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Abstract

In the current literature, there are two distinct families o f credit risk models: firm value 

model and intensity-based model. The first one makes explicit assumptions about the 

dynamics of firm value and default happens if the firm value is less than some threshold 

level. The second one treats default as a totally unexpected event, the stochastic structure 

is modeled by some intensity process. Is there any connection between these two classes 

of models?

Before answering the question, we introduce a class o f stochastic processes named after 

the French scientist Paul Pierre Levy: Levy processes. In part of the dissertation, we 

analyze properties o f Levy processes, which includes Levy densities, multivariate Levy 

processes and equivalent martingale measures for Levy processes. We model the firm value 

process as an exponential Levy process. Starting with the firm value models, we obtain 

the instantaneous default probability in form of the Levy measure. In this case, default 

may be caused by either the random jumps or the Brownian motion. The information 

o f the instantaneous default probability is not enough to obtain the survival probability. 

Thus we provide PIDE (partial integro-differential equation) representations of the survival 

probability and the corresponding bond prices. Since default is a totally unexpected event 

in the intensity-based model, it need more assumptions to achieve the point. Under the 

assumption that the default is only caused by the random jumps in the firm value process, 

the default intensity is a decreasing function of the nature logarithm ratio o f pre firm value 

to the default threshold, which is not given exogenously. And in this case, the survival
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probability has a closed-form expression as in the intensity-based model. It shows the 

connection between two default risk models. Several examples are shown to justify out 

setup.

The results o f the equivalent martingale measures and the instantaneous default 

intensities based on the Levy processes can be extended to additive processes with local 

characteristics.
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Introduction

1.1 Credit risk models

There are a lot of risks in financial markets such as interest rate risk, volatility risk, currency 

risk and so on. Credit risk is an important consideration in most financial transactions. 

It refers to any kind of credit-linked event, for instance, changes in the credit rating, 

variations of credit spread and the default event. It is gauged by quality ratings assigned 

by commercial rating companies such as Moody’s Investor Service and Standard & Poor’s 

Corporation. The credit risk specified in this thesis is the credit default risk, the possibility 

that a contractual counterparty does not fulfill its obligation stated in the financial contract, 

that is the possibility of loss due to the default event.

In the current literature, there are two ways to model the time of default and thus we have 

two classes of the credit risk models: firm-value model and intensity-based model. The first 

one is pioneered by Black and Scholes (1973), Merton (1974), followed by Black and Cox 

(1976), Longstaff and Schwartz (1995). They define that the default occurs when the firm- 

value process V  reaches a certain boundary D  which maybe deterministic or stochastic,

t  =  inf{t e A t  ■ Vt <  Dt}, (1.1)

where A t is the set of possible default times with maturity T. We denote inf 0 =  oo. Let

1
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Sec. 1.1 Credit risk models 2

T t be the information filtration which includes all the information up to and including t, 

then the default time r  is a stopping time with respect to T . In Merton’s setup, A t — {T }. 

If A t is infinite, particularly A t =  (0, T), then it is called the first-passage model. In the 

latter case, the survival probability under the risk-neutral measure Q  is

Q (t >  T \T t) =  I{T>t}Q -  D s) >  0\Tt ĵ , t  e  [0 ,T]. ( 1.2)

If Tt is generated by Brownian motion, it is continuous and then r  is predictable. Thus 

the instantaneous default probability is zero, in other words, the term structure of credit 

spreads should always start at zero. It is a property that is not observed in reality. Zhou 

[56] proposed a jump-diffusion model of V, which makes r  partly unpredictable due to the 

sudden drop of the firm-value and then the instant credit spread is not zero anymore but the 

intensity does not exist. Another advantage of this model is that the firm-value at default is 

not equal to the threshold D, it could be any number between 0 and D. It shows us a way 

to model the recovery rate at default.

The second class of models focuses directly on describing the evolution of the 

probability of default in the next instant without defining the exact default event, and the 

time of default or other credit events are treated as an exogenous random variable, for 

instance, the jump time of a Levy jump process X  defined in Definition 1.2.1. Thus the 

intensity ht is introduced to define the instantaneous likelihood of default, which is the 

(stochastic) hazard function in reliability analysis. In the intensity-based model, default 

time can be defined as the first jump time of X :

t  =  inf{£ € (0,T] : A X t 0}, (1.3)

it is a totally inaccessible stopping time with intensity h with respect to T . These models 

were developed by Duffie & Singleton (1999), Jarrow & Turnbull (1995), Lando (1998), 

Madan & Unal (1998, 2000). Jarrow & Turnbull considered the case of a constant default 

intensity h, that is A  is a Poisson process. Madan & Unal generalized the result to the 

case when h is a continuous process adapted to a Brownian filtration. If  ht is the default 

intensity under the risk neutral measure Q, then the survival probability is

Q{t >  T \T t) =  I{T>t}E®[e~~^hsds\Tt], t  € [0,T]. (1.4)
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Sec. 1.1 Credit risk models 3

These two classes of models have different concerns. In firm-value models, default is 

an endogenous event while in intensity-based models it is exogenous. Are they consistent 

or can they be unified under some certain conditions? As discussed in Duffie & Lando 

[16], the default intensity does not exit when the firm value follows a diffusion process or 

a jump-diffusion process. The default intensity exists only when the firm value follows 

a pure jump process. Giesecke [27] concludes that the key to unify both approaches lies 

in the probabilistic properties of the default event. In other words, the default must at 

least be unpredictable in the structural model. The jumps in the jump-diffusion process are 

not sufficient, unless the firm-value is modeled through a pure jump process. This ideal 

is equivalent to identify the two definitions (1.1) and (1.3) with respect to (Jrt)t>o- Chen 

& Panjer [10] show that the forward default intensity exist in both diffusion and jump- 

diffusion structural models. The probability of default is a function of the forward intensity 

thus the structural model can link to a forward-intensity model. Another feasible way is 

to drop the assumption of perfect information commonly made in structural models. With 

imperfect information on assets and/or default threshold, investors are uncertain about the 

default time. In the case of existence of the intensity, let (Qt)t>o represent the imperfect 

information, then this idea is equivalent to identify the two survival probabilities (1.2) and

(1.4) with respect to Qt. Refer to Duffie & Lando [16], Giesecke [27] for example.

Our method to connect two approaches is based on the first idea. We model the firm- 

value process as an exponential jump-diffusion process: Vt =  V0eXt, typically, X  is a Levy 

process. With perfect information in the first-passage model, assume that the default is 

caused by sudden drops of the firm-value only, then (1.1) and (1.3) can be equalized as

r  =  inf{i € (0,T] : Vt <  Dt} =  in i{t G (0,7] : € Bt },

where Bt is a subset of 72. \  {0}. And then the survival probabilities (1.2) and (1.4) are 

identical. While in the general case, the default is caused by either the random jumps or 

the movement of Brownian motion,

r  =  inf{i G (0, T \:V t <  Dt} <  inf{t e  (0, T] : A X t G Bt},

and

E Q[e-  f?hsd s^ t] >  Q Q n f r (ys -  D s) >  0 | J ^  , t  G [0,2"].
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Sec. 1.2 Stochastic processes in mathematical finance 4

In this case, even though the default intensity does not exit when the firm value follows a 

jump-diffusion process, we define the instantaneous default probability as (4.5) or (4.6) and 

we will show that the instantaneous default probability does exits. Please note that in the 

intensity-based model, the instantaneous default probability is called the default intensity.

1.2 Stochastic processes in mathematical finance

Economists model the prices of financial assets as stochastic processes evolving with time. 

Levy processes are stochastic processes with stationary independent increments, infinitely 

divisible distribution and they are continuous in probability. Brownian motions and Poisson 

processes are two special cases. Brownian motion, a Levy process with continuous sample 

paths, plays a very important role in modeling financial markets since the work of Bachelier 

in 1900. He modeled the stock as a Brownian motion. However it may have a negative 

stock price. A more appropriate model, geometric Brownian motion was suggested by 

Samuelson (1965) with the stochastic differential equation: dSt =  S fp d t +  adW t), p  and 

a  are called the drift (mean return) and the volatility of the stock S  respectively. Black 

and Scholes (1973) and Merton (1973) used this model to calculate the price o f European 

options and received the Nobel Prize for Economics in 1997. To meet the fact that the log 

returns of most financial assets are not normally distributed but skewed and fat-tailed, a 

more flexible model is needed. Levy processes fulfill that role. The first example of Levy 

process used in option pricing is Merton (1974), where the stock returns are generated by a 

mixture of Brownian motion and Poisson process. Mandelbrot used alpha-stable processes 

earlier, in 1963, but for statistical description of cotton future returns.

Let X  =  {X t } t>0 be an 72.d-valued stochastic process defined on a stochastic basis 

(fi, T , F =  {Tt)t>o, P ), where the filtration T t satisfies the usual conditions.

Definition 1.2.1 (Levy process) An 1Zd-valued stochastic process X  =  {Xt }(>0 with 

X 0 — 0 almost surely is called a Levy process if  for 0 <  s < t  <  oo,

1. X  has independent increments: X t — X s is independent o f T s;

2. X  is time homogeneous: X, — X s has the same distribution as X t_s;
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Sec. 1.2 Stochastic processes in mathematical finance 5

3. X  is continuous in probability: lim„_^0 P {X t+u ~  X t >  e) =  0 for any e >  0;

4. as a function o f time t, X t is right-continuous with left limits almost surely.

The Fourier transform on characteristic function of the Levy process X  is defined as

V(z , t )  =  E[ei{-z'Xt\

Theorem 1.2.1 (Levy-Khintchine formula fo r  Levy process)

The characteristic function o f a Levy process X  is

1
^{z,  t) =  exp < t A z ) +  f  (el{z’x) -  1 -  i ( z , x ) I {\\x\\<i} (x))v(dx) +i (z , ' y)

Jnd )
(1.5)

where A is a symmetric nonnegative-definite d x  d matrix, v is a measure on TZd satisfying 

^({O}) =  0 and / TCd( ||x ||2 A 1 )v{dx) <  oo, 7  € 1Zd. We call (A,u, 7 ) the generating 

triplet, A the Gaussian covariance matrix, v the Levy measure o f X . The representation by 

this generating triplet is unique.

X  is a Brownian motion when v =  0. If A =  0, then we say that X  is purely 

non-Gaussian. The Gaussian part and jump part of X  are independent. If v  satisfies

JllxiKi I M K ^ )  < 00 , then

~ ( z ,Az)  +  J^d(ei{z’x) ~ +  i (z, lo)

7o =  7 -  <( xv(dx)  is called the drift o f the Levy process X . (It is different from the

drift used in finance.) If  WAfiidx) <  00, then

\If(z, t) — exp \  t ~ \ { z i A z ) +  [  (el{z’x ) - l - i ( z , x ) ) i / ( d x )  +  i ( z , y 1) 
z Jut

7 i =  7  +  J||x||>i xv {dx) is called the center o f the Levy process X . The three parameters 

7 , 70 and 71 have the following relationship if they exist,

E [X  1] =  7 ! =  70 +  / xv(dx ) =  7  +  /  xv {dx).
Jnd -AMIm

Thus we say that X t is a martingale if and only if \\x\\v(dx) <  00 and 71 =  0. (See

Proposition 3.18 in Cont & Tankov [12].) For the Gaussian covariance matrix A,  there
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Sec. 1.2 Stochastic processes in mathematical finance 6

always exists a real d x m  matrix a  such that A =  aaT, m > d .  Such a  is not unique, but 

the Cholesky decomposition of A  is unique.

A distribution is infinitely divisible if  its characteristic function can be represented by 

power of a characteristic function for every integer n. The distribution of Levy processnth

is infinitely divisible. The characteristic function o f an infinitely divisible distribution has 

the form of (1.5) with t  =  1. Conversely, the characteristic function T (z, 1) implies the 

existence of an infinitely divisible distribution. A Levy process is a-stable if  it has the self­

similarity property: for all b >  0, X bt and bl/aX t are identical in law, where a  G (0,2] is 

the index o f stability. Brownian motion without drift is the only stable process with a  =  2. 

A Levy process on 7Z with increasing sample path almost surely is called a subordinator. 

For a subordinator X t G TZ, A =  0, v ( -o c ,  0) =  0 and f (Q ^ xv(dx) <  oo. A Levy process 

on 1Z with no positive jumps is called a spectrally negative Levy process. Its Levy measure 

has support in (—oo, 0) with ^(0, oo) =  0.

Since the Gaussian part and jump part o f X  are independent, any Levy process can be 

decomposed as following.

Theorem 1.2.2 (Levy decomposition, see Theorem 42 in Protter [48])

A Levy process with generating triplet (A, v, 7 ) has a decomposition

X t =  aW t +  [  [  x[N(ds,dx)  -  u(dx)ds] +  f  f  xN(ds ,dx)  +  j t ,  (1.6)
J  l l x I K l  J O  J II3H I > 1  J O

martingale with bounded jumps Levy process with paths offinite variation

Wt is an m-dimensional standard Brownian motion and a is a d x m  matrix with o o T =  A, 

N(ds,  dx) is the Poisson random measure o f  X  while N( ds , dx) :=  N(ds,  dx) — v(dx)ds  

is the compensated measure. W  is independent o f the two jump processes and the two jump 

processes are independent, that is, they do not jump at the same time.

Besides 71, Brownian motion is the only Levy process with continuous sample paths. 

Note that N(ds,  dx) =  1 if X t jumps at time ds and the associated jump size dx is recorded. 

Otherwise N(ds ,dx)  =  0. (See Definition 2.18 in Cont & Tankov [12].) In fact, the 

stochastic integral f xeA f* xN(ds,  dx) =  J2o<s<t & X SIA( X X S). If  7o and 71 exist, X  can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 1.3 Contribution of this thesis 7

be rewritten as

X t =  70f +  aWt +  V '  =  71t +  aWt +  [  f x N ( d s , d x ) .
o7 ?<t J* d Jo

Levy processes are mostly used to model the return of financial assets in option 

pricing as dSt — St- d X t . Another generalization o f the market model is the stochastic 

volatility model. In pricing problems, the equivalent martingale measure (EMM) should be 

determined. It is not unique for Levy processes. The choice depends on a transform to the 

Levy measure and the Brownian motion part of the Levy process.

1.3 Contribution of this thesis

The first part, Chapter 2, deals with the Levy process. Section 2.1 is about its basic 

properties. We show the construction of the Levy process, the Levy measure and the Levy 

density through a limit procedure. Section 2.2 gives examples o f popular Levy processes 

with their probability distribution functions and their Levy densities. In Section 2.3, we 

investigate the structure of multi-variate Levy processes. The methods used to obtain multi­

variate Levy process are linear transformation, subordination, transformation of jump sizes 

and Levy copula. The generating triplet, particularly the multi-variate Levy measure after 

transformation can be expressed as a term of original triplet and other parameters. Time 

copulas are also mentioned as a complement of copulas. Additive processes are introduced 

in Section 2.4. They can be easily constructed with Levy processes and they are similar to 

Levy processes in some properties.

Chapter 3 focuses on the equivalent martingale measures for Levy processes. At first, the 

main theorem of the measure transform is provided. Examples in general case are shown 

in Section 3.2, which include the numeraire portfolio, the (Follmer-Schweizer) minimal 

martingale measure and the minimal entropy martingale measure. The three particular 

equivalent martingale measures for Poisson-diffusion processes are treated as special cases. 

At last, we extend the results to additive processes with local characteristics.

Chapter 4 analyzes the credit risk models. The basic factors in credit models are provided 

in Section 4.1, including the default time, the recovery amount, the default probability and 

the bond price as well as the dependence structure of default. Section 4.2 discusses the
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Sec. 1.3 Contribution of this thesis 8

stopping times. Section 4.3 sets up the firm-value process and obtains the instantaneous 

default probability. The survival probabilities are described in the forms of partial (integro) 

differential equations in two cases: the one that the default time is totally inaccessible and 

the general case. The dependent structure of default events and the dependent structure 

of default intensities are discussed. Section 4.4 is about the defaultable bond price with 

different recovery schemes as well as the instant credit spread. Section 4.5 generalizes the 

instantaneous transition matrix of credit rating. Section 4.6 summarizes the results and 

extend them to additive processes. The last section shows that the instantaneous default 

probabilities are different under different risk-neutral measures.

Examples of the first-passage model with simple Levy processes are given in Chapter

5. The instantaneous default probabilities, the survival probabilities, the hazard rates and 

the corresponding PIDEs are shown in each example. Simulations are also provided in the 

Poisson-diffusion firm-value models.
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2
Levy processes

2.1 Levy measure and Levy density

Consider a one-dimensional Levy process X ,  let A be a subset of the real line bounded 

away from 0 and let be the number o f jumps of X  in (0, t) with the jump size in A:

Nt =  E  Ja (A X s), A X s =  X t -  X s_. (2.1)
0 <s<t

In fact, is a Poisson process. Let v(A) =  E(iV^) be the parameter of the Poisson 

process, then E (Nf )  =  tv  (A) and v(A)  <  oo.

Theorem 2.1.1 (Levy measure) The set function A —»■ Nf(u>) defines a a-finite measure 

on 1Z \ {0} for each fixed The set function v(A) =  E( Af )  also defines a cr-finite

measure on 7Z \ {0}. And this measure v is called the Levy measure o f the Levy process 

X .

The Levy measure of the Levy process X  on A is in fact the expected number of jumps 

o f X  which belong to A in any time interval with length 1. It measures the frequency of 

jumps.

Proposition 2.1.1 Let v be the Levy measure o f the Levy process X , A is a Borel set in 7Z 

and is defined by (2.1), then

9
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Sec. 2.1 Levy measure and Levy density 10

•  v(A) is finite if  A is bounded away from 0;

•  I f  Ai PI A2 =  0, iVtAl is independent o f N^2;

•  v{A\  U A2) =  i'(Ai) +  vi^Af) — v(A\  H Af)i

•  I f  A =  U”=1Ai and A, n  Aj = 0  for i f  j,  then N f  =  ^ " =1 N^' and v(A) =

E h  H U

The Levy measure may be infinite when 0 is in the closure of A . In such case, the Levy 

process has infinite activities near 0. Sato [50] divides Levy processes into three types: a 

Levy process { X t} generated by (A , v, 7 ) is

•  of type A if A =  0 and v(1Zd) <  00 (or v(dx) <  00);

•  o f type B if A — 0, v ( K d) =  00 and \x\u(dx) <  00;

•  of type C if A f  0 or \x\v(dx) =  00.

The type A process has a finite number of jumps in every finite time interval, therefore it’s a

compound Poisson process with drift. The number of jumps in every finite time interval of 

a type B process is countable. The sample functions o f these two processes are o f bounded 

variation in every finite time interval. Type C processes are Levy processes with infinite 

variation in any time interval. Surbordinators are of finite variation in every finite time 

interval, which do not belong to type C.

