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Abstract

Nowadays, highly integrated manufacturing has resulted in more and more large-scale 

industrial operations. As one of the most effective strategies to ensure high-level operations 

in modem industry, large-scale engineering optimization has garnered a great amount of 

interest from academic scholars and industrial practitioners.

Large-scale optimization problems frequently occur in industrial applications, and many 

of them naturally present special structure or can be transformed to taking special structure. 

Some decomposition and coordination methods have the potential to solve these problems 

at a reasonable speed. This thesis focuses on three classes of large-scale optimization 

problems: linear programming, quadratic programming, and mixed-integer programming 

problems. The main contributions include the design of structural complexity analysis for 

investigating scaling behavior and computational efficiency of decomposition strategies, 

novel coordination techniques and algorithms to improve the convergence behavior of 

decomposition and coordination methods, as well as the development of a decentralized 

optimization framework which embeds the decomposition strategies in a distributed 

computing environment. The complexity study can provide fundamental guidelines to 

practical applications of the decomposition and coordination methods.

In this thesis, several case studies imply the viability of the proposed decentralized 

optimization techniques for real industrial applications. A pulp mill benchmark problem is 

used to investigate the applicability o f  the LP /  QP decentralized optim ization strategies, 

while a truck allocation problem in the decision support of mining operations is used to 

study the MILP decentralized optimization strategies.
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“A  journey o f  a thousand miles begins with a single step.”

-  by Lao Tzu

Introduction

Quite often, high performance operation of industrial plants or business units can be achieved 

by applying optimization techniques. Large-scale optimization problems frequently occur 

in such large-scale operations and may have special structure. Decomposition and co­

ordination strategies are good candidates for solving such large-scale optimization prob­

lems, and sometimes are mandatory for truly large problems, which cannot otherwise be 

solved because of time and/or storage limitations. This thesis mainly contributes to devel­

oping more efficient decomposition and coordination methods to provide on-line solution 

of three typical classes of large-scale optimization problems (i.e., linear programming (LP), 

Quadratic programming (QP) and Mixed-integer programming (MILP) problems).

1
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Sec. 1.1 Overview o f  Large-scale Optimization

1.1 Overview of Large-scale Optimization

2

Large-scale operations optimization problems frequently occur in the process industries. 

With the growing understanding of the physical and chemical phenomena underlying 

processes at the macro, micro, and nano scales, more complicated models can be developed 

for industrial applications. These detailed models can represent the plant more closely. In 

general, it is considered desirable to use more accurate, higher fidelity models in operations 

optimization to improve control and optimization performance. Such higher fidelity models 

are usually more complex and larger scale.

Although computer speed increases, on-line solution to large-scale optimization 

problems as a whole is very expensive and difficult, if not impossible. Furthermore, the 

scalability of solvers, which is related to problem size, and the complexity of solvers, which 

is related to the implementation of a method, are bottlenecks for real-time optimization 

in large-scale industrial operations. These have limited the scope and fidelity of many 

industry-scale applications. Therefore development of computationally efficient methods 

to solve large-scale optimization problems is of great significance in industrial applications.

1.1.1 Optimization of Large-scale Operations

In modem industry, more and more operations are integrated for various purposes and 

thus result in real large-scale systems. Such large-scale systems can be decomposed into 

a number of interconnected subsystems either for conceptual or computational reasons 

(Siljak, 1991). As engineering optimization has been one of the most effective means 

of gaining a high level of operation’s performance, large-scale optimization problems 

considered here are of high dimension with respect to the number of variables involved 

in the problem formulation and have decomposable or separable structure for the purpose 

of computation or in nature of the problem itself (Jamshidi, 1983; Wismer, 1971).

Large-scale optimization problems appear frequently in plant-wide process design, 

control, and operations optim ization. The sim ultaneous design and control o f  processes

can be performed by optimizing large-scale, complex dynamic models involving discrete 

and continuous decision variables, time-varying disturbances and parametric uncertainties
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Sec. 1.1 Overview o f  Large-scale Optimization 3

(Mohideen et al., 1997; Bansal et al., 2000). In the literature, typical examples of large- 

scale process control problems can be found such as decentralized supervisory control 

with communicating controllers (Barrett and Lafortune, 2000); modeling and control of 

an N-stand cold rolling mill (Jamshidi, 1983); and plant-wide distributed model predictive 

control (Camponogara et al., 2002). Furthermore, the integration of existing large-scale 

optimization problems results in a higher dimensional optimization problem. For instance, 

the leading industry control companies have identified the opportunities and trends to 

integrate plant-wide Advance Process Control (APC), Real-time Optimization (RTO) and 

Planning and Scheduling (Havlena and Lu, 2005).

Good surveys of large-scale operations optimization can be found in Floudas (1995) 

and Goux and Leyffer (2001), which introduced extensive research interest and progress 

in process synthesis, batch plant design, and cyclic scheduling in chemical engineering 

applications. When the problems are formulated as non-linear and/or mixed-integer 

programming problems, they become more difficult (than linear programs) and can often 

be said to be large-scale in terms of computational requirements. Moreover, large-scale 

optimization problems are also frequently encountered in the operation of transportation 

companies, such as the optimal scheduling and assignment of fleet and staff. The air fleet 

assignment problem is to determine a “best” match between the type of aircrafts and the 

flight segment, given a flight schedule and set of available aircrafts (Hane et al., 1995). 

The vehicle routing and crew scheduling (VRCS) problems consider both vehicle routing 

and crew scheduling problems simultaneously (Desaulniers et al., 2001), where the VRCS 

problems can give rise to very large-scale mixed-integer programming problems. More and 

more examples are and will be added to the list of applications of large-scale operations 

optimization, such as the water resources management problems in Cai et al. (2001), all of 

which show continuous intensive interest in this area in recent research.

In this thesis, the optimization is through mathematical programming, which is based on 

a first-principles model or an empirical model that describes process operations in sufficient

detail to serve specified purposes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 1.1 Overview o f Large-scale Optimization

1.1.2 Solving Large-scale Optimization Problems

4

Depending on specific requirements, such as the solution time (or computational 

efficiency) and accuracy (or optimality), there are three approaches to solving large-scale 

operations optimization problems, which can be classified as centralized, decentralized, and 

coordinated, decentralized optimization schemes *. As a large-scale system is decomposed 

into a number of interconnected subsystems either for conceptual or computational 

reasons, one difference between these optimization schemes is in how the interactions or 

connections between subsystems are handled. The centralized scheme explicitly considers 

all interactions between subsystems, while the (fully) decentralized scheme ignores all 

the interactions. These two schemes represent the two extremes with respect to the 

best achievable performance and computational requirements (Cheng et al., 2004). The 

coordinated optimization scheme represents a trade-off between the above two extremes, 

wherein the subproblems are coordinated by considering important interactions.

Centralized optimization methods are usually designed for and implemented on 

a single computer and they do not take advantage of special problem structure (e.g., 

block-angular structure, stairwise structure) that can reduce computational expense. For 

instance, in the refinery production planning and scheduling applications (Gothe-Lundgren 

et al., 2002; Lababidi et al., 2002), a large single model for the entire plant operations 

(including multiple operating units) is assembled and integrated within a centralized 

optimization system, which is involved with a large mixed-integer programming problem.

For large-scale optimization problems, the centralized optimization schemes may require 

high-efficiency optimization solvers and high-performance computing environment. At 

the problem formulation stage, inherent special structure of the problem, such as the 

decomposability of the overall operations into individual unit operations, may not be 

considered since the centralized optimization algorithms usually do not take advantage 

of such special structure.

In practice, the amount of computational effort required to solve an optimization 

problem usually grows much faster than the size of the corresponding system or operation. 

Therefore, within the centralized optimization framework, the problems arising in large-

'This is often referred to as a “coordinated optimization scheme” in this thesis.
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Sec. 1.1 Overview o f  Large-scale Optimization 5

scale operations (e.g., a refinery) may become either impossible or impractical to solve even 

with high-performance computing machines. Another potential deficiency is the reliability 

of such a centralized optimization system, which may provide an “all-or-nothing” behavior, 

i.e., such a system may provide either complete success or failure, with no appropriate 

strategies to mitigate the failure.

(Fully) decentralized optimization are commonly used approaches to large-scale 

operations optimization in industrial practice, especially when the problem can be 

“naturally” decomposed. An example is the unit-wide local operations optimization 

(e.g., a real-time optimization (RTO) system) for a refinery process unit (e.g., a vacuum 

distillation unit, hydrocracker unit, coking unit,and amine gas treaters, etc.). In this 

case, independent multiple RTO systems may be used within a refinery wide. These 

methods are usually implemented on a distributed computing environment. To formulate 

a decentralized optimization problem for large-scale operations, modular (decentralized) 

modeling methods can be used, with interactions among individual unit models excluded2 

in the optimization. A set of subproblems can be solved simultaneously, using solvers 

that can be selected according to the dimension of decentralized models (sub-problem 

sizes). Therefore, high-efficiency optimization solvers and high-performance computing 

environments are not a necessity.

Different from the centralized optimization opproaches, the problem structure should be 

well used in the decentralized optimization schemes. Because of the use of decentralized 

computing environment, the computational load can be well balanced through appropriate 

subproblem formulation. In addition, the determination of the values of interaction 

variables is of great importance to gain suboptimal operations close to the true optimum, 

and to ensure feasibility of the operations optimization.

The decentralized optimization scheme is a more reliable approach for industrial 

applications, i.e., when some of the subproblem optimizers fail others can still function; 

and it requires reasonable computational load for subproblems due to the decomposition of 

large-scale problem s. However, this schem e usually provides sub-optim al solutions instead

2The variables representing interactions between unit operations are usually fi xed at some values within 

the execution of optimization, and can be updated within the interval of two optimization executions.
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Sec. 1.1 Overview o f  Large-scale Optimization 6

of the optimal solution, and sometimes ignoring the interactions may result in an infeasible 

operations.

Coordinated, decentralized optimization approaches aim to gain a good trade-off 

between the above two optimization approaches. Two strategies can be used for the 

modeling: (1) centralized modeling, decomposition and coordination; (2) decentralized 

modeling, incorporating linking constraints3, and then coordination. In the coordinated, 

decentralized optimization framework, usually a coordination problem plus a group of 

subproblems are solved iteratively within an optimization execution. The coordinator, by 

solving the coordination problem, deals with the linking constraints and local solutions 

from subproblems, and thus drives the local optimal operations to the overall optimum. It 

should be noted that this structure requires a computing node for the coordinator in addition 

to the nodes required by a decentralized optimization system.

In the past few decades, we have seen the identification of many classes of structured 

problems and the development of many algorithms for their solution. In the period 

initiated by Dantzig-Wolfe decomposition for solving large-scale linear programs (Dantzig 

and Wolfe, 1960), Benders’ partitioning algorithm was developed for solving mixed- 

integer programming problems (Benders, 1962), then later Rosen’s partitioning method 

was developed to solve a primal-dual pair of problems which have block-angular structure 

(Lasdon, 2002; Rosen, 1964). The survey by Molina (1979) gave a good summary of 

the best decomposition and coordination strategies for solving large-scale optimization 

problems. The Dantzig-Wolfe method can be extended to solve convex nonlinear problems 

(Whinston, 1966). Pigot (1964) published a “double decomposition method” that could 

be thought as a combination of the Dantzig-Wolfe and Benders approaches to give upper 

and lower bounds of the optimal solution, but it has more complicated implementation. 

After the publication of article “Two Level Planning” (Komai and Liptak, 1965), more 

interest has been shown in the decomposition of a mathematical programming problem. 

For example, Sanders (1965) published a method of primal decomposition of nonlinear 

program m ing problem s using the Lagrange m ultipliers. Recently, an auction-based/price- 

driven coordination method was developed in Jose and Ungar (1998a; 1998b) on the basis

3The constraints that describe the interactions involving multiple operating units.
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of the work of Jennergren (1973), which can handle situations where the Lagrangian-based 

method may be inadequate, by using so called “slack resource” auction. The decomposition 

and dynamic cut generation (DDCG) (Ralphs and Galati, 2003) decomposes an MIP 

problem into an LP master and a pure IP subproblem.

Obviously, improvement of the coordinated optimization scheme can be made through 

enhancing both the coordinator and subproblem solvers. This thesis focuses on the study of 

efficient coordination mechanisms, i.e., an efficient way to make use of linking constraints 

and subproblem solutions, with an assumption that the subproblems can be solved with 

appropriate optimization solvers.

The coordinated optimization system can provide similar reliability as the decentralized 

optimization system, because a minor modification to the existing decentralized 

optimization scheme is accomplished by adding an extra node to the distributed computing 

network. Whenever the coordinator fails, the optimization system becomes the original 

decentralized optimization approach. In terms of the solution quality, the coordinated 

optimization scheme can provide an optimal, or nearly so, solution, depending on 

how much interaction is considered by the linking constraints. From the perspective 

of investment cost, this approach also implies significant benefit because the resulting 

optimization system can be built on a previous decentralized optimization system, by 

adding just one additional computing node. To satisfy the increasing requirement of 

computation, one way is to develop more efficient coordination mechanism. Thus a 

coordinated, decentralized approach can address the computational challenges that arise 

as problem scope and complexity increases.

1.2 Research Scope

As discussed in the previous section, this thesis concentrates on the development 

of a coordinated, decentralized optimization framework, which takes advantage of 

decom position  and coordination optim ization strategies, for solving large-scale operations 

optimization problems. In particular, this work emphasizes the development, complexity 

analysis and applications of coordination mechanisms for linear programming (LP),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 1.2 Research Scope 8

quadratic programming (QP) and mixed-integer linear programming (MILP) problems, 

which represent typical classes of optimization problems encountered in industrial 

operations4. Based on a thorough understanding of the best available decomposition and 

coordination strategies, this work has made efforts to improve the computational efficiency 

of the existing optimization strategies to satisfy the specified on-line solution requirements, 

by enhancing the corresponding coordination mechanism. To investigate the feasibility of 

applying the proposed coordination optimization framework to real large-scale problems, 

complexity analysis and computational studies are carried out to study the scalability of the 

proposed optimization algorithms.

In the area of process control, as model predictive control (MPC) often utilizes LP 

and QP optimization techniques, this thesis discusses the application of the proposed 

coordinated, decentralized optimization framework for large-scale MPC, e.g., plant-wide 

control and optimization. Lu (2003) has discussed that the coordination/integration of 

decentralized controllers is a challenging large-scale optimization problem recently. Model 

predictive control has incorporated both control and optimization techniques, and its 

wide application establishes a solid foundation for plant-wide control and optimization. 

For large-scale process control problems, the desired characteristics of an MPC scheme 

includes: high-level performance -  solutions comparable to the best achievable optimum 

(Cheng et al., 2004); high degree of reliability -  the capability that some control subsystems 

or portions thereof are able to function when other subsystems fail; good operability -  the 

ease of the implementation of the algorithms; and excellent flexibility or extendability -  the 

ease of the modification to functional capacity of the system. The commonly used strategies 

for plant-wide MPC control and optimization are centralized schemes and decentralized 

schemes, which represent the two extremes in the trade-off among the above desired 

characteristics.

In addition, this work also investigates the applicability of the proposed coordinated

4Although this work is focused on mixed-integer linear programming (MILP) and binary integer 

programming (BIP) problems, the proposed decomposition and coordination algorithms (i.e., subgradient 

optimization algorithms) are applicable to general MIP problems as well, e.g., a mixed-integer nonlinear 

programming (MINLP) problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 1.2 Research Scope 9

optimization framework in mining operations optimization, by solving the truck allocation 

problem in truck-and-shovel mining operations. In this case, the truck allocation problem, 

which can involve multiple operational parties (e.g., ore hauling, overburden removal and 

maintenance), is formulated as an MIP problem with decomposable block-wise structure. 

This work illustrates a practical approach to this problem with appropriate implementation 

of the proposed coordinated optimization scheme.

For existing decentralized optimization schemes, it is assumed that each subsystem has 

its own computing node to perform optimization calculations. To facilitate the development 

of this work, synchronization assumptions for subsystem optimizers have been made5. For 

example, in plant-wide MPC applications, a common sampling time and control interval 

should be determined for coordination by taking into account both the fast modes and slow 

modes in the processes of an overall plant. Thus, it is assumed that the coordination is 

only active within an optimization interval. This means we are replacing a monolithic 

optimization calculation with a coordinated, decentralized calculation. We believe this is 

the first step in creating a truly decentralized set of autonomous optimizers that act in a 

cooperative manner.

In brief, this work addresses the problems of how to develop a coordination framework 

to improve the overall performance with minor modifications to the original system 

given a decomposable flowsheet and existing decentralized/unit optimization systems. By 

drawing on ideas from decentralized planning in economics, a novel methodology to design 

coordination systems for current decentralized optimization systems is developed. The 

proposed coordinated, decentralized scheme can provide a higher level of performance with 

a minor modification to the existing decentralized control structure. In the coordinated, 

decentralized optimization scheme, an additional computer will be implemented to 

perform coordination of individual control or optimization calculations. Therefore, 

similar reliability and extendability to the decentralized scheme can still be maintained. 

Furthermore, as the decomposition strategies use sensitivity information within the 

coordination m echanism , the flow  o f  inform ation w ithin the optim ization system  can 

reveal how the coordination system drives the individual local optima to an overall

5We have not addressed asynchronous coordination of multiple optimization systems in this thesis.
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plant-wide optimum. Thus the proposed procedure also helps understand the necessary 

communication between the coordinator and subsystems. In addition, this research may 

also provide insights into the application of decomposition strategies for solving large-scale 

(MI)NLP, which represents another important class of engineering optimization problems.

1.3 Thesis Overview

In this work, with a general coordinated, decentralized optimization framework, 

coordination mechanisms are developed for solving several typical classes of optimization 

problems, respectively. This thesis begins with an introduction to this research, where the 

major objectives and research scope are stated.

In Chapter 2, the best available decomposition strategies for large-scale linear 

programming are investigated. In particular, the Dantzig-Wolfe decomposition algorithm 

(Dantzig and Wolfe, 1960) is shown to be suitable for solving the class of optimization 

problems of interest. A complexity study shows it has good scaling behavior and strong 

potential for use in the coordinated optimization framework.

Chapter 3 discusses the decomposition and coordination strategies for QP problems, 

which is a special case of nonlinear programming (NLP). A novel price adjustment scheme 

is developed by using Newton’s Method, and it significantly improves the computational 

efficiency of the auction-based (or price-driven) coordination method. Computational 

studies are then carried out to investigate the scaling behavior of the price-driven 

coordination method.

In Chapter 4, several case studies are performed to illustrate the application of 

the proposed coordinated optimization framework in plant-wide MPC. Using the 

decomposition and coordination strategies studied in the previous two chapters, the 

coordinated, decentralized optimization is shown significantly improve the plant-wide 

operations in all the case studies.

A s an extension o f  the work in continuous optim ization, Chapter 5 d iscusses  

decomposition and coordination strategies for large-scale discrete optimization problems, 

in particular, mixed-integer linear programming (MILP) problems. Existing optimization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 1.3 Thesis Overview 11

methods for MILP usually contain heuristics. This work proposes a three-phase MILP 

decomposition algorithm within a decentralized optimization framework. The first stage 

incorporates the best known heuristics, whose efficiency has been proved in the literature; 

while for the second stage, a new heuristic is proposed for primal solution recovery. 

With a complexity study, the performance of the proposed MILP subgradient algorithm 

is tested through empirical studies. The case study of a truck allocation problem in mining 

operations optimization illustrates the feasibility of the application of the decentralized 

optimization framework.

Chapter 6 contains conclusions for this thesis and suggestions for future work.
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“A1I truths are easy to understand once they are discovered; the point is to 

discover them.”

-  by Galileo Galilei

Decomposition Strategies for Large-scale 

Linear Programming

Decomposition approaches to solving large-scale linear programs (LP), which represent a 

typical class of large-scale operations problems, are discussed in this chapter.1 Through 

an investigation of the best available decomposition strategies for solving large-scale lin­

ear programming problems, Dantzig-wolfe decomposition is identified as a good candidate 

for solving high dimensional linear programming problems with block-wise structure. By 

taking advantage of distributed computing environment, the Dantzig-Wolfe decomposition 

can provide efficient solution to decomposable linear programming problems. By using

‘Part of this chapter has been published in Cheng et al. (2004) and Cheng et al. (2006a) submitted to 

Computers & Chemical Engineering.
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a structural complexity analysis approach, the scaling behavior of Dantzig-Wolfe decom­

position algorithms is studied. The complexity study implies that, for large-scale linear 

programming problems with special structure, the Dantzig-Wolfe decomposition algorithm 

can outperform centralized optimization solvers when appropriate implementation is con­

ducted.

2.1 Background

Linear programming (or, linear optimization) is a fundamental method in mathematical 

optimization. For a linear programming (LP) problem, the objective function and 

the constraints are linear functions of the decision variables. Besides its continuous 

development in the first half of last century, the first comprehensive theory was developed 

by Dantzig (1963), including geometrical analysis, duality theory, and the Simplex method. 

In the past few decades, an enormous number of applications of linear programming 

have appeared in economics, engineering, science and many other fields, from its early 

applications in the military resource allocation during the World War II (Rao, 1998) to 

its recent applications in auction pricing and proving theorems for computing science 

(Ye, 2006).

In practice, many large-scale LP application problems have special structure, which can 

be exploited by decomposition and coordination methods to provide an efficient solution. 

Next, the problems of our interest will be described, and the suitable decomposition 

algorithms will be discussed.

2.1.1 Linear Programming

In many optimization books (Chvatal, 1983; Lasdon, 2002; Dantzig and Thapa, 2002; 

Vanderbei, 2001), linear programming is considered classical content. It is not intended 

to repeat the description of a linear programming problem, but to show our interest in
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solving a class of LP problems with special structure. Consider the following LP problem:

min ci^i +  c2x2 +  ... +  CnXn 

subject to

CLiiXx +  Cl12X2 +  • • • +  dinXn < b\

d2lXi 4" <322̂ 2 +  • • ■ +  d2nxn < b2 (2.1)

4" dm2x 2 4" ■ • • 4" dmnxn ^  bm 

Xi,X2, . . . , £ „ >  0

In this description, we use m  to denote the number of constraints, and n  to denote the 

number of decision variables. When represented by matrices and vectors, the LP problem 

can be expressed as:

min cTx 

subject to

A x <  b, x  > 0 (2.2)

where the coefficient matrix A has a dimension o f m x n ,  and the cost coefficient vector 

c and decision variable vector x  are ra-vector s. In many practical applications, especially 

with a large-scale LP problem, such as the multi-plant production and distribution problems 

(Lasdon, 2002), matrix A takes special structure, e.g. the block-wise (or block-angular) 

structure:

A ll Ai2 • Aip

Ai 0 0

0 a 2 . 0

0 0 Ap

where A y  has a dimension of mo x rij, and A j  has a dimension of m j  x rij, for 

j  = 1,2, . . .  ,p. Thus, the elements of the vectors c and x  can be re-organized into p
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subsets, which satisfy Y%=i ni = n  and Yfj=i m J +  m o = m. As a result, the LP problem 

in (2 .2 ) can be expressed as:

min c fx i +  cif x2 +  . . .  +  c jx p 

subject to

AnXi +  A 12X2 +  . . .  +  AipXp < bo (2.4)

A 1X1 < b*

A 2x2 <  b 2

X i,x2, . ,Xp > 0

In this case, excluding the constraints (2.4), the original problem can be decomposed into 

p LP subproblems. In this chapter, some typical techniques that can take advantage of this 

block-wise structure are investigated.

2.1.2 Dantzig-Wolfe Decomposition Principle

The Dantzig-Wolfe decomposition method (Chvatal, 1983; Dantzig and Thapa, 2002) 

is the most representative of all decomposition methods. Other typical decomposition 

strategies for LP problems include Benders’ decomposition and Rosen’s decomposition 

algorithms (Lasdon, 2002), as well as the double decomposition method by Darnel Pigot 

(Molina, 1979).

Although it was originally developed for solving mixed-integer programming problems, 

Benders’ decomposition can be viewed as the dual of the Dantzig-Wolfe decomposition in 

terms of linear programming. Rosen’s partitioning/decomposition procedure is another 

decomposition algorithm for linear programming and has been widely used to treat 

angular or dual-angular problems with both coupling constraints and coupling variables. 

Rosen’s method uses the partition principle of fixing some complicating variables and 

therefore decoupling the problem into several independent lower dimensional subproblems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 2.1 Background 16

(Molina, 1979). The double decomposition method tackles the linear programming 

problems in both primal and dual spaces. In a sense, it combines both Dantzig-Wolfe 

decomposition and Benders’ decomposition approaches, and gives upper and lower bounds 

of the optimal solution (Molina, 1979). As will be discussed later, many industrial 

application problems present suitable structures for Dantzig-Wolfe decomposition, thus 

discussion will be concentrated on the Dantzig-Wolfe decomposition techniques and its 

applications.

The Dantzig and Wolfe (1960) decomposition principle is depicted in Figure 2.1. In 

this decomposition approach, a large-scale linear programming problem can be separated 

into independent subproblems, which are coordinated by a master problem (MP). The 

solution to the original large-scale problem can be shown to be equivalent to solving the 

subproblems and the MP through a finite number of iterations (Dantzig and Thapa, 2002). 

Within each iteration, the MP handles the linking constraints that connect the subproblems, 

using information {fi,ui\ supplied by the subproblems. Note that /» is the objective 

function value and u, is the solution of the i th subproblem. Then, the MP sends its 

solution [7r, 7 j] as price multipliers to all the subproblems for updating their objective 

functions. Subsequently, the subproblems with updated objective functions are re-solved. 

The iterative procedure continues until convergence. It can be shown that the solution at the 

convergence is equal to the optimal solution of the original large-scale problem (Dantzig 

and Thapa, 2002).

The Dantzig-Wolfe decomposition hinges on the theorem of convex combination and 

column generation techniques (Lasdon, 2002; Dantzig and Thapa, 2002). The theorem of 

convex combination, or D-W transformation, states that an arbitrary point x  in a convex 

polyhedral set X  =  {x| A x =  b, x  >  0} can be written as a convex combination of the 

extreme points of X  plus a nonnegative linear combination of the extreme rays (normalized 

homogeneous solutions) of X ,  or:

L M

x  =  aiU*+ 5 Z  fa*3 (2.5)
»=i j=i

L

(2 .6)
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Figure 2.1: D-W decomposition mechanism

where u 1 and vl are the finite set of all extreme points and the finite set of all normalized 

extreme homogeneous solutions respectively. If the feasible region is bounded, we can 

reformulate the problem by using the extreme points only.

Although any large-scale linear program problem can be decomposed and solved by 

Dantzig-Wolfe decomposition (Chvatal, 1983), the approach is particularly powerful for 

structured linear programs. Consider a block-wise linear programming problem that has 

been converted to Simplex standard form:

v
min zi =

t=l

subject to

f > iXi =  b 0 (2-7)
i = 1

B iXi = bi (2.8)

x» > 0  * =  l , 2 ,...,p

where (2.7) represents the linking constraints associated with p subproblems, and the

constraints in (2.8) are the local constraints of independent subproblems. Via the theorem

of convex combination, the master problem (MP) can be formulated as follows using
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the linking constraints in (2.7) and the convex combination of extreme points from (2.8), 

assuming that the feasible regions of subproblems are bounded2.
p N(i)

min =
i=1 j =1

subject to
P N (i)

'y y ^  I Pjj =  t >0 (2-9)
1 = 1  j= 1 

N(i)

=  Ay > 0 , i =  1 , 2 , ...,p (2 .10)
j '= i

where N(i) represents the number of extreme points of the feasible region in the i th LP 

subproblem, and
N(i)

= (2 -H)
j=l

f i i =c f j 4  (2.12)

p  i:j = AjU2 (2.13)

with u\ being the j th extreme point of ith subproblem.

The resulting master problem has fewer rows (i.e., (m 0 +  p) equality constraints) in 

the coefficient matrix than the original problem; however, the number of columns (i.e., 

associated with Yli=i -W W decision variables) in the MP is larger due to an increase in the 

number of variables associated with the extreme points of all subproblems. For a large- 

scale problem, it can be a formidable task to obtain all the extreme points and formulate 

a full master problem. Therefore, column generation techniques have been developed to 

dynamically handle the more columns in the MP.

2.2 Column Generation Techniques

If the MP is solved via the Simplex method, only the basic set is needed and it has the 

same number of basic variables as the number of rows. Thus, we do not need to explicitly

2Unbounded cases are discussed in Lasdon (2002), Dantzig and Thapa (2002).
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know all the extreme points of subproblems. This leads to solving an equivalent problem, 

the restricted master problem (RMP), which can be dynamically constructed at a fixed 

size by incorporating column generation techniques (Gilmore and Gomory, 1961; Dantzig 

and Thapa, 2002). For example, in the MP described in (2.9) and (2.10), the linear 

programming problem obtained by dropping all but a subset N  of the N(i)  columns 

associated with A  ̂ is called an RMP of the original master problem.

