of linking constraints.......................... 31

2.4 D-W decomposition: computational performance vs. number of linking

constraints.. 32

2.5 D-W decomposition: CCN vs. subproblem s i z e ... 32

2.6 D-W decomposition: computational performance vs. problem s iz e 33

2.7 D-W decomposition: CCN vs. number of subproblem s................................... 34

2.8 D-W decomposition: computational performance vs. number of subproblems 34

2.9 D-W decomposition: CCN vs. R S R .. 35

2.10 D-W decomposition: computational performance vs. R S R 36

2.11 D-W decomposition: computational dominance of Max subproblem 37

3.1 Limitations of D-W decomposition for QP ..44

3.2 Infomation Flow in Price-driven Coordination...47

3.3 Convergence of different price update strategies.. 53

3.4 Determination of equilibrium price from supply and demand curves 54

3.5 Interior case: CCN vs. number of linking constrain ts.......................................63

3.6 Boundary case: CCN vs. number o f linking c o n s tr a in ts 63

3.7 Interior case: computational performance vs. number of linking constraints 64

3.8 Boundary case: computational performance vs. number of linking constraints 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.9 Interior case: computational time distribution vs. number of linking

constraints.. 65

3.10 Boundary case: computational time distribution vs. number of linking

constraints.. 66

3.11 Interior case: CCN vs. subproblem s i z e ... 66

3.12 Boundary case: CCN vs. subproblem s i z e .. 67

3.13 Interior case: computational performance vs. problem s i z e 67

3.14 Boundary case: computational performance vs. problem s iz e68

3.15 Interior case: computational time distribution vs. problem s i z e 68

3.16 Boundary case: computational time distribution vs. problem s iz e 69

3.17 Interior case: CCN vs. number of subproblem s...70

3.18 Boundary case: CCN vs. number of subproblems.. 70

3.19 Interior case: computational performance vs. number of subproblems . . . 71

3.20 Boundary case: computational performance vs. number of subproblems . . 71

3.21 Interior case: computational time distribution vs. number of subproblems . 72

3.22 Boundary case: computational time distribution vs. number of subproblems 72

3.23 Interior case: CCN vs. RSR ... 73

3.24 Boundary case: CCN vs. R S R .. 74

3.25 Interior case: computational performance vs. RSR ..74

3.26 Boundary case: computational performance vs. R S R 75

3.27 Interior case: computational time distribution vs. RSR 75

3.28 Boundary case: computational time distribution vs. R S R 76

3.29 Boundary case: CCN vs. number of active constraints.................................. 76

4.1 Bi-level MPC technology... 81

4.2 Decentralized M P C ... 84

4.3 Coordinated, decentralized M P C ... 87

4.4 Demonstration of interstream consistency.. 88

4.5 Interacting MIMO operating u n i t s .. 90

4.6 Calculated targets by different approaches.. 94

4.7 An interacting MIMO unit network.. 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Pulp mill benchmark process.. 99

4.9 Closed-loop response 1: solid line (coordinated); dash line (decentralized) . 103

4.10 Closed-loop response 2: solid line (coordinated); dash line (decentralized) . 103

5.1 Weighting function dynamics..114

5.2 Geometric interpretation - obtuse angle ... 115

5.3 Adjustment of subgradient d irec tion ... 118

5.4 Improved subgradient algorithm - part I ...122

5.5 Improved subgradient algorithm - part I I ... 123

5.6 Subgradient optimization: CCN vs. number of linking constra in ts 130

5.7 Subgradient optimization: computational performance vs. number of

linking constraints..130

5.8 Subgradient optimization: CCN vs. subproblem size 131

5.9 Subgradient optimization: computational performance vs. subproblem size 132

5.10 Subgradient optimization: CCN vs. number of subproblems132

5.11 Subgradient optimization: computational performance vs. number of

subproblems... 133

5.12 Subgradient optimization: CCN vs. R SR ... 134

5.13 Subgradient optimization: computational performance vs. R S R134

5.14 Basic idea of interior path methods...136

5.15 Interior path using subgradient lower b o u n d ... 137

5.16 Diagram of a generalized coordination framework.. 140

5.17 Decentralized framework for M I P ...141

5.18 Truck-and-shovel oil sands mining operations.. 142

5.19 Model-based coordination fram ew ork.. 151

6.1 Geometric interpretation - acute a n g le ...160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“A journey o f a thousand miles begins with a single step.”

- by Lao Tzu

Introduction

Quite often, high performance operation of industrial plants or business units can be achieved

by applying optimization techniques. Large-scale optimization problems frequently occur

in such large-scale operations and may have special structure. Decomposition and co­

ordination strategies are good candidates for solving such large-scale optimization prob­

lems, and sometimes are mandatory for truly large problems, which cannot otherwise be

solved because of time and/or storage limitations. This thesis mainly contributes to devel­

oping more efficient decomposition and coordination methods to provide on-line solution

of three typical classes of large-scale optimization problems (i.e., linear programming (LP),

Quadratic programming (QP) and Mixed-integer programming (MILP) problems).

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 1.1 Overview o f Large-scale Optimization

1.1 Overview of Large-scale Optimization

2

Large-scale operations optimization problems frequently occur in the process industries.

With the growing understanding of the physical and chemical phenomena underlying

processes at the macro, micro, and nano scales, more complicated models can be developed

for industrial applications. These detailed models can represent the plant more closely. In

general, it is considered desirable to use more accurate, higher fidelity models in operations

optimization to improve control and optimization performance. Such higher fidelity models

are usually more complex and larger scale.

Although computer speed increases, on-line solution to large-scale optimization

problems as a whole is very expensive and difficult, if not impossible. Furthermore, the

scalability of solvers, which is related to problem size, and the complexity of solvers, which

is related to the implementation of a method, are bottlenecks for real-time optimization

in large-scale industrial operations. These have limited the scope and fidelity of many

industry-scale applications. Therefore development of computationally efficient methods

to solve large-scale optimization problems is of great significance in industrial applications.

1.1.1 Optimization of Large-scale Operations

In modem industry, more and more operations are integrated for various purposes and

thus result in real large-scale systems. Such large-scale systems can be decomposed into

a number of interconnected subsystems either for conceptual or computational reasons

(Siljak, 1991). As engineering optimization has been one of the most effective means

of gaining a high level of operation’s performance, large-scale optimization problems

considered here are of high dimension with respect to the number of variables involved

in the problem formulation and have decomposable or separable structure for the purpose

of computation or in nature of the problem itself (Jamshidi, 1983; Wismer, 1971).

Large-scale optimization problems appear frequently in plant-wide process design,

control, and operations optim ization. The sim ultaneous design and control o f processes

can be performed by optimizing large-scale, complex dynamic models involving discrete

and continuous decision variables, time-varying disturbances and parametric uncertainties

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 1.1 Overview o f Large-scale Optimization 3

(Mohideen et al., 1997; Bansal et al., 2000). In the literature, typical examples of large-

scale process control problems can be found such as decentralized supervisory control

with communicating controllers (Barrett and Lafortune, 2000); modeling and control of

an N-stand cold rolling mill (Jamshidi, 1983); and plant-wide distributed model predictive

control (Camponogara et al., 2002). Furthermore, the integration of existing large-scale

optimization problems results in a higher dimensional optimization problem. For instance,

the leading industry control companies have identified the opportunities and trends to

integrate plant-wide Advance Process Control (APC), Real-time Optimization (RTO) and

Planning and Scheduling (Havlena and Lu, 2005).

Good surveys of large-scale operations optimization can be found in Floudas (1995)

and Goux and Leyffer (2001), which introduced extensive research interest and progress

in process synthesis, batch plant design, and cyclic scheduling in chemical engineering

applications. When the problems are formulated as non-linear and/or mixed-integer

programming problems, they become more difficult (than linear programs) and can often

be said to be large-scale in terms of computational requirements. Moreover, large-scale

optimization problems are also frequently encountered in the operation of transportation

companies, such as the optimal scheduling and assignment of fleet and staff. The air fleet

assignment problem is to determine a “best” match between the type of aircrafts and the

flight segment, given a flight schedule and set of available aircrafts (Hane et al., 1995).

The vehicle routing and crew scheduling (VRCS) problems consider both vehicle routing

and crew scheduling problems simultaneously (Desaulniers et al., 2001), where the VRCS

problems can give rise to very large-scale mixed-integer programming problems. More and

more examples are and will be added to the list of applications of large-scale operations

optimization, such as the water resources management problems in Cai et al. (2001), all of

which show continuous intensive interest in this area in recent research.

In this thesis, the optimization is through mathematical programming, which is based on

a first-principles model or an empirical model that describes process operations in sufficient

detail to serve specified purposes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 1.1 Overview o f Large-scale Optimization

1.1.2 Solving Large-scale Optimization Problems

4

Depending on specific requirements, such as the solution time (or computational

efficiency) and accuracy (or optimality), there are three approaches to solving large-scale

operations optimization problems, which can be classified as centralized, decentralized, and

coordinated, decentralized optimization schemes *. As a large-scale system is decomposed

into a number of interconnected subsystems either for conceptual or computational

reasons, one difference between these optimization schemes is in how the interactions or

connections between subsystems are handled. The centralized scheme explicitly considers

all interactions between subsystems, while the (fully) decentralized scheme ignores all

the interactions. These two schemes represent the two extremes with respect to the

best achievable performance and computational requirements (Cheng et al., 2004). The

coordinated optimization scheme represents a trade-off between the above two extremes,

wherein the subproblems are coordinated by considering important interactions.

Centralized optimization methods are usually designed for and implemented on

a single computer and they do not take advantage of special problem structure (e.g.,

block-angular structure, stairwise structure) that can reduce computational expense. For

instance, in the refinery production planning and scheduling applications (Gothe-Lundgren

et al., 2002; Lababidi et al., 2002), a large single model for the entire plant operations

(including multiple operating units) is assembled and integrated within a centralized

optimization system, which is involved with a large mixed-integer programming problem.

For large-scale optimization problems, the centralized optimization schemes may require

high-efficiency optimization solvers and high-performance computing environment. At

the problem formulation stage, inherent special structure of the problem, such as the

decomposability of the overall operations into individual unit operations, may not be

considered since the centralized optimization algorithms usually do not take advantage

of such special structure.

In practice, the amount of computational effort required to solve an optimization

problem usually grows much faster than the size of the corresponding system or operation.

Therefore, within the centralized optimization framework, the problems arising in large-

'This is often referred to as a “coordinated optimization scheme” in this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 1.1 Overview o f Large-scale Optimization 5

scale operations (e.g., a refinery) may become either impossible or impractical to solve even

with high-performance computing machines. Another potential deficiency is the reliability

of such a centralized optimization system, which may provide an “all-or-nothing” behavior,

i.e., such a system may provide either complete success or failure, with no appropriate

strategies to mitigate the failure.

(Fully) decentralized optimization are commonly used approaches to large-scale

operations optimization in industrial practice, especially when the problem can be

“naturally” decomposed. An example is the unit-wide local operations optimization

(e.g., a real-time optimization (RTO) system) for a refinery process unit (e.g., a vacuum

distillation unit, hydrocracker unit, coking unit,and amine gas treaters, etc.). In this

case, independent multiple RTO systems may be used within a refinery wide. These

methods are usually implemented on a distributed computing environment. To formulate

a decentralized optimization problem for large-scale operations, modular (decentralized)

modeling methods can be used, with interactions among individual unit models excluded2

in the optimization. A set of subproblems can be solved simultaneously, using solvers

that can be selected according to the dimension of decentralized models (sub-problem

sizes). Therefore, high-efficiency optimization solvers and high-performance computing

environments are not a necessity.

Different from the centralized optimization opproaches, the problem structure should be

well used in the decentralized optimization schemes. Because of the use of decentralized

computing environment, the computational load can be well balanced through appropriate

subproblem formulation. In addition, the determination of the values of interaction

variables is of great importance to gain suboptimal operations close to the true optimum,

and to ensure feasibility of the operations optimization.

The decentralized optimization scheme is a more reliable approach for industrial

applications, i.e., when some of the subproblem optimizers fail others can still function;

and it requires reasonable computational load for subproblems due to the decomposition of

large-scale problem s. However, this schem e usually provides sub-optim al solutions instead

2The variables representing interactions between unit operations are usually fi xed at some values within

the execution of optimization, and can be updated within the interval of two optimization executions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 1.1 Overview o f Large-scale Optimization 6

of the optimal solution, and sometimes ignoring the interactions may result in an infeasible

operations.

Coordinated, decentralized optimization approaches aim to gain a good trade-off

between the above two optimization approaches. Two strategies can be used for the

modeling: (1) centralized modeling, decomposition and coordination; (2) decentralized

modeling, incorporating linking constraints3, and then coordination. In the coordinated,

decentralized optimization framework, usually a coordination problem plus a group of

subproblems are solved iteratively within an optimization execution. The coordinator, by

solving the coordination problem, deals with the linking constraints and local solutions

from subproblems, and thus drives the local optimal operations to the overall optimum. It

should be noted that this structure requires a computing node for the coordinator in addition

to the nodes required by a decentralized optimization system.

In the past few decades, we have seen the identification of many classes of structured

problems and the development of many algorithms for their solution. In the period

initiated by Dantzig-Wolfe decomposition for solving large-scale linear programs (Dantzig

and Wolfe, 1960), Benders’ partitioning algorithm was developed for solving mixed-

integer programming problems (Benders, 1962), then later Rosen’s partitioning method

was developed to solve a primal-dual pair of problems which have block-angular structure

(Lasdon, 2002; Rosen, 1964). The survey by Molina (1979) gave a good summary of

the best decomposition and coordination strategies for solving large-scale optimization

problems. The Dantzig-Wolfe method can be extended to solve convex nonlinear problems

(Whinston, 1966). Pigot (1964) published a “double decomposition method” that could

be thought as a combination of the Dantzig-Wolfe and Benders approaches to give upper

and lower bounds of the optimal solution, but it has more complicated implementation.

After the publication of article “Two Level Planning” (Komai and Liptak, 1965), more

interest has been shown in the decomposition of a mathematical programming problem.

For example, Sanders (1965) published a method of primal decomposition of nonlinear

program m ing problem s using the Lagrange m ultipliers. Recently, an auction-based/price-

driven coordination method was developed in Jose and Ungar (1998a; 1998b) on the basis

3The constraints that describe the interactions involving multiple operating units.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 1.2 Research Scope 7

of the work of Jennergren (1973), which can handle situations where the Lagrangian-based

method may be inadequate, by using so called “slack resource” auction. The decomposition

and dynamic cut generation (DDCG) (Ralphs and Galati, 2003) decomposes an MIP

problem into an LP master and a pure IP subproblem.

Obviously, improvement of the coordinated optimization scheme can be made through

enhancing both the coordinator and subproblem solvers. This thesis focuses on the study of

efficient coordination mechanisms, i.e., an efficient way to make use of linking constraints

and subproblem solutions, with an assumption that the subproblems can be solved with

appropriate optimization solvers.

The coordinated optimization system can provide similar reliability as the decentralized

optimization system, because a minor modification to the existing decentralized

optimization scheme is accomplished by adding an extra node to the distributed computing

network. Whenever the coordinator fails, the optimization system becomes the original

decentralized optimization approach. In terms of the solution quality, the coordinated

optimization scheme can provide an optimal, or nearly so, solution, depending on

how much interaction is considered by the linking constraints. From the perspective

of investment cost, this approach also implies significant benefit because the resulting

optimization system can be built on a previous decentralized optimization system, by

adding just one additional computing node. To satisfy the increasing requirement of

computation, one way is to develop more efficient coordination mechanism. Thus a

coordinated, decentralized approach can address the computational challenges that arise

as problem scope and complexity increases.

1.2 Research Scope

As discussed in the previous section, this thesis concentrates on the development

of a coordinated, decentralized optimization framework, which takes advantage of

decom position and coordination optim ization strategies, for solving large-scale operations

optimization problems. In particular, this work emphasizes the development, complexity

analysis and applications of coordination mechanisms for linear programming (LP),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 1.2 Research Scope 8

quadratic programming (QP) and mixed-integer linear programming (MILP) problems,

which represent typical classes of optimization problems encountered in industrial

operations4. Based on a thorough understanding of the best available decomposition and

coordination strategies, this work has made efforts to improve the computational efficiency

of the existing optimization strategies to satisfy the specified on-line solution requirements,

by enhancing the corresponding coordination mechanism. To investigate the feasibility of

applying the proposed coordination optimization framework to real large-scale problems,

complexity analysis and computational studies are carried out to study the scalability of the

proposed optimization algorithms.

In the area of process control, as model predictive control (MPC) often utilizes LP

and QP optimization techniques, this thesis discusses the application of the proposed

coordinated, decentralized optimization framework for large-scale MPC, e.g., plant-wide

control and optimization. Lu (2003) has discussed that the coordination/integration of

decentralized controllers is a challenging large-scale optimization problem recently. Model

predictive control has incorporated both control and optimization techniques, and its

wide application establishes a solid foundation for plant-wide control and optimization.

For large-scale process control problems, the desired characteristics of an MPC scheme

includes: high-level performance - solutions comparable to the best achievable optimum

(Cheng et al., 2004); high degree of reliability - the capability that some control subsystems

or portions thereof are able to function when other subsystems fail; good operability - the

ease of the implementation of the algorithms; and excellent flexibility or extendability - the

ease of the modification to functional capacity of the system. The commonly used strategies

for plant-wide MPC control and optimization are centralized schemes and decentralized

schemes, which represent the two extremes in the trade-off among the above desired

characteristics.

In addition, this work also investigates the applicability of the proposed coordinated

4Although this work is focused on mixed-integer linear programming (MILP) and binary integer

programming (BIP) problems, the proposed decomposition and coordination algorithms (i.e., subgradient

optimization algorithms) are applicable to general MIP problems as well, e.g., a mixed-integer nonlinear

programming (MINLP) problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 1.2 Research Scope 9

optimization framework in mining operations optimization, by solving the truck allocation

problem in truck-and-shovel mining operations. In this case, the truck allocation problem,

which can involve multiple operational parties (e.g., ore hauling, overburden removal and

maintenance), is formulated as an MIP problem with decomposable block-wise structure.

This work illustrates a practical approach to this problem with appropriate implementation

of the proposed coordinated optimization scheme.

For existing decentralized optimization schemes, it is assumed that each subsystem has

its own computing node to perform optimization calculations. To facilitate the development

of this work, synchronization assumptions for subsystem optimizers have been made5. For

example, in plant-wide MPC applications, a common sampling time and control interval

should be determined for coordination by taking into account both the fast modes and slow

modes in the processes of an overall plant. Thus, it is assumed that the coordination is

only active within an optimization interval. This means we are replacing a monolithic

optimization calculation with a coordinated, decentralized calculation. We believe this is

the first step in creating a truly decentralized set of autonomous optimizers that act in a

cooperative manner.

In brief, this work addresses the problems of how to develop a coordination framework

to improve the overall performance with minor modifications to the original system

given a decomposable flowsheet and existing decentralized/unit optimization systems. By

drawing on ideas from decentralized planning in economics, a novel methodology to design

coordination systems for current decentralized optimization systems is developed. The

proposed coordinated, decentralized scheme can provide a higher level of performance with

a minor modification to the existing decentralized control structure. In the coordinated,

decentralized optimization scheme, an additional computer will be implemented to

perform coordination of individual control or optimization calculations. Therefore,

similar reliability and extendability to the decentralized scheme can still be maintained.

Furthermore, as the decomposition strategies use sensitivity information within the

coordination m echanism , the flow o f inform ation w ithin the optim ization system can

reveal how the coordination system drives the individual local optima to an overall

5We have not addressed asynchronous coordination of multiple optimization systems in this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 1.3 Thesis Overview 10

plant-wide optimum. Thus the proposed procedure also helps understand the necessary

communication between the coordinator and subsystems. In addition, this research may

also provide insights into the application of decomposition strategies for solving large-scale

(MI)NLP, which represents another important class of engineering optimization problems.

1.3 Thesis Overview

In this work, with a general coordinated, decentralized optimization framework,

coordination mechanisms are developed for solving several typical classes of optimization

problems, respectively. This thesis begins with an introduction to this research, where the

major objectives and research scope are stated.

In Chapter 2, the best available decomposition strategies for large-scale linear

programming are investigated. In particular, the Dantzig-Wolfe decomposition algorithm

(Dantzig and Wolfe, 1960) is shown to be suitable for solving the class of optimization

problems of interest. A complexity study shows it has good scaling behavior and strong

potential for use in the coordinated optimization framework.

Chapter 3 discusses the decomposition and coordination strategies for QP problems,

which is a special case of nonlinear programming (NLP). A novel price adjustment scheme

is developed by using Newton’s Method, and it significantly improves the computational

efficiency of the auction-based (or price-driven) coordination method. Computational

studies are then carried out to investigate the scaling behavior of the price-driven

coordination method.

In Chapter 4, several case studies are performed to illustrate the application of

the proposed coordinated optimization framework in plant-wide MPC. Using the

decomposition and coordination strategies studied in the previous two chapters, the

coordinated, decentralized optimization is shown significantly improve the plant-wide

operations in all the case studies.

A s an extension o f the work in continuous optim ization, Chapter 5 d iscusses

decomposition and coordination strategies for large-scale discrete optimization problems,

in particular, mixed-integer linear programming (MILP) problems. Existing optimization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 1.3 Thesis Overview 11

methods for MILP usually contain heuristics. This work proposes a three-phase MILP

decomposition algorithm within a decentralized optimization framework. The first stage

incorporates the best known heuristics, whose efficiency has been proved in the literature;

while for the second stage, a new heuristic is proposed for primal solution recovery.

With a complexity study, the performance of the proposed MILP subgradient algorithm

is tested through empirical studies. The case study of a truck allocation problem in mining

operations optimization illustrates the feasibility of the application of the decentralized

optimization framework.

Chapter 6 contains conclusions for this thesis and suggestions for future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“A1I truths are easy to understand once they are discovered; the point is to

discover them.”

- by Galileo Galilei

Decomposition Strategies for Large-scale

Linear Programming

Decomposition approaches to solving large-scale linear programs (LP), which represent a

typical class of large-scale operations problems, are discussed in this chapter.1 Through

an investigation of the best available decomposition strategies for solving large-scale lin­

ear programming problems, Dantzig-wolfe decomposition is identified as a good candidate

for solving high dimensional linear programming problems with block-wise structure. By

taking advantage of distributed computing environment, the Dantzig-Wolfe decomposition

can provide efficient solution to decomposable linear programming problems. By using

‘Part of this chapter has been published in Cheng et al. (2004) and Cheng et al. (2006a) submitted to

Computers & Chemical Engineering.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.1 Background 13

a structural complexity analysis approach, the scaling behavior of Dantzig-Wolfe decom­

position algorithms is studied. The complexity study implies that, for large-scale linear

programming problems with special structure, the Dantzig-Wolfe decomposition algorithm

can outperform centralized optimization solvers when appropriate implementation is con­

ducted.

2.1 Background

Linear programming (or, linear optimization) is a fundamental method in mathematical

optimization. For a linear programming (LP) problem, the objective function and

the constraints are linear functions of the decision variables. Besides its continuous

development in the first half of last century, the first comprehensive theory was developed

by Dantzig (1963), including geometrical analysis, duality theory, and the Simplex method.

In the past few decades, an enormous number of applications of linear programming

have appeared in economics, engineering, science and many other fields, from its early

applications in the military resource allocation during the World War II (Rao, 1998) to

its recent applications in auction pricing and proving theorems for computing science

(Ye, 2006).

In practice, many large-scale LP application problems have special structure, which can

be exploited by decomposition and coordination methods to provide an efficient solution.

Next, the problems of our interest will be described, and the suitable decomposition

algorithms will be discussed.

2.1.1 Linear Programming

In many optimization books (Chvatal, 1983; Lasdon, 2002; Dantzig and Thapa, 2002;

Vanderbei, 2001), linear programming is considered classical content. It is not intended

to repeat the description of a linear programming problem, but to show our interest in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.1 Background 14

solving a class of LP problems with special structure. Consider the following LP problem:

min ci^i + c2x2 + ... + CnXn

subject to

CLiiXx + Cl12X2 + • • • + dinXn < b\

d2lXi 4" <322̂ 2 + • • ■ + d2nxn < b2 (2.1)

4" dm2x 2 4" ■ • • 4" dmnxn ^ bm

Xi,X2, . . . , £ „ > 0

In this description, we use m to denote the number of constraints, and n to denote the

number of decision variables. When represented by matrices and vectors, the LP problem

can be expressed as:

min cTx

subject to

A x < b, x > 0 (2.2)

where the coefficient matrix A has a dimension o f m x n , and the cost coefficient vector

c and decision variable vector x are ra-vector s. In many practical applications, especially

with a large-scale LP problem, such as the multi-plant production and distribution problems

(Lasdon, 2002), matrix A takes special structure, e.g. the block-wise (or block-angular)

structure:

A ll Ai2 • Aip

Ai 0 0

0 a 2 . 0

0 0 Ap

where A y has a dimension of mo x rij, and A j has a dimension of m j x rij, for

j = 1,2, . . . ,p. Thus, the elements of the vectors c and x can be re-organized into p

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.1 Background 15

subsets, which satisfy Y%=i ni = n and Yfj=i m J + m o = m. As a result, the LP problem

in (2 .2) can be expressed as:

min c fx i + cif x2 + . . . + c jx p

subject to

AnXi + A 12X2 + . . . + AipXp < bo (2.4)

A 1X1 < b*

A 2x2 < b 2

X i,x2, . ,Xp > 0

In this case, excluding the constraints (2.4), the original problem can be decomposed into

p LP subproblems. In this chapter, some typical techniques that can take advantage of this

block-wise structure are investigated.

2.1.2 Dantzig-Wolfe Decomposition Principle

The Dantzig-Wolfe decomposition method (Chvatal, 1983; Dantzig and Thapa, 2002)

is the most representative of all decomposition methods. Other typical decomposition

strategies for LP problems include Benders’ decomposition and Rosen’s decomposition

algorithms (Lasdon, 2002), as well as the double decomposition method by Darnel Pigot

(Molina, 1979).

Although it was originally developed for solving mixed-integer programming problems,

Benders’ decomposition can be viewed as the dual of the Dantzig-Wolfe decomposition in

terms of linear programming. Rosen’s partitioning/decomposition procedure is another

decomposition algorithm for linear programming and has been widely used to treat

angular or dual-angular problems with both coupling constraints and coupling variables.

Rosen’s method uses the partition principle of fixing some complicating variables and

therefore decoupling the problem into several independent lower dimensional subproblems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.1 Background 16

(Molina, 1979). The double decomposition method tackles the linear programming

problems in both primal and dual spaces. In a sense, it combines both Dantzig-Wolfe

decomposition and Benders’ decomposition approaches, and gives upper and lower bounds

of the optimal solution (Molina, 1979). As will be discussed later, many industrial

application problems present suitable structures for Dantzig-Wolfe decomposition, thus

discussion will be concentrated on the Dantzig-Wolfe decomposition techniques and its

applications.

The Dantzig and Wolfe (1960) decomposition principle is depicted in Figure 2.1. In

this decomposition approach, a large-scale linear programming problem can be separated

into independent subproblems, which are coordinated by a master problem (MP). The

solution to the original large-scale problem can be shown to be equivalent to solving the

subproblems and the MP through a finite number of iterations (Dantzig and Thapa, 2002).

Within each iteration, the MP handles the linking constraints that connect the subproblems,

using information {fi,ui\ supplied by the subproblems. Note that /» is the objective

function value and u, is the solution of the i th subproblem. Then, the MP sends its

solution [7r, 7 j] as price multipliers to all the subproblems for updating their objective

functions. Subsequently, the subproblems with updated objective functions are re-solved.

The iterative procedure continues until convergence. It can be shown that the solution at the

convergence is equal to the optimal solution of the original large-scale problem (Dantzig

and Thapa, 2002).

The Dantzig-Wolfe decomposition hinges on the theorem of convex combination and

column generation techniques (Lasdon, 2002; Dantzig and Thapa, 2002). The theorem of

convex combination, or D-W transformation, states that an arbitrary point x in a convex

polyhedral set X = {x| A x = b, x > 0} can be written as a convex combination of the

extreme points of X plus a nonnegative linear combination of the extreme rays (normalized

homogeneous solutions) of X , or:

L M

x = aiU*+ 5 Z fa*3 (2.5)
»=i j=i

L

(2 .6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.1 Background 17

Figure 2.1: D-W decomposition mechanism

where u 1 and vl are the finite set of all extreme points and the finite set of all normalized

extreme homogeneous solutions respectively. If the feasible region is bounded, we can

reformulate the problem by using the extreme points only.

Although any large-scale linear program problem can be decomposed and solved by

Dantzig-Wolfe decomposition (Chvatal, 1983), the approach is particularly powerful for

structured linear programs. Consider a block-wise linear programming problem that has

been converted to Simplex standard form:

v
min zi =

t=l

subject to

f > iXi = b 0 (2-7)
i = 1

B iXi = bi (2.8)

x» > 0 * = l , 2 ,...,p

where (2.7) represents the linking constraints associated with p subproblems, and the

constraints in (2.8) are the local constraints of independent subproblems. Via the theorem

of convex combination, the master problem (MP) can be formulated as follows using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.2 Column Generation Techniques 18

the linking constraints in (2.7) and the convex combination of extreme points from (2.8),

assuming that the feasible regions of subproblems are bounded2.
p N(i)

min =
i=1 j =1

subject to
P N (i)

'y y ^ I Pjj = t >0 (2-9)
1 = 1 j= 1

N(i)

= Ay > 0 , i = 1 , 2 , ...,p (2 .10)
j '= i

where N(i) represents the number of extreme points of the feasible region in the i th LP

subproblem, and
N(i)

= (2 -H)
j=l

f i i =c f j 4 (2.12)

p i:j = AjU2 (2.13)

with u\ being the j th extreme point of ith subproblem.

The resulting master problem has fewer rows (i.e., (m 0 + p) equality constraints) in

the coefficient matrix than the original problem; however, the number of columns (i.e.,

associated with Yli=i -W W decision variables) in the MP is larger due to an increase in the

number of variables associated with the extreme points of all subproblems. For a large-

scale problem, it can be a formidable task to obtain all the extreme points and formulate

a full master problem. Therefore, column generation techniques have been developed to

dynamically handle the more columns in the MP.

2.2 Column Generation Techniques

If the MP is solved via the Simplex method, only the basic set is needed and it has the

same number of basic variables as the number of rows. Thus, we do not need to explicitly

2Unbounded cases are discussed in Lasdon (2002), Dantzig and Thapa (2002).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.2 Column Generation Techniques 19

know all the extreme points of subproblems. This leads to solving an equivalent problem,

the restricted master problem (RMP), which can be dynamically constructed at a fixed

size by incorporating column generation techniques (Gilmore and Gomory, 1961; Dantzig

and Thapa, 2002). For example, in the MP described in (2.9) and (2.10), the linear

programming problem obtained by dropping all but a subset N of the N(i) columns

associated with A ̂ is called an RMP of the original master problem.

Assume that we have a starting basic feasible solution to the RMP and it has a unique

optimum. The optimal solution provides us with the Simplex multipliers [7r, 71 , 72 ,..., 7P]

for the basis in the current RMP, with 7r associated with (2.9) and 7 , with the ith constraint

in (2.10), respectively. Then, the subproblems are modified and solved to find the priced-

out column associated with A i f

f i j = (cf - - 7 i (2-14)

and the ith subproblem is:

min z° = (cf - 7rAj)xi

subject to

BjXj = hi (2.15)

Xj > 0

Here we notice that only minor modification is made to each subproblem, i.e., a term

containing sensitivity information is introduced into each subproblem objective function.