In one-dimensional case, define u(TZ) — E [ ^ 0<.9<i I{AX,yo}], which measures the 

expected number of jumps in any time interval of length 1. The Levy measure of Brownian 

motions is zero on any subsets of IZ because it is continuous. Consider a pure-jump 

Levy process X ,  if v{IZ) =  A < 0 0 , type A process, then for any set A C T ? . ,  the 

Levy measure is z'(A) =  X P ( A X  £  A). If  u(IZ) =  00, type B or type C process, by 

Levy decomposition, this measure can be divided into two parts: v =  v  1 +  v2 , where

measures the part with bounded jumps and v2 measures the part with jumps of size 

at least 1. Then vx(K)  =  v f { x  : |x| <  1}) =  lim£_ 0 J <̂ |a.|<1 v{dx)  =  00 and 

v2{K)  =  u({x : |x| >  1}) =  Jjx|>11fidx) <  0 0 .
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Sec. 2.1 Levy measure and Levy density 11

Levy process has independent and stationary increments, then
n

X t — Ji, where f  =  Xu -  X g - i , i =  1, • • • ,n
'  n  n

2 = 1

J j ’s have independent identical distributions. As a consequence, the Levy measure can be 

approached by the limitation:
n

u(A) =  E\  Ia ( A X s)} =  lim P( X± -  AVi G A) =  lim n P ( J  G A).
v '  L d .-j  n —>00 n n n —foo

0 < s < l  i = l

Theorem 2.1.2 (Xeyy density)

•  Ifv(1Z) — A < oo, that is X  is a compound Poisson process with drift. Let J  be the

jump size o f X , then the Levy density is a combination o f these two types at x f  0

J  v(dx) =  AFj(dx) if  J  is continuously distributed with CDF Fj;
\  u({xi})  =  XP(J =  Xi) if  J  is discretely distributed.

•  IfvflZ) =  oo, then the Levy density is v(dx) =  lim ^oo nF(dx ; A), where F(dx\ t) 

is the CDF o f the increment X t+S — X s, s , t >  0, the same as the CDF of X t.

Consider a bivariate compound Poisson process. Let Yt3 =  f2i=i J ~  1)2 where 

N( follow equation (2.1) and the jump sizes are nonzero random numbers. The intensities 

of the Poisson processes are Xj =  vx(Aj), vx is the Levy measure of X.  Yj and Y2 are 

independent if  Ai fl A2 =  0. In other words, if  two processes never jump at the same time, 

they are independent. More specifically, denote Q =  71 \  {0}, then for B i , B 2 C Q the 

joint Levy measures in the independent case are

j/(B i,{0}) =  v f B f ) ,  i/({0} , B 2) =  v2{B2), v {B1, B 2) =  0. (2.2)

Vj are the Levy measures of Y J and the measure at point {0} measures the event that the 

corresponding process does not jump. If Ai Pi A2 f  0, the joint Levy measure is

u( Bi , B2) =  vx{A\ n  A2)P ( J i G Bi , J 2 G B2), (2.3)

which is fully determined by A := ux(At fl A2) and the joint distribution of jump sizes. A 

is the intensity of the common jumps of Y\ and Y2. Moreover

v ( Bu { 0}) =  u1{B1) - u ( B 1,n)  =  X1P ( J 1 e B 1) - X P ( J 1 e B 1), 

i/({0}, B2) =  u2(B2) -  v{Cl, B2) =  X2P{J2 G B2) -  AP( J2 G B2),
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Sec. 2.1 Levy measure and Levy density 12

where Aj — A is the intensity of the specific jump parts of Yr  The total intensity of the 

2-dimensional compound Poisson processes is

v(n2) = v(n,n) + v(n,{o}) + u({o},n)
=  A +  (Ai — A) +  (A2 — A) =  Ai +  A2 — A.

If Ai =  A2 =  A and J\ , J 2 are completely positive (or negative) dependent, then we say l j  

and Yi are completely positive (or negative) dependent.

Let Aj C Q, j  =  1, • • • , d, the d-dimensional joint Levy measure may be obtained by 

limit as

i/(Ai, • • • , Ad) =  E Y , IaA&Y}) X X /a,(Ay/)
. 0 < s < l

n

lim e A l , -  , Y t - Y t 1 € Ad)
71— > 0 0  ‘  \  n n n n /

1= 1

=  lim  n P (J i  G Ai, • • • ,  J d €  Ad).
n —>00

Theorem 2.1.3 (Joint Levy density on nonzero points)

Let X  be a d-dimensional Levy process and x =  (x i, • • • , Xd) ^  0.

•  I f  there exists any two independent components o f X , then ■ ■ ■ , 0 )  =  0;

•  I fu(Q , • • • , Q) =  A <  00, then the joint Levy density is a combination o f these two 

types

iv (dx) =  XFj(x)
if  the jump sizes Jj are continuous distributed with joint CDF Fj; 

v{x) =  A P(Ji =  x l , . . . , J d =  xd)
if  the jump sizes Jj are discrete distributed.

•  I f  v{fl,  ■ • ■ , Q) =  00, then the Levy density is v{x)  =  \imn- >oanF(dx) ^), where 

F(dx\  t) is the joint CDF o f the increment X t+S — X s, s , t  >  0, the same as the joint 

CDF o f X t.

Let vd be a Levy measure on 7Zd and Aj C Q, i =  1, ■ ■ • d. For k < d,

ud( Au - - - , A  =  v k(Ai,  ■ ■ ■ , Afe);

^d(Ai, • • • , Ad_i, {0} )  =  ud~ \ A i r -- ^ d - O - ^ A ! , - - -  ,Ad_1;Q),
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Sec. 2.2 Examples of Levy processes 13

if the measures are not infinity. Others may be induced by the equations above. For 

example,

vd(Au --- , Ad-2, {0}, {0})

=  z /(A l5 • • • , Ad- 2 , n, {0}) -  vd(Ai, • • • , Ad_2, n, {0})

=  ud(Au --- ,Ad- 2 , n , n ) - u d(Au --- ,Ad_2, ^ , Q ) - ^ ( A 1,-- - , Ad_2,0 ,  {0}),

The zero value of multivariate Levy measure dose not mean the total independence of 

all the components, while if  any two components are independent this measure is zero. 

Let B \ , B 2 C 1Z, the 2-dimensional independent Levy measure, equation (2.2) can be 

summarized as

u(Bi ,B2) =  Ui(Bi)I[oyeB2 + V2(B2)I{0}eBi-

2.2 Examples of Levy processes

In these section, we list some popular Levy processes and their probability densities as 

well as Levy densities. (Refer to Schoutens [53] for more examples and details.) Denote 

u(x)dx =  v(dx)  if u( )  is absolutely continuous.

1. The Brownian motion: The probability density of X t is

o  >. 1  (x — ut)^
f ( x \ u t , a  t ) =  e

\ ,2,na2t

and the Levy density is

u(x) =  lim nf(x;  —, — ) =  0.n—>oo n n

2. The Compound Poisson process: As we discussed before, let f (x)  be the density of 

the jump size and A is the arrival rate, the Levy density is

u{x) =  A f(x) .

3. The Poisson process: It’s the special case of compound poisson process with jump size 

is equal to 1. Then the Levy density is

u(x) =  A/{x=1}.
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Sec. 2.2 Examples of Levy processes 14

Poisson type process has finite activities, and the following Levy processes are of infinite 

activities, especially for small jumps as v(dx) =  oo.

4. The Gamma Process: The Gamma process X t follows a Gamma distribution, hence it 

only takes positive value and it’s a subordinator. The density is

f(x; at, b) =  Y ^ j xat~le~Xb’ a,b,x >  0 ,

where the gamma function T(a) =  / 0°° ya~le~vdy. And the Levy density is

u(x) =  lim n /(x ;  —,b) =  ax_1e_bx7/x>o>.
n —>oo f l

5. The Inverse Gaussian Process: Let T be the first time a standard Brownian motion 

with drift b >  0 reached the positive level a, T  =  inf{.s >  0 : Ws +  bs >  a}, then 

this random time T  follows the so-called Inverse Gaussian distribution. And the process 

Tt =  inf{s >  0 : Ws +  bs > at}  is a subordinator with density

f (x;at ,b)  =  -^L=ebatx~z/2 exp  | " [ ( a t ) 2£ -1  +& 2x] j  , a , b , x >  0.

The Levy density is

u(x) =  lim nf(x;  —, b) =  -?==x~3/2e-^b2xI{x>0}. 
n —>oo n  y /2  TT

6. The Tempered Stable Process: The process X t follows a Tempered Stable distribution 

with the following series representation of the density: for x >  0

f t u + exp{fcrf -  §61/fez} v v -  ..w-i . . r ( i f c + l ) „ a + 1 /  x \  ik 1

where the parameters a >  0, b >  0 and 0 <  k <  1. This process is also a subordinator. 

And the Levy density is

u(x) =  lim n f ( x ; k , —,b) =  a exp i ~ \ b 1/kx 1 2kx~k~l Ŝ n^ ^  +  ^ /{x>0>. 
™->oo n I 2 J 7r

Because T(1 +  A;)T(1 — k) — irk/  sin(7r£;), the Levy density is

u(x) = f ( f r i )  6Xp { ~ \ bl/kx}
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Sec. 2.3 Constructing dependent Levy processes 15

7. The Normal Inverse Gaussian Process: The density of X t is

f(x; a , /3, St) =  —  exp {St y / a2 -  f32 +  fix} J  +  \  a,  S >  0, - a  < f3 <  a,
7T y / { S t y + X *

where K\  (•) is the modified Bessel function of the third kind, and

K 1(x) =  ^J^ exp |  —̂ x(y +  y-1) |  dy, x >  0 .

The Levy density is
r  r

u(x) =  lim n f ( x \ a , / 3 , - )  =  — e/3x|x |_1A 'i(a |x |).
n —>oo Tl 7T

8. The Meixner Process: The density of X t is

2airT{2St) 1 1 a
(2 cos i ) 2St i r

f (x;a, f3,St)  =  - —  ,2 . e0xla |T(<5t H ) | 2, a, S >  0, —n < f3 < tt.

The Levy density is

u(x) =  lim  n f ( x ; a , / 3 , - ) =  e0x/a |T (— ) | 2.
«—*00 n 2a 7r a

The gamma function satisfies the following equations: T(x) =  _E12±£2i r(l +  ix) =  (ix)\ 

and | ( ix ) ! |2 =  x x j  sinh(Trx), so the Levy density can be written as

5 exp {fix/a)
U X  x s in h (7 r x /a )  ’

2.3 Constructing dependent Levy processes

A Levy process is uniquely determined by its generating triplet {A, v, 7), the covariance 

matrix A  measures the dependence structure of Brownian motion while the Levy measure 

gives the dependence structure of its jump part. To construct a multi-variate Levy process, 

instead we may define the generating triplet with a symmetric nonnegative-definite matrix 

A  and a Levy measure ^(^({0}) =  0) which verifies

/  ( ||x ||2 A \ )v{dx) <  00 4= ^ / ||x ||2^(dx) <  00 and / v{dx)
Jn<L J | | z | |< i  J\\x\\> i

<  00 .

Any transformation of the Levy measure, respecting the singularity at {0} and the 

integrability conditions, will lead to a new homogeneous jump process. Esscher
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Sec. 2.3 Constructing dependent Levy processes 16

transformation is an example, where the new Levy measure is v*{dx) =  eie'x)v(dx),  6 

is a real vector in 1Zd such that e"6'X/v{dx) <  oo.

The methods used to construct dependent multi-variate Levy processes from known ones 

are listed in Chapter 4, Cont & Tankov [12]. Such methods include linear transformation, 

subordination, tilting and tempering of the Levy measure. Levy copulas are introduced in 

Chapter 5, Cont & Tankov [12] for building multivariate models. In this thesis, we will 

show the details of these transformations and focus on the representation of Levy triplets 

after these transformations.

2.3.1 Linear transformation of independent Levy processes

Levy processes have independent stationary increments, so a linear transformation of 

Levy processes will also have these properties. A linear transformation of independent 

Levy processes will construct dependent Levy processes. Particularly, for any correlated 

Brownian motions (or Poisson processes) Yt G lZm, there exist independent Brownian 

motions (or Poisson processes) X t G 1Zd and a real-valued m  x  d matrix C  such that Y  

is a linear transformation o f X  as Y  — C X . But not all correlated Levy processes can be 

represented as a linear combination o f independent components.

Theorem 2.3.1 (Theorem 4.1 in Cont & Tankov [12])

Let X  be a TZd-valued Levy process with generating triplet (A , u, 7 ) and let C  be a real­

valued m  x  d matrix, then Y  =  C X  is an m-dimensional Levy process with generating 

triplet (AY , uY, y Y) given by

Ay  =  C A C t , a nonnegative-definite m  x  to matrix; (2.4)

^y ({0}) =  0, and v y (B) =  v( {x : Cx  G B}),  V 5 G B(TZm); (2.5)

y Y =  C y +  y{h\\y\\<A(y)-hy=Cx-\\x\\<i}{y))vY {dy). (2.6)
Jnm

Proof: The Levy measure of Y  on some Borel set B  has the same value as the Levy 

measure of X  on the set {x  : Cx € B} .  The nonnegative measure v Y on TZm defined by 

Equation (2.5) is a Levy measure satisfies

f  (Ill/ll2 A l ) v Y (dx) =  f  (\\Cx\\2 Al )u(dx)  <  f  (||C'||2||x||2 A l )v{dx)  <  0 0  
Jnm Jnd Jnd
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Sec. 2.3 Constructing dependent Levy processes 17

since HCH < oo and j n ,i(\\x\\2 A 1 )v(dx) <  oo. The characteristic exponent of C X  is

- \ { z ,  C A C t z) +  f  (ei{z'Cx) -  1 -  i(z, Cx) I {\\x\\<i}(x))v(dx) +  i{z,  C i ) .
2 Jnd

On the other hand, the characteristic exponent of Y is

- \ { z , A Yz ) +  f  (ei{z'y) -  1 - i { z , y ) I { M <i}{y))vY (dy) + i { z ^ Y).
2 J-Rm

By comparing these expressions, we have (2.4) and (2.6). The prove of the existence o f the 

integral in (2.6) is given in details in Cont & Tankov [12].

□

The quadratic covariation process [X , Y] of two semimartingales X  and Y  is defined in 

Definition 8.4, Cont & Tankov [12] as

‘ X s_dYs -  f  Ya-d X a,
Jo

which can be rewritten as the limitation in probability
n

[X,Y] t =  lim in p. > (X nt+D — Xtk)(Yt(k+n —Ytk).
n —> 0 0  * n n n n

k= 0

The process [X, X] t is called the quadratic variation process of X , it is positive and 

increasing in t. The quadratic covariation of independent semimartingales is 0.

Proposition 2.3.1 A Levy process Yt € 1Zm is a linear transform o f independent Levy 

processes if  and only if  its quadratic covariation matrix can be represented as CStC T, 

where C  is a real-valued m  x d (m <  d) matrix and St is a d x d diagonal matrix whose 

entries are subordinators. Let X t £ TZd be the independent Levy processes, then Y  =  C X  

and St =  d i a g { [ X \ X %  . . . ,  [ X f  X d]t }.

It is easy to prove. If  Yt =  C X t, let T,t denote the quadratic covariation matrix of Y with

(S t)y =  [ Y\  Y J]t, =  then

E( =  C'diag{[X1,X 1]t , • • •, [Xd, X d}t } C T =  CStC T.

For example, the quadratic covariation matrix of an m-dimensional Brownian motion Y 

with generating triplet (A, 0,0) can be rewritten as At,  that is St =  diag{t, and

[X,Y]t  =  X tYt - X 0Y0 -  [
Jo
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C C T =  A. Thus Yt can be represented as Yt =  CW t where Wt is a d-dimensional 

independent standard Brownian motion. If d =  m ,  then C  is the Cholesky decomposition 

(a lower triangle matrix).

Here is an example of correlated Levy processes which cannot be written as a linear 

transformation of independent Levy processes: Ytk =  Y lifi k =  1,2 where Nt is a 

Poisson process, J 1 and J 2 are independent for each jump. These two compound Poisson 

processes jump at the same time but with independent jump sizes.

2.3.2 Levy process as a time change of Brownian motion

Monroe [46] proposed that a process is equivalent to a time change of Brownian motion 

with sufficient large cr-field if and only if  it is a local semimartingale. The definition of the 

local semimartingale in [46] is following: a process (X t ,F t) is a local semimartingale if 

X, =  Mt +  A t where Mt is a local martingale and At is of pathwise bounded variation. 

Levy processes are semimartingales, hence any Levy process is equivalent to a time change 

o f Brownian motion. The term of time change is defined in Chapter V §1, Revuz & Yor 

[49] and in Definition 2, Kallsen & Shiryaev [31],

Definition 2.3.1 (Time Change)

•  A time change T  is a family o f F-stopping times {Tt } t>o such that the map t —> Tt 

is increasing, right continuous and nonnegative almost surely. It is called finite if  

Tt < oo for any t >  0 almost surely.

•  Let Ft :=  FTt, which defines the time changed filtration, if  X  is an Ft-progressively 

measurable stochastic process then X t := X t, is an Ft-adapted process and the 

process X  is called the time change process o f X .

•  The inverse time change {Tt } t>o is defined as Tt =  inf{s >  0 : Ts > t}, which is an 

increasing and right continuous family o f F-stopping times..

If Tt is continuous, strictly increasing and =  oo, then Tt is continuous, strictly 

increasing and Tx  =  oc and it is also true the other way. The processes T  and T  play 

totally symmetric roles. For any ^-progressively measurable stochastic process X , the
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stochastic process X  := X f  is F t -progressively measurable. If f  oo (or T,x  ^  oo), 

the same holds but X  (or X ) is only defined on t <  Too (or t — Too).

In Monroe’s result, X  — W , a Brownian motion and the time change T  may depend on 

W . For example, the discrete time process Yn =  Yji=i ^ ’s are independent identical 

distributed with P (J  =  1) =  p and P (J  =  0) =  1 -  p, p G (0,1). That is J  follows 

a Bernoulli distribution and Yn follow a Binomial distribution for each n =  1 ,2 , . . .  Then 

Yn =  Wxn +  np and the time change will be

Ti =  inf{£ > 0, Wt =  — p  or 1 -  p },

T2 =  inf{t >  Ti, Wt -  WTl =  - p  or 1 -  p},

Tn =  inf{t >  Tn- i ,W t -  WTn_x =  - p  or 1 -  p}.

The time change T  is a sequence of stopping times of the Brownian motion W . In 

this paper, we only consider the case that X  and T  are independent and both are Levy 

processes. The increasing Levy process T  is a subordinator and such time change is called 

subordination. Here are some well-known examples: when W  e  1Z is a Brownian motion 

and a, 0  G 1Z are constants, then Yt =  WTf +  0Tt +  a t  is an univariate Levy process. 

If  Tt is a Inverse Gaussian process, then X t follows a Normal Inverse Gaussian process; 

if  Tt is a Generalized Inverse Gaussian process, then X t follows a Generalized Hyperbolic 

processes; if Tt is a Gamma process and a  — 0, then X t follows a Variance-gamma process.

The characteristic function and the generating triplet of the subordinated process are 

shown in Theorem 4.2 in Cont & Tankov [12] as following. Let ^(-) be the characteristic 

exponent of X ,  thus E Let /(•) be the Laplace exponent of T, thus

E [e zTt] =  e tl<zK 70 >  0 is the drift of the subordiator T.