Assume that we have a starting basic feasible solution to the RMP and it has a unique 

optimum. The optimal solution provides us with the Simplex multipliers [7r, 71 , 72 ,..., 7P] 

for the basis in the current RMP, with 7r associated with (2.9) and 7 , with the ith constraint 

in (2.10), respectively. Then, the subproblems are modified and solved to find the priced- 

out column associated with A i f

f i j  = (cf  -  -  7 i (2-14)

and the ith subproblem is:

min z° = (cf -  7rAj)xi 

subject to

BjXj =  hi (2.15)

Xj >  0

Here we notice that only minor modification is made to each subproblem, i.e., a term 

containing sensitivity information is introduced into each subproblem objective function. 

An optimal solution is reached when the following condition is satisfied:

min fij =  min(z° -  7 ,) > 0 , i = 1, ...,p (2.16)
*

A complete proof of the optimality and finite convergence can be found in Dantzig and 

Thapa (2002). When condition (2.16) is not satisfied, a column generation strategy is used 

to determine the column or columns that will enter the basis of the RMP.

The coordination of subproblems can be regarded as a procedure of directional

evaluation of the feasible extreme points of the subproblems, in which the coordinator 

(RMP) evaluates and selects subproblem solutions under the guidance of some “rules”.
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The selected or priced-out extreme points will be used to generate columns needed for 

updating the RMP. The column generation techniques are among the “rules” that show 

good performance in directing the evaluation of subproblem feasible solutions. With 

column generation techniques, instead of an exhaustive traversal of all extreme points of the 

subproblems, usually only a small subset of the extreme points are required to be evaluated 

during the coordination procedure.

2.2.1 Single-column vs. Multi-column Generation

Several column generation techniques can be found in the literature. In the single-column 

generation scheme (Lasdon, 2002), the minimum objective function value of problem

(2.16) is assumed to come from subproblem s (1 < s < p), i.e., the solution x s(7r) solves 

subproblem s . Then, the column to enter the basis is generated by:

A sXs(7t)
(2.17)

where is is an ^-component vector with a “1” in position s and zeros elsewhere. The 

generated column is associated with the most favorable subproblem (i.e., that with the 

most negative reduced cost). Thus, with single-column generation algorithm, the updated 

RMP can be expressed as:
v

min z3 =  Y  Y  ^ Xij +  f* X*
fc= l  ^baa is

subject to

£ £ p ^ A y  +  p*A* =  b0 (2riS)
J b a s is

Y  Ay +  A* =  l, t =  (2.19)
J b a s is

Ay > 0 , A* >  0 (2 .2 0 )

where the Ay is the current basic variables and A* is the variable entering the basis. The 

terms associated with A* can be derived from (2.11) to (2.13) and (2.17), which contribute 

to the generated column. Jbasis is an index set whose elements correspond to the indices of
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subproblem feasible solutions, which are now in the RMP basis. Particularly, in the above 

formulation, the number of variables in the basis is | Jbasis I =  m0 +  p,3 which shows the 

dimension of the basic set in the RMP is (m0 +  p), where m0 is the number of linking 

constraints in (2.7).

It should be noted that any other subproblem with a negative reduced cost has the 

potential to generate a column to enter the basis of the master problem (Lasdon, 2002). 

To take advantage of other favorable subproblems, multiple columns could be considered 

for generating a new RMP. Several variants of multi-column generation techniques are 

discussed in Lasdon (2002) and Dantzig and Thapa (2002). In this work, we study the 

multi-column generation scheme suggested in Lasdon (2002). Thus, to incorporate all 

potential favorable proposals, a “new” column is generated in the RMP for each subsystem 

by applying (2.17):

min = +  E  ^ Xi
i ~  1 J  basis  * = 1

subject to

E E p ^ + X > * A* =  b ° (2-21)
^— 1 J b a s is  ^ 1

E A y  +  A* =  l, i =  1, 2 , ...,p (2 .2 2 )
Jb a s is

Xij > 0 , A* > 0 (2.23)

The above problem has p more variables than constraints, rather than one more as in the 

single-column generation case. Using the size of the coefficient matrix in Simplex standard 

form to represent the size of the problem, the RMP with multi-column generation has a 

size of (m0 +  p) x (m0 +  p +  p) while the RMP with single-column generation has a size 

(m 0 +p) x (ra0 + p + 1). One would expect a greater decrease in z4 through every iteration, 

and thus, a reduction in the number of iterations. As was discussed in Lasdon (2002) and 

verified by the computational experiments (Cheng et al., 2005a), the advantage of having 

more columns in the RMP outweighs the disadvantage of increased RMP size. Since it can

3Here the notation “| |” is used to denote the number of elements or the length of a data set as is common 

practice in computing science.
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show higher computational efficiency, the Dantzig-Wolfe decomposition algorithm with 

multi-column generation is adopted in this work.

2.2.2 Dantzig-Wolfe Decomposition Algorithms

Depending the column generation techniques adopted, variants of Dantzig-Wolfe 

decomposition algorithms have been developed. With the multi-column generation 

technique discussed in the previous section, a bi-level decomposition algorithm can be 

formulated for the solution of the problem described in (2.7) to (2.8). Assuming the 

RMP in (2.9) to (2.10) has an initial feasible basic solution, the Simplex multipliers 

[7T, 7 x, 72,..., 7P], with 7T associated with constraint set (2.9) and 7 f associated with (2.10), 

can be obtained. The following statement gives a brief description for the Dantzig-Wolfe 

decomposition algorithm:

• Step 1: Using the Simplex multipliers 7r, solve the subproblems in (2.15) and obtain 

the subproblem solutions x^ tt) and optimal objective function values z,°. Denote 

x ( t t )  =  [X i(-7r),..., X p(7r)j.

•  Step 2: Compute mintJ = min, (z® — 7 *). If min, ̂  > 0, an optimal solution is

achieved and can be calculated from:

generation techniques; however, if  single-column generation technique is used, only one column is entering 

the RMP.

(2.24)
Jbasic Jbasic

where the points xj  are the extreme points of the ith subproblem in the index set of 

Jbasis', otherwise, go to Step 3.

•  Step 3: If m in^ /*, < 0, the p entering columns 4 can be calculated as:

A iX i(7 r). . .  ApXp(7r) 

I
(2.25)

4H ere , w e have  m u ltip le  co lum ns, i.e ., p  new  co lum ns, to  en te r the  R M P as w e ad o p t th e  m ulti-co lu m n
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and then added to the previous RMP as new columns. Solve the resulting RMP and 

obtain a new basis (by removing the leaving columns as in Simplex method) and go 

back to Step 1 and repeat.

2.2.3 Discussions

The higher computational efficiency produced by multi-column generation techniques has 

been widely discussed in the literature (e.g., (Dantzig and Thapa, 2002; Lasdon, 2002)) and 

verified through empirical studies (e.g., (Cheng et al., 2005a; Cheng et al., 2006a)). The 

mechanism that drives the higher efficiency of multi-column generation in comparison to 

the single-column generation can be explained by analogy.

Similar to the Simplex method, in Dantzig-Wolfe decomposition, different “pricing” 

strategies can be used to determine the entering columns (analogously, entering variables 

in the Simplex method). If we know all extreme points, the (full) master problem is 

equivalent to the original LP problem, and we only need to solve the (full) MP once to 

get the optimum solution. When the master problem is solved, by fully pricing all the 

columns, the “best” entering variable5 can be determined. At the other extreme, in the 

single-column generation, the entering column corresponds to the subproblem with most 

negative objective function value, and as a result, only one entering column together with 

the existing columns in current RMP is to be priced when the resulting RMP is solved by 

the Simplex method. Obviously, the pricing process in the solution of the RMP with single­

column generation is a partial pricing (Nash and Sofer, 1996) process. With multi-column 

generation, more entering variable candidates, including the one that can be generated by 

single-column generation, are to be priced in the resulting RMP. In the partial pricing 

scheme, a larger subset of the full columns is available for pricing, which may result in 

a better entering variable, or, at least an entering variable as good as the one generated by 

single-column generation.

In addition, it is noted that the RMP has a fixed size, i.e., whenever there are new 

columns generated as the entering columns, there will be the same number of columns

5For steepest descent pricing, the best entering variable is the variable corresponding to the most negative 

reduced cost.
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dropping from the current basis of the RMP. Based on different ways of dealing with the 

“leaving” columns, there are variants of the Dantzig-Wolfe decomposition algorithms. In 

Dantzig and Thapa (2002), two variants that are discussed retain each “dropped” (non- 

optimal) column as a supplementary column in the current RMP until the problem size 

reaches some specific limit of the computer memory. Our strategy to treat the “dropped” 

columns is different from those two variants in that the fixed number of columns (i.e., 

m0 +  1 in single-column generation and m 0 + p  in multi-column generation) for the RMP 

is not related to the memory limit. At this point, a subset of the columns that are priced out 

as the most unfavorable (with most positive objective function values) is dropped from the 

current RMP. If the computer memory allows, by incorporating either of the two variants 

discussed above, computational efficiency enhancement can be observed for the multi- 

column generation technique discussed in the previous section.

2.3 Complexity Study

The computational efficiency of a coordination strategy is a key factor in determining 

the viability of using coordinated decentralized optimization approaches in industrial 

applications. In the following sections, we evaluate the computational efficiency of the 

Dantzig-Wolfe decomposition algorithm through an empirical investigation of complexity.

Without loss of generality, we consider a large-scale block-angular LP problem with p 

subproblems in its standard form

max
i

subject to

A i x i  =  b o (2-26)
i

B &  =  hi (2.27)

Xj >  0  i =  1 ,2 ,  . . . , p  (2 .28)

where vectors x* (n, x 1), b, (m* x 1), b 0 (m 0 x 1), c, (n* x 1), and matrices A* (mo x rii),

Bj (rrii x rii) are specific to subproblem “i”.
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Computational complexity is the study of determing the cost of solving a numerical 

computing problem using a scientific algorithm. In this work, the cost of the proposed 

Dantzig-Wolfe decomposition approach can be interpreted as the required arithmetic or 

other computational operations6.

2.3.1 Theoretical Analysis

Although the computational performance of an algorithm can be measured in several ways, 

the “worst-case” behavior and “average-case” behavior are two typical measures (Nash and 

Sofer, 1996).

Worst-case Behavior

Unlike a complete enumeration approach, the process of coordination can be viewed as a 

directional evaluation of subproblem extreme points in the RMP. When the multi-column 

generation technique is incorporated into a coordinated optimization scheme, shown in 

Figure 2.2, the RMP (coordinator) will evaluate a new set of p extreme points submitted 

by each subproblem at every iteration. Note that the new set of p extreme points in black 

(in the left ellipse of RMP rectangle frame) is not generated by an arbitrary combination 

but under the direction of coordinator (RMP). In Figure 2.2, the (m0 +p) extreme point set 

in gray (in the right ellipse of RMP rectangle frame) is associated with the RMP optimal 

basis at the previous coordination iteration. The p point set is a new set of extreme points 

submitted by subproblems at current iteration, and iVj is the number of extreme points of 

the ith subproblem feasible region.

The worst-case behavior analysis depends on the LP techniques that are used for 

solving the RMP and subproblems. The worst-case behavior of Simplex methods is 

non-polynomial; whereas, the interior point methods are polynomial time algorithms. If 

Simplex methods are used and we take its worst-case performance, the Dantzig-Wolfe 

decomposition algorithm cannot be a polynomial time algorithm. Even though each 

subproblem can generate an (optimal) extreme point in polynomial time, using interior

6In this work, the defi nition of an arithmetic operation, such as an addition or a multiplication, is applied 

to two real numbers.
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m„+P

RMP

Sub

Figure 2.2: Worst-case behavior

point methods (IPM), it may take exponential time to get all the extreme points for a 

subproblem. Note that each subproblem has m l constraints and rii decision variables. 

Thus, the number of extreme points can be as many as the combination niCmi. Therefore, 

in the worst case, whatever methods are used to solve either RMP or subproblems, the 

coordination process might theoretically evaluate every combination of the subproblem 

extreme points. Then, worst-case behavior analysis for Dantzig-Wolfe decomposition 

implies that it may not be a polynomial time algorithm.

Usually, only when the worst-case behavior accurately reflects the average-case behavior 

of an algorithm, is it used to provide an upper bound of the cost of solving a problem (Nash 

and Sofer, 1996). For example, the worst-case performance of interior point methods 

(IPM) gives a rather tight upper bound; however, a worst-case analysis does not reflect 

the observed performance of the Simplex method (Chvatal, 1983; Nash and Sofer, 1996). 

Since average-case behavior is more relevant for our work, average-case performance will 

be emphasized here.
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Average-case Behavior

Considering the coordination mechanism discussed in the previous sections, the overall 

complexity for the decomposition strategy can be expressed as:

p
T  =  {T (RM P)  +  T (Spi)} x C C N  (2.29)

1=1

where T  respresents the number of arithmetic operations for solving the LP problem, and 

the communication cycle number (CCN) is used to distinguish the number of Simplex

iterations from that of coordination iterations (the number of times to solve the RMP).

Thus, the required arithmetic operations are attributed to two parts: the operations for 

solving the subproblems and the RMP in a single communication cycle, as well as the 

number of communication cycles.

If we define the first part as the non-coordination complexity:

p
T  (NonCo) = T  (RM P) + ] T  T(SF4) (2.30)

i= 1

the overall complexity can be expressed as

T  =  T(NonCo) x C C N  (2.31)

In the Simplex method, for an LP problem with rh constraints and n variables in standard 

form, the cost of solving one iteration is 0(m n)  for Gaussian elimination plus 0 (m 3) 

arithmetic operations for periodic re-factorization of the basis matrix7, thus the arithmetic 

operation needed in one Simplex iteration is 0 (m 3+m n) (Nash and Sofer, 1996). Here, we 

consider the average-case performance of Simplex method8 and take the average number 

of Simplex iterations as 0{fh  +  n) as in Andrei (2004). Therefore, the average behavior 

bound to be used is 0 (m 4 +  hfh2 +  m3n +  h2m) for the Simplex method, which shows 

polynomial time complexity. For the LP problem described in (2.26) to (2.28), we can

7The 0( )  notation for a given function g(n) is given as 0(g(n))  =  { /(n ) : 3 a+ and n f  such that 0 <

f (n)  <  ag(n) for all n >  }.
8The observed scaling behavior of Simplex method is between fh and 3rh (Nash and Sofer, 1996).
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derive the non-coordination complexity from:

28

T (RM P) e  0 (Mq +  N qMq +  MqN0 + NqM0) (2.32)

where Mq =  mo +  p, N0 = m 0 + 2p

and

T (SPi) £ 0 ( m t+ n ir r f+  m?ni + n?mi) i = l ,2 , . . . ,p  (2.33)

Since the above numbers of arithmetic operations are all polynomial in corresponding m  

and n, the complexity of the non-coordination computation in (2.30) can be expressed

as a polynomial with respect to the number of constraints and decision variables. In

other words, the non-coordination arithmetic operations T(NonCo) can be computed very 

efficiently if we consider the average-case behavior of Simplex method.

The other part of the complexity analysis deals with the communication cycles. To our 

knowledge, there is no similar analysis in the literature and therefore resort to a study of 

the average behavior of CCN via a comprehensive empirical study. Next, empirical studies 

will be performed to investigate the computational complexity and scaling behavior of the 

Dantzig-Wolfe decomposition algorithm.

2.3.2 Empirical Studies

In last section, T  represents the number of arithmetic operations, so equation (2.29) is 

used to express the theoretical (average) complexity of the algorithm (i.e., it is assumed 

that for each iteration the computational effort needed is in the same order); however, in 

the computational studies, t  in equation (2.34) acts as an indicator and measurement of 

the complexity. So, instead of using the multiplication of CCN, the “actual” computing 

time at each iteration is summed up. For analysis of the computational complexity of the 

decomposition algorithm, since the algorithms are implemented on a sequential machine, 

w e m ay express the overall com plexity in terms o f  computational time:

CCN p
t  =  i*(RM P) + j ^ t  (SPi)} (2.34)

i—1
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where t  represents the total computational time to solve a problem. Through 

the comparison between the computational time of each subproblem and the total 

computational time, we can identify and focus on the “bottleneck” subproblem, which 

may be the largest in dimension or hardest to solve.

Similarly, if we denote the non-coordination computational time as:

v
t  (NonCo) = t  (RM P)  +  ^  t(SPj) (2.35)

i=i

and assume a distributed/parallel computing environment, for example, one CPU for each 

subproblem, then we have the equivalent computational time (parallel computing):

Such a distributed computing environment coincides with what is encountered in current 

plant-wide decentralized MPC applications. In this case, it may be desirable to balance the 

computational load on each computing node because the non-coordination computational 

complexity ( te9„) relies heavily on the largest subproblem. We will reemphasize this 

point in next section. Then, the computational time within a decentralized computing 

environment can be expressed as:

Next the focus is on the analysis of CCN, where the relationship between CCN and the 

characteristic parameters of the LP problems such as m 0, p, and | / j |  =  (m* x  n*) is to 

be determined. Note that, each parameter may have physical meaning in real systems. For 

instance, in plant-wide MPC coordination, m0 may reflect the density of interactions among 

operating units; p could be the number of decentralized MPC controllers or distributed 

industrial computers; while |/,| can represent the size of the control problems handled by 

an MPC subsystem. Moreover, the influence of the relative subproblem ratio (RSR), which 

is defined as RSR =  {max|~|, i , j  =  1,2,..., p], will also be studied. The RSR gives some 

idea on the computational load balance throughout the distributed computing network.

In the following Monte Carlo simulations, besides the CCN, the computational efficiency 

and scaling behavior of Dantzig-Wolfe decomposition will also be investigated by

t  eqv(NonCo) = t(R M P )  +  max?=1{t(SPi)} (2.36)

CCN

t'eqv ~   ̂  ̂^ eqviN O T lC o} (2.37)
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comparing the performance between the decomposition algorithm and centralized LP 

solvers on the platform of MATLAB®. In both solvers, ILOG® CPLEX 9.0, which invokes 

the dual Simplex algorithm by default, is used to solve all LP problems. In our study, we 

focus on the average behavior of different optimization strategies in solving the problems 

with the following assumptions:

1. No cycling: many techniques can be applied to efficiently deal with cycling.

2. No degeneracy: when degeneracy occurs in practice, it can be well handled using 

techniques such as perturbation techniques in Simplex method.

3. The studied problems have bounded feasible regions and optimal solutions.

Due to the random nature of Monte Carlo simulation, we would like to acknowledge that 

there is possibility that an “average-case” problem may not be represented in our test set.

The test problem instance generation scheme is discussed in Appendix A. 1.1. It 

randomly generates a set of LP problem instances with block-angular structure. We start 

from a reference problem model, whose problem size and structure should be a good 

reference for the comparison experiments, i.e., we can observe algorithm performance 

changes when we change the problem with respect to the reference model. With some 

preliminary tests, we choose the following set of parameters as the reference problem 

model:

{p = 17, mo =  30, rrii =  40, =  30 i =  l, 2, ...,p} (2.38)

Note that the reference problem has subproblems of identical size, i.e., the problem is 

thus a “well-balanced” decomposable problem with R S R  = 1. We also assume that each 

subproblem has been allocated to a separate distributed CPU. Therefore, the equivalent 

computational time t eqv for the decomposition algorithm is estimated by summing up 

the time for solving the master problem and the most difficult subproblem, assuming a 

distributed com putational environment. In the M onte Carlo simulation for each scenario, 

the number of problem instances is 200 x 5 =  1000, i.e., for each scenario, five runs of 

simulation are performed and each run solves 2 00  problem instances generated randomly.
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Scenario 1: We fix p and |/.;|, change m0 (see Appendix A. 1.2). In this case, we can 

study the performance of decomposition and coordination with respect to the dimension of 

linking constraints in equation (2.26).

CCN vs. Problem size

S25

S  15

Number of Linking Constraints

Figure 2.3: D-W decomposition: CCN vs. number of linking constraints

Figure 2.3 shows that the CCN increases almost linearly with the dimension of linking 

constraints increases. In Figure 2.4, when the number of linking constraints is small, 

the decomposition algorithm gives comparable performance to the centralized LP solver. 

When the number of linking constraints increases, the computational performance gets 

worse. This shows the computational complexity of the decomposition algorithm has 

strong dependence on the dimension of linking constraints.

Scenario 2: For fixed p and mo, we change subproblem size |/j| by simultaneously 

changing m* and n* (see Appendix A. 1.2). In this case, we study the algorithm performance 

with respect to subproblem sizes.

Figure 2.5 shows a rather surprising result. Intuitively, one may think that the CCN 

would increase when subproblem size increases, because the overall problem gets bigger. 

By analogy to the coordination of plants in a large company, larger plant decision proposals 

are usually less sensitive to coordination and thus do not tend to change dramatically. In 

such a case, the central planning board may end up with less coordination iterations. Since 

the solution of a larger subproblem is more time consuming, Figure 2.6 shows an increase in
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Figure 2.4: D-W decomposition: computational performance vs. number of linking 

constraints
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Figure 2.5: D-W decomposition: CCN vs. subproblem size
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Figure 2.6: D-W decomposition: computational performance vs. problem size

the computational time of Dantzig-Wolfe decomposition algorithm, but its performance is 

much better than the centralized LP solver. One extreme case is that the subproblems have 

infinite size, then the linking constraints are negligible and the LP problem is essentially 

a (fully) decentralized problem, which requires no coordination (i.e., C C N  —> 0). In 

addition, as the linking constraints contribute much less than the subproblems to the overall 

problem size, the changes of overall problem size reflect the changes of subproblem size. 

Thus, the overall problem coefficient number is used in the figures.

Scenario 3: We keep m0, m, and n* constant, and change the number of subproblems 

p (see Appendix B). In this case, we investigate the performance of the coordination 

algorithm when more and more subproblems are integrated into the coordination system, 

assuming a rather well-balanced subproblem computational load.

Figure 2.7 shows that the number of subproblems p slightly influences the coordination 

complexity. When the number of subproblems increases, there is a minor increase in CCN. 

Similarly, in Figure 2.8, the number of subproblems slightly influence the computational 

performance when distributed computing environment is considered. In other words, 

the incorporation o f  a sim ilar-size subsystem  does not degrade the com putational 

performance too much, which also indicates the good scaling behavior of the Dantzig- 

Wolfe decomposition algorithm for our class of problems.
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Figure 2.7: D-W decomposition: CCN vs. number of subproblems
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Figure 2.8: D-W decomposition: computational performance vs. number of subproblems
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Scenario 4: We fix ra0, X X = i and S L i  i-e->we fix the overall problem size, we 

can study the influence of the relative subproblem ratio (RSR). In this case, we change p 

by combining subproblems into groups (see Appendix B) according to different partition 

patterns of the original LP problem. For example, when R S R  = 4, the original 17 

subproblems in the reference problem can be combined into a set of subproblems which 

have a problem size ratio (4 : 4 : 4 : 4 : 1} (pattern 1) or {4 : 1 : ... : 1} (pattern 2). 

The above patterns reflect two typical situations in which we have a smaller subsystem or 

a larger subsystem compared with others.

In Figure 2.9, the CCN of both cases is monotonically increasing as the RSR increases; 

while in Figure 2.10, the computational time also increases as the RSR increases. It should 

be noted that there are more subproblems in pattern 2 than pattern 1. When we have more 

subproblems, more vertices from subproblems can be incorporated into the RMP, thus a 

faster convergence is expected, i.e., a smaller CCN in pattern 2. In addition, as an identical 

CPU is assumed to be allocated to each subproblem, the number of CPUs, p0, corresponds 

to the number of resulting subproblems. We can see that even for the same LP problem, 

different decomposition patterns lead to different computational performance. Moreover,

-fi-dw -m ulti-I 
18- dw-multj-'

19

a I____________ i------------------- 1------------------- 1------------------- 1------------------- 1------------------- 1------------------- 1-------------------
0 2 4 6 8 10 12 14 16

Relative Subproblem Ratio

Figure 2.9: D-W decomposition: CCN vs. RSR
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Figure 2.10: D-W decomposition: computational performance vs. RSR 

if we define

maxf°1t(5u6;) 
subm (Subi) { )

as a quantity that represents the computational time dominance of the largest subproblem,

and
P0

t (Suk) = t (NonCo) -  t (RM P)  (2.40)
i= 1

can be obtained from our simulation.

Shown in Figure 2.11, for the two decomposition patterns, the computational time taken 

by the largest subproblem dominates the computational time for solving subproblems when 

RSR increases. This also addresses the reason we should balance the computational load 

on each computing node in our experiment design.

Remarks: Although the complexity study has not yielded an accurate mathematical 

expression for the computational complexity, it does provide new insight and reveal some 

inherent features of the complexity of Dantzig-Wolfe decomposition algorithm. Moreover, 

this study also provides some guidelines for coordination system design with Dantzig- 

Wolfe decomposition principle. Advantages over a centralized LP solver are gained by 

using the decomposition algorithm to solve an LP problem, which has the following 

properties:
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Figure 2.11: D-W decomposition: computational dominance of Max subproblem

• a block-angular structure;

•  a large scale;

•  relatively low-dimensional linking constraints;

• relatively high-dimensional subproblems;

• well-balanced computational load;

• large number of subproblems, if distributed computing power is available.

In many industrial applications, the plant-wide MPC target calculation problem can be 

formulated as an LP problem having most of the above properties, and as a result, can be 

efficiently solved by Dantzig-Wolfe decomposition.

2.4 Chapter Summary

In this chapter, the best available decomposition strategies for solving large-scale linear 

programming problems have been investigated. In particular, by taking advantage of 

distributed computing environment, the Dantzig-Wolfe decomposition is very suitable for 

solving high dimensional linear programming problems with block-wise structure.
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With a well-designed structural complexity analysis approach, new insight into the 

relationships between computational performance and problem structural parameters was 

gained through theoretical analysis and a comprehensive empirical study of the scaling 

behavior of Dantzig-Wolfe decomposition algorithms. The complexity study shows 

that, for large-scale linear programming problems with special structure, the Dantzig- 

Wolfe decomposition algorithm can outperform centralized optimization solvers when 

appropriate implementation is conducted. Moreover, the complexity study also provides 

guidelines for the practical application of the decomposition and coordination methods.
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“Truth is ever to be found in the simplicity., and not in the multiplicity and 

confusion o f things.”

-  by Sir Isaac Newton

Decomposition Strategies for Large-Scale 

Quadratic Programming

This chapter discusses decomposition and coordination strategies for solving large-scale 

quadratic programming (QP) problems, which represent a typical class of optimization 

problems in industrial applications, such as process design, operations, and control. The 

focus of this chapter is on the auction-based (or price-driven) coordination methods (Jose 

and Ungar, 1998a), which was originally developed for solving general nonlinear program­

ming problems. With appropriate partitioning, a large-scale QP problem can be equiva­

lently converted into a set of independent subproblems linked by a coordination problem. 

To improve the computational efficiency of the price-driven coordination method, an ef­

ficient price adjustment scheme is proposed by using Newton’s method to take advantage

39
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of the sensitivity information from subproblem solution. The proposed price adjustment 

scheme can significantly improve the computational efficiency of the price-driven coordi­

nation methods when solving large-scale QP problems. The structural complexity analysis 

is used to gain more insight into the computational performance and scaling behavior of 

the proposed price-driven coordination method. 1

3.1 Background

Large-scale quadratic programming problems are frequently encountered in industrial 

applications. In model predictive control, the steady-state target calculation and dynamic 

optimization problems can be formulated as quadratic programming (QP) problems (Ying 

and Joseph, 1999; Qin and Badgewell, 2003). In addition, most nonlinear programming 

problems in process optimization are solved by sequential quadratic programming 

(SQP), in which a quadratic programming subproblem is solved iteratively (Edgar and 

Himmelblau, 2001). Further, many parameter estimation, resource assignment problems, 

etc., take the form of QP problems. Therefore, decomposition strategies for efficiently 

solving large-scale QP problems may have potential for use in a wide range of operations 

optimization problems.

There are several existing decomposition methods and their variants can be used for 

solving large-scale quadratic programming problems. These decomposition methods share 

a basic mechanism: the original problem is decomposed into smaller subproblems, which 

are coordinated by a so called “master problem”.