An optimal solution is reached when the following condition is satisfied:

min fij = min(z° - 7 ,) > 0 , i = 1, ...,p (2.16)
*

A complete proof of the optimality and finite convergence can be found in Dantzig and

Thapa (2002). When condition (2.16) is not satisfied, a column generation strategy is used

to determine the column or columns that will enter the basis of the RMP.

The coordination of subproblems can be regarded as a procedure of directional

evaluation of the feasible extreme points of the subproblems, in which the coordinator

(RMP) evaluates and selects subproblem solutions under the guidance of some “rules”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.2 Column Generation Techniques 20

The selected or priced-out extreme points will be used to generate columns needed for

updating the RMP. The column generation techniques are among the “rules” that show

good performance in directing the evaluation of subproblem feasible solutions. With

column generation techniques, instead of an exhaustive traversal of all extreme points of the

subproblems, usually only a small subset of the extreme points are required to be evaluated

during the coordination procedure.

2.2.1 Single-column vs. Multi-column Generation

Several column generation techniques can be found in the literature. In the single-column

generation scheme (Lasdon, 2002), the minimum objective function value of problem

(2.16) is assumed to come from subproblem s (1 < s < p), i.e., the solution x s(7r) solves

subproblem s . Then, the column to enter the basis is generated by:

A sXs(7t)
(2.17)

where is is an ^-component vector with a “1” in position s and zeros elsewhere. The

generated column is associated with the most favorable subproblem (i.e., that with the

most negative reduced cost). Thus, with single-column generation algorithm, the updated

RMP can be expressed as:
v

min z3 = Y Y ^ Xij + f* X*
fc= l ^baa is

subject to

£ £ p ^ A y + p*A* = b0 (2riS)
J b a s is

Y Ay + A* = l, t = (2.19)
J b a s is

Ay > 0 , A* > 0 (2 .2 0)

where the Ay is the current basic variables and A* is the variable entering the basis. The

terms associated with A* can be derived from (2.11) to (2.13) and (2.17), which contribute

to the generated column. Jbasis is an index set whose elements correspond to the indices of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.2 Column Generation Techniques 21

subproblem feasible solutions, which are now in the RMP basis. Particularly, in the above

formulation, the number of variables in the basis is | Jbasis I = m0 + p,3 which shows the

dimension of the basic set in the RMP is (m0 + p), where m0 is the number of linking

constraints in (2.7).

It should be noted that any other subproblem with a negative reduced cost has the

potential to generate a column to enter the basis of the master problem (Lasdon, 2002).

To take advantage of other favorable subproblems, multiple columns could be considered

for generating a new RMP. Several variants of multi-column generation techniques are

discussed in Lasdon (2002) and Dantzig and Thapa (2002). In this work, we study the

multi-column generation scheme suggested in Lasdon (2002). Thus, to incorporate all

potential favorable proposals, a “new” column is generated in the RMP for each subsystem

by applying (2.17):

min = + E ^ Xi
i ~ 1 J basis * = 1

subject to

E E p ^ + X > * A* = b ° (2-21)
^— 1 J b a s is ^ 1

E A y + A* = l, i = 1, 2 , ...,p (2 .2 2)
Jb a s is

Xij > 0 , A* > 0 (2.23)

The above problem has p more variables than constraints, rather than one more as in the

single-column generation case. Using the size of the coefficient matrix in Simplex standard

form to represent the size of the problem, the RMP with multi-column generation has a

size of (m0 + p) x (m0 + p + p) while the RMP with single-column generation has a size

(m 0 +p) x (ra0 + p + 1). One would expect a greater decrease in z4 through every iteration,

and thus, a reduction in the number of iterations. As was discussed in Lasdon (2002) and

verified by the computational experiments (Cheng et al., 2005a), the advantage of having

more columns in the RMP outweighs the disadvantage of increased RMP size. Since it can

3Here the notation “| |” is used to denote the number of elements or the length of a data set as is common

practice in computing science.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.2 Column Generation Techniques 22

show higher computational efficiency, the Dantzig-Wolfe decomposition algorithm with

multi-column generation is adopted in this work.

2.2.2 Dantzig-Wolfe Decomposition Algorithms

Depending the column generation techniques adopted, variants of Dantzig-Wolfe

decomposition algorithms have been developed. With the multi-column generation

technique discussed in the previous section, a bi-level decomposition algorithm can be

formulated for the solution of the problem described in (2.7) to (2.8). Assuming the

RMP in (2.9) to (2.10) has an initial feasible basic solution, the Simplex multipliers

[7T, 7 x, 72,..., 7P], with 7T associated with constraint set (2.9) and 7 f associated with (2.10),

can be obtained. The following statement gives a brief description for the Dantzig-Wolfe

decomposition algorithm:

• Step 1: Using the Simplex multipliers 7r, solve the subproblems in (2.15) and obtain

the subproblem solutions x^ tt) and optimal objective function values z,°. Denote

x (t t) = [X i(-7r),..., X p(7r)j.

• Step 2: Compute mintJ = min, (z® — 7 *). If min, ̂ > 0, an optimal solution is

achieved and can be calculated from:

generation techniques; however, if single-column generation technique is used, only one column is entering

the RMP.

(2.24)
Jbasic Jbasic

where the points xj are the extreme points of the ith subproblem in the index set of

Jbasis', otherwise, go to Step 3.

• Step 3: If m in^ /*, < 0, the p entering columns 4 can be calculated as:

A iX i(7 r). . . ApXp(7r)

I
(2.25)

4H ere , w e have m u ltip le co lum ns, i.e ., p new co lum ns, to en te r the R M P as w e ad o p t th e m ulti-co lu m n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.2 Column Generation Techniques 23

and then added to the previous RMP as new columns. Solve the resulting RMP and

obtain a new basis (by removing the leaving columns as in Simplex method) and go

back to Step 1 and repeat.

2.2.3 Discussions

The higher computational efficiency produced by multi-column generation techniques has

been widely discussed in the literature (e.g., (Dantzig and Thapa, 2002; Lasdon, 2002)) and

verified through empirical studies (e.g., (Cheng et al., 2005a; Cheng et al., 2006a)). The

mechanism that drives the higher efficiency of multi-column generation in comparison to

the single-column generation can be explained by analogy.

Similar to the Simplex method, in Dantzig-Wolfe decomposition, different “pricing”

strategies can be used to determine the entering columns (analogously, entering variables

in the Simplex method). If we know all extreme points, the (full) master problem is

equivalent to the original LP problem, and we only need to solve the (full) MP once to

get the optimum solution. When the master problem is solved, by fully pricing all the

columns, the “best” entering variable5 can be determined. At the other extreme, in the

single-column generation, the entering column corresponds to the subproblem with most

negative objective function value, and as a result, only one entering column together with

the existing columns in current RMP is to be priced when the resulting RMP is solved by

the Simplex method. Obviously, the pricing process in the solution of the RMP with single­

column generation is a partial pricing (Nash and Sofer, 1996) process. With multi-column

generation, more entering variable candidates, including the one that can be generated by

single-column generation, are to be priced in the resulting RMP. In the partial pricing

scheme, a larger subset of the full columns is available for pricing, which may result in

a better entering variable, or, at least an entering variable as good as the one generated by

single-column generation.

In addition, it is noted that the RMP has a fixed size, i.e., whenever there are new

columns generated as the entering columns, there will be the same number of columns

5For steepest descent pricing, the best entering variable is the variable corresponding to the most negative

reduced cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study 24

dropping from the current basis of the RMP. Based on different ways of dealing with the

“leaving” columns, there are variants of the Dantzig-Wolfe decomposition algorithms. In

Dantzig and Thapa (2002), two variants that are discussed retain each “dropped” (non-

optimal) column as a supplementary column in the current RMP until the problem size

reaches some specific limit of the computer memory. Our strategy to treat the “dropped”

columns is different from those two variants in that the fixed number of columns (i.e.,

m0 + 1 in single-column generation and m 0 + p in multi-column generation) for the RMP

is not related to the memory limit. At this point, a subset of the columns that are priced out

as the most unfavorable (with most positive objective function values) is dropped from the

current RMP. If the computer memory allows, by incorporating either of the two variants

discussed above, computational efficiency enhancement can be observed for the multi-

column generation technique discussed in the previous section.

2.3 Complexity Study

The computational efficiency of a coordination strategy is a key factor in determining

the viability of using coordinated decentralized optimization approaches in industrial

applications. In the following sections, we evaluate the computational efficiency of the

Dantzig-Wolfe decomposition algorithm through an empirical investigation of complexity.

Without loss of generality, we consider a large-scale block-angular LP problem with p

subproblems in its standard form

max
i

subject to

A i x i = b o (2-26)
i

B & = hi (2.27)

Xj > 0 i = 1 ,2 , . . . , p (2 .28)

where vectors x* (n, x 1), b, (m* x 1), b 0 (m 0 x 1), c, (n* x 1), and matrices A* (mo x rii),

Bj (rrii x rii) are specific to subproblem “i”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study 25

Computational complexity is the study of determing the cost of solving a numerical

computing problem using a scientific algorithm. In this work, the cost of the proposed

Dantzig-Wolfe decomposition approach can be interpreted as the required arithmetic or

other computational operations6.

2.3.1 Theoretical Analysis

Although the computational performance of an algorithm can be measured in several ways,

the “worst-case” behavior and “average-case” behavior are two typical measures (Nash and

Sofer, 1996).

Worst-case Behavior

Unlike a complete enumeration approach, the process of coordination can be viewed as a

directional evaluation of subproblem extreme points in the RMP. When the multi-column

generation technique is incorporated into a coordinated optimization scheme, shown in

Figure 2.2, the RMP (coordinator) will evaluate a new set of p extreme points submitted

by each subproblem at every iteration. Note that the new set of p extreme points in black

(in the left ellipse of RMP rectangle frame) is not generated by an arbitrary combination

but under the direction of coordinator (RMP). In Figure 2.2, the (m0 +p) extreme point set

in gray (in the right ellipse of RMP rectangle frame) is associated with the RMP optimal

basis at the previous coordination iteration. The p point set is a new set of extreme points

submitted by subproblems at current iteration, and iVj is the number of extreme points of

the ith subproblem feasible region.

The worst-case behavior analysis depends on the LP techniques that are used for

solving the RMP and subproblems. The worst-case behavior of Simplex methods is

non-polynomial; whereas, the interior point methods are polynomial time algorithms. If

Simplex methods are used and we take its worst-case performance, the Dantzig-Wolfe

decomposition algorithm cannot be a polynomial time algorithm. Even though each

subproblem can generate an (optimal) extreme point in polynomial time, using interior

6In this work, the defi nition of an arithmetic operation, such as an addition or a multiplication, is applied

to two real numbers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study 26

m„+P

RMP

Sub

Figure 2.2: Worst-case behavior

point methods (IPM), it may take exponential time to get all the extreme points for a

subproblem. Note that each subproblem has m l constraints and rii decision variables.

Thus, the number of extreme points can be as many as the combination niCmi. Therefore,

in the worst case, whatever methods are used to solve either RMP or subproblems, the

coordination process might theoretically evaluate every combination of the subproblem

extreme points. Then, worst-case behavior analysis for Dantzig-Wolfe decomposition

implies that it may not be a polynomial time algorithm.

Usually, only when the worst-case behavior accurately reflects the average-case behavior

of an algorithm, is it used to provide an upper bound of the cost of solving a problem (Nash

and Sofer, 1996). For example, the worst-case performance of interior point methods

(IPM) gives a rather tight upper bound; however, a worst-case analysis does not reflect

the observed performance of the Simplex method (Chvatal, 1983; Nash and Sofer, 1996).

Since average-case behavior is more relevant for our work, average-case performance will

be emphasized here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study 27

Average-case Behavior

Considering the coordination mechanism discussed in the previous sections, the overall

complexity for the decomposition strategy can be expressed as:

p
T = {T (RM P) + T (Spi)} x C C N (2.29)

1=1

where T respresents the number of arithmetic operations for solving the LP problem, and

the communication cycle number (CCN) is used to distinguish the number of Simplex

iterations from that of coordination iterations (the number of times to solve the RMP).

Thus, the required arithmetic operations are attributed to two parts: the operations for

solving the subproblems and the RMP in a single communication cycle, as well as the

number of communication cycles.

If we define the first part as the non-coordination complexity:

p
T (NonCo) = T (RM P) +] T T(SF4) (2.30)

i= 1

the overall complexity can be expressed as

T = T(NonCo) x C C N (2.31)

In the Simplex method, for an LP problem with rh constraints and n variables in standard

form, the cost of solving one iteration is 0(m n) for Gaussian elimination plus 0 (m 3)

arithmetic operations for periodic re-factorization of the basis matrix7, thus the arithmetic

operation needed in one Simplex iteration is 0 (m 3+m n) (Nash and Sofer, 1996). Here, we

consider the average-case performance of Simplex method8 and take the average number

of Simplex iterations as 0{fh + n) as in Andrei (2004). Therefore, the average behavior

bound to be used is 0 (m 4 + hfh2 + m3n + h2m) for the Simplex method, which shows

polynomial time complexity. For the LP problem described in (2.26) to (2.28), we can

7The 0() notation for a given function g(n) is given as 0(g(n)) = { /(n) : 3 a+ and n f such that 0 <

f (n) < ag(n) for all n > }.
8The observed scaling behavior of Simplex method is between fh and 3rh (Nash and Sofer, 1996).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study

derive the non-coordination complexity from:

28

T (RM P) e 0 (Mq + N qMq + MqN0 + NqM0) (2.32)

where Mq = mo + p, N0 = m 0 + 2p

and

T (SPi) £ 0 (m t+ n ir r f+ m?ni + n?mi) i = l ,2 , . . . ,p (2.33)

Since the above numbers of arithmetic operations are all polynomial in corresponding m

and n, the complexity of the non-coordination computation in (2.30) can be expressed

as a polynomial with respect to the number of constraints and decision variables. In

other words, the non-coordination arithmetic operations T(NonCo) can be computed very

efficiently if we consider the average-case behavior of Simplex method.

The other part of the complexity analysis deals with the communication cycles. To our

knowledge, there is no similar analysis in the literature and therefore resort to a study of

the average behavior of CCN via a comprehensive empirical study. Next, empirical studies

will be performed to investigate the computational complexity and scaling behavior of the

Dantzig-Wolfe decomposition algorithm.

2.3.2 Empirical Studies

In last section, T represents the number of arithmetic operations, so equation (2.29) is

used to express the theoretical (average) complexity of the algorithm (i.e., it is assumed

that for each iteration the computational effort needed is in the same order); however, in

the computational studies, t in equation (2.34) acts as an indicator and measurement of

the complexity. So, instead of using the multiplication of CCN, the “actual” computing

time at each iteration is summed up. For analysis of the computational complexity of the

decomposition algorithm, since the algorithms are implemented on a sequential machine,

w e m ay express the overall com plexity in terms o f computational time:

CCN p
t = i*(RM P) + j ^ t (SPi)} (2.34)

i—1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study 29

where t represents the total computational time to solve a problem. Through

the comparison between the computational time of each subproblem and the total

computational time, we can identify and focus on the “bottleneck” subproblem, which

may be the largest in dimension or hardest to solve.

Similarly, if we denote the non-coordination computational time as:

v
t (NonCo) = t (RM P) + ^ t(SPj) (2.35)

i=i

and assume a distributed/parallel computing environment, for example, one CPU for each

subproblem, then we have the equivalent computational time (parallel computing):

Such a distributed computing environment coincides with what is encountered in current

plant-wide decentralized MPC applications. In this case, it may be desirable to balance the

computational load on each computing node because the non-coordination computational

complexity (te9„) relies heavily on the largest subproblem. We will reemphasize this

point in next section. Then, the computational time within a decentralized computing

environment can be expressed as:

Next the focus is on the analysis of CCN, where the relationship between CCN and the

characteristic parameters of the LP problems such as m 0, p, and | / j | = (m* x n*) is to

be determined. Note that, each parameter may have physical meaning in real systems. For

instance, in plant-wide MPC coordination, m0 may reflect the density of interactions among

operating units; p could be the number of decentralized MPC controllers or distributed

industrial computers; while |/,| can represent the size of the control problems handled by

an MPC subsystem. Moreover, the influence of the relative subproblem ratio (RSR), which

is defined as RSR = {max|~|, i , j = 1,2,..., p], will also be studied. The RSR gives some

idea on the computational load balance throughout the distributed computing network.

In the following Monte Carlo simulations, besides the CCN, the computational efficiency

and scaling behavior of Dantzig-Wolfe decomposition will also be investigated by

t eqv(NonCo) = t(R M P) + max?=1{t(SPi)} (2.36)

CCN

t'eqv ~ ̂ ̂^ eqviN O T lC o} (2.37)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study 30

comparing the performance between the decomposition algorithm and centralized LP

solvers on the platform of MATLAB®. In both solvers, ILOG® CPLEX 9.0, which invokes

the dual Simplex algorithm by default, is used to solve all LP problems. In our study, we

focus on the average behavior of different optimization strategies in solving the problems

with the following assumptions:

1. No cycling: many techniques can be applied to efficiently deal with cycling.

2. No degeneracy: when degeneracy occurs in practice, it can be well handled using

techniques such as perturbation techniques in Simplex method.

3. The studied problems have bounded feasible regions and optimal solutions.

Due to the random nature of Monte Carlo simulation, we would like to acknowledge that

there is possibility that an “average-case” problem may not be represented in our test set.

The test problem instance generation scheme is discussed in Appendix A. 1.1. It

randomly generates a set of LP problem instances with block-angular structure. We start

from a reference problem model, whose problem size and structure should be a good

reference for the comparison experiments, i.e., we can observe algorithm performance

changes when we change the problem with respect to the reference model. With some

preliminary tests, we choose the following set of parameters as the reference problem

model:

{p = 17, mo = 30, rrii = 40, = 30 i = l, 2, ...,p} (2.38)

Note that the reference problem has subproblems of identical size, i.e., the problem is

thus a “well-balanced” decomposable problem with R S R = 1. We also assume that each

subproblem has been allocated to a separate distributed CPU. Therefore, the equivalent

computational time t eqv for the decomposition algorithm is estimated by summing up

the time for solving the master problem and the most difficult subproblem, assuming a

distributed com putational environment. In the M onte Carlo simulation for each scenario,

the number of problem instances is 200 x 5 = 1000, i.e., for each scenario, five runs of

simulation are performed and each run solves 2 00 problem instances generated randomly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study 31

Scenario 1: We fix p and |/.;|, change m0 (see Appendix A. 1.2). In this case, we can

study the performance of decomposition and coordination with respect to the dimension of

linking constraints in equation (2.26).

CCN vs. Problem size

S25

S 15

Number of Linking Constraints

Figure 2.3: D-W decomposition: CCN vs. number of linking constraints

Figure 2.3 shows that the CCN increases almost linearly with the dimension of linking

constraints increases. In Figure 2.4, when the number of linking constraints is small,

the decomposition algorithm gives comparable performance to the centralized LP solver.

When the number of linking constraints increases, the computational performance gets

worse. This shows the computational complexity of the decomposition algorithm has

strong dependence on the dimension of linking constraints.

Scenario 2: For fixed p and mo, we change subproblem size |/j| by simultaneously

changing m* and n* (see Appendix A. 1.2). In this case, we study the algorithm performance

with respect to subproblem sizes.

Figure 2.5 shows a rather surprising result. Intuitively, one may think that the CCN

would increase when subproblem size increases, because the overall problem gets bigger.

By analogy to the coordination of plants in a large company, larger plant decision proposals

are usually less sensitive to coordination and thus do not tend to change dramatically. In

such a case, the central planning board may end up with less coordination iterations. Since

the solution of a larger subproblem is more time consuming, Figure 2.6 shows an increase in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study 32

2.5

50 100
Number of Linking Constraints

150

Figure 2.4: D-W decomposition: computational performance vs. number of linking

constraints

123-
'd w m u lt il

&.n
E3
Z
0

5
co
.1'c3E
E
a

0.2 0.4 0.6 1.4
Number of coefficient elements ,7x 10

Figure 2.5: D-W decomposition: CCN vs. subproblem size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study 33

t : 12

110

.— ■o

0.2 0.4 0.6 0.8 1 1.2
Number of coefficient elem ents

1.4
x107

Figure 2.6: D-W decomposition: computational performance vs. problem size

the computational time of Dantzig-Wolfe decomposition algorithm, but its performance is

much better than the centralized LP solver. One extreme case is that the subproblems have

infinite size, then the linking constraints are negligible and the LP problem is essentially

a (fully) decentralized problem, which requires no coordination (i.e., C C N —> 0). In

addition, as the linking constraints contribute much less than the subproblems to the overall

problem size, the changes of overall problem size reflect the changes of subproblem size.

Thus, the overall problem coefficient number is used in the figures.

Scenario 3: We keep m0, m, and n* constant, and change the number of subproblems

p (see Appendix B). In this case, we investigate the performance of the coordination

algorithm when more and more subproblems are integrated into the coordination system,

assuming a rather well-balanced subproblem computational load.

Figure 2.7 shows that the number of subproblems p slightly influences the coordination

complexity. When the number of subproblems increases, there is a minor increase in CCN.

Similarly, in Figure 2.8, the number of subproblems slightly influence the computational

performance when distributed computing environment is considered. In other words,

the incorporation o f a sim ilar-size subsystem does not degrade the com putational

performance too much, which also indicates the good scaling behavior of the Dantzig-

Wolfe decomposition algorithm for our class of problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study 34

12.5
dw-multj

11.5

*10.5

100 120 140
Number of Subproblems

Figure 2.7: D-W decomposition: CCN vs. number of subproblems

-e -c p le x
-o- dw-mult

w-©
E

toco
53o.
EoO
c©0.5
§
5O’
LU

100 120 140
Number of Subproblems

Figure 2.8: D-W decomposition: computational performance vs. number of subproblems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study 35

Scenario 4: We fix ra0, X X = i and S L i i-e->we fix the overall problem size, we

can study the influence of the relative subproblem ratio (RSR). In this case, we change p

by combining subproblems into groups (see Appendix B) according to different partition

patterns of the original LP problem. For example, when R S R = 4, the original 17

subproblems in the reference problem can be combined into a set of subproblems which

have a problem size ratio (4 : 4 : 4 : 4 : 1} (pattern 1) or {4 : 1 : ... : 1} (pattern 2).

The above patterns reflect two typical situations in which we have a smaller subsystem or

a larger subsystem compared with others.

In Figure 2.9, the CCN of both cases is monotonically increasing as the RSR increases;

while in Figure 2.10, the computational time also increases as the RSR increases. It should

be noted that there are more subproblems in pattern 2 than pattern 1. When we have more

subproblems, more vertices from subproblems can be incorporated into the RMP, thus a

faster convergence is expected, i.e., a smaller CCN in pattern 2. In addition, as an identical

CPU is assumed to be allocated to each subproblem, the number of CPUs, p0, corresponds

to the number of resulting subproblems. We can see that even for the same LP problem,

different decomposition patterns lead to different computational performance. Moreover,

-fi-dw -m ulti-I
18- dw-multj-'

19

a I____________ i------------------- 1------------------- 1------------------- 1------------------- 1------------------- 1------------------- 1-------------------
0 2 4 6 8 10 12 14 16

Relative Subproblem Ratio

Figure 2.9: D-W decomposition: CCN vs. RSR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.3 Complexity Study 36

0.7
cplex

-Q- dw -m ulti-;
-4 -d w -m u lti- '0.6

F 0.5

0.4

0 0.3

I 0.2

Relative Subproblem Ratio

Figure 2.10: D-W decomposition: computational performance vs. RSR

if we define

maxf°1t(5u6;)
subm (Subi) {)

as a quantity that represents the computational time dominance of the largest subproblem,

and
P0

t (Suk) = t (NonCo) - t (RM P) (2.40)
i= 1

can be obtained from our simulation.

Shown in Figure 2.11, for the two decomposition patterns, the computational time taken

by the largest subproblem dominates the computational time for solving subproblems when

RSR increases. This also addresses the reason we should balance the computational load

on each computing node in our experiment design.

Remarks: Although the complexity study has not yielded an accurate mathematical

expression for the computational complexity, it does provide new insight and reveal some

inherent features of the complexity of Dantzig-Wolfe decomposition algorithm. Moreover,

this study also provides some guidelines for coordination system design with Dantzig-

Wolfe decomposition principle. Advantages over a centralized LP solver are gained by

using the decomposition algorithm to solve an LP problem, which has the following

properties:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.4 Chapter Summary 37

0.9

0.8

|0 .7

0.6

x 0.5

o 0.4

« 0.3

Q 0.2

Relative Subproblem Ratio

Figure 2.11: D-W decomposition: computational dominance of Max subproblem

• a block-angular structure;

• a large scale;

• relatively low-dimensional linking constraints;

• relatively high-dimensional subproblems;

• well-balanced computational load;

• large number of subproblems, if distributed computing power is available.

In many industrial applications, the plant-wide MPC target calculation problem can be

formulated as an LP problem having most of the above properties, and as a result, can be

efficiently solved by Dantzig-Wolfe decomposition.

2.4 Chapter Summary

In this chapter, the best available decomposition strategies for solving large-scale linear

programming problems have been investigated. In particular, by taking advantage of

distributed computing environment, the Dantzig-Wolfe decomposition is very suitable for

solving high dimensional linear programming problems with block-wise structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 2.4 Chapter Summary 38

With a well-designed structural complexity analysis approach, new insight into the

relationships between computational performance and problem structural parameters was

gained through theoretical analysis and a comprehensive empirical study of the scaling

behavior of Dantzig-Wolfe decomposition algorithms. The complexity study shows

that, for large-scale linear programming problems with special structure, the Dantzig-

Wolfe decomposition algorithm can outperform centralized optimization solvers when

appropriate implementation is conducted. Moreover, the complexity study also provides

guidelines for the practical application of the decomposition and coordination methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Truth is ever to be found in the simplicity., and not in the multiplicity and

confusion o f things.”

- by Sir Isaac Newton

Decomposition Strategies for Large-Scale

Quadratic Programming

This chapter discusses decomposition and coordination strategies for solving large-scale

quadratic programming (QP) problems, which represent a typical class of optimization

problems in industrial applications, such as process design, operations, and control. The

focus of this chapter is on the auction-based (or price-driven) coordination methods (Jose

and Ungar, 1998a), which was originally developed for solving general nonlinear program­

ming problems. With appropriate partitioning, a large-scale QP problem can be equiva­

lently converted into a set of independent subproblems linked by a coordination problem.

To improve the computational efficiency of the price-driven coordination method, an ef­

ficient price adjustment scheme is proposed by using Newton’s method to take advantage

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.1 Background 40

of the sensitivity information from subproblem solution. The proposed price adjustment

scheme can significantly improve the computational efficiency of the price-driven coordi­

nation methods when solving large-scale QP problems. The structural complexity analysis

is used to gain more insight into the computational performance and scaling behavior of

the proposed price-driven coordination method. 1

3.1 Background

Large-scale quadratic programming problems are frequently encountered in industrial

applications. In model predictive control, the steady-state target calculation and dynamic

optimization problems can be formulated as quadratic programming (QP) problems (Ying

and Joseph, 1999; Qin and Badgewell, 2003). In addition, most nonlinear programming

problems in process optimization are solved by sequential quadratic programming

(SQP), in which a quadratic programming subproblem is solved iteratively (Edgar and

Himmelblau, 2001). Further, many parameter estimation, resource assignment problems,

etc., take the form of QP problems. Therefore, decomposition strategies for efficiently

solving large-scale QP problems may have potential for use in a wide range of operations

optimization problems.

There are several existing decomposition methods and their variants can be used for

solving large-scale quadratic programming problems. These decomposition methods share

a basic mechanism: the original problem is decomposed into smaller subproblems, which

are coordinated by a so called “master problem”.

3.1.1 Decomposition Strategies for Nonlinear Programming

The Dantzig-Wolfe method can be extended to solve convex nonlinear problems (Molina,

1979; Whinston, 1966), among which QP problems are the simplest. This approach

has very elegant economic interpretations and can be efficient for block-wise small to

medium scale problems. The Benders algorithm was also generalized to allow the

'Part of this chapter has been published in Cheng et ol. (20056; 20066)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.1 Background 41

solution of separable nonlinear problems (Molina, 1979). Pigot (1964) published a

“double decomposition method” that could be thought as a combination of the Dantzig-

Wolfe and Benders approaches to give upper and lower bounds of the optimal solution,

but its implementation is complicated. After the publication of article “Two Level

Planning” (Komai and Liptak, 1965), more interest has developed in the decomposition of

a mathematical programming problem. For example, Sanders (1965) published a method

of primal decomposition of nonlinear programming problems by means of the Lagrange

multipliers. Recently, an auction-based/price-driven coordination method was developed

by Jose and Ungar (1998a; 19986) on the basis of the work of Jennergren (1973). This

method can handle situations in which the Lagrangian-based method may be inadequate,

by using so called “slack resource” auction.

Because of the elegance of the economic interpretation of the Dantzig-Wolfe

decomposition, and the more recent price-driven coordination method in plant-wide

optimization, this chapter concentrates its discussion on two methods: an extension of the

Dantzig-Wolfe decomposition method (Whinston, 1966) and a price-driven coordination

method.

3.1.2 Extension of Dantzig-Wolfe Decomposition

The Dantzig-Wolfe decomposition for solving large-scale LP problems can be naturally

extended to solving large-scale QP problems, as QP problems can be converted into

a form that can be solved by the Simplex method (Panne, 1975). By applying the

optimality conditions, a QP problem can be transformed to a linear complementarity

problem. The linear complementarity problem consists of a system of linear equations

and complementarity equations. In the Simplex method, the nonlinear complementarity

equations can be handled by a complementary pivoting rule.

The extension of Danzig-Wolfe decomposition to solve large-scale QP problem is

described in Whinston (1966). This decomposition algorithm arises naturally where the

coefficient matrix of the constraints has a block-wise structure, and thus a large problem

can be decomposed into a collection of smaller subproblems. These subproblems are then

coordinated by using linking constraints. To illustrate the idea of complementary pivoting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.1 Background 42

for the extension of Dantzig-Wolfe decomposition, a QP problem with two subsystems is

considered as follows:

m a x /(x i ,x 2) = c fx i + c;fx2
x l,x 2

A 1X1 + A 2x2 = b 0

B 1X1 < b i (3.2)

(3.1)

B 2x2 < b 2 (3.3)

where x i and x 2 are two vectors of decision variables, b 0, b i , b 2 are the corresponding

RHS of the linking constraints and the subproblem constraints respectively, ci and c2 are

cost coefficients in the objective function associated with decision variables Xi and x2, and

matrix Q is a symmetric positive semidefinite matrix. The convex sets described by the

inequalities (3.2) and (3.3) are assumed to be bounded to simplify the discussion 2.

The above QP formulation can be converted into its equivalent master problem (MP)

by using the theorem of convex combination (Lasdon, 2002). Therefore, using the convex

combination in equation (2.5) and (2.6) in Chapter 2 and substituting them into inequality

(3.2) and (3.3) of the original problem, the following master problem can be obtained:

where x*i and xj 2 represent the set o f extrem e points o f the feasible region for subproblems

1 and 2 respectively, and A* and (3j are the non-negative coefficients in the convex

2 Without this assumption, one can follow the argument developed by Dantzig and Wolfe in (1960)

max

(3.4)

(3.5)

\ > 0 0j > 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.1 Background 43

combination. The transformed master problem is still a concave programming problem

which has been proved in Whinston (1966).