Theorem 2.3.2 (Subordination o f  a Levy process)

Fix a probability space (Q, T , P). Let X t 6  7Zd be a Levy process with characteristic 

exponent tp(-) and triplet (A, u, 7 ) and let Tt e P b e a  subordinator with Laplace exponent 

l(-) and triplet (0, ut, 70), 7o is the drift. X  and T  are stochastically independent. Then 

the new process (Tt)t>o defined by the subordination: for each u  € Q, Y(t,cu) —
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X  (T ( t , cj) , cj) is a Levy process on 1Zd with characteristic function

E [e«**>] =  etl^ z)).

Its generating triplet (AY ,uY, y Y) is given by

Av  =  70A, a nonnegative-definite d x d matrix; (2.7)
/•O O

vY (B) =  y0u(B) +  pX(B)vT(ds) ,VB £ B ( H dy, (2.8)
J  o

7y =  7o7 + /  vr(ds) [  x p f ( dx ), (2.9)
JO J  | | i| |< 1

where p f  is the probability distribution o f X t.

Proof: Since X  and T  are Levy processes, Yt =  X t, should also be a Levy process. (See 

the proof of Theorem 4.2 in [12] for more details.) The characteristic function o f Y  can be 

derived by conditioning on the process T  as

=  E [e*<*>T‘] =  E [e*'W*»] .

Tt =  7ot  is a simple example, where E{el ẑ'Yt}] =  E[e*^’A''«>‘}] =  E[e*^,Xl 7̂ot] and A Y =  

7oA, uY (dx) — 70u{dx) and y Y — 707. Since the subordinator Tt =  70t  +  J2o<s<t ^ T t, 

the law of the instant jump of Y  is

AYt =  X Tt -  X Tt_ A X 70< +  X ATt,

where A X lot describes X ’s own movement at transformed time 701 and X ATt represents 

the movement o f Y  with respect to the jump of T. Conditioning on A Tt =  s, by assuming 

that X s has the distribution p f , the Levy measure corresponding to A X /(|f is 7ou(dx) and 

the Levy measure corresponding to the second part is J0°° jff(dx)uT(ds).  Then we obtain 

Equation (2.8). Since

H z ) =  - \ ( z , A z )  +  f  (ei{z’x) -  1 -  i { z , x) Im i <1}(x))v(dy)  +  i (z , y) ,  
z J n d

p o o

Kv) =  /  (e^3 -  l)uT(ds) +  py0.
Jo
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Then their composition l{i){z)) is:

p O O

/  (e^(z)s -  1 )vT{ds) +  ip(z)70

I (E[en2,As>] -  1) uT(ds) +  7o - - ( z , A z )  +  i { z , 7 }
JO

+  f  (ei(z’x) -  1 -  i(z, x ) /{||I ||<i}(x)) i/(d i) 
Jnd

f  [  (ei{z’x) -  l ) p f  (dx)uT(ds) -  ^  (z, 70 Az) + 1(2 , 707)

+  [  (ei{z'x) -  1 -  i(z, z ) / { w <i}(:r)) 7oZ'(cte)
Jnd

p o o

(e*<2,x> -  1 -  i(2:,a:)/{||x||<i}(x)) 70i/(dx) +  /  pf ( dx) v T{ds)
L Jo

/ • o o  /»

( z , y0Az) +  i{z,  707) +  /  /  i(a :,s ) /{|N|<i}(x)pf(da:)i7 ’(ds)
JO Jnd

=  - h Z)l0A z ) +  f  {ei^ - l - i ( z , X ) I m < 1 } (x) )uY (dx) 
1 Jnd

\  JO J||x||<l /

It is the characteristic exponent of the new Levy process Y, thus Ay =  70Ti and

When X  is a Brownian motion, the characteristic function and the Levy measure of

Yt =  Wxt +  f3Tt +  a t  will be

Based on the expression, not all the Levy process can be represented as a subordinated 

Brownian motion with independent time change.

The way to construct dependent Levy processes by the subordination of Brownian 

motion lies on the fact that they follow a multi-variate normal distribution given the 

subordinators.

7y =  7o7 +  Jo" J ^ i i^  xp*{dx)vT{ds).

□

E \eizYt] =  eizatE eizt>Tt-^Tt

dy vx{ds)
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2.3.3 Transformation of jump sizes

As mentioned before, any transformation of the Levy measure respecting the integrability 

conditions will lead to a new homogeneous jump process. Tilting and tempering of the 

Levy measure are such transformation as v{dx)  =  f{x)v{dx).  Here are two examples 

in section 4.2.3, Cont & Tankov [12]. One is the Esscher transformation f (x)  =  

exp {0x } ,  which is also called the exponential titling. The other is an asymmetric version 

transformation as

f ( x )  = / {x>0} e ~ A+x +  / {x<0}e“ A- |x|, A+, A_ >  0.

This function defines a Levy process whose large jumps are tempered, that is the tails of 

the Levy measure are exponential damped.

Denote v{dx)  =  u(x)dx if  it is absolutely continuous, now we present another 

transformation o f the Levy measure as v(dg{x))  =  u(dx). Consider a one-dimensional 

Levy process with decomposition

X t = ' f t +  [  [  x[N(ds,dx)  — v(dx)ds \+ f  f  xN(ds,dx) ,
J 0<|x|<l JO J |x|>l Jo

the new jump process Yt associated with function g(-) : 71 —> 1Z is defined as

7Yt +  j  f  g{x)[N(ds,dx)  — v(dx)ds] +  f  j  g(x)N(ds,dx) ,  (2.10)
J 0<|o(x)|<l Jo J |o(x)|>l Jo> 0 < \ g ( x ) \ < l J 0  J |g ( x ) |> l -

7 y  € TZ. Y  is a Levy process if

/  {\g{x)\2 A l )  u(dx) <  oo [  (\y\2 A l)  v Y(dy) <  oo, 
Jn  J-r

X  (where the Levy measure of Y  is vY(B) =  o(B),  B  =  {x  : g(x) E B}.

The Levy measure of Y  can be obtained in this way. Consider the simple case that g(-) is 

a strictly monotone and differentiable function and X t has the probability density function 

f(x: t ), then the probability density function of Yt is

;  {y’ ’
where g~l and g' are the inverse function and the first derivative of g respectively. The 

Levy density of Y  exists by the following limitation, for y =p 0,

uY (v) -  lim 1 f Y( v t ) -  lim 1 / ( g ~1(y);^  -  n i n
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For other functions of g  without constant part (i.e. g'(-)  ±  0), u Y  has the similar form as 

above. For example, if g  is a discontinuous strictly monotone function, equation (2.11) still 

hold in the range of g( - ) .  More generally, for any real function g  with non-zero derivatives, 

there exists a series of functions a,(y), 6,(y) with -o o  <  a, <  <  oo and g ( d i ( y ) )  =  y ,

gipiiy)) = y , i  =  l , . . . , k  such that
k

{x : g{x) < y }  =  j j { x  : a^y) < x <  b^y)}.
i = 1

The probability function, the probability density function and the Levy density function of

Y  are
k

P(g(x ) <  y) =  ^ P { ai{y) < x  < b i(y))i
i—l

k

f Y(y,t) = -a'i{y)f(ai{yY,t)},
2=1

k

u Y ( y ) =  ^ l b'i(y)u (bi ( y ) )  -  a i ( y ) u (a i ( y ) ) } -  (2 -12)
i = 1

In the case that a or b take infinity value, their derivative would be set to 0. Equation (2.11) 

is the special case of (2.12). If  g is strictly increasing, then k =  1 with (y) =  —oo and 

b\{y) =  y_1(y)- If  S' is strictly decreasing, then k =  1 w ithai(y) =  g~x(y) and b\(y) =  oo.

If g has constant parts, for instance, g is a simple function as g(x) =  J T  q /a ^ x ) ,

where ct ’s are nonzero constants, Aj’s are disjoint Borel sets of 7Z. Then Yt =

J2i Ja2 fo CiN(ds, dx) — Ci Nt (Ai) is a Poisson point process, and the Levy measure of

Y  at non-zero point y is

^ ( M )  =  Zy(A*)/ {!/=cl}- (2-13)
i

The Levy measure of Y  corresponding to a general function g with step part c ,/Ai 

will have the form of the mixture of (2.12) and (2.13) as

v Y{ P ) =  [  uY(y)dy +  y V A i ) / {CteB}, (2.14)
Jb .

for any Borel set B  in TZ.

Denote g~x{B) — [x : g(x) e  B} ,  then the Levy measure of Y l defined as Equation 

(2.10) are v%{B )̂ =  v(g~1(Bi)), i =  1,2. The joint Levy measure of Y 1 and Y 2 is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 2.3 Constructing dependent Levy processes 24

u( Bi , B2) =  v ( g ( 1(Bi) f ] g 2 l (B2)). If  both gx and g2 are strictly increasing, then the 

jumps of Y 1 and Y 2 are completely positively correlated. If one is strictly decreasing and 

the other is strictly increasing, then the jumps of Y 1 and Y 2 are completely negatively 

correlated.

2.3.4 Probability copula and Levy copula

As we know, a multivariate probability distribution can be expressed by the marginal 

distributions and a copula. Copulas capture all the information of the dependence structure 

o f random variables irrespective of their distributions. The Levy measure has similar 

properties as probability measures. Specifically, a multivariate Levy measure can be 

decomposed into marginal measures and a copula-type function. Here are the definition 

and the main theorem of the probability copula.

Definition 2.3.2 (Copula) A d-dimensional (d > 2) copula is a function C  : [0, l]d —► 

[0,1] satisfying:

•  (Boundary condition) for i =  1 , . . . ,  d, C ( x i , . . . ,  x,_i, 0, xi+i, . . . ,  xd) =  0. And the 

function (^x, • . . ,  x ^ i , x ^ i , . . . ,  xfj ► C} x i , . . . ,  x̂ —i , 1, x̂ _)_x j • ■ • ? ^d) is a d 1 

copula. C ( l , . . . ,  1, Xi, 1 , . . .  1) =  C f x i ) =  Xi is called the margin.

•  (Monotonicity)

Theorem 2.3.3 (Sklar) Let H  be a d-dimensional CDF with margins F \ , . . .  .Fj, then 

there exists an m-dimensional copula C  such that for all x 6 7Zd,

H (x  j, . . . , x d) =  C(Fi (x i ) , . . . ,  Fd(xd)),

Moreover, if  all Fl are continuous, then C  is unique; otherwise, C  is uniquely determined 

on RanFi x . . .  x RanFd, where RanFi =  { F f  x) G [0,1] : x G 71}. Conversely, if  C  is an

> 0
veR

fo r  all rectangles R  o f the form R  =  Y[i=i[ai, bi}> ai <  h. Here the sum is over all

vertices V  =  (e1;. . . ,  ed) o f  the rectangle, where =  a* or bit and

— 1 if  c, =  a, for an odd number o f i ’s; 
1 if  Si =  ^  for an even number o f i ’s.
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m-copula and F i , . . .  ,Fd are 1-dimensional CDF, then the function H  is a d-dimensional 

CDF with margins F i , . . . ,  Fd.

The bivariate joint probability function and survival function can be represented as

P ( x i < a , x 2 < b )  =  C( P( x 1 <  a) , P(x2 <b) ) ,

P ( x i > a , x 2 > b )  =  C s (P(xi  >  a), P( x2 >  b)).

C  and C s are the probability copula and survival copula of Xi  and X 2 respectively and 

and C s (u, v ) =  C(u,  v) +  1 — u — v.

When a Levy process is constructed by subordinating a multivariate Brownian motion, 

it will follow a multivariate normal distribution given the subordinators. So its probability 

copula is the mixture of the Brownian copula and the dependence of subordinators. For 

example, in the two-variate case define XI =  W f , i =  1,2, let $(•) be the CDF of 

univariate standard normal distribution and let H lt be the CDF of the subordinator T f  

i  =  1, 2 and let Ht be the joint CDF of TJ1, Tt2. Then

F<it(aj) : = P ( X * < a i) =  j ™  $  H\{ds),

p o o  p o o

P { X ]  <  ai ,Xf  <  a2) =  J  J  P ( W l < a i , W * < a 2)Ht {du,dv)

° ‘{z‘■**> -

C N{xi , x2)Ht (du, dv), (2.15)

where C N is the normal copula, C\ is the probability copula of X 1, X 2 and

xi  =  Fht( ^ ~ 1(x1)) =  J ”  $  Hi(ds)

X2 =  F %t{ ^ $ - \ x 2) )  =  J % ^ $ - \ x 2) ^ H ? ( d s ) .

Generally, the probability copulas of Levy processes depend on the time t, for example, 

the one defined by equation (2.15). For the stable processes, their probability copulas are 

constant.

p o o  p o

Jo Jo
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By using the probability copula and marginal of J  instead of the joint probability 

function, for x x, x2 <  0 equation (2.3) is equivalent to

z/((-oo,:ri], ( -o o ,x 2]) =  XC(P(Ji  <  Xi ) ,P(J2 < x2))
x c  ( ^ ( ( - o o . S i ] )  ^ ( ( - o o . a f r D N

V Ai ’ A2 J ’

for xi,  x2 >  0, use the survival copula C s instead of probability copula,

K t ^ o o M ^ o o ) )  =  XCs {P{J1 > x l ) , P ( J2 > x 2))
x c s ( ^i([gi,oo)) ^2( [z i ,oo))\

\  Ai A2 /

Now the Levy measures and probability copula are connected for the compound Poisson

process. The Levy measure of compound Poisson process is finite, we may define a Levy

copula o f such process F  as following, for lower tail integrals

F ( Ml, =  0 < iix <  Ax, 0 <  M2 <  A2;

let F u be the copula measuring the upper tails, then

F u (nx, fx2) =  XCs ( ^ - , ^ j ,  0 <  <  At , 0 <  M2 <  A2.

And F(Ai, A2) =  ^ ( A i ,  A2) =  A. But the relation F u (u, v) =  F(u, v) +  X — u — v does 

not hold any more except for the case that A =  Ai =  A2. At this point, we may see that the 

function defined above does not cover the case that two processes do not jump at the same 

time, it only measures the dependent structure of jumps.

If two compound Poisson processes are completely positive (or negative) dependent, 

it implies that they have the same driven Poisson process and the jump sizes are also 

completely positive (or negative) dependent, that is Ai =  A2 =  A and C(u, v ) =  min(ii. v) 

(or C(u, v ) =  max(0, u +  v — 1)). Then for / i i , € [0, A], the bivariate Levy copula is

F(n ufi i )  =

( X m i n ( ^ ,  *f) =  min(/ii, /j2) for perfect positive dependence;
\  A max(0, - +  ‘f  - — 1) =  max(0, /xi +  /x2 — A) for perfect negative dependence.

Even if  the jumps are independent, the two compound Poisson processes are still

dependent as long as they have a common driven Poisson process. And the copula will

be F(ni , f i2) =  T ^ V iV 2 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 2.3 Constructing dependent Levy processes 27

In the two variate case, given the function F  and their margins, the parameters A, Ai, A2 

and the marginal and joint distributions of jump sizes can be easily identified. Our setup is 

slightly different from Cont & Tankov [12] (Page 151).

Definition 2.3.3 (Levy copula o f  dependent compound Poisson processes)

Consider a d-dimensional (d >  2) compound Poisson process. Let A, be the Poisson

intensity o f ith process and let A > 0 be the joint intensity o f all processes, its Levy copula

o f  the associated joint jumps is a function F  : [0, Ai] x . . .  x [0, \ d} —> [0, A] satisfying:

•  (Boundary condition) F (Ai, . . . ,  A A d) — A;

fo r  all i =  l , . . . , d ,  F ( x i , . . .  0, xi+i, . . . , x d) =  0;

F{ x1 A d) _  F(x  1,
A ~  F(X1, . . . , X iy

where F (x  1, . . . ,  x() is a similar function as F  defined on [0, Ai] x . . .  x [0, A*] —> 

[0, F ( A i , . . . ,  A*)]. And F(x() =  Xifor a similar function F  : [0, A,] —► [0, A*].

•  (Monotonicity) The same as definition 2.3.2.

•  F ( x i , . . . ,  Xd) =  AC(fj-,. . . ,  f^), where C  is a probability copula if  Xi are lower tail 

integrals and C  is a survival copula if  x, are upper tail integrals.

Tankov [55] concerned the dependence of Levy processes with only positive jumps 

(subordinators) because of the non-integrability at 0. In his later book with Cont [12], they 

redefine the Levy copula for a general case that involves positive and negative jumps. See 

Definition 5.13, 5.14, 5.15 and Theorem 5.7. The original version of 5-copula (Definition

3.1 in Tankov [55]) associated with subordinators is following.

Definition 2.3.4 (Levy copula o f  subordinator with infinite activity)

A d-dimensional (d >  2) S-copula is a function F  : [0, oo]d —► [0, 00] satisfying:

•  (Boundary condition) F (x1). . . ,  Xj_i, 0, xl+l, . . . , x d) =  0 for all i;

F(  00 , . . . ,  00, xit 00, . . . ,  00) =  Ffxi )  =  Xifor all i, which is called the margins.

•  (Monotonicity) The same as definition 2.3.2.

Tankov [55] also proved a theorem, similar as Sklar, about the relationship of the Levy 

measure and 5-copula.
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Theorem 2.3.4 Let U be the tail integral o f a d-dimensional Levy process with positive 

components having tail integrals U\ , . . ., Ud. U( x \ , . . . , xd) =  v([x\,  o o ],. . .  [xj, oo]) and 

U f x ) =  Vii[x, oo]) for all i —  1, . . .  ,d. Then there exists a d-dimensional S-copula F  

such that for all vectors (x i , . . . ,  xf) in TZ+,

U ( x i , . . .  ,Xd) =  F( Ui { x i ) , . . . , Ud{xd)).

If C i , , Ud are continuous then this S-copula is unique, otherwise it is unique on 

RanUi x . . .  x RanUd. Conversely, if  F is a d-dimensional S-copula and U \, . . . ,  Ud are 

tail integrals o f one-dimensional subordinators, then the function U defined above is the 

tail integral o f  a d-dimensional Levy process with positive components having tail integrals

Uu . . . , U d.

If two subordinators are independent, then for x\,  X2 >  0

v([xu oo], {0}) =  1̂1 ([xi, oo]), K{0}, [X2 > oo]) =  U2([x2, oo]);

^([xi,oo], [x2,oo]) =  0.

Thus u([xi,  oo], [0, oo]) =  V\{[xi, oc]) and then the independent copula is F(u,v)  —

^■ ^{u=oo} “f  ^ -^{ u = o o }-

Since the inverse of the Levy measure is not unique and we define v~l {u) =  sup{x : 

v{x) — u}.  Roughly, when n is large enough

u =  v(x) =  nf(x;  i )  = >  u ~ \u ) =  =  x.

For a positive stable process the limitation approach yields the following formula:

F ( u i , . . . , u d) =  _ u(x1, . . . , x d)dx1 . . . d x d
JWd  1(« d ) ,o o ]x . ..x [ i /1 1(u i) ,o o ]

: /  f  ( x i , . . . ,  xd, —) d x i . . .  dxdlim n

=  lim n C f ( — , . . . ,  — ) =  lim n C s (— , . . . ,  — ).
n —»oo n n n n —>oo n n

C s  is the survival copula of the positive stable process and it does not depend on time 

which ensures the last equality. F  is the S'-copula o f the positive stable process. Tankov
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[55] also gave this formula in Proposition 4.4. Since only subordinator is considered here, 

the survival copula C s only represents positive dependence.