3.1.1 Decomposition Strategies for Nonlinear Programming

The Dantzig-Wolfe method can be extended to solve convex nonlinear problems (Molina, 

1979; Whinston, 1966), among which QP problems are the simplest. This approach 

has very elegant economic interpretations and can be efficient for block-wise small to 

medium scale problems. The Benders algorithm was also generalized to allow the

'Part of this chapter has been published in Cheng et ol. (20056; 20066)
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solution of separable nonlinear problems (Molina, 1979). Pigot (1964) published a 

“double decomposition method” that could be thought as a combination of the Dantzig- 

Wolfe and Benders approaches to give upper and lower bounds of the optimal solution, 

but its implementation is complicated. After the publication of article “Two Level 

Planning” (Komai and Liptak, 1965), more interest has developed in the decomposition of 

a mathematical programming problem. For example, Sanders (1965) published a method 

of primal decomposition of nonlinear programming problems by means of the Lagrange 

multipliers. Recently, an auction-based/price-driven coordination method was developed 

by Jose and Ungar (1998a; 19986) on the basis of the work of Jennergren (1973). This 

method can handle situations in which the Lagrangian-based method may be inadequate, 

by using so called “slack resource” auction.

Because of the elegance of the economic interpretation of the Dantzig-Wolfe 

decomposition, and the more recent price-driven coordination method in plant-wide 

optimization, this chapter concentrates its discussion on two methods: an extension of the 

Dantzig-Wolfe decomposition method (Whinston, 1966) and a price-driven coordination 

method.

3.1.2 Extension of Dantzig-Wolfe Decomposition

The Dantzig-Wolfe decomposition for solving large-scale LP problems can be naturally 

extended to solving large-scale QP problems, as QP problems can be converted into 

a form that can be solved by the Simplex method (Panne, 1975). By applying the 

optimality conditions, a QP problem can be transformed to a linear complementarity 

problem. The linear complementarity problem consists of a system of linear equations 

and complementarity equations. In the Simplex method, the nonlinear complementarity 

equations can be handled by a complementary pivoting rule.

The extension of Danzig-Wolfe decomposition to solve large-scale QP problem is 

described in Whinston (1966). This decomposition algorithm arises naturally where the 

coefficient matrix of the constraints has a block-wise structure, and thus a large problem 

can be decomposed into a collection of smaller subproblems. These subproblems are then 

coordinated by using linking constraints. To illustrate the idea of complementary pivoting
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for the extension of Dantzig-Wolfe decomposition, a QP problem with two subsystems is 

considered as follows:

m a x /(x i ,x 2) =  c fx i +  c;fx2
x l,x 2

A 1X1 +  A 2x2 =  b 0

B 1X1 <  b i (3.2)

(3.1)

B 2x2 <  b 2 (3.3)

where x i and x 2 are two vectors of decision variables, b 0, b i , b 2 are the corresponding 

RHS of the linking constraints and the subproblem constraints respectively, ci and c2 are 

cost coefficients in the objective function associated with decision variables Xi and x2, and 

matrix Q is a symmetric positive semidefinite matrix. The convex sets described by the 

inequalities (3.2) and (3.3) are assumed to be bounded to simplify the discussion 2.

The above QP formulation can be converted into its equivalent master problem (MP) 

by using the theorem of convex combination (Lasdon, 2002). Therefore, using the convex 

combination in equation (2.5) and (2.6) in Chapter 2 and substituting them into inequality 

(3.2) and (3.3) of the original problem, the following master problem can be obtained:

where x*i and xj 2 represent the set o f  extrem e points o f  the feasible region for subproblems 

1 and 2 respectively, and A* and (3j are the non-negative coefficients in the convex

2 Without this assumption, one can follow the argument developed by Dantzig and Wolfe in (1960)

max

(3.4)

(3.5)

\  > 0 0j > 0
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combination. The transformed master problem is still a concave programming problem 

which has been proved in Whinston (1966).

The master problem can be converted into a system of linear complementarity equations 

by applying the optimality conditions. The only nonlinear constraints are shown in equation

(3.6):

UiXi =  0 Wj(3j = 0 fo ra lli,j (3.6)

where ut and Wj are the Lagrange multipliers for the non-negativity constraints for A* and 

/3j. The above linear complementarity problem can be solved using the Simplex method 

with some modifications. At the optimum, the complementarity constraints have to be 

satisfied. In the Simplex tableau, either it* and Wj or A* and f3j are in the basic set. Through 

a complementarity pivoting rule, the variables entering and leaving the basic set are chosen 

to make sure that the complementarity constraints are satisfied.

The extension of Dantzig-Wolfe decomposition, which incorporates the complementary 

pivoting rule for solving large-scale QP problems, was discussed in Whinston (1966). The 

procedure can be briefly described as follows:

Step 1. Determine the most negative Ui or Wj variable by solving the subproblems, and the 

algorithm will terminate when no negative variable can be found.

Step 2. Introduce into the basis the corresponding complementary variable A* or j3j of the 

priced-out variable determined in Step 1. When Simplex pivoting is performed, the leaving 

variable should be chosen from the Xi or f3j in the basis and the variable or Wj designated 

in Step 1. If the variable designated in Step 1 is removed, return to Step 1; otherwise, go 

onto Step 3.

Step 3. Introduce the Ui or Wj variable into the basis that is complementary to the leaving 

variable in Step 2. Carry out another Simplex pivoting. The leaving variable is then chosen 

from the A, or /3j in the basis and the variable designated in Step 1. If a Aj or is chosen 

to be leaving, repeat Step 3; otherwise, go back to Step 1.

The major steps in solving large-scale LP and QP using Dantzig-Wolfe decomposition 

are almost the same except those described above. In the above algorithm, we are either 

introducing a A* or f3* variable complementary to u* or w* designated by Step 1 or some 

or Wj variable. Since we can determine the tableau elements of the particular generated
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column in the basis at any iteration, all the variables in the basis can be determined 

throughout the algorithm.

3.1.3 Discussions

For the extension of Dantzig-Wolfe decomposition algorithm discussed in the previous 

section, it is observed that the dimension of the restricted master problem (RMP) may 

increase as the coordination process continues, and to our knowledge, no attempt has 

been found to maintain a fixed RMP size as in the Dantzig-Wolfe decomposition for LP 

problems. Based on some preliminary computational studies, Figure 3.1 illustrates the 

worst case of this extension of Dantzig-Wolfe decomposition for QP problems, where 

the dimension of RMP can contain as many as the number of total extreme points of 

subproblems. For real-time solution of large-scale QP problems, this can be a serious 

barrier to a practical implementation of this extension.

Dimension of MP

D-W Ext. for Q P

D -W for LP

Iterations

Figure 3.1: Limitations of D-W decomposition for QP

Because of the limitation of the extension of Dantzig-Wolfe decomposition, we turn to 

auction-based (or price-driven) coordination m ethod for solv ing large-scale QP problem s 

with the described separable structure.
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3.1.4 Price-driven Coordination Methods
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The price-driven coordination method discussed in Jose and Ungar (1998a; 19986) can 

be used to solve resource distribution or auction problems. In their method, a large-scale 

optimization problem is decomposed into subproblems by relaxing the resource constraints 

which connect the subsystems together (the linking constraints in our previous discussions). 

The general large-scale nonlinear optimization problem considered here is:
n

m a x  V ' f i ( x j )
i

subject to:
n

2 > ( x , ) < E  (3 .7 )
i

Xi G X i

where Xj is an rij-vector of decision variables, X t is the feasible solution set of the ith 

subproblem, fj is the objective function for subproblem i, Ri is an m-vector of resource 

demands for subsystem i, and R  represents the availability of common resources. The 

subproblems for each unit are re-formulated as follows:

m a x  f i ( x j )  -  ( p  +  q R i ( - K i ) ) T R i { s . i )  ( 3 .8 )
XiGXi

where p  G R™ is a given price vector and q is a small positive scalar3. It was shown in Jose 

and Ungar (19986) that if the subproblems have concave, continuous objective functions 

and compact, convex feasible sets, there exist equilibrium augmented prices in the form of 

p  +  qR that optimally coordinate the subproblems for given resource availability R. For a 

given q, the equilibrium prices satisfy the nonlinear complementarity problem (NCP):

A(p, q) =  ^ 2  R i(p , q ) ~ R <  0
i

P T ( A ( p ,  q)) = 0  (3 .9 )

p  > 0

3For example, the small positive scalar q is chosen as 0.01 in Jose and Ungar (19986) for solving

linear programs (as a special case), and can be set to 0 for solving nonlinear programs (including quadratic

programs). More detailed discussion can be found in Jose and Ungar (19986).
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where A (p, q) £ R m is the corresponding excess resource demand ( i.e., the difference 

between the total demand of all subproblems and the plant-wide resource availability). 

The optimum of problem (3.7) can be obtained by solving the subproblems as given by 

(3.8) independently, given the equilibrium prices from problem (3.9). The mechanism for 

adjusting p  until it satisfies problem (3.9) can be considered as the coordination in price- 

driven approach.

3.2 An Efficient Price Update Scheme

In many applications, the linking constraints take the form of (separable) equality 

constraints4. For example, the availability of (common) strategic resources, such as 

gasoline and ammunition, are the linking constraints and usually limited and scarce in 

most military resource allocation problems. When the linking constraints are equality 

constraints, which are frequently encountered in applications, the NCP in Equation (3.9) is 

simplified to:

A(p,<?) =  0 (3.10)

Therefore, the price vector can be adjusted by numerically solving a system of equations.

3.2.1 Newton’s Method

For well-posed problems of the form given in (3.10), Newton’s method can be used. Then 

during an iteration, the coordinator adjusts prices as follows:

p ( f c + l ) = p ( f c ) - a J _1A(Jfc) (3.11)

where A  =  A (p, q) for simplicity, a  is the step size, and

dA (k) _  ^  dRj(k)
dp(k) ^  dp(k) K }

4Otherwise, an NCP given in (3.9), which is generally more diffi cult, needs to be solved through NCP 

algorithms such as Non-smooth Newton Methods, Smoothing Methods, and Jacobian Smoothing Methods 

discussed in Kanzow and Pieter (1999)
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assuming the matrix in (3.12) is invertible. For the purpose of explanation, here we define 

Ji as the component of the overall Jacobian matrix J , which corresponds to subproblem 

i, i.e., J  =  AiJ»- Figure 3.2 explains the major information exchange between the 

coordinator and subsystems.

The coordination process is similar to setting up the prices for selling common resources 

to different consumers. The coordinator sends a price vector that contains pricing 

information for the resources to every subsystem. After solving their local optimization 

problems, the subsystems inform the coordinator of the resource demands (/?,) at current 

prices and their responses to the price change (dRi/dp ). The coordinator then collects 

these two pieces of information to evaluate A  and d A / dp, and the prices are updated using 

equation (3.11). This process of information exchange continues until the total demand is 

equal to overall supply, i.e., A  =  0.

3.2.2 Jacobian Evaluation

The sensitivity dRi/dp  of the local subproblems can be obtained by standard post­

optimality analysis techniques (McCormick, 1983; Wolbert et al., 1994). In this work, 

the modified QP subproblems have the form:

coordinator

subproblem 1 subproblem n

p ( k ) / A
/  /dRAi

/ R , ( k )  Rn( k ) \

dRy (k)  ■■■ dRn(k)
dp(k) dp(k)

Figure 3.2: Infomation Flow in Price-driven Coordination

min (cf -  pTAj)xj
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subject to:
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B f x i =  b f  (3.13)

BineqXi < b f eq

where R ifa )  =  AfXj, and

E dRi ( k )  _  dxi ( k )

t " w  v

where A 4 is the coefficient matrix in the linking constraints corresponding to the variables 

of the ith subproblem. Following the standard approach to sensitivity analysis, a 

Lagrangian function is firstly constructed for problem (3.13):

L ,(* . f t .P )  =  ffx , -  ix f f l .x .  +  Af (B fx , -  b ? )  -  p f  -  b;™4) (3.14)

where

W  = CI  -  Pr A i and H* =  Q* +  q A f  A* (3.15)

The first-order optimality conditions are:

V Xi£ i ( x i ,  A i)A Ht, P)  =  l -  H iX j +  ( B ^ f A ,  +  U K ^ i  =  0

^i(xi, p) =  B®9x, — b®9 =  0 (3.16)

Agi(xi, p ) = ^ B r 9xi - Ab r <?= o  

/Si(x i» p) +  I^ i = /B-ne9Xj -  /b-neg +  /o-j =  0

The vectors A and Afi are the Lagrange multipliers for the equality constraints and active 

inequality constraints in problem (3.13), respectively, and the vector i <t  is the slack 

variables corresponding to the inactive inequality constraints. The subscripts A  and I  

indicate the active and inactive status of the inequality constraints.

The sensitivity matrices can be obtained by differentiating the optimality conditions

in (3.16). One may notice that, we have extended the sensitivity analysis derivation in

Wolbert et al. (1994) by including the sensitivity of slack variables of the inactive inequality
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constraints. Then, we obtain a system of equations as follows:

49

(3.17)

^ 7 x i p 7 - ' i <̂ P  T - V Xi P j  d \i  +  y Xt A g i  d^Pi — 0 

VXiFjdxj +  VpFjdp =  0

VXiAgidXi +  V pA gidp =  0  

Vxi/gi^X j +  V p /g jd p  +  d z tTi =  0

For QP problems, the derivatives in (3.17) are constant matrices. Then the sensitivity 

matrix, dx,/dp, can be obtained by solving the following system of linear equations 

assuming that the matrix T, is full rank:

r,

V p X j A f

V pAj 0

Vp A P i 0

7̂ p i c r  j 0

(3.18)

where

r<

Qi +  Q AT Ai B f r A B ineqT 0

0 0 0
-ryineq

A & i 0 0 0
-ryineq 0 0 I

(3.19)

By solving the equations in (3.18), J* =  can be obtained straightforwardly. 

Therefore, the overall Jacobian matrix J  =  J2i A iJ; can be calculated for updating the 

price vector p  in equation (3.11).

3.2.3 Step Size Determination

The Jacobian matrix in (3.12) is valid only when there is no active set change; however, 

there is no guarantee that the active set for any subproblem w ill not change during a 

solution. Therefore, a full Newton step is taken only when no active set change in each 

subproblem is identified. Otherwise, a step size a, less than one, should be taken.
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The largest step size that could be taken before a change in active set occurs can be 

determined from the sensitivity information. A trust region specification is performed 

to identify the smallest step size a  that causes a change to current active set in each 

subproblem. When there is an active set change, one of the slack variables and Lagrange 

multipliers in the subproblems will become zero. The slack variables or Lagrange 

multipliers, denoted by 0, as a function of p  is given as follows:

0 =  0*(p(fc)) +  Vp0 (p -p (fc ))  (3.20)

Then equation (3.11) can be substituted into equation (3.20) to express 0 in terms of 

a. We can equate 0 to 0 for every slack variable and Lagrange multiplier for each 

subproblem to determine the value of a  which makes individual constraint change its 

activity5. The smallest positive a  will be taken as the step size candidate for the current 

iteration. If it is less than 1, it will be chosen as the step size; otherwise, a full Newton’s 

step is taken. Although this procedure is not shown in Figure 3.2, the above calculation 

can be implemented in the subproblems as a  can be determined independently for each 

subproblem.

3.2.4 Algorithmic Statement

There are two phases in one coordination iteration. Each phase contains an information 

distribution-gathering procedure, in which information exchange happens between the 

coordinator and the subsystems. The price-adjustment algorithm is summarized as follows:

• Step 1 (phase 1): Trust region specification determines a nonnegative step size to 

update the prices in equation (3.11). Then the updated prices are distributed to 

subproblems. For initialization, the prices could be set to zero or some other initial 

guesses.

• Step 2 (phase 1): Each subproblem is independently solved based on current price 

information, and its solution x» and sensitivity information VpAj, Vp£i,;, and Vpcr, 

are submitted to the coordinator.
5We assume that no degeneracy happens at the optimum, otherwise, the user should re-formulate the 

problem.
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• Step 3 (phase 2): The coordinator calculates the excess demand A  and determines 

6 using equation (3.18) and (3.12). Then the plant-wide Newton direction J _1A  is 

distributed to the subproblems. The whole procedure is terminated when the excess 

demand reaches zero.

•  Step 4 (phase 2): By combining the sensitivity information recorded in step 2 and 

the plant-wide Newton direction, an active set change identification is performed 

independently for each subproblem. Then a set of allowable step size {a*} is 

submitted to the coordinator.

With the proposed price-update scheme, the auction-based coordination method may 

exhibit computational efficiency in solving a class of QP problems with block-wise 

structure in the local constraints, separable objective function, and linking equality 

constraints.

3.2.5 Discussions

To illustrate the improvement that we have made to the price-driven coordination method, 

in this discussion, the proposed price-update scheme is briefly compared with the P-control 

price-update scheme discussed in Jose and Ungar (1998ft).

In the P-control approach, the price vector is updated by:

p(fc +  1) =  p  (k) + kcA (k) (3.21)

Consider the following QP problem:

x  T r \  T  m m  - x  Q x  — c x

subject to:

A x  <  b (3.22)

x  >  0
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where
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2 5 7 3 14

3 5 3 4 10

1 3 0 0
b  =

6

2 1 0 0 5

0 0 1.5 4 12

0 0 2 1 6

(3.23)

Q =  diag{2,4,3,8} cT =  [2 5 6 8]

The problem can be decomposed into two subproblems with two linking constraints. 

Table 3.1: Performance of different price-update strategies
Methods Tuning Iterations Convergence

Newton’s NA 2 Yes

P-control kc =  0.02 400 Yes

P-control kc =  0.04 139 Yes

P-control kc =  0.1 NA No

In Table 3.1, performance of these two algorithms is compared based on the number 

of iterations required to reach the equilibrium prices. Identical termination criteria and 

the initial guess p  =  0 are used in both algorithms. For this example, Figure 3.3 gives 

us a clear idea of the enhancement that has been made by applying the proposed price- 

adjustment algorithm. By using Newton’s method, the price adjustment algorithm drives 

the solution to the optimum very fast, and balances the supply and demand efficiently. It 

should also be noted that the P-control price update scheme for the given controller tunings 

yields an oscillatory trajectory when we look at the objective function value of the overall 

problem. All evidence shows that the Newton-based price-adjustment algorithm provides 

a substantially faster convergence.

Furthermore, the proposed algorithm also provides a guideline for tuning the 

proportional gain in P-control scheme. Comparing equation (3.11) and (3.21) shows that
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Figure 3.3: Convergence of different price update strategies

the proposed price-adjustment scheme adaptively updates the P-controller gain within each 

coordination cycle by setting kc = —crJ”1. Moreover, for multi-variable systems (i.e., 

multiple resources), kc is a diagonal matrix in the P-control scheme, while it is a full matrix 

in the proposed scheme.

3.3 Economic Interpretation of Coordination Mechanism

Microeconomics provides an interesting economic interpretation for the proposed 

coordination mechanism, and in particular, for the price adjustment scheme in equation 

(3.11). In this section, the single common resource case is used for the discussion (i.e., all 

the variables are scalars).

In a market, the price (p) of goods is related to the behavior of suppliers (or S(p), 
quantity of goods supplied) and consumers (or, D(p) the quantity of goods demanded. 

Standard microeconomics theory states that: as prices rise, supply will increase; as prices 

decrease, demand will increase. The equilibrium price is the price at which the demand
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and supply are balanced.
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Excess Supply

A < 0

A > 0
Excess Demand

Figure 3.4: Determination of equilibrium price from supply and demand curves

These relationships are shown in Figure 3.4, where S  is the supply curve and D is the 

demand curve. In an efficient market, supply and demand tend to be an equilibrium, which 

is denoted as point E  on Figure 3.4. This point yields the equilibrium price p*, which the 

coordinator is responsible for determing in the proposed coordination mechanism. Figure 

3.4 also illustrates two important cases: excess supply (i.e., where A < 0 and excess 

demand (i.e., where A > 0). Then the value of A, as determined in equation (3.11), can be 

interpreted as one of these two cases, prior to convergence.

When p > p*, excess supply tends to force price down; when p < p*, excess demand 

tends to force price up. Consider starting at point B  on Figure 3.4. This corresponds to 

an excess demand (i.e., more demand for resources than there is supply). If we were to 

increase the price of the resource, then demand should correspondingly decrease. As A is 

positive, the price update strategy given in equation (3.11) will increase prices, which will 

cause subproblem s to decrease their demand for com m on resources in the next coordination 

cycle. This is shown by point B 1 in Figure 3.4. In every cycle of the coordination, the 

coordinator collects the information about the behavior of consumer, Ri(p) (i.e., individual
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consumer demand) and dRi(p)/dp (i.e., response to price change or price elasticity of 

individual consumer’s demand), at the current price p from every individual subproblem. 

Then, the coordinator calculates the overall demand J2i Ri and elasticity J2i and uses 

them for price update. Subsequent coordination cycles drives the entire system along the 

demand curve toward the equilibrium price, as denoted by the points B 2, B 3 and so on. 

The techniques available in the literature and the proposed Newton-based methods for price 

updating follows this general strategy in slightly different ways.

3.4 Complexity Study

As was discussed in Chapter 2, the computational efficiency of a coordination 

strategy is a key factor in determining the viability of using coordinated decentralized 

optimization approaches in industrial applications. In this section, our interest is 

focused on investigating the scaling behavior of the price-driven coordination method via 

comprehensive computational studies, as well as a brief theoretical complexity analysis for 

the proposed price-adjustment scheme.

In this work, without loss of generality, consider a large-scale block-angular QP problem 

with p subproblems in form of:

max ^x r H x +  fTx 

s.t. y ;  AjXj = bp (3.24)
i

BjXj < b i (3.25)

Xj > 0 * =  1,2, ...,p  (3.26)

where

Qi 0 . . 0 fi X l

H  =
0 Q2 • . 0 f = f2

X  =
X 2

0 0 . • Qp k X p
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In the above, X* is a vector of n* decision variables. H  is the Hessian matrix with block- 

diagonal matrices Qj, which have a dimension of (n* x n 4) correspondingly; f  is the cost 

coefficient of the linear term in the objective function, where U is a vector of n* elements, 

b j is the RHS of dimension while b 0 of ra0. The coefficient matrices A* and B, have 

the corresponding dimension (m0 x n*) and (m* xi%i), respectively.

In this work, the purpose of computational study is to determine the cost of solving 

a class of QP problems as described above, using price-driven coordination algorithms, 

where the term “cost” stands for the required arithmetic or other computational operations 

as is discussed before. Similarly, the concepts of “worst-case” behavior and “average-case” 

behavior (Nash and Sofer, 1996) are used to measure the cost of the algorithm.

3.4.1 Theoretical Analysis

Recall the coordination mechanism shown in Figure 3.2, the computational complexity 

of the price-driven coordination method has three contributors: the complexity of 

subproblems, the complexity of coordinator’s calculation, and the coordination complexity 

which can be represented by communication cycle number (CCN). For discussions of 

the computational complexity of the decomposition algorithm, since the algorithms are 

investigated on the same sequential machine, the overall complexity can be expressed as:

Note that the complexity of the coordinator T (CoProb) is expressed differently from that 

in the Dantzig-Wolfe decomposition algorithm, where an RMP is referred to.

By following the similar convention to the complexity analysis for the Dantzig-Wolfe 

decomposition, we may have:

v
T  =  {T{CoProb) +  (SP*)} x C C N (3.28)

p

T(NonCo) = T  (CoProb) +  ^ T ( S P i ) (3.29)
i — 1

and the overall complexity can be expressed as:

T  =  T (NonCo) x C C N (3.30)
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In theory, the choice of algorithms for solving subproblems and coordinator’s problem 

(i.e., a system of equations) will not impact the coordination complexity (i.e., CCN), 

assuming different valid algorithms should be able to achieve identical6 solutions for given 

inputs. Therefore, any state-of-the-art algorithms can be chosen to serve the purpose of 

complexity analysis. Next, the complexity is studied in three parts.

On Subproblems

The subproblems that we encounter when the price-driven coordination method is applied 

to solving large-scale QP problems are smaller scale QP problems. The interior point 

methods (IPM) and active set methods are common solution approaches for QP problems. 

To our knowledge, no polynomial time algorithm proof is given in the literature for active 

set methods. For the purpose of complexity studies, interior point methods are chosen as 

the solver since we can find abundant sources of complexity analysis of IPM for QP (Nash 

and Sofer, 1996; Potra and Wright, 2000; Illes and Terlaky, 2002).

The complexity study of interior point methods for QP problems itself is a difficult topic 

in the literature. The results are usually obtained and valid for some specified assumptions 

and implementations of algorithms. This work is not intended to derive an accurate 

complexity bound, but rather to identify the key factors that can lead to a polynomial­

time or non-polynomial time price-driven coordination algorithm. We use the results from 

the literature to serve this purpose.

The interior point method uses Newton’s method in the solution of a general QP problem, 

where each Newton iteration involves the solution of a set of equations, requiring 0 (n 3) 

operations (Nash and Sofer, 1996) 7. When the Hessian matrix Q in a QP problem is 

positive-semidefinite, with an appropriately chosen starting point, the IPM can converge 

to the solution in 0 (n 2 log lf )  iterations (Potra and Wright, 2000), where p 0 is the initial 

value of the barrier parameter and e < 2~2i is the tolerance to the solution for integer data 

length L.

6 At least to some accuracy that numerically satisfi es specifi ed requirements.
7 A better bound, 0 ( n 2-5), for the cost of solving for Newton’s iteration can be found on page 181 of (Illes 

and Terlaky, 2002)
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Thus, it can be concluded that the interior point methods for solving convex QP problems 

are polynomial-time algorithms. In other words, the QP subproblems in the price-driven 

coordination method can be solved efficiently.

On the Coordinator Complexity

Recall that we have the formula (3.11) for the coordinator to update the price vectors. In 

the coordinator’s computation, there are four major computational operations:

• With the information from the ith subproblem, computing matrix inverse i y 1;

•  Obtaining ^  by matrix-vector multiplication with the matrix inverse T ”1 obtained 

beforehand;

• Calculating Jacobian matrix J by matrix multiplication J* =  A j ^  and the 

summation XX=i

• Computing the inverse of the overall Jacobian matrix J -1 and get the price vector 

updated.

It is known that matrix inversion takes more operations than matrix multiplication 

(including matrix-vector multiplication) and matrix summation. In the above four major 

operations, the matrix inverse i y 1 is associated with the largest matrices that appear in 

the above four operations. Therefore, the matrix inversion i y 1 contributes the dominant 

portion of the arithmetic operations. There are many matrix algorithms for calculating 

matrix inversion, for example, the Cholesky decomposition, the Householder reduction 

and the Winograd’s method (Kronsjo, 1987). The upper bounds of the number of arithmetic 

operations are available for most of the methods, for instance, ^  4-1.19 n 7/ 3 +  rc — O.GSn1/ 3 

multiplications and ^  +  3.75n 7/ 3 — 2 n 2 +  0 ( n 5/ 3) additions are required for Winograd’s 

method to get the inversion of an n x n  matrix. To get a general expression, which also 

serves our purpose of complexity study, we can safely say that the matrix inversion can 

be completed in 0 (n 3) arithmetic operations. It should be noted that, in the coordinator’s 

computation, the matrix inversion T”1 and matrix-vector multiplication can be combined 

and calculated with LU or Cholesky decomposition methods. Although it does not change
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the conclusion from the complexity analysis, by avoiding explicit calculation of the matrix 

inverse, the required number of operations would be less and results in some improvement 

of computational performance.

In the price-driven coordination method, for a given QP problem in (3.24) to (3.26), T , 

is an (rii +  m*) x (n* +  m,) matrix, thus it requires 0((rii + rrii)3) arithmetic operations 

to get its inversion. As long as the the number of subproblems p is finite and not very 

large8, the operations required to calculate all the matrix inverse can be expressed as 

0(p  x (max(nj +  m*)3), which again requires polynomial operations with respect to the 

problem size.

It should be noted that, being different from Dantzig-Wolfe decomposition where the 

coordinator (RMP) has a fixed size and the coordinator complexity has nothing to do 

with the subproblem sizes, the complexity of coordinator’s computation is related to the 

subproblem sizes.

On Coordination Complexity

The coordination complexity refers to the iterations of information exchanges between 

the coordinator and subproblems, i.e., it can be expressed by communication cycle 

number (CCN). To our knowledge, no theoretical results are available for the 

coordination complexity for the price-driven coordination method in the literature. One 

practical approach to investigating the coordination complexity is through comprehensive 

computational studies.

Before getting into the empirical study, let us qualitatively discuss the coordination 

complexity in the following two situations: the interior solution case (i.e., any subset x* 

of the overall solution x  lies in the interior of the feasible region of i th subproblem) and 

the boundary solution case (i.e., at least one subset Xj of the overall solution x  lies on 

the boundary of the feasible region of ith subproblem). Recall that there is an active set 

change identification step in the price-driven coordination algorithm, which determines the 

Newton’s step size.