The master problem can be converted into a system of linear complementarity equations

by applying the optimality conditions. The only nonlinear constraints are shown in equation

(3.6):

UiXi = 0 Wj(3j = 0 fo ra lli,j (3.6)

where ut and Wj are the Lagrange multipliers for the non-negativity constraints for A* and

/3j. The above linear complementarity problem can be solved using the Simplex method

with some modifications. At the optimum, the complementarity constraints have to be

satisfied. In the Simplex tableau, either it* and Wj or A* and f3j are in the basic set. Through

a complementarity pivoting rule, the variables entering and leaving the basic set are chosen

to make sure that the complementarity constraints are satisfied.

The extension of Dantzig-Wolfe decomposition, which incorporates the complementary

pivoting rule for solving large-scale QP problems, was discussed in Whinston (1966). The

procedure can be briefly described as follows:

Step 1. Determine the most negative Ui or Wj variable by solving the subproblems, and the

algorithm will terminate when no negative variable can be found.

Step 2. Introduce into the basis the corresponding complementary variable A* or j3j of the

priced-out variable determined in Step 1. When Simplex pivoting is performed, the leaving

variable should be chosen from the Xi or f3j in the basis and the variable or Wj designated

in Step 1. If the variable designated in Step 1 is removed, return to Step 1; otherwise, go

onto Step 3.

Step 3. Introduce the Ui or Wj variable into the basis that is complementary to the leaving

variable in Step 2. Carry out another Simplex pivoting. The leaving variable is then chosen

from the A, or /3j in the basis and the variable designated in Step 1. If a Aj or is chosen

to be leaving, repeat Step 3; otherwise, go back to Step 1.

The major steps in solving large-scale LP and QP using Dantzig-Wolfe decomposition

are almost the same except those described above. In the above algorithm, we are either

introducing a A* or f3* variable complementary to u* or w* designated by Step 1 or some

or Wj variable. Since we can determine the tableau elements of the particular generated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.1 Background 44

column in the basis at any iteration, all the variables in the basis can be determined

throughout the algorithm.

3.1.3 Discussions

For the extension of Dantzig-Wolfe decomposition algorithm discussed in the previous

section, it is observed that the dimension of the restricted master problem (RMP) may

increase as the coordination process continues, and to our knowledge, no attempt has

been found to maintain a fixed RMP size as in the Dantzig-Wolfe decomposition for LP

problems. Based on some preliminary computational studies, Figure 3.1 illustrates the

worst case of this extension of Dantzig-Wolfe decomposition for QP problems, where

the dimension of RMP can contain as many as the number of total extreme points of

subproblems. For real-time solution of large-scale QP problems, this can be a serious

barrier to a practical implementation of this extension.

Dimension of MP

D-W Ext. for Q P

D -W for LP

Iterations

Figure 3.1: Limitations of D-W decomposition for QP

Because of the limitation of the extension of Dantzig-Wolfe decomposition, we turn to

auction-based (or price-driven) coordination m ethod for solv ing large-scale QP problem s

with the described separable structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.1 Background

3.1.4 Price-driven Coordination Methods

45

The price-driven coordination method discussed in Jose and Ungar (1998a; 19986) can

be used to solve resource distribution or auction problems. In their method, a large-scale

optimization problem is decomposed into subproblems by relaxing the resource constraints

which connect the subsystems together (the linking constraints in our previous discussions).

The general large-scale nonlinear optimization problem considered here is:
n

m a x V ' f i (x j)
i

subject to:
n

2 > (x ,) < E (3 .7)
i

Xi G X i

where Xj is an rij-vector of decision variables, X t is the feasible solution set of the ith

subproblem, fj is the objective function for subproblem i, Ri is an m-vector of resource

demands for subsystem i, and R represents the availability of common resources. The

subproblems for each unit are re-formulated as follows:

m a x f i (x j) - (p + q R i (- K i)) T R i { s . i) (3 .8)
XiGXi

where p G R™ is a given price vector and q is a small positive scalar3. It was shown in Jose

and Ungar (19986) that if the subproblems have concave, continuous objective functions

and compact, convex feasible sets, there exist equilibrium augmented prices in the form of

p + qR that optimally coordinate the subproblems for given resource availability R. For a

given q, the equilibrium prices satisfy the nonlinear complementarity problem (NCP):

A(p, q) = ^ 2 R i(p , q) ~ R < 0
i

P T (A (p , q)) = 0 (3 .9)

p > 0

3For example, the small positive scalar q is chosen as 0.01 in Jose and Ungar (19986) for solving

linear programs (as a special case), and can be set to 0 for solving nonlinear programs (including quadratic

programs). More detailed discussion can be found in Jose and Ungar (19986).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.2 An ESS cient Price Update Scheme 46

where A (p, q) £ R m is the corresponding excess resource demand (i.e., the difference

between the total demand of all subproblems and the plant-wide resource availability).

The optimum of problem (3.7) can be obtained by solving the subproblems as given by

(3.8) independently, given the equilibrium prices from problem (3.9). The mechanism for

adjusting p until it satisfies problem (3.9) can be considered as the coordination in price-

driven approach.

3.2 An Efficient Price Update Scheme

In many applications, the linking constraints take the form of (separable) equality

constraints4. For example, the availability of (common) strategic resources, such as

gasoline and ammunition, are the linking constraints and usually limited and scarce in

most military resource allocation problems. When the linking constraints are equality

constraints, which are frequently encountered in applications, the NCP in Equation (3.9) is

simplified to:

A(p,<?) = 0 (3.10)

Therefore, the price vector can be adjusted by numerically solving a system of equations.

3.2.1 Newton’s Method

For well-posed problems of the form given in (3.10), Newton’s method can be used. Then

during an iteration, the coordinator adjusts prices as follows:

p (f c + l) = p (f c) - a J _1A(Jfc) (3.11)

where A = A (p, q) for simplicity, a is the step size, and

dA (k) _ ^ dRj(k)
dp(k) ^ dp(k) K }

4Otherwise, an NCP given in (3.9), which is generally more diffi cult, needs to be solved through NCP

algorithms such as Non-smooth Newton Methods, Smoothing Methods, and Jacobian Smoothing Methods

discussed in Kanzow and Pieter (1999)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.2 An ESi cient Price Update Scheme 47

assuming the matrix in (3.12) is invertible. For the purpose of explanation, here we define

Ji as the component of the overall Jacobian matrix J , which corresponds to subproblem

i, i.e., J = AiJ»- Figure 3.2 explains the major information exchange between the

coordinator and subsystems.

The coordination process is similar to setting up the prices for selling common resources

to different consumers. The coordinator sends a price vector that contains pricing

information for the resources to every subsystem. After solving their local optimization

problems, the subsystems inform the coordinator of the resource demands (/?,) at current

prices and their responses to the price change (dRi/dp). The coordinator then collects

these two pieces of information to evaluate A and d A / dp, and the prices are updated using

equation (3.11). This process of information exchange continues until the total demand is

equal to overall supply, i.e., A = 0.

3.2.2 Jacobian Evaluation

The sensitivity dRi/dp of the local subproblems can be obtained by standard post­

optimality analysis techniques (McCormick, 1983; Wolbert et al., 1994). In this work,

the modified QP subproblems have the form:

coordinator

subproblem 1 subproblem n

p (k) / A
/ /dRAi

/ R , (k) Rn(k) \

dRy (k) ■■■ dRn(k)
dp(k) dp(k)

Figure 3.2: Infomation Flow in Price-driven Coordination

min (cf - pTAj)xj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.2 An EG5 dent Price Update Scheme

subject to:

48

B f x i = b f (3.13)

BineqXi < b f eq

where R ifa) = AfXj, and

E dRi (k) _ dxi (k)

t " w v

where A 4 is the coefficient matrix in the linking constraints corresponding to the variables

of the ith subproblem. Following the standard approach to sensitivity analysis, a

Lagrangian function is firstly constructed for problem (3.13):

L ,(* . f t .P) = ffx , - ix f f l .x . + Af (B fx , - b ?) - p f - b;™4) (3.14)

where

W = CI - Pr A i and H* = Q* + q A f A* (3.15)

The first-order optimality conditions are:

V Xi£ i (x i , A i)A Ht, P) = l - H iX j + (B ^ f A , + U K ^ i = 0

^i(xi, p) = B®9x, — b®9 = 0 (3.16)

Agi(xi, p) = ^ B r 9xi - Ab r <?= o

/Si(x i» p) + I^ i = /B-ne9Xj - /b-neg + /o-j = 0

The vectors A and Afi are the Lagrange multipliers for the equality constraints and active

inequality constraints in problem (3.13), respectively, and the vector i <t is the slack

variables corresponding to the inactive inequality constraints. The subscripts A and I

indicate the active and inactive status of the inequality constraints.

The sensitivity matrices can be obtained by differentiating the optimality conditions

in (3.16). One may notice that, we have extended the sensitivity analysis derivation in

Wolbert et al. (1994) by including the sensitivity of slack variables of the inactive inequality

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.2 An Effi cient Price Update Scheme

constraints. Then, we obtain a system of equations as follows:

49

(3.17)

^ 7 x i p 7 - ' i <̂ P T - V Xi P j d \i + y Xt A g i d^Pi — 0

VXiFjdxj + VpFjdp = 0

VXiAgidXi + V pA gidp = 0

Vxi/gi^X j + V p /g jd p + d z tTi = 0

For QP problems, the derivatives in (3.17) are constant matrices. Then the sensitivity

matrix, dx,/dp, can be obtained by solving the following system of linear equations

assuming that the matrix T, is full rank:

r,

V p X j A f

V pAj 0

Vp A P i 0

7̂ p i c r j 0

(3.18)

where

r<

Qi + Q AT Ai B f r A B ineqT 0

0 0 0
-ryineq

A & i 0 0 0
-ryineq 0 0 I

(3.19)

By solving the equations in (3.18), J* = can be obtained straightforwardly.

Therefore, the overall Jacobian matrix J = J2i A iJ; can be calculated for updating the

price vector p in equation (3.11).

3.2.3 Step Size Determination

The Jacobian matrix in (3.12) is valid only when there is no active set change; however,

there is no guarantee that the active set for any subproblem w ill not change during a

solution. Therefore, a full Newton step is taken only when no active set change in each

subproblem is identified. Otherwise, a step size a, less than one, should be taken.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.2 An EfE cient Price Update Scheme 50

The largest step size that could be taken before a change in active set occurs can be

determined from the sensitivity information. A trust region specification is performed

to identify the smallest step size a that causes a change to current active set in each

subproblem. When there is an active set change, one of the slack variables and Lagrange

multipliers in the subproblems will become zero. The slack variables or Lagrange

multipliers, denoted by 0, as a function of p is given as follows:

0 = 0*(p(fc)) + Vp0 (p -p (fc)) (3.20)

Then equation (3.11) can be substituted into equation (3.20) to express 0 in terms of

a. We can equate 0 to 0 for every slack variable and Lagrange multiplier for each

subproblem to determine the value of a which makes individual constraint change its

activity5. The smallest positive a will be taken as the step size candidate for the current

iteration. If it is less than 1, it will be chosen as the step size; otherwise, a full Newton’s

step is taken. Although this procedure is not shown in Figure 3.2, the above calculation

can be implemented in the subproblems as a can be determined independently for each

subproblem.

3.2.4 Algorithmic Statement

There are two phases in one coordination iteration. Each phase contains an information

distribution-gathering procedure, in which information exchange happens between the

coordinator and the subsystems. The price-adjustment algorithm is summarized as follows:

• Step 1 (phase 1): Trust region specification determines a nonnegative step size to

update the prices in equation (3.11). Then the updated prices are distributed to

subproblems. For initialization, the prices could be set to zero or some other initial

guesses.

• Step 2 (phase 1): Each subproblem is independently solved based on current price

information, and its solution x» and sensitivity information VpAj, Vp£i,;, and Vpcr,

are submitted to the coordinator.
5We assume that no degeneracy happens at the optimum, otherwise, the user should re-formulate the

problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.2 An Effi cient Price Update Scheme 51

• Step 3 (phase 2): The coordinator calculates the excess demand A and determines

6 using equation (3.18) and (3.12). Then the plant-wide Newton direction J _1A is

distributed to the subproblems. The whole procedure is terminated when the excess

demand reaches zero.

• Step 4 (phase 2): By combining the sensitivity information recorded in step 2 and

the plant-wide Newton direction, an active set change identification is performed

independently for each subproblem. Then a set of allowable step size {a*} is

submitted to the coordinator.

With the proposed price-update scheme, the auction-based coordination method may

exhibit computational efficiency in solving a class of QP problems with block-wise

structure in the local constraints, separable objective function, and linking equality

constraints.

3.2.5 Discussions

To illustrate the improvement that we have made to the price-driven coordination method,

in this discussion, the proposed price-update scheme is briefly compared with the P-control

price-update scheme discussed in Jose and Ungar (1998ft).

In the P-control approach, the price vector is updated by:

p(fc + 1) = p (k) + kcA (k) (3.21)

Consider the following QP problem:

x T r \ T m m - x Q x — c x

subject to:

A x < b (3.22)

x > 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.2 An Elfi cient Price Update Scheme

where

52

2 5 7 3 14

3 5 3 4 10

1 3 0 0
b =

6

2 1 0 0 5

0 0 1.5 4 12

0 0 2 1 6

(3.23)

Q = diag{2,4,3,8} cT = [2 5 6 8]

The problem can be decomposed into two subproblems with two linking constraints.

Table 3.1: Performance of different price-update strategies
Methods Tuning Iterations Convergence

Newton’s NA 2 Yes

P-control kc = 0.02 400 Yes

P-control kc = 0.04 139 Yes

P-control kc = 0.1 NA No

In Table 3.1, performance of these two algorithms is compared based on the number

of iterations required to reach the equilibrium prices. Identical termination criteria and

the initial guess p = 0 are used in both algorithms. For this example, Figure 3.3 gives

us a clear idea of the enhancement that has been made by applying the proposed price-

adjustment algorithm. By using Newton’s method, the price adjustment algorithm drives

the solution to the optimum very fast, and balances the supply and demand efficiently. It

should also be noted that the P-control price update scheme for the given controller tunings

yields an oscillatory trajectory when we look at the objective function value of the overall

problem. All evidence shows that the Newton-based price-adjustment algorithm provides

a substantially faster convergence.

Furthermore, the proposed algorithm also provides a guideline for tuning the

proportional gain in P-control scheme. Comparing equation (3.11) and (3.21) shows that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.3 Economic Interpretation o f Coordination Mechanism 53

*u.
i

LL

-5. 25 30
TT

Newton Price
P - control

20 25 30
c 20

0
100 5 15 20 25 30

Iter. No.

Figure 3.3: Convergence of different price update strategies

the proposed price-adjustment scheme adaptively updates the P-controller gain within each

coordination cycle by setting kc = —crJ”1. Moreover, for multi-variable systems (i.e.,

multiple resources), kc is a diagonal matrix in the P-control scheme, while it is a full matrix

in the proposed scheme.

3.3 Economic Interpretation of Coordination Mechanism

Microeconomics provides an interesting economic interpretation for the proposed

coordination mechanism, and in particular, for the price adjustment scheme in equation

(3.11). In this section, the single common resource case is used for the discussion (i.e., all

the variables are scalars).

In a market, the price (p) of goods is related to the behavior of suppliers (or S(p),
quantity of goods supplied) and consumers (or, D(p) the quantity of goods demanded.

Standard microeconomics theory states that: as prices rise, supply will increase; as prices

decrease, demand will increase. The equilibrium price is the price at which the demand

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.3 Economic Interpretation o f Coordination Mechanism

and supply are balanced.

54

Excess Supply

A < 0

A > 0
Excess Demand

Figure 3.4: Determination of equilibrium price from supply and demand curves

These relationships are shown in Figure 3.4, where S is the supply curve and D is the

demand curve. In an efficient market, supply and demand tend to be an equilibrium, which

is denoted as point E on Figure 3.4. This point yields the equilibrium price p*, which the

coordinator is responsible for determing in the proposed coordination mechanism. Figure

3.4 also illustrates two important cases: excess supply (i.e., where A < 0 and excess

demand (i.e., where A > 0). Then the value of A, as determined in equation (3.11), can be

interpreted as one of these two cases, prior to convergence.

When p > p*, excess supply tends to force price down; when p < p*, excess demand

tends to force price up. Consider starting at point B on Figure 3.4. This corresponds to

an excess demand (i.e., more demand for resources than there is supply). If we were to

increase the price of the resource, then demand should correspondingly decrease. As A is

positive, the price update strategy given in equation (3.11) will increase prices, which will

cause subproblem s to decrease their demand for com m on resources in the next coordination

cycle. This is shown by point B 1 in Figure 3.4. In every cycle of the coordination, the

coordinator collects the information about the behavior of consumer, Ri(p) (i.e., individual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 55

consumer demand) and dRi(p)/dp (i.e., response to price change or price elasticity of

individual consumer’s demand), at the current price p from every individual subproblem.

Then, the coordinator calculates the overall demand J2i Ri and elasticity J2i and uses

them for price update. Subsequent coordination cycles drives the entire system along the

demand curve toward the equilibrium price, as denoted by the points B 2, B 3 and so on.

The techniques available in the literature and the proposed Newton-based methods for price

updating follows this general strategy in slightly different ways.

3.4 Complexity Study

As was discussed in Chapter 2, the computational efficiency of a coordination

strategy is a key factor in determining the viability of using coordinated decentralized

optimization approaches in industrial applications. In this section, our interest is

focused on investigating the scaling behavior of the price-driven coordination method via

comprehensive computational studies, as well as a brief theoretical complexity analysis for

the proposed price-adjustment scheme.

In this work, without loss of generality, consider a large-scale block-angular QP problem

with p subproblems in form of:

max ^x r H x + fTx

s.t. y ; AjXj = bp (3.24)
i

BjXj < b i (3.25)

Xj > 0 * = 1,2, ...,p (3.26)

where

Qi 0 . . 0 fi X l

H =
0 Q2 • . 0 f = f2

X =
X 2

0 0 . • Qp k X p

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 56

In the above, X* is a vector of n* decision variables. H is the Hessian matrix with block-

diagonal matrices Qj, which have a dimension of (n* x n 4) correspondingly; f is the cost

coefficient of the linear term in the objective function, where U is a vector of n* elements,

b j is the RHS of dimension while b 0 of ra0. The coefficient matrices A* and B, have

the corresponding dimension (m0 x n*) and (m* xi%i), respectively.

In this work, the purpose of computational study is to determine the cost of solving

a class of QP problems as described above, using price-driven coordination algorithms,

where the term “cost” stands for the required arithmetic or other computational operations

as is discussed before. Similarly, the concepts of “worst-case” behavior and “average-case”

behavior (Nash and Sofer, 1996) are used to measure the cost of the algorithm.

3.4.1 Theoretical Analysis

Recall the coordination mechanism shown in Figure 3.2, the computational complexity

of the price-driven coordination method has three contributors: the complexity of

subproblems, the complexity of coordinator’s calculation, and the coordination complexity

which can be represented by communication cycle number (CCN). For discussions of

the computational complexity of the decomposition algorithm, since the algorithms are

investigated on the same sequential machine, the overall complexity can be expressed as:

Note that the complexity of the coordinator T (CoProb) is expressed differently from that

in the Dantzig-Wolfe decomposition algorithm, where an RMP is referred to.

By following the similar convention to the complexity analysis for the Dantzig-Wolfe

decomposition, we may have:

v
T = {T{CoProb) + (SP*)} x C C N (3.28)

p

T(NonCo) = T (CoProb) + ^ T (S P i) (3.29)
i — 1

and the overall complexity can be expressed as:

T = T (NonCo) x C C N (3.30)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 57

In theory, the choice of algorithms for solving subproblems and coordinator’s problem

(i.e., a system of equations) will not impact the coordination complexity (i.e., CCN),

assuming different valid algorithms should be able to achieve identical6 solutions for given

inputs. Therefore, any state-of-the-art algorithms can be chosen to serve the purpose of

complexity analysis. Next, the complexity is studied in three parts.

On Subproblems

The subproblems that we encounter when the price-driven coordination method is applied

to solving large-scale QP problems are smaller scale QP problems. The interior point

methods (IPM) and active set methods are common solution approaches for QP problems.

To our knowledge, no polynomial time algorithm proof is given in the literature for active

set methods. For the purpose of complexity studies, interior point methods are chosen as

the solver since we can find abundant sources of complexity analysis of IPM for QP (Nash

and Sofer, 1996; Potra and Wright, 2000; Illes and Terlaky, 2002).

The complexity study of interior point methods for QP problems itself is a difficult topic

in the literature. The results are usually obtained and valid for some specified assumptions

and implementations of algorithms. This work is not intended to derive an accurate

complexity bound, but rather to identify the key factors that can lead to a polynomial­

time or non-polynomial time price-driven coordination algorithm. We use the results from

the literature to serve this purpose.

The interior point method uses Newton’s method in the solution of a general QP problem,

where each Newton iteration involves the solution of a set of equations, requiring 0 (n 3)

operations (Nash and Sofer, 1996) 7. When the Hessian matrix Q in a QP problem is

positive-semidefinite, with an appropriately chosen starting point, the IPM can converge

to the solution in 0 (n 2 log lf) iterations (Potra and Wright, 2000), where p 0 is the initial

value of the barrier parameter and e < 2~2i is the tolerance to the solution for integer data

length L.

6 At least to some accuracy that numerically satisfi es specifi ed requirements.
7 A better bound, 0 (n 2-5), for the cost of solving for Newton’s iteration can be found on page 181 of (Illes

and Terlaky, 2002)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 58

Thus, it can be concluded that the interior point methods for solving convex QP problems

are polynomial-time algorithms. In other words, the QP subproblems in the price-driven

coordination method can be solved efficiently.

On the Coordinator Complexity

Recall that we have the formula (3.11) for the coordinator to update the price vectors. In

the coordinator’s computation, there are four major computational operations:

• With the information from the ith subproblem, computing matrix inverse i y 1;

• Obtaining ^ by matrix-vector multiplication with the matrix inverse T ”1 obtained

beforehand;

• Calculating Jacobian matrix J by matrix multiplication J* = A j ^ and the

summation XX=i

• Computing the inverse of the overall Jacobian matrix J -1 and get the price vector

updated.

It is known that matrix inversion takes more operations than matrix multiplication

(including matrix-vector multiplication) and matrix summation. In the above four major

operations, the matrix inverse i y 1 is associated with the largest matrices that appear in

the above four operations. Therefore, the matrix inversion i y 1 contributes the dominant

portion of the arithmetic operations. There are many matrix algorithms for calculating

matrix inversion, for example, the Cholesky decomposition, the Householder reduction

and the Winograd’s method (Kronsjo, 1987). The upper bounds of the number of arithmetic

operations are available for most of the methods, for instance, ^ 4-1.19 n 7/ 3 + rc — O.GSn1/ 3

multiplications and ^ + 3.75n 7/ 3 — 2 n 2 + 0 (n 5/ 3) additions are required for Winograd’s

method to get the inversion of an n x n matrix. To get a general expression, which also

serves our purpose of complexity study, we can safely say that the matrix inversion can

be completed in 0 (n 3) arithmetic operations. It should be noted that, in the coordinator’s

computation, the matrix inversion T”1 and matrix-vector multiplication can be combined

and calculated with LU or Cholesky decomposition methods. Although it does not change

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 59

the conclusion from the complexity analysis, by avoiding explicit calculation of the matrix

inverse, the required number of operations would be less and results in some improvement

of computational performance.

In the price-driven coordination method, for a given QP problem in (3.24) to (3.26), T ,

is an (rii + m*) x (n* + m,) matrix, thus it requires 0((rii + rrii)3) arithmetic operations

to get its inversion. As long as the the number of subproblems p is finite and not very

large8, the operations required to calculate all the matrix inverse can be expressed as

0(p x (max(nj + m*)3), which again requires polynomial operations with respect to the

problem size.

It should be noted that, being different from Dantzig-Wolfe decomposition where the

coordinator (RMP) has a fixed size and the coordinator complexity has nothing to do

with the subproblem sizes, the complexity of coordinator’s computation is related to the

subproblem sizes.

On Coordination Complexity

The coordination complexity refers to the iterations of information exchanges between

the coordinator and subproblems, i.e., it can be expressed by communication cycle

number (CCN). To our knowledge, no theoretical results are available for the

coordination complexity for the price-driven coordination method in the literature. One

practical approach to investigating the coordination complexity is through comprehensive

computational studies.

Before getting into the empirical study, let us qualitatively discuss the coordination

complexity in the following two situations: the interior solution case (i.e., any subset x*

of the overall solution x lies in the interior of the feasible region of i th subproblem) and

the boundary solution case (i.e., at least one subset Xj of the overall solution x lies on

the boundary of the feasible region of ith subproblem). Recall that there is an active set

change identification step in the price-driven coordination algorithm, which determines the

Newton’s step size.

8It is always possible to combine smaller problems into fewer bigger problems if we want to control the

number of subproblems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 60

In the interior solution case, as long as the subset x{ at j th communication cycle is in the

interior of the feasible region of ith subproblem, the subset x j+1 at (j + l) t/l communication

cycle should be in the interior of the feasible region and a full Newton’s step can be

taken. Intuitively, since the subproblems are quadratic programs, the Newton’s method

can converge to the optimal solution in a few iterations, i.e., the CCN is small; however, in

the case of boundary solution, whenever there is an active set change in the solution of any

subproblem at j th communication cycle, the overall Newton’s step size will be chosen

from the Newton steps {aJ | mino^, i = 1, and this will cause more iterations of

information exchanges between the coordinator and subproblems.

In addition, common QP solvers, such as MATLAB® “quadprog”, usually find the

optimal solution in a few iterations when the optimal solution lies in the interior of the

feasible region, i.e., no active inequality constraints at the optimum; but take more iterations

to find the optimal solution when the optimum lies on the boundary of feasible region, i.e.,

there are bounding inequality constraints at the optimum. Therefore, it would be interesting

to study the computational performance of the algorithms for the two cases, respectively.

3.4.2 Empirical Studies

For analysis of the computational complexity of the decomposition algorithm, since

the algorithms are implemented on a sequential machine, we may express the overall

complexity in terms of computation time:

CCN p
t =] T { t (CoProb) + (SPi)} (3.31)

i—1

where t represents the total computation time to solve a problem. Through the comparison

between the computation time of each subproblem and the total computational time, we can

identify and focus on the “bottleneck” subproblem, which may be the largest in dimension

or hardest to solve.
Sim ilarly, i f w e denote the non-coordination com putation tim e as:

P

t (NonCo) = t(CoProb) + ^ t (SPi) (3.32)
i—l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 61

and assume a distributed/parallel computing environment, for example, one CPU for each

subproblem, then we have the equivalent computation time (parallel computing):

As is discussed in Chapter 2, it may be desirable to balance the computational load on

each computing node. Then, the computation time within a decentralized computing

environment can be expressed as:

Now the focus is on the analysis of communication cycle number CCN. Next, we are

trying to determine the relationship between CCN and the characteristic parameters of the

QP problems such as m 0, p and |/,| = (x n*). Moreover, the influence of the relative

subproblem ratio (RSR), which is defined as RSR = {maxj^j, i , j = 1,2, will

also be studied, and this gives some idea on the computational load balance throughout

the distributed computing network. It should be noted that, compared to the analysis

for Dantzig-Wolfe decomposition for linear programming, the location of the optimum

in the feasible region requires the investigation of the influence of the active constraints

on the computational performance (especially the CCN) of the algorithm. This study may

provide more insight into scaling issues for an optimization problem (e.g., the coordinated,

decentralized MPC) when applying the proposed coordination algorithm.

In the following Monte Carlo simulations, besides the CCN, the computational efficiency

and scaling behavior of the price-driven coordination method with the proposed price-

update scheme will also be investigated. The performance of the coordination algorithm

and the centralized QP solver will be compared within the MATLAB® platform. In both

approaches, ILOG CPLEX 9.0 default Simplex solver is used to solve all QP problems

and the coordinator’s problem is solved by the proposed Newton’s price-update method. In

addition, for the purpose of comparison, we also reported the performance of CPLEX 9.0

interior point method (IPM) solver as a centralized QP solver. In this study, the focus is on

the average behavior of different optimization strategies in solving the problems with the

following assumptions:

t eqv(NonCo) = t (CoProb) + maxf=1{t(5,Fi)} (3.33)

CCN

t>eqv — O T lC o) (3.34)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 62

1. The studied problems have bounded feasible regions and optimal solutions.

2. The problems are reasonably well scaled and no significant numerical errors will be

encountered.

Similarly, due to the random nature of Monte Carlo simulation, we would like to

acknowledge that there is possibility that an “average-case” problem may not be defined in

our stochastic model.

The scheme for generating test problem instances is introduced in Appendix A.2.1. It

randomly generates a class of QP problem instances with block-angular structure, as is

given in equations (3.24) to (3.26). We start from a reference problem model, whose

problem size and structure should be a good reference for the comparison experiments,

i.e., we can observe the algorithm performance changes when we change the problem size

and structure with respect to the reference model. With some preliminary tests, we choose

the following set of parameters as the reference problem model:

{p = 17, m 0 = 20, m,i — 15, n* = 10 i = l, 2, ...,p} (3.35)

Note that the reference problem has subproblems of identical size, i.e., the problem

is thus a “well-balanced” decomposable problem with R S R = 1. We also assume

that each subproblem has been allocated to a distributed CPU. Therefore, the equivalent

computational time t eqv for the decomposition algorithm is estimated by summing up the

time for solving the coordination problem and the most difficult subproblem, assuming a

distributed computational environment. In the Monte Carlo simulation for each scenario,

the number of problem instances is 200 x 5 = 1000, i.e., for each scenario, five runs of

simulation are performed and each run solves 200 problem instances generated randomly.

Scenario 1: if we fix p and |/;|, change mo (see Appendix A.2.2). In this case, we can

study the performance of decomposition and coordination with respect to the dimension of

linking constraints in equation (3.24).

For the interior solution case, Figure 3.5 shows that the CCN is fairly constant w ith

respect to the number of linking constraints; while for the boundary solution case, Figure

3.6 shows that the CCN increases with increases in the dimension of linking constraints.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study

newton

3.4

1 3.2

Is
c3
E
E
8

60 80 100
Number of Linking Constraints

140 160120

Figure 3.5: Interior case: CCN vs. number of linking constraints

—b— newton price |

3z
a

I
7.5

e3
E
E
3

5.5

60 80 100
Number of Linking Constraints

140 160120

Figure 3.6: Boundary case: CCN vs. number of linking constraints

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 64

1.2

? 0-8

0.4

0.2

100 120 140 160

—8— cplex simplex
- a - newton price
 cplex (pm

Number of Linking Constraints

Figure 3.7: Interior case: computational performance vs. number of linking constraints

2.5

0.5

100 120 140 160

— cplex simplex
newton price

 cplex ipm

Number of Linking Constraints

Figure 3.8: Boundary case: computational performance vs. number of linking constraints

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 65

When distributed computing is considered, Figure 3.7 shows that, in the case of

interior solution, the price-driven coordination method always gives better computational

performance than the CPLEX Simplex solver. Because the increase of the number of

linking constraints does not impact the CCN in this case, the price-driven coordination

algorithm even performs better than the CPLEX IPM solver. This implies the

computational complexity of the coordination algorithm does not have strong dependence

on the dimension of linking constraints. In the boundary solution case (cf. Figure 3.8), the

coordination algorithm requires less computational time than CPLEX Simplex solver but

more than the IPM solver when the number of linking constraints increases.

2.8

2.6

E

i 18| 1.6
a
E
3 , 4

1.2

10 20 40 60 80 100 120 140 160
Number of Linking Constraints

Figure 3.9: Interior case: computational time distribution vs. number of linking constraints

Figures 3.9 and 3.10 show the computational time ratio between the coordinator and

the most “difficult” subproblem. It is evident that the computational effort to solve the

coordinator problem increases, as the complexity of the coordinator problem increases as

the number of linking constraints increases.