Here are some examples. First the perfect positive dependent 5-copula, where the 

probability copula is C(u \ , . . . ,  um) — m in (u i , . . . ,  um). And the 5-copula is

F(uu . . . , u m) =  lim nmi n ( — ) =  m in (u i , . . . ,  um),
n —*oo n  n

which has the same form as the probability copula. Another example is to use Cook-

Johnson copula as the survival copula

C s (u,v) =  (u~9 +  v~e -

and the associate 5-copula is obtained by limit

F(u,v)  — lim n ( ( - )  * + ( - )  * -  1^ ' =  (u~d +  v - 9)~1/6.
n —> oo y \ T l /  \ U /  J

The last one is to use the Cuadras-Auge copula as the probability copula, then the 

corresponding survival copula is

C s (u, v) =  (1 — u) ( l  — v) m in((l -  u)~a, (1 -  v )~/3) +  u +  v -  1,

where 0 < a , / 3 < l .  If  u and v are bounded, the associate 5-copula is

, f  c m  if (1 -  ^ )“ >  (1 — z ) 0, i.e. au < /3v . . „ .
F<u' ,’) - ( / 3U otherwise =  nmifm.,/3»),

which is the compound Poisson case where the jump sizes for the common jumps are 

perfectly positively dependent. And a  — A/Ai, 6  =  A/A2, Ai, A2 are intensities of two 

dependent Poisson processes with common intensity A and 0 <  u <  Ai, 0 <  t> <  A2.

2.3.5 Time copula of Levy processes

The probability copula described above considers the dependence at time t for all processes. 

Given a Markov process X t, its joint distribution of different times is

Fs,t(xu x2) =  P ( X S <  x i , X t <  x2) =: Cs,t ( P ( X s <  x t ) , P ( X t <  x2)),

s <  t. Cs,t is called the time copula for the process X t. It was introduced by Darsow, 

Nguyen and Olsen [15] to illustrate the conditions of Markov process. (See Theorem 3.2,
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3.3.) Kellezi and Webber [32] found the expression for the time copula of Brownian motion 

and subordinated Brownian motion.

First, let’s see the time copula of one-dimensional Brownian motion Wt. (See section

2.1 in Kellezi and Webber [32].) The joint distribution o f Ws and Wt, s < t is

P (W S <  au Wt < a2) =  P (W S <  au Wt -  W, < a2 -  Ws)

Cgt is the time copula of Brownian motion, which has the following expression,

C S f r ,  * )  =  j f  *  dy„
Consider the Gaussian Process X t =  Wrt • When Tt is deterministic function, the time 

copula is

C M - £

When Tt is a stochastic subordinator, we follow a similar way as Equation (2.15). (Also 

see section 2.2.3 in Kellezi and Webber [32].) Let Ht be the probability function of Tt , let 

HS>1 be the joint probability function of Ts and Tt, s < t ,  then

Ft (a) =  P ( X t <  a) =  J % ( X ^ H t (dz),

p o o  p o o

P ( X S <  ax, X t <  a2) = 1 1  P(W U < ax, W v < a 2)Hs,t(du,dv)

p o o  p o o

=  /  /  C*t (xi ,x2)Hs,t(du,dv),
Jo Jo

where C3jt is the time copula of X  and

=  Jo°°$  ( ^ / f ^ -1 ^ ) )  Hs{dz)

Ft { \/v  § ~ l {x2)) =  Ht (dz).

x x =

x2 =
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2.4 Additive processes

Additive processes are stochastic processes satisfying all conditions except condition 2 in 

Definition 1.2.1. That is, we relax the assumption of time homogeneity in the law. Their 

properties are given in Theorem 14.1 in Cont & Tankov [12].

Theorem  2.4.1 (Sato) Let (Xt)t>o be an additive process on 7Zd. Then X t has infinitely 

divisible distribution for all t. The law o f (Xt)t>Q is uniquely determined by its spot 

characteristics (At , Vf, Tt)t>o-'

The spot characteristics (At , Vt , Tt)t>o satisfy the following conditions

•  For all t, A t is a nonnegative definite d x d matrix, Vt is a positive measure on TT1 

with Vt({0}) =  0 an d / ^ ( I M I 2 A 1 )Vt (dx) <  oo.

•  Positiveness: Ao =  0, Vo =  0, To =  0 and for all s, t such that s <  t, A t — As 

is a nonnegative-definite matrix and Vt (B) — VS(B) >  0 for all measurable sets 

B  € B{ Kd).

•  Continuity: if  s —> t then A s —> At, Ts —> Tt and VS(B) —»• Vt (B) for all B  6 B(lZd) 

such that B  C {x  : ||x || >  e} for some e >  0.

Conversely, fo r family o f triplets (At , Vt , Tt)t>o satisfying the three conditions above, there 

exists an additive process (Xt)t>o with the spot characteristics (At , Vt , Tftxi-

A  triplet (at ,ut , y t )te[o,T],T <  oo is called the local characteristics of the additive 

process (X) te[0jT] if A  =  Jo asds, Vt (B) =  f* vs(B)ds  and Tt =  /q ysds for each 

t € [0 ,T], at is a nonnegative definite d x d matrix, a family {pt)o<t<T of Levy measure 

satisfies f Qr / K,/(l A \\x\\2)vt {dx)dt <  oo and y t € 1Zd is a deterministic function. (See 

Section 14.1 in Cont & Tankov [12].) An additive process admits the local characteristics 

if all the elements in the spot characteristics are absolutely continuous in t. Similar to 

equation (1.6), an additive process with local characteristics can be decomposed as

y { z , t )  =  E[ e i{z’Xt)]

X t =
o do •/||i||>i Jo Jo
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for some m-dimensional standard Brownian motion Wt and d x m  (m >  d) matrix a s with 

as =  crsa j ,  and N(ds ,dx)  =  N(ds ,dx)  -  vs(dx)ds is the compensated Poisson random 

measure of the additive process X.

Additive processes can be easily constructed by Levy processes with deterministic 

volatilities. For example, let a(t) : [0, oo) —> H  be a measurable function such that 

fg (Jgds <  oo for all t  >  0 and then X t =  f* crsdWs is an additive process with 

spot characteristics (/„* c'jds, 0 ,0)t>o- Let L be a purely non-Gaussian Levy process 

in 1Z with Levy triplet (0, u, 7 ), and X t =  f* asdWs +  Jq 9sdLs with 9t deterministic 

and bounded. Then the new process X is an additive process with spot characteristics 

(Jo a2sds’ fo vs ds> fo l s ds)t>0 r where

^ > = { 0 ^  s  £  0  ■

with

f  (  (\x\2 A 1 )v*(dx)ds =Jo Jn
and 7^  satisfies

f  ( e i z 9 t x  _  1 _  iz0tx l {\x\<i})v{dx) +  izdt7  =  [  {elzy -  1 -  izy l{\v\<i})v? (dy) +  i z t f , Jn Jn
which is obtained from the characteristic function of X

^(z ,  t ) =  exp ( ~ \ q2 s +  J  (e%z6sX -  1 -  iz0axl{\x\<\})v{dx) +  iz O ^ d s

The triplet (of, v f , 7* ) is called the local characteristics of the additive process X .

Let’s go back to the equation (2.1), which constructs a homogeneous Poisson process. A 

similar construction can be made with an additive process X  as =  Ylo<s<t 4 (A X g). 

The set function A —> N^(lo) defines a cr-finite measure on 1Z \  {0} for each fixed 

The intensity (instantaneous jump probability) o f ArA exists if  X  admits local 

characteristics (at ,i/t,lt)> and it is equal to vt (A). If  9t is deterministic in the example 

above, _/VA is an inhomogeneous poisson process with deterministic intensity. If  6S is 

random, then ATtA is a Cox process with stochastic intensity.

/ / *J o  J n

x \2 A 1  ) i / ( d x ) d s  <  00,
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Equivalent martingale measures for Levy 
processes

3.1 Main theorem

Consider a financial market with d risky assets traded up to a horizon T  <  oo and one 

riskless asset Sf  =  ert with constant interest rate r. In the physical world, the prices of 

the risky assets (S1, . . . ,  Sd) are given by a multi-variate exp-Levy process on a filtered 

probability space (fi, (F, (ft)te[o,T] > P)  and define S =  (S°, S'1, , S d).

For a predictable S-integrable process 6 — (6°, 91, . . . ,  9d), the value process o f the self- 

financing trading strategy 9 with initial capital 1 is given by Vt =  1 +  f* 9^dSu. If  the value 

process {Vt} t>o is strictly positive, it is called a numeraire asset. Let J\f denote the set of 

all numeraire assets. Any asset process S  (without dividends) discounted by a numeraire 

V  € N  should be a (local) martingale under some measure Q which is equivalent to the 

physical probability measure P. And such measure Q associated with V  is called the 

Equivalent (Local) Martingale Measure (EMM) for the process S. Generally, given a pair 

of the EMM and numeraire ( P1, N 1) and another numeraire N 2, an EMM P 2 associated 

with N 2 can be defined by the Radon-Nikodym density process: d P 2 jd P } — N 2/ N  

t G [0, T]. Becherer [5] provides two dual approaches for EMMs:

33
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1. Fix V  € fif and choose Q ~  P  such that S / V  become (local) Q-martingales.

2. Fix Q ~  P  and choose V  G AT such that S / V  become (local) Q-martingales.

The so-called risk-neutral measure is the EMM with V — S°, the riskless asset, which is 

the most used EMM in pricing. It belongs to the first approach. The risk-neutral measure 

is unique when the market is complete, otherwise the choice of the optimal martingale 

should be made according to different criteria. Such optimal EMMs include the minimal 

martingale measure ([1], [22], [54]) and the minimal entropy martingale measure ([21], 

[23]). In the second approach, a certain probability measure Q is fixed first. The physical 

measure P  is a natural choice and the corresponding portfolio process of the numeraire V 

is called the numeraire portfolio ([5], [33], [37]).

Long [37] proved the existence of a numeraire portfolio in the case o f finite Si and 

discrete time and in the case where the asset prices follow a regular multi-dimensional 

diffusion model. Korn, Oertel and Schal [33] studied it for a multi-dimensional Poisson- 

diffusion process with univariate Poisson process. In these cases, the numeraire portfolio 

turns out to be growth-optimal. The minimal martingale measure for (continuous) 

semimartingales was introduced by Follmer and Schweizer [22] and it is in general only a 

signed measure for discontinuous processes (see Schweizer [54]). Arai [1] discussed the 

case when the asset prices follow jump-diffusion processes. Fujiwara and Miyahara [23] 

investigated the minimal entropy martingale measures for the geometric Levy processes.

In this section, we focus on the change of measure, specifically, the EMM for the 

Levy/additive processes. The three martingale measures: the numeraire portfolio, the 

minimal martingale measure and the minimal entropy martingale measure are used as 

examples to illustrate the key ideas of measure transformation. The results for the 

numeraire portfolio are new.

Sato [50] shows the conditions of equivalent Levy measures in Theorem 7.2 and 

Theorem 7.4, also see Proposition 9.8 in Cont & Tankov [12] for the one-dimension case. 

We modify it as following:

Theorem  3.1.1 (Equivalent measures fo r  Levy processes) Let ( Xtl P 1) and (Xt , P 2) be 

two Levy processes on 7Zd with generating triplets (Ai, Vi-b\) and (A2, v2,b2). Then P / 

and P 2 are equivalentfor al l t  >  0 if  and only if  the following three conditions are satisfied:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 3.1 Main theorem 35

1. A i =  A 2, denote A  := Ai =  A 2 ;

2. The Levy measures are equivalent with Jnd(^/u1 — y/u2)2(dx) < 0 0 ;

3. b2 -  bi -  x(u2 -  v\)(dx)  =  At) for some rj e  K d.

Under the P l measure, let W f be a d-dimensional standard Brownian motion and o be the 

unique Cholesky decomposition o f A, then X  has a decomposition as in (1.6)

X t =  bit +  o W t +  f  f  x(N(ds,  dx) — vfdx)ds)  +  f  j  xN(ds ,dx) .  
i | | x | |< l  JO J | |x | |> l  Jo

Under the P 2 measure, the Levy decomposition with the same dimension of the Brownian 

motion is

X t =  b2t +  o W 2 +  f  f  x(N(ds,dx)  -  v2(dx)ds) +  [  [  xN(ds ,dx) ,
J ||x||<l Jo J ||x||>l Jo

then W 2 =  W f — o T r]t is the standard Brownian motion under P 2. Denote the function 

4>{x) =  \n[v2(dx) /  v fdx) \  : lZd —> 1Z, when P 1 andP2 are equivalent, theRadon-Nikodym 

density process is
„ dP 2\Pt dP 2 rj
z , - i p v r d r r e '

r t

Ut =  t]TctWI -  U \oTr]\\2 +  f  f  <t>(x)N(ds,dx) - t  [  (e0(x) -  Pjvfdx) .   ̂ Jnd Jo Jnd
Then Ut is a Levy process on 1Z with generating triplet (A u , Uu ■, bu) given by

Au =  I k ^ n 2,

Vu(B) =  [  I ^ e B ^ i i d x )  for B e  B(TT),Jnd
bu =  - \ \ \ o Tv t -  f  (e*(x) ~  1 ~  </>(x)I{iwX)ii<i})i'i(dx) 

z  J nd
=  ~ \ Au ~ -  1 -  yl{\v\<i})vu(dy).

And the density process Zt =  eUt satisfies the stochastic differential equation

dZt / Zt_ — rfcrdW l +  [  ( e ^  -  l ) [N(dt ,dx)  -  vfdx)ds] ,Jnd
which is a positive P l -martingale with initial value 1.
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Given a Levy processes (.Xt , P l ) with generating triplet (A, 17, b f ,  one may define 

an equivalent probability measure P 2 by defining the function </>(•) and the parameter 

77 such that condition 2 and 3 in Theorem 3.1.1 are satisfied. A simple example is the 

Esscher transform, where dP2/ dPf  — e f 'A j /  E{el'6,Xt''1]. In this case, <p{x) =  (9, x) 

for some 9 G TZd with condition J ^ >1e<'d’x'!Ui(dx) =  J ^ ^ ^ i d x )  <  oo. And 

52 =  ^  +  J ^ |i<;i xie^’A _  i )ufdx)  +  At], where T] =  9. Thus the generating triplet 

o f X  under P 2 is (A, e l'e'x)ui(dx),b2). The function <p(-) is the key to the construction 

of the equivalent measures P 2, which transforms the Levy measure. The parameter 77 is 

used to adjust the drift (or 7  in its generating triplet) o f the Levy process, which also 

transforms the Brownian motion. The covariance matrix A  remains unchanged after the 

measure transformation.

If we want P 2 to be a martingale measure, that is X t is a martingale under P 2, we must 

have jjij.ii>! ||x\\v2{dx) <  00 and E 2[Xt] =  0 yields b2 =  -  Jj|x||>:l xv2(dx). Thus 77 will 

solve the equation (see condition 3 in Theorem 3.1.1)

61 +  Ar] +  f  x{e^x') -  l )vi(dx) +  j x e ^ o f d x )  =  0. (3.1)

3.2 Equivalent martingale measures for exp-Levy 
processes

Assume that under the physical measure P,  the asset prices satisfy:

dS\ =  Sl_(rdt  +  dX\),  S l0 >  0, 0 <  t  <  T  < 0 0 , i =  1 , . . . ,  d. (3.2)

Then the discounted asset processes S'lt =  S \ / S f° satisfy: dS\ =  §i_dXi .  Here X  =  

( X 1, . . . ,  X d)T is a Levy process with generating triplet (A, v. 7 ). By assuming that the 

assets have finite expectation under the physical measure and the risk-neutral measure, 

that is 71, the center of the Levy process X ,  exists under both measures, we will use the 

centering trip let (cr, v, 7 !) instead of its generating triplet because it is more informative. 

Theorem 1.2.2 shows that under measure P,  X  has a decompensation

Xt  =  Ji t  +  aWt +  [  [  x[N(ds,  dx) -  v(dx)ds\.  (3.3)
Jizd Jo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 3.2 Equivalent martingale measures for exp-Levy processes 37

Under the risk-neutral measure Q, the discounted asset process S' is a martingale. S  is a 

stochastic exponent of X ,  thus X  is also a Q-martingale and the risk-neutral measure Q for 

the asset S  is the EMM for the process X . Let W® =  Wt — (JTr]t be the standard Brownian 

motion and v®(-) =  e f xf ( d x )  be the Levy measure under Q satisfying condition 2 

in Theorem 3.1.1 and \\x\\u^(dx) <  oo, then the Q-martingale X  will have the

centering trip let (a, 0) with the decompensation X t — aW® +  j n<l f* x[N(ds,  dx) -

i/Q(dx)ds\. Compared to equation (3.3), we obtain

7 i +  <jo t r] +  [  x ( e ^  — 1 )v(dx)  =  0, 
Jnd

(3.4)

which is the same as equation (3.1). Here crTr] represents the market price of the diffusion 

risk while e^x) — 1 is the risk premium associated with the jump risk.

For each % — 1 , . . . ,  d, the solution to (3.2) is

Si =  Si) expS.rt +  X t - ± \ \ a i \\2t \  (l + A I ’)e
*- '  0 < s < t

-AX*

where o l is the ith row of the matrix a. To keep the asset processes positive, we must 

assume that for each i the jump sizes of X z are always greater than —1.

if  L n < .  »*ii v(dx)  <  oo, the drift of X  exists as 70 =  7 i — fnd xu(dx).  Thus

=  exp l r t  +  j 0t +  aWt — ^||cr*||2f |  (1 +  AX*),
' 0<s<t

and equation (3.4) yields (recall that 71 =  70 +  Jnd xv{dx))

7o +  ctctT77+ /  x e ^ v { d x )  =  0. (3.5)
Jnd

3.2.1 Numeraire portfolio

The value process Vt — 1 +  /„* d,Sfi defined at the beginning of the section satisfies

d  d  d

dVt =  efdSt  =  Y JB\dSl =  H d S i / S l )  =  Vt_(rdt +  ^ n i d X i ) ,
i = 0 2=0 2=1

where 9t =  (0®,.. . ,  6f)T is called the trading strategy and 77 =  (770, 771, . . . ,  nf)T, 

■k\ =  0\S\_/Vt-  is called the portfolio process. Since 7if =  1 — Yli=i K  f°r each t, we 

denote nt =  (771, . . . ,  irf)T from now on. Long [37] defined the numeraire portfolio as:
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Definition 3.2.1 (Numeraire portfolio) A numeraire portfolio 7rt is a self-financing 

portfolio such that its value process { Vt} t>o is strictly positive and the physical probability 

measure P  is an EMM with respect to the numeraire Vt. That is, SI/Vt are positive P- 

martingales for i =  0 , . . . ,  d.

Just as in Korn, Oertel and Schal[33], we may focus on the case where the portfolio 

process is described by a constant vector 7r G lZd.