8It is always possible to combine smaller problems into fewer bigger problems if we want to control the 

number of subproblems.
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In the interior solution case, as long as the subset x{ at j th communication cycle is in the 

interior of the feasible region of ith subproblem, the subset x j+1 at (j  +  l ) t/l communication 

cycle should be in the interior of the feasible region and a full Newton’s step can be 

taken. Intuitively, since the subproblems are quadratic programs, the Newton’s method 

can converge to the optimal solution in a few iterations, i.e., the CCN is small; however, in 

the case of boundary solution, whenever there is an active set change in the solution of any 

subproblem at j th communication cycle, the overall Newton’s step size will be chosen 

from the Newton steps {aJ | mino^, i = 1, and this will cause more iterations of 

information exchanges between the coordinator and subproblems.

In addition, common QP solvers, such as MATLAB® “quadprog”, usually find the 

optimal solution in a few iterations when the optimal solution lies in the interior of the 

feasible region, i.e., no active inequality constraints at the optimum; but take more iterations 

to find the optimal solution when the optimum lies on the boundary of feasible region, i.e., 

there are bounding inequality constraints at the optimum. Therefore, it would be interesting 

to study the computational performance of the algorithms for the two cases, respectively.

3.4.2 Empirical Studies

For analysis of the computational complexity of the decomposition algorithm, since 

the algorithms are implemented on a sequential machine, we may express the overall 

complexity in terms of computation time:

CCN p
t  =  ] T { t  (CoProb) +  (SPi)} (3.31)

i—1

where t  represents the total computation time to solve a problem. Through the comparison 

between the computation time of each subproblem and the total computational time, we can 

identify and focus on the “bottleneck” subproblem, which may be the largest in dimension 

or hardest to solve.
Sim ilarly, i f  w e  denote the non-coordination com putation tim e as:

P

t  (NonCo) = t(CoProb) +  ^  t  (SPi) (3.32)
i—l
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and assume a distributed/parallel computing environment, for example, one CPU for each 

subproblem, then we have the equivalent computation time (parallel computing):

As is discussed in Chapter 2, it may be desirable to balance the computational load on 

each computing node. Then, the computation time within a decentralized computing 

environment can be expressed as:

Now the focus is on the analysis of communication cycle number CCN. Next, we are 

trying to determine the relationship between CCN and the characteristic parameters of the 

QP problems such as m 0, p and |/,| =  ( x n*). Moreover, the influence of the relative 

subproblem ratio (RSR), which is defined as RSR =  {maxj^j, i , j  = 1,2, will 

also be studied, and this gives some idea on the computational load balance throughout 

the distributed computing network. It should be noted that, compared to the analysis 

for Dantzig-Wolfe decomposition for linear programming, the location of the optimum 

in the feasible region requires the investigation of the influence of the active constraints 

on the computational performance (especially the CCN) of the algorithm. This study may 

provide more insight into scaling issues for an optimization problem (e.g., the coordinated, 

decentralized MPC) when applying the proposed coordination algorithm.

In the following Monte Carlo simulations, besides the CCN, the computational efficiency 

and scaling behavior of the price-driven coordination method with the proposed price- 

update scheme will also be investigated. The performance of the coordination algorithm 

and the centralized QP solver will be compared within the MATLAB® platform. In both 

approaches, ILOG CPLEX 9.0 default Simplex solver is used to solve all QP problems 

and the coordinator’s problem is solved by the proposed Newton’s price-update method. In 

addition, for the purpose of comparison, we also reported the performance of CPLEX 9.0 

interior point method (IPM) solver as a centralized QP solver. In this study, the focus is on 

the average behavior of different optimization strategies in solving the problems with the 

following assumptions:

t  eqv(NonCo) = t  (CoProb) +  maxf=1{t(5,Fi)} (3.33)

CCN

t>eqv — O T lC o ) (3.34)
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1. The studied problems have bounded feasible regions and optimal solutions.

2. The problems are reasonably well scaled and no significant numerical errors will be 

encountered.

Similarly, due to the random nature of Monte Carlo simulation, we would like to 

acknowledge that there is possibility that an “average-case” problem may not be defined in 

our stochastic model.

The scheme for generating test problem instances is introduced in Appendix A.2.1. It 

randomly generates a class of QP problem instances with block-angular structure, as is 

given in equations (3.24) to (3.26). We start from a reference problem model, whose 

problem size and structure should be a good reference for the comparison experiments, 

i.e., we can observe the algorithm performance changes when we change the problem size 

and structure with respect to the reference model. With some preliminary tests, we choose 

the following set of parameters as the reference problem model:

{p =  17, m 0 = 20, m,i — 15, n* =  10 i =  l, 2, ...,p} (3.35)

Note that the reference problem has subproblems of identical size, i.e., the problem 

is thus a “well-balanced” decomposable problem with R S R  =  1. We also assume 

that each subproblem has been allocated to a distributed CPU. Therefore, the equivalent 

computational time t eqv for the decomposition algorithm is estimated by summing up the 

time for solving the coordination problem and the most difficult subproblem, assuming a 

distributed computational environment. In the Monte Carlo simulation for each scenario, 

the number of problem instances is 200 x 5 =  1000, i.e., for each scenario, five runs of 

simulation are performed and each run solves 200 problem instances generated randomly.

Scenario 1: if we fix p and |/;|, change mo (see Appendix A.2.2). In this case, we can 

study the performance of decomposition and coordination with respect to the dimension of 

linking constraints in equation (3.24).

For the interior solution case, Figure 3.5 shows that the CCN is fairly constant w ith  

respect to the number of linking constraints; while for the boundary solution case, Figure 

3.6 shows that the CCN increases with increases in the dimension of linking constraints.
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Figure 3.5: Interior case: CCN vs. number of linking constraints
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Figure 3.6: Boundary case: CCN vs. number of linking constraints
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Figure 3.7: Interior case: computational performance vs. number of linking constraints
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Figure 3.8: Boundary case: computational performance vs. number of linking constraints
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When distributed computing is considered, Figure 3.7 shows that, in the case of 

interior solution, the price-driven coordination method always gives better computational 

performance than the CPLEX Simplex solver. Because the increase of the number of 

linking constraints does not impact the CCN in this case, the price-driven coordination 

algorithm even performs better than the CPLEX IPM solver. This implies the 

computational complexity of the coordination algorithm does not have strong dependence 

on the dimension of linking constraints. In the boundary solution case (cf. Figure 3.8), the 

coordination algorithm requires less computational time than CPLEX Simplex solver but 

more than the IPM solver when the number of linking constraints increases.

2.8 

2.6

E

i  18| 1.6 
a  
E
3 , 4  

1.2

10 20 40 60 80 100 120 140 160
Number of Linking Constraints

Figure 3.9: Interior case: computational time distribution vs. number of linking constraints

Figures 3.9 and 3.10 show the computational time ratio between the coordinator and 

the most “difficult” subproblem. It is evident that the computational effort to solve the 

coordinator problem increases, as the complexity of the coordinator problem increases as 

the number of linking constraints increases.

Scenario 2: For fixed p and mo, we change subproblem size | / j |  by simultaneously 

changing m* and n, (see Appendix A.2.2). In this case, we can study the algorithm 

performance with respect to subproblem sizes.

Figure 3.11 shows the coordination complexity in the interior solution case, which 

demonstrates showing that the size of subproblems does not have much impact on the

newton price |
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Figure 3.11: Interior case: CCN vs. subproblem size
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Figure 3.12: Boundary case: CCN vs. subproblem size

CCN; however, for the boundary solution case, Figure 3.12 shows that the CCN increases 

monotonically when the size of subproblems gets larger.
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Figure 3.13: Interior case: computational performance vs. problem size

From Figure 3.13, it is also observed that the price-driven coordination method has 

higher computational efficiency than the centralized CPLEX Simplex solver when the 

overall problem size is large (i.e., when the subproblem size is larger than 15 x 10); however, 

Figure 3.14 shows the centralized CPLEX Simplex solver always outperforms the price-
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Figure 3.14: Boundary case: computational performance vs. problem size

driven coordination algorithm in the case of boundary solution. In addition, the centralized 

IPM solver shows higher efficiency in both cases.
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newton price j

3.5

S  2.5

Number of Coefficient Elements

Figure 3.15: Interior case: computational time distribution vs. problem size

Again, Figure 3.15 and 3.16 show the computational time ratio between the coordinator 

and the most time consuming subproblem. Both figures show that the computational effort 

to solve the coordinator problem increases because the size of the coordinator problem 

increases as the subproblem size increases. But the increase of coordinator solution time
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Figure 3.16: Boundary case: computational time distribution vs. problem size

in the interior solution case is more significant than that in the boundary solution case, 

which implies that the time for solving boundary case subproblems increases faster than 

the interior solution case.

Scenario 3: We keep m 0, m* and n, constant, and change the number of subproblems 

p (see Appendix A.2.2). In this case, we investigate the performance of the coordination 

algorithm when more and more subproblems are integrated into the coordination system, 

assuming a rather well-balanced subproblem computational load.

In Figure 3.17, the simulation results show that coordination complexity in the interior 

solution case is rather insensitive to the number of subproblems; however, for the boundary 

solution case, Figure 3.18 shows that the CCN increases when the number of subproblems 

increases.

Figure 3.19 and 3.20 show that the proposed price-driven coordination algorithm has 

higher computational efficiency than the centralized CPLEX Simplex solver in both cases. 

It should be noted that, in the interior solution case, the coordination algorithm can perform 

almost as well as the centralized IPM solver.

Both Figures 3.21 and 3.22 show that the computational effort to solve the coordinator 

problem becomes more dominant in the overall computational time when the number of 

subproblems increases.
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Figure 3.17: Interior case: CCN vs. number of subproblems
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Figure 3.19: Interior case: computational performance vs. number of subproblems
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Figure 3.20: Boundary case: computational performance vs. number of subproblems
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Figure 3.21: Interior case: computational time distribution vs. number of subproblems
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Figure 3.22: Boundary case: computational time distribution vs. number of subproblems
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Scenario 4: If we fix m 0, X X i and IX=i i.e., we fix the overall problem size, 

we can study the influence of relative subproblem ratio (RSR). In this case, we change p 

by combining subproblems into groups (see Appendix 2.2) according to different partition 

patterns of the original QP problem as we did for LP in Chapter 2. In the following studies, 

we arbitrarily choose one pattern for our investigation.

newton pnce

Z 3.05

10
Relative Subproblem Ratio

Figure 3.23: Interior case: CCN vs. RSR

For the interior solution case, Figure 3.23 shows that the imbalance of subproblem 

computational load (i.e., RSR) does not affect the coordination complexity; however, 

Figure 3.24 shows that the CCN increases in the boundary case when the imbalance of 

subproblems becomes more significant.

In Figure 3.25 and 3.26, we can see the proposed price-driven coordination algorithm has 

lower computational efficiency when the RSR increases in both cases, which implicates that 

the imbalance of subproblem load does affect the computational efficiency of the proposed 

algorithm.

The simulation results reported in Figure 3.27 and 3.28 shows that, although the overall 

problem size is the same in the computational studies, the coordinator’s computational load 

increases when the imbalance of subproblem sizes gets more significant. This is because 

the complexity of the coordinator’s problem is also determined by the largest subproblem 

as was discussed in previous sections.
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Figure 3.24: Boundary case: CCN vs. RSR
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Figure 3.26: Boundary case: computational performance vs. RSR
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Figure 3.27: Interior case: computational time distribution vs. RSR
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Figure 3.28: Boundary case: computational time distribution vs. RSR

Moreover, another interesting point may be about the relationship between the CCN 

and the number of active constraints for the overall problem in the boundary solution 

case. Recall our discussion on the coordination complexity in §3.4.1, more communication 

cycles are expected when there are more active constraints at the optimum solution. During 

the computational studies for the four scenarios, the number of active constraints was 

recorded, and thus is reported in the following figure.

120

experimental data 
 least square curve fit

Figure 3.29: Boundary case: CCN vs. number of active constraints
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It should be noted that the coordination complexity (CCN) increases almost linearly with 

the number of active constraints, which confirms our previous discussion.

Remarks: The complexity study performed in this chapter reveals some inherent 

features of the complexity of the price-driven coordination algorithm. From this study, 

we can draw some guidelines for coordination system design with the price-driven 

coordination method. In general, we may gain advantage by using the coordination 

algorithm to solve an QP problem, which has the following properties:

• having a block-angular structure;

• having high dimensional linking constraints;

• being assigned well-balanced computational load;

•  having a large number of subproblems, if distributed computing power is available;

• having an interior solution at the optimum.

Furthermore, one observation from the simulation results is that the solution of 

the coordinator problem (i.e., price-update) contributes a dominant portion to the 

computational time for the overall problem. Thus, to speed up the overall coordination 

algorithm, a practical strategy can be the enhancement of the coordinator computing 

environment, such as a high-performance CPU or more efficient codes for solving 

equations and doing matrix operations.

3.5 Chapter Summary

In this chapter, decomposition and coordination strategies for solving large-scale quadratic 

programming problems have been investigated. In particular, an extension of Dantzig- 

Wolfe decomposition and the auction-based (or price-driven) coordination methods were 

studied. To im prove the computational efficiency o f  the price-driven coordination  

method, an efficient price adjustment scheme was proposed by using Newton’s method to 

incorporate the sensitivity information from subproblem solution. With the proposed price
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adjustment scheme, the computational performance of price-driven coordination methods 

is substantially enhanced when solving large-scale QP problems.

A well-designed structured complexity analysis approach was used to perform a 

thorough empirical study. New understanding of the relationships between computational 

performance and problem structural parameters was gained through a comprehensive study 

of the scaling behavior of price-driven coordination algorithm. The complexity study shows 

that, for large-scale quadratic programming problems with special structure, the proposed 

price-driven coordination algorithm can outperform centralized optimization solvers in 

some cases. The work in this chapter has made a significant step toward the application 

of price-driven coordination method for on-line solution of large-scale QP problems.
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“The 6 rst requisite for success is the ability to apply your physical and 

mental energies to one problem incessantly without growing weary.”

-  by Thomas A. Edison

Coordinated, Decentralized MPC

In large-scale model predictive control (MPC) applications, such as plant-wide control and 

optimization, a large system is usually decomposed into several smaller subsystems and 

an individual controller is developed for each subsystem. This may lead to a decentral­

ized or unit-based MPC framework. Such a control system may not be able to provide the 

plant-wide optimum operations because of its failure to consider the interactions between 

subsystems in decentralized MPC calculations. It has been identified that the coordination 

of the unit-based MPC systems can provide significant potential benefit. In this chapter, by 

applying the Dantzig-Wolfe decomposition and price-driven coordination methods, new 

approaches to coordinating decentralized MPC in the target calculation level are proposed. 

In the developed framework of designing a coordination system for decentralized MPC, 

only minor modification is required to current MPC layer. The case studies show that the

79
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proposed coordination scheme can substantially improve the performance of the existing 

decentralized control scheme, while it can take advantage of decentralized computing en­

vironment to ensure acceptable real-time calculation speeds.1

4.1 Background

Model predictive control (MPC) has gained extensive applications in industry for 

contrained control of multivariable processes. Bi-level (or two-stage) MPC technology has 

been widely applied in many industries. When MPC application is extended to large-scale 

operations, the deficiencies of the existing centralized and decentralized MPC schemes 

bring challenges to plant-wide MPC application. Plant-wide coordination of decentralized 

MPC has been identified as one of the most promising strategies to tackle the challenges 

ahead.

4.1.1 MPC Target Calculation

As is shown in Figure 4.1, the MPC framework can be divided into a steady-state 

calculation and a control calculation (or dynamic optimization), which are both executed at 

each control cycle (Qin and Badgewell, 2003; Kadam et al., 2002). The target calculation 

determines the best achievable set-points, both for input and output variables; whereas, 

the trajectory along which the plant should be moved from one steady-state to the next 

is determined by the dynamic control calculation. In both calculations, a process model 

is required to perform the optimization. Note that in plant-wide control applications, the 

model and the problem size can be very large.

In industrial practice, a variety of optimization methods are applied to solve MPC target 

calculation problems, among which linear programming (LP) and quadratic programming 

(QP) are most commonly used (Qin and Badgewell, 2003). Many MPC technology 

products use a linear program to do the local steady-state optimization (e.g., the 

Connoisseur controller offered by Invensys, Inc.), while many use a quadratic program

'Parts of this chapter were presented/published in (Cheng et al., 2004; Cheng et al., 2005b).
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Control calculation
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Figure 4.1: Bi-level MPC technology

to perform local steady-state optimization (e.g., the RMPCT, PFC, Aspen Target, MVC, 

process perfecter, etc.).

LP-based Target Calculation

For an individual MPC subsystem, which contains a steady-state target calculation and a 

dynamic control calculation, we can formulate an LP problem for the target calculation for 

time k\

where x(fc) =  [ua(fc), y s (&)] is a vector of steady-state values (i.e., targets or setpoints) for 

the input and output variables for the subsystem. The equality constraints in (4.1) are taken 

from  the linear dynam ic model:

min z =  cTx(k)  

subject to

A eq-x.(k) =  b  eq(k) 

Lx(fc) < b (k)

(4.1)

Y (s )  =  G(s)U(s) +  G d(s)D(s) +  E(s) (4.2)

which yields the the steady-state model:
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y =  K u +  K dd +  e

82

(4.3)

where d  are the disturbances and e is the unmeasured noise. The inequality constraints 

result from physical limitations on the inputs and outputs, such as actuator limits or 

production quality requirements. Other MPC target calculation formulations are possible, 

such as including model bias and soft output constraints (Kassmann et al., 2000; Lestage 

et al., 2002). These can easily be incorporated into the proposed method, but are omitted 

to simplify discussion.

QP-based Target Calculation

Assume that a set of optimal nominal “targets” [y*, u*] has been given to each operating 

unit by an upper level optimizer, in order to follow the shifting optimum operating point 

and give appropriate corrections, an MPC target calculation for an individual operating 

unit can be formulated as the following constrained quadratic program (QP) (Ying and 

Joseph, 1999):

min z = (yset(k) -  y*)TQy(yset(k) -  y*) +  (uset(k) -  u*)TQ„(uset(k) -  u*)
y  s e t  jU s e t

+cy(yset(k) -  y*) +  cu(uset(k) -  u*) +  eTc fc £e

subject to:

yset(k) =  K u  set(k) +  d(k) 

d (k) =  d (k -  1) +  S(k) 

y m in  -  e < y Set(k) < y max +  £ (4.4)

Umin — Uset(/c) ^  Umaa;

€ >  0

where Qy,Qu, cy, and cu may be obtained from the upper level optimizer, and ce is a 

tuning parameter (Ying and Joseph, 1999); y Set(k) and u set(£;) are the setpoint values to be 

determined by the target calculation (i.e., they are the degrees of freedom for optimization); 

d  (k) is the estimated disturbance and £ is a violation tolerance of the output constraints that
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ensures a feasible solution to the QP. In this work, we adopt a bias update strategy for d 

(i.e., S ( k )  — y m (k)  — y set(k \k  — 1), where ym(fc) are the measured outputs at time k  

and y Set(k\k  — 1) is the prediction of outputs in the previous control execution), without 

loss of generality. The steady-state gain matrix K can be calculated via linearization of 

the nonlinear model used in an upper optimizing layer or abstracted from the linear model 

used by lower level MPC dynamic control. Note that the scope of problem (4.4) is a single 

operating unit.

4.1.2 Plant-wide MPC

With considerable development effort in recent years, there has been a trend to extend MPC 

to large-scale applications, such as plant-wide control. Two common paradigms for solving 

plant-wide MPC calculations are centralized and decentralized strategies. Centralized 

strategies may arise from the desire to operate the entire plant in an optimal fashion; 

whereas, decentralized MPC control structures can result from the incremental roll-out 

of automation systems. One major difference between these two extremes is the extent 

to which interactions among operating units are considered. An effective centralized 

or monolithic plant-wide MPC can be undesirable and difficult, if not impossible, to 

implement (Lu, 2003; Havlena and Lu, 2005). Such a scheme can exhibit poor fault- 

tolerance, can require a high performance centralized computational platform, and can be 

difficult to tune and maintain. Alternatively, in many chemical plants, large-scale control 

problems are solved by a group of MPC subsystems via decentralized schemes, in which 

each MPC controller takes care of a specified operating unit. As is shown in Figure 4.2, 

the decentralized MPC scheme yields the desired operability, flexibility and reliability, but 

may not provide an appropriate level of performance. In this work, reliability refers to 

the possibility that some control subsystems or portions thereof are able to function when 

other subsystems fail. Currently, decentralized MPC strategies are widely used due to their 

flexibility, reliability and ease of maintenance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 4.1 Background 84

d(k d(k)set lsetset

u(k) y(k) u(k)
Operating

UnitN
Operating 

Unit 1

Calculation NCalculation 1
/''T arget 

Calculation J

Real Time Optimization (RTO) (Infrequent optimization)

Figure 4.2: Decentralized MPC

4.1.3 Coordinated MPC

Although it has many good features as discussed, conventional decentralized schemes 

may not be able to provide the plant-wide optimum. In general, decentralized schemes 

approximate or ignore the interactions between operating units, while the downstream 

units treat upstream variations as external disturbances. Thus, the decentralized approach 

solves each subproblem in terms of its own objective function, which may not provide the 

plant-wide optimum operation. Lu (2003) claims that “the estimated latent global benefit 

for a typical refinery is 2-10 times more than what MPC by itself can capture”. Thus, 

coordination of the unit-based controllers has been identified as having significant potential 

benefit (Lu, 2003; Havlena and Lu, 2005; Isaksson et al., 2005), in other words, the key to 

exploiting the potential of decentralized control systems, yet still retaining its structure and 

advantages, is cooperation.

Usually, any limited cooperation between decentralized MPC controllers is through an 

upper level optimization, such as real-time optimization (RTO), at a sampling time of 

hours or days. Most RTO systems require waiting for the plant to be near a steady-state 

before they can execute. Disturbances or setpoint changes in the interval between two RTO 

executions may drive the optimum operations away from the targets given by the RTO 

system; thus, it may be necessary to perform re-optimization at a higher frequency than is 

possible through RTO to maintain optimum operations.
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Recently, more effort has been spent on improving the performance of plant-wide 

decentralized control through coordination. Kumar and Daoutidis (2002) proposed 

a controller design framework using a time-scale decomposition approach, in which 

a supervisory controller deals with the slow-time-scale behavior and coordinates the 

distributed controllers, which deal with the fast-time-scale behavior. In Lu (2003), a cross­

functional integration scheme was developed, in which a coordination “collar” performed 

a centralized target calculation for decentralized MPC. This idea matches the wide­

spread belief among industrial practitioners (Scheiber, April 2004) that the trend toward 

decentralization will continue until the control system consists of seamlessly collaborating 

autonomous and intelligent nodes with a supervisory coordinator overseeing the whole 

process. In particular, the cooperation-based MPC scheme proposed by Venkat et al. 

(2004) is worthy of attention, which addressed cooperation between decentralized MPC 

controllers. Compared with the coordination framework in this work, both approaches 

aim to find plant-wide optimal operations rather than only to find a stabilizing solution. 

In cooperation-based MPC, where a state-space model is used, the objective function of 

each sub-controller involves the states and inputs of local unit and the impact from other 

units (i.e., the states and inputs of other units); similarly, the proposed coordination scheme 

involves an input-output model, and individual sub-controller has the objective function 

considering the inputs and outputs of the local unit and the impact from other units (i.e., 

the augmented variables which represent the interactions). Moreover, both control schemes 

include an iterative decision process within a single MPC execution, and the intermediate 

results are communicated. The decentralized controllers in Venkat et al. (2004) stand at 

equal status within their negotiation to achieve cooperation and the intermediate results 

are flowing among sub-controllers; however, this work addresses the cooperation between 

controllers through a well designed coordinator, which plays a specific role in not just 

transmitting information, but also in modifying the information that comes from the sub­

controllers to ensure that the entire system finds the optimal operation. This work is 

focused  on  M PC target calculation, assum ing that the dynam ic control calculation has been 

appropriately formulated to ensure the required stability and robustness.
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4.2 Coordination of Decentralized MPC

86

This section discusses a framework for the coordination of steady-state MPC target 

calculation level, which aims to provide a timely response to local or plant-wide 

disturbances and setpoint changes. Two key factors that determine the desirability of 

the coordinated MPC system are: computational efficiency of the coordination strategy 

to ensure a real-time solution; and required information flow load throughout the plant 

communication network. The proposed approaches exploit the existing plant computing, 

communication, and information systems with minimal modification, to provide significant 

performance improvement.

As has been discussed, the solution from the decentralized MPC target calculation may 

not be optimal with respect to the entire plant operation because of plant / model mismatch, 

which results from ignoring the interactions among operating units and other effects. Thus, 

some mechanism to take care of the interactions is desired. Note that, in this work, the 

term unit-based MPC refers to the decentralized MPC subsystems developed for individual 

operating units.

4.2.1 Coordination through a Coordinator

Figure 4.3 shows a coordination-based MPC system, where the coordinator is designed 

to be responsible for ensuring that the effects of interactions are incorporated into the 

overall control strategy. The task of the coordinator is to ensure that the coordinated system 

finds the optimal plant operations. A coordinator can be designed by considering different 

kinds of interactions among operating units. Such interactions can be formulated as linking 

constraints.

4.2.2 Identification of Linking Constraints

Recall that the two key factors required of an efficient coordination are the computational 

efficiency of the coordination strategy and the required information flow throughout the 

plant communication network. In the previous section we dealt with the coordination, and 

in this section we are going to introduce two message construction approaches based on
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Figure 4.3: Coordinated, decentralized MPC

different interaction modeling methods, which ensure reasonable data traffic through the 

plant communication network. In this section, two methods to establish linking constraints 

for interactions are discussed, such as the interstream consistency (Cheng et al., 2004) and 

off-diagonal element abstraction (Cheng et al., 2005a).

Interstream Consistency

In many cases, the interactions between two operating units can be modeled by equating 

the appropriate output variables from the upstream unit and the input variables to the 

downstream unit. Shown in Figure 4.4, the hexagon labeled “A” represents the process 

interstream connecting individual operating units.

In formulating the subproblems, those streams connecting different operating units are 

tom and consistency relationships can be used to model the interactions between different 

units. Recall a block-wise linear programming problem that has been converted to Simplex 

standard form:
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Operating Unit 1 Operating Unit 2

Figure 4.4: Demonstration of interstream consistency

p
min zi =

i= l

subject to
p

^ 2  A *x * =  b o (4 .5 )
i= 1

BjXj =  bj (4.6)

x, > 0 i =  1,2, ...,p

where (4.5) represents the linking constraints associated with p subproblems, and the 

constraints in (4.6) are the local constraints of independent subproblems. In this case, 

assume that we have p  separate operating units, each of which is controlled by one MPC 

subsystem. By introducing interprocess stream consistency as the linking constraints (4.5), 

we can formulate an LP problem that includes constraints (4.5) and (4.6) by incorporating 

those decentralized target calculation problems.

Off-diagonal Element Abstraction

As previously discussed, this work assumes the controlled variables (CVs) and manipulated 

variables (MVs) have been specified and grouped in a unit-based sense (i.e., we are
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coordinating an existing set of unit-based MPC systems). Then the gain matrix for the 

entire plant with N  operating units is:

The matrix A can be ordered such that a unit-based implementation of MPC as in problem 

(4.4) uses the block-diagonal information K ti of the plant model in its calculations. In 

such a case, the off-diagonal blocks may be treated as disturbances. This way of dealing 

with the off-diagonal information can result in undesirable closed-loop behavior, when the 

interactions are significant. Note that the plant-wide model is:

where Y  (k) and U(k ) are the CVs and MVs of N  local operating units concatenated into 

vectors; D{k) is the concatenation of local disturbance variables (DVs). This is equivalent 

to:

The auxiliary variable e,;, which is an abstraction of the off-diagonal elements, represents 

the influence of the inputs of other operating units on the local system. In the proposed 

coordination scheme, a coordinator will be developed to handle the constraints (4.10) 

and drive the auxiliary variable e* to the values corresponding to the plant-wide optimum 

operations. In this case, in each unit-based MPC target calculation, the auxiliary vector e* 

is treated as a decision variable, since equations (4.10) are not included in each unit-based 

M PC calculation.

A

Kix K 12 . . .  Kuv 

K 2i K 22 • • • K  2n
(4.7)

K;vi K jv2 . . .  K atat

Y(k)  = A U(k) +  D(k) (4.8)

y i(k) =  K rtu f(fc) +  ei(k) +  d  i(k) (4.9)
N

(4.10)
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4.3 Dantzig-Wolfe Decomposition and Plant-wide MPC

For industrial plant-wide control, this work provides a new formulation of plant-wide MPC 

target calculation to achieve plant-wide optimum operations. A novel application of the 

Dantzig-Wolfe decomposition has been proposed in the design of coordination system for 

solving the plant-wide MPC problem.