Scenario 2: For fixed p and mo, we change subproblem size | / j | by simultaneously

changing m* and n, (see Appendix A.2.2). In this case, we can study the algorithm

performance with respect to subproblem sizes.

Figure 3.11 shows the coordination complexity in the interior solution case, which

demonstrates showing that the size of subproblems does not have much impact on the

newton price |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 66

2.5
— newton price |

« 2w
2
8
0

1
| 1.5
P
CO

iQ.

3

0.5
60 80 100

Number of Linking Constraints
120 140

Figure 3.10: Boundary case: computational time distribution vs. number of linking

constraints

3.2
newton price]

3.15

Z 3.05

2.95

2.85

Number of Coefficient Elements

Figure 3.11: Interior case: CCN vs. subproblem size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 67

newton price]

■§ 20

3 15

Number of Coefficient Elements

Figure 3.12: Boundary case: CCN vs. subproblem size

CCN; however, for the boundary solution case, Figure 3.12 shows that the CCN increases

monotonically when the size of subproblems gets larger.

6— cplex simplex
□ - newton price

- cplex ipm

8 0.6 ■

Number of Coefficient Elements

Figure 3.13: Interior case: computational performance vs. problem size

From Figure 3.13, it is also observed that the price-driven coordination method has

higher computational efficiency than the centralized CPLEX Simplex solver when the

overall problem size is large (i.e., when the subproblem size is larger than 15 x 10); however,

Figure 3.14 shows the centralized CPLEX Simplex solver always outperforms the price-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 68

•—tv»— cplex simplex
- a - newton price

------- cplex ipm

-

0

.

/

/ /
/ /

' /

. , fir ----1 ~ T '
101 104 10s 10‘ 107

Number of Coefficient Elements

Figure 3.14: Boundary case: computational performance vs. problem size

driven coordination algorithm in the case of boundary solution. In addition, the centralized

IPM solver shows higher efficiency in both cases.

4.S
newton price j

3.5

S 2.5

Number of Coefficient Elements

Figure 3.15: Interior case: computational time distribution vs. problem size

Again, Figure 3.15 and 3.16 show the computational time ratio between the coordinator

and the most time consuming subproblem. Both figures show that the computational effort

to solve the coordinator problem increases because the size of the coordinator problem

increases as the subproblem size increases. But the increase of coordinator solution time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 69

newton price]

« 2.5

0.5

Number of Coefficient Elements

Figure 3.16: Boundary case: computational time distribution vs. problem size

in the interior solution case is more significant than that in the boundary solution case,

which implies that the time for solving boundary case subproblems increases faster than

the interior solution case.

Scenario 3: We keep m 0, m* and n, constant, and change the number of subproblems

p (see Appendix A.2.2). In this case, we investigate the performance of the coordination

algorithm when more and more subproblems are integrated into the coordination system,

assuming a rather well-balanced subproblem computational load.

In Figure 3.17, the simulation results show that coordination complexity in the interior

solution case is rather insensitive to the number of subproblems; however, for the boundary

solution case, Figure 3.18 shows that the CCN increases when the number of subproblems

increases.

Figure 3.19 and 3.20 show that the proposed price-driven coordination algorithm has

higher computational efficiency than the centralized CPLEX Simplex solver in both cases.

It should be noted that, in the interior solution case, the coordination algorithm can perform

almost as well as the centralized IPM solver.

Both Figures 3.21 and 3.22 show that the computational effort to solve the coordinator

problem becomes more dominant in the overall computational time when the number of

subproblems increases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study

3.2
newton price]

3.15

3.1

Z 3.05

'V

2.85

Number of Subproblems

Figure 3.17: Interior case: CCN vs. number of subproblems

- newton price |

E 14

E 10

Number of Subproblems

Figure 3.18: Boundary case: CCN vs. number of subproblems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 71

B— cplex simplex
;':J- newton price
— cplex ipm

1 .4

Number of Subproblems

Figure 3.19: Interior case: computational performance vs. number of subproblems

7
•~e— cplex simplex

• a newton price
 cplex ipm6

a
o 4

1a.

3
c
£

§■ 2

1

Mm100
8020 30 40 SO 60 700

Number of Subproblems

Figure 3.20: Boundary case: computational performance vs. number of subproblems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 72

4.5
newton price]

3.5

« 2.5

Number of Subproblems

Figure 3.21: Interior case: computational time distribution vs. number of subproblems

newton price]

10 20 30 40
Number of Subproblems

Figure 3.22: Boundary case: computational time distribution vs. number of subproblems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 73

Scenario 4: If we fix m 0, X X i and IX=i i.e., we fix the overall problem size,

we can study the influence of relative subproblem ratio (RSR). In this case, we change p

by combining subproblems into groups (see Appendix 2.2) according to different partition

patterns of the original QP problem as we did for LP in Chapter 2. In the following studies,

we arbitrarily choose one pattern for our investigation.

newton pnce

Z 3.05

10
Relative Subproblem Ratio

Figure 3.23: Interior case: CCN vs. RSR

For the interior solution case, Figure 3.23 shows that the imbalance of subproblem

computational load (i.e., RSR) does not affect the coordination complexity; however,

Figure 3.24 shows that the CCN increases in the boundary case when the imbalance of

subproblems becomes more significant.

In Figure 3.25 and 3.26, we can see the proposed price-driven coordination algorithm has

lower computational efficiency when the RSR increases in both cases, which implicates that

the imbalance of subproblem load does affect the computational efficiency of the proposed

algorithm.

The simulation results reported in Figure 3.27 and 3.28 shows that, although the overall

problem size is the same in the computational studies, the coordinator’s computational load

increases when the imbalance of subproblem sizes gets more significant. This is because

the complexity of the coordinator’s problem is also determined by the largest subproblem

as was discussed in previous sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study

8 ..8
newton price]

8..6

8.4

8.2

8

7.8

7.6

7.4
4 6 80 2 10 12 14 16

Relative Subproblem Ratio

Figure 3.24: Boundary case: CCN vs. RSR

—<•*" cplex simplex
□ - newton price

 cplex Ipm

t 2.5 -

Relative Subprobiem Ratio

Figure 3.25: Interior case: computational performance vs. RSR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study

—9— cplex simplex
- a - newton price

 cplex ipm

E 6 -

y _ - r ------------ Y_.
6 8 10
Relative Subproblem Ratio

Figure 3.26: Boundary case: computational performance vs. RSR

35
- newton price |

30

25

20

o 15

10

5

0
12 14 160 2 4 6 8 10

Relative Subproblem Ratio

Figure 3.27: Interior case: computational time distribution vs. RSR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.4 Complexity Study 76

newton price |

?W
S
3
3
§
®sK
cs1a.
E
3

Relative Subproblem Ratio

Figure 3.28: Boundary case: computational time distribution vs. RSR

Moreover, another interesting point may be about the relationship between the CCN

and the number of active constraints for the overall problem in the boundary solution

case. Recall our discussion on the coordination complexity in §3.4.1, more communication

cycles are expected when there are more active constraints at the optimum solution. During

the computational studies for the four scenarios, the number of active constraints was

recorded, and thus is reported in the following figure.

120

experimental data
 least square curve fit

Figure 3.29: Boundary case: CCN vs. number of active constraints

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.5 Chapter Summary 77

It should be noted that the coordination complexity (CCN) increases almost linearly with

the number of active constraints, which confirms our previous discussion.

Remarks: The complexity study performed in this chapter reveals some inherent

features of the complexity of the price-driven coordination algorithm. From this study,

we can draw some guidelines for coordination system design with the price-driven

coordination method. In general, we may gain advantage by using the coordination

algorithm to solve an QP problem, which has the following properties:

• having a block-angular structure;

• having high dimensional linking constraints;

• being assigned well-balanced computational load;

• having a large number of subproblems, if distributed computing power is available;

• having an interior solution at the optimum.

Furthermore, one observation from the simulation results is that the solution of

the coordinator problem (i.e., price-update) contributes a dominant portion to the

computational time for the overall problem. Thus, to speed up the overall coordination

algorithm, a practical strategy can be the enhancement of the coordinator computing

environment, such as a high-performance CPU or more efficient codes for solving

equations and doing matrix operations.

3.5 Chapter Summary

In this chapter, decomposition and coordination strategies for solving large-scale quadratic

programming problems have been investigated. In particular, an extension of Dantzig-

Wolfe decomposition and the auction-based (or price-driven) coordination methods were

studied. To im prove the computational efficiency o f the price-driven coordination

method, an efficient price adjustment scheme was proposed by using Newton’s method to

incorporate the sensitivity information from subproblem solution. With the proposed price

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 3.5 Chapter Summary 78

adjustment scheme, the computational performance of price-driven coordination methods

is substantially enhanced when solving large-scale QP problems.

A well-designed structured complexity analysis approach was used to perform a

thorough empirical study. New understanding of the relationships between computational

performance and problem structural parameters was gained through a comprehensive study

of the scaling behavior of price-driven coordination algorithm. The complexity study shows

that, for large-scale quadratic programming problems with special structure, the proposed

price-driven coordination algorithm can outperform centralized optimization solvers in

some cases. The work in this chapter has made a significant step toward the application

of price-driven coordination method for on-line solution of large-scale QP problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“The 6 rst requisite for success is the ability to apply your physical and

mental energies to one problem incessantly without growing weary.”

- by Thomas A. Edison

Coordinated, Decentralized MPC

In large-scale model predictive control (MPC) applications, such as plant-wide control and

optimization, a large system is usually decomposed into several smaller subsystems and

an individual controller is developed for each subsystem. This may lead to a decentral­

ized or unit-based MPC framework. Such a control system may not be able to provide the

plant-wide optimum operations because of its failure to consider the interactions between

subsystems in decentralized MPC calculations. It has been identified that the coordination

of the unit-based MPC systems can provide significant potential benefit. In this chapter, by

applying the Dantzig-Wolfe decomposition and price-driven coordination methods, new

approaches to coordinating decentralized MPC in the target calculation level are proposed.

In the developed framework of designing a coordination system for decentralized MPC,

only minor modification is required to current MPC layer. The case studies show that the

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.1 Background 80

proposed coordination scheme can substantially improve the performance of the existing

decentralized control scheme, while it can take advantage of decentralized computing en­

vironment to ensure acceptable real-time calculation speeds.1

4.1 Background

Model predictive control (MPC) has gained extensive applications in industry for

contrained control of multivariable processes. Bi-level (or two-stage) MPC technology has

been widely applied in many industries. When MPC application is extended to large-scale

operations, the deficiencies of the existing centralized and decentralized MPC schemes

bring challenges to plant-wide MPC application. Plant-wide coordination of decentralized

MPC has been identified as one of the most promising strategies to tackle the challenges

ahead.

4.1.1 MPC Target Calculation

As is shown in Figure 4.1, the MPC framework can be divided into a steady-state

calculation and a control calculation (or dynamic optimization), which are both executed at

each control cycle (Qin and Badgewell, 2003; Kadam et al., 2002). The target calculation

determines the best achievable set-points, both for input and output variables; whereas,

the trajectory along which the plant should be moved from one steady-state to the next

is determined by the dynamic control calculation. In both calculations, a process model

is required to perform the optimization. Note that in plant-wide control applications, the

model and the problem size can be very large.

In industrial practice, a variety of optimization methods are applied to solve MPC target

calculation problems, among which linear programming (LP) and quadratic programming

(QP) are most commonly used (Qin and Badgewell, 2003). Many MPC technology

products use a linear program to do the local steady-state optimization (e.g., the

Connoisseur controller offered by Invensys, Inc.), while many use a quadratic program

'Parts of this chapter were presented/published in (Cheng et al., 2004; Cheng et al., 2005b).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.1 Background 81

Economic optimization

MPC target calculation

Control calculation

(minutes) Time
100

Figure 4.1: Bi-level MPC technology

to perform local steady-state optimization (e.g., the RMPCT, PFC, Aspen Target, MVC,

process perfecter, etc.).

LP-based Target Calculation

For an individual MPC subsystem, which contains a steady-state target calculation and a

dynamic control calculation, we can formulate an LP problem for the target calculation for

time k\

where x(fc) = [ua(fc), y s (&)] is a vector of steady-state values (i.e., targets or setpoints) for

the input and output variables for the subsystem. The equality constraints in (4.1) are taken

from the linear dynam ic model:

min z = cTx(k)

subject to

A eq-x.(k) = b eq(k)

Lx(fc) < b (k)

(4.1)

Y (s) = G(s)U(s) + G d(s)D(s) + E(s) (4.2)

which yields the the steady-state model:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.1 Background

y = K u + K dd + e

82

(4.3)

where d are the disturbances and e is the unmeasured noise. The inequality constraints

result from physical limitations on the inputs and outputs, such as actuator limits or

production quality requirements. Other MPC target calculation formulations are possible,

such as including model bias and soft output constraints (Kassmann et al., 2000; Lestage

et al., 2002). These can easily be incorporated into the proposed method, but are omitted

to simplify discussion.

QP-based Target Calculation

Assume that a set of optimal nominal “targets” [y*, u*] has been given to each operating

unit by an upper level optimizer, in order to follow the shifting optimum operating point

and give appropriate corrections, an MPC target calculation for an individual operating

unit can be formulated as the following constrained quadratic program (QP) (Ying and

Joseph, 1999):

min z = (yset(k) - y*)TQy(yset(k) - y*) + (uset(k) - u*)TQ„(uset(k) - u*)
y s e t jU s e t

+cy(yset(k) - y*) + cu(uset(k) - u*) + eTc fc £e

subject to:

yset(k) = K u set(k) + d(k)

d (k) = d (k - 1) + S(k)

y m in - e < y Set(k) < y max + £ (4.4)

Umin — Uset(/c) ^ Umaa;

€ > 0

where Qy,Qu, cy, and cu may be obtained from the upper level optimizer, and ce is a

tuning parameter (Ying and Joseph, 1999); y Set(k) and u set(£;) are the setpoint values to be

determined by the target calculation (i.e., they are the degrees of freedom for optimization);

d (k) is the estimated disturbance and £ is a violation tolerance of the output constraints that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.1 Background 83

ensures a feasible solution to the QP. In this work, we adopt a bias update strategy for d

(i.e., S (k) — y m (k) — y set(k \k — 1), where ym(fc) are the measured outputs at time k

and y Set(k\k — 1) is the prediction of outputs in the previous control execution), without

loss of generality. The steady-state gain matrix K can be calculated via linearization of

the nonlinear model used in an upper optimizing layer or abstracted from the linear model

used by lower level MPC dynamic control. Note that the scope of problem (4.4) is a single

operating unit.

4.1.2 Plant-wide MPC

With considerable development effort in recent years, there has been a trend to extend MPC

to large-scale applications, such as plant-wide control. Two common paradigms for solving

plant-wide MPC calculations are centralized and decentralized strategies. Centralized

strategies may arise from the desire to operate the entire plant in an optimal fashion;

whereas, decentralized MPC control structures can result from the incremental roll-out

of automation systems. One major difference between these two extremes is the extent

to which interactions among operating units are considered. An effective centralized

or monolithic plant-wide MPC can be undesirable and difficult, if not impossible, to

implement (Lu, 2003; Havlena and Lu, 2005). Such a scheme can exhibit poor fault-

tolerance, can require a high performance centralized computational platform, and can be

difficult to tune and maintain. Alternatively, in many chemical plants, large-scale control

problems are solved by a group of MPC subsystems via decentralized schemes, in which

each MPC controller takes care of a specified operating unit. As is shown in Figure 4.2,

the decentralized MPC scheme yields the desired operability, flexibility and reliability, but

may not provide an appropriate level of performance. In this work, reliability refers to

the possibility that some control subsystems or portions thereof are able to function when

other subsystems fail. Currently, decentralized MPC strategies are widely used due to their

flexibility, reliability and ease of maintenance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.1 Background 84

d(k d(k)set lsetset

u(k) y(k) u(k)
Operating

UnitN
Operating

Unit 1

Calculation NCalculation 1
/''T arget

Calculation J

Real Time Optimization (RTO) (Infrequent optimization)

Figure 4.2: Decentralized MPC

4.1.3 Coordinated MPC

Although it has many good features as discussed, conventional decentralized schemes

may not be able to provide the plant-wide optimum. In general, decentralized schemes

approximate or ignore the interactions between operating units, while the downstream

units treat upstream variations as external disturbances. Thus, the decentralized approach

solves each subproblem in terms of its own objective function, which may not provide the

plant-wide optimum operation. Lu (2003) claims that “the estimated latent global benefit

for a typical refinery is 2-10 times more than what MPC by itself can capture”. Thus,

coordination of the unit-based controllers has been identified as having significant potential

benefit (Lu, 2003; Havlena and Lu, 2005; Isaksson et al., 2005), in other words, the key to

exploiting the potential of decentralized control systems, yet still retaining its structure and

advantages, is cooperation.

Usually, any limited cooperation between decentralized MPC controllers is through an

upper level optimization, such as real-time optimization (RTO), at a sampling time of

hours or days. Most RTO systems require waiting for the plant to be near a steady-state

before they can execute. Disturbances or setpoint changes in the interval between two RTO

executions may drive the optimum operations away from the targets given by the RTO

system; thus, it may be necessary to perform re-optimization at a higher frequency than is

possible through RTO to maintain optimum operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.1 Background 85

Recently, more effort has been spent on improving the performance of plant-wide

decentralized control through coordination. Kumar and Daoutidis (2002) proposed

a controller design framework using a time-scale decomposition approach, in which

a supervisory controller deals with the slow-time-scale behavior and coordinates the

distributed controllers, which deal with the fast-time-scale behavior. In Lu (2003), a cross­

functional integration scheme was developed, in which a coordination “collar” performed

a centralized target calculation for decentralized MPC. This idea matches the wide­

spread belief among industrial practitioners (Scheiber, April 2004) that the trend toward

decentralization will continue until the control system consists of seamlessly collaborating

autonomous and intelligent nodes with a supervisory coordinator overseeing the whole

process. In particular, the cooperation-based MPC scheme proposed by Venkat et al.

(2004) is worthy of attention, which addressed cooperation between decentralized MPC

controllers. Compared with the coordination framework in this work, both approaches

aim to find plant-wide optimal operations rather than only to find a stabilizing solution.

In cooperation-based MPC, where a state-space model is used, the objective function of

each sub-controller involves the states and inputs of local unit and the impact from other

units (i.e., the states and inputs of other units); similarly, the proposed coordination scheme

involves an input-output model, and individual sub-controller has the objective function

considering the inputs and outputs of the local unit and the impact from other units (i.e.,

the augmented variables which represent the interactions). Moreover, both control schemes

include an iterative decision process within a single MPC execution, and the intermediate

results are communicated. The decentralized controllers in Venkat et al. (2004) stand at

equal status within their negotiation to achieve cooperation and the intermediate results

are flowing among sub-controllers; however, this work addresses the cooperation between

controllers through a well designed coordinator, which plays a specific role in not just

transmitting information, but also in modifying the information that comes from the sub­

controllers to ensure that the entire system finds the optimal operation. This work is

focused on M PC target calculation, assum ing that the dynam ic control calculation has been

appropriately formulated to ensure the required stability and robustness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.2 Coordination o f Decentralized MPC

4.2 Coordination of Decentralized MPC

86

This section discusses a framework for the coordination of steady-state MPC target

calculation level, which aims to provide a timely response to local or plant-wide

disturbances and setpoint changes. Two key factors that determine the desirability of

the coordinated MPC system are: computational efficiency of the coordination strategy

to ensure a real-time solution; and required information flow load throughout the plant

communication network. The proposed approaches exploit the existing plant computing,

communication, and information systems with minimal modification, to provide significant

performance improvement.

As has been discussed, the solution from the decentralized MPC target calculation may

not be optimal with respect to the entire plant operation because of plant / model mismatch,

which results from ignoring the interactions among operating units and other effects. Thus,

some mechanism to take care of the interactions is desired. Note that, in this work, the

term unit-based MPC refers to the decentralized MPC subsystems developed for individual

operating units.

4.2.1 Coordination through a Coordinator

Figure 4.3 shows a coordination-based MPC system, where the coordinator is designed

to be responsible for ensuring that the effects of interactions are incorporated into the

overall control strategy. The task of the coordinator is to ensure that the coordinated system

finds the optimal plant operations. A coordinator can be designed by considering different

kinds of interactions among operating units. Such interactions can be formulated as linking

constraints.

4.2.2 Identification of Linking Constraints

Recall that the two key factors required of an efficient coordination are the computational

efficiency of the coordination strategy and the required information flow throughout the

plant communication network. In the previous section we dealt with the coordination, and

in this section we are going to introduce two message construction approaches based on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.2 Coordination o f Decentralized MPC 87

MPC

Calculation N

d(k) to) l set

U(k) y(k) u(k)y(k) u(k) y(k)
Operating

UnitN
Operating

Unit 1

Calculation 1
/'''’"Target'''̂

Calculation J

Coordinator

Real Time Optimization (RTO)

Figure 4.3: Coordinated, decentralized MPC

different interaction modeling methods, which ensure reasonable data traffic through the

plant communication network. In this section, two methods to establish linking constraints

for interactions are discussed, such as the interstream consistency (Cheng et al., 2004) and

off-diagonal element abstraction (Cheng et al., 2005a).

Interstream Consistency

In many cases, the interactions between two operating units can be modeled by equating

the appropriate output variables from the upstream unit and the input variables to the

downstream unit. Shown in Figure 4.4, the hexagon labeled “A” represents the process

interstream connecting individual operating units.

In formulating the subproblems, those streams connecting different operating units are

tom and consistency relationships can be used to model the interactions between different

units. Recall a block-wise linear programming problem that has been converted to Simplex

standard form:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.2 Coordination o f Decentralized MPC 88

Operating Unit 1 Operating Unit 2

Figure 4.4: Demonstration of interstream consistency

p
min zi =

i= l

subject to
p

^ 2 A *x * = b o (4 .5)
i= 1

BjXj = bj (4.6)

x, > 0 i = 1,2, ...,p

where (4.5) represents the linking constraints associated with p subproblems, and the

constraints in (4.6) are the local constraints of independent subproblems. In this case,

assume that we have p separate operating units, each of which is controlled by one MPC

subsystem. By introducing interprocess stream consistency as the linking constraints (4.5),

we can formulate an LP problem that includes constraints (4.5) and (4.6) by incorporating

those decentralized target calculation problems.

Off-diagonal Element Abstraction

As previously discussed, this work assumes the controlled variables (CVs) and manipulated

variables (MVs) have been specified and grouped in a unit-based sense (i.e., we are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.2 Coordination o f Decentralized MPC 89

coordinating an existing set of unit-based MPC systems). Then the gain matrix for the

entire plant with N operating units is:

The matrix A can be ordered such that a unit-based implementation of MPC as in problem

(4.4) uses the block-diagonal information K ti of the plant model in its calculations. In

such a case, the off-diagonal blocks may be treated as disturbances. This way of dealing

with the off-diagonal information can result in undesirable closed-loop behavior, when the

interactions are significant. Note that the plant-wide model is:

where Y (k) and U(k) are the CVs and MVs of N local operating units concatenated into

vectors; D{k) is the concatenation of local disturbance variables (DVs). This is equivalent

to:

The auxiliary variable e,;, which is an abstraction of the off-diagonal elements, represents

the influence of the inputs of other operating units on the local system. In the proposed

coordination scheme, a coordinator will be developed to handle the constraints (4.10)

and drive the auxiliary variable e* to the values corresponding to the plant-wide optimum

operations. In this case, in each unit-based MPC target calculation, the auxiliary vector e*

is treated as a decision variable, since equations (4.10) are not included in each unit-based

M PC calculation.

A

Kix K 12 . . . Kuv

K 2i K 22 • • • K 2n
(4.7)

K;vi K jv2 . . . K atat

Y(k) = A U(k) + D(k) (4.8)

y i(k) = K rtu f(fc) + ei(k) + d i(k) (4.9)
N

(4.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.3 Dantzig-Wolfe Decomposition and Plant-wide MPC 90

4.3 Dantzig-Wolfe Decomposition and Plant-wide MPC

For industrial plant-wide control, this work provides a new formulation of plant-wide MPC

target calculation to achieve plant-wide optimum operations. A novel application of the

Dantzig-Wolfe decomposition has been proposed in the design of coordination system for

solving the plant-wide MPC problem.

4.3.1 Illustrative Case Studies

In this section, we illustrate the implementation of the proposed coordination scheme

through two case studies: the first is used to investigate the interstream consistency

approach and the second investigates the off-diagonal element abstraction approach.

Case Study 1

Let us consider a system shown in Figure 4.5. The normalized gains for the system are

given in (4.11) through (4.13). An identity matrix is chosen for K d in (4.3) assuming

that the disturbances influence the outputs directly. The locations where the disturbances

entering the plant are shown as dashed lines in Figure 4.5.

Figure 4.5: Interacting MIMO operating units

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.3 Dantzig-Wolfe Decomposition and Plant-wide MPC 91

K a = Ga (0) =

K b = Gb (0) =

K c = Gc (0) =

0.4 0.6 0.1

0.5 0.4 0.1

0.3 0.4 0.3

0.1 0.2 0.1

0.7 0.3

0.6 0.5

(4.11)

(4.12)

(4.13)

Each operating unit has its own objective, which is a subset of information used by plant-

wide optimizers, and the profit function cost coefficients are:

(4.14)

(4.15)

(4.16)

rT

CB —

C T -c c —

- 1 - 1 - 1 3 3

- 1 - 1 - 1 3 3

- 1 - 2 5 5

So for each operating unit, by tearing the interprocess stream, a linear program for the k th

target calculation is:

min cjxj(fc)

subject to

KjXj(fc) = b iq(k)

LjXj(k) < b*(A;), j = A, B , C

(4.17)

(4.18)

where Lj stands for the coefficient matrix associated with all the inequality constraints

when it is in standard form. The R.H.S. of the equality constraints b°eq(k) represent the

updated model bias at each target calculation execution. The R.H.S. of the inequality

constraints bj (k) contain the lower bounds (lb) and upper bounds (ub) of the variables

in the operating units. The bounds on the variables in this case study are shown in equation

(4.19) and (4.20).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.3 Dantzig-Wolfe Decomposition and Plant-wide MPC 92

l b == [0 .3 0 .3 0 .1 5 0 .4 5 0 .4 0 .45 0 .4

0 .3 0 .4 5 0 .1 5 0 .4 5 0 .3 0 .45 0 .5]

u b == [0 .5 0 .5 0 .2 5 0 .5 5 0 .5 0 .5 5 0 .5

0 .5 0 .5 5 0 .2 5 0 .5 5 0 .5 0 .55 0 .6]

(4.19)

(4.20)

Three different MPC strategies, centralized MPC, decentralized MPC and coordinated,

decentralized MPC, are implemented to evaluate their abilities to track the changing

optimum in steady-state target-calculations. For the centralized MPC target calculation,

an LP problem is formulated treating all the inputs and outputs, including interprocess

interactions, as decision variables. For the decentralized MPC scheme, separate LP

problems are formulated by passing the upstream decisions to downstream units as

disturbances. Finally, the coordinated MPC target calculation incorporates the linking

constraints in modeling the interactions and solves the RMP and independent subproblems

iteratively.

In our case study, unknown disturbances are generated by filtering random series of

uniformly distributed variates in order to restrict these disturbances within the interval

±0.05. These unknown disturbances are directly imposed on the outputs when the

optimized targets are implemented in our simulation.

d (t) = ----------]--------- -e(f) (4.21)
w 1 + C\Q~ + c2q~2

By using the autoregressive models in equation (4.21) as simplified disturbance models, we

predict one-step ahead disturbances based on past information. The estimated disturbances

used to update the disturbance model in (4.21) are calculated by comparing the measured

outputs and model predictions at every control execution. At the current control calculation,

the parameters, ci and c2, in the disturbance model are estimated using the estimated

disturbances in the past 10 control execution periods. The one-step ahead disturbances

are predicted using the estimated c\ and c2. Then the process models are updated using the

predicted disturbances. The steady-state targets are then calculated by using the updated

process models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.3 Dantzig-Wolfe Decomposition and Plant-wide MPC 93

The following accumulated profit function is defined for performance comparison:

where Z (k) is the actual profit per unit time from the kth target calculation; Ts is the

sampling period between two target calculations; and V(k) represents the penalty for

constraint violations when we implement the calculated targets:

where w is a specified penalty vector, which is used in all three cases; and the violation of

output constraints y v(i) is defined as:

where yact(i) is the actual output vector when the calculated targets are implemented in the

process; while y max and y min are subsets of the upper and lower bounds given in equations

(4.19) and (4.20).

A benchmark is defined for comparing the performance of different MPC target

calculation strategies. The benchmark used for comparison is defined as the maximum

profit achieved when the plant is operated at the true optimum, which is calculated using

the perfect process model and exact knowledge of disturbances. Although this maximum

profit is not achievable, it is a useful basis for performance comparison.

Figure 4.6 shows the profit achieved as a function of control execution using different

MPC steady-state target calculation strategies. The coordinated target calculation gives the

same achievable optimum as the centralized MPC scheme does2, while the decentralized

scheme yields a suboptimal operation as interactions are ignored in the calculation.

Table 4.1 compares the performance of different MPC strategies for a simulation of

150 target calculation executions. From table 4.1, we can see that the centralized and

2W h en all th e in te rac tio n s co n sid ered in cen tra lized schem e are h an d led b y th e co o rd in a to r in the

coordinated scheme, the two approaches will provide the same solution; however, if any interactions are

ignored in the coordinated scheme, the solution from the coordinated scheme may deviate from the centralized

scheme.

(4.22)
k —i

V (i) = w Ty „(*) (4.23)

y a c t (0 y m a x i i f y act (t) ^ y m ax
yv(i) =

y a c t (i) — y m in i i f y a c t (0 < y m i n
s.

m m

(4.24)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.3 Dantzig-Wolfe Decomposition and Plant-wide MPC 94

4.4
— Central
- - Decentral
---C oordin

» True-Optimum
4.3

P

■oa
4)
W 3.9

10 60 80 100 120
Target Calculation Execution Instant

140 160

Figure 4.6: Calculated targets by different approaches

the coordinated, decentralized target calculation give the same best achievable profit and

achievable ratio to the true optimum, while the fully decentralized target calculation only

captures approximately 94.48% of the maximum profit.

Table 4.1: Performance comparison of different plant-wide MPC target calculation

approaches for interacting MIMO systems_______________________________________
Centralized Decentralized Coordinated True. Opt.

Profit 5800.9 5481.7 5800.9 5801.7

Achiev. Ratio 99.98 94.48 99.98 100

Prob. Dimension 46 x 42 15 x 15 x 3 7 x 7 + 1 5 x 1 5 x 3 NA

* All the simulations were performed in MATLAB® 6.5 on a Pentium III 1.0G Hz and

512M RAM machine.

Table 4.1 also reports the problem sizes for different steady-state target calculation

strategies. The problem size is defined as the size of the coefficient matrix in the LP

standard form used in the Simplex method. Therefore, slack and excess variables are added

to the convert the inequality constraints to equality constraints, and the columns of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.3 Dantzig-Wolfe Decomposition and Plant-wide MPC 95

coefficient matrices are augmented to incorporate the slack and excess variables. We can

see that the centralized scheme has the largest problem size, which will grow significantly

when the dimension of separate problems and the number of operation units in the flowsheet

increase. The problem size for the decentralized MPC is reported as the dimension of

the largest subproblem multiplied by the number of units. For the coordinated scheme,

the problem size is expressed as the addition of two components, the dimension of RMP

(the coordinator) and the problem dimension in the decentralized scheme (the coordinated

parts).