Theorem 3.2.1 (Numeraire portfolio fo r  exp-Levy processes)

Suppose that the asset process is modeled by a d-dimensional exp-Levy process as (3.2), 

the numeraire portfolio ir £ lZd exists if

1 .1  +  (it, x) >  0 and 1 +  x  >  0 for any x, the possible jump size o f X ;

The corresponding numeraire V defines a risk-neutral measure Q* with Radon-Nikodym 

derivative dQ* jd P  =  S^/VT. The density process Zt =  eTt/Vt is

Moreover, the Levy process X  is a martingale under Q* with centering triplet 0),

u*(dx) =  u(dx) / ( l  +  (n, x)). W ( =  Wt +  a Tirt is the standard Brownian motion.

Proof: Suppose that the numeraire portfolio it exists, then St/Vt must be positive 

martingales under P. Denote t t  as the constant portfolio process,

7r is the solution to the following equation

(3.6)

exp j  —(7T, crWt) -  ^||o-T7r||2i -  f  j  ln(l  +  (7r, x))N(ds,  dx) +  t
Jnd Jo

Vt =  exp I r t  -  |̂|<TT7r||2t +  (7r,Xt) j  (1 +  (tt, A X a)) e-(7r,AXs>
0 < 3 < <

0 < 5 < t
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Condition 1 guarantees that S  and V  are positive. Condition 2 is equivalent to condition 

2 in Theorem 3.1.1 as

f  (y/v -  \ ^ * ) 2{ d x )  =  j  ( l -  'L =
Jnd J K d  \  v  1 +  ( t t , x )

v(dx)  <  oo.

Condition 3 guarantees the existence of the solution to (3.6) and X t is a Q*-martingale 

since Jj|a.||>1 INIv*(dx)  < oo. ForO < u <  t,

Vu
CO*o 0, v,[

=  E,.

exp |  ^||crT7r||2(t -  u) -  ( n , Xt -  X u) -  ^  [ln(l +  ( t t ,  AX ,}) -  <7T,  AX,}]
U < S < t

exp { -  [  [  ln(l  +  (n,x))N(ds,dx)  +  (t -  u) [  - ^ ~ ^ - v ( d x )  1
L Jnd Ju Jnd 1 +  vL x) j

}'-v(dx)e x p \ ( t - u )  | |< jT 7 t | |2 -  ( tt, h ) +  /  ( tr , x ) u ( d x ) -  —
( L Jizd JTld 1 +  (TTj

If 7T satisfies equation (3.6), the expectation is equal to S^/Vu and S)° jVt is

r t  r  ( t t ,  x )
exp — (TT,aWt ) - \ \ \ ( j TiT\\2t -  [  [  ln(l  +  (TT,x))N(ds,dx) + t  [  X  ̂ v(dx)

2 Jnd Jo Jnd 1 +  (tt. x )
(3.7)

Similarly, for each i =  1 , . . .  ,d, E[S\/VL\Jru\ is

'1
^ ( l l a *  - < t t t t | | 2  +  \ \ o t t t \\2 -  H ^ l l 2 )  -  ( t T , f i ) + f i i

a i  (

^ e x  p { « -

exp j ( i  -  u) f  ((jt, x) -  x ' )v ( ix )  -  (t -  u) [  — ( -p ( d i ) }  ,
I  J n d J n d 1 +  in, x) J

which is Slu/V u based on equation (3.6).

So S /V  are positive P-martingales. So S^/Vt is the Radon-Nikodym derivative o f the 

risk-neutral measure Q* to the physical probability measure P. By comparing equation (??) 

to the density process in Theorem 3.1.1, we find that T) =  - t t  and <f>(x) =  — ln(l +  ( t t ,  x)),  

that is u*(dx) =  v ( dx ) / (  1 +  ( t t ,  x ) ) .

□
If 7Tt is not set to be constant at first, equation (3.6) turns to be

[  -Jnd 1

x (nt , x)
+  ( 7 7 ,  x )

'(dx) =  0 for each t G [0, T}.
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The solution 77 will not depend on the time t .  So the restriction that the portfolio process 

is constant will not affect the results.

It is well known that the numeraire portfolio coincides to the growth optimal portfolio tt 

that maximizes the expectation of the logarithm:

E In Vt =  sup E  [In V t ] ,
veAf

where dVt/V t- =  r'dt +  ^dX\. Under the conditions listed in Theorem 3.2.1,

lnVT =  { n , XT) - ± \ \ a Tn\\2T +  £  [ln(l +  ( t t ,  A X S}) -  (vr, A X S}],
0 <s<T

with the expectation under the physical measure P:

E[lnVT] =  T  j V ^ )  -  |̂|<TT7r||2 +  j f   ̂ [ln(l +  (tr,ar)) -  ( ir ,x) \v(dx)^  .

To achieve its maximum, let us take the derivative with respect to the portfolio process 7r

and equalize it to be 0:

7 !  —  G O  7T / -Jnd 1
x ( t t , x )

■u(dx) =  0.
+  ( t t ,  x )

The growth optimal portfolio process n satisfies the same equation as (3.6) if it exists, 

which confirms that the numeraire portfolio coincides to the growth optimal portfolio. The 

maximal value is

E In VT ln (l +  (n,x)) -
( t t , x )

u ( d x )

3.2.2 Minimal martingale measure

The asset processes in (3.2) are semimartingales. Thus for each i  =  1 . . . . .  d, the discounted 

prices can be decomposed as S\ =  J'q S%s_dX ls =  S1Q +  M l +  A)\

M i =  [  S is_o idWs +  f  Si_ [  x i N^ d s J x )  - u \ d x ) d s l
J o  Jo  J n

f  S i- l \d s .
Jo

A] =

vl is the Levy measure of X i and y[ is the center of X \  Thus M i is a P-martingale and A1 

is a predictable process with finite variation.
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Definition 3.2.2 (Minimal martingale measure) An equivalent local martingale measure 

Q is the minimal martingale measure if  any square-integrable P-martingale X  which is P- 

orthogonal to M l for i =  1 , . . . ,  d remains a local martingale under Q. X  is P-orthogonal 

to M 1 if  the quadratic variation process [X, M l] is a local P-martingale.

The density process o f the minimal martingale measure follows dZt/ Z t~ =  —a tdMt, 

where M  =  ( M 1, . . . ,  M d)T is a d-dimensional P-martingale and a t — (a) , . . . ,  af)  € TZd 

is a predictable process which satisfies

dAt =  (5t_ o 7 l )dt =  (atd(M, M ) t)T,

A  =  (A1, . . . ,  Ad)T and S  ° 7i =  (<§17i, • • •, S d'yd)T. Denote v lJ the 2-variate Levy 

measure of Ll and L f  then (M , M ) t is a d x d positive definite matrix with entry

( M \ M f t =  f  S l_ S l  
Jo

o %((ji)T +  I xyvli (dxdy) 
Jn2

ds, i f  j ,  i , j  =  l , . . . , d

(M \ M*)t =  [  ( S l f  a i ((7i)T +  f  x2v i{dx)
Jo  L J n

ds.

Let 0  be a d x d positive definite matrix with entries 0 y =  j n2 xy v ij(dxdy), i f  j  and 

0 M =  x2vl (dx). Or 0  =  j nd xxTv(dx).  The matrix a a T +  0  is the variance matrix of 

X.  If 0  is bounded, the predictable process a t solves the equation

7 i  =  ( o o T  +  Q ) ( S t -  °  a t ) T , 

and then (5t_ o a ,)T =  (era1 +  0 ) _171. So the density process is

dZt/ Z t_ =  - a tdMt — (aaT +  0 ) adW t + /  xN(dt ,  dx) 
J-ra

provided that 1 — {{(T(tt +  0 ) _17i, A X t) >  0.

Compared to the density process in Theorem 3.1.1, one finds that r) — - ( a o T +  0 ) _17i 

and <j>(x) =  ln(l  +  (fj, x)).  If the condition

[  (y/u -  V0)2(dx) =  f  (1 -  y / l  +  (fj,x))2v(dx)  
■hzd Jnd

is satisfied, there exists a minimal martingale measure Q.

<  oo
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Theorem 3.2.2 (Minimal martingale measure for exp-Levy processes)

Suppose that the asset process is modeled by a d-dimensional exp-Levy process as (3.2), 

the density process o f the minimal martingale measure Q is given by

Zt =  exp |  (fj,  aWt) -  i  \\crTfj\\2t +  J  d Jq ln (1 +  x))N(ds,  dx) -  t  j ^ ( f j ,  x)v(dx) |

fj =  — (acrT +  0 )_17 i, under the following assumptions:

1 .1  +  (fj, x) >  0 and 1 +  x  >  0 for any x, the possible jump size o f X ;

2. fnd(y/ 1 +  (fj,x) -  1 f v ( d x )  <  oo;

3. the matrix 0  =  Jni xxTv(dx) is bounded;

4• Ji|*||>ilM I(1 +  < M M < f c O < 0 °-

The Levy process X  is a martingale under Q with centering triplet (a, 0 ,0), 0(dx) =  

(1 +  (fj. x))v(dx).  Wt — Wt — <yTf)t is the standard Brownian motion.

The first assumption implies that Z  and S  are strictly positive. The second assumption 

assures that the measure Q is equivalent to the original probability measure P. The third 

assumption is to guarantee the existence of 0 -1 , it also guarantees the square integrability 

o f Z. Z  is square integrable if

f  (e21n(1+W'x)) _  i)  v(dx) < oo, that is f  (2 (fj,x) +  (fj,x)2) v(dx) <  oo.
J n d J n d

Since j nd(f),x)v(dx) =  (fj,71} and (fj,x)2 <  ||a;||2||??||2, both are finite. X  is a Q- 

martingale by the last assumption.

3.2.3 Minimal entropy martingale measure

Definition 3.2.3 (Minimal entropy martingale measure) Denote the set o f EMM by M.,

an EMM Q is a minimal entropy martingale measure if  it minimized the so-called relative 

entropy with respect to the original measure P:

dQ dQ
— - In —— =  min E  
dP dP Q e M

dQ dQ 
d p l n i p
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The inside of the expectation is the relative entropy which is often used as a measure of 

proximity of two equivalent probability measures. Fujiwara & Miyahara [23] derived the 

result in the one-dimension case with a geometric Levy model defined as St =  So e x p { X (}. 

(Also see Proposition 10.7 in Cont & Tankov [12].) Here we extend it to a multi­

dimensional stochastic exp-Levy model. In their result, one may check that for stochastic 

exp-Levy process, <(>(■) is a function of the parameter fj as 4>(x) =  (fj,x), an Esscher 

transform. In comparison, the functions of the numeraire portfolio and the minimal 

martingale measure are 0*(x) =  -  ln (l — (rf,  x)) and 4>(x) =  ln(l  +  (fj, x))  respectively. 

Theorem 3.1.1 and equation (3.4) give:

Theorem  3.2.3 (Minimal entropy martingale measure fo r  exp-Levy processes)

Suppose that the asset process is modeled by a d-dimensional exp-Levy process as (3.2) 

with 1 +  x >  0 fo r  any x, the possible jump size o f X , if  there exists a solution fj G TZd to 

the equation:

7 i +  GGT7j +  [  -  1 )v(dx) =  0, (3.8)
J n d

and  ̂ 1̂11 > j \\x\\e(ri'x>u(dx) < oo, then the density process o f the minimal entropy martingale 

measure Q is

2  =  exp  {( f j ,Xt)}
4 E [ ex p { ( f j ,  X t )}]

=  exp  |  (fj, X t) -  i  ||crT77||2t -  (fj, 7 i ) t - t  -  1 -  (7, x))v(dx)  |

Under Q, the Levy process X  is a martingale with centering triplet (o, v, 0), v(dx) =  

el,hX) v(d'x). Wt =  Wt — oTfjt is the standard Brownian motion.

3.2.4 Pure diffusion model: v ( - )  =  0

In the simple case where the asset process is pure-diffusion, that is v ( - )  =  0 and g g t  is 

not singular, the problem of the existence o f EMMs is reduced to solve the equation (3.4) 

without v* and u as

7 i +  GGTrj =  0 ==^ rj — — (crcrT)_17 i.

Such ij is unique even if the market is incomplete, which means that the three EMMs: the 

numeraire portfolio, the minimal martingale measure and the minimal entropy martingale
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measure are identical. Now, let p — r l  +  71 be the mean of the return process of S

and W® =  Wt +  fit, (3 € lZd be the standard Brownian motion under the risk-neutral

randomness Wt is considered globally. When m  — d, the financial market is complete and 

then there is only one equivalent martingale measure, that is only one /3 € 7Zd, specifically 

fj =  fjQ =  o~1(p — r l )  is called the market price o f risk. In this case, all the risk-neutral 

measures are identical.

3.3 Special case: exponential Poisson-diffusion processes

Here, we consider (3.2) where for each i =  1 , . . . ,  d

7o =  (7o> • • • > 7o)T is drift of the Levy process X . N  =  (A'1, . . . ,  N n)T is an n-variate 

independent Poisson process with intensity A =  (A1, . . . ,  A")T, the jump sizes 

are independent for each i  =  1 , . . . ,  d and the joint distribution of J 11, . . . ,  J dl is given by 

F l for each I =  1, . . .  ,n.  Denote the average jump size by p l =  f nd xdFl(x) € 1Zd 

for each I. W  and 0  are the same as before. W, N  and J  =  (J'd)i<t<d, i<i<n are 

mutually independent. The joint Levy measure for each compound Poisson process is 

v l(dx) =  XldF\ x ) ,  I =  1 , . . . , n .  We also require 1 +  AX* >  0 for each i  and s € [0, T] 

to ensure the asset price is positive.

Suppose there exists a risk-neutral measure Q, then Theorem 3.1.1 shows that under 

Q, W® =  Wt — oTr]t is the standard Brownian motion and the new drift for X  is 

lo =  7o +  o o Trj. For each I =  1 , . . . ,  n, the Levy measure is v lQ{dx) =  v l (dx) , 

N l is a Poisson process with intensity XlQ =  X1 fnd dFl (x) and the joint distribution 

o f the jump sizes associated with N l is dFlQ(x) =  e0(x'ri> dFl (x) /  fn ,t e^x'^dFl(x). Since 

X  is a Q-martingale, Y!i=i Jn“ llx l W Q{dx) <  00 and 7^  +  ^ ”=1 x v lQ(dx) =  0 and rj

measure Q,  then fi satisfies the equation p  — r  1 =  ofi. The solution is not unique 

when m  >  d and BQ =  —oTrj =  a ( ooTy 1(p -  r l )  is just a special root where the

fc=1 1=1 h=1

satisfies

(3.9)
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same as equation (3.5). For constant jump sizes J ,  we get 70 +  o a Tq +  JX* =  0. The 

financial market is complete if there is only one equivalent martingale measure, that is the 

equation only admits one solution (77, A*). When a  =  0, the solution is unique if d =  n and 

J  is not singular. The unique solution A* =  -  J -1 70 is the new Poisson intensity under Q, 

which must be positive.

3.3.1 Numeraire portfolio: <j)*(x) =  — ln (l —(77*, x ) )  =  — ln(l+(7r, x ) )  

The conditions in Theorem 3.2.1 can be modified as

•  1 +  ( - i t ,  x )  > 0 and 1 +  x >  0 for any x, the possible jump size of X ;

•  In* i+$Z idFl(x) < 00 f o r  e a c h  1
Then the portfolio process n solves a similar equation as (3.6) or (3.9)

n  „

7o -  aaT7r +  'V ' X1 /    j   dFl{x) =  0.

Note that Jnd j ^ ^ d F ^ x )  <  00 shows £ ”=1 \ l Jj|x||>1 T ^ ^ d F l(x) <  00, then X t is a 

martingale under Q*. Also

THFkdFl (x ) ^  IMI k d T ^ F ) dFl(x) <  00 \
Jnd i + ( l ,x) d F l (x ) =  — Jizd i+{K?x)dFl(x) <  00 J

By the measure transformation, the sum of the intensities varies by

£ > ' •  -  A‘> =  £ *  fKd ( r r i ^ >  ~  * ) iF'{x) = (,r’7o) ■ l|aT,r||! =

3.3.2 Minimal martingale measure: <j)(x) — ln (l +  (fj, x ) )

Theorem 3.2.2 or equation (3.9) shows fj — —(aaT +  0 ) _1(7o +  Y^i=i l̂ 1)- Where (~)u =  

E "=1 A' In? xVdFij(x , y) for * ^  j  and 0 “ =  Y J U  A' In* x2dF!(x ), i , j  =  1, ■ ■ ■, d. F l  

is the joint distribution of the jump sizes of ith and j th assets with respect to N l. Then the 

conditions o f existence are:
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•  1 +  (77, x) >  0 and 1 +  x  >  0 for any x, the possible jump size of X ;

•  the matrix f nd xxTdFl(x) is bounded for each I;

•  i|N |>i N (1 +  (,n,x))dFl(x) <  00 for each I.

By the second assumption, the inverse of 0  exists and the density process is square- 

integrable. The two martingale measures are equivalent since {\ful — \ fF )2 =  2 +  (77, x) —

<  00.

2 yU +  ( f j , x )  and

f  ( \ f v l — V i ^ ) 2 ( d x )  <  X1 f  (2 + (17, x ) ) d F l ( x )  =  A*(2 +
J n d Jnd

Under the minimal martingale measure Q, N l is a Poisson process with intensity

\ l =  \ l [  (1 +  (r j , x ) ) d F l ( x ) =  A'(l +  (7 
J n d

3.3.3 Minimal entropy martingale measure: o ( x )  =  (fj, x )

Both equation (3.8) and equation (3.9) show that fj € H d is the solution to

7o +  o a T r] +
n p

V a W  xe{fi’x)dFl(x) =  0,
i=i Jnd

1 +  x >  0 for any x, the possible jump size of X  and ||x ||e^’^dF^x)  <  00. If 77

exists, M \f j )  =  E[e{?i'Xl')\ <  00 for each I =  1 , . . . ,  n, then

/» n  p 71

/  v(dx) =  V ]  A' /  ei'n'x)dFl(x) <  S '  \ lM l{fj) <  00,

and the following condition is satisfied automatically

[  ( \ f u l -  V & i ) 2 ( d x )  =  X1 [  ( l  + - 2 e !̂ \ d F l ( x )
J n d J n d '  '

< 00 .=  A'

Under the minimal entropy martingale measure Q, the intensity of N l is

\ l =  \ l [  e^ ’x)dFl(x) =  \ lM l(fj). 
J n d
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3.4 Extension: equivalent martingale measures for
additive processes

Theorem 3.1.1 and equation (3.1) can be extended to additive processes with local 

characteristics.

Theorem 3.4.1 (Equivalent measures fo r  additive processes)

Let (Xt , P 1) and (Xt . P 2) be two additive processes on lZd with local characteristics

(a), v j , blt ) and (a2, ufi b2), 0 <  t < T  <  oo. Then P ( and P ( are equivalent fo r  all

t E [0, T] if  and only if  the following three conditions are satisfied:

1. a) =  a), denote at aI — a2;

2. and v( are equivalent with j n<i ( \J~u\ — \ f v ( ) 2{dx) <  oo;

3- b2t ~  bt ~  Jj|T||<i ~ vl){dx) =  atVt for some r]t e  TZd.