4.3.1 Illustrative Case Studies

In this section, we illustrate the implementation of the proposed coordination scheme 

through two case studies: the first is used to investigate the interstream consistency 

approach and the second investigates the off-diagonal element abstraction approach.

Case Study 1

Let us consider a system shown in Figure 4.5. The normalized gains for the system are 

given in (4.11) through (4.13). An identity matrix is chosen for K d in (4.3) assuming 

that the disturbances influence the outputs directly. The locations where the disturbances 

entering the plant are shown as dashed lines in Figure 4.5.

Figure 4.5: Interacting MIMO operating units
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K a = Ga ( 0) =  

K b = Gb ( 0) =  

K c  =  Gc ( 0) =

0.4 0.6 0.1

0.5 0.4 0.1

0.3 0.4 0.3

0.1 0.2 0.1

0.7 0.3

0.6 0.5

(4.11)

(4.12)

(4.13)

Each operating unit has its own objective, which is a subset of information used by plant- 

wide optimizers, and the profit function cost coefficients are:

(4.14)

(4.15)

(4.16)

rT

CB  —

C T  -c c  —

- 1  - 1 - 1 3  3 

- 1  - 1 - 1 3  3 

- 1 - 2  5 5

So for each operating unit, by tearing the interprocess stream, a linear program for the k th 

target calculation is:

min cjxj(fc)

subject to

KjXj(fc) =  b  iq(k)

LjXj(k) < b*(A;), j  =  A, B , C

(4.17)

(4.18)

where Lj  stands for the coefficient matrix associated with all the inequality constraints 

when it is in standard form. The R.H.S. of the equality constraints b°eq(k) represent the 

updated model bias at each target calculation execution. The R.H.S. of the inequality 

constraints bj (k) contain the lower bounds (lb) and upper bounds (ub) of the variables 

in the operating units. The bounds on the variables in this case study are shown in equation

(4.19) and (4.20).
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l b  == [ 0 .3  0 .3 0 .1 5 0 .4 5 0 .4 0 .45 0 .4

0 .3  0 .4 5 0 .1 5 0 .4 5 0 .3 0 .45 0 .5  ]

u b  == [ 0 .5  0 .5 0 .2 5 0 .5 5 0 .5 0 .5 5 0 .5

0 .5  0 .5 5 0 .2 5 0 .5 5 0 .5 0 .55 0 .6  ]

(4.19)

(4.20)

Three different MPC strategies, centralized MPC, decentralized MPC and coordinated, 

decentralized MPC, are implemented to evaluate their abilities to track the changing 

optimum in steady-state target-calculations. For the centralized MPC target calculation, 

an LP problem is formulated treating all the inputs and outputs, including interprocess 

interactions, as decision variables. For the decentralized MPC scheme, separate LP 

problems are formulated by passing the upstream decisions to downstream units as 

disturbances. Finally, the coordinated MPC target calculation incorporates the linking 

constraints in modeling the interactions and solves the RMP and independent subproblems 

iteratively.

In our case study, unknown disturbances are generated by filtering random series of 

uniformly distributed variates in order to restrict these disturbances within the interval 

±0.05. These unknown disturbances are directly imposed on the outputs when the 

optimized targets are implemented in our simulation.

d  (t) =  ---------- ]--------- -e(f) (4.21)
w  1 +  C\Q~ +  c2q~2

By using the autoregressive models in equation (4.21) as simplified disturbance models, we 

predict one-step ahead disturbances based on past information. The estimated disturbances 

used to update the disturbance model in (4.21) are calculated by comparing the measured 

outputs and model predictions at every control execution. At the current control calculation, 

the parameters, ci and c2, in the disturbance model are estimated using the estimated 

disturbances in the past 10 control execution periods. The one-step ahead disturbances 

are predicted using the estimated c\ and c2. Then the process models are updated using the 

predicted disturbances. The steady-state targets are then calculated by using the updated 

process models.
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The following accumulated profit function is defined for performance comparison:

where Z (k ) is the actual profit per unit time from the kth target calculation; Ts is the 

sampling period between two target calculations; and V(k)  represents the penalty for 

constraint violations when we implement the calculated targets:

where w  is a specified penalty vector, which is used in all three cases; and the violation of 

output constraints y v(i) is defined as:

where yact(i) is the actual output vector when the calculated targets are implemented in the 

process; while y max and y min are subsets of the upper and lower bounds given in equations

(4.19) and (4.20).

A benchmark is defined for comparing the performance of different MPC target 

calculation strategies. The benchmark used for comparison is defined as the maximum 

profit achieved when the plant is operated at the true optimum, which is calculated using 

the perfect process model and exact knowledge of disturbances. Although this maximum 

profit is not achievable, it is a useful basis for performance comparison.

Figure 4.6 shows the profit achieved as a function of control execution using different 

MPC steady-state target calculation strategies. The coordinated target calculation gives the 

same achievable optimum as the centralized MPC scheme does2, while the decentralized 

scheme yields a suboptimal operation as interactions are ignored in the calculation.

Table 4.1 compares the performance of different MPC strategies for a simulation of 

150 target calculation executions. From table 4.1, we can see that the centralized and

2W h en  all th e  in te rac tio n s co n sid ered  in  cen tra lized  schem e are  h an d led  b y  th e  co o rd in a to r in  the 

coordinated scheme, the two approaches will provide the same solution; however, if any interactions are 

ignored in the coordinated scheme, the solution from the coordinated scheme may deviate from the centralized 

scheme.

(4.22)
k —i

V (i) =  w Ty „(*) (4.23)

y a c t ( 0  y m a x i  i f  y  act ( t )  ^  y m ax
yv(i) =

y  a c t ( i )  — y  m in i  i f y a c t ( 0  <  y m i n
s.

m m

(4.24)
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Figure 4.6: Calculated targets by different approaches

the coordinated, decentralized target calculation give the same best achievable profit and 

achievable ratio to the true optimum, while the fully decentralized target calculation only 

captures approximately 94.48% of the maximum profit.

Table 4.1: Performance comparison of different plant-wide MPC target calculation 

approaches for interacting MIMO systems_______________________________________
Centralized Decentralized Coordinated True. Opt.

Profit 5800.9 5481.7 5800.9 5801.7

Achiev. Ratio 99.98 94.48 99.98 100

Prob. Dimension 46 x 42 15 x 15 x 3 7 x 7 + 1 5 x 1 5 x 3 NA

* All the simulations were performed in MATLAB® 6.5 on a Pentium III 1.0G Hz and 

512M RAM machine.

Table 4.1 also reports the problem sizes for different steady-state target calculation 

strategies. The problem size is defined as the size of the coefficient matrix in the LP 

standard form used in the Simplex method. Therefore, slack and excess variables are added 

to the convert the inequality constraints to equality constraints, and the columns of the
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coefficient matrices are augmented to incorporate the slack and excess variables. We can 

see that the centralized scheme has the largest problem size, which will grow significantly 

when the dimension of separate problems and the number of operation units in the flowsheet 

increase. The problem size for the decentralized MPC is reported as the dimension of 

the largest subproblem multiplied by the number of units. For the coordinated scheme, 

the problem size is expressed as the addition of two components, the dimension of RMP 

(the coordinator) and the problem dimension in the decentralized scheme (the coordinated 

parts).

This case study shows that interstream consistency can be used for interaction modeling, 

and when such interactions are handled by the coordinator, the resulting coordinated, 

decentralized control system does produce significant improvement on the plant-wide 

performance. As such, it provides an approach to plant-wide control that does not require 

a centralized computing environment.

Case Study 2

This case study is to illustrate the application of the off-diagonal element abstraction 

method for coordinating decentralized MPC by using the Dantzig-Wolfe decomposition 

principle (Cheng et al., 2005a).

Shown in Figure 4.7, a generic process network is used for this case study. Described as 

follows, the overall process network can be represented by an 8-input and 6-output model 

G, which is a linearization of the process around an operating point [y0, uo]:

y0 =  [5,3,4,2,8,10] 

u 0 =  [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] (4.25)
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Figure 4.7: An interacting MIMO unit network

G^ =

- 0 . 8 8 1 .49 0 - 2 . 3 6 0 - 1 . 4

1 .13 - 0 . 5 0 0 .2 4 0 - 0 . 2 6

1 .49 2 .5 9 0 - 1 . 1 9 0 0 .7 7

0 0 .55 - 0 . 4 2 - 0 . 3 2 0 1.48

0 3 .0 3 0 .4 - 0 . 9 7 0 1 .12

0 2 .5 6 0 0 - 0 . 2 5 0 .0 6

0 0 .6 6 0 0 - 2 . 1 - 0 . 5 5

0 0 .2 9 0 0 - 0 . 2 8 - 0 .6 1

where Go is the steady-state gain matrix of the process model G. The flowsheet was 

originally decomposed into three operating units, each of which has two output variables. 

Further, unit A and unit C have three manipulated variables, while unit B has two. Each 

operating unit has its own objective, which is a subset of information used by plant-wide 

optimizers. In this maximization problem, the profit function cost coefficients are:

r T^A
=  [ 2 3 0 0 0 r TCB 1 3  0 0 4  7  0  0 0

where the objective functions are only related to output variables.

The decentralized MPC controllers use incomplete process information and ignore 

the interactions. Using the off-diagonal element abstraction method, we can employ
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an auxiliary term to represent the interactions and augment them in the model of each 

decentralized MPC system as discussed in (4.9). Note that, since the off-diagonal elements 

are relatively sparse, the dimension of em is only three. In this case study, we set the upper 

and lower bounds of the decision variables within ± 10% interval of the nominal operating 

point, while treating em as unrestricted variables.

Within this configuration, we can specify an information package which flows on the 

communication network that connects the coordinator and individual control systems. 

Similar to Figure 4.3, at every coordination round, each decentralized MPC system submits 

to the coordinator a unit-wide optimal solution x 4 =  [ŷ , u,, e j j  and corresponding 

objective function value As soon as it receives all the proposals, the coordinator executes

a linear program to solve the master problem. Then the coordinator records the solution 

Ay and sends sensitivity information [tt, 7 *] to the decentralized MPC. Here, 7r is related 

to the auxiliary variable elm, which can reflect the gap between the plant-wide optimal 

solution and unit-wide solution. In other words, when an optimal is obtained through 

coordination, the plant-wide optimum is reached.

To simplify the discussion in our case study, we assume accurate modeling and noise- 

free simulation. Therefore, in terms of plant-wide optimum, a centralized controller 

provides benchmark performance. With the above information, one execution of plant- 

wide target calculation is performed with three optimization schemes, the centralized, 

decentralized, and coordinated schemes, respectively.

Table 4.2: Performance comparison of different plant-wide MPC target calculation 

approaches for interacting MIMO unit network___________________________________
Centralized Decentralized Coordinated

Profit Function Value 134.674 130.035 134.674

Achievability Ratio 100 96.56 100

* The simulations were performed in MATLAB® 7.0 on a Pentium III 1.0G Hz, 512M

RAM machine.

Table 4.2 provides simulation results for the comparison of the performance of different 

control strategies. We can see that the centralized and the coordinated target calculation
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schemes give the same achievable profit as the benchmark optimum, while the fully 

decentralized steady-state target calculation only captures around 96.56% of the maximum 

profit.

A key point drawn from this study is that the proposed approach may require far less 

capital investment to gain equal performance increases, in comparison to implementation 

of a new centralized, plant-wide MPC. Again, it also provides an approach to plant-wide 

control that can take advantage of the existing distributed computing environment.

4.4 Price-driven Coordination and Plant-wide MPC

For the coordination of QP-based MPC target calculation on a pulp mill process. In this 

section, a case study on the plant-wide control of a pulp mill process is performed to 

illustrate the effectiveness of the proposed price-driven coordination approach.

4.4.1 A Pulp Mill Benchmark Process

The pulp mill benchmark problem given in Castro and Doyle III (2004a) was recently 

published and proposed for investigating the efficacy of control and optimization 

approaches. As is shown in Figure 4.8, the pulp mill model includes the fiber-line and 

the chemical recovery loop. The primary goal of the pulp mill is to produce wood pulp of 

a given Kappa number or brightness while minimizing energy costs, utilities and chemical 

make-up streams.

The benchmark is based on a nonlinear dynamic mathematical model with 

approximately 8200 states and a total of 142 inputs (82 MVs and 60 DVs) and 114 

outputs (40 in fiberline and 74 in chemical recovery). This model was developed to be 

approximately 200 times faster than the real process. The control objectives, modes of 

operation, process constraints and measurements are all defined in Castro and Doyle III 

(2004a).
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4.4.2 Price-driven Coordination for Plant-wide Control

In Castro and Doyle III (20046), a decentralized control system has been proposed. At 

the unit level, it involves two control layers: unit-based MPC and decentralized regulatory 

control loops. This case study focuses on the MPC layer.

The existing MPC consists of four separate controllers, one each for the digester 

and oxygen reactor, the bleach plant, the evaporators, and the lime kiln/recaust areas, 

respectively. In their configuration, the MPC layer only contains the dynamic control 

calculation stage and involves totally 21 CVs and 20 MVs. The MPC is designed to track 

the set-point trajectories given by an upper level optimization.

This study uses the decentralized, two-stage MPC system discussed in Ying and Joseph 

(1999) and takes the formulation given in problem (4.4) for target calculation. The MPC 

control calculations in this paper are as given by Castro and Doyle III (20046). In the 

unit-based MPC target calculation, the interactions between units were ignored. Thus, the 

gain matrix K  in (4.4) is actually K iis the block-diagonal elements of the overall-plant 

gain matrix A. The effect of off-diagonal elements was treated as disturbances, through 

d (k). The bounds for variables are the same as in the dynamic control calculation, and the 

weightings Qy and cy are given in Table 4.3.

Plant-wide Coordination

Since the focus is on the MPC target calculation, the plant-wide linear steady-state model 

matrix A in (4.7), from the MVs to CVs, is obtained via step response tests to ensure that 

the steady-state gains are consistent with the dynamic simulation. In this work, bias update 

strategy discussed in Ying and Joseph (1999) was used to compensate for disturbance and 

model mismatch, etc.

Using the price-driven coordination strategy given in Chapter 3, the MPC target 

calculation for a local operating unit can be modified as:

min z3 =  (yset(6) -  y*)TQy(yaet(k) -  y*) +  (uaet(k) -  u*)TQu(usei(k) -  u*)
y  set> U set

+ cy(yset(fc) -  y*) +  c„(uset(k) -  u*) +  eTc fc ee -  pTe(fc)

subject to:
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Table 4.3: Important CV weightings
Controlled variables Qy/100 C  y

production rate 1.5 -80

digester kappa No. 1.5 0

oxygen reactor kappa No. 1.0 0

oxygen reactor caustic flow 1.0 0

oxygen reactor steam flow 0.5 0

oxygen reactor coolant flow 0.75 30

E kappa No. 1.0 0

D2 brightness 1.0 0

slaker temperature 1.0 0

kiln O 2 excess % 1.0 0

kiln fuel flow 0.5 30

y aet(fc) -  K use((fc) =  e(k) + d(fc) 

d (k) =  d (k -  1) +  6(k)

Y m in   ̂ 5= y s e t ( k )  < y m ax + e (4.26)

U m m  <  U set(k) <  U m ax

e > 0

where the subscript i is omitted for simplicity. Note that a price vector p  is introduced into 

the objective function and an auxiliary term e(k) is included in the unit model. To find the 

equilibrium price vector p*, the proposed price-adjustment scheme requires the solution 

of:
N

A (p) =  e 4 -  K Hnj i = l...N  j ^ i  (4.27)

The equilibrium price vector p*, which satisfies A (p) =  0 , is the solution to problem 

(4.26). This procedure usually takes a few communication cycles between the coordinator 

and subsystems. When the price vector is appropriately updated, the unit-based MPC 

solutions will converge to the plant-wide optimum.
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Closed-loop Performance

This section compares three control schemes: the centralized, the decentralized, and the 

coordinated, decentralized MPC target calculation. The centralized optimization scheme 

uses the entire plant-wide gain matrix and is used to define the performance benchmark for 

our study.

The control objectives are to closely track the setpoints given by an upper level 

optimization, while maximizing production rate and minimizing oxygen reactor coolant 

flow and kiln fuel flow. In this case study, the overall objective function for the plant is 

defined as a linear combination of those objectives with weightings given in Table 4.3. The 

optimization problems in all of the schemes are formulated as minimization problems. The 

weightings for the MVs used in all MPC control schemes are adopted from Castro and 

Doyle III (20046).

Results are provided for 8000 minutes of closed-loop simulation. Please note that the 

abscissa in Figure 4.9 and 4.10 has the units hours. The disturbance set imposed on 

the process was adopted from Castro and Doyle III (20046). The coordinated scheme 

provides identical performance to that of the centralized scheme. Thus, only the closed- 

loop responses for the coordinated scheme and the original decentralized scheme are shown 

in Figure 4.9 and 4.10. In this study, the decentralized scheme exhibits significant offset 

from the optimum plant operations.

Table 4.4 reports the profit/cost function values and computational times for all three 

control schemes.

Table 4.4: QP-based MPC target calculation performance comparison
Control Schemes Value Function Optimization Time* per Control Interval

Centralized 1.22 x 105 0.06 s

Unit-based 1.32 x 105 0.04 s

Coordinated 1.22 x 105 0.14 s

* The sim ulations w ere performed in M ATLAB® 6.1 on  an A thlon 1.4G H z, 1024M

RAM machine.
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Note that the accumulated value function is a time-integration of the objective function 

evaluated using the measured process variables. The optimization time is an average value 

based on the observed computational times. As we have defined the value function of the 

centralized scheme as a benchmark, we can see that the coordinated decentralized MPC 

provides the same plant-wide operations, which produces an 8.2% improvement on that of 

the decentralized scheme.

The computational effort is also reported in table 4.4 as the average optimization time 

for each MPC execution interval. Since all the simulations were performed in a single­

processor machine, we approximate the computational load in the decentralized scheme by 

averaging the sum of maximum times spent on solving each individual subproblem at one 

interval. The computational load of the coordinated scheme consists of the time taken for 

coordination and the time used for solving the most computationally intensive subproblem 

at each iteration. It should be noted that the overall time for the coordinated case is nearly a 

factor of 2 more than the other two cases. This was accomplished without using any of the 

available coding techniques for decentralized computing. Thus, the above computational 

efficiency suggests some promise of the proposed coordination strategy for industrial on­

line application.

In the case study, the optimization problems involve dozens of decision variables and 

hundreds of constraints. The coordinated MPC scheme provides solutions at a reasonable 

computational speed and as a result, exhibits a good trade-off between accuracy, reliability 

and computational load.

Remarks: Some Implementation Issues

In the case study, the sampling time for target calculation is chosen as 10 minutes, which 

is the least common multiple of the sampling times of MPC subsystems. Based on our 

observations from simulations, the selection of sampling time for coordination should also 

depend on the frequencies of the disturbances that the control system must deal with.

In general, good initial points can substantially enhance the efficiency of optimization. 

In this study, it was found that the equilibrium price vector from the previous execution 

worked very well as an initial guess for the current target calculation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 4.5 Chapter Summary

4.5 Chapter Summary

105

In many plant-wide control and optimization applications, a large-scale process model 

is decomposed into several smaller subsystems and a controller is developed for each 

subsystem. This may lead to a decentralized unit-based MPC framework, which may not 

be able to provide the plant-wide optimum operations because of its failure to consider the 

interactions between subsystems in decentralized MPC calculations. The coordination of 

the unit-based MPC systems has been identified as having significant potential benefit.

In this chapter, a new approach to coordinating decentralized MPC target calculation is 

proposed by taking advantage of the Dantzig-Wolfe decomposition algorithms. Several 

message construction methods are proposed for coordination system design, in which 

the constraints associated with multiple units can be incorporated. We have developed 

a framework of designing a coordination system for decentralized MPC with minor 

modification to current MPC layer. Our work shows that the proposed coordinated target 

calculation scheme substantially improves the performance of the existing decentralized 

control scheme, while it can utilize decentralized computing environment to ensure 

acceptable real-time calculation speeds.

In this chapter, with the proposed price-driven coordination method and off-diagonal 

element abstraction technique, a coordinator is developed to handle interactions between 

operating units, based on existing unit-based MPC systems. This results in a coordinated, 

decentralized MPC framework. In the study of pulp mill problem, the proposed 

coordinated, decentralized MPC shows a significant improvement in the plant operations in 

comparison with the existing decentralized MPC. The enhanced price-driven coordination 

algorithm shows promise in providing an acceptable online calculation speed for solving 

industrial plant-wide MPC control and optimization problems, which implies that the 

proposed coordinated, decentralized MPC framework may be a viable technology for plant- 

wide MPC applications.
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“If we knew what we were doing it wouldn’t be research. ”

-  by Albert Einstein

Extension to Large-scale Mixed-integer 

Programming

Optimization of many operations in industry takes the form of large-scale mixed-integer 

programming (MIP)1, so it is of value to extend our research to mixed-integer optimization 

problems. In this chapter, our study is extended to decomposition and coordination strate­

gies for solving large-scale MIP problems, particularly mixed-integer linear programming 

(MILP) problems. Subgradient optimization techniques are widely used in solving large-

’In this work, mixed-integer programming generally includes mixed-integer linear programming (MILP), 

mixed-integer quadratic programming (MIQP), mixed-integer nonlinear programming (MINLP), and binary 

integer programming (BIP).
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scale MILP problems2 because of their ease of implementation; however, their convergence 

behavior needs improvement for the applications in which high speed computation is re­

quired. In this work, in order to enhance the computational efficiency of the subgradient 

optimization methods, new heuristics are proposed to adjust the search direction. A com­

plexity study is performed and provides insight into the scaling behavior of the proposed 

subgradient optimization algorithm. In addition, to make use of the solution results from 

the subgradient optimization methods, primal solution recovery techniques are investigated. 

An interior path searching method is proposed for primal solution recovery by using the 

Dantzig-Wolfe decomposition strategy. With the improved subgradient optimization algo­

rithm and the primal solution recovery heuristic, a decentralized optimization framework 

is developed and applied to a distributed decision support system for truck allocation in 

mining operations. The case study shows the proposed optimization framework may be a 

viable technique for solving industrial MILP problems.

5.1 Background

Many optimization problems involve a combination of continuous and discrete variables, 

and a partial list includes process synthesis (e.g., heat exchanger networks, etc.), design, 

scheduling, and planning of batch processes, interaction of design and control, and hybrid 

control systems (Floudas, 1995; Bemporad and Morari, 1999; Stursberg and Panek, 2002). 

Moreover, the Assignment problem, Knapsack problem, Set Covering problem, and 

Vehicle Routing problem discussed in Beasley (1993) are typical mixed-integer (or binary 

integer) programming problems abstracted from many practical problems in various areas. 

Impressive collections of MIP applications, such as scheduling, supply chain and hybrid 

control applications, can be found in Biegler and Grossmann (2004), Grossmann and 

Biegler (2004).

In the fo llow in g  subsections, w e are going to briefly discuss the com plexity  issues in

2Subgradient optimization techniques are not restricted to solving MILP problems, and have been used in 

MIQP and MINLP problems.
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mixed-integer programming and some known MIP decomposition strategies, which take 

advantage of the special structure of a large-scale MIP problem.

5.1.1 Complexity Issues in MIP

The solution of large-scale MIP problems is very challenging, because they combine all 

of the difficulties of their subclasses. For instance, large-scale MILP and MIQP problems 

present the combinatorial nature of integer programs and the difficulty in solving large- 

scale LP and QP problems. Any choice of integer combination (e.g., binary 0 or 1 as a 

common case) from the elements of the discrete feasible region results in an LP or QP 

problem with continuous variables. If one follows a full enumeration approach to solving 

an MIP problem, for example to solve a “0-1” MILP problem, it grows exponentially in 

time with respect to its computational effort (Floudas, 1995). For instance, one hundred 

binary variables would result in 2100 possible combinations.

Wolsey (1998) provides a summary of the complexity analysis results for several classes 

of mixed-integer programming problems. Some of them fall into the category of NP- 

complete problems, and some of them are NP-hard. Here, “NP” means verifiable in 

nondeterministic polynomial time, and “NP-hard” means at least as hard as any NP- 

problem, although it might, in fact, be harder. An “NP-complete” problem is both NP 

(verifiable in nondeterministic polynomial time) and NP-hard (any other NP-problem can 

be translated into this problem).

5.1.2 Decomposition Strategies for Mixed-integer Programming

In previous chapters, several methods for solving continuous optimization problems 

have been investigated, including the Dantzig-Wolfe decomposition principle (Lasdon, 

2002; Cheng et al., 2004) for linear programming (LP), the price-driven (or auction- 

based) coordination method (Jose and Ungar, 19986; Cheng et al., 2005b) for quadratic 

program m ing (QP). The B enders’ decom position m ethod (Benders, 1962; Lasdon, 2002) 

was originally developed for solving MIP problems. In its most common implementation, 

it decomposes the decision variable space into continuous and discrete parts, which are
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handled by a master problem and a subproblem, respectively. The master problem and 

subproblem are solved iteratively until the optimum solution is found. The Bender’s 

decomposition method is used to solve an MIP problem with linking variables3, but cannot 

be directly applied to the block structured problems with linking constraints, e.g., the large- 

scale MILP problems to be solved in this work.

Another technique for decomposing mixed-integer programming problem with 

block angular structure was proposed in Rana (1992). It can be thought as an 

extension of Dantzig-Wolfe decomposition for mixed-integer linear programming (MILP). 

Unfortunately, it was developed for handling linking constrains only involving continuous 

variables. As a result, it has limited value.

Lagrangian relaxation techniques are widely used to convert a large problem (e.g., 

an NLP or MIP problem) into two smaller and more tractable problems. This creates 

a master problem and a subproblem, by relaxing the “complicating” constraint set 

(Geoffrion, 1974; Bertsekas, 1995). In our coordination problem, the linking constraints 

are considered as complicating constraints. Based on the separability of the problem, the 

resulting subproblem often can be further divided into a group of smaller independent 

subproblems. For a block structured problem, through Lagrangian relaxation (LR), 

the linking constraints are relaxed by introducing Lagrange multipliers, and the overall 

optimization problem is divided into a group of subproblems. For a given set of Lagrange 

multipliers, the subproblems require less computation than the original problem. Thus, the 

solution of the original problem is done through a two-level iterative approach. When the 

subproblems can be solved individually at one level, the Lagrange multipliers are updated 

at the other level, which actually performs the coordination of subproblems.

Subgradient methods are frequently used to optimize dual functions in Lagrangian 

relaxation for separable MIP problems4. Subgradient optimization can be considered 

as an extension of a gradient method to the optimization of nondifferentiable functions. 

Lagrangian relaxation and subgradient optimization methods can be directly applied to

3In  a  d eco m p o sab le  larg e -scale  system  (p rob lem ), lin k in g  v ariab les (o r  so m etim es called  co m p lica tin g

variables) are those variables associated with multiple subsystems (subproblems).
4This chapter does not intend to discuss NLP problems, although subgradient optimization methods can

also be used to solve decomposable NLP problems
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solving a block structured MIP problem by taking advantage of the special structure. Based 

on the improvements made in its convergence performance, the subgradient optimization 

method and its variants have shown satisfactory computational performance in solving 

typical IP problems, such as the traveling salesman problem, manufacturing scheduling 

problem, and assignment problem (Fumero, 2001) and the job shop scheduling problems 

(Zhao et al., 1999). Therefore, we have chosen Lagrangian relaxation and subgradient 

optimization methods as the basis for our MIP coordination study.

5.1.3 Subgradient Optimization Techniques

This section discusses the basic idea of Lagrangian relaxation and subgradient 

optimization. Lagrangian relaxation is used to convert a large-scale problem into smaller 

subproblems, while subgradient optimization methods are used to iteratively solve these 

subproblems to achieve the optimum solution.

Consider the following optimization problem:

where x  £ X  is a subset of Rn and g £ R m is the set of complicating or linking 

constraints. X  represents the feasible domain with respect to the other constraints that 

are not part of complicating constraints and may involve integer variables. Since g(x) 

contains the complicating (linking) constraint set, by applying Lagrangian relaxation, the 

original problem (P) has its Lagrangian dual given by:

(P) min /(x )  

subject to: g(x) < 0 

x  £ X

(5.1)

L(A) =  min /(x )  +  ATg(x) 

subject to: x  £ X ,  A >  0 (5.2)

Then the Lagrangian dual problem is given as:

(LD) max L(A) (5.3)
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and the optimal solution is denoted as L* = L(A*). The (LD) problem in (5.3) is 

nondifferentiable in general, e.g., the Lagrangian dual function L(A) of a linear integer 

programming problem is piece-wise linear, concave and continuous but non-smooth 

(Fumero, 2001). Then, the subgradient method is commonly used to maximize the dual 

function. It should be noted that the solution of original problem (P) is equivalent to the 

solution of problems in equations (5.2) and (5.3). The key issue is then to determine the 

Lagrange multipliers A* that correspond to the optimal solution x*.