This case study shows that interstream consistency can be used for interaction modeling,

and when such interactions are handled by the coordinator, the resulting coordinated,

decentralized control system does produce significant improvement on the plant-wide

performance. As such, it provides an approach to plant-wide control that does not require

a centralized computing environment.

Case Study 2

This case study is to illustrate the application of the off-diagonal element abstraction

method for coordinating decentralized MPC by using the Dantzig-Wolfe decomposition

principle (Cheng et al., 2005a).

Shown in Figure 4.7, a generic process network is used for this case study. Described as

follows, the overall process network can be represented by an 8-input and 6-output model

G, which is a linearization of the process around an operating point [y0, uo]:

y0 = [5,3,4,2,8,10]

u 0 = [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] (4.25)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.3 Dantzig-Wolfe Decomposition and Plant-wide MPC 96

(supervisory)
Coordinator

M PC 1

MPC 2

V V

A B L

Figure 4.7: An interacting MIMO unit network

G^ =

- 0 . 8 8 1 .49 0 - 2 . 3 6 0 - 1 . 4

1 .13 - 0 . 5 0 0 .2 4 0 - 0 . 2 6

1 .49 2 .5 9 0 - 1 . 1 9 0 0 .7 7

0 0 .55 - 0 . 4 2 - 0 . 3 2 0 1.48

0 3 .0 3 0 .4 - 0 . 9 7 0 1 .12

0 2 .5 6 0 0 - 0 . 2 5 0 .0 6

0 0 .6 6 0 0 - 2 . 1 - 0 . 5 5

0 0 .2 9 0 0 - 0 . 2 8 - 0 .6 1

where Go is the steady-state gain matrix of the process model G. The flowsheet was

originally decomposed into three operating units, each of which has two output variables.

Further, unit A and unit C have three manipulated variables, while unit B has two. Each

operating unit has its own objective, which is a subset of information used by plant-wide

optimizers. In this maximization problem, the profit function cost coefficients are:

r T^A
= [2 3 0 0 0 r TCB 1 3 0 0 4 7 0 0 0

where the objective functions are only related to output variables.

The decentralized MPC controllers use incomplete process information and ignore

the interactions. Using the off-diagonal element abstraction method, we can employ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0

Sec. 4.3 Dantzig-Wolfe Decomposition and Plant-wide MPC 97

an auxiliary term to represent the interactions and augment them in the model of each

decentralized MPC system as discussed in (4.9). Note that, since the off-diagonal elements

are relatively sparse, the dimension of em is only three. In this case study, we set the upper

and lower bounds of the decision variables within ± 10% interval of the nominal operating

point, while treating em as unrestricted variables.

Within this configuration, we can specify an information package which flows on the

communication network that connects the coordinator and individual control systems.

Similar to Figure 4.3, at every coordination round, each decentralized MPC system submits

to the coordinator a unit-wide optimal solution x 4 = [ŷ , u,, e j j and corresponding

objective function value As soon as it receives all the proposals, the coordinator executes

a linear program to solve the master problem. Then the coordinator records the solution

Ay and sends sensitivity information [tt, 7 *] to the decentralized MPC. Here, 7r is related

to the auxiliary variable elm, which can reflect the gap between the plant-wide optimal

solution and unit-wide solution. In other words, when an optimal is obtained through

coordination, the plant-wide optimum is reached.

To simplify the discussion in our case study, we assume accurate modeling and noise-

free simulation. Therefore, in terms of plant-wide optimum, a centralized controller

provides benchmark performance. With the above information, one execution of plant-

wide target calculation is performed with three optimization schemes, the centralized,

decentralized, and coordinated schemes, respectively.

Table 4.2: Performance comparison of different plant-wide MPC target calculation

approaches for interacting MIMO unit network___________________________________
Centralized Decentralized Coordinated

Profit Function Value 134.674 130.035 134.674

Achievability Ratio 100 96.56 100

* The simulations were performed in MATLAB® 7.0 on a Pentium III 1.0G Hz, 512M

RAM machine.

Table 4.2 provides simulation results for the comparison of the performance of different

control strategies. We can see that the centralized and the coordinated target calculation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.4 Price-driven Coordination and Plant-wide MPC 98

schemes give the same achievable profit as the benchmark optimum, while the fully

decentralized steady-state target calculation only captures around 96.56% of the maximum

profit.

A key point drawn from this study is that the proposed approach may require far less

capital investment to gain equal performance increases, in comparison to implementation

of a new centralized, plant-wide MPC. Again, it also provides an approach to plant-wide

control that can take advantage of the existing distributed computing environment.

4.4 Price-driven Coordination and Plant-wide MPC

For the coordination of QP-based MPC target calculation on a pulp mill process. In this

section, a case study on the plant-wide control of a pulp mill process is performed to

illustrate the effectiveness of the proposed price-driven coordination approach.

4.4.1 A Pulp Mill Benchmark Process

The pulp mill benchmark problem given in Castro and Doyle III (2004a) was recently

published and proposed for investigating the efficacy of control and optimization

approaches. As is shown in Figure 4.8, the pulp mill model includes the fiber-line and

the chemical recovery loop. The primary goal of the pulp mill is to produce wood pulp of

a given Kappa number or brightness while minimizing energy costs, utilities and chemical

make-up streams.

The benchmark is based on a nonlinear dynamic mathematical model with

approximately 8200 states and a total of 142 inputs (82 MVs and 60 DVs) and 114

outputs (40 in fiberline and 74 in chemical recovery). This model was developed to be

approximately 200 times faster than the real process. The control objectives, modes of

operation, process constraints and measurements are all defined in Castro and Doyle III

(2004a).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.4 Price-driven Coordination and Plant-wide MPC

wash liquor

wood
chips wash liquor wash liquor wash liquor

effluent

storagej brown
stock

liquor
wood/pulp
weak black liquor
lime/limemud

boiler
black
liquor

lime liquor
clarifier

liquor
clarifier

evaporators

lime kiln

Q - o — □
mud

storage

Figure 4.8: Pulp mill benchmark process

bleached
pulp

white
liquor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.4 Price-driven Coordination and Plant-wide MPC 100

4.4.2 Price-driven Coordination for Plant-wide Control

In Castro and Doyle III (20046), a decentralized control system has been proposed. At

the unit level, it involves two control layers: unit-based MPC and decentralized regulatory

control loops. This case study focuses on the MPC layer.

The existing MPC consists of four separate controllers, one each for the digester

and oxygen reactor, the bleach plant, the evaporators, and the lime kiln/recaust areas,

respectively. In their configuration, the MPC layer only contains the dynamic control

calculation stage and involves totally 21 CVs and 20 MVs. The MPC is designed to track

the set-point trajectories given by an upper level optimization.

This study uses the decentralized, two-stage MPC system discussed in Ying and Joseph

(1999) and takes the formulation given in problem (4.4) for target calculation. The MPC

control calculations in this paper are as given by Castro and Doyle III (20046). In the

unit-based MPC target calculation, the interactions between units were ignored. Thus, the

gain matrix K in (4.4) is actually K iis the block-diagonal elements of the overall-plant

gain matrix A. The effect of off-diagonal elements was treated as disturbances, through

d (k). The bounds for variables are the same as in the dynamic control calculation, and the

weightings Qy and cy are given in Table 4.3.

Plant-wide Coordination

Since the focus is on the MPC target calculation, the plant-wide linear steady-state model

matrix A in (4.7), from the MVs to CVs, is obtained via step response tests to ensure that

the steady-state gains are consistent with the dynamic simulation. In this work, bias update

strategy discussed in Ying and Joseph (1999) was used to compensate for disturbance and

model mismatch, etc.

Using the price-driven coordination strategy given in Chapter 3, the MPC target

calculation for a local operating unit can be modified as:

min z3 = (yset(6) - y*)TQy(yaet(k) - y*) + (uaet(k) - u*)TQu(usei(k) - u*)
y set> U set

+ cy(yset(fc) - y*) + c„(uset(k) - u*) + eTc fc ee - pTe(fc)

subject to:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.4 Price-driven Coordination and Plant-wide MPC 101

Table 4.3: Important CV weightings
Controlled variables Qy/100 C y

production rate 1.5 -80

digester kappa No. 1.5 0

oxygen reactor kappa No. 1.0 0

oxygen reactor caustic flow 1.0 0

oxygen reactor steam flow 0.5 0

oxygen reactor coolant flow 0.75 30

E kappa No. 1.0 0

D2 brightness 1.0 0

slaker temperature 1.0 0

kiln O 2 excess % 1.0 0

kiln fuel flow 0.5 30

y aet(fc) - K use((fc) = e(k) + d(fc)

d (k) = d (k - 1) + 6(k)

Y m in ̂ 5= y s e t (k) < y m ax + e (4.26)

U m m < U set(k) < U m ax

e > 0

where the subscript i is omitted for simplicity. Note that a price vector p is introduced into

the objective function and an auxiliary term e(k) is included in the unit model. To find the

equilibrium price vector p*, the proposed price-adjustment scheme requires the solution

of:
N

A (p) = e 4 - K Hnj i = l...N j ^ i (4.27)

The equilibrium price vector p*, which satisfies A (p) = 0 , is the solution to problem

(4.26). This procedure usually takes a few communication cycles between the coordinator

and subsystems. When the price vector is appropriately updated, the unit-based MPC

solutions will converge to the plant-wide optimum.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.4 Price-driven Coordination and Plant-wide MPC 102

Closed-loop Performance

This section compares three control schemes: the centralized, the decentralized, and the

coordinated, decentralized MPC target calculation. The centralized optimization scheme

uses the entire plant-wide gain matrix and is used to define the performance benchmark for

our study.

The control objectives are to closely track the setpoints given by an upper level

optimization, while maximizing production rate and minimizing oxygen reactor coolant

flow and kiln fuel flow. In this case study, the overall objective function for the plant is

defined as a linear combination of those objectives with weightings given in Table 4.3. The

optimization problems in all of the schemes are formulated as minimization problems. The

weightings for the MVs used in all MPC control schemes are adopted from Castro and

Doyle III (20046).

Results are provided for 8000 minutes of closed-loop simulation. Please note that the

abscissa in Figure 4.9 and 4.10 has the units hours. The disturbance set imposed on

the process was adopted from Castro and Doyle III (20046). The coordinated scheme

provides identical performance to that of the centralized scheme. Thus, only the closed-

loop responses for the coordinated scheme and the original decentralized scheme are shown

in Figure 4.9 and 4.10. In this study, the decentralized scheme exhibits significant offset

from the optimum plant operations.

Table 4.4 reports the profit/cost function values and computational times for all three

control schemes.

Table 4.4: QP-based MPC target calculation performance comparison
Control Schemes Value Function Optimization Time* per Control Interval

Centralized 1.22 x 105 0.06 s

Unit-based 1.32 x 105 0.04 s

Coordinated 1.22 x 105 0.14 s

* The sim ulations w ere performed in M ATLAB® 6.1 on an A thlon 1.4G H z, 1024M

RAM machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.4 Price-driven Coordination and Plant-wide MPC 103

710 2.8

« 2 6
Q .
Q .(0

2 4U j

o 700 («*>' 1

690Q.
CM

680. 2 .2 .15050 100 50 100 150

0.0380.84

|).036
o

CM

<3).034

B 0.82
J Z
0 3

*L.13

0.78. 0.032.50 100 150 100 15050

Figure 4.9: Closed-loop response 1: solid line (coordinated); dash line (decentralized)

1600 55

^ 1500c 50

81400 a 45

40.1300 100 15050 100 150 500
CD
c .

-Co
73OO 2.7

15050 10050 100

Figure 4.10: Closed-loop response 2: solid line (coordinated); dash line (decentralized)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.4 Price-driven Coordination and Plant-wide MPC 104

Note that the accumulated value function is a time-integration of the objective function

evaluated using the measured process variables. The optimization time is an average value

based on the observed computational times. As we have defined the value function of the

centralized scheme as a benchmark, we can see that the coordinated decentralized MPC

provides the same plant-wide operations, which produces an 8.2% improvement on that of

the decentralized scheme.

The computational effort is also reported in table 4.4 as the average optimization time

for each MPC execution interval. Since all the simulations were performed in a single­

processor machine, we approximate the computational load in the decentralized scheme by

averaging the sum of maximum times spent on solving each individual subproblem at one

interval. The computational load of the coordinated scheme consists of the time taken for

coordination and the time used for solving the most computationally intensive subproblem

at each iteration. It should be noted that the overall time for the coordinated case is nearly a

factor of 2 more than the other two cases. This was accomplished without using any of the

available coding techniques for decentralized computing. Thus, the above computational

efficiency suggests some promise of the proposed coordination strategy for industrial on­

line application.

In the case study, the optimization problems involve dozens of decision variables and

hundreds of constraints. The coordinated MPC scheme provides solutions at a reasonable

computational speed and as a result, exhibits a good trade-off between accuracy, reliability

and computational load.

Remarks: Some Implementation Issues

In the case study, the sampling time for target calculation is chosen as 10 minutes, which

is the least common multiple of the sampling times of MPC subsystems. Based on our

observations from simulations, the selection of sampling time for coordination should also

depend on the frequencies of the disturbances that the control system must deal with.

In general, good initial points can substantially enhance the efficiency of optimization.

In this study, it was found that the equilibrium price vector from the previous execution

worked very well as an initial guess for the current target calculation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 4.5 Chapter Summary

4.5 Chapter Summary

105

In many plant-wide control and optimization applications, a large-scale process model

is decomposed into several smaller subsystems and a controller is developed for each

subsystem. This may lead to a decentralized unit-based MPC framework, which may not

be able to provide the plant-wide optimum operations because of its failure to consider the

interactions between subsystems in decentralized MPC calculations. The coordination of

the unit-based MPC systems has been identified as having significant potential benefit.

In this chapter, a new approach to coordinating decentralized MPC target calculation is

proposed by taking advantage of the Dantzig-Wolfe decomposition algorithms. Several

message construction methods are proposed for coordination system design, in which

the constraints associated with multiple units can be incorporated. We have developed

a framework of designing a coordination system for decentralized MPC with minor

modification to current MPC layer. Our work shows that the proposed coordinated target

calculation scheme substantially improves the performance of the existing decentralized

control scheme, while it can utilize decentralized computing environment to ensure

acceptable real-time calculation speeds.

In this chapter, with the proposed price-driven coordination method and off-diagonal

element abstraction technique, a coordinator is developed to handle interactions between

operating units, based on existing unit-based MPC systems. This results in a coordinated,

decentralized MPC framework. In the study of pulp mill problem, the proposed

coordinated, decentralized MPC shows a significant improvement in the plant operations in

comparison with the existing decentralized MPC. The enhanced price-driven coordination

algorithm shows promise in providing an acceptable online calculation speed for solving

industrial plant-wide MPC control and optimization problems, which implies that the

proposed coordinated, decentralized MPC framework may be a viable technology for plant-

wide MPC applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“If we knew what we were doing it wouldn’t be research. ”

- by Albert Einstein

Extension to Large-scale Mixed-integer

Programming

Optimization of many operations in industry takes the form of large-scale mixed-integer

programming (MIP)1, so it is of value to extend our research to mixed-integer optimization

problems. In this chapter, our study is extended to decomposition and coordination strate­

gies for solving large-scale MIP problems, particularly mixed-integer linear programming

(MILP) problems. Subgradient optimization techniques are widely used in solving large-

’In this work, mixed-integer programming generally includes mixed-integer linear programming (MILP),

mixed-integer quadratic programming (MIQP), mixed-integer nonlinear programming (MINLP), and binary

integer programming (BIP).

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.1 Background 107

scale MILP problems2 because of their ease of implementation; however, their convergence

behavior needs improvement for the applications in which high speed computation is re­

quired. In this work, in order to enhance the computational efficiency of the subgradient

optimization methods, new heuristics are proposed to adjust the search direction. A com­

plexity study is performed and provides insight into the scaling behavior of the proposed

subgradient optimization algorithm. In addition, to make use of the solution results from

the subgradient optimization methods, primal solution recovery techniques are investigated.

An interior path searching method is proposed for primal solution recovery by using the

Dantzig-Wolfe decomposition strategy. With the improved subgradient optimization algo­

rithm and the primal solution recovery heuristic, a decentralized optimization framework

is developed and applied to a distributed decision support system for truck allocation in

mining operations. The case study shows the proposed optimization framework may be a

viable technique for solving industrial MILP problems.

5.1 Background

Many optimization problems involve a combination of continuous and discrete variables,

and a partial list includes process synthesis (e.g., heat exchanger networks, etc.), design,

scheduling, and planning of batch processes, interaction of design and control, and hybrid

control systems (Floudas, 1995; Bemporad and Morari, 1999; Stursberg and Panek, 2002).

Moreover, the Assignment problem, Knapsack problem, Set Covering problem, and

Vehicle Routing problem discussed in Beasley (1993) are typical mixed-integer (or binary

integer) programming problems abstracted from many practical problems in various areas.

Impressive collections of MIP applications, such as scheduling, supply chain and hybrid

control applications, can be found in Biegler and Grossmann (2004), Grossmann and

Biegler (2004).

In the fo llow in g subsections, w e are going to briefly discuss the com plexity issues in

2Subgradient optimization techniques are not restricted to solving MILP problems, and have been used in

MIQP and MINLP problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.1 Background 108

mixed-integer programming and some known MIP decomposition strategies, which take

advantage of the special structure of a large-scale MIP problem.

5.1.1 Complexity Issues in MIP

The solution of large-scale MIP problems is very challenging, because they combine all

of the difficulties of their subclasses. For instance, large-scale MILP and MIQP problems

present the combinatorial nature of integer programs and the difficulty in solving large-

scale LP and QP problems. Any choice of integer combination (e.g., binary 0 or 1 as a

common case) from the elements of the discrete feasible region results in an LP or QP

problem with continuous variables. If one follows a full enumeration approach to solving

an MIP problem, for example to solve a “0-1” MILP problem, it grows exponentially in

time with respect to its computational effort (Floudas, 1995). For instance, one hundred

binary variables would result in 2100 possible combinations.

Wolsey (1998) provides a summary of the complexity analysis results for several classes

of mixed-integer programming problems. Some of them fall into the category of NP-

complete problems, and some of them are NP-hard. Here, “NP” means verifiable in

nondeterministic polynomial time, and “NP-hard” means at least as hard as any NP-

problem, although it might, in fact, be harder. An “NP-complete” problem is both NP

(verifiable in nondeterministic polynomial time) and NP-hard (any other NP-problem can

be translated into this problem).

5.1.2 Decomposition Strategies for Mixed-integer Programming

In previous chapters, several methods for solving continuous optimization problems

have been investigated, including the Dantzig-Wolfe decomposition principle (Lasdon,

2002; Cheng et al., 2004) for linear programming (LP), the price-driven (or auction-

based) coordination method (Jose and Ungar, 19986; Cheng et al., 2005b) for quadratic

program m ing (QP). The B enders’ decom position m ethod (Benders, 1962; Lasdon, 2002)

was originally developed for solving MIP problems. In its most common implementation,

it decomposes the decision variable space into continuous and discrete parts, which are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.1 Background 109

handled by a master problem and a subproblem, respectively. The master problem and

subproblem are solved iteratively until the optimum solution is found. The Bender’s

decomposition method is used to solve an MIP problem with linking variables3, but cannot

be directly applied to the block structured problems with linking constraints, e.g., the large-

scale MILP problems to be solved in this work.

Another technique for decomposing mixed-integer programming problem with

block angular structure was proposed in Rana (1992). It can be thought as an

extension of Dantzig-Wolfe decomposition for mixed-integer linear programming (MILP).

Unfortunately, it was developed for handling linking constrains only involving continuous

variables. As a result, it has limited value.

Lagrangian relaxation techniques are widely used to convert a large problem (e.g.,

an NLP or MIP problem) into two smaller and more tractable problems. This creates

a master problem and a subproblem, by relaxing the “complicating” constraint set

(Geoffrion, 1974; Bertsekas, 1995). In our coordination problem, the linking constraints

are considered as complicating constraints. Based on the separability of the problem, the

resulting subproblem often can be further divided into a group of smaller independent

subproblems. For a block structured problem, through Lagrangian relaxation (LR),

the linking constraints are relaxed by introducing Lagrange multipliers, and the overall

optimization problem is divided into a group of subproblems. For a given set of Lagrange

multipliers, the subproblems require less computation than the original problem. Thus, the

solution of the original problem is done through a two-level iterative approach. When the

subproblems can be solved individually at one level, the Lagrange multipliers are updated

at the other level, which actually performs the coordination of subproblems.

Subgradient methods are frequently used to optimize dual functions in Lagrangian

relaxation for separable MIP problems4. Subgradient optimization can be considered

as an extension of a gradient method to the optimization of nondifferentiable functions.

Lagrangian relaxation and subgradient optimization methods can be directly applied to

3In a d eco m p o sab le larg e -scale system (p rob lem), lin k in g v ariab les (o r so m etim es called co m p lica tin g

variables) are those variables associated with multiple subsystems (subproblems).
4This chapter does not intend to discuss NLP problems, although subgradient optimization methods can

also be used to solve decomposable NLP problems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.1 Background 110

solving a block structured MIP problem by taking advantage of the special structure. Based

on the improvements made in its convergence performance, the subgradient optimization

method and its variants have shown satisfactory computational performance in solving

typical IP problems, such as the traveling salesman problem, manufacturing scheduling

problem, and assignment problem (Fumero, 2001) and the job shop scheduling problems

(Zhao et al., 1999). Therefore, we have chosen Lagrangian relaxation and subgradient

optimization methods as the basis for our MIP coordination study.

5.1.3 Subgradient Optimization Techniques

This section discusses the basic idea of Lagrangian relaxation and subgradient

optimization. Lagrangian relaxation is used to convert a large-scale problem into smaller

subproblems, while subgradient optimization methods are used to iteratively solve these

subproblems to achieve the optimum solution.

Consider the following optimization problem:

where x £ X is a subset of Rn and g £ R m is the set of complicating or linking

constraints. X represents the feasible domain with respect to the other constraints that

are not part of complicating constraints and may involve integer variables. Since g(x)

contains the complicating (linking) constraint set, by applying Lagrangian relaxation, the

original problem (P) has its Lagrangian dual given by:

(P) min /(x)

subject to: g(x) < 0

x £ X

(5.1)

L(A) = min /(x) + ATg(x)

subject to: x £ X , A > 0 (5.2)

Then the Lagrangian dual problem is given as:

(LD) max L(A) (5.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.1 Background 111

and the optimal solution is denoted as L* = L(A*). The (LD) problem in (5.3) is

nondifferentiable in general, e.g., the Lagrangian dual function L(A) of a linear integer

programming problem is piece-wise linear, concave and continuous but non-smooth

(Fumero, 2001). Then, the subgradient method is commonly used to maximize the dual

function. It should be noted that the solution of original problem (P) is equivalent to the

solution of problems in equations (5.2) and (5.3). The key issue is then to determine the

Lagrange multipliers A* that correspond to the optimal solution x*.

In the subgradient optimization method, at any iteration k, given Afc > 0, the multipliers

are updated by:

^fc+i = P + f̂cSfc) (5.4)

where P a denotes a projection operator which is used to ensure Afc+1 is feasible. For

example, when A consists of non-negative elements (i.e., A > 0), the projection operator

P a can be chosen as max{0, A*}, where A* is an element of vector A. Let dL(Xk) denote

the set of subgradients of L at Afc. Then sfe e d L { \k) represents a subgradient direction,

while tk is a suitable step size. The basis of the above scheme is based on the well known

fact that, given a non-optimal feasible solution Afc and sfc E d L (\ k), there exists a step

size t k such that Px(Afc + tksk) is closer, in the Euclidean norm sense, to an optimal

solution to problem (LD) than \ k (Bazaraa and Sherali, 1981). Despite the simplicity of

the basic idea of subgradient optimization, behavior such as weak convergence properties

and nonmonotonicity of the dual function was found in early implementations. Significant

efforts have been made to improve its performance in recent two decades. Most of the

research follows two streams: one is focused on selection of an appropriate step size t k and

the other is focused on determining an appropriate search direction sfc.

5.1.4 Primal Solution Recovery

It must be noted that, the subgradient optimization approach provides an optimal solution to

the LD problem, but does not solve the original problem (P) (5.1) in the primal space. Thus,

it is necessary to use the optimal solution of problem (LD) to construct feasible solutions

to the original problem (P). In the literature, Lagrangian heuristics (Beasley, 1993) are used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms 112

to retrieve primal solutions from the LD solution.

Sherali and Choi (1996) provided primal solution recovery mechanisms when using

subgradient optimization methods to solve Lagrangian duals of linear programs. Their

work also discussed general difficulties in developing simple but efficient primal solution

recovery heuristics. Barahona and Anbil (2000) developed the volume algorithm as

an extension of deflected subgradient methods to generate primal solutions for a linear

programming problem. This algorithm is based on the fact that a primal solution can

be derived from the volumes below the faces, which are active at the maximum point

of the dual function. A primal solution can be constructed as a convex combination of

the solutions of subproblems; however, for integer programming problems, there is no

guarantee of satisfying integrality from the convex combinations of points. Thus, this

algorithm can be used to obtain a near-optimal integer solution in general.

In Beasley (1993), it is claimed that “Designing a Lagrangian heuristic for a particular

LLBP5 is an art, the success of which is judged solely by computational performance,

i.e., whether a particular Lagrangian heuristic gives good quality (near-optimal or optimal)

solutions in a reasonable computation time”. Since these are heuristics and usually case

dependent, there are no standard design procedures that can guarantee computational

performance. The essential idea of designing Lagrangian heuristics is straightforward, and

most heuristics attempt to make the best use of the solution of LD problem (e.g., a lower

bound on the optimal solution to the original problem (P)) and the structural information

of the solution to the LD problem (e.g., the decision variables having values close to an

integer may be worthy of attention in the heuristic design).

5.2 Enhancements on Subgradient Algorithms

A modified subgradient algorithm for Lagrangian relaxation discussed in Fumero (2001)

incorporates a number of “most promising” heuristics in the field of subgradient

optimization. Those heuristics include the widely used step size update schemes (Poljak,

5Lagrangian lower bound program (Beasley, 1993), which is the linear case of the Lagrangian dual

problem in (5.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms 113

1969; Held et a l, 1974), variable target value techniques by Kim et al. (1991) for updating

the estimate of the optimal value of the dual function, and the search direction modification

scheme proposed by Camerini et al. (1975). Good performance of the modified subgradient

algorithm is reported based on computational experience in the Traveling Saleman and

Assignment problems. In this work, a new heuristic to improve both search direction and

step size determination is proposed. With the proposed heuristic, an extension is made

to the subgradient algorithm given in Fumero (2001). In the improved algorithm, some

recently developed heuristics are also incorporated, and a preliminary theoretical analysis

shows the computational performance may be improved over existing algorithms.

5.2.1 Improved Subgradient Search Directions

A brief introduction is given for the most widely used heuristics in the literature, in terms

of the two research streams to improve the subgradient optimization algorithms.

Step Size Selection

The most commonly used approach to step size calculation in subgradient optimization is:

= 6k^ \ ~ 3 Xk^ with O < 0 fc< 2 (5.5)

where Lk is the estimation of L* at current iteration k, and L(Ak) is the objective function

value of problem (LD) at iteration k. sk is a modified subgradient direction which will be

discussed later. The quality of the estimate Lk is very important in determining the step

size. Based on the fact that the subgradient optimization algorithm will eventually drive

L(Afc) to L*, the best objective value L° = ma.xk =1{Lj} should converge to L*. When the

quality of an initial estimation (i.e., L°) of L* is not known (e.g., usually an overestimate of

L*), it is desired to shift the weights of Lk on L° to the best objective value L° at the current

iteration. A commonly implemented strategy is given in Bazaraa and Sherali (1981):

Lk = akL° + (1 - a k)Lc (5.6)

where {ct/.} is a properly designed sequence. It should be noted that, to avoid the frequent

occurrence of Lk turning out to be an underestimate of L*, the sequence of {a^} should be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms 114

appropriately designed. For instance, the sequence {a k} weights L° heavily in the initial

stages of the process when Lc is likely to be significantly less than L*, and shifts the weight

onto L° gradually at first and then more rapidly later when Lc approaches L*. One sequence

of {ak} which provides the desired features is given in Bazaraa and Sherali (1981):

where r x is a tuning parameter by which we may delay, or hasten, the shift of the dominating

weight from L° to L c; e0 should take a suitable value as the minimum weight of L° when

the solution is close to the optimum; and r 2 is further determined as the smallest integer k

which satisfies:

Typically, if L° is close to L* (i.e., we have a good estimation of the optimum value), it

is desired to stay close to L° and rely on the initial estimation for more iterations, thus a

higher value of and a small e0 should be used. On the other hand, if L° is a poor estimate

(i.e., far from L*), it is desired to rely on Lc more heavily, thus a lower value of r i and a

larger value of e0 should be chosen.

Search Direction Adjustment

Another stream of research has been focused on improving the subgradient optimization

methods through subgradient direction modification techniques. Recall that the Lagrange

0 .6933(fc/rj):

Oik = < (5.7)
if A; > r 2.

eo > e-°-6933(fc/r'i)3'26 (5.8)

The shape of the weighting function a(k) is shown in Figure 5.1.

a (k)

k

Figure 5.1: Weighting function dynamics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms 115

multipliers can be updated by equation (5.4), where dL(Xk) denotes the set of subgradients

of L at Afc. The subgradient modification scheme proposed by Camerini et al. (1975) is one

practical approach and employs a linear combination of the current subgradient f ik and last

modified subgradient direction sfc_1. The update formula is given by:

sk = fik + /^ s* -1 (5.9)

where fxk — dL(Xk) and (3k is a suitable scalar (sfc_1 = 0 when k = 0). The subgradient n k

is evaluated for a given multiplier Xk. Generally, for an optimization problem in (5.1), the

subgradient fJ-k(Xk) = g(x; A*.), where x(A^) = argminxeX{f(-x.) + A^g(x)}. It should

be noted that formula (5.9) is in fact equivalent to using all preceding subgradient direction

information. Before further discussion, let us define XkX* as the vector connecting Xk to

A* in an Euclidean space.

k—1

k —1

Figure 5.2: Geometric interpretation - obtuse angle

As shown in Figure 5.2, sfc-1 is the direction from vector Afc_i (the previous multiplier)

to vector Xk (the current multiplier). At current iteration k, the subgradient /zfc = dL{Xk).

The fact is that, based on the update formula (5.9), the angle spanned by sfe-1 and the

direction of XkX* is an acute angle (< f). Xk is generated from Afc_i following direction

sfe_1. Thus, when f ik and sfe_1 form an obtuse angle (> §), i.e., when sfc_1 ■ [ik < 0, it is

desired to adjust the direction of subgradient /j,k closer to XkX*. Intuitively, i f w e choose

a /3fc as a sufficiently small positive number, the resulting vector sfc forms a smaller angle

with the direction of XkX* than does n k.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms 116

In Camerini et al. (1975), the choice of 8k is given by:

8k =
otherwise.

(5.10)

with 0 < 7 fe < 2. The scheme in equation (5.10) was proposed to determine the weighting

factor 8k in the case the angle between current gradient direction fj,k and previous modified

direction sfe_1 is an obtuse angle, i.e., sfc_1 • fxk < 0 in formula (5.10). In Figure 5.2, the

optimal multiplier A* is used just for the purposes of geometric interpretation; however, it

is not required in the calculation of 8k in the implementation of algorithms. The heuristic

in equation (5.10) gives a quantitative method to obtain a proper weighting factor 8k, which

guarantees the resulting direction sfc is closer to the direction of A/. A*.