Under the P l measure, let W } be a d-dimensional standard Brownian motion and ot be 

the Cholesky decomposition o f at, then X  has a decomposition as

f  b l d s +  f  osdWs +  f  j  x(N(ds,dx)  -  vl(dx)ds) +  [  [  xN(ds,dx) .
d o  J o  J \ \ x \ \ < l J o  J \ \ x \ \ > l J o

Under the P 2 measure, the Levy decompositions with the same dimension o f the Brownian 

motion is

[  b2sd s +  f  osdW 2 +  f  f  x(N(ds,dx)  — u2(dx)ds) +  [  [  xN(ds,dx) ,
J o  J o  J \ \ x \ \ < l J o  J \ \ x \ \ > l J o

then Wf2 =  W } — J*oJr]sds is the standard Brownian motion under P 2. Denote 

4>{t,x) — In[uf(dx)/u)(dx)\ : [0,T] x 7Zd 1Z, when P 1 and P 2 are equivalent, the

Radon-Nikodym density process is

d P 2 \J-t _  d P t_  _  j j t
d P x\Pt dP) e * with

Ut = Jo ̂ UsdŴ ~ \f0
+  [  [  4>{s, x ) N ( d s ,  d x )  -  [  [  (e^(s’x) -  l ) v ls { d x ) d s .  

J n d Jo  Jo  J n d
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Ut is an additive process on 1Z with local characteristics (a jj(t), uu(t), bu(t)) given by

au(t) =  h J m f ,

Vu(t,B) =  f  Im t ,x)eB}^{dx) for B  E B(1Z),
J n d

bu(t) =  ~ h w fv tW 2 ~  f  (e*(t,l) -  1 -  <j>(t,x)I{ lm ,x)\\<i})vj(dx)
* Jnd

=  ~ \ a u { t )  -  f  (ev — 1 — yl{\y\<i})vu(t>dy).
1 Jn

Moreover, if  P 2 is a martingale measure for X t, then v 2 must satisfy J ^ ^  |x ||^2(dx) < 

oo. Thus ti2 =  — Jjij.ii>! xv2(dx) and rjt will solve the equation

b\ +  att]t +  f  x(e^ t,x  ̂ -  l )v](dx) +  f  x e ^ ’̂ vfydx) — 0 .

Here we only give a sketch of the proof of the first part (equivalent part). If  the first part 

is true, then the second part (martingale part) comes from the fact that X t is a martingale 

under P 2 with E 2[Xt\ — 0 for all t  E [0, T}.

Proof: Additive processes share a common property with Levy processes: independent 

increments. Under P 1, fix T  € (0, oo) and we may construct an additive process as

n

x t =  ^ 2 Lti~ti-iht>ti}i f € [ 0 , r ]  (3.10)
i—1

where 0 =  t 0 < h  <  . . .  <  tn =  T  is a subdivision of [0, T } and L\ are d-dimensional Levy 

processes with generating triplet (a \  u \ b z), i =  1 ,n. The spot characteristics of X  is 

(A1, ^ 1, ^ 1), where A* =  E IL i ai{ti - t i-.1)I{t>ti},Vtl (dx) =  £ " =1 ^ (d x )( f i- f i_ i)7 {t>ti} 

and Tl =  bfU -  V i ) J {f>ti}.

Since any two Levy processes L\ and L{ (i f  j  and i , j  =  1 , . . .  , n )  in (3.10) work 

on disjoint time periods, we may assume that Ll and LJ are independent for any i f  j .  

Theorem 3.1.1 shows that for ( (Ll , . . . ,  L"), P 1) there exists an equivalent measure P 2 (or 

there exist functions cf(x) : TZd —>• K  and rf € 1Zd, i =  1 , . . . ,  n) for t E [0, T], For 

each i, under the measure P 2, L\ is a Levy process with triplet (a1, e ^ '^ f fd x ) ,  b1*) if 

Jnd(e4>l('x^2 -  l ) 2vl (dx) <  oo andbl* =  b% +  ^ < lx(e<t>%̂  -  I fy fdx )  +  a^rf. T husX t is
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an additive process under P 2 with spot characteristics (A2, V 2, T2), where

A2 =  =  A] =: At , (3-11)
2=1

n

V 2(dx) =  y î e(t>t(x)vl {dx){ti -  
2=1

r t2 =  f ]  &*(*< -  t i - i ) I {t>ti} =  r £ +  f  x{V2 -  V?)(dx) +  Atrf.
J\M<1

For each L \  the Radon-Nikodym derivative on t  E [tt , t l+1) is

dP 2\? t j j j
d P 11 Tt

where U\ is a Levy process on 1Z with triplet (a[r, v\j, 6[f) given by

4  =  ( 4 Ta y ,  (3-12)

4 (-B ) =  [  I{<j>i(x)eB}Vl{dx) for B e B(TZ),
J n d

bb = -  [  (e01(x) - 1 -  ^{^hmAw^yidx)
£  J n d

=  - \ au -  J ^ y - 1  - y l {\y\<i})vu(dv)

So the density process Zt associated with X t satisfies

n

In Zt =  ^ U i l {t>ti},
i—1

which is an additive process with spot characteristics (Au{t),Vu(t),Tu(t))  given by 

A u(t) =  E ”= ia c/fe -  Vu(t,dx) =  -  U- 1  )I{t>ti} and

Fu(t) =  b\j{U -  U-\)I{t>u}-

Now let n —> oc, A L will be the derivative (from right) of dAt/d t  = : at at fj. Denote 

dVtl /d t  =  vt and dT\/dt  =  bt. Then X t in (3.10) is an additive process with local 

characteristics (at , Vt<bt) under P 1 when n —> oo. There exists an equivalent measure 

P 2 with density process eUt, Ut is an additive process with the local characteristics 

(au(t),i/u(t),bu(t))  which have almost the same form as (a\j, v lv . b\j) in (3.12) and 

the parameters (a1, v%, b%, rf) are replaced by (at ,ut ,bt ,r]t) respectively. The function 

4>%{x) becomes 4>{t,x) and satisfies _  \ ) 2i/t (dx) <  oo for each t E (0, T],
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Compared to the spot characteristics of X t in (3.11) under the new measure P 2, the local 

characteristics will be (at , ut(dx), b*t ) with b* =  bt +  x ( e ^ ’x) - 1 )vt (dx) +  a t r]t .

□

In financial market, if the asset process is modeled as dSt =  St- ( r tdt +  d X t) where 

rt is the deterministic interest rate and X  is an additive process with local characteristics 

(at , Vt,lt), then the numeraire portfolio may be obtained by x) =  -  ln (l — (rj*, x)) 

and the portfolio process is irt =  — r/t*. The minimal martingale measure and the minimal 

entropy martingale measure may be determined by (f>(t, x) =  ln (l +  (r/t. x))  and <f)(t. x) =  

(fit, x) respectively. The functions r?*, f)t , fjt and <t> will satisfy Theorem 3.4.1. Discussions 

about the minimal martingale measure and the minimal entropy martingale measure for 

exp-additive processes can also be found in Henderson & Hobson [28].
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Credit models with Levy processes

4.1 Basic factors in credit models

Consider a financial market with filtered probability space (fi, T ,  F  =  (Et)t>o> Q), Q is the 

risk-neutral measure. For a defaultable zero-coupon bond with face value F  and maturity 

T,  let rt be the short rate and r  is default time, the bondholders will receive CT at default 

and F  at maturity if there is no default before or at T. Then the price of such defaultable 

bond before default is

B(t, T) =  E « \Fe~^rsdsI{T>T} +  c Te - Z r' daI{T<T} \ E t , T  >  t .

The price depends on the default time r ,  the recovery amount CT and the risk-neutral 

measure Q. Equation (1.1) defines the default time in the firm value models and equation 

(1.3) defines the default time in the intensity-based models.

Let P(t,  T) =  E q [e~ ̂  r“ds\Et} be the price of a zero-coupon default-free bond at t < T  

with face value 1 and maturity T. Then the defaultable bond price before default is

B ( t ,T )  =  F P ( t ,T )  -  E q -  CTe ^ r‘ds)I{T<T} \ T t

The credit spread, which is defined as the difference between the yield on the defaultable

51
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bond and the yield on the equivalent default-free bond, is

In B(t, T)  — ln(FP(t,  T)) 
cs(t ,T)  = -----------------------  , T > t -

And the instantaneous credit spread is defined as

Efi[dB(t ,T)\Ft-\ Efi[dP{t,T)\Ft-] _  +
CSt B ( t —,T)dt P ( t —,T)dt  ’ T

4.1.1 Recovery scheme

We define the recovery rate as the ratio of debt recovered once a default event happens. 

There are three recovery schemes in the current literature.

•  Recovery o f Face Value (RFV): at default, bondholders will receive a fraction u> i of 

face value of the bond CT — oĵ tF\

•  Recovery o f Treasury Value (RTV): at default, bondholders will receive a 

fraction cj2 of the price o f default-free bond with same maturity and face 

value, which is equivalent as receiving the same fraction of face value at 

maturity CT =  uJ2 .t F P ( t ,  T). In this case, B( t ,T )  can simply rewritten as 

F ( P ( t ,T )  -  EQ[e-ItT^ds( l - U J 2,r)I{r<T}\Pt]);

•  Recovery o f  Market Value (RMV): at default, bondholders will receive a fraction u>3 

of the price o f pre-default market value of this defaultable bond CT =  T).

Duffie & Singleton [18] shows that under the RMV scheme in the intensity-based model, 

the price of a risky bond can be generally written as

B( t ,T )  =  F E q |W *T *.)&»)*\j:t

where F  is the face value, rt is the interest rate, ht is the default intensity and Cjt is the 

expected recovery rate given all the information up to, but not including, time t  if default 

happens immediately. The instantaneous credit spread is cst =  ht ( 1 — ujt).

Let B°(t ,T)  be the defaultable bond price with zero recovery, that is

B°( t ,T)  =  E Q [ e - £ r°dsFI{T>T}\Ft\.
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If the recovery rate w is a random variable which is independent of other random variables 

or processes, the bond price under the RTV scheme is

B ( t , T )  =  F ( p ( t , T ) - E Q[ e - £ T°ds( l - L o ) I {T<T} \ H )

=  F P ( t ,T )  -  (1 -  EQ[u\)EQ[ e - £ T‘dsF{  1 -  I { t > t } ) \ H  

=  E Q[uj}FP{t,T) +  ( l - E Q\io})B°{t,T),

where Since lo e  [0,1] and then E q [lu\ e  [0,1], B(t, T)  can be rewritten as the expected 

value of the random variable X ,  where

{
F P ( t ,T )  with p =  E q [lj};

X  s B°( t ,T)  with 1 — p.

4.1.2 Bond price in the firm value models

Merton used the geometric Brownian motion as the firm value process: dVt — Vt (rdt +  

adWt), Vo > 0, r  >  0 is the constant interest rate and a  >  0 is the volatility. 

The defaultable bond only defaults at maturity if  Vt < F  and its value at maturity is

B(T,  T ) =  m in(F, VT) =  F  -  (F -  VT)+. Then

B ( t ,T )  =  V M - d \ )  +  F e - ^ - ^ K 2);
lnVt - I n F  +  (r +  ±a2) ( T - t )

‘ _  a V T ^ t  5

d2 =  d\ — a \ /T  — t.

Here $ ( x )  is the CDF of a standard normal distribution. The default probability is 

Q ( t  =  T\Vt) =  $ ( —d2). Let lt =  Fe~r{T~t)/Vt be the leverage at time t, the credit 

spread is

cs(t ,T)  =  - ^ l n  ( j H h D  +  ^ y ,

ui In lt ay /T  - 1
4 “  e ^ T ^ t  2 ;

h 2t =  -

In lt cr y/T  — t
a y / T = t  2

It increases with the leverage and the volatility. While the instantaneous credit spread at 

maturity is

lim cs(t ,T)  =  ^ 0 if It <  1, that is Vt >  F;
t —* T  > 1 oo if It >  1, that is Vt <  F.
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This is the consequence of the fact that the firm value process is continuous.

In the first-Passage Model, let F be the default boundary, Musiela & Rutkowski [47] 

shows that

rri. . ,  f \ n x t -  p (T  -  t ) \  ,  / l n x t +  / i ( T - f ) \
Q( t < T \ r > t )  =  ® (  a J ^ r 1 )  +  ^  j ’

where xt =  F/Vt, and /x =  r  -  \ o 2.

Zhou [56] used a jump-diffusion model instead of the geometric Brownian motion in the 

firm value model, where

dVt =  Vt [(r — Av)dt  +  adW t +  (J  -  1 )dN t\ ,

Nt is a Poisson process with parameter A and v is the expected value of jump size J  — 1. 

Nt is independent of the Brownian Motion Wt. Now, the default may be caused by the 

movement of Brownian motion or the Poisson jumps. The first one is predictable while the 

latter one is a surprise.

By assuming that the jump size follows a log-normal distribution with In J  

under Merton’s setup the default probability is

q (T  -  T )  _  W  <  D  -  £  -  f r - -  w  -  M
\  ^ a 2T  +  a l i  J

And in the first-passage model, the bond price and the survival probability can be 

approached by PDEs with numerical solutions.

4.1.3 Dependence of default

In the firm value model, the correlation between the dynamics of firm’s assets determines 

the default dependence. Consider two firms that follow dVtl — Vtl(rdt +  OidWi) with 

Vq , a 1 >  0 and dW ^dW 2 =  pdt. The joint distribution of default times is a bivariate 

standard normal distribution with correlation coefficient p in Merton’s model, and it is a 

bivariate inverse Gaussian distribution with correlation p in the first-passage model. For 

some deterministic Dt, Zhou [57] shows a closed-form joint default probability.

In the intensity-based model, there are several ways to model the dependency. (See 

Duffie & Singleton [19] for more details.) One is to introduce the correlation between the
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intensity processes through time and assume the jump processes X  in equation (1.3) are 

independent given the paths of intensities. For example, let A\ =  h\ +  a,iht be the default 

intensity of firm i, where h and t i  are mutually independent processes and at >  0. Then 

the join survival probability are,

Q ( t ® > Ti) =  E q 

Q { t 1 >  T i , t 2 >  T2) =  E Q 

=  Eq

- S o K d s =  E q e-  fo hids e q

-Jo(^+Ai)rfs

,-Jo hlds e q g- So hlds e q - Jg(ai+a,2)hsds

Jarrow & Yu [29] consider the counterparty risk: a firm’s default will increase the default 

probability o f another firm. Specifically, the default intensity can be described by A* =  

ai +  a2/{ t> T2}, a i,a 2 >  0.

One may consider the dependence between two jump processes. Giesecke [25] gave 

a simple exponential model for bivariate correlation. Let the jump process in (1.3) be a 

Poisson process. The defaults are driven by firm-specific (N *) and common shock (N)  

events. N  and N l are Poisson processes with intensities A and A* respectively and the three 

poisson process are mutually independent. Then the default times are r* =  inf{t >  0 : 

Nl  +  Nt > 0} and

Q iE  > t )  =  Q(Ni +  Nt =  0) =  e-(A,+A>\

The join survival function is

Q{t1 >  t i , r 2 >  t 2) =  Q(N^ =  0, N l  =  0, Nmax{tlM] =  0)

=  e x p f-A 1̂  -  \ 2t2 -  A m ax{ti,t2}}

-  Q i r 1 > t x)Q(t2 > t 2) min{eA<1, eAt2}. (4.1)

Given Nt =  0, the default events are mutually independent up to time t. Such construction 

only admits positive correlation.

Another way to model the dependence structure is to use the copula method

Q { t 1 > t u T2 > t 2, ■ ■ ■ ,Tn > t n) =  C { Q ( t 1 >  tx), Q ( t 2 >  t2), ■■■ , Q(rn > tn)).

The joint survival probability in (4.1) implies that the survival copula

C W 2) =  Hi/Jaroinifix61, H282), 0i =  A/(A +  A*).
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4.2 Default time as a stopping time

Let ht be the intensity (stochastic hazard rate) of a totally inaccessible stopping time r ,  then 

the survival function S(t) =  Q(r  >  t ), the probability density function /( f )  =  —dS{t) /dt  

and the hazard function A(f) =  f ( t ) /S ( t )  are

S( t ) =  E Q[I{T>t}\ =  E Q[e~l

f ( t ) =  ^ [ h te - /o W s] =  Efl[htl{r>t}],

X{t) =  £ ^ [ / {t{>o]}1 =  EQ[ht]T > t]'

In fact, the hazard function A(f) is the forward default rate at time t  assessed at time 0. 

DuflSe & Singleton [19] summarize that the intensity ht is the arrival rate of default at t, 

conditioning on all information available at t  and the forward default rate (hazard rate) A(f) 

is the mean arrival rate o f default at t, conditioning only on survival to t.

On ( r  >  t },  let S(t, T ) =  Q ( t  > T \T t) ,  T  >  t, be the conditional survival probability, 

define

dS( t ,T )
dT

S ( t ,T Y

Here f ( t , T )  is the probability density function at time T  assessed at time t  and A(t, T)  is 

called the forward hazard function at time T  assessed at time t. Similar to the relationship 

between the forward interest rate and the short rate, the instantaneous default probability is 

the limitation of the forward default rate

ht =  r ) =  S i  W ' T )-

Thus the survival probability of r  can be represented as

S( t ,T )  =  E Q[e~ hsds\T t ] =  e ~ ^ x{t's)ds, 

and the forward hazard rate is

dS( t ,T )  _  EQ[hTe - $ h‘ds\Ft]
A ( t ,T)  =

S(t, T )dT  S( t ,T )

E Q[hTI{T>T } \H  Qr, |(r. _ ,
-  ~  lhTl:r‘' T >  n  < 4 - 2 )
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which is the expectation of the intensity hr  conditioning on all the information available 

at time t and survival to T.  While the forward interest rate is the expectation of the short 

rate given all the information available at time t under the forward measure with maturity 

T. We must note that equation (4.2) is not true if the intensity does not exist.

Consider the First-passage model, define the default time as

r  =  ini{t  >  0 : Vt <  Dt}, (4.3)

where Vt follows a jump-diffusion process, the threshold D  is predictable and is left to 

be empirically determined. Both of them are defined on the probability space (fi, F,  F =  

( f t ) t>o, Q)- Then r  is a stopping time with respect to T t, that is { r  <  t }  € T t- Given 

( r  >  t} ,  we have

{ r =  t }  =  {Vt <  A  <  V - }  =  {Vt < D t < V -}  U {Vt < D t =  Vt-} -  

Here are some important definitions and theorem from Metivier [45].

Definition 4.2.1 (Definition 4.5, 4.9, 7.1, 7.4 in [45])

•  The graph of  the stopping time r: [r] := {{t, u)  € 1Z+ x Q, : t =  t (u )  <  oo}.

•  A stopping time r  is called predictable when [r] is a predictable subset of lZ+ x Q.

•  A stopping time t  is called totally inaccessible when, for every admissible measure p  

on J- and every predictable stopping time S, the following holds: p([r\ fl [S1]) =  0.

•  A stopping time t ,  the graph [r] o f which is included in the union o f denumerably 

many graphs o f predictable stopping times, is called accessible.