In the subgradient optimization method, at any iteration k, given Afc > 0, the multipliers 

are updated by:

^fc+i =  P  +  f̂cSfc) (5.4)

where P a  denotes a projection operator which is used to ensure Afc+1 is feasible. For 

example, when A consists of non-negative elements (i.e., A >  0), the projection operator 

P a  can be chosen as max{0, A*}, where A* is an element of vector A. Let dL(Xk) denote 

the set of subgradients of L  at Afc. Then sfe e  d L { \k) represents a subgradient direction, 

while tk is a suitable step size. The basis of the above scheme is based on the well known 

fact that, given a non-optimal feasible solution Afc and sfc E d L ( \ k), there exists a step 

size t k such that Px(Afc +  tksk) is closer, in the Euclidean norm sense, to an optimal 

solution to problem (LD) than \ k (Bazaraa and Sherali, 1981). Despite the simplicity of 

the basic idea of subgradient optimization, behavior such as weak convergence properties 

and nonmonotonicity of the dual function was found in early implementations. Significant 

efforts have been made to improve its performance in recent two decades. Most of the 

research follows two streams: one is focused on selection of an appropriate step size t k and 

the other is focused on determining an appropriate search direction sfc.

5.1.4 Primal Solution Recovery

It must be noted that, the subgradient optimization approach provides an optimal solution to 

the LD problem, but does not solve the original problem (P) (5.1) in the primal space. Thus, 

it is necessary to use the optimal solution of problem (LD) to construct feasible solutions 

to the original problem (P). In the literature, Lagrangian heuristics (Beasley, 1993) are used
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to retrieve primal solutions from the LD solution.

Sherali and Choi (1996) provided primal solution recovery mechanisms when using 

subgradient optimization methods to solve Lagrangian duals of linear programs. Their 

work also discussed general difficulties in developing simple but efficient primal solution 

recovery heuristics. Barahona and Anbil (2000) developed the volume algorithm as 

an extension of deflected subgradient methods to generate primal solutions for a linear 

programming problem. This algorithm is based on the fact that a primal solution can 

be derived from the volumes below the faces, which are active at the maximum point 

of the dual function. A primal solution can be constructed as a convex combination of 

the solutions of subproblems; however, for integer programming problems, there is no 

guarantee of satisfying integrality from the convex combinations of points. Thus, this 

algorithm can be used to obtain a near-optimal integer solution in general.

In Beasley (1993), it is claimed that “Designing a Lagrangian heuristic for a particular 

LLBP5 is an art, the success of which is judged solely by computational performance,

i.e., whether a particular Lagrangian heuristic gives good quality (near-optimal or optimal) 

solutions in a reasonable computation time”. Since these are heuristics and usually case 

dependent, there are no standard design procedures that can guarantee computational 

performance. The essential idea of designing Lagrangian heuristics is straightforward, and 

most heuristics attempt to make the best use of the solution of LD problem (e.g., a lower 

bound on the optimal solution to the original problem (P)) and the structural information 

of the solution to the LD problem (e.g., the decision variables having values close to an 

integer may be worthy of attention in the heuristic design).

5.2 Enhancements on Subgradient Algorithms

A modified subgradient algorithm for Lagrangian relaxation discussed in Fumero (2001) 

incorporates a number of “most promising” heuristics in the field of subgradient 

optimization. Those heuristics include the widely used step size update schemes (Poljak,

5Lagrangian lower bound program (Beasley, 1993), which is the linear case of the Lagrangian dual 

problem in (5.3)
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1969; Held et a l,  1974), variable target value techniques by Kim et al. (1991) for updating 

the estimate of the optimal value of the dual function, and the search direction modification 

scheme proposed by Camerini et al. (1975). Good performance of the modified subgradient 

algorithm is reported based on computational experience in the Traveling Saleman and 

Assignment problems. In this work, a new heuristic to improve both search direction and 

step size determination is proposed. With the proposed heuristic, an extension is made 

to the subgradient algorithm given in Fumero (2001). In the improved algorithm, some 

recently developed heuristics are also incorporated, and a preliminary theoretical analysis 

shows the computational performance may be improved over existing algorithms.

5.2.1 Improved Subgradient Search Directions

A brief introduction is given for the most widely used heuristics in the literature, in terms 

of the two research streams to improve the subgradient optimization algorithms.

Step Size Selection

The most commonly used approach to step size calculation in subgradient optimization is:

=  6k^ \ ~ 3 Xk^  with O < 0 fc< 2  (5.5)

where Lk is the estimation of L* at current iteration k, and L(Ak) is the objective function 

value of problem (LD) at iteration k. sk is a modified subgradient direction which will be 

discussed later. The quality of the estimate Lk is very important in determining the step 

size. Based on the fact that the subgradient optimization algorithm will eventually drive 

L(Afc) to L*, the best objective value L° =  ma.xk =1{Lj}  should converge to L*. When the 

quality of an initial estimation (i.e., L°) of L* is not known (e.g., usually an overestimate of 

L*), it is desired to shift the weights of Lk on L° to the best objective value L° at the current 

iteration. A commonly implemented strategy is given in Bazaraa and Sherali (1981):

Lk =  akL° +  (1 -  a k)Lc (5.6)

where {ct/.} is a properly designed sequence. It should be noted that, to avoid the frequent

occurrence of Lk turning out to be an underestimate of L*, the sequence of {a^} should be
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appropriately designed. For instance, the sequence {a k} weights L° heavily in the initial 

stages of the process when Lc is likely to be significantly less than L*, and shifts the weight 

onto L° gradually at first and then more rapidly later when Lc approaches L*. One sequence 

of {ak} which provides the desired features is given in Bazaraa and Sherali (1981):

where r x is a tuning parameter by which we may delay, or hasten, the shift of the dominating 

weight from L° to L c; e0 should take a suitable value as the minimum weight of L° when 

the solution is close to the optimum; and r 2 is further determined as the smallest integer k 

which satisfies:

Typically, if L° is close to L* (i.e., we have a good estimation of the optimum value), it 

is desired to stay close to L° and rely on the initial estimation for more iterations, thus a 

higher value of and a small e0 should be used. On the other hand, if L° is a poor estimate 

(i.e., far from L*), it is desired to rely on Lc more heavily, thus a lower value of r i  and a 

larger value of e0 should be chosen.

Search Direction Adjustment

Another stream of research has been focused on improving the subgradient optimization 

methods through subgradient direction modification techniques. Recall that the Lagrange

0 .6933(fc/rj):

Oik = < (5.7)
if A; >  r 2.

eo >  e-°-6933(fc/r'i)3'26 (5.8)

The shape of the weighting function a(k) is shown in Figure 5.1.

a ( k )

k

Figure 5.1: Weighting function dynamics
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multipliers can be updated by equation (5.4), where dL(Xk) denotes the set of subgradients 

of L at Afc. The subgradient modification scheme proposed by Camerini et al. (1975) is one 

practical approach and employs a linear combination of the current subgradient f ik and last 

modified subgradient direction sfc_1. The update formula is given by:

sk = fik + /^ s* -1 (5.9)

where fxk — dL(Xk) and (3k  is a suitable scalar (sfc_1 =  0 when k = 0). The subgradient n k 

is evaluated for a given multiplier Xk. Generally, for an optimization problem in (5.1), the 

subgradient fJ-k(Xk) =  g(x; A*.), where x(A^) =  argminxeX{f(-x.) +  A^g(x)}. It should 

be noted that formula (5.9) is in fact equivalent to using all preceding subgradient direction 

information. Before further discussion, let us define XkX* as the vector connecting Xk to 

A* in an Euclidean space.

k—1

k —1

Figure 5.2: Geometric interpretation - obtuse angle

As shown in Figure 5.2, sfc-1 is the direction from vector Afc_i (the previous multiplier) 

to vector Xk (the current multiplier). At current iteration k, the subgradient /zfc =  dL{Xk). 

The fact is that, based on the update formula (5.9), the angle spanned by sfe-1 and the 

direction of XkX* is an acute angle (< f ). Xk is generated from Afc_i following direction 

sfe_1. Thus, when f ik and sfe_1 form an obtuse angle (> §), i.e., when sfc_1 ■ [ik < 0, it is 

desired to adjust the direction of subgradient /j,k closer to XkX*. Intuitively, i f  w e  choose  

a /3fc as a sufficiently small positive number, the resulting vector sfc forms a smaller angle 

with the direction of XkX* than does n k.
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In Camerini et al. (1975), the choice of 8k is given by:

8k =
otherwise.

(5.10)

with 0 < 7 fe < 2. The scheme in equation (5.10) was proposed to determine the weighting 

factor 8k in the case the angle between current gradient direction fj,k and previous modified 

direction sfe_1 is an obtuse angle, i.e., sfc_1 • fxk < 0 in formula (5.10). In Figure 5.2, the 

optimal multiplier A* is used just for the purposes of geometric interpretation; however, it 

is not required in the calculation of 8k in the implementation of algorithms. The heuristic 

in equation (5.10) gives a quantitative method to obtain a proper weighting factor 8k, which 

guarantees the resulting direction sfc is closer to the direction of A/. A*.

Like other heuristics, this scheme also introduces a scalar tuning parameter 7 *. The 

choice of 7  ̂may depend on the nature of problems to be solved, and for different choice 

of 7 fc the algorithm presents different computational efficiency. In Camerini et al. (1975), 

the value of 7 k is determined by:

where a  is the angle formed by sk 1 and n k; p =  where <j> and ip stand for the angles 

which sfc_1 and fj,k formed with vector A^A*, respectively. Geometrically, p indicates the

is not known, so an estimate of p has to be made by trial and error. For example, a simple 

heuristic estimation of p is p =  1, which assumes that on the average, s fe_1 and / ik form 

equal angles with respect to AfcA*, and this corresponds to a value of 7 k — |cô aj. An 

assumption often used is a  =  resulting in 7k — \J2, for which good computational 

experience has been reported in many applications (Camerini et al., 1975). In addition, a 

fixed 7  =  1 would amount to using a direction orthogonal to sfe_1. With an appropriate 

7 , this modification can significantly improve the convergence of subgradient optimization 

methods. A large amount of computational experience has shown its value in improving the 

convergent rate of subgradient optimization; moreover, the policy (5.10) tends to alleviate 

“zig-zag” behavior of the sequence of {Afc} (Camerini et al., 1975).

p + |cos a
(5.11)

c o s q ; |( 1  +  p\ cosa|)

relative location of vector A^A* with respect to sk 1 and /xfe. In practice, the vector A^A*
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Adjustment For A Feasible Subgradient Direction

In the context of Lagrangian relaxation, another approach to solving the dual problem 

(LD) is steepest ascent optimization (Bazaraa and Goode, 1979). There, research has 

focused on finding a feasible direction of steepest ascent, which improves the dual objective 

function monotonically iteration by iteration. Although our work focuses on subgradient 

optimization, the concept of a feasible direction in steepest ascent optimization should still 

be valid for the purpose of our work.

Definition (Bazaraa and Goode, 1979). Let L  be concave and consider the problem in 

(5.3). When A > 0, s is called a feasible direction for L  at A if A* =  0 implies that s* > 0, 

where A =  [Ax, A2, ..., Am] and s =  [si, s2, s m].

To understand this definition, consider the following fact. In ascent optimization, if 

Ak > 0, and if we move along an ascent direction sk for L(Ak), then there exists a 5 > 0 

such that L(Ak +  t ks£) > L(X)  and \ k +  tfcS* remains feasible for all t k <E [0,5]. On the 

other hand, if at least one component of Afc is equal to zero, moving along the direction s£ 

may destroy feasibility for any step size t k (Bazaraa and Goode, 1979). The same concept 

also applies to the subgradient optimization scheme discussed in previous sections. When 

the Lagrange multiplier A is updated through equation (5.4), which directly uses the search 

direction sfc obtained through equation (5.9). It should be noted that, the search direction sk 

may not be a feasible direction for updating the Lagrange multiplier A. This may worsen 

the zig-zagging behaviour of subgradient optimization methods.

To incorporate the concept of a “feasible direction”, a heuristic is developed as follows 

by modifying the projection discussed as Theorem 2 in Bazaraa and Goode (1979). For 

the Lagrangian dual function L(Ak) defined in problem (5.3), if a subgradient direction 

sfc € dL(Afc), its ith component sk is projected as follows:

sk, i f i ^ 4 ( A ) ;
(5.12)

0, otherwise.
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where Ik(A) is an index set determined by:

4(A ) =  {* | s? < 0 and Alfe =  0} (5.13)

Then, the direction sfc =  [s*, §k, is a feasible direction. Let us denote the projection 

operation as sfc =  P s (sk). In brief, the proposed heuristic, which is described by (5.10) and

(5.12), has the following properties:

1. Putting more emphasis on determining a feasible subgradient direction;

2. Yielding a direction §fe not worse than sfc;

3. Guaranteeing convergence of multiplier A in an Euclidean norm sense;

4. Providing a larger range of step size that can improve the convergence of the 

multipliers.

Next, we are going to show some favorable properties of the resulting direction sfc.

In addition to the feasibility of the direction, as is shown in Figure 5.3, when we try to 

move from A*; to A*, it is obvious that the direction sk is a direction at least as good as, if 

not better than, the direction sfe, because the projection of A&A* on sfc (i.e., ^  *S

at least as large as, if not greater than, that on sfc (i.e., ^ - ronf'5“)-

k —1

k-1

Figure 5.3: Adjustment of subgradient direction 

Next, we are going to show that sk is a subgradient direction at least as good as sfc. Based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 5.2 Enhancements on Subgradient Algorithms 119

on the fact that X*sk <  0 for all i G Ik, we have

(V  -  A*)Ts‘ =  £  (A* -  A‘ )Sf +  J 2
i£ lk

< E  (A* -  A*)s* =  (A* -  A*)T§fc (5-14>
i£Ik

In addition, from the definition of Euclidean norm (Bertsekas, 1995), we can easily obtain 

that:

M  > ||§ 1  (5.15)

Hence, assuming that sk and sfe are non-zero vectors, the following inequality holds:

(A* -  Afc)Tsfc (A* -  Ak)Tsk
— P i —  -  — P i —  ( >

In other words, referring to Figure 5.3, the vector A&A* can have a larger projection onto

the vector sfc, which means the modified direction sfc is at least as good a direction as sk.

Next, we show the convergence of the subgradient optimization algorithm based on the 

improved subgradient direction. In other words, if the Lagrange multiplier update strategy 

is given b y :

Afc+1 =  Px(Afe +  ffc§fc) (5.17)

where P*  is a projection operator on the closed convex set M  = {A > 0, L(A) > —oo}

(Bertsekas, 1995), and if the step size is chosen as (Camerini et al., 1975):

L(A*)_- L(A*0 
, l § '

we should have ||A* — Afc|| > || A* — Afc+i||.

Then, we have:

0 < tk < v ,,afc||2 (5.1.8)

Afe +  t ksk -  A*II =  ||A* -  A*||2 -  2tfe(A* -  Afe)Tsfc +  t2k ||sfc|| (5.19)

Lemma 1 in Camerini et al. (1975), which is based on the definition of subgradient, gives 

the inequality:

(A* -  Afe) V  > L ( V )  -  L(Afe) (5.20)
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Furthermore, Lemma 2 in Camerini et al. (1975) states that, for a given direction sk 

updated by the scheme in equations (5.9) and (5.10), the inequality:

( A * - A fe) V > ( A * - A  fc) V  (5-21)

holds. Therefore, from inequalities (5.20) and (5.21), we obtain:

(A* -  Afe)Tsfe > L{A*) -  L(Afc) (5.22)

and combine (5.22) with (5.14), we have:

(A* -  Xk)Tsk > L(A’) -  L(Xk) (5.23)

Then, from (5.19) and (5.23), we can get:

||A* +  tksk -  A*||2 < ||Afe -  A*||2 -  2tk(L(X*) -  L(Xk)) + 1\ ||sfc||2 (5.24)

It is straightforward to verify that, for the step size tk that satisfies (5.18), the sum of the 

last two terms in (5.24) is negative, so the above inequality yields:

||Afe + tksk — A*|| < ||Afe — A*|| (5.25)

Because A* G M  and the projection operation P a  is non-expansive6, we have:

||Px(Afe + tksk) -  A*|| < || Afe +  ifcSfe -  A*|| (5.26)

By combining the last two inequalities, the property ||A* — Afe|| > ||A* -  At+,11 has been 

proved.

Moreover, for step size selection, if we adopt the formula given in (5.18), because 

||sfe|| >  11 sfc j |, a larger range of step size t k can be chosen due to the use of the improved 

direction sfc.

For the proposed search direction adjustment scheme, in particular, properties 2 and 4 

may significantly improve the rate of convergence of the subgradient algorithms, while 

property 1 may alleviate the zig-zagging behavior of the algorithms.

6The mapping /  : R n —* X  defi ned by f (x)  =  [x]f  is continuous and non-expansive, that is:

||[x]+ — [j/]+ || <  ||rc — y\\ Vx, y  e  R n (Bertsekas, 1995).
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5.2.2 An Enhanced Subgradient Algorithm
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By incorporating the proposed extensions, further enhancement is expected to the 

subgradient optimization algorithm proposed in Fumero (2001). A decentralized version 

of the modified algorithm can also be developed for separable large-scale optimization 

problems (MILP, MIQP, MINLP), which takes advantage of the special problem structure.

A Version for Centralized Computing Environments

Next, an algorithmic scheme of the enhanced subgradient optimization algorithm is given 

as follows for an implementation on a centralized computing platform. Moreover, to help 

explain the proposed subgradient optimization algorithm, the diagrams in Figures 5.4 and 

5.5 give a flowchart description of the implementation.

•  Initialization. Choose a starting solution Ai G M  = (A > 0, L(A) > —oo} and 

compute L(Xx). Determine jj,1 G dL(Ai). Let s1 =  fj,1, and if ||sx|| =  0, STOP 

with Ai as an optimal solution to the problem (LD). Otherwise, choose an initial 

estimation L° > L* =  sup{L(A) : A G M }  and set L x =  L° as the target value 

for calculating the stepsize. Let (Ac, sc, L°) =  (A1,s 1,L(A1)). Select appropriate 

positive values for e0 and e, and select appropriate positive integral values for u, 9 

and rx as tuning parameters. Let 6X = 1, r — 0, u — 0, k — 1, and £*0 =  1 and go to 

Step 1.

• Step 1. Given Afc, /3k (f3x = 0), L(Xk), sk and Lk, determine the stepsize:

tk = h 1 " (5'27)

Update the multipliers with Afc+1 =  P*(Afc-|-ffcSfe). Compute L ( \ k+1) and determine 

H k+X G d L ( \ k+1). If | |^ fc+1|| =  0, terminate with Afc+i as an optimal solution to 

the problem. Otherwise, replace k by k +  1. If k reaches the prespecified maximum 

iteration number k, STOP; else, go to Step 2.

•  Step 2. If sfc_1 • n k < 0, set (ik — and perform the projection

sk = P s(pk + (3ksk~r); otherwise, sfc =  P s(/zfc). Then, go to Step 3 if r < r2 

or to Step 6 if r  =  r2.
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INI A, e  M  

Compute L(X\)

Determine subgradient f t1

X =  X i ; Stop.

(.XC, S C, L C) =  (A,, S 1, / W )  

Choose Lq > L* and set L\ — L°

Parameter setting: 9X =  1 , y  =  0  

v  =  0,  k  =  \,  <x0 =  1 , and choose v , 6 ,  rx

  " ~  r  ,------------► Calculate step size t k

2-k+1 -  + tkA )

Compute L(A.k + x ) a n d  /j. k + 1

N
f

k  =  k  4- 1

6

W A =  Ak, stop

Figure 5.4: Improved subgradient algorithm - part I
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■ A =  Ak, stopk>k

P h a se  2r <r.

P h a s e  1

v = v + \

V <  V (Ac ,S C ,Lc) = (Ak,S k ,L(Ak)) 

i  = a rL° + { \ - a  r)Lc{ A \ S c, U )  = {Ak, S k, L ^ k))

v =  v  + l

Update a r,Lk

ek ^ e kA, { h ^ k , iiAk))=(Ac , s c ,lc) V <  V

{Ak,Sk,L{Ak))={Ac,Sc,Lc

Figure 5.5: Improved subgradient algorithm - part II
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Phase I:

•  Step 3. If L(Afe) > Lc + e, go to Step 5; otherwise, go to Step 4.

•  Step 4. Let v = v + 1. l f v < v ,  go to Step 1; otherwise (if v  =  P), set v = 0 and

replace r  by r +  1. Compute a r = e —0 .6 9 3 3 (r/n ))3-26 a n d  s e t  £ fc =  ^ £ 0  +  Q

Let 9k = 6k-1, and reset (Afe, sfc, L(Afc)) =  (Ac, sc, Lc). And go to Step 1.

• Step 5. Let (Ac, sc, Lc) = ( \ k, sfe, L ( \ k)), and compute Lk = arL° +  (1 -  a r)L°.

Set v =  0, 9k =  9k-1, and go to Step 1.

Phase II:

• Step 6. If L(Afc) > Lc + t, go to Step 7; otherwise, go to Step 8.

•  Step 7. Let (Ac, sc, Lc) = (Ak, sk, L(Afc)). Compute Lk = arL° +  (1 — a r)Lc, and

go to Step 8.

• Step 8. Replace i/ by v +  1. If v  < P, go to Step 1; otherwise (if v  =  P ),

set v  =  0, and let 9k — 9k-1  +  2. If return to Step 1; otherwise, let

(Afe, sfc, L(Afc)) =  (Ac, sc, Lc) and return to Step 1.

A Version for Distributed Computing Environments

This section gives an algorithmic description of a decentralized version of the 

proposed subgradient optimization algorithm for solving large-scale MIP problems with 

decomposable structure. Consider a block-structured optimization problem:

p
(PI) min X > ( Xi)

i=l
V

subject to: ^T^gj(xj)<0 (5.28)
i=  1

Xi £ Xi

where Xj e  Xi is a subset of R n, g* £ R m. Xt represents the individual feasible 

domain with respect to the local constraints of potential subproblems. Assume & (xi)
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contains a complicating constraint set, by applying Lagrangian relaxation, the original

problem (PI) has its Lagrangian dual given by:

p p
L(A) =  min f i f a )  + XT ^  g^x*)

i = l  i = 1

subject to: Xj e  X u A > 0 (5-29)

Rewriting the Lagrangian function in (5.29), a Lagrangian function with separable structure 

is obtained:
p

L { \)  =  min ^ ( /* ( x i )  +  A ^ x * ) )  (5.30)
i= 1

= E  L< w
1 = 1

Then, the Lagrangian dual (LD1) problem is given as:

p
(LD1) m&x Li(^) (5.31)

Ai~° i=i

In this case, the solution of the (LD1) problem can be achieved by solving p individual 

subproblems. The centralized version of the improved subgradient algorithm discussed in 

previous section can be accordingly modified to take advantage of a distributed computing 

environment.

In the Initialization step and Step 1 of the centralized version, the dual function value 

L(Afc) is evaluated by solving an LD problem as a whole; however, when the LD problem 

takes the form of (LD 1), for a given multiplier Afe, the dual function of a subproblem L,(Afc) 

is evaluated at the solution of Xj(Afc) =  argminXj6A'i{ /(x i) +  A^gj(xj)}, which can be 

solved independently on a distributed computing platform.

In this case, the distributed version of the improved subgradient algorithm can be 

implemented in a distributed computing environment, where p computing nodes and an 

additional coordinator node are available. In brief, the evaluation of the p Lagrangian 

dual functions Lt(A*) is performed at the p computing nodes, respectively; while other 

computations are conducted at the coordinator computing node.
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5.2.3 Discussions
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By following different paths, similar heuristics for subgradient direction adjustment, as 

described in formula (5.12), are developed in Wang (2003) and Guta (2003).

Wang (2003) proposes a similar heuristic to equation (5.12); however, the heuristic 

developed in his work is only used for step size selection, i.e., the projected search direction 

sk is used to determine (3k in equation (5.10). In this thesis, the resulting search direction sk 

is also applied to equation (5.9) for subgradient search direction adjustment. In this case, 

the heuristic for search direction projection developed in this thesis extends the work by 

Wang (2003) to more general applications.

The mechanism behind many heuristics, which tend to improve the computational 

performance of subgradient optimization algorithms, has been discussed recently in Guta 

(2003). Most of the heuristics in the literature were developed to alleviate two kinds of 

zigzagging behavior of subgradient methods. The first kind of zigzagging behavior occurs 

when the subgradient direction n k forms an obtuse angle with the previous direction sfc_1, 

as shown in Figure 5.2; while the second kind of zigzagging is due to the location of k th 

solution, i.e., even when the angle between n k and sk~1 is acute, a movement of any size 

along sfc will cause an infeasible solution. A more rigorous definition of the two kinds of 

zigzagging can be found in Chapter 3 of Guta (2003). These zigzagging phenomena may 

significantly slow the convergence of subgradient optimization algorithms. The heuristics 

in the algorithm, which is developed in §5.2.2, actually intend to alleviate both kinds of 

zigzagging behavior and thus enhance the convergent speed of subgradient optimization.

Although the search direction adjustment strategy proposed in Guta (2003) is similar 

to the heuristic in equation (5.12) of this thesis, there are significant differences between 

these two pieces of work. Firstly, the work of Guta (2003) is derived from the concept 

of conditional subgradient methods (Larsson et al., 1996); while the proposed scheme in 

this thesis is based on the concept of feasible direction in steepest ascent optimization 

framework. These are two independent pieces of work sharing the similar idea of 

maintaining the feasibility of search direction. Secondly, it should be noted that the 

design and implementation of the subgradient algorithms are quite different. In our work, 

the algorithm described in §5.2.2 has incorporated the most promising heuristics in the
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literature, including the proposed search direction adjustment heuristics (i.e., equation

(5.12)) and the step size selection heuristics where variable target methods have been 

applied (i.e., equations (5.6) and (5.7)). In addition, a distributed version of the subgradient 

algorithm has been developed in this work as well.

5.3 Complexity Study

In the literature, mixed-integer linear programming (MILP) problems represent one 

important class of optimization problems, which have been mentioned in §5.1 for planning, 

scheduling, and resource allocation, etc. In addition, hybrid MPC applications, which 

involve integer variables, have been discussed in Bemporad and Morari (1999). It may be 

beneficial to apply an MILP-based target calculation to the hybrid MPC system to help 

achieve plant-wide optimal operations. Thus, MILP/ILP problems are the main focus for 

the remainder of this chapter.

In this section, a brief discussion on the theoretical complexity of the subgradient 

optimization algorithms will be given. Then a comprehensive empirical study is performed 

to gain insight into the scaling behavior of the enhanced subgradient algorithm.

We consider a large-scale block-angular mixed-integer linear programming problem 

with p subproblems:

max X X * .
i

subject to

AjXj < b 0 (5.32)
i

BtXi ^ bj

x, > 0  i  =  1, 2 , ...,p 

Xij E Z  for j  E Ii

where vectors x, (n* x 1), b* (m* x 1), b 0 (m 0 x 1), c* (rij x 1), and matrices A* (m0 x n*), 

Bj (rrii x rii) are specific to subproblem “i ” . It should be noted that the set I  contains the 

indices of integer variables in the decision vector X*.
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5.3.1 Theoretical Analysis
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In the literature, although it has been shown that some of the integer programming problems 

(e.g., the Uncapacitated Lot-Sizing Problem, the Shortest Path Problem, the Max Flow 

Problem (Wolsey, 1998)) can be solved with a polynomial algorithm, no one to date has 

claimed to find an efficient (polynomial) algorithm for a general MILP (or BIP) problem.

In the application of subgradient algorithms for solving MILP/ILP problems, the 

subproblems are generally optimization problems involving integer variables. Since there 

is no proof or declaration of a polynomial time algorithm for a general MILP/ILP, the 

subproblems themselves may not be solved in polynomial time. Therefore, no matter what 

the complexity of coordination, the worst case complexity of subgradient optimization 

would be NP-hard, when solving a decomposable MILP problem. Therefore, we are not 

going to emphasize the worst-case behavior of the subgradient optimization algorithm, 

but rather concentrate on its average-case behavior through the empirical studies in next 

section.

5.3.2 Empirical Studies

To gain more insight into the scaling behavior and computational efficiency of the proposed 

subgradient optimization algorithm, four groups of Monte Carlo simulation are performed 

by solving randomly generated (linear) Binary Integer Programming (BIP) problems7.