Like other heuristics, this scheme also introduces a scalar tuning parameter 7 *. The

choice of 7 ̂may depend on the nature of problems to be solved, and for different choice

of 7 fc the algorithm presents different computational efficiency. In Camerini et al. (1975),

the value of 7 k is determined by:

where a is the angle formed by sk 1 and n k; p = where <j> and ip stand for the angles

which sfc_1 and fj,k formed with vector A^A*, respectively. Geometrically, p indicates the

is not known, so an estimate of p has to be made by trial and error. For example, a simple

heuristic estimation of p is p = 1, which assumes that on the average, s fe_1 and / ik form

equal angles with respect to AfcA*, and this corresponds to a value of 7 k — |cô aj. An

assumption often used is a = resulting in 7k — \J2, for which good computational

experience has been reported in many applications (Camerini et al., 1975). In addition, a

fixed 7 = 1 would amount to using a direction orthogonal to sfe_1. With an appropriate

7 , this modification can significantly improve the convergence of subgradient optimization

methods. A large amount of computational experience has shown its value in improving the

convergent rate of subgradient optimization; moreover, the policy (5.10) tends to alleviate

“zig-zag” behavior of the sequence of {Afc} (Camerini et al., 1975).

p + |cos a
(5.11)

c o s q ; |(1 + p\ cosa|)

relative location of vector A^A* with respect to sk 1 and /xfe. In practice, the vector A^A*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms 117

Adjustment For A Feasible Subgradient Direction

In the context of Lagrangian relaxation, another approach to solving the dual problem

(LD) is steepest ascent optimization (Bazaraa and Goode, 1979). There, research has

focused on finding a feasible direction of steepest ascent, which improves the dual objective

function monotonically iteration by iteration. Although our work focuses on subgradient

optimization, the concept of a feasible direction in steepest ascent optimization should still

be valid for the purpose of our work.

Definition (Bazaraa and Goode, 1979). Let L be concave and consider the problem in

(5.3). When A > 0, s is called a feasible direction for L at A if A* = 0 implies that s* > 0,

where A = [Ax, A2, ..., Am] and s = [si, s2, s m].

To understand this definition, consider the following fact. In ascent optimization, if

Ak > 0, and if we move along an ascent direction sk for L(Ak), then there exists a 5 > 0

such that L(Ak + t ks£) > L(X) and \ k + tfcS* remains feasible for all t k <E [0,5]. On the

other hand, if at least one component of Afc is equal to zero, moving along the direction s£

may destroy feasibility for any step size t k (Bazaraa and Goode, 1979). The same concept

also applies to the subgradient optimization scheme discussed in previous sections. When

the Lagrange multiplier A is updated through equation (5.4), which directly uses the search

direction sfc obtained through equation (5.9). It should be noted that, the search direction sk

may not be a feasible direction for updating the Lagrange multiplier A. This may worsen

the zig-zagging behaviour of subgradient optimization methods.

To incorporate the concept of a “feasible direction”, a heuristic is developed as follows

by modifying the projection discussed as Theorem 2 in Bazaraa and Goode (1979). For

the Lagrangian dual function L(Ak) defined in problem (5.3), if a subgradient direction

sfc € dL(Afc), its ith component sk is projected as follows:

sk, i f i ^ 4 (A) ;
(5.12)

0, otherwise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms 118

where Ik(A) is an index set determined by:

4(A) = {* | s? < 0 and Alfe = 0} (5.13)

Then, the direction sfc = [s*, §k, is a feasible direction. Let us denote the projection

operation as sfc = P s (sk). In brief, the proposed heuristic, which is described by (5.10) and

(5.12), has the following properties:

1. Putting more emphasis on determining a feasible subgradient direction;

2. Yielding a direction §fe not worse than sfc;

3. Guaranteeing convergence of multiplier A in an Euclidean norm sense;

4. Providing a larger range of step size that can improve the convergence of the

multipliers.

Next, we are going to show some favorable properties of the resulting direction sfc.

In addition to the feasibility of the direction, as is shown in Figure 5.3, when we try to

move from A*; to A*, it is obvious that the direction sk is a direction at least as good as, if

not better than, the direction sfe, because the projection of A&A* on sfc (i.e., ^ *S

at least as large as, if not greater than, that on sfc (i.e., ^ - ronf'5“)-

k —1

k-1

Figure 5.3: Adjustment of subgradient direction

Next, we are going to show that sk is a subgradient direction at least as good as sfc. Based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms 119

on the fact that X*sk < 0 for all i G Ik, we have

(V - A*)Ts‘ = £ (A* - A‘)Sf + J 2
i£ lk

< E (A* - A*)s* = (A* - A*)T§fc (5-14>
i£Ik

In addition, from the definition of Euclidean norm (Bertsekas, 1995), we can easily obtain

that:

M > ||§ 1 (5.15)

Hence, assuming that sk and sfe are non-zero vectors, the following inequality holds:

(A* - Afc)Tsfc (A* - Ak)Tsk
— P i — - — P i — (>

In other words, referring to Figure 5.3, the vector A&A* can have a larger projection onto

the vector sfc, which means the modified direction sfc is at least as good a direction as sk.

Next, we show the convergence of the subgradient optimization algorithm based on the

improved subgradient direction. In other words, if the Lagrange multiplier update strategy

is given b y :

Afc+1 = Px(Afe + ffc§fc) (5.17)

where P* is a projection operator on the closed convex set M = {A > 0, L(A) > —oo}

(Bertsekas, 1995), and if the step size is chosen as (Camerini et al., 1975):

L(A*)_- L(A*0
, l § '

we should have ||A* — Afc|| > || A* — Afc+i||.

Then, we have:

0 < tk < v ,,afc||2 (5.1.8)

Afe + t ksk - A*II = ||A* - A*||2 - 2tfe(A* - Afe)Tsfc + t2k ||sfc|| (5.19)

Lemma 1 in Camerini et al. (1975), which is based on the definition of subgradient, gives

the inequality:

(A* - Afe) V > L (V) - L(Afe) (5.20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms 120

Furthermore, Lemma 2 in Camerini et al. (1975) states that, for a given direction sk

updated by the scheme in equations (5.9) and (5.10), the inequality:

(A * - A fe) V > (A * - A fc) V (5-21)

holds. Therefore, from inequalities (5.20) and (5.21), we obtain:

(A* - Afe)Tsfe > L{A*) - L(Afc) (5.22)

and combine (5.22) with (5.14), we have:

(A* - Xk)Tsk > L(A’) - L(Xk) (5.23)

Then, from (5.19) and (5.23), we can get:

||A* + tksk - A*||2 < ||Afe - A*||2 - 2tk(L(X*) - L(Xk)) + 1\ ||sfc||2 (5.24)

It is straightforward to verify that, for the step size tk that satisfies (5.18), the sum of the

last two terms in (5.24) is negative, so the above inequality yields:

||Afe + tksk — A*|| < ||Afe — A*|| (5.25)

Because A* G M and the projection operation P a is non-expansive6, we have:

||Px(Afe + tksk) - A*|| < || Afe + ifcSfe - A*|| (5.26)

By combining the last two inequalities, the property ||A* — Afe|| > ||A* - At+,11 has been

proved.

Moreover, for step size selection, if we adopt the formula given in (5.18), because

||sfe|| > 11 sfc j |, a larger range of step size t k can be chosen due to the use of the improved

direction sfc.

For the proposed search direction adjustment scheme, in particular, properties 2 and 4

may significantly improve the rate of convergence of the subgradient algorithms, while

property 1 may alleviate the zig-zagging behavior of the algorithms.

6The mapping / : R n —* X defi ned by f (x) = [x]f is continuous and non-expansive, that is:

||[x]+ — [j/]+ || < ||rc — y\\ Vx, y e R n (Bertsekas, 1995).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms

5.2.2 An Enhanced Subgradient Algorithm

121

By incorporating the proposed extensions, further enhancement is expected to the

subgradient optimization algorithm proposed in Fumero (2001). A decentralized version

of the modified algorithm can also be developed for separable large-scale optimization

problems (MILP, MIQP, MINLP), which takes advantage of the special problem structure.

A Version for Centralized Computing Environments

Next, an algorithmic scheme of the enhanced subgradient optimization algorithm is given

as follows for an implementation on a centralized computing platform. Moreover, to help

explain the proposed subgradient optimization algorithm, the diagrams in Figures 5.4 and

5.5 give a flowchart description of the implementation.

• Initialization. Choose a starting solution Ai G M = (A > 0, L(A) > —oo} and

compute L(Xx). Determine jj,1 G dL(Ai). Let s1 = fj,1, and if ||sx|| = 0, STOP

with Ai as an optimal solution to the problem (LD). Otherwise, choose an initial

estimation L° > L* = sup{L(A) : A G M } and set L x = L° as the target value

for calculating the stepsize. Let (Ac, sc, L°) = (A1,s 1,L(A1)). Select appropriate

positive values for e0 and e, and select appropriate positive integral values for u, 9

and rx as tuning parameters. Let 6X = 1, r — 0, u — 0, k — 1, and £*0 = 1 and go to

Step 1.

• Step 1. Given Afc, /3k (f3x = 0), L(Xk), sk and Lk, determine the stepsize:

tk = h 1 " (5'27)

Update the multipliers with Afc+1 = P*(Afc-|-ffcSfe). Compute L (\ k+1) and determine

H k+X G d L (\ k+1). If | |^ fc+1|| = 0, terminate with Afc+i as an optimal solution to

the problem. Otherwise, replace k by k + 1. If k reaches the prespecified maximum

iteration number k, STOP; else, go to Step 2.

• Step 2. If sfc_1 • n k < 0, set (ik — and perform the projection

sk = P s(pk + (3ksk~r); otherwise, sfc = P s(/zfc). Then, go to Step 3 if r < r2

or to Step 6 if r = r2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms

INI A, e M

Compute L(X\)

Determine subgradient f t1

X = X i ; Stop.

(.XC, S C, L C) = (A,, S 1, / W)

Choose Lq > L* and set L\ — L°

Parameter setting: 9X = 1 , y = 0

v = 0, k = \, <x0 = 1 , and choose v , 6 , rx

 " ~ r ,------------► Calculate step size t k

2-k+1 - + tkA)

Compute L(A.k + x) a n d /j. k + 1

N
f

k = k 4- 1

6

W A = Ak, stop

Figure 5.4: Improved subgradient algorithm - part I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms 123

■ A = Ak, stopk>k

P h a se 2r <r.

P h a s e 1

v = v + \

V < V (Ac ,S C ,Lc) = (Ak,S k ,L(Ak))

i = a rL° + { \ - a r)Lc{ A \ S c, U) = {Ak, S k, L ^ k))

v = v + l

Update a r,Lk

ek ^ e kA, { h ^ k , iiAk))=(Ac , s c ,lc) V < V

{Ak,Sk,L{Ak))={Ac,Sc,Lc

Figure 5.5: Improved subgradient algorithm - part II

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms 124

Phase I:

• Step 3. If L(Afe) > Lc + e, go to Step 5; otherwise, go to Step 4.

• Step 4. Let v = v + 1. l f v < v , go to Step 1; otherwise (if v = P), set v = 0 and

replace r by r + 1. Compute a r = e —0 .6 9 3 3 (r/n))3-26 a n d s e t £ fc = ^ £ 0 + Q

Let 9k = 6k-1, and reset (Afe, sfc, L(Afc)) = (Ac, sc, Lc). And go to Step 1.

• Step 5. Let (Ac, sc, Lc) = (\ k, sfe, L (\ k)), and compute Lk = arL° + (1 - a r)L°.

Set v = 0, 9k = 9k-1, and go to Step 1.

Phase II:

• Step 6. If L(Afc) > Lc + t, go to Step 7; otherwise, go to Step 8.

• Step 7. Let (Ac, sc, Lc) = (Ak, sk, L(Afc)). Compute Lk = arL° + (1 — a r)Lc, and

go to Step 8.

• Step 8. Replace i/ by v + 1. If v < P, go to Step 1; otherwise (if v = P),

set v = 0, and let 9k — 9k-1 + 2. If return to Step 1; otherwise, let

(Afe, sfc, L(Afc)) = (Ac, sc, Lc) and return to Step 1.

A Version for Distributed Computing Environments

This section gives an algorithmic description of a decentralized version of the

proposed subgradient optimization algorithm for solving large-scale MIP problems with

decomposable structure. Consider a block-structured optimization problem:

p
(PI) min X > (Xi)

i=l
V

subject to: ^T^gj(xj)<0 (5.28)
i= 1

Xi £ Xi

where Xj e Xi is a subset of R n, g* £ R m. Xt represents the individual feasible

domain with respect to the local constraints of potential subproblems. Assume & (xi)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms 125

contains a complicating constraint set, by applying Lagrangian relaxation, the original

problem (PI) has its Lagrangian dual given by:

p p
L(A) = min f i f a) + XT ^ g^x*)

i = l i = 1

subject to: Xj e X u A > 0 (5-29)

Rewriting the Lagrangian function in (5.29), a Lagrangian function with separable structure

is obtained:
p

L { \) = min ^ (/* (x i) + A ^ x *)) (5.30)
i= 1

= E L< w
1 = 1

Then, the Lagrangian dual (LD1) problem is given as:

p
(LD1) m&x Li(^) (5.31)

Ai~° i=i

In this case, the solution of the (LD1) problem can be achieved by solving p individual

subproblems. The centralized version of the improved subgradient algorithm discussed in

previous section can be accordingly modified to take advantage of a distributed computing

environment.

In the Initialization step and Step 1 of the centralized version, the dual function value

L(Afc) is evaluated by solving an LD problem as a whole; however, when the LD problem

takes the form of (LD 1), for a given multiplier Afe, the dual function of a subproblem L,(Afc)

is evaluated at the solution of Xj(Afc) = argminXj6A'i{ /(x i) + A^gj(xj)}, which can be

solved independently on a distributed computing platform.

In this case, the distributed version of the improved subgradient algorithm can be

implemented in a distributed computing environment, where p computing nodes and an

additional coordinator node are available. In brief, the evaluation of the p Lagrangian

dual functions Lt(A*) is performed at the p computing nodes, respectively; while other

computations are conducted at the coordinator computing node.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.2 Enhancements on Subgradient Algorithms

5.2.3 Discussions

126

By following different paths, similar heuristics for subgradient direction adjustment, as

described in formula (5.12), are developed in Wang (2003) and Guta (2003).

Wang (2003) proposes a similar heuristic to equation (5.12); however, the heuristic

developed in his work is only used for step size selection, i.e., the projected search direction

sk is used to determine (3k in equation (5.10). In this thesis, the resulting search direction sk

is also applied to equation (5.9) for subgradient search direction adjustment. In this case,

the heuristic for search direction projection developed in this thesis extends the work by

Wang (2003) to more general applications.

The mechanism behind many heuristics, which tend to improve the computational

performance of subgradient optimization algorithms, has been discussed recently in Guta

(2003). Most of the heuristics in the literature were developed to alleviate two kinds of

zigzagging behavior of subgradient methods. The first kind of zigzagging behavior occurs

when the subgradient direction n k forms an obtuse angle with the previous direction sfc_1,

as shown in Figure 5.2; while the second kind of zigzagging is due to the location of k th

solution, i.e., even when the angle between n k and sk~1 is acute, a movement of any size

along sfc will cause an infeasible solution. A more rigorous definition of the two kinds of

zigzagging can be found in Chapter 3 of Guta (2003). These zigzagging phenomena may

significantly slow the convergence of subgradient optimization algorithms. The heuristics

in the algorithm, which is developed in §5.2.2, actually intend to alleviate both kinds of

zigzagging behavior and thus enhance the convergent speed of subgradient optimization.

Although the search direction adjustment strategy proposed in Guta (2003) is similar

to the heuristic in equation (5.12) of this thesis, there are significant differences between

these two pieces of work. Firstly, the work of Guta (2003) is derived from the concept

of conditional subgradient methods (Larsson et al., 1996); while the proposed scheme in

this thesis is based on the concept of feasible direction in steepest ascent optimization

framework. These are two independent pieces of work sharing the similar idea of

maintaining the feasibility of search direction. Secondly, it should be noted that the

design and implementation of the subgradient algorithms are quite different. In our work,

the algorithm described in §5.2.2 has incorporated the most promising heuristics in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.3 Complexity Study 127

literature, including the proposed search direction adjustment heuristics (i.e., equation

(5.12)) and the step size selection heuristics where variable target methods have been

applied (i.e., equations (5.6) and (5.7)). In addition, a distributed version of the subgradient

algorithm has been developed in this work as well.

5.3 Complexity Study

In the literature, mixed-integer linear programming (MILP) problems represent one

important class of optimization problems, which have been mentioned in §5.1 for planning,

scheduling, and resource allocation, etc. In addition, hybrid MPC applications, which

involve integer variables, have been discussed in Bemporad and Morari (1999). It may be

beneficial to apply an MILP-based target calculation to the hybrid MPC system to help

achieve plant-wide optimal operations. Thus, MILP/ILP problems are the main focus for

the remainder of this chapter.

In this section, a brief discussion on the theoretical complexity of the subgradient

optimization algorithms will be given. Then a comprehensive empirical study is performed

to gain insight into the scaling behavior of the enhanced subgradient algorithm.

We consider a large-scale block-angular mixed-integer linear programming problem

with p subproblems:

max X X * .
i

subject to

AjXj < b 0 (5.32)
i

BtXi ^ bj

x, > 0 i = 1, 2 , ...,p

Xij E Z for j E Ii

where vectors x, (n* x 1), b* (m* x 1), b 0 (m 0 x 1), c* (rij x 1), and matrices A* (m0 x n*),

Bj (rrii x rii) are specific to subproblem “i ” . It should be noted that the set I contains the

indices of integer variables in the decision vector X*.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.3 Complexity Study

5.3.1 Theoretical Analysis

128

In the literature, although it has been shown that some of the integer programming problems

(e.g., the Uncapacitated Lot-Sizing Problem, the Shortest Path Problem, the Max Flow

Problem (Wolsey, 1998)) can be solved with a polynomial algorithm, no one to date has

claimed to find an efficient (polynomial) algorithm for a general MILP (or BIP) problem.

In the application of subgradient algorithms for solving MILP/ILP problems, the

subproblems are generally optimization problems involving integer variables. Since there

is no proof or declaration of a polynomial time algorithm for a general MILP/ILP, the

subproblems themselves may not be solved in polynomial time. Therefore, no matter what

the complexity of coordination, the worst case complexity of subgradient optimization

would be NP-hard, when solving a decomposable MILP problem. Therefore, we are not

going to emphasize the worst-case behavior of the subgradient optimization algorithm,

but rather concentrate on its average-case behavior through the empirical studies in next

section.

5.3.2 Empirical Studies

To gain more insight into the scaling behavior and computational efficiency of the proposed

subgradient optimization algorithm, four groups of Monte Carlo simulation are performed

by solving randomly generated (linear) Binary Integer Programming (BIP) problems7.

The BIP test problem instance generation scheme is introduced in Appendix A.3.1. The

problem instance generation program randomly generates a set of BIP problems with block-

angular structure. After some preliminary computational experiments, a reference problem

model is determined so that we can observe algorithm performance changes when we vary

the problem structural parameters with respect to the reference model. The following set

of parameters are used for the reference problem model:

{ p = 17 , m 0 = 10 , rrii = 2 0 , rij = 15 i = 1 , 2 , . . . , p }

7 Since all the integer programming problems can be equivalently converted to binary integer programming

problems (Rao, 1998), the simulation study focuses on BIP problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.3 Complexity Study 129

It should be noted that the reference problem is a “well-balanced” decomposable problem

with R S R — 1. We are taking the same structural analysis approach as discussed

in Chapter 2 and 3 with the assumption that each subproblem has been assigned to a

distributed CPU.

Again, the equivalent computational time t eqv for the subgradient optimization algorithm

is estimated by summing up the time for solving the coordination problem and the most

time-consuming subproblem, assuming a distributed computational environment. As a

reference, the generated BIP problems are also solved by a typical centralized MIP solver.

Because the computational studies are only designed to investigate the scaling behavior

of the proposed subgradient optimization algorithm without any primal solution recovery

efforts attempted, the subgradient optimization procedure is terminated when the solution

to the LD problem is close to the LD optimal solution. The algorithm is terminated when

there is no improvement (e.g., less than 1CT6) made in the objective function values (i.e.,

||L(Afc) — L(Afc_i)||) or in the subgradient vector norms (i.e., ||sfe — sfc-1||) for a number

of consecutive iterations 8. The algorithm will also be terminated when it exceeds the

prespecified maximum iteration number, which is usually chosen as an increasing function

of the decision variables (e.g., m axlter = 50 + 20 x [35J, where N is the number of

decision variables). It should be noted that, the centralized MIP solver is used to solve

BIP primal problems, while the subgradient algorithm is used to solve the LD of the BIP

problems. Usually, there is a duality gap between the two solutions. In both cases, ILOG®

CPLEX 9.0 MIP solver is used to solve all integer programming problems. In the Monte

Carlo simulation for each scenario, the number of problem instances is 200 x 5 = 1000, i.e.,

for each scenario, five runs of simulation are performed and each run solves 200 problem

instances generated randomly.

Scenario 1: We fix p and | J»|, change mo (see Appendix A.3.2). In this case, we can

study the performance of decomposition and coordination with respect to the dimension of

linking constraints in equation (5.32).

Figure 5.6 show s that the CCN is relatively insensitive to the dim ension o f linking

8Usually, this number must be increased with problem size. In this work, we choose 3 to 5 in our

implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.3 Complexity Study 130

a — decen subgrad

50 100
Number of Linking Constraints

150
Linking

200 250 3000

Figure 5.6: Subgradient optimization: CCN vs. number of linking constraints

3.5
—e ~ cplex MIP
~o decen subgrad

>21
2.5

F
COco
S3Q.
E
8ECJ
s3U"Hi

0.5

150
Number of Linking

250 300100
Number of Linking Constraints

200
Constraints

Figure 5.7: Subgradient optimization: com putational performance vs. number o f linking

constraints

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.3 Complexity Study 131

constraints, although there is a slight increase of CCN. This is consistent with the average

convergence behavior of subgradient optimization methods. It has been observed that

the subgradient optimization approaches the optimum fast at the beginning and slows

down when it is close to the optimum (Fumero, 2001; Baker and Sheasby, 1999; Bazaraa

and Sherali, 1981). Thus, the simulation results imply that the subgradient optimization

algorithm takes almost the same number of iterations to reach the desired vicinity of the

optimum when the number of linking constraints increases. Note that, as is shown in Figure

5.7, the subgradient algorithm presents better scaling behavior than the centralized MIP

solver does.

Scenario 2: For fixed p and m 0, we change subproblem size |Jj| by simultaneously

changing ra* and n* (see Appendix A.3.2). In this scenario, we study the algorithm

performance with respect to subproblem sizes.

e — decen subgrad |

z 25

I 15

o 10

30 0.5 1 1.5
Number of Coefficients

2 2.5

x 10s

Figure 5.8: Subgradient optimization: CCN vs. subproblem size

The simulation results in Figure 5.8 are again consistent with the known convergence

behavior of subgradient optimization. The CCN does not have much dependence on

the subproblem sizes; however, since the solution of a larger subproblem is more time

consuming, Figure 5.9 shows an increase in the computational time of subgradient

optimization algorithm, but its scaling behavior is still better than the centralized MIP

solver. It should be noted that the cross-over in Figure 5.9 shows the subgradient algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.3 Complexity Study 132

10

- cplex MIP
dacen subgrad

E
i f 101

L 10 r

® 10 " '
 B- ----

10 ’ 10
Number of Coefficients

10"

Figure 5.9: Subgradient optimization: computational performance vs. subproblem size

requires less (equivalent) computational time when the subproblem size becomes large (i.e.,

when the number of coefficients is larger than 105).

Scenario 3: We keep m 0, m* and ra* constant, and change the number of subproblems

p (see Appendix A.3.2). In this case, we investigate the performance of the coordination

algorithm when more and more subproblems are integrated into the coordination system,

assuming a rather well-balanced subproblem computational load.

s — decen subgrad

3 25

O 20

,9 10

30
N u m b e r o f S u b p r o b le m s

25 5010 15 20 35 40 455
N u m b e r

Figure 5.10: Subgradient optimization: CCN vs. number of subproblems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.3 Complexity Study 133

0.7

0.6

E 0.5
F

I 0-4
1
8 °-3

0.1

..■&— cplex MIP
i i i ' ' — r — " T - " i—

- e decen subgrad /

X
. /

/
9?-//

/

/
*

,0""

.A '/ -a-

.... 6

-....jS '- '" '" '

1 1 1 1 1 1

15 20 25 30 35 40 45
Number of Subproblems

50

Figure 5.11: Subgradient optimization: computational performance vs. number of

subproblems

Figure 5.10 shows that the CCN would decrease when the number of subproblems

increases. It should be noted that, when the number of subproblems increases, the number

of linking constraints remains the same; thus the impact of linking constraints on the

CCN and computational time becomes less significant when the number of subproblems

increases. An extreme case is when we have an infinite number of subproblems (i.e.,

p —► oo) the impact of linking constraints becomes negligible, thus it becomes a fully

decomposable problem and no communication cycle is needed (i.e., C C N —> 0). In other

words, the incorporation of a similar-size subsystem does not deteriorate the computational

performance, which also indicates good scaling behavior of the subgradient optimization

algorithm. Figure 5.11 also shows better computational performance of the subgradient

optimization, relative to the centralized MIP, for large numbers of subproblems (i.e., when

p > 2 1) .

Scenario 4: If we fix m 0, Y ^ = i and S L i i - e-» we the overall problem size,

we can study the influence of relative subproblem ratio (RSR). In this case, we change

p by combining subproblems into groups (see Appendix A.3.2) according to different

partition patterns of the original BIP problem as we did for LP and QP in Chapter 2 and 3,

respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.3 Complexity Study

—i-------------- r~ i ■ ■ 111
30 -L - decen subgrad |

; 25-

3 2 0 -

15' “---

1 0 -

2.5 3 3.5
Relative Subproblem Ratio

4.5

Figure 5.12: Subgradient optimization: CCN vs. RSR

cplex MIP
decen subgrad

2.5 3 3.5
Relative Subproblem Ratio

4.5 5

Figure 5.13: Subgradient optimization: computational performance vs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.4 Approaches to Primal Solution Recovery 135

In Figure 5.12, the CCN shows little dependence of the RSR; while the increase in

computational time in Figure 5.13 implies that the increase is mainly due to the increase in

solving subproblems (i.e., mainly due to the imbalanced dominant subproblem). We can

see that even for the same BIP problem, different decomposition patterns lead to different

computational performance although the CCN is not affected very much.

Remarks: The main task of coordination is to efficiently update the multiplier A. As

heuristic-based strategies are used to calculate the step size and adjust the search direction,

the update of A depends more on the heuristics than the solution of subproblems. In this

case, the search direction adjustment and step size calculation do not show dependence

on the problem structure parameters, which results in a coordination that is insensitive

to problem structure. Consistently, from the empirical study, it can be observed that the

computational complexity (CCN) of the subgradient optimization algorithm does not have

significant dependence on the chosen structure parameters; however, the computational

performance is significantly affected by the complexity of subproblems. Therefore, we

may conclude that the subgradient optimization algorithm has good scaling behavior and

can be used to efficiently solve the LD problem of an MILP or BIP problem.

5.4 Approaches to Primal Solution Recovery

In this section, the development of primal solution recovery heuristic is inspired by the

Interior Path Methods (Hillier, 1969; Faaland and Hillier, 1979). Although the Interior

Path Methods were not developed for retrieving primal solution from the solution of the LD

problem, it provides the bases for the idea of the proposed Interior Path Search heuristic.

The heuristic algorithms developed in Hillier (1969) and Faaland and Hillier (1979)

deal with general integer linear programming problems. The algorithms search for good

integer solutions in the neighborhood of the optimal solution for the corresponding linear

relaxation of the original problem. In some sense, the algorithms work in two phases,

where “interior paths” from the optim um o f the relaxed problem to som e interior points

are constructed in Phase 1 and the search for a nearby feasible (integer) solution along the

interior paths is performed in Phase 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.4 Approaches to Primal Solution Recovery 136

Figure 5.14 shows an illustrative linear integer programming problem, in which the black

dots represent the integer solutions. The heuristics aim to generate “good” paths leading

from an optimal solution for the corresponding linear programming problem (i.e., an LP

relaxation of the MILP problem) into the interior (e.g., point 1 or 2 in the figure) of the

feasible region for this problem.

Figure 5.14: Basic idea of interior path methods

Following the generated paths for given step sizes, the integer solutions close to the paths

in the feasible region are evaluated. In the end, the best solution recorded in the evaluation

procedure is reported as the final solution (optimal or suboptimal) to the original MILP

problem.

5.4.1 Primal Solution Recovery Heuristics

This subsection discusses an Interior Path Search method by taking advantage of the

solution from subgradient optimization, which is a way to make use of the solution of

the LD problem.
For a general m ixed-integer programming problem described in equation (5.1), the

solution to its Lagrangian dual problem, which is given in (5.3), provides a lower bound

on the optimal solution to the original problem for any A > 0. This lower bound is at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.4 Approaches to Primal Solution Recovery 137

least as good as the bound from the solution of the linear relaxation problem (i.e., ignore

the integral constraints and treat all the integer variables as continuous variables) of the

original problem. The proof can be found in many classical textbooks, such as Beasley

(1993) and Wolsey (1998).

For the purpose of illustration, let us consider a two dimensional case. In Figure 5.15, the

upper dashed line represents the objective function of the relaxed problem, while the lower

dashed line represents the objective function of the LD problem. In this case, the solution

to the LD problem provides a better lower bound for the original integer optimization

problem. Assuming that we can determine the intersection points 1 and 2, searching along

the path (line segment) between point 1 and 2 , it is quite possible to find some feasible

integer solutions in the vicinity of the line, which is the optimal or a suboptimal solution.

X2

XI

Figure 5.15: Interior path using subgradient lower bound

In particular, for an MILP problem of higher dimension, the (relaxed) feasible region

is a polyhedron and the optimal objective function of the LD problem can be expressed

by a hyperplane. Therefore, the line segment in Figure 5.15 will be a cross section (a

polygon) generated by cutting the polyhedron with the hyperplane. Then we may have

many points as the comer points of the polygon. Assuming we can determine all or some

of the comer points9, it is possible to construct lines (interior paths) on the polygon by

9In theory, we can obtain all the comer points of the polygon, but in practice, we may be allowed to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.4 Approaches to Primal Solution Recovery 138

using some (linear) combination of the comer points. Since the cross section is usually

close to the optimal solution or suboptimal solutions, which are in the neighborhood of the

optimum, searching along the generated interior paths, it is quite possible to find a feasible

suboptimal solution or the optimum.

To generate the interior paths in the above scheme, one question to be answered is the

generation of end points for a line segment or comer points for a polygon. The following

example is used to illustrate one approach to generating desirable comer points. Consider

a general MILP problem:

(PI): min C1X1 + c2x 2

subject to: AjXi + A 2x2 < 0 (5.33)

Xj £ PCi

where contains integer sets. Assumping the lower bound from the solution to the LD

problem of PI is f ib . To make use of the lower bound, we can add one more constraint to

the original constraint set and get an LP relaxation of the original problem:

(P2): min ciXi + c2x2

subject to: AiXi + A 2x2 < 0 (5.34)

C iX i + C2X2 > f ib

Xj > 0

It may be noted that the problem (P2) is a degenerate problem. Although most commercial

optimization solvers can handle this kind of degeneracy, we may modify the problem by

introducting perturbations to the elements of the coefficient vector ci or c210.