A stopping time r  is totally inaccessible if, for every predictable stopping time S, 

Q{u> : t(w ) =  S(lo) <  oo} =  0. A totally inaccessible stopping time is non-predictable, 

but there exist unpredictable stopping times which are accessible. In the later case, the 

intensity does not exit. Refer to Example 7.5 in Metivier [45].

Theorem 4.2.1 (Decomposition theorem fo r  stopping times, theorem 7.3 in [45])

For every stopping time t, there exists one and (up to Q —negligibility) only one pair (re, tu) 

o f  stopping times with the properties:
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•  [r] =  [re] U [t u ], [re] n [r„] =  0;

•  Tu is totally inaccessible;

•  Te is accessible, that is, there exists a sequence (r„)n>i of predictable stopping times 

such that [re] C U„[t„].

For a stopping time r  to have an associated intensity, it must be totally inaccessible. 

The default time defined in equation (4.3) is the first time that the ^ -adap ted  process 

(In 14 — In Dt} t>o hits the Borel set ( -o o , 0]. If  In Vt has a diffusion part, the default time 

is not totally inaccessible and does not have an associated intensity. Thus equation (4.2) 

does not hold anymore and in fact

X ( t , T ) >  E Q[hT\Jrt , T > T } .

Chen & Panjer [10] divided the forward hazard rate into two parts: jump part which is 

E^[hr\lFt, r  >  T] here and diffusion part which is A (t, T ) — r  > T\.

Based on the decomposition theorem above, let us define the following stopping times:

To =  inf{f >  0 : 14 < Dt <  14-, 14 > D s for s < t }

=  inf{i >  0 : A In 14 <  In D t — In 14- <  0, Vs >  D s for s < t}\

t* — inf {i >  0 : 14 <  A  =  14-, 14 >  A  for s <  t —}

=  inf{£ >  0 : A ln l4  <  0, A  =  14-,14 >  A  for s < t —}.

To is the default time that the default is caused by a jump and r* is the default time 

that the default is caused by diffusion. The definition of r* is similar to Definition 

4.1 in [10]. Clearly, r0 is totally inaccessible while t*  is neither totally inaccessible 

nor predictable because the event { A ln l4 <  0} is unpredictable and there exists a 

predictable stopping time S =  inf{t >  0 : A  =  14-> 14 >  A  for s <  t —} such that 

Q{u> : =  S(lo) <  00} >  0. The graphs of the stopping times are

[r] =  e U + xQ- .V t  < D t < V t_,Vs > D s for s < t - } ,

[to] =  G 7A  x fi : 14 <  A  <  14-, 14 >  A  for s <  t - } ,

[r*] =  € 1Z+ x : 14 <  A  =  14-, 14 >  A  for s <  t —},

[5] = { ( t ,u )  e  TZ+ x D : 14-  = A , 14 > A  for s  <  t - } .
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Thus [r] =  [r0] U [r*], [r0] (T [r*] =  0 and [r*] C [S]. Here r* is accessible, r0 and r* are 

mutually independent. Moreover, since we define inf 0 =  oo, r0 =  oo when r  =  r* <  oo 

and t*  — oo when r  =  To < oo, thus the default time can be expresses as r  =  r 0 A r*. 

Notice that

[S] \  [t *] =  { ( t , u )  6  n + x  n  : Vt >  Dt , Vt_ =  D t, Vs >  D s for s <  t - } ,  

which is the case that even though Vt~ =  Dt, r >  t due to the positive jump of V  at time t.

4.3 First-passage model with Levy processes

Let the firm value be modeled as an exponential Levy process,

Vt =  V0 exp {crv Wt +  Lt}, [  exv(dx) <  oo (4.4)
d  |x |> l

where W  is a one-dimensional standard Brownian motion, L € TZ is a Levy process with 

generating triplet (0, u, j y )  and cry >  0 is the volatility. The inequality o f the Levy measure 

ensures that the firm value has finite expectation. Let r  be the constant risk-free interest 

rate, then the discounted firm value is a Q-martingale and we have y  +  In E(eLl) =  r. 

The generating triplet of the Levy process In Vt — In Vo is (a'y, v, yy). The firm value 

follows the SDE:

2

dVt/V t- =  °-^dt +  a v dWt +  dLt +  (eALt -  1 -  A L t)

rdt  +  crydWt +  [  (ex — 1) [N(ds, dx) — v(dx)ds\.  
J r

4.3.1 Instantaneous default probability in Exp-Levy model

On { t >  t },  the (stochastic) hazard rate (also known as the intensity) in reliability analysis 

is defined as
u r  P( t  < T  < t  + S \ f t )ht =  h m --------------------- 1— -.s|0 s

It is well known that the intensity does not exist when the firm value follows a jump 

diffusion process. One may refer to section 4 in Chen [9] for the existence of instantaneous 

default intensity. As he discussed, default occurs with probability 1 due to diffusion when
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the firm value is about to cross the default boundary. When the firm value is far away from 

the default boundary, default is caused by jump only with some finite intensity. In the latter 

case, there exists a positive number 5 such that In Vt -  In Dt > 5 and the finite intensity is

ht =  lim P(Vt+s ~  Dt+S ^ . (4.5)
sj.0 S

In the following part of this thesis, we only consider the case that the firm value is far away 

from the default boundary. Under such assumption, the instantaneous default probability is 

finite as shown in the following theorem.

Theorem  4.3.1 I f  the firm value process follows an exp-Levy process as equation (4.4), the 

default time is defined as equation (4.3) and the default boundary is either deterministic or 

follows a geometric Brownian motion. Assume that the distance In Vt — In D t is bounded 

by 5 >  0 from below for all t  <  r. Given all the information up to time t, then on { r > t }  

the instantaneous default probability is

ht =  v ( ( -oo ,  InDt -  In Ft]),

where u(-) is the Levy measure o f  In Vt — In Vq and ht is bounded by v ({—oc. — <J]) <  oo.

For two exp-Levy firm value processes with default threshold level D( and D f  D\, 

i  — 1,2, are deterministic or follow geometric Brownian motion, denote v J {■, ■) be the 

joint Levy measure o f  In V( — In V(l and In V 2 — In F02. I f  the distances In V) — In D\ are 

bounded by 8‘ >  0, then the joint instantaneous default probability is

ht =  ^J ( ( - o o , ln D] -  In F /], ( - o o , ln D \ -  \nVt2}),

which is bounded by uJ((—oo, — 61], (—oo, <52]). These instantaneous default probabilities 

are adapted to the filtration T t.

Proof: Let F(-; t) be the CDF of the Levy process In Vt — In Vo, followed by equation (4.5), 

ht =  lim P('ln Vt+S ~  ln Vt ~  ln Dt+S ~  ln Vtl-̂ )

lim E[F(lnDt+s - l n  Ff; g ) |^ t]
siO  S

If the boundary Dt is a continuous function of t, since VJ is a Markov process, then 

ht _  ,im J t h  D „ ,  -  In r . ; . )  _  ,.m F ( fc ;  ,)
sjO  S  sj.0 S
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Theorem 2.1.2 shows that the Levy density v(dx) =  limsl0 F(dx\ s) /s ,  thus

r ln O t- ln V t

hi
/ in vt

v(dx)  =  z/((-oo,ln .D ( — ln lt]) .

•OO

If Dt is a geometric Brownian motion, assume that ln D t+S — ln D t follows a 

normal distribution with mean a(t)s  and standard deviation b(t)i/s,  where a(t) ,b(t) are 

deterministic functions, then

ht =  l im E [F(ln
\nVf,s)\Vt , D t]

s i O  S

( idft  4- t .h l f d ^ / f t }  — ln  V(- s i  1
e 2 dx.=  lim [

si°

F(ln Dt +  (a(t)s +  xb(t)^/s) — In Vt; s) 1
   € n '

n  s \[^/k

First observe that the CDF F (ln  D t +  (a(t)s +  xb(t)^/s) — ln Vj; s) <  1 and

F(InDt +  (a(t)s +  x b ( t ) y / s ) - I n V t]s) ,
l im ------------------------------------------------------ =  i/((—oo, ln D t -  ln VJJ),

which is bounded by v ( (—oo, — 5]). Thus there exists some constant B  such that

F( \nD t +  (a(t)s +  xb(t)y/s) — ln Vt ] s) 1
e 2

_ 1
< B —= e  2 

y/THs %/27T

and the upper bound is integrable. By dominated convergence theorem, we have

f  1 _s3fk =  I v ( { - o o , \ n D t - \ n V t\)—j = e  2 dx 
Jn  v27t

=  v ( ( - o c , \ n D t - l n V t}).

Similarly, in the two-variate case, let F J(■. •; t) be the joint CDF of ln Vtl — ln Vq and 

ln Vt2 -  ln Vq , we may prove that the joint instantaneous default probability is

_  1.m F ( ln V ,V ,< 1n ^ , | ^ , . l n V . > l n C ;)
siO s

=  v J({—oo, InDj — lnV^_], (—oo,lnD^ — lnV^_]).

Since D t and Vt are ^ —measurable, thus the instantaneous default probabilities ht and h;j 

are adapted to the filtration Ft.

The results need to be verified for other types of predictable default boundary processes.

□
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ht increases with the ratio Dt/Vt (or it decreases with the distance of ln Vt -  ln D t). If 

lim^jo K(—OC) — <i]) = oo, the instantaneous default probability tends to be infinity when 

the firm value Vt approaches to the threshold D t but default may not occur immediately 

if  the movement of the Brownian motion or the jump is upward at t. Similarly, if 

lim^o v{ {—oo, — <5]) <  oo. When Vt approaches to D t, even though the instantaneous 

default probability is less than infinity, default happens immediately when the movement 

of the Levy process is downward. If  the Levy measure is undefined on the negative real 

line, that is v ( (—oo, 0)) =  0, the instantaneous default probability is zero, then r  =  r* and 

the default is caused by the Brownian motion only.

Empirically, the instantaneous default probability ht will match the short term credit 

spread with zero recovery and the forward hazard rate A( t ,T)  =  —d i n S ( t , T ) / d T  will 

match the long term credit spread with zero recovery.

Proposition 4.3.1 ht is the intensity o f the totally inaccessible stopping time To on { r  >  t j ,  

a subset o f { tq >  t}, and the intensity o f  r 0 is 0 on ( r 0 >  t > r}.

Proof: Since r  <  r0, given { r >  t }  , we have ( r 0 >  t} . The instantaneous default 

probability

ht =  lim P { j  > -  Ff+S ~  Dt+S ^
sfO S

_  P ( tq > t, Vt+s ^  Dt+s) Vt > Dt I Ft)
sj.0 S

_  P( t  < Tq < t  +  S |T t )

s |0  S ’

which is the intensity of t0 on ( t > t) . On {r0 >  t  >  t }, the intensity of t0 is 0 because 

the default time r  =  r* and r0 =  oo.

□

Here is an example that uses the structure approach in the intensity-based model. Madan 

& Unal [41] define default as occurring when the outgoing cash flow triggers a short-fall 

o f equity. Equity is composed of non-financial assets S  (modeled as a geometric Brownian 

motion) and financial assets less liability in the amount g(r), a function of the short rate.
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And the unforseen cash flow has the arrival rate A and the loss distribution is exponential 

with mean loss rate jiL- This intensity model can be represented as

r  =  inf{t >  0 : A Lt >  St +  g(rt)}, ht =  Aexp '

Here Lt is the cumulative value of outgoing cash flows and the default intensity has a 

similar form as ours. Taking a local linear approximation in ln S  and r  around their initial 

values, the intensity becomes

ht — ha 1 _  JL (elnSo(\nSt -  ln S 0) +  gf(r0)(rt -  r0)) 
Ml

=  a -  b \nSt +  cr(.

g'(ro) is call the duration of the net financial asset g(r) at time 0 , 6, c >  0 and

x f S0 +  g(r0) \  0
a =  Aexp < ------------------ > +  o ln io  — cro-

I Ml J

h is a decreasing function of the asset value S  and it increases with rt .

Given no default before (but not including) t, that is r  >  t, we define another 

instantaneous default probability as

s io  S

Under the same assumptions in Theorem 4.3.1,

h* =  lim P (ln Vt ~  ln Vt~s - l n D t ~  ln Vt~sIln Vt~a’ln D i~»)
sto S

=  i / ( ( -o o ,ln D t -  lnF t_]).

h*t is ^ . —measurable (predictable). There is no big difference between ht and h* except 

that one is J 1)-m easurable and the other is predictable. We choose to use h* in the 

following sections due to its predictability. In Chapter 5, we will use ht for simplicity.

4.3.2 Intensity-based model: r  =  tq

If the default time is restricted to be To, that is t* =  oo, then this structure model is an 

intensity-based model. Similar to the example above. The default time is

t  — To =  inf{f >  0 : A Lt +  Rt <  0}, (4.7)
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where Rt =  In Vt-  -  ln A  is the log ratio of the (pre-)firm value to the threshold level, 

which can also be considered as a measure of the distance to default. Since 14- > A  before 

default, R t  is a positive predictable process. There are lots of choices to model the positive 

predictable process Rt. One may model R  as a diffusion process, which means the default 

level D  will jump after the jump of the firm value if  such jump in V  does not cause default 

and both jumps will be canceled out as ln Dt+ — ln A  =  In Vt — ln Vt~. Here the threshold 

process A  is left continuous with right limits. Then the survival probability can be obtained 

by Q ( t  >  t )  =  E Q [ e ~ J o where the default intensity is h *  =  u ( ( — o c : — R s ] ) .

This method can be treated as the case that the hazard rate depends on the firm value 

in the intensity-based model. Here is an example, Madan & Unal [40] take as a sufficient 

statistic on the well being of a firm its equity value measured in units of the money market 

account. The hazard rate is modeled as a function o f this relative price s t  —  St/ B t, where 

St is the stock price, Bt is the value of money market account and d s t  =  6 s t d W t ,  9 >  0 . 

Thus s t  is a martingale and the hazard rate is

h* = n  V T A  C’J > 0 -(ln St — lno)

If S  < sq, h *  is a decreasing function of s  and default happens immediately as s t  approaches 

8 .  If <5 >  s 0, h *  increases with s  and default happens immediately as s t  approaches S .  The 

exact location of 8 is left to be empirical determined.

In equation (4.7), let R t  =  (ln s t —ln 6 ) 2  for s t  ^  8 ,  a strictly positive predictable process

and let u(dx) =  cx~2Iyx<oydx with

f  ( |x |2 A l)v(dx)  — f  x2(cx 2)dx +  [  
J'R. J — 1 J — o o

cx 2dx =  2c <  oo.

Since dst =  9stdWt, Rt will be equal to (lnso — ln<j — ^92t +  9Wt) 2, which satisfies the 

following SDE

dRt =  ( 1 -  \/~Rt)02dt +  2 y/RtBdWt.

And the default intensity is matched to equation (4.8):

‘,( (~ 0° ' - fl‘]) =  Cflrl =  (l n „ - 1n ^ , 

a decreasing function of R.
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Assume that R  follows a Markov process as

dRt — a(t,  Rt)dt +  (3(t, Rt)dWt ,

then by following Madan and Unal’s idea in [40]: e ~ ^ htdsQ(r  >  T\Fu t >  t) is a 

Q-martingale. It’s not true if  default is caused by either Brownian motion or random 

jumps and in such case we consider the Q-martingale E Q[I{T>T}\Rt}- Let the function 

ip(t,Rt) =  Q(t >  T \? u t >  t ) and apply the Ito’s formula on e~ & h*(Rs)dŝ p(j., R t), we 

obtain the following PDE

f  'ipt +  a( t,R)ipR +  ±(3(t,R)2'tpRR =  h*(R)ij, t  <E [0,T], R >  0
W ( T ,R )  =  1

where ipt , ipR are the first derivative of ip to t and R  and iPrr is the second derivative of 

ip to R. The absorbing boundary condition ip(t, 0) =  0 can be omitted since R is strictly 

positive. Its Feynman-Kac solution is the survival probability E®[e~ h h’(Rs)ds\

As in Zhou [56], we assume that the jump component of the firm value is purely firm- 

specific and is uncorrelated with the market. Then in this setup, the random jumps are the 

direct reason of default. The systematic risk appears in the Gaussian component and so 

in the stochastic structure of default intensity, which only affects the likelihood of default 

but cannot lead to the default event directly. Generally, when the whole economy goes 

down, the default intensity will increase and then the likelihood of default will increase. 

But default only happens on some companies because of the different firm-specific risk 

(jump risk).

4.3.3 Survival probability in general case: r  =  r0 A r*

In the general case where default is caused by either Brownian motion or random jumps, 

that is r  =  t 0 A t * . We rewrite it as

r  =  inf{t >  0 : Yt := In 14 -  In A  <  0}.

The intensity of To (or the instantaneous default probability) is oo, — Ft-]). For certain 

threshold that In Dt — In D 0 is a Levy process, in fact a Brownian motion, then Yt — Y(] is 

also a Levy process with the same Levy measure as In Vt — In V0. The default probability
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is

Q(t < t )  =  Q ^Qinf -£■ < 1 ) =  Q ( M J Y S -  Y0) <  - Y 0K0<s<t D s )  \ 0<s<t
define /, =  info<s<t(Ys — Vo), the infimum process of the Levy process Yt — Yq. The

probability Q(It <  Vo) does not have a general closed form expression, but it can be

generated from the Fourier transform of I  which satisfies (see Theorem 5.3 in Sato [50])
r o c  f  r o c  p 0  'j

q  e - q i E Q [ e i z I t ] d t  =  e x p  t ^ e ^ d t  { e i z x  -  l ) d u t ( x )  L  q  >  0
J O  [ J o  J —oc )

ut (x) is the CDF of Y, — Y0. It may also be generated from Baxter & Donsker’s result. 

Denote p (a ,i)  =  Q(It >  - a ) ,  a >  0, then the default probability is 1 -  p(Yo,t). The 

double Laplace transform ofp(a, t) can be expressed in terms of Y(fi) =  In E® [e~%̂{Yl^Y' f ,  

the characteristic exponent of — (Yt — Y0).

Theorem 4.3.2 (Theorem 1 in Baxter & Donsker [4]) For all positive u and A,

•  I f i ’iO  Is rea(

" f  f  *>* = exp { I  jf  £  £ e  s ( s - m y -
•  IfiPiO is complex, and for some 6 >  0, I X  i m m  <  oo,

“ f  f  - “ ■> { f  £)»(££)) •
The numeric solution of the default probability may be obtained by inverting the Fourier 

or Laplace transforms. Another option is to use PIDE (partial-integro differential equation) 

approach to obtain the survival probability.

Proposition 4.3.2 Consider a first passage time model where t =  inf {t >  0 : X t <  a}, 

where X  is a Levy process with generating triplet (a2, v, 7 ), a  >  0 and a <  0. Fix T  >  t 

and let Yt — X t -  a, the survival probability Q (t >  T\Yt — y) on ( r  >  t}  is given by 

ip(t, y ) on {y  >  0}, where y) =  0 f o r t  €  [0, T\, y <  0 and for  t €  [0, T \ , y >  0

i/t : [0, T] x (0 , 00) -> (0 , 1]

verifies

1 

2 C

/  y + x ) -  i > { t ,  y))I{x+y>0} -  xtpy(t, y)I{\x\<1}}u(dx) (4.10)
J n

h*(y)ip =  ipt +  7 fiy +  - a 2i)yy +

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 4.3 First-passage model with Levy processes 67

on [0, T) x 1Z+ with the terminal condition

Vy > 0, ip(T,y) =  l. (4.11)

Here h*(y) =  j \ x+y<Q) v{dx) and h*(Yt- )  is the instantaneous default probability o f  r  on

\ t  >  t}. Ifip(t, y) is C 1'2 (or C 1’1 in the case of a  =  0), then ip is a solution to (4.10) and

(4.11) with the boundary yj(t, y) — Ofort  G [0,T], y <  0.