The BIP test problem instance generation scheme is introduced in Appendix A.3.1. The 

problem instance generation program randomly generates a set of BIP problems with block- 

angular structure. After some preliminary computational experiments, a reference problem 

model is determined so that we can observe algorithm performance changes when we vary 

the problem structural parameters with respect to the reference model. The following set 

of parameters are used for the reference problem model:

{ p  =  17 , m 0 =  10 ,  rrii =  2 0 ,  rij =  15  i  =  1 , 2 , . . . , p }

7 Since all the integer programming problems can be equivalently converted to binary integer programming 

problems (Rao, 1998), the simulation study focuses on BIP problems.
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It should be noted that the reference problem is a “well-balanced” decomposable problem 

with R S R  — 1. We are taking the same structural analysis approach as discussed 

in Chapter 2 and 3 with the assumption that each subproblem has been assigned to a 

distributed CPU.

Again, the equivalent computational time t eqv for the subgradient optimization algorithm 

is estimated by summing up the time for solving the coordination problem and the most 

time-consuming subproblem, assuming a distributed computational environment. As a 

reference, the generated BIP problems are also solved by a typical centralized MIP solver. 

Because the computational studies are only designed to investigate the scaling behavior 

of the proposed subgradient optimization algorithm without any primal solution recovery 

efforts attempted, the subgradient optimization procedure is terminated when the solution 

to the LD problem is close to the LD optimal solution. The algorithm is terminated when 

there is no improvement (e.g., less than 1CT6) made in the objective function values (i.e., 

||L(Afc) — L(Afc_i)||) or in the subgradient vector norms (i.e., ||sfe — sfc-1||) for a number 

of consecutive iterations 8. The algorithm will also be terminated when it exceeds the 

prespecified maximum iteration number, which is usually chosen as an increasing function 

of the decision variables (e.g., m axlter  =  50 +  20 x [35J, where N  is the number of 

decision variables). It should be noted that, the centralized MIP solver is used to solve 

BIP primal problems, while the subgradient algorithm is used to solve the LD of the BIP 

problems. Usually, there is a duality gap between the two solutions. In both cases, ILOG® 

CPLEX 9.0 MIP solver is used to solve all integer programming problems. In the Monte 

Carlo simulation for each scenario, the number of problem instances is 200 x 5 =  1000, i.e., 

for each scenario, five runs of simulation are performed and each run solves 200  problem 

instances generated randomly.

Scenario 1: We fix p and | J»|, change mo (see Appendix A.3.2). In this case, we can 

study the performance of decomposition and coordination with respect to the dimension of 

linking constraints in equation (5.32).

Figure 5.6 show s that the CCN is relatively insensitive to the dim ension o f  linking

8Usually, this number must be increased with problem size. In this work, we choose 3 to 5 in our 

implementation.
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Figure 5.6: Subgradient optimization: CCN vs. number of linking constraints
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constraints, although there is a slight increase of CCN. This is consistent with the average 

convergence behavior of subgradient optimization methods. It has been observed that 

the subgradient optimization approaches the optimum fast at the beginning and slows 

down when it is close to the optimum (Fumero, 2001; Baker and Sheasby, 1999; Bazaraa 

and Sherali, 1981). Thus, the simulation results imply that the subgradient optimization 

algorithm takes almost the same number of iterations to reach the desired vicinity of the 

optimum when the number of linking constraints increases. Note that, as is shown in Figure 

5.7, the subgradient algorithm presents better scaling behavior than the centralized MIP 

solver does.

Scenario 2: For fixed p and m 0, we change subproblem size |Jj| by simultaneously 

changing ra* and n* (see Appendix A.3.2). In this scenario, we study the algorithm 

performance with respect to subproblem sizes.

e — decen subgrad |

z  25

I  15

o  10

30 0.5 1 1.5
Number of Coefficients

2 2.5

x 10s

Figure 5.8: Subgradient optimization: CCN vs. subproblem size

The simulation results in Figure 5.8 are again consistent with the known convergence 

behavior of subgradient optimization. The CCN does not have much dependence on 

the subproblem sizes; however, since the solution of a larger subproblem is more time 

consuming, Figure 5.9 shows an increase in the computational time of subgradient 

optimization algorithm, but its scaling behavior is still better than the centralized MIP 

solver. It should be noted that the cross-over in Figure 5.9 shows the subgradient algorithm
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Figure 5.9: Subgradient optimization: computational performance vs. subproblem size

requires less (equivalent) computational time when the subproblem size becomes large (i.e., 

when the number of coefficients is larger than 105).

Scenario 3: We keep m 0, m* and ra* constant, and change the number of subproblems 

p (see Appendix A.3.2). In this case, we investigate the performance of the coordination 

algorithm when more and more subproblems are integrated into the coordination system, 

assuming a rather well-balanced subproblem computational load.
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Figure 5.10: Subgradient optimization: CCN vs. number of subproblems
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Figure 5.11: Subgradient optimization: computational performance vs. number of 

subproblems

Figure 5.10 shows that the CCN would decrease when the number of subproblems 

increases. It should be noted that, when the number of subproblems increases, the number 

of linking constraints remains the same; thus the impact of linking constraints on the 

CCN and computational time becomes less significant when the number of subproblems 

increases. An extreme case is when we have an infinite number of subproblems (i.e., 

p —► oo) the impact of linking constraints becomes negligible, thus it becomes a fully 

decomposable problem and no communication cycle is needed (i.e., C C N  —> 0). In other 

words, the incorporation of a similar-size subsystem does not deteriorate the computational 

performance, which also indicates good scaling behavior of the subgradient optimization 

algorithm. Figure 5.11 also shows better computational performance of the subgradient 

optimization, relative to the centralized MIP, for large numbers of subproblems (i.e., when

p >  2 1 ) .

Scenario 4: If we fix m 0, Y ^ = i and S L i i - e-» we the overall problem size, 

we can study the influence of relative subproblem ratio (RSR). In this case, we change 

p by combining subproblems into groups (see Appendix A.3.2) according to different 

partition patterns of the original BIP problem as we did for LP and QP in Chapter 2 and 3, 

respectively.
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In Figure 5.12, the CCN shows little dependence of the RSR; while the increase in 

computational time in Figure 5.13 implies that the increase is mainly due to the increase in 

solving subproblems (i.e., mainly due to the imbalanced dominant subproblem). We can 

see that even for the same BIP problem, different decomposition patterns lead to different 

computational performance although the CCN is not affected very much.

Remarks: The main task of coordination is to efficiently update the multiplier A. As 

heuristic-based strategies are used to calculate the step size and adjust the search direction, 

the update of A depends more on the heuristics than the solution of subproblems. In this 

case, the search direction adjustment and step size calculation do not show dependence 

on the problem structure parameters, which results in a coordination that is insensitive 

to problem structure. Consistently, from the empirical study, it can be observed that the 

computational complexity (CCN) of the subgradient optimization algorithm does not have 

significant dependence on the chosen structure parameters; however, the computational 

performance is significantly affected by the complexity of subproblems. Therefore, we 

may conclude that the subgradient optimization algorithm has good scaling behavior and 

can be used to efficiently solve the LD problem of an MILP or BIP problem.

5.4 Approaches to Primal Solution Recovery

In this section, the development of primal solution recovery heuristic is inspired by the 

Interior Path Methods (Hillier, 1969; Faaland and Hillier, 1979). Although the Interior 

Path Methods were not developed for retrieving primal solution from the solution of the LD 

problem, it provides the bases for the idea of the proposed Interior Path Search heuristic.

The heuristic algorithms developed in Hillier (1969) and Faaland and Hillier (1979) 

deal with general integer linear programming problems. The algorithms search for good 

integer solutions in the neighborhood of the optimal solution for the corresponding linear 

relaxation of the original problem. In some sense, the algorithms work in two phases, 

where “interior paths” from the optim um  o f  the relaxed problem  to som e interior points 

are constructed in Phase 1 and the search for a nearby feasible (integer) solution along the 

interior paths is performed in Phase 2.
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Figure 5.14 shows an illustrative linear integer programming problem, in which the black 

dots represent the integer solutions. The heuristics aim to generate “good” paths leading 

from an optimal solution for the corresponding linear programming problem (i.e., an LP 

relaxation of the MILP problem) into the interior (e.g., point 1 or 2 in the figure) of the 

feasible region for this problem.

Figure 5.14: Basic idea of interior path methods

Following the generated paths for given step sizes, the integer solutions close to the paths 

in the feasible region are evaluated. In the end, the best solution recorded in the evaluation 

procedure is reported as the final solution (optimal or suboptimal) to the original MILP 

problem.

5.4.1 Primal Solution Recovery Heuristics

This subsection discusses an Interior Path Search method by taking advantage of the 

solution from subgradient optimization, which is a way to make use of the solution of 

the LD problem.
For a general m ixed-integer programming problem  described in  equation (5.1), the 

solution to its Lagrangian dual problem, which is given in (5.3), provides a lower bound 

on the optimal solution to the original problem for any A > 0. This lower bound is at
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least as good as the bound from the solution of the linear relaxation problem (i.e., ignore 

the integral constraints and treat all the integer variables as continuous variables) of the 

original problem. The proof can be found in many classical textbooks, such as Beasley 

(1993) and Wolsey (1998).

For the purpose of illustration, let us consider a two dimensional case. In Figure 5.15, the 

upper dashed line represents the objective function of the relaxed problem, while the lower 

dashed line represents the objective function of the LD problem. In this case, the solution 

to the LD problem provides a better lower bound for the original integer optimization 

problem. Assuming that we can determine the intersection points 1 and 2, searching along 

the path (line segment) between point 1 and 2 , it is quite possible to find some feasible 

integer solutions in the vicinity of the line, which is the optimal or a suboptimal solution.

X2

XI

Figure 5.15: Interior path using subgradient lower bound

In particular, for an MILP problem of higher dimension, the (relaxed) feasible region 

is a polyhedron and the optimal objective function of the LD problem can be expressed 

by a hyperplane. Therefore, the line segment in Figure 5.15 will be a cross section (a 

polygon) generated by cutting the polyhedron with the hyperplane. Then we may have 

many points as the comer points of the polygon. Assuming we can determine all or some 

of the comer points9, it is possible to construct lines (interior paths) on the polygon by

9In theory, we can obtain all the comer points of the polygon, but in practice, we may be allowed to
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using some (linear) combination of the comer points. Since the cross section is usually 

close to the optimal solution or suboptimal solutions, which are in the neighborhood of the 

optimum, searching along the generated interior paths, it is quite possible to find a feasible 

suboptimal solution or the optimum.

To generate the interior paths in the above scheme, one question to be answered is the 

generation of end points for a line segment or comer points for a polygon. The following 

example is used to illustrate one approach to generating desirable comer points. Consider 

a general MILP problem:

(PI): min C1X1 +  c2x 2 

subject to: AjXi +  A 2x2 < 0  (5.33)

Xj £  PCi

where contains integer sets. Assumping the lower bound from the solution to the LD

problem of PI is f ib .  To make use of the lower bound, we can add one more constraint to

the original constraint set and get an LP relaxation of the original problem:

(P2): min ciXi +  c2x2 

subject to: AiXi +  A 2x2 < 0 (5.34)

C iX i +  C2X2 >  f ib  

Xj >  0

It may be noted that the problem (P2) is a degenerate problem. Although most commercial 

optimization solvers can handle this kind of degeneracy, we may modify the problem by 

introducting perturbations to the elements of the coefficient vector ci or c210.

(P3): min CiXi +  c2x2 

subject to: AiXi +  A 2x2 < 0

ciXi +  c2x 2 > fib (5.35)

Xj >  0

determine some of the comer points due to computational requirements.
10This actually leads to a slight change in the slope of the line segment in Figure 5.15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 5.4 Approaches to Primal Solution Recovery 139

The resulting problem (P3) can be solved to give a feasible solution (i.e., a point on the 

boundary) that is close to one of the end points or comer points. By randomly perturbing 

the coefficients of different decision variables in the augmented constraint (5.4.1), we may 

end up with a set of points that are supposed to be in the vicinity of the desired comer 

points. It should be noted that, as is shown in Figure 5.15, we cannot use two points close 

to point 1 to generate an interior path but one point close to point 1 and one point close 

to point 2. By recording the indices of active constraints when we solve the problem (P3), 

we can select a set of desired comer points, which correspond to different sets of active 

constraints, to construct such interior paths.

For one generated interior path, denoted as path x xx 2, where x 1 and x2 are the end points 

of the interior path, we can search along the interior path by evaluating the point:

xj =  L(1 — oOx1 +  ox2J, where 0 < a  < 1 (5.36)

where “ [J” is the operation for rounding all integer variables to obtain an integer solution. 

The step size a  can be increased at a fixed increment or according to some other update 

schemes. Then feasibility test will be performed for each evaluated point x J, i.e., we only 

record the set of solutions that satisfy all constraints in problem (PI). It should be noted that 

the integral constraints have been satisfied through the operation in (5.36). By searching 

along all the generated interior paths, the best integer solution x* is recorded and reported 

as the final solution.

5.4.2 A Decentralized Optimization Framework

So far we have obtained an improved subgradient optimization algorithm as well as a primal 

solution recovery heuristic, which contribute to the two essential parts of a subgradient 

optimization technique for solving MILP problems. As is discussed in previous sections, 

on a distributed computing platform, the distributed version of the improved subgradient 

algorithm can be used to efficiently solve the LD of a block-structured BIP (or MILP) 

problem. In addition, to fully utilize the distributed computing environment, the Dantzig- 

Wolfe decomposition algorithm can be used to solve decomposable LP problems (P3) 

for generating the comer points of desired interior search paths. Next, a decentralized
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optimization framework is proposed for implementing the MILP decomposition algorithm.

Based on our experience with Dantzig-Wolfe decomposition (Cheng et al., 2004) and 

Price-driven coordination methods (Cheng et al., 2005b), the proposed framework of 

decentralized optimization with coordination shares the same information exchange pattern 

as is shown in Figure 5.16.

C o o rd in a to r

R e s p o n s e  
Info. 1

R e s p o n s e  
Info. 2

S u b s y s te m  3S u b s y s te m  1

S u b s y s te m  2

Figure 5.16: Diagram of a generalized coordination framework

The information, which flows between the coordinator and each subsystem, includes 

multiplier information from the coordinator to subsystems and response information 

from each subsystem to the coordinator. The multiplier A usually contains sensitivity 

information with respect to linking constraints, while the response information contains 

the influence of the multiplier changes on subproblems’ solutions in some way (implicitly 

or explicitly). Note that, there exist a set of optimum multipliers A* that solves the overall 

problem. A major difference is the way the coordinator updates the “price” multiplier 

A as the coordinated system converges to the optimal solution. In the Dantzig-Wolfe 

decomposition, a linear program (RMP) is solved by the coordinator to update the “price” 

information; in the price-driven coordination method, a system of equations is solved by 

the coordinator for updating the multiplier; while dealing with MILP problems, Lagrangian 

relaxation (Lasdon, 2002; Beasley, 1993) and subgradient optimization methods (Fumero, 

2001; Camerini et al., 1975) are used to update the “price”.

Shown in Figure 5.17, the proposed decentralized optimization framework for solving 

MILP problems consists of three phases:

1. Subgradient optimization (solution of LD problem): subgradient multipliers are 

updated by the coordinator while the subproblems are solved on local computing
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D-W Sub LP1

Local F T 1

Subgrad.

D-W(RMP)

Linking F. T

Sub MIP 2 

D-W Sub LP 2 

Local F T 2

Sub MIP p
D-W SubLPp 

Local F.T.o

Figure 5.17: Decentralized framework for MIP

platforms;

2. Interior path generation via Dantzig-Wolfe decomposition algorithm: the solution 

from the first phase is used to construct a new LP problem, and then Dantzig- 

Wolfe decomposition algorithm is implemented in this decentralized computing 

environment to obtain the comer points for generating the interior paths;

3. Interior path searching and feasibility test: the coordinator is responsible for 

searching along the interior paths and finding the candidate solutions, then the 

feasibility test for linking constraints is performed by the coordinator while the 

feasibility test for local constraints is performed by each local subproblem.

The second and third phases are focused on retrieving the primal solution. Usually, for 

computation and communication consideration, only after the feasibility test for linking 

constraints is passed will the local feasibility test be performed.
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5.5 Case Study: Truck Allocation Problem
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This subsection gives an illustration of the application of the proposed decentralized 

optimization framework (including Lagrangian relaxation, subgradient optimization and 

primal solution recovery methods) in solving an industrial MIP problem.

5.5.1 Application Problem

Canada’s oil sands11 contain the biggest known reserve of oil in the world. Since the 

1920’s, open pit mining has been central to oil sands development. Nowadays, the oil sands 

industry employs the truck-and-shovel technology predominantly in its open-pit mining 

operations, as is shown in Figure 5.18. It has been widely recognized that the operation of 

the huge trucks and shovels contributes significantly to the overall mining operation cost 

(Ta, 2002; Ta et al., 2005). In order to reduce the cost of mining operations, it is desirable 

to take any opportunity to reduce the cost of the truck and shovel operation.

Overburden Removal

Waste Dump

MK Ore Haulage

Hopper

Crusher 

Surge with limited capacity

Figure 5.18: Truck-and-shovel oil sands mining operations

In the oil sands industry, a high level performance of mining operations is ensured

11 Oil sands are mixtures of sand, water, clay and crude bitumen.
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by an effective deployment of available trucking resources to maintain a steady, reliable 

supply of ore and a timely removal of overburden. In practice, many companies develop 

and implement integrated multi-stage decision support systems to help achieve optimal 

operation of trucks. The multi-stage decision making usually involves two stages: an 

allocation of truck resources for given production requirements, and a real-time dispatch 

of the allocated trucks to specific routes. By treating the problem as a whole, a common 

approach is to solve the allocation problem via mathematical programming techniques and 

the dispatching problem via heuristics (Elbrond and Soumis, 1987; Lizotte et al., 1989; Xi 

and Yegulalp, 1993; Temeng et al., 1997); however, in Ta et al. (2005), it was recognized 

that the allocation and real-time dispatch are separate tasks. With the increasing size of 

mining operations, it is more practical to treat the above two problems separately. In this 

chapter, our work concentrates on truck allocation phase and ignores the dispatch task.

In today’s oil sands operations, truck and shovel mining presents interesting challenges 

for operations optimization, including: multiple, competing and/or conflicting objectives, 

such as minimizing the operation cost (e.g., the usage of raw materials and energy) and 

maximizing production, among operating units and subsystems; limited availability of 

resources to be effectively allocated to competing subsystems; large sets of constraints 

defining the feasible domain; a requirement for smooth transition between consecutive 

optimization executions; and uncertainty in the system parameters. For complex mining 

operations, the truck allocation problem usually has a large scale and decomposable 

structure. A standard approach to problems of this type would decompose the large-scale 

optimization task of assigning truck resources to various activities. This fully decentralized 

approach would treat the optimization of ore production, waste removal and equipment 

maintenance, independently. Although this approach is commonly implemented with 

customized modifications, it cannot guarantee that the resulting operation is optimal with 

respect to the entire mining operations. It has been recognized that it is necessary and 

beneficial to have coordination between ore hauling and overburden removal processes to 

achieve m ine-w ide optim al operations.

In this section, a coordination approach is proposed to guarantee the coordinated, 

decentralized optimization system will find the optimal operation or suboptimal solution,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 5.5 Case Study: Truck Allocation Problem

which is close to the optimal operation.
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5.5.2 Decentralized Optimization with Coordination

This section discusses the viability of a decentralized decision support system for existing 

mining practice. An optimization-based decision support framework is developed by taking 

advantage of decentralized optimization techniques.

Decentralized Decision Support

Current oil sands mining can be classified into three functional processes: ore hauling, 

overburden removal, and mechanical maintenance. These individual operations can take 

place over a wide area, which may lead to a decentralized real-time decision making 

procedure. The decentralized optimization framework has many advantages. It naturally 

takes advantage of the special organizational structure and can provide an elegant economic 

explanation for decentralized management. Via decentralization of decision making, a 

large-scale problem is decomposed into smaller and easier problems, and distributed 

computing environment can be fully utilized.

The existing decentralized optimization for mining operations, however, may not be able 

to provide enterprise-wide optimal operations, because it fails to consider the interactions 

between the multiple processes, e.g., the share of truck and shovel resources. Obviously, 

non-optimal or even conflicting decisions could be made through this decentralized 

optimization. In current practice, priorities are usually pre-specified for each process to 

avoid the conflicts in decision-making.

Coordination for Decentralized Optimization

To make the individual optimizers work more efficiently, it is desired to establish 

coordination mechanism to deal with the interactions between operating processes. It is

possib le  to im plem ent a centralized decision  support system , in w hich  an optim ization

problem is formulated and solved for the entire mining operations, including inter-unit 

interactions. This approach yields the optimal operations; however, it requires centralized
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database management and computing environment, which centralizes the risk of decision- 

support system failure. This approach results in an “all-or-nothing” system, which has 

been identified as being impractical for large-scale operations. Alternatively, to retain 

the desirable features of the decentralized optimization, a coordinator can be added to the 

original system to handle the interactions and achieve the optimal operations.

Challenges and Opportunities

The main challenge lies in solution of the coordination problem. It has been proposed that 

a good model for mining operations should be a hybrid system involving both continuous 

and discrete variables. Thus, the coordination problem is a mixed-integer programming 

problem. It is well known that a general MIP problem is very difficult to solve, due 

to the combinatorial nature of problems involving integer variables12. An MIP solver 

which employs a centralized optimization scheme may encounter serious computational 

problems. For example, as one of the best known commercial optimization software, the 

CPLEX 9.X solver for MIP problems13 may fail to prove integer optimality and run out 

of memory even for a problem containing only 30 binary variables. This occurs when 

the branch-and-bound algorithm produces a tree having over one billion nodes and the 

termination criteria have been set improperly (GAMS, 2004). The situation becomes 

worse with a more complex model and more constraints. In this case, the decentralized 

optimization framework can be considered when: 1) it is expensive to implement a 

centralized computing environment (e.g., a high performance computer with huge memory) 

that can guarantee the computational efficiency and reliability requirements; or 2 ) the 

problem has separable structure and cheap distributed computing environment (e.g., a 

network of PCs) is available. Furthermore, a distributed optimization approach can provide 

a more reliable and extendable optimization and control system.

Thus, a major challenge is the development of an effective coordination mechanism 

for MILP decomposition and coordination strategies, i.e., an efficient way of driving the

12 Any integer variable can be represented by a combination of “0” and “1” binary variables.
13CPLEX is a product of ILOG®, which implements branch-and-cut search algorithms that includes the

latest research on cut and presolve techniques.
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solutions of the subsystems to the overall optimum. A good coordination mechanism is a 

decisive factor in ensuring the feasibility and applicability of the resulting coordination 

system. Due to the discrete nature, no sensitivity information is available for use in 

the coordination mechanism. All these issues are tackled by the proposed decentralized 

optimization framework.

5.5.3 Illustrative Case Study

For the purposes of illustration, our focus is on the coordination of ore hauling process 

and overburden removal process. Therefore, the following subsections give a simplified 

mathematical description of the processes of interest14.

Truck Allocation Problem Formulation

Assuming that the truck allocation problem is to efficiently distribute the available trucks 

to the individual processes: ore hauling and overburden removal. To show the problem’s 

special structure, a centralized formulation is firstly given in equations (5.37) to (5.41). 

Note that, for simplicity, the following formulation is based on deterministic optimization 

and considers one shift operation. A more advanced formulation for handling process 

uncertainties can be found in Ta et al. (2005). By defining the decision variables x  as the 

set15 of trucks allocated for ore haulage and y as the set of trucks allocated for overburden 

removal, the objective is to minimize the operating cost of trucks while satisfying the ore

14While the models may not refbct all the complexity of the actual mining operations, they are

representative and the simplicity allows clear demonstration of the optimization scheme
15Including the number of trucks and type of trucks
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demand from extraction process and overburden removal requirements.

147

min c£x +  c jy (5.37)

subject to:

Iix  +  I2y  < r (5.38)

BiX > d (5.39)

B 2y > w (5.40)

x, y e  Z+ (5.41)

where ch contains the corresponding operating cost of trucks for ore hauling process for 

one shift, while cr is for overburden removal. Inequality (5.38) represents the restrictions 

on truck availability for the overall mining operations. Constraints (5.39) and (5.40) are 

ore production and over burden removal requirements, respectively. This is not the only 

possible formulation, but it is a reasonable formulation that matches the current truck 

allocation practice.

The above optimization problem has a block-wise structure. By excluding the linking 

constraints (5.38) (i.e., the fleet resource), the problem can be decomposed into two 

independent optimization subproblems, associated with x  and y, respectively. For each 

process (i.e., ore hauling or overburden removal), without being aware of the workings of 

the other, each optimizer tries to maintain a minimal operating cost while satisfying the 

production requirements.

Performance Comparisons

To investigate the necessity and effectiveness of the coordination, a truck allocation 

problem is solved by three optimization schemes: the centralized, decentralized, and 

coordinated strategies. For the purpose of comparison, the centralized optimization is used 

as a benchmark for the optimal operations.

K  I  K  J

min EE ckhx ki +  EE CrVkj (5.42)
k=  1 i= l fc=1 j = l
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Subject to:
i j

^  ' x ki +  ^   ̂Vkj < r{k) k = 1,2,3
i = l  j = l

< Thr(i) i = 1,2,3

>  w

< Thr(j)  j  = 1,2

%kii Vkj  G Z

In the above problem, k represents the truck type (i.e., K  = 3 says that three types of trucks 

are in operation), and I  and J  are the number of shovels for ore haulage and overburden 

removal, respectively. Thus, x ki represents the number of type k trucks allocated to shovel i 

for ore hauling, while ykj is the number of type k trucks allocated to shovel j  for overburden 

removal, r  (k) is the availability of type k trucks, c* is the operating cost for running a type 

k truck for ore hauling per unit time, while cjf is the cost for overburden removal per unit 

time. Tl  is the cycle time for a truck’s16 roundtrip from an ore shovel i to the corresponding 

dump pocket; T} has similar meaning in overburden removal process. Lk is the load of type 

k trucks.

Table 5.1 and Table 5.2 give the data for the truck allocation problem17, where three 

shovels are used for ore haulage and two shovels for overburden removal.

Obviously, when the decisions for ore hauling and overburden removal processes are 

independent and the shared resources are not considered, conflicting decisions may be 

made. Thus, priorities should be prespecified for each process to gain feasible operations.

16The same cycle time for different types of trucks is assumed when they are allocated to the same route,

i.e., no overtaking is allowed.
17The parameter values in the case study do not represent the actual mining operations, and the case study

is set up to test the proposed method.
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Table 5.1: Parameters for trucking
truck type load (tonnes) operational cost ($/hr) truck fleet size

k = 1 240 1000 15

k = 2 320 1300 10

k = 3 360 1400 8

Table 5.2: Other parameters

shovel no. throughput (tonnes/hr) cycle time (min) others

i — 1 4000 25 Ore demand

i =  2 5000 35 d = 12000 (tonnes/hr)

i = 3 4000 30

3 = 1 4000 32 OB removal

3 = 2 3000 25 w =  6100 (tones/hr)

Note that, even when priorities are established, infeasible solutions may also occur 

especially if the common resource constraints are stringent. In this study, as in practice, ore 

hauling is given a higher priority, i.e., the decision maker ensures ore hauling resources are 

satisfied first, and overburden removal uses the remaining trucking resources.

Table 5.3: Different optimization strategies for truck allocation problem

central. coordinated decentral.(pri) decentral.(no pri)

Ore hauling obj.($) 24300 24700 24200 24200

OB removal obj.($) 11900 12100 13000 11600

overall obj.($) 36200 36800 37200 35800 {Infeasible)

Table 5.3 reports the solutions of the truck allocation problem resulting from the three 

different optimization schemes. It should be noted that, when no priorities are pre­

specified, the decentralized scheme without considering the linking constraints, yields the 

lowest operating cost for both ore hauling and overburden removal; however, it provies 

a solution that leads to infeasible operations, i.e., contradictory decisions occur in the 

allocation of common resources. With the pre-specification of priorities, the decentralized
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scheme makes a little improvement to get a feasible solution, but the total operating 

cost is higher in order to bring the solution to feasibility. If we look on prioritizing 

as one means of coordination, it is not the optimal way to conduct coordination. The 

proposed coordinated, decentralized optimization provides “optimal” coordination of the 

two interacting subproblems, guarantees a feasible solution, and achieves an operation 

level close to the real optimum operations (i.e., operations provided by the centralized 

optimization scheme). To achieve optimal operations through coordination, it is required to 

have proper modeling of interactions and a well-designed coordination process. It should 

be noted that, unless you make an exhaustive enumeration, an MILP algorithm cannot 

guarantee to find the real optimum. Based on current heuristics for the decomposition and 

coordination algorithm, there is no guarantee of finding the true optimum, but the proposed 

heuristic-based algorithm yields a solution close to the true optimum.