(P3): min CiXi + c2x2

subject to: AiXi + A 2x2 < 0

ciXi + c2x 2 > fib (5.35)

Xj > 0

determine some of the comer points due to computational requirements.
10This actually leads to a slight change in the slope of the line segment in Figure 5.15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.4 Approaches to Primal Solution Recovery 139

The resulting problem (P3) can be solved to give a feasible solution (i.e., a point on the

boundary) that is close to one of the end points or comer points. By randomly perturbing

the coefficients of different decision variables in the augmented constraint (5.4.1), we may

end up with a set of points that are supposed to be in the vicinity of the desired comer

points. It should be noted that, as is shown in Figure 5.15, we cannot use two points close

to point 1 to generate an interior path but one point close to point 1 and one point close

to point 2. By recording the indices of active constraints when we solve the problem (P3),

we can select a set of desired comer points, which correspond to different sets of active

constraints, to construct such interior paths.

For one generated interior path, denoted as path x xx 2, where x 1 and x2 are the end points

of the interior path, we can search along the interior path by evaluating the point:

xj = L(1 — oOx1 + ox2J, where 0 < a < 1 (5.36)

where “ [J” is the operation for rounding all integer variables to obtain an integer solution.

The step size a can be increased at a fixed increment or according to some other update

schemes. Then feasibility test will be performed for each evaluated point x J, i.e., we only

record the set of solutions that satisfy all constraints in problem (PI). It should be noted that

the integral constraints have been satisfied through the operation in (5.36). By searching

along all the generated interior paths, the best integer solution x* is recorded and reported

as the final solution.

5.4.2 A Decentralized Optimization Framework

So far we have obtained an improved subgradient optimization algorithm as well as a primal

solution recovery heuristic, which contribute to the two essential parts of a subgradient

optimization technique for solving MILP problems. As is discussed in previous sections,

on a distributed computing platform, the distributed version of the improved subgradient

algorithm can be used to efficiently solve the LD of a block-structured BIP (or MILP)

problem. In addition, to fully utilize the distributed computing environment, the Dantzig-

Wolfe decomposition algorithm can be used to solve decomposable LP problems (P3)

for generating the comer points of desired interior search paths. Next, a decentralized

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.4 Approaches to Primal Solution Recovery 140

optimization framework is proposed for implementing the MILP decomposition algorithm.

Based on our experience with Dantzig-Wolfe decomposition (Cheng et al., 2004) and

Price-driven coordination methods (Cheng et al., 2005b), the proposed framework of

decentralized optimization with coordination shares the same information exchange pattern

as is shown in Figure 5.16.

C o o rd in a to r

R e s p o n s e
Info. 1

R e s p o n s e
Info. 2

S u b s y s te m 3S u b s y s te m 1

S u b s y s te m 2

Figure 5.16: Diagram of a generalized coordination framework

The information, which flows between the coordinator and each subsystem, includes

multiplier information from the coordinator to subsystems and response information

from each subsystem to the coordinator. The multiplier A usually contains sensitivity

information with respect to linking constraints, while the response information contains

the influence of the multiplier changes on subproblems’ solutions in some way (implicitly

or explicitly). Note that, there exist a set of optimum multipliers A* that solves the overall

problem. A major difference is the way the coordinator updates the “price” multiplier

A as the coordinated system converges to the optimal solution. In the Dantzig-Wolfe

decomposition, a linear program (RMP) is solved by the coordinator to update the “price”

information; in the price-driven coordination method, a system of equations is solved by

the coordinator for updating the multiplier; while dealing with MILP problems, Lagrangian

relaxation (Lasdon, 2002; Beasley, 1993) and subgradient optimization methods (Fumero,

2001; Camerini et al., 1975) are used to update the “price”.

Shown in Figure 5.17, the proposed decentralized optimization framework for solving

MILP problems consists of three phases:

1. Subgradient optimization (solution of LD problem): subgradient multipliers are

updated by the coordinator while the subproblems are solved on local computing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.4 Approaches to Primal Solution Recovery 141

D-W Sub LP1

Local F T 1

Subgrad.

D-W(RMP)

Linking F. T

Sub MIP 2

D-W Sub LP 2

Local F T 2

Sub MIP p
D-W SubLPp

Local F.T.o

Figure 5.17: Decentralized framework for MIP

platforms;

2. Interior path generation via Dantzig-Wolfe decomposition algorithm: the solution

from the first phase is used to construct a new LP problem, and then Dantzig-

Wolfe decomposition algorithm is implemented in this decentralized computing

environment to obtain the comer points for generating the interior paths;

3. Interior path searching and feasibility test: the coordinator is responsible for

searching along the interior paths and finding the candidate solutions, then the

feasibility test for linking constraints is performed by the coordinator while the

feasibility test for local constraints is performed by each local subproblem.

The second and third phases are focused on retrieving the primal solution. Usually, for

computation and communication consideration, only after the feasibility test for linking

constraints is passed will the local feasibility test be performed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.5 Case Study: Truck Allocation Problem

5.5 Case Study: Truck Allocation Problem

142

This subsection gives an illustration of the application of the proposed decentralized

optimization framework (including Lagrangian relaxation, subgradient optimization and

primal solution recovery methods) in solving an industrial MIP problem.

5.5.1 Application Problem

Canada’s oil sands11 contain the biggest known reserve of oil in the world. Since the

1920’s, open pit mining has been central to oil sands development. Nowadays, the oil sands

industry employs the truck-and-shovel technology predominantly in its open-pit mining

operations, as is shown in Figure 5.18. It has been widely recognized that the operation of

the huge trucks and shovels contributes significantly to the overall mining operation cost

(Ta, 2002; Ta et al., 2005). In order to reduce the cost of mining operations, it is desirable

to take any opportunity to reduce the cost of the truck and shovel operation.

Overburden Removal

Waste Dump

MK Ore Haulage

Hopper

Crusher

Surge with limited capacity

Figure 5.18: Truck-and-shovel oil sands mining operations

In the oil sands industry, a high level performance of mining operations is ensured

11 Oil sands are mixtures of sand, water, clay and crude bitumen.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.5 Case Study: Truck Allocation Problem 143

by an effective deployment of available trucking resources to maintain a steady, reliable

supply of ore and a timely removal of overburden. In practice, many companies develop

and implement integrated multi-stage decision support systems to help achieve optimal

operation of trucks. The multi-stage decision making usually involves two stages: an

allocation of truck resources for given production requirements, and a real-time dispatch

of the allocated trucks to specific routes. By treating the problem as a whole, a common

approach is to solve the allocation problem via mathematical programming techniques and

the dispatching problem via heuristics (Elbrond and Soumis, 1987; Lizotte et al., 1989; Xi

and Yegulalp, 1993; Temeng et al., 1997); however, in Ta et al. (2005), it was recognized

that the allocation and real-time dispatch are separate tasks. With the increasing size of

mining operations, it is more practical to treat the above two problems separately. In this

chapter, our work concentrates on truck allocation phase and ignores the dispatch task.

In today’s oil sands operations, truck and shovel mining presents interesting challenges

for operations optimization, including: multiple, competing and/or conflicting objectives,

such as minimizing the operation cost (e.g., the usage of raw materials and energy) and

maximizing production, among operating units and subsystems; limited availability of

resources to be effectively allocated to competing subsystems; large sets of constraints

defining the feasible domain; a requirement for smooth transition between consecutive

optimization executions; and uncertainty in the system parameters. For complex mining

operations, the truck allocation problem usually has a large scale and decomposable

structure. A standard approach to problems of this type would decompose the large-scale

optimization task of assigning truck resources to various activities. This fully decentralized

approach would treat the optimization of ore production, waste removal and equipment

maintenance, independently. Although this approach is commonly implemented with

customized modifications, it cannot guarantee that the resulting operation is optimal with

respect to the entire mining operations. It has been recognized that it is necessary and

beneficial to have coordination between ore hauling and overburden removal processes to

achieve m ine-w ide optim al operations.

In this section, a coordination approach is proposed to guarantee the coordinated,

decentralized optimization system will find the optimal operation or suboptimal solution,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.5 Case Study: Truck Allocation Problem

which is close to the optimal operation.

144

5.5.2 Decentralized Optimization with Coordination

This section discusses the viability of a decentralized decision support system for existing

mining practice. An optimization-based decision support framework is developed by taking

advantage of decentralized optimization techniques.

Decentralized Decision Support

Current oil sands mining can be classified into three functional processes: ore hauling,

overburden removal, and mechanical maintenance. These individual operations can take

place over a wide area, which may lead to a decentralized real-time decision making

procedure. The decentralized optimization framework has many advantages. It naturally

takes advantage of the special organizational structure and can provide an elegant economic

explanation for decentralized management. Via decentralization of decision making, a

large-scale problem is decomposed into smaller and easier problems, and distributed

computing environment can be fully utilized.

The existing decentralized optimization for mining operations, however, may not be able

to provide enterprise-wide optimal operations, because it fails to consider the interactions

between the multiple processes, e.g., the share of truck and shovel resources. Obviously,

non-optimal or even conflicting decisions could be made through this decentralized

optimization. In current practice, priorities are usually pre-specified for each process to

avoid the conflicts in decision-making.

Coordination for Decentralized Optimization

To make the individual optimizers work more efficiently, it is desired to establish

coordination mechanism to deal with the interactions between operating processes. It is

possib le to im plem ent a centralized decision support system , in w hich an optim ization

problem is formulated and solved for the entire mining operations, including inter-unit

interactions. This approach yields the optimal operations; however, it requires centralized

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.5 Case Study: Truck Allocation Problem 145

database management and computing environment, which centralizes the risk of decision-

support system failure. This approach results in an “all-or-nothing” system, which has

been identified as being impractical for large-scale operations. Alternatively, to retain

the desirable features of the decentralized optimization, a coordinator can be added to the

original system to handle the interactions and achieve the optimal operations.

Challenges and Opportunities

The main challenge lies in solution of the coordination problem. It has been proposed that

a good model for mining operations should be a hybrid system involving both continuous

and discrete variables. Thus, the coordination problem is a mixed-integer programming

problem. It is well known that a general MIP problem is very difficult to solve, due

to the combinatorial nature of problems involving integer variables12. An MIP solver

which employs a centralized optimization scheme may encounter serious computational

problems. For example, as one of the best known commercial optimization software, the

CPLEX 9.X solver for MIP problems13 may fail to prove integer optimality and run out

of memory even for a problem containing only 30 binary variables. This occurs when

the branch-and-bound algorithm produces a tree having over one billion nodes and the

termination criteria have been set improperly (GAMS, 2004). The situation becomes

worse with a more complex model and more constraints. In this case, the decentralized

optimization framework can be considered when: 1) it is expensive to implement a

centralized computing environment (e.g., a high performance computer with huge memory)

that can guarantee the computational efficiency and reliability requirements; or 2) the

problem has separable structure and cheap distributed computing environment (e.g., a

network of PCs) is available. Furthermore, a distributed optimization approach can provide

a more reliable and extendable optimization and control system.

Thus, a major challenge is the development of an effective coordination mechanism

for MILP decomposition and coordination strategies, i.e., an efficient way of driving the

12 Any integer variable can be represented by a combination of “0” and “1” binary variables.
13CPLEX is a product of ILOG®, which implements branch-and-cut search algorithms that includes the

latest research on cut and presolve techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.5 Case Study: Truck Allocation Problem 146

solutions of the subsystems to the overall optimum. A good coordination mechanism is a

decisive factor in ensuring the feasibility and applicability of the resulting coordination

system. Due to the discrete nature, no sensitivity information is available for use in

the coordination mechanism. All these issues are tackled by the proposed decentralized

optimization framework.

5.5.3 Illustrative Case Study

For the purposes of illustration, our focus is on the coordination of ore hauling process

and overburden removal process. Therefore, the following subsections give a simplified

mathematical description of the processes of interest14.

Truck Allocation Problem Formulation

Assuming that the truck allocation problem is to efficiently distribute the available trucks

to the individual processes: ore hauling and overburden removal. To show the problem’s

special structure, a centralized formulation is firstly given in equations (5.37) to (5.41).

Note that, for simplicity, the following formulation is based on deterministic optimization

and considers one shift operation. A more advanced formulation for handling process

uncertainties can be found in Ta et al. (2005). By defining the decision variables x as the

set15 of trucks allocated for ore haulage and y as the set of trucks allocated for overburden

removal, the objective is to minimize the operating cost of trucks while satisfying the ore

14While the models may not refbct all the complexity of the actual mining operations, they are

representative and the simplicity allows clear demonstration of the optimization scheme
15Including the number of trucks and type of trucks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.5 Case Study: Truck Allocation Problem

demand from extraction process and overburden removal requirements.

147

min c£x + c jy (5.37)

subject to:

Iix + I2y < r (5.38)

BiX > d (5.39)

B 2y > w (5.40)

x, y e Z+ (5.41)

where ch contains the corresponding operating cost of trucks for ore hauling process for

one shift, while cr is for overburden removal. Inequality (5.38) represents the restrictions

on truck availability for the overall mining operations. Constraints (5.39) and (5.40) are

ore production and over burden removal requirements, respectively. This is not the only

possible formulation, but it is a reasonable formulation that matches the current truck

allocation practice.

The above optimization problem has a block-wise structure. By excluding the linking

constraints (5.38) (i.e., the fleet resource), the problem can be decomposed into two

independent optimization subproblems, associated with x and y, respectively. For each

process (i.e., ore hauling or overburden removal), without being aware of the workings of

the other, each optimizer tries to maintain a minimal operating cost while satisfying the

production requirements.

Performance Comparisons

To investigate the necessity and effectiveness of the coordination, a truck allocation

problem is solved by three optimization schemes: the centralized, decentralized, and

coordinated strategies. For the purpose of comparison, the centralized optimization is used

as a benchmark for the optimal operations.

K I K J

min EE ckhx ki + EE CrVkj (5.42)
k= 1 i= l fc=1 j = l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.5 Case Study: Truck Allocation Problem 148

Subject to:
i j

^ ' x ki + ^ ̂Vkj < r{k) k = 1,2,3
i = l j = l

< Thr(i) i = 1,2,3

> w

< Thr(j) j = 1,2

%kii Vkj G Z

In the above problem, k represents the truck type (i.e., K = 3 says that three types of trucks

are in operation), and I and J are the number of shovels for ore haulage and overburden

removal, respectively. Thus, x ki represents the number of type k trucks allocated to shovel i

for ore hauling, while ykj is the number of type k trucks allocated to shovel j for overburden

removal, r (k) is the availability of type k trucks, c* is the operating cost for running a type

k truck for ore hauling per unit time, while cjf is the cost for overburden removal per unit

time. Tl is the cycle time for a truck’s16 roundtrip from an ore shovel i to the corresponding

dump pocket; T} has similar meaning in overburden removal process. Lk is the load of type

k trucks.

Table 5.1 and Table 5.2 give the data for the truck allocation problem17, where three

shovels are used for ore haulage and two shovels for overburden removal.

Obviously, when the decisions for ore hauling and overburden removal processes are

independent and the shared resources are not considered, conflicting decisions may be

made. Thus, priorities should be prespecified for each process to gain feasible operations.

16The same cycle time for different types of trucks is assumed when they are allocated to the same route,

i.e., no overtaking is allowed.
17The parameter values in the case study do not represent the actual mining operations, and the case study

is set up to test the proposed method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.5 Case Study: Truck Allocation Problem 149

Table 5.1: Parameters for trucking
truck type load (tonnes) operational cost ($/hr) truck fleet size

k = 1 240 1000 15

k = 2 320 1300 10

k = 3 360 1400 8

Table 5.2: Other parameters

shovel no. throughput (tonnes/hr) cycle time (min) others

i — 1 4000 25 Ore demand

i = 2 5000 35 d = 12000 (tonnes/hr)

i = 3 4000 30

3 = 1 4000 32 OB removal

3 = 2 3000 25 w = 6100 (tones/hr)

Note that, even when priorities are established, infeasible solutions may also occur

especially if the common resource constraints are stringent. In this study, as in practice, ore

hauling is given a higher priority, i.e., the decision maker ensures ore hauling resources are

satisfied first, and overburden removal uses the remaining trucking resources.

Table 5.3: Different optimization strategies for truck allocation problem

central. coordinated decentral.(pri) decentral.(no pri)

Ore hauling obj.($) 24300 24700 24200 24200

OB removal obj.($) 11900 12100 13000 11600

overall obj.($) 36200 36800 37200 35800 {Infeasible)

Table 5.3 reports the solutions of the truck allocation problem resulting from the three

different optimization schemes. It should be noted that, when no priorities are pre­

specified, the decentralized scheme without considering the linking constraints, yields the

lowest operating cost for both ore hauling and overburden removal; however, it provies

a solution that leads to infeasible operations, i.e., contradictory decisions occur in the

allocation of common resources. With the pre-specification of priorities, the decentralized

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.5 Case Study: Truck Allocation Problem 150

scheme makes a little improvement to get a feasible solution, but the total operating

cost is higher in order to bring the solution to feasibility. If we look on prioritizing

as one means of coordination, it is not the optimal way to conduct coordination. The

proposed coordinated, decentralized optimization provides “optimal” coordination of the

two interacting subproblems, guarantees a feasible solution, and achieves an operation

level close to the real optimum operations (i.e., operations provided by the centralized

optimization scheme). To achieve optimal operations through coordination, it is required to

have proper modeling of interactions and a well-designed coordination process. It should

be noted that, unless you make an exhaustive enumeration, an MILP algorithm cannot

guarantee to find the real optimum. Based on current heuristics for the decomposition and

coordination algorithm, there is no guarantee of finding the true optimum, but the proposed

heuristic-based algorithm yields a solution close to the true optimum.

Remarks: For the purpose of illustration, the truck allocation problem for the case study

is not really in large scale. All the optimization schemes can solve the problem in seconds,

and thus the computational effort is not emphasized. In addition, this work develops a

fairly general and flexible framework for decentralized decision support system, in which

many heuristics are incorporated into the decomposition and coordination algorithm for

solving the resulting optimization problem. Based on such an optimization framework,

better heuristics can be introduced or developed to improve the computational performance

to satisfy specified application requirements.

5.5.4 Discussions

Because of the desirable features of decentralized optimization approaches, the

optimization problem can be formulated in a module-based fashion such that the resulting

coordination system can be easily extended and maintained, and can provide reliable

behavior.

The foremost step in the problem formulation is to identify and model the interactions

among multiple operating units, i.e., the linking constraints. For a specified purpose, an

appropriate subset of those interactions should be identified and modeled, and be used

in the coordination of subsystems. For example, the available truck resources may serve

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.5 Case Study: Truck Allocation Problem 151

the purpose of linking constraints in the truck allocation problem when considering the

mining operations only; however, when the plant-wide operation is considered, the balance

between the ore demand from Extraction operating units and the ore supply from M in in g

should be included as a linking constraint. The overall process of Oil Sands mining and

extraction operations contains both continuous and discrete processes. There are link ing

constraint sets associated with integer variables, such as the number and types of trucks and

shovels. This unavoidably brings big challenges to the efficient coordination of subsystems.

When the linking constraints are identified and formulated, the major types of

information to be exchanged between the coordinator and subsystems is also determined.

Then, this information is incorporated into the formulation of subproblems in the form

of a parameter (e.g., price vector A), which is updated by upper level coordination.

In this work, we have proposed a multi-level model-based optimization framework for

mining operations, in which two-directional (in both time and space) coordination has

been proposed. To give a conceptual idea, Figure 5.19 illustrates a two-level coordination

Level 2:
P lan t-Inpu t- l t

Level 2:
P lan t-O u tpu t

Co-Level 2.

f Level 1:
Plant-Output

Level 1:
Plant-Output

C o-L evel 1

Extraction
Daily Obj. 2 (X)
(S i m p l i f i e d D a i l y M o d e l 2)
Daily Constraints 2______

Mining
Daily Obj. 1 (X)
Level 1 Linking: (p)
(D a i l y M o d e l 1)
Daily Constraints 1

P rocess Operations
Weekly Obj.
Level 2 Linking: (3l)
(W e e k l y M o d e !)
Weekly Constraints

+ / / Level 0: l \ \
/ / Plant-Output \ \ f

Level 0:
Plant-Output

ORE OB
Shift Obj. 1 (p) Shift Obj. 2 (p)
Shift Model 1 Shift Model 2
Shift Constraints 1 Shift Constraints 2

Figure 5.19: Model-based coordination framework

framework for Oil Sands operations. In the figure, the “plant-input” can be the production

plans established by business and marketing departments, which are used as the targets

of process operations (mining and extraction). The “plant-output” information at different

levels contains the measurements and data that reflect the state of process operations at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.6 Chapter Summary 152

a corresponding operating unit. For example, level-0 plant-output is from ore hauling

or overburden removal units, and it may contain the information regarding the demand

for trucks and ore production level based on that truck demand. As we have discussed

previously, the multipliers A and p include some sensitivity information with respect to the

linking constraints involved with multiple operating units. For example, when the level-1

linking constraints are the available truck resources for mining operations, the multipliers

p can be some artificial prices for the usage of trucks. In the proposed framework, the

upper level objective function can be defined as a time integration of lower level objective

function. We use brackets in expressing the model (e.g., (daily model)) to show that the

models at level k are only used to take part in level (k + 1) coordination. An example is

that, when we perform level- 1 coordination, the daily model in level- 1 coordinator will not

be used.

5.6 Chapter Summary

Nowadays, many industrial operations become highly integrated and in large scale, whose

high-level performance may be supported by the solution of large-scale optimization

problems involving integer variables.

As many large-scale MIP problems have special structure that allows decomposition of

the original problem into smaller subproblems, decomposition and coordination strategies

for solving large-scale MIP problems are investigated in this chapter. Subgradient

methods are widely used in solving decomposable large-scale MIP problems for ease of

implementation, but their convergence behavior requires further improvement for some

applications. In this work, by incorporating the concept of a feasible search direction, a

new heuristic has been developed to adjust the search direction in subgradient optimization

methods. The new heuristic provides several favorable properties, which have been proved

to improve the convergence behavior of subgradient methods.

B y introducing the “best” heuristics in the literature, as w ell as the proposed direction

modification strategy, an enhanced subgradient optimization algorithm is developed and

given in form of a centralized version and a distributed version. The structural complexity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 5.6 Chapter Summary 153

analysis provides insight into the scaling behavior of the proposed subgradient algorithm,

and implies the feasibility of the algorithm in industrial applications.

In addition, a novel Interior Path Search heuristic has been developed for retrieving

primal solutions from the LD problem solution. By taking advantage of the Dantzig-Wolfe

decomposition strategy, the proposed heuristic can make full use of a distributed computing

platform. As a result of the enhanced subgradient optimization algorithm and the primal

solution recovery heuristic, a decentralized optimization framework is proposed for solving

large-scale decomposable MILP problems.

Furthermore, the decentralized optimization framework has been applied to a

decentralized decision support system for truck allocation in Oil Sands mining operations.

Within the decentralized optimization framework, the enhanced subgradient algorithm and

Interior Path Search heuristic can efficiently solve the associated MILP problem. The case

study results show that the proposed optimization framework can be a viable technique for

solving industrial MILP problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Learning without thought is labor lost; thought without learning is

perilous.”

- by Confucius

6
Conclusions and Future Work

6.1 Summary and Conclusions

In the past few decades, large-scale optimization has been identified as one of the most

efficient ways to ensure high-level operational performance. Optimization can make an

organization more competitive by maximizing production profit and minimizing cost. With

growing understanding of the chemical and physical rules underlying each process, it is

possible to describe a system using more detailed, high fidelity models. Optimization

problems based on these more informative but more complex models can result in fairly

high dimensional optimization problems.

For solving large-scale optimization problems, the decomposition of large-scale

(complex) systems (or problems) into a number of interconnected subsystems (or

subproblems) has been recognized to be beneficial. In this thesis, partitioning of the

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 6.1 Summary and Conclusions 155

system is used to achieve not only a reduction of numerical complexities of problem but

also conceptual simplification in understanding a large-scale system. Besides the purely

computational difficulties arising in large-scale systems, there is an equally important

problem of understanding the effects of system (or problem) structure on the performance

of decomposition algorithms.

This work is intended to make a contribution to a wide range of application areas,

including optimization and process control. In particular, the work has been focused on

the study of three classes of large-scale optimization problems: linear programming (LP),

quadratic programming (QP), and mixed-integer linear programming (MILP) problems.

Large-scale optimization problems frequently occur in industrial applications, and many

of them naturally present special structure or can be transformed to such a special

structure. To take advantage of a distributed / decentralized computing environment, some

decomposition and coordination methods have the potential to solve specially structured,

large-scale optimization problems at a reasonable speed. This work identifies the best

available decomposition strategies through literature review and computational study, as

well as develops more efficient decomposition algorithms whenever needed. Using an

empirical complexity analysis approach, the scaling behavior and computational efficiency

of the decomposition strategies are investigated. The complexity study provides guidelines

to the practical applications of the decomposition and coordination methods.

Chapter 2 investigates decomposition strategies for large-scale LP problems. In

particular, Dantzig-Wolfe decomposition strategies based on single-column and multi-

column generation techniques are studied. New insight into the relationship between

computational performance and problem structural parameters is gained through a

comprehensive empirical study of the scaling behavior of Dantzig-Wolfe decomposition

algorithms.

In Chapter 3, for solving large-scale QP, an efficient price adjustment scheme is

proposed that uses Newton’s method to compute the price vectors, which takes advantage

o f the sensitivity inform ation from subproblem solutions. W ith the proposed price

adjustment scheme, the computational performance of price-driven coordination methods

is substantially enhanced when solving large-scale QP problems. A complexity study

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 6.1 Summary and Conclusions 156

provides an understanding of the computational behavior of the enhanced price-driven

coordination and provides guidelines for the implementation of the algorithms in industrial

practice.

Chapter 4 demonstrates novel applications of the decomposition and coordination

strategies discussed in Chapter 2 and Chapter 3. For industrial plant-wide control, this work

provides new formulations of plant-wide MPC target calculation to achieve plant-wide

optimum operations. The proposed coordinated, decentralized MPC framework consists

of individual MPC subsystems and a coordinator. The Dantzig-Wolfe decomposition and

price-driven coordination methods are applied to the design of coordination system, for

LP-based and QP-based MPC target calculation, respectively. By modeling the linking

constraints with the off-diagonal element abstraction method or interstream consistency

method, the resulting optimization problems fall into a category of separable LP or QP

problems with linking constraints, which can be efficiently solved by the decomposition

and coordination methods.

Chapter 5 extends our study to large-scale MIP and focuses on MILP problems. By

incorporating the concept of a feasible search direction, new heuristics are proposed to

modify the search direction in subgradient optimization methods. With the proposed

direction modification strategy, an improved subgradient optimization algorithm is

developed, which can provide faster convergence. The complexity study provides insight

into the scaling behavior of the proposed subgradient optimization algorithm, and illustrates

the utility of the algorithm for industrial applications. Furthermore, primal solution

recovery techniques are also investigated. To accommodate a distributed computing

environment, an Interior Path Search method has been proposed for primal solution

recovery by taking advantage of the Dantzig-Wolfe decomposition strategy. By applying

the coordination mechanism in subgradient optimization and the primal solution recovery

heuristics, a multi-level optimization framework is developed for the decentralized decision

support of mining operations, which may involve coordination problems that can be

form ulated as large-scale MILP problems.

In general, decomposition strategies show high computational efficiency whenever

a distributed computing power is available. Based on the coordination techniques

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 6.2 Suggestions for Future Work 157

and algorithms developed in this work, to improve the computational performance of

the decomposition strategies in order to meet specific computational requirements, a

decentralized optimization framework has been proposed to embed the decomposition

strategies in a distributed computing environment. In Chapter 4 and Chapter 5, typical

process control and mining operations optimization problems are solved to illustrate the

implementation of the decentralized optimization framework. These case studies show the

viability of the proposed coordinated, decentralized optimization techniques.

6.2 Suggestions for Future Work

A number of challenges remain in both the development and application of the

decomposition strategies for large-scale optimization.

Coordination in Plant-wide Hybrid Control Systems

In much of this thesis, we have focused on the control and optimization of processes

with continuous variables; however, in many industrial operations, such as control and

scheduling in power plants (Gallestey et al., 2003), chemical processes including logic

switch control (Stursberg and Panek, 2002), actions like switch on/off, mode transitions,

products selections, and raw materials selection, etc., are modeled as discrete variables, so

it is natural to formulate a constrained MPC with discrete variables.

For modeling and control, a Mixed Logical Dynamical (MLD) model is synthesized

to describe the processes by Bemporad and Morari (1999). They proposed a framework

for controller design when the process includes both dynamical and logical variables and

are subject to operating constraints. Usually, continuous dynamic models are obtained

from algebraic and differential equations based on our understanding of process chemistry

and physics. On the other hand, the existence of logical components introduces integer

variables to the problem formulation. So it is quite natural to formulate an MPC

problem based on mixed-integer quadratic programming (MIQP). Moreover, Stursberg and

Engell (2002) proposed a hybrid automaton which models autonomous switching between

different nonlinear dynamics and includes both discrete and continuous control inputs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 6.2 Suggestions for Future Work 158

Using linearization techniques, we can transform the dynamics into linear discrete time

models. Then the task of generating an optimal control law to drive the system to a desired

target region can be formulated as an MIP problem.

With the increasing maturity of hybrid control techniques, MPC technology has

extended its application to processes involving discrete input and output variables. In plant-

wide control and optimization, the coordination of decentralized MPC has been recognized

as a beneficial approach to improve plant-wide control performance. Similarly, when

decentralized hybrid MPC is employed, the coordination of such MPC controllers becomes

a challenging but promising opportunity to improve control performance. Interactions

between subunits, which may then include discrete variables, can be abstracted or identified

via advanced process control and system identification techniques. Naturally, the overall

problem can be formulated as a large-scale MILP or MIQP problem with block angular

structure. A coordination system can be designed for decentralized hybrid control systems

by employing decomposition strategies for large-scale MIP.

Design of Hybrid MPC Systems Coordination

By applying a coordination mechanism, a framework for coordination system design can be

developed for two-level hybrid MPC systems that include a steady-state target calculation

and a dynamic control calculation. For industrial applications, it is important to have a

good understanding of the coordination complexity, scalability behavior of the coordination

algorithms and coordinated system stability. Industrial testbeds can be easily found in

power systems, pharmaceutical plants where logic control systems are often used, or some

polymer plants which have grade transition or mode selection operations.

Different from the interactions in continuous processes or models, interactions in a

hybrid system can be represented by pure integer constraints, pure continuous variable

constraints, and hybrid constraints. Quite often, we have the ability to select appropriate

interactions for coordination. To design a coordination system for decentralized hybrid

MPC systems, it is desired to gain insight into the influence of coordinating different

kinds of interactions. Given a hybrid process with a decentralized control system, before

designing the coordination system, it is better to understand what will happen to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 6.2 Suggestions for Future Work 159

complexity of coordination if one additional constraint with both continuous and discrete

variables is added. It is necessary to understand the performance loss when such a contraint

is ignored, by comparing different coordination system designs. If the ignorance of an

extra constraint does not cause too much performance loss, or the inclusion of an extra

constraint increases the complexity of coordination too much, it may be considered better

not to add such a constraint; however, when such a constraint has strong impact on the

control performance (i.e., it cannot be ignored), we may need to determine how to relax the

discrete variables and compensate for its integrality.

Furthermore, it should be noted that, if a moving-horizon is considered, the problem

dimension of control calculations will be much higher than that in target calculations, thus

different information flows should be determined in these two cases. One question may be

whether all the control move information should be passed to the coordinator or just part

of them. It can be a trade-off between control performance and computational efficiency

throughout the coordination, and it may cause big difference in the computational load for

coordination and communication load on industry networks.