Remarks: For the purpose of illustration, the truck allocation problem for the case study 

is not really in large scale. All the optimization schemes can solve the problem in seconds, 

and thus the computational effort is not emphasized. In addition, this work develops a 

fairly general and flexible framework for decentralized decision support system, in which 

many heuristics are incorporated into the decomposition and coordination algorithm for 

solving the resulting optimization problem. Based on such an optimization framework, 

better heuristics can be introduced or developed to improve the computational performance 

to satisfy specified application requirements.

5.5.4 Discussions

Because of the desirable features of decentralized optimization approaches, the 

optimization problem can be formulated in a module-based fashion such that the resulting 

coordination system can be easily extended and maintained, and can provide reliable 

behavior.

The foremost step in the problem formulation is to identify and model the interactions 

among multiple operating units, i.e., the linking constraints. For a specified purpose, an 

appropriate subset of those interactions should be identified and modeled, and be used 

in the coordination of subsystems. For example, the available truck resources may serve
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the purpose of linking constraints in the truck allocation problem when considering the 

mining operations only; however, when the plant-wide operation is considered, the balance 

between the ore demand from Extraction operating units and the ore supply from M in in g  

should be included as a linking constraint. The overall process of Oil Sands mining and 

extraction operations contains both continuous and discrete processes. There are link ing  

constraint sets associated with integer variables, such as the number and types of trucks and 

shovels. This unavoidably brings big challenges to the efficient coordination of subsystems.

When the linking constraints are identified and formulated, the major types of 

information to be exchanged between the coordinator and subsystems is also determined. 

Then, this information is incorporated into the formulation of subproblems in the form 

of a parameter (e.g., price vector A), which is updated by upper level coordination. 

In this work, we have proposed a multi-level model-based optimization framework for 

mining operations, in which two-directional (in both time and space) coordination has 

been proposed. To give a conceptual idea, Figure 5.19 illustrates a two-level coordination

Level 2: 
P lan t-Inpu t- l  t

Level 2: 
P lan t-O u tpu t

Co-Level 2.

f  Level 1: 
Plant-Output

Level 1: 
Plant-Output

C o-L evel 1

Extraction
Daily Obj. 2 ( X ) 
( S i m p l i f i e d  D a i l y  M o d e l  2 )  
Daily Constraints 2______

Mining
Daily Obj. 1 ( X )  
Level 1 Linking: ( p )  
( D a i l y  M o d e l  1 )
Daily Constraints 1

P rocess Operations
Weekly Obj.
Level 2 Linking: (3l) 
( W e e k l y  M o d e ! )
Weekly Constraints

+ / /  Level 0: l \ \
/  / Plant-Output \  \ f

Level 0: 
Plant-Output

ORE OB
Shift Obj. 1 ( p ) Shift Obj. 2 ( p )
Shift Model 1 Shift Model 2
Shift Constraints 1 Shift Constraints 2

Figure 5.19: Model-based coordination framework

framework for Oil Sands operations. In the figure, the “plant-input” can be the production 

plans established by business and marketing departments, which are used as the targets 

of process operations (mining and extraction). The “plant-output” information at different 

levels contains the measurements and data that reflect the state of process operations at
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a corresponding operating unit. For example, level-0 plant-output is from ore hauling 

or overburden removal units, and it may contain the information regarding the demand 

for trucks and ore production level based on that truck demand. As we have discussed 

previously, the multipliers A and p  include some sensitivity information with respect to the 

linking constraints involved with multiple operating units. For example, when the level-1 

linking constraints are the available truck resources for mining operations, the multipliers 

p  can be some artificial prices for the usage of trucks. In the proposed framework, the 

upper level objective function can be defined as a time integration of lower level objective 

function. We use brackets in expressing the model (e.g., (daily model)) to show that the 

models at level k are only used to take part in level (k +  1) coordination. An example is 

that, when we perform level- 1 coordination, the daily model in level- 1 coordinator will not 

be used.

5.6 Chapter Summary

Nowadays, many industrial operations become highly integrated and in large scale, whose 

high-level performance may be supported by the solution of large-scale optimization 

problems involving integer variables.

As many large-scale MIP problems have special structure that allows decomposition of 

the original problem into smaller subproblems, decomposition and coordination strategies 

for solving large-scale MIP problems are investigated in this chapter. Subgradient 

methods are widely used in solving decomposable large-scale MIP problems for ease of 

implementation, but their convergence behavior requires further improvement for some 

applications. In this work, by incorporating the concept of a feasible search direction, a 

new heuristic has been developed to adjust the search direction in subgradient optimization 

methods. The new heuristic provides several favorable properties, which have been proved 

to improve the convergence behavior of subgradient methods.

B y introducing the “best” heuristics in the literature, as w ell as the proposed direction  

modification strategy, an enhanced subgradient optimization algorithm is developed and 

given in form of a centralized version and a distributed version. The structural complexity
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analysis provides insight into the scaling behavior of the proposed subgradient algorithm, 

and implies the feasibility of the algorithm in industrial applications.

In addition, a novel Interior Path Search heuristic has been developed for retrieving 

primal solutions from the LD problem solution. By taking advantage of the Dantzig-Wolfe 

decomposition strategy, the proposed heuristic can make full use of a distributed computing 

platform. As a result of the enhanced subgradient optimization algorithm and the primal 

solution recovery heuristic, a decentralized optimization framework is proposed for solving 

large-scale decomposable MILP problems.

Furthermore, the decentralized optimization framework has been applied to a 

decentralized decision support system for truck allocation in Oil Sands mining operations. 

Within the decentralized optimization framework, the enhanced subgradient algorithm and 

Interior Path Search heuristic can efficiently solve the associated MILP problem. The case 

study results show that the proposed optimization framework can be a viable technique for 

solving industrial MILP problems.
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“Learning without thought is labor lost; thought without learning is 

perilous.”

-  by Confucius

6
Conclusions and Future Work

6.1 Summary and Conclusions

In the past few decades, large-scale optimization has been identified as one of the most 

efficient ways to ensure high-level operational performance. Optimization can make an 

organization more competitive by maximizing production profit and minimizing cost. With 

growing understanding of the chemical and physical rules underlying each process, it is 

possible to describe a system using more detailed, high fidelity models. Optimization 

problems based on these more informative but more complex models can result in fairly 

high dimensional optimization problems.

For solving large-scale optimization problems, the decomposition of large-scale 

(complex) systems (or problems) into a number of interconnected subsystems (or 

subproblems) has been recognized to be beneficial. In this thesis, partitioning of the
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system is used to achieve not only a reduction of numerical complexities of problem but 

also conceptual simplification in understanding a large-scale system. Besides the purely 

computational difficulties arising in large-scale systems, there is an equally important 

problem of understanding the effects of system (or problem) structure on the performance 

of decomposition algorithms.

This work is intended to make a contribution to a wide range of application areas, 

including optimization and process control. In particular, the work has been focused on 

the study of three classes of large-scale optimization problems: linear programming (LP), 

quadratic programming (QP), and mixed-integer linear programming (MILP) problems.

Large-scale optimization problems frequently occur in industrial applications, and many 

of them naturally present special structure or can be transformed to such a special 

structure. To take advantage of a distributed / decentralized computing environment, some 

decomposition and coordination methods have the potential to solve specially structured, 

large-scale optimization problems at a reasonable speed. This work identifies the best 

available decomposition strategies through literature review and computational study, as 

well as develops more efficient decomposition algorithms whenever needed. Using an 

empirical complexity analysis approach, the scaling behavior and computational efficiency 

of the decomposition strategies are investigated. The complexity study provides guidelines 

to the practical applications of the decomposition and coordination methods.

Chapter 2 investigates decomposition strategies for large-scale LP problems. In 

particular, Dantzig-Wolfe decomposition strategies based on single-column and multi- 

column generation techniques are studied. New insight into the relationship between 

computational performance and problem structural parameters is gained through a 

comprehensive empirical study of the scaling behavior of Dantzig-Wolfe decomposition 

algorithms.

In Chapter 3, for solving large-scale QP, an efficient price adjustment scheme is 

proposed that uses Newton’s method to compute the price vectors, which takes advantage 

o f  the sensitivity inform ation from  subproblem solutions. W ith the proposed price  

adjustment scheme, the computational performance of price-driven coordination methods 

is substantially enhanced when solving large-scale QP problems. A complexity study
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provides an understanding of the computational behavior of the enhanced price-driven 

coordination and provides guidelines for the implementation of the algorithms in industrial 

practice.

Chapter 4 demonstrates novel applications of the decomposition and coordination 

strategies discussed in Chapter 2 and Chapter 3. For industrial plant-wide control, this work 

provides new formulations of plant-wide MPC target calculation to achieve plant-wide 

optimum operations. The proposed coordinated, decentralized MPC framework consists 

of individual MPC subsystems and a coordinator. The Dantzig-Wolfe decomposition and 

price-driven coordination methods are applied to the design of coordination system, for 

LP-based and QP-based MPC target calculation, respectively. By modeling the linking 

constraints with the off-diagonal element abstraction method or interstream consistency 

method, the resulting optimization problems fall into a category of separable LP or QP 

problems with linking constraints, which can be efficiently solved by the decomposition 

and coordination methods.

Chapter 5 extends our study to large-scale MIP and focuses on MILP problems. By 

incorporating the concept of a feasible search direction, new heuristics are proposed to 

modify the search direction in subgradient optimization methods. With the proposed 

direction modification strategy, an improved subgradient optimization algorithm is 

developed, which can provide faster convergence. The complexity study provides insight 

into the scaling behavior of the proposed subgradient optimization algorithm, and illustrates 

the utility of the algorithm for industrial applications. Furthermore, primal solution 

recovery techniques are also investigated. To accommodate a distributed computing 

environment, an Interior Path Search method has been proposed for primal solution 

recovery by taking advantage of the Dantzig-Wolfe decomposition strategy. By applying 

the coordination mechanism in subgradient optimization and the primal solution recovery 

heuristics, a multi-level optimization framework is developed for the decentralized decision 

support of mining operations, which may involve coordination problems that can be 

form ulated as large-scale MILP problems.

In general, decomposition strategies show high computational efficiency whenever 

a distributed computing power is available. Based on the coordination techniques
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and algorithms developed in this work, to improve the computational performance of 

the decomposition strategies in order to meet specific computational requirements, a 

decentralized optimization framework has been proposed to embed the decomposition 

strategies in a distributed computing environment. In Chapter 4 and Chapter 5, typical 

process control and mining operations optimization problems are solved to illustrate the 

implementation of the decentralized optimization framework. These case studies show the 

viability of the proposed coordinated, decentralized optimization techniques.

6.2 Suggestions for Future Work

A number of challenges remain in both the development and application of the 

decomposition strategies for large-scale optimization.

Coordination in Plant-wide Hybrid Control Systems

In much of this thesis, we have focused on the control and optimization of processes 

with continuous variables; however, in many industrial operations, such as control and 

scheduling in power plants (Gallestey et al., 2003), chemical processes including logic 

switch control (Stursberg and Panek, 2002), actions like switch on/off, mode transitions, 

products selections, and raw materials selection, etc., are modeled as discrete variables, so 

it is natural to formulate a constrained MPC with discrete variables.

For modeling and control, a Mixed Logical Dynamical (MLD) model is synthesized 

to describe the processes by Bemporad and Morari (1999). They proposed a framework 

for controller design when the process includes both dynamical and logical variables and 

are subject to operating constraints. Usually, continuous dynamic models are obtained 

from algebraic and differential equations based on our understanding of process chemistry 

and physics. On the other hand, the existence of logical components introduces integer 

variables to the problem formulation. So it is quite natural to formulate an MPC 

problem based on mixed-integer quadratic programming (MIQP). Moreover, Stursberg and 

Engell (2002) proposed a hybrid automaton which models autonomous switching between 

different nonlinear dynamics and includes both discrete and continuous control inputs.
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Using linearization techniques, we can transform the dynamics into linear discrete time 

models. Then the task of generating an optimal control law to drive the system to a desired 

target region can be formulated as an MIP problem.

With the increasing maturity of hybrid control techniques, MPC technology has 

extended its application to processes involving discrete input and output variables. In plant- 

wide control and optimization, the coordination of decentralized MPC has been recognized 

as a beneficial approach to improve plant-wide control performance. Similarly, when 

decentralized hybrid MPC is employed, the coordination of such MPC controllers becomes 

a challenging but promising opportunity to improve control performance. Interactions 

between subunits, which may then include discrete variables, can be abstracted or identified 

via advanced process control and system identification techniques. Naturally, the overall 

problem can be formulated as a large-scale MILP or MIQP problem with block angular 

structure. A coordination system can be designed for decentralized hybrid control systems 

by employing decomposition strategies for large-scale MIP.

Design of Hybrid MPC Systems Coordination

By applying a coordination mechanism, a framework for coordination system design can be 

developed for two-level hybrid MPC systems that include a steady-state target calculation 

and a dynamic control calculation. For industrial applications, it is important to have a 

good understanding of the coordination complexity, scalability behavior of the coordination 

algorithms and coordinated system stability. Industrial testbeds can be easily found in 

power systems, pharmaceutical plants where logic control systems are often used, or some 

polymer plants which have grade transition or mode selection operations.

Different from the interactions in continuous processes or models, interactions in a 

hybrid system can be represented by pure integer constraints, pure continuous variable 

constraints, and hybrid constraints. Quite often, we have the ability to select appropriate 

interactions for coordination. To design a coordination system for decentralized hybrid 

MPC systems, it is desired to gain insight into the influence of coordinating different 

kinds of interactions. Given a hybrid process with a decentralized control system, before 

designing the coordination system, it is better to understand what will happen to the
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complexity of coordination if one additional constraint with both continuous and discrete 

variables is added. It is necessary to understand the performance loss when such a contraint 

is ignored, by comparing different coordination system designs. If the ignorance of an 

extra constraint does not cause too much performance loss, or the inclusion of an extra 

constraint increases the complexity of coordination too much, it may be considered better 

not to add such a constraint; however, when such a constraint has strong impact on the 

control performance (i.e., it cannot be ignored), we may need to determine how to relax the 

discrete variables and compensate for its integrality.

Furthermore, it should be noted that, if a moving-horizon is considered, the problem 

dimension of control calculations will be much higher than that in target calculations, thus 

different information flows should be determined in these two cases. One question may be 

whether all the control move information should be passed to the coordinator or just part 

of them. It can be a trade-off between control performance and computational efficiency 

throughout the coordination, and it may cause big difference in the computational load for 

coordination and communication load on industry networks.

Further Adjustment for Subgradient Direction

In the search direction adjustment scheme given in formula (5.9), the situation where 

s*;_i • fj,k < 0 was considered; however, this scheme did not make any change to the 

direction when Sfc_i • n k > 0 , which implies that the current gradient direction f ik is a 

good direction. But this may not be always true as is shown in Figure 6.1. Recall the 

following facts of angles in the figure. The angle (Z l) spanned by vector A^A* and sfc_1 

is an acute angle; the angle (Z2) spanned by vector \ k\*  and fjbk is an acute angle. It is 

possible that the angle (Z3 in Figure 6.1) spanned by vector n k and sfc_1 is an acute angle,

i.e., Sfc_i • fik >  0. In both cases shown in Figure 6.1, intuitively, we may find a better 

direction sk which is a combination of /xfc and sfc_1, and the resulting angle (Z4) spanned 

by sk and A&A* is a smaller acute angle, i.e., Z4 < Z2 .
Based on the geometric interpretation, we can see it is possible to further improve the 

direction [xk, even when \ik and sfc_1 form an acute angle. It may be desired to develop 

a heuristic that can handle both of the situations shown in Figure 6.1. For example, the
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k -1

k -1k -1

k -1k -1

Figure 6.1: Geometric interpretation - acute angle

Lagrange multiplier can be updated through:

Sk = fxk + CfcS* - 1 (6.1)

where the weighting factor ( k could be a negative number. In the search direction 

adjustment scheme discussed in formula (5.9), whether the angle Z3 is obtuse or not 

can be determined qualitatively by checking the validity of inequality Sfc_i • /zfc < 0 ; 

however, in the cases shown in Figure 6 .1, the selection of weighting factor ( k may require a 

quantitative comparison of those angles, i.e., an estimation of those angles may be required 

at some accuracy level. It seems to be a necessity to have A* to measure (or calculate) 

those angles, but it is unrealistic before we reach the optimum. This is a key challenge in 

determining an appropriate weighting factor £&.

Before a breakthrough in making comparison between those angles (without resorting 

to A*), the formula (6.1) may be used when a good estimation of A* is available. For 

example, when \ k is close to A* (e.g., when there is small improvement in Lagrangian 

function values), the best Lagrange multiplier so far can be used as a “good” estimate of 

A* for evaluating the angles in Figure 6.1.
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A
Structural Empirical Studies

A.l Dantzig-Wolfe Decomposition Algorithm

A .l.l Linear Programming Problem Instance Generation

To generate a test problem instance set, we follow the block-wise structure in (2.26) and 

(2.27). To generate one LP instance, we take the following steps, assuming the optimization 

problem is formulated with some scaling operations:

1. Generate p sets of subproblem constraints B j X j  < b*: generate a random vector x*  

with r ii  elements in [1 ,1 0 ]  —► generate a random m ,  x  n* matrix B * with elements in 

[1 0 ~ 6 , 1 0 3] —> calculate b° =  B , X i  —> perturb b* =  b° +  ah°, where a  is a ra* vector 

with randomly generated elements in [0,0.5], then we have generated subproblem 

constraints which have feasible solutions.
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2. Generate m 0 linking constraints: combine X  =  [x i,..., x p] of a dimension N  —> 

generate a random m 0 x  N  matrix A with elements in [10- 6,103] —> calculate 

fc>Q =  A X  —► perturb b 0 =  bg +  f3b%, where (3 is a m 0 vector with randomly 

generated elements in [0,0.5].

3. Generate a N  vector c with random elements in [0,10] (in theory, we can generate an 

unrestricted c vector).

The generated LP instance should have feasible solutions. Degeneracy and cycling is 

avoided by careful design of the problem instance generation algorithm.

A.I.2 Monte Carlo Simulations

Numerical experiments were designed for the following scenarios:

1. An appropriate reference problem model must be specified. The reference problem 

size and structure should be a good reference for the comparison experiments, i.e., 

we can observe the algorithm performance changes when we change the problem 

with respect to the reference model. In the preliminary study, the reference model is 

chosen from:

p  =  17 

m 0 =  |_30i?2/1 0 j  

rrii =  [4 0 /2 2/1 0 j  

rii =  [3 0 i? 2/1 0 j  

R —  {1 ; 2 , 3 ,4 , 5 ,6 ,7}

In this case, the overall problem size can be respresented as the number of elements 

in the coefficient matrix I  =  (m0 +  m i )  x N , or in standard LP form I  =

(”*o + ELi m i) x (ELi m i + m o + N).

2. For fixed p =  17, |7*| =  40 x 30, we change m0 in the following way:

m 0 — [30 x 2fl_3J , R  = {1,2,3,4,5,6,7}
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3. For fixed p = 17 and m 0 =  30, change subproblem size (m, x  nt) by factors of 2 to 

the reference problem model, by changing mi and nf.

mi =  [40 x 2 'R_3J

rii — [30 x 2'R-3J , R = {1,2,3,4, 5 ,6 ,7}

4. We keep m0 — 30, m* =  40 and rii =  30 constant and change the number of 

subproblems p:

p = BR + l, R  = {1,2, ...,15}

In this case, we assume a rather well-balanced subproblem load, i.e., m i, m 2 , ■ ■■, mp 

is in similar order of magnitude and the same to n\, n 2 , . . . ,  np.

5. By fixing m 0 =  30, Y a  m % and Y i  i-e-> we fix the overall problem size, we can 

study the influence of relative subproblem ratio (RSR). In this case, we change p by 

combining subproblems into groups following the patterns below:

{1 ,1 ,.., 1,1}, {2,2,.., 2,1}, {4,4,4,4,1}, {8 , 8 ,1}, {16,1}

and

{1,1,..., 1,1}, { 2 ,1 ,1 ,1 } ,  {4 ,1,..., 1), {8 ,1 ,..., 1}, {16,1} 

in the above cases, RSR changes from 1 to 16.

A.2 Price-driven Coordination Algorithm

A.2.1 Quadratic Programming Problem Instance Generation

To generate a test problem instance set, we follow the block-wise structure presented in

(3.24) to (3.25). To generate a QP instance, we take the following steps, assuming the 

optimization problem is formulated with some scaling operations:

Phase I: unconstrained QP problem
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• Step 1: generation of a positive definite symmetric matrix Q j using the following 

“LDL” decomposition formula:

Q, =  L;DjLf i = l ,2, . . . ,p

where Dj is an (nj x rij) diagonal matrix with strictly positive elements, L* is a unit 

lower triangular matrix. Note that, the condition number of the resulting matrix Qj 

can be controlled by the relative ratio of the diagonal elements, and thus we can study 

the effect of the condition number on the computational performance. Then, the 

generated matrices will be used to form a block-diagonal Hessian matrix H, which is 

also a positive definite symmetric matrix of dimension (N  x N,  where N  =Y^i  nd-

•  Step 2: randomly generate a trial solution Xj e  Rrii, where the elements of x° is an 

arbitrary number in [10- 3, 103].

• Step 3: generate the linear term coefficient f  according to the following formula:

fj =  -Q fx °  i =  or f  =  — H Tx°

Note that, so far an unconstrained QP problem with a solution x° has been generated.

• Step 4: a small perturbation is introduced to the linear term coefficient f  £ R N by:

f  =  —H r x° +  d ,  where £ [0 , 1]^

This will lead to a solution x* /  x°. The reason to perform this step is to avoid a 

special situation, where a direct catenation of subproblem solutions is equal to the 

overall solution, i.e., [xj; x ° ; x ° ]  =  x*. In fact, in that case, no coordination 

is required. As can be seen later, the trial solution x° will be used to generate 

constraints, including the linking constraints, thus the resultant optimal solution x* 

will not equal x° due to the changes made to f .

Phase II: constrained QP problem

•  Step 5: linking constraints are assum ed to be equalities, and generated according to  

the following formula:

b 0 =  A 0x° where A 0 =  [Ai A 2. . .  Ap]
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where A* is randomly generated with elements A i(j, k) € [10—2, 102]. In this way, 

we can guarantee at least a feasible solution that satisfies the linking constraints.

• Step 6 : the generation of subproblem (local) constraints are realized through a two- 

stage procedure, where both the interior solution case and the boundary solution case 

are considered.

Stage 1: generate a set of base equality constraints by:

b? = B i x ° * = 1,2

where B, is randomly generated with elements Bj(j, k) e  [10~2,103].

Stage 2: control the location of the optimal solution in the feasible region, by 

changing b° in equation (A.2.1) as:

b j  =  <
b° +  e2, interior solution case; 

b° -  62, boundary solution case.

where e2 > 0  contains elements whose values are related to the significance of 

perturbation in Step 4. By doing this, the resulting local inequality constraints 

BjXj < bi can present different cases when different modification strategies in 

(A.2.1) are taken. It should be noted that the cases of interior solution and boundary 

solution are discussed in a reduced space excluding the linking equality constraints.

So far, the generated QP instance has a form of the optimization problem in equations from

(3.24) to (3.25), and should have feasible solutions1.

A.2.2 Monte Carlo Simulations

According to different situations in practice, we design experiments for the following 

scenarios.
'A ccord ing  to our experience, m ore than 95% o f  the generated QP problem s have optim al solutions, and 

this satisfi es the requirements of the simulation studies. For more advanced instance generation techniques, 

interested researchers may refere to (Calamai and Vicente, 1997; Davies and Higham, 2000).
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1. We need to start from an appropriate reference problem model. The reference 

problem size and structure should be a good reference for the comparison 

experiments, i.e., we can observe the algorithm performance changes when we 

change the problem with respect to the reference model. In the preliminary study, 

the reference model is chosen from:

p =  17

m0 =  Ll0 i?2/ 10J 

mi =  [15i?2/10j 

m = Lioi?7 ioj 

R  =  {1) 2 ,3 ,4 ,5 ,6 , 7}

In this case, the overall problem size can be respresented as the number of elements 

in the coefficient matrix I  =  (mo +  mt) x N.

2. For fixedp = 17, \ I i \  = 30 x 20, we change m 0 in the following way:

m0 =  [10 x 2fi- 3J , R =  {1,2,3,4,5,6,7}

3. For fixed p = 17 and m0 =  20, change subproblem size (m* x n*) by factors of 2 to 

the reference problem model, by changing mf and rip.

mi = [15 x 2R~3\

rii =  L10 x 2r ~3\ , R  = {1,2,3,4,5}

4. We keep m0 =  20, m, =  30 and rii = 20 constant and change the number of 

subproblems p:

p = 8R + l, R  = {1 ,2 ,..., 11} for interior cases 

p  =  8 R +  I , R  =  {1 , 2, . . . ,  9 }  for boundary cases

where we assume a rather well-balanced subproblem load, i.e., m i, m2, ..., m p is in 

similar order of magnitude and the same to rii, n2, ..., np.
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5. If we fix to0 =  20, Y a  and n l; i.e., we fix the overall problem size, we can 

study the influence of relative subproblem ratio (RSR). In this case, we change p by 

combining subproblems into groups following the patterns below:

{1 ,1 ,. . ,  1,1}, (2 ,2 , .., 2,1}, { 4 , 4 , 4 , 4 , 1}, ( 8 , 8 , 1}, {16,1} 

in the above cases, RSR is changing from 1 to 16.

A.3 Improved Subgradient Optimization Algorithm

A.3.1 Binary Integer Programming Problem Instance Generation

To generate a test problem instance set, we follow the block-wise structure presented in 

(5.32). To generate a BIP instance, we take the following steps, assuming the optimization 

problem is formulated with some scaling operations:

1. For a given input parameter nu generate a set of random vectors x* for i =  1, . . . ,p  

with binary elements E {0 , 1).

2. Generation of p sets of subproblem constraints BjXj <  b*: generate a random 

rrii x rii matrix Bj with elements in [10~3, 102] —> calculate b° = B*Xj —» perturb 

bj =  h° +  ob°, where a  is a m, vector with randomly generated elements in [0,0.5], 

then we have generated subproblem constraints which have feasible solutions.

3. Generation of m 0 linking constraints: combine X  = [xi, ...,xp] of a dimension N  

—> generate a random m0 x N  matrix A with elements in [10 3,102] —*• calculate 

bg =  A X  —> perturb b 0 =  bg +  /ibg, where (3 is a m 0 vector with randomly 

generated elements in [0,0.5].

4. Generate a N  vector c with random elements in [10~3, 10] (in theory, we can generate

an unrestricted c  vector).

5. Reformulation of linking constraints (scaling of RHS of the linking constraints): 

since it is quite common to normalize the RHS of the linking constraints in the
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applications of subgradient optimization (Beasley, 1993), the coefficients of matrix 

A is divided by the corresponding elements of vector bo, and therefore the RHS of 

linking constraints is normalized to 1 .

A.3.2 Monte Carlo Simulations

Following the same structural analysis strategy, numerical experiments were designed for 

the following scenarios:

1. An appropriate reference problem model must be specified. With a preliminary 

empirical study, the reference problem size is chosen from:

p  =  17 

m 0 =  [2 x 2R~2\  

m ,  =  [3 x 2 R ~ 2j  

r i i= [ 2 x 2r ~2\

R  — ( 2 ,3 ,4 ,5 ,6 ,7}

In this case, the overall problem size can be respresented as the number of elements 

in the coefficient matrix I  =  (m0 +  Y a m«) x N.

2. Scenario 1: for fixed p = 17, |7»| =  12 x 8, we change ra0 in the following way:

m 0 =  10 +  20 x ( R -  1), R =  (1 ,2 , ...,10}

3. Scenario 2: for fixed p =  17 and m 0 = 10, change subproblem size (m, x n,) through 

changing the reference model parameter R:

mj =  [3 x 2r -2 J

n i =  L 2 x 2 H~2J, R = { 1 ,2 ,...,7}

4. Scenario 3: we keep mo =  10, =  12 and n* =  8 constant and change the number

of subproblems p:

p  = R 2, R  = { 1,2, ...,9}
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In this case, we assume a rather well-balanced subproblem load, i.e., m 1, m 2 , . . . , m p 

is in similar order of magnitude and the same to rii, n2, ..., np.

5. Scenario 4: by fixing mo =  10, Y a  m i and Yd  n*’ i-e-’ we the overall problem 

size, we can study the influence of relative subproblem ratio (RSR). In this case, we 

change p by combining subproblems into groups following the patterns below:

{1,1,..., 1,1}, {2,2,.., 2,1}, {4,4,4,4,1}, ( 8 , 8 ,1}, {16,1} 

in the above cases, RSR changes from 1 to 16.
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