Further Adjustment for Subgradient Direction

In the search direction adjustment scheme given in formula (5.9), the situation where

s*;_i • fj,k < 0 was considered; however, this scheme did not make any change to the

direction when Sfc_i • n k > 0 , which implies that the current gradient direction f ik is a

good direction. But this may not be always true as is shown in Figure 6.1. Recall the

following facts of angles in the figure. The angle (Z l) spanned by vector A^A* and sfc_1

is an acute angle; the angle (Z2) spanned by vector \ k* and fjbk is an acute angle. It is

possible that the angle (Z3 in Figure 6.1) spanned by vector n k and sfc_1 is an acute angle,

i.e., Sfc_i • fik > 0. In both cases shown in Figure 6.1, intuitively, we may find a better

direction sk which is a combination of /xfc and sfc_1, and the resulting angle (Z4) spanned

by sk and A&A* is a smaller acute angle, i.e., Z4 < Z2 .
Based on the geometric interpretation, we can see it is possible to further improve the

direction [xk, even when \ik and sfc_1 form an acute angle. It may be desired to develop

a heuristic that can handle both of the situations shown in Figure 6.1. For example, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. 6.2 Suggestions for Future Work 160

k -1

k -1k -1

k -1k -1

Figure 6.1: Geometric interpretation - acute angle

Lagrange multiplier can be updated through:

Sk = fxk + CfcS* - 1 (6.1)

where the weighting factor (k could be a negative number. In the search direction

adjustment scheme discussed in formula (5.9), whether the angle Z3 is obtuse or not

can be determined qualitatively by checking the validity of inequality Sfc_i • /zfc < 0 ;

however, in the cases shown in Figure 6 .1, the selection of weighting factor (k may require a

quantitative comparison of those angles, i.e., an estimation of those angles may be required

at some accuracy level. It seems to be a necessity to have A* to measure (or calculate)

those angles, but it is unrealistic before we reach the optimum. This is a key challenge in

determining an appropriate weighting factor £&.

Before a breakthrough in making comparison between those angles (without resorting

to A*), the formula (6.1) may be used when a good estimation of A* is available. For

example, when \ k is close to A* (e.g., when there is small improvement in Lagrangian

function values), the best Lagrange multiplier so far can be used as a “good” estimate of

A* for evaluating the angles in Figure 6.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

Andrei, Neculai (2004). On the Complexity of MINOS Package for Linear Programming.

Studies in Informatics and Control 13, 35-46.

Baker, Barrie M. and Janice Sheasby (1999). Accelerating the Convergence of Subgradient

Optimisation. European Journal o f Operational Research 117,136-144.

Bansal, V., J. D. Perkins, E. N. Pistikopoulos, R. Ross and J. M. G. van Schijndel (2000).

Simultaneous Design and Control Optimization under Uncertainty. Computers &

Chemical Engineering 24,261-266.

Barahona, F. and R. Anbil (2000). The Volume Algorithm: Producing Primal Solutions

With A Subgradient Method. Mathematical Programming 87, 385-400.

Barrett, George and Stephane Lafortune (2000). Decentralized Supervisory Control with

Communicating Controllers. IEEE Transactions on Automatic Control 45, 1620-

1638.

Bazaraa, Mokhtar S. and Hanif D. Sherali (1981). On the Choice of Step Size in

Subgradient Optimization. European Journal o f Operational Research 7, 380-388.

Bazaraa, Mokhtar S. and Jamie J. Goode (1979). A Survey of Various Tactics for

Generating Lagrangian M ultipliers in the Context o f Lagrangian Duality. E uropean

Journal o f Operational Research 3, 322-338.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 162

Beasley, John E. (1993). Lagrangian Relaxation (in Modern Heuristic Techniques for

Combinatorial Problems, edited by Colin R. Reeves). Blackwell Scient. Pub.

Bemporad, A. and M. Morari (1999). Control of Systems Integrating Logic, Dynamics, and

Constraints. Automatica 35,407-427.

Benders, J. F. (1962). Partitioning Procedures for Solving Mixed Variables Programming.

Numerische Mathematik 4,238-252.

Bertsekas, Dimitri P. (1995). Nonlinear Programming. 1 ed.. Athena Scientific, Belmont,

Massachusetts.

Biegler, Lorenz T. and Ignacio E. Grossmann (2004). Retrospective on Optimization.

Computers & Chemical Engineering 28,1169-1192.

Cai, Ximing, Daene McKinney, Leon Lasdon and David Watkins (2001). Solving Large

Nonconvex Water Resources Management Problems Using Generalized Benders

Decomposition. Operations Research 49:2, 235-246.

Calamai, Paul H. and Luis N. Vicente (1997). Generating Quadratic Bi-level Programming

Test Problems. ACM Transactions on Mathematical Software 20, 103-119.

Camerini, P. M., L. Fratta and F. Maffioli (1975). On Improving Relaxation Methods by

Modified Gradient Techniques. Mathematical Programming Study 3, 26-34.

Camponogara, Eduardo, Dong Jia, Bruce H. Krogh and Sarosh Talukdar (2002).

Distributed Model Predictive Control. IEEE Control Systems Magazine 0272-

1708/02,44-52.

Castro, J. J. and F. J. Doyle III (2004a). A Pulp Mill Benchmark Problem for Control:

Application of Plantwide Control Design. Journal o f Process Control 3, 329-347.

Castro, J. J. and F. J. Doyle III (20046). A Pulp Mill Benchmark Problem for Control:

Problem Description. Journal o f Process Control 14, 17-29.

Cheng, R., J. F. Forbes and W. S. Yip (2006a). Plant-wide MPC Coordination via Dantzig-

Wolfe Decomposition. Computers & Chemical Engineering, submitted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 163

Cheng, R., J. F. Forbes and W. S. Yip (20066). Price-driven Coordination Method for

Solving Plant-wide MPC Problems. Journal o f Process Control Special Issue, On

line.

Cheng, R., J. F. Forbes, W. S. Yip and J. V. Kresta (2005a). Plant-wide MPC: A Cooperative

Decentralized Approach. In: 2005IEEE-IAS Advanced Process Control Applications

fo r Industry Workshop. May 9-11,2005, Vancouver, Canada.

Cheng, Ruoyu, J. Fraser Forbes and W. San Yip (2004). Dantzig-Wolfe Decomposition and

Large-scale Constrained MPC Problems. In: 7th IFAC Symposium on Dynamics and

Control o f Process Systems, paper 117. July 5-7, 2004, Boston, USA.

Cheng, Ruoyu, J. Fraser Forbes and W. San Yip (20056). Price-driven Coordination for

Solving Plant-wide MPC Problems. In: 16th IFAC World Congress. July 4-8, 2005,

Prague, Czech.

Chvatal, Vasek (1983). Linear Programming. W. H. Freeman and Company, New York.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton University Press.

Dantzig, G. B. and P. Wolfe (1960). Decomposition Principle for Linear Programs.

Operations Research 8 , 101-111.

Dantzig, George B. and Mukund N. Thapa (2002). Linear Programming 2: Theory and

Extensions. Springer Verlag.

Davies, Philip I. and Nicholas J. Higham (2000). Numerically Stable Generation of

Correlation Matrices and Their Factors. BIT 40, 640-651.

Desaulniers, Guy, Jacques Desrosiers and Marius M. Solomon (2001). Accelerating

Strategies in Column Generation Methods for Vehicle Routing and Crew Scheduling

Problems. Essays and Surveys in Metaheuristics Chapter 14, 309-324.

Edgar, Thomas A. and David M. Himmelblau (2001). Optimization o f Chemical Processes.

2nd ed.. McGraw-Hill Science.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 164

Elbrond, J. and F. Soumis (1987). Towards Integrated Production Planning and Truck

Dispatching in Open Pit Mine. International Journal o f Surface Mining, Reclamation

and Environment 1, 1-6.

Faaland, Bruce H. and Frederick S. Hillier (1979). Interior Path Methods for Heuristic

Integer Programming Procedures. Operations Research 2 1 ,1069-1087.

Floudas, Christodoulos A. (1995). Nonlinear and Mixed-Integer Optimization -

Fundamentals and Applications. 1 ed.. Oxford University Press.

Fumero, Francesca (2001). A Modified Subgradient Optimization Algorithm for

Lagrangian Relaxation. Computers & Operations Research 28, 33-52.

Gallestey, E., A. Stothert, D. Gastagnoli, G. Ferrari-Trecate and M. Morari (2003). Using

Model Predictive Control and Hybrid Systems for Optimal Scheduling of Industrial

Processes. Automatisierungs technik 6 , 285-293.

GAMS (2004). CPLEX 9 Manual, http://www.gams.com/solvers/cplex.pdfpp. 1-33.

Geoffrion, A. M. (1974). Lagrangean Relaxation for Integer Programming. Mathematical

Programming Study 2, 82-114.

Gilmore, P. C. and R. E. Gomory (1961). A Linear Programming Approach to the Cutting

Stock Problem. Operations Research 9, 849-859.

Gothe-Lundgren, Maud, J. T. Lundgren and Jan A. Persson (2002). An Optimization Model

for Refinery Production Planning. International Journal o f Production Economics

78, 255-270.

Goux, Jean-Pierre and Sven Leyffer (2001). Solving Large MINLPs on Computational

Grids. Numerical Analysis Report o f Department o f Mathematics, University o f

Dundee NA/200, 1-22.

Grossmann, Ignacio E. and Lorenz T. Biegler (2004). Part II: Future Perspective on

Optimization. Computers & Chemical Engineering 28, 1193—1281.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gams.com/solvers/cplex.pdfpp

BIBLIOGRAPHY 165

Guta, Berhanu (2003). Subgradient Optimization Methods in Integer Programming with an

Application to a Radiation Therapy Problem. University of Kaiserslautern.

Hane, Christopher A., Cynthia Barnhart, Ellis L. Johnson, Roy E. Marsten, George L.

Nemhauser and Gabrele Sigismondi (1995). The Fleet Assignment Problem: Solving

a Large-Scale Integer Program. Mathematical Programming 70, 211-232.

Havlena, V. and J. Lu (2005). A Distributed Automation Framework for Plant-wide

Control, Optimization, Scheduling and Planning. In: 16th IFAC World Congress. July

4-8 2005, Prague, Czech.

Held, M., P. Wolfe and H. P. Crowder (1974). Validation of Subgradient Optimization.

Mathematical Programming 6 , 62-88.

Hillier, Frederick S. (1969). Efficient Heuristic Procedures for Integer Programming with

an Interior. Operations Research 17, 600-637.

Illes, Tibor and Tamas Terlaky (2002). Pivot versus Interior Point Method: Pros and Cons.

European Journal o f Operational Research 140, 170-190.

Isaksson, A., B. J. Cott, K. Klatt, J. A. Mandler and P. Daoutidis (2005). Panel Discussion:

Industrial Perspectives on Process Control. In: 16th IFAC World Congress. July 4-8,

2005, Prague, Czech.

Jamshidi, Mohammad (1983). Large-Scale Systems Modeling and Control. Elsevier

Science Publishing Co.,Inc.

Jennergren, L. P. (1973). A Price Schedules Decomposition Algorithm for Linear

Programming Problems. Econometrica 41, 965-980.

Jose, Rinaldo A. and Lyle H. Ungar (1998a). Auction-driven Coordination for Plantwide

Optimization. In: Foundations o f Computer-aided Process Operation (FOCAPO).

July 5-10, 1998, Snowbird, Utah.

Jose, Rinaldo A. and Lyle H. Ungar (19986). Pricing Interprocess Streams Using Slack

Auctions. AIChE Journal 46, 575-587.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 166

Kadam, J. V., M. Schlegel, W. Marguardt, R. L. Tousain, D. H. V. Hesssem, J. V. D. Berg

and O. H. Bosgra (2002). A Two-level Strategy of Integrated Dynamic Optimization

and Control of Industrial Processes - a Case Study. European Symposium on

Computer Aided Process Engineering, Elsevier 12,511-516.

Kanzow, Christian and Heiko Pieter (1999). Jacobian Smoothing Methods for Nonlinear

Complementarity Problems. SIAM Journal on Optimization 9, 342-373.

Kassmann, Dean E., Thomas A. Badgwell and Robert B. Hawkins (2000). Robust Steady-

State Target Calculation for Model Predictive Control. AIChE Journal 46, 1007-

1024.

Kim, S., H. Ahn and S. C. Cho (1991). Variable Target Value Subgradient Method.

Mathematical Programming 49, 359-369.

Komai, J. and T. Liptak (1965). Two Level Planning. Econometrica 33,141-168.

Kronsjo, Lydia (1987). Algorithms: Their Complexity and Efficiency. 2 ed.. John Wiley &

Sons.

Kumar, A. and P. Daoutidis (2002). Nonlinear Dynamics and Control of Process Systems

with Recycles. Journal o f Process Control 12,474—484.

Lababidi, Haitham M.S., Samir Kotob and Bader Yousuf (2002). Refinery Advance Process

Control Planning System. Computers & Chemical Engineering 26, 1303-1319.

Larsson, T., M. Patriksson and A. B. Stromberg (1996). Conditional Subgradient

Optimization: Theory and Applications. European Journal o f Operational Research

8 8 , 382-403.

Lasdon, Leon S. (2002). Optimization Theory for Large Scale Systems. 2 ed.. Dover

Publications INC.

Lestage, Richard, Andre Pomerleau and Daniel Hodouin (2002). Constrained Real­

time Optimization of a Grinding Circuit Using Steady-state Linear Programming

Supervisory Control. Power Technology 124,254—263.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 167

Lizotte, Y., E. Bonates and A. Leclerc (1989). Analysis of Truck Dispatching with Dynamic

Heuristic Procedure. In: T. S. Golosinski and V. Srajer (Eds) Off-Highway Haulage in

Surface Mines. Balkema, Rotterdam, pp. 47-55.

Lu, J. Z. (2003). Challenging Control Problems and Emerging Technologies in Enterprise

Optimization. Control Engineering Practice 11, 847-858.

McCormick, Garth P. (1983). Nonlinear Programming - Theory, Algorithms, and

Applications. 1 ed.. John Wiley & Sons, Inc.

Mohideen, M. J., J. D. Perkins and E. N. Pistikopaulos (1997). Towards an Efficient

Numerical Procedure for Mixed Integer Optimal Control. Computers & Chemical

Engineering 21, 457-462.

Molina, Francisco Walter (1979). A Survey of Resource Directive Decomposition in

Mathematical Programming. Computing Surveys 11,95-104.

Nash, S. G. and A. Sofer (1996). Linear and Nonlinear Programming. 1 ed.. McGraw-Hill.

Panne, C. Van De (1975). Methods for Linear and Quadratic Programming. 1 ed.. North-

Holland Publishing Company-Amsterdam, Oxford.

Pigot, D. (1964). Double Decomposition d’un Programme Linearire. Actes de la 3e. Conf

Int. de Recherche Operationelle pp. 72-78.

Poljak, B. T. (1969). Minimization of Unsmooth Functionals. U.S.S.R. Computational

Mathematics and Mathematical Physics 9, 14—29.

Potra, Florian A. and Stephen J. Wright (2000). Interior-point Methods. Journal o f

Computational and Applied Mathematics 124, 281-302.

Qin, S. Joe. and Thomas. A. Badgewell (2003). A Survey of Industrial Model Predictive

Control Technology. Control Engineering Practice 11, 733-764.

Ralphs, T. K. and M. V. Galati (2003). Decomposition and Dynamic Cut Generation in

Integer Programming: Theory and Algorithms. Industrial and Systems Engineering

Technical Report 03T-005,1-32.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 168

Rana, K. (1992). A Decomposition Technique for Mixed Integer Programming Problems.

Computers Operation Research 19, 505-519.

Rao, Singiresu S. (1998). Engineering Optimization - Theory and Practice. John Wiley &

Sons, Inc.

Rosen, J. B. (1964). Primal Partitioning Programming for Block Diagonal Matrices.

Numerische Mathematik 6 , 250-260.

Sanders, J. L. (1965). A Nonlinear Decomposition Principle. Operations Research 13,266-

268.

Scheiber, Stephen (April 2004). Decentralized Control. Control Engineering pp. 44—47.

Sherali, Hanif D. and Gyunghyun Choi (1996). Recovery of Primal Solutions when Using

Subgradient Optimization Methods to Solve Lagrangian Duals of Linear Programs.

Operations Research Letters 19,105-113.

Siljak, Dragoslav D. (1991). Decentralized Control o f Complex Systems. Academic Press.

Stursberg, O. and S. Engell (2002). Optimal Control of Switched Continuous Systems

Using Mixed-integer Programming. In: 15th IFAC World Congress, Paper Th-A06-

4. July 21-26, 2002, Barcelona, Spain.

Stursberg, O. and S. Panek (2002). Control of Switched Hybrid Systems Based on

Disjunctive Formulations. In: 5th Int. Workshop o f Hybrid Systems (HSCC2002).

Standford (CA), USA.

Ta, C. H., J. V. Kresta, J. F. Forbes and H. J. Marquez (2005). A Stochastic Optimization

Approach to Mine Truck Allocation. International Journal o f Surface Mining,

Reclamation and Environment 19, 162-175.

Ta, Chung H uu (2002). O ptim al H aul Truck A lloca tion in the Syncrude M ine (M aster

Thesis). University of Alberta.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 169

Temeng, V. A., O. O. Francis and Jr. J. O. Frendewey (1997). Real-time Truck

Dispatching Using a Transportation Algorithm. International Journal o f Surface

Mining, Reclamation and Environment 11,203-207.

Vanderbei, Robert J. (2001). Linear Programming: Foundations and Extensions. 2nd ed..

Kluwer Academic Publishers.

Venkat, Aswin. N., James. B. Rawlings and Stephen J. Wright (2004). Plant-wide Optimal

Control with Decentralized MPC. In: 7th IFAC Symposium on Dynamics and Control

o f Process Systems, paper 190. July 5-7,2004, Boston, USA.

Wang, Shih-Ho (2003). An Improved Stepsize of the Subgradient Algorithm for Solving

the Lagrangian Relaxation Problem. Computers and Electrical Engineering 29,245-

249.

Whinston, Andrew (1966). A Decomposition Algorithm for Quadratic Programming.

Cowles Foundation Paper 8 , 112-131.

Wismer, David A. (Editor) (1971). Optimization Methods for Large-Scale Systems - with

Applications. McGraw-Hill.

Wolbert, D., X. Joulia, B. Koehret and L. T. Biegler (1994). Flowsheet Optimization and

Optimal Sensitivity Analysis Using Analytical Derivatives. Computers & Chemical

Engineering 18, 1083-1095.

Wolsey, L. A. (1998). Integer Programming. 1 ed.. A Wiley-Interscience Publication.

Xi, Y. and T. M. Yegulalp (1993). Optimum Dispatching Algorithm for Anshan Open-pit

Mine. In: 24th APCOM Symposium on Application o f Computers and Operations

Research in the Mineral Industries. October 31 - November 3, 1993, Montreal,

Canada, pp. 426-433.

Ye, Yinyu (2006). Recent Applications of Linear Programming - in Memory of George

Dantzig. In: 19th International Symposium on Mathematical Programming (ISMP).

July 30 - August 4,2006, Praia Vermelha, Brazil.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 170

Ying, Chao-Ming and Babu Joseph (1999). Performance and Stability Analysis of LP-MPC

and QP-MPC Cascade Control Systems. AlChE Journal 45,1521-1534.

Zhao, X., P. B. Luh and J. Wang (1999). Surrogate Gradient Algorithm for Lagrangian

Relaxation. Journal o f Optimization Theory and Applications 100, 669-712.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A
Structural Empirical Studies

A.l Dantzig-Wolfe Decomposition Algorithm

A .l.l Linear Programming Problem Instance Generation

To generate a test problem instance set, we follow the block-wise structure in (2.26) and

(2.27). To generate one LP instance, we take the following steps, assuming the optimization

problem is formulated with some scaling operations:

1. Generate p sets of subproblem constraints B j X j < b*: generate a random vector x*

with r ii elements in [1 ,1 0] —► generate a random m , x n* matrix B * with elements in

[1 0 ~ 6 , 1 0 3] —> calculate b° = B , X i —> perturb b* = b° + ah°, where a is a ra* vector

with randomly generated elements in [0,0.5], then we have generated subproblem

constraints which have feasible solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. A. I Dantzig-Wolfe Decomposition Algorithm 172

2. Generate m 0 linking constraints: combine X = [x i,..., x p] of a dimension N —>

generate a random m 0 x N matrix A with elements in [10- 6,103] —> calculate

fc>Q = A X —► perturb b 0 = bg + f3b%, where (3 is a m 0 vector with randomly

generated elements in [0,0.5].

3. Generate a N vector c with random elements in [0,10] (in theory, we can generate an

unrestricted c vector).

The generated LP instance should have feasible solutions. Degeneracy and cycling is

avoided by careful design of the problem instance generation algorithm.

A.I.2 Monte Carlo Simulations

Numerical experiments were designed for the following scenarios:

1. An appropriate reference problem model must be specified. The reference problem

size and structure should be a good reference for the comparison experiments, i.e.,

we can observe the algorithm performance changes when we change the problem

with respect to the reference model. In the preliminary study, the reference model is

chosen from:

p = 17

m 0 = |_30i?2/1 0 j

rrii = [4 0 /2 2/1 0 j

rii = [3 0 i? 2/1 0 j

R — {1 ; 2 , 3 ,4 , 5 ,6 ,7}

In this case, the overall problem size can be respresented as the number of elements

in the coefficient matrix I = (m0 + m i) x N , or in standard LP form I =

(”*o + ELi m i) x (ELi m i + m o + N).

2. For fixed p = 17, |7*| = 40 x 30, we change m0 in the following way:

m 0 — [30 x 2fl_3J , R = {1,2,3,4,5,6,7}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. A.2 Price-driven Coordination Algorithm 173

3. For fixed p = 17 and m 0 = 30, change subproblem size (m, x nt) by factors of 2 to

the reference problem model, by changing mi and nf.

mi = [40 x 2 'R_3J

rii — [30 x 2'R-3J , R = {1,2,3,4, 5 ,6 ,7}

4. We keep m0 — 30, m* = 40 and rii = 30 constant and change the number of

subproblems p:

p = BR + l, R = {1,2, ...,15}

In this case, we assume a rather well-balanced subproblem load, i.e., m i, m 2 , ■ ■■, mp

is in similar order of magnitude and the same to n\, n 2 , . . . , np.

5. By fixing m 0 = 30, Y a m % and Y i i-e-> we fix the overall problem size, we can

study the influence of relative subproblem ratio (RSR). In this case, we change p by

combining subproblems into groups following the patterns below:

{1 ,1 ,.., 1,1}, {2,2,.., 2,1}, {4,4,4,4,1}, {8 , 8 ,1}, {16,1}

and

{1,1,..., 1,1}, { 2 ,1 ,1 ,1 } , {4 ,1,..., 1), {8 ,1 ,..., 1}, {16,1}

in the above cases, RSR changes from 1 to 16.

A.2 Price-driven Coordination Algorithm

A.2.1 Quadratic Programming Problem Instance Generation

To generate a test problem instance set, we follow the block-wise structure presented in

(3.24) to (3.25). To generate a QP instance, we take the following steps, assuming the

optimization problem is formulated with some scaling operations:

Phase I: unconstrained QP problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. A.2 Price-driven Coordination Algorithm 174

• Step 1: generation of a positive definite symmetric matrix Q j using the following

“LDL” decomposition formula:

Q, = L;DjLf i = l ,2, . . . ,p

where Dj is an (nj x rij) diagonal matrix with strictly positive elements, L* is a unit

lower triangular matrix. Note that, the condition number of the resulting matrix Qj

can be controlled by the relative ratio of the diagonal elements, and thus we can study

the effect of the condition number on the computational performance. Then, the

generated matrices will be used to form a block-diagonal Hessian matrix H, which is

also a positive definite symmetric matrix of dimension (N x N, where N =Y^i nd-

• Step 2: randomly generate a trial solution Xj e Rrii, where the elements of x° is an

arbitrary number in [10- 3, 103].

• Step 3: generate the linear term coefficient f according to the following formula:

fj = -Q fx ° i = or f = — H Tx°

Note that, so far an unconstrained QP problem with a solution x° has been generated.

• Step 4: a small perturbation is introduced to the linear term coefficient f £ R N by:

f = —H r x° + d , where £ [0 , 1]^

This will lead to a solution x* / x°. The reason to perform this step is to avoid a

special situation, where a direct catenation of subproblem solutions is equal to the

overall solution, i.e., [xj; x ° ; x °] = x*. In fact, in that case, no coordination

is required. As can be seen later, the trial solution x° will be used to generate

constraints, including the linking constraints, thus the resultant optimal solution x*

will not equal x° due to the changes made to f .

Phase II: constrained QP problem

• Step 5: linking constraints are assum ed to be equalities, and generated according to

the following formula:

b 0 = A 0x° where A 0 = [Ai A 2. . . Ap]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. A.2 Price-driven Coordination Algorithm 175

where A* is randomly generated with elements A i(j, k) € [10—2, 102]. In this way,

we can guarantee at least a feasible solution that satisfies the linking constraints.

• Step 6 : the generation of subproblem (local) constraints are realized through a two-

stage procedure, where both the interior solution case and the boundary solution case

are considered.

Stage 1: generate a set of base equality constraints by:

b? = B i x ° * = 1,2

where B, is randomly generated with elements Bj(j, k) e [10~2,103].

Stage 2: control the location of the optimal solution in the feasible region, by

changing b° in equation (A.2.1) as:

b j = <
b° + e2, interior solution case;

b° - 62, boundary solution case.

where e2 > 0 contains elements whose values are related to the significance of

perturbation in Step 4. By doing this, the resulting local inequality constraints

BjXj < bi can present different cases when different modification strategies in

(A.2.1) are taken. It should be noted that the cases of interior solution and boundary

solution are discussed in a reduced space excluding the linking equality constraints.

So far, the generated QP instance has a form of the optimization problem in equations from

(3.24) to (3.25), and should have feasible solutions1.

A.2.2 Monte Carlo Simulations

According to different situations in practice, we design experiments for the following

scenarios.
'A ccord ing to our experience, m ore than 95% o f the generated QP problem s have optim al solutions, and

this satisfi es the requirements of the simulation studies. For more advanced instance generation techniques,

interested researchers may refere to (Calamai and Vicente, 1997; Davies and Higham, 2000).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. A.2 Price-driven Coordination Algorithm 176

1. We need to start from an appropriate reference problem model. The reference

problem size and structure should be a good reference for the comparison

experiments, i.e., we can observe the algorithm performance changes when we

change the problem with respect to the reference model. In the preliminary study,

the reference model is chosen from:

p = 17

m0 = Ll0 i?2/ 10J

mi = [15i?2/10j

m = Lioi?7 ioj

R = {1) 2 ,3 ,4 ,5 ,6 , 7}

In this case, the overall problem size can be respresented as the number of elements

in the coefficient matrix I = (mo + mt) x N.

2. For fixedp = 17, \ I i \ = 30 x 20, we change m 0 in the following way:

m0 = [10 x 2fi- 3J , R = {1,2,3,4,5,6,7}

3. For fixed p = 17 and m0 = 20, change subproblem size (m* x n*) by factors of 2 to

the reference problem model, by changing mf and rip.

mi = [15 x 2R~3\

rii = L10 x 2r ~3\ , R = {1,2,3,4,5}

4. We keep m0 = 20, m, = 30 and rii = 20 constant and change the number of

subproblems p:

p = 8R + l, R = {1 ,2 ,..., 11} for interior cases

p = 8 R + I , R = {1 , 2, . . . , 9 } for boundary cases

where we assume a rather well-balanced subproblem load, i.e., m i, m2, ..., m p is in

similar order of magnitude and the same to rii, n2, ..., np.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. A.3 Improved Subgradient Optimization Algorithm 111

5. If we fix to0 = 20, Y a and n l; i.e., we fix the overall problem size, we can

study the influence of relative subproblem ratio (RSR). In this case, we change p by

combining subproblems into groups following the patterns below:

{1 ,1 ,. . , 1,1}, (2 ,2 , .., 2,1}, { 4 , 4 , 4 , 4 , 1}, (8 , 8 , 1}, {16,1}

in the above cases, RSR is changing from 1 to 16.

A.3 Improved Subgradient Optimization Algorithm

A.3.1 Binary Integer Programming Problem Instance Generation

To generate a test problem instance set, we follow the block-wise structure presented in

(5.32). To generate a BIP instance, we take the following steps, assuming the optimization

problem is formulated with some scaling operations:

1. For a given input parameter nu generate a set of random vectors x* for i = 1, . . . ,p

with binary elements E {0 , 1).

2. Generation of p sets of subproblem constraints BjXj < b*: generate a random

rrii x rii matrix Bj with elements in [10~3, 102] —> calculate b° = B*Xj —» perturb

bj = h° + ob°, where a is a m, vector with randomly generated elements in [0,0.5],

then we have generated subproblem constraints which have feasible solutions.

3. Generation of m 0 linking constraints: combine X = [xi, ...,xp] of a dimension N

—> generate a random m0 x N matrix A with elements in [10 3,102] —*• calculate

bg = A X —> perturb b 0 = bg + /ibg, where (3 is a m 0 vector with randomly

generated elements in [0,0.5].

4. Generate a N vector c with random elements in [10~3, 10] (in theory, we can generate

an unrestricted c vector).

5. Reformulation of linking constraints (scaling of RHS of the linking constraints):

since it is quite common to normalize the RHS of the linking constraints in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. A.3 Improved Subgradient Optimization Algorithm 178

applications of subgradient optimization (Beasley, 1993), the coefficients of matrix

A is divided by the corresponding elements of vector bo, and therefore the RHS of

linking constraints is normalized to 1 .

A.3.2 Monte Carlo Simulations

Following the same structural analysis strategy, numerical experiments were designed for

the following scenarios:

1. An appropriate reference problem model must be specified. With a preliminary

empirical study, the reference problem size is chosen from:

p = 17

m 0 = [2 x 2R~2\

m , = [3 x 2 R ~ 2j

r i i= [2 x 2r ~2\

R — (2 ,3 ,4 ,5 ,6 ,7}

In this case, the overall problem size can be respresented as the number of elements

in the coefficient matrix I = (m0 + Y a m«) x N.

2. Scenario 1: for fixed p = 17, |7»| = 12 x 8, we change ra0 in the following way:

m 0 = 10 + 20 x (R - 1), R = (1 ,2 , ...,10}

3. Scenario 2: for fixed p = 17 and m 0 = 10, change subproblem size (m, x n,) through

changing the reference model parameter R:

mj = [3 x 2r -2 J

n i = L 2 x 2 H~2J, R = { 1 ,2 ,...,7}

4. Scenario 3: we keep mo = 10, = 12 and n* = 8 constant and change the number

of subproblems p:

p = R 2, R = { 1,2, ...,9}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sec. A.3 Improved Subgradient Optimization Algorithm 179

In this case, we assume a rather well-balanced subproblem load, i.e., m 1, m 2 , . . . , m p

is in similar order of magnitude and the same to rii, n2, ..., np.

5. Scenario 4: by fixing mo = 10, Y a m i and Yd n*’ i-e-’ we the overall problem

size, we can study the influence of relative subproblem ratio (RSR). In this case, we

change p by combining subproblems into groups following the patterns below:

{1,1,..., 1,1}, {2,2,.., 2,1}, {4,4,4,4,1}, (8 , 8 ,1}, {16,1}

in the above cases, RSR changes from 1 to 16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