Proof: Since {Yt >  0} 2  { r  > t},  given t  > t  then y >  0 and

Q { r > T \ Y t =  y) =  Q ( j o f X a > a \ X t =  y +  a) =  Q ( M Y a > 0 \ Y t =  y)

The last equality is the consequence of the property o f independent stationary increments 

o f X .  Fix the maturity T,  define

S(t, Yt) -  E^[I{r>T}\Xt} =  I{T>t}EQ[I{T>T}\Yu T > t \ =  ^ ( t , Yt)I{T>t}, (4.12)

Then S(t, Yt) is a Q-martingale satisfying E Q[dS(t, Yt)\Xtf  =  0 with dS(t, Yt) is equal to

ip(t,Yt- ) d I {T>t} +  / {T>i_ } # ( t ,  Yt) +  (I{T>t} -  I{T>t- }) {^{t ,Y t) -  i!){t,YtJ)).

Here E Q[dI{T>t}\Et-\  =  - I { T>t-}h*{YtJ)dt, h*(Yt_) =  i / ( ( - o o ,-!* _ ]) is the 

instantaneous default probability. If  f ( t , y )  is C 2 continuous on y such that ip, ipy and 

ipyy are bounded by a constant, the martingale-drift decomposition of functions of a Levy 

process (Proposition 8.16 in Cont & Tankov [12]) shows that E Q[dip(t, Yt)\EtY\ is equal to

t < s < T

and

W , Y t) =  {Q ( t  > T\Yt , t  > t) here Yt >  0 since r  >  t.
0 if Yt <  0.

/  [ip(t, Yt-  +  x ) ~  tp{t, Yt- )  -  xipy(t, Yt- ) I {lx\<l}\v(dx)+
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here C is called the integro-differential operator of Y.  And the conditional expectation of 

the last term in dS(t ,Yt) is

eQ  [(7L>*} -  ~  \Ft-}

=  E® [ ( /{yt<o,r> t-} -  I{T>t - } ) M , Y t) -  W , Y t - ) ) \ r t- \

=  -h*{Yt- ) I {T>t- } X (0 -  ip(t, Yt. ) )

=  h*(Yt- ) I {T>t- }il>(t,Yt-) .

Thus E Q[dS(t, Yt)\EtJ\ is equal to

—I{T>t-}h*{YtJ)dt  +  I {T>t-y(ipt(t,Yt- )  +  Cip(t,Yt-) )d t  +  h*(Yt^)I{T>t_}'ip(t,Yt-)dt ,

then we have Yt_) +  Zh/>(f,Yt_)) =  0. That is, given { r >  t },

E Q[d'ip(t,Yt)\Et-\  =  0, in other words, ip(t,Yt) is a Q-martingale on { r >  t }  and 

ip(t, y) satisfies the PIDE

When t >  T, Q(I{t>t }\Et ) =  1, thus ip(T,y) =  1 for y >  0, the terminal condition

(4.11). Proposition 12.6 in Cont & Tankov [12] shows that the survival probability is 

the (unique) Feynman-Kac solution to (4.10) and (4.11) if Y(t, y) is C 1,2 continuous on

[0,71 x (0 , oo).

To obtain equation (4.10), we may arrange £ip(t, y) as

□
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R em ark 4.3.1 As shown in this proof, ib{t, Yt ) is a Q-martingale on { r  >  t}. While when 

we look at the behavior o f  ip(t, Yt) itself

Given {AY,  +  Yt_ >  0}, that is { r  >  t}, f  represents the survival probability and

It implies that ip(t, Yt) is a submartingle on {r >  t}  under measure Q.

R em ark 4.3.2 The survival probability is similar to the barrier option, particularly the 

down-and-out option, discussed in Cont & Voltchkova [13], where the terminal payoff 

is 1 if  the barrier is not crossed. Proposition 5 in [13] summarizes the results on the 

continuity o f the barrier options. The smooth property o f 'ip in y is not required in the case 

ofpure jump processes with o =  0 and 7  — ./"{| ̂  | < 1} xv{dx) =  0, where the PIDE (4.10) is

h*(y)ip =  ]’t +  y +  x ) -  i[(t, y))I{x+y>0}v(dx).

Consider the case that \x\u(dx) <  00, let p =  7  -  J ^ ^ x i ; ( d x ) ,  then

ip(t, y)  € C'1,2([0, T] x 1Z+) will satisfies the PIDE

r tpt +  pipy +  ±o2ipyy +  f {x+y>0}[<p(t,y +  x) -  ip(t,y)]v(dx) =  h*{y)]){t,y)

Generally, this PIDE dose not have a closed-form solution and numeric methods are 

required. For a discuss of such PIDEs, refer to Cont & Voltchkova[13], Here are some 

special cases. The first one is that Y  is a Brownian motion with mean p  and standard 

deviation o, then r  =  r* and ro =  00 with zero instantaneous default probability and the 

PIDE is reduced to the following PDE: ip(t, y) € C 1,2([0, T] x 7Z+)

Its solution is the survival probability in the first-passage model when the firm value follows 

a geometric Brownian motion:

# ( f ,  Yt) =  iptdt +  ]^o2i>yydt +  jjydYt +  ip(t, Yt- +  A Yt) -  i[(t, Yt_) -  ipyA Y t .
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Here $(•) is the CDF of a standard normal distribution. If y  is not restricted to be positive, 

that is V e  C l’2([0, T\ x TZ), then the (Feynman-Kac) solution to the PDE

( 1pt +  2^yy = 0
1 ^(T ,y) =  I{y> o}

is the survival probability in Merton’s Model, where

y) = * ( ^ z )  = £«[Vr>0( I Y, =  y].

Define t v  =  inf{T >  t : Y r-t <  —y}, consider the Laplace transform of t v ,

I  : (0 ,o o )  ->  (0 ,1 ) ,

/
OO

e~a(u~t)f{u]t ,y)du,  a , y >  0.

Here f(u\  t, y ) , u >  t  is the PDF of ry. Then the Laplace transform of the survival function

ip(t, T, y) =  P ( t  > T \ t  > t , Y t =  y ) is
poo poo poo
/  e~a(u~t'>ip(t,u,y)du — /  e- a(u~t') /  f (s ] t , y )dsdu

Jt J t J U
/ oo ps

f ( s ] t , y )  J  e“a(u_t)duds

=  - T
a j t a

Let L~l be the operator of Laplace inverse, the survival probability ip(t, y) =  ip(t, T, y) 

and its derivatives are

a
'

M t , y )  =  f ( T ; t , y )  =  L 1 { % )} ; 

ipy{t,y) =  L" 1 |  | ;

=  I T 1 j -
Since the Laplace inverse has the rule of linearity, if  l{y) is twice continuous differentiable 

at y, the PIDE of ip in equation (4.10) will be

- K y )  „  x - i 'h (y)  =  l(y) +  7 ----- +  7 7 -----
a  a  2 a

I  \ — "I” y) \  ~  “ [1 ~  l { y ) \  j I { x + y > 0} — X 7{W<1} v(dx).
J t l  L \ u  a  J  a  .

+
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That is
2

al(y) =  h*(y)[ 1 -  l(y)\ +  7 1' +  y i "

+  [  [(l(x +  y ) ~  l(y))I{x+y>o} -  z?7{|x|<i}] v{dx). (4.14)
Jn

It is the integro-differential equation of the function l(y) and it does not involve the time. 

The terminal condition (4.11) is automatically satisfied because

lim f ( t , y )  =  lim I T 1 ( - — — 1 =  lim a ( - — —  1 =  1, as lim l(y) =  0. 
t—>T a—>oo (  a  J a-»oo ( 0 J a^°°

It is the consequence of the Initial and Final-Value Theorems o f Laplace transforms stated 

as following: let L { f ( t ) }  =  f(a),  t >  0, then

lim f i t )  — lim af(a)  and lim /( f )  =  lim a /(a ) .
t —̂ o+ a—*-oo i —> oo a —̂ 0

On y  <  0, defined l(y) =  1 and then l(y) satisfies

( al = j l '  + \oH "  +  fn [l(x + y ) ~  l(y) -  xVI{\x\<l}\v(dx), y > 0

1 K y )  = ! ,  y  < 0

the right side of the equation is the integro-differential operator generator of the Levy 

process Y.  Kuo & Wang [34] solved this equation in the case of the double exponential 

jump diffusion process. It is shown in section 5.2.1. Without the boundary condition, the 

general solution to al =  Cl(y) has the form of

n

l(y) =
2=1

where fa are the solutions to In E[e0Yl] — a and At are constant.

4.3.4 Dependence of default when r  =  tq

Giesecke [26] discussed the default correlation in intensity-based model as following. A 

natural way is to introduce correlation between firm’s intensity processes through time, 

while defaults are independent given the intensity paths. Another way is to allow common 

jumps. In our model, the default correlation can also be built in these two ways. Basically, 

the dependence of two Levy processes (jump part vs. jump part, Brownian motion vs. 

Brownian motion) determines the type of default correlation.
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The dependence of jump parts in two Levy processes controls the common jumps. For 

two firm value processes with log ratios R \  their marginal and joint survival probabilities 

are

where h\ — vi ((—oo, F2J]) and the joint default intensity hf — v J((—oo, /?)], (—00 , R 2}). 

If two jump parts are independent, then defaults are independent given the intensity

the second type of default correlation is the dependence of the Gaussian parts in two Levy 

processes.

4.4 Bond price and credit spread in general case

4.4.1 Recovery of treasury value: deterministic interest rate

Now, consider the RTV recovery schema. If  the recovery rate at default is a random variable 

with mean fj,u, given no default before t  ( r  >  t) the price of a defaultable bond with 

maturity T  and face value 1 is

Efi[dB{t,Yt)\Et-\ =  (1 -  iiu)E^[dS{t ,Yt ) |^ _ ]  +  ( E % t \Ft_] -  ^ )h *  (Yt. ) d t  =  0,

P ( ti >  £i , t2 > £2) =  E  exp I — I h\ds — I h ] d s +  I hJs ds
■nun-

Jo Jo Jo

paths. And the default correlation relies on the dependence of intensity processes hl and 

h2, which is drawn from the correlation of R\  and R 2. More specifically, the resource of

B(t, T) =  e - t f r‘dsEQ[I{T>T} +  ujtI{t<t } \Et , r >  t }

=  e  I t  rsds[cjt/{r=t} +  fiuI{T>t} +  (1 — 1uu)S(t, Y t ) ] .

Denote B(t,  Yt) =  eI?rsdsB { t , T),  then on { r >  £}

dB(t, Yt) =  (1 -  nu)dS(t, Yt) +  (cjt -  fiu,)7{r=t}.

It is well known that the discounted bond price e~lo radsB(t, Yt) is a Q-martingale and so 

is B(t , Yt). On the other hand,
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which also confirms that B(t, Yt) is a Q-martingale. On { r >  t },  the instantaneous credit 

spread is

E % l - ^ ) d ^ Y t)\Et-\
°St B( t ,Yt- )d t

(1 - ^ ) h * ( Y t.)il;(t,Yt. )
/4, +  (1 -  fJ,u)ip(t,Yt_)

Mo;

If Yt is a jump-diffusion process, the bond price B(t ,T)  on { r >  t )  is also a jump- 

diffiision process. If  Yt is a diffusion process, then h*(y) — 0 and the bond price B(t, T)  

on { r  >  t }  is a diffusion process and only jumps at default. ute~B r-ds is the bond price 

at default, while the bond price just before default is

B( t —,T)  =  lim e-LT- r°dsB ( T - , y )  =
S /J .0

It is the amount that the bondholders expected to receive if  default happens in the next 

moment. (u>T — nUI) e ~ ^ Tsds is the difference between the real amount and the expectation. 

Thus, it is possible that the bond price will jump up upon default if  uT -  >  0 or remain

at the same level if lut — ji  ̂ — 0 or jump down if uT — /iw <  0 .

Now consider the case that the recovery rate is a function of Y  at default, that is

B(t ,Y t) =  E^[I{T>T}+uj(YT)I{T<T}\^t , T > t }

=  +  E Q[u(YT)I{T<T}\Yt ,T >  t}.

On { r >  t} ,  apply Ito’s formula to B(t, Yt),

1
dB(t,  Yt) — (B ( t , Yt) — B(t, Yt-))I{T=ty +  [Btdt +  —cr^Byydt +  BydYt

+B( t ,  Yt-  +  A l t )  — B(t, Yt- )  — ByA Yt\I{&Yt+Yt->o}- (4.15)

B(t,  Yt) is a Q-martingale on { r >  t }  and then B(t, y) : [0, T] x TZ+ —>■ (0,1] satisfies the 

following PIDE on [0, T) x 7Z+

>(y) — B(t, y))h*(y) +  Bt +  7 By +  - a 2Byy +

/  y +  x ) -  B(t,  y))I{x+y>0} -  xByI{lx{<1}\v(dx) =  0 
Jn
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with terminal condition

B(T,y)  =  1, y >  0,

and boundary condition

B( t , y)  =  u(y),  t  G (0 ,T ],y  <  0.

Here /iw(y), y >  0 is the expected recovery rate under Q

fr  , u(x  +  y)u(dx)  
liUJ(y) =  E Q[uj(x +  y) \x  +  y < 0 \  =  —LJj   ------ . (4.16)

J  {rc+ y<0} '  '

The PIDE of the survival probability (4.10) is a special case where the recovery rate

u,(-) = 0 .

On ( t  >  t },  the instantaneous credit spread is

E q [I{T> t }dB( t ,Yt )\Ft_]
cst =

=  (4-17)

At maturity, B(t,  Yt - )  =  1 on {r >  T }  and the instantaneous credit spread has the same 

form as the one in Duffie & Singleton’s model,

csT =  h*(YT- ) ( l - ^ ( Y T-)).

Chen & Kou [11] (Theorem 2) state a similar result with a double exponential jump 

diffusion process, which is shown as an example in section 5.2.1 with h*(y) =  Xpe~ym 

in equation (5.7) and the recovery rate function uj(y) =  cey, here c G [0,1] is constant and 

y — ln (V /F ). The mean recovery rate is

J{x+y<0} I p f t ^ d x  77! +  1 '

If  v(-) =  0, we cannot model the recovery rate as a function of Y  because there would be 

no surprise of both the default event and the recovery rate when Y  is a continuous process. 

And then the bond price is continuous all the time, even at default. It does not make sense.
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4.4.2 Recovery of market value: deterministic interest rate

Assume that the recovery rate is a function of Y  as B( t ,T)  =  u *(Yt)B( t —,T),  that is 

B( t ,T)  =  lu*(Yt) B( t - , T ) .  Similarly as (4.15), on { r >  t }

dB(t ,  Yt) =  (w*(yt) -  l ) B ( t , yt- ) / {T=t} +  [Btdt +  T2 Byydt +  BydYt 

+ B ( t , Y t-  +  AYJ) — B( t ,Yt- )  — ByA Y t]I{/\Yt+Yt->o}■

B( t , y)  will satisfy the following PIDE on [0, T ) x  1Z+,

~  l )h*(y)B(t ,y)  +  Bt +  7 By +  - o 2 B yy +

[  [ (B(t ,y +  x) -  B( t , y ) ) I {x+y>0 } - x B y I {lxl<1}\v{dx) =  0 (4.18)
J n

with terminal condition B(T,  y) =  1 on y  >  0, where /i* (y) the the expected recovery rate 

as in equation (4.16). The instantaneous credit spread on ( t  >  t }  is

=  /i*(yt_)( 1 -  £ & - ) )  =  [  (1 -  +  Yt-))u(dx),
J { x + Y t - <  0}

which has the similar form as equation (4.17), the credit spread in the RTV scheme.

The problem here is that there is no way to set the boundary condition as in the RTV 

model since the recovery amount does not dependent on t  and y  only, it also depends on 

the pre-default bond value. Thus, the solution is not unique.

4.4.3 Stochastic interest rate

We may extend the results to time homogeneous stochastic short rate:

drt =  a(rt )dt +  b(rt) dW[ ,

here W[  is the standard Brownian motion with d\VtdW[  =  pdt. The default bond price at 

time t will be a function of Yt, rt and t. Denote

LB(t ,  Yt , rt ) =  Bt +  j B y +  a(r)Br +  ^[a2 B yy +  b(r)2 Brr +  2pab(r)Byr]

+  /  y +  x , r ) ~  B(t ,  y, r) )I{x+y>0} -  x ByI{lx]<1}]u(dx).
J n
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Consider the case that recovery rate is a function of Y.  The PIDE of the bond price in 

the RTV model is

' LB( t , y , r )  =  {r +  h*(y))B(t ,y, r)  -  y U}(y)h*(y)P(t ,r) ,  t e [ 0 , T ) , y > 0
B( T , y , r )  =  1, y >  0 
B ( t , y , r ) =  cj(y)P(t ,T),  t € (0,T],y  <  0.

Where P(t .  rt ) =  E Q [e~ ̂  Tads\Pt\ is the Treasury value at time t with maturity T  and face 

value 1. The PIDE of the bond price in the RMV model

f  LB(t ,  y , r) =  [r +  (1 -  l£(y))h*(y)]B(t ,y, r) ,  t e [ 0 , T ) , y > 0
\ B ( T , y , r )  =  1, y >  0.

Let C( t, Yt . rT) be the recovery amount at default and define its expectation just before 

default as Hc (t , Vt _, ry_) =  E q [C(t , Yt , rT)\PT-\,  then the bond price can be expressed 

as

B( t , T)  =  EQ[e- f?r°dsI {T>T} +  e - K r°dsC(T,YT,rT)I{T<T } \ P t , r  >  t\.

Thus the defaultable bond price before default B(t ,  y) will satisfy the generalized PIDE

' LB(t ,  y, r) =  (r +  h*(y))B{t,  y, r) -  h*(y)yc (t, y, r ), t € [0, T ) , y  >  0 
B( T, y , r )  =  1, y >  0 (4.19)

„ r ) =  C(t,  y, r) ,  t e  (0, T], y <  0.

Hc{t , y, r)  =  Mo, {y)P{t , r)  in the RTV model and nc( t , y , r )  =  y*u( y ) B( t , y , r ) in the 

RMV model. The instantaneous credit spread is

4.5 Instantaneous transition matrix of credit rating

Yf =  In Vt — In D t is the logarithmal of the ratio of firm value to the default level, which 

measures the distance to default. When we consider the class of credit rating with state 

{1,2, * • • . K } ,  where state 1 is the highest credit rating class, state 2 is second highest and 

K  is the default state. Let D\ >  D 2 >  • ■ • >  D K- \  =  0, be the boundaries of states, that is 

a firm is in state 1 if its state variable Yt >  Di ,  it is in state 2 if D 2 <  <  D\  and so on.

Default (state K) occurs when Yt <  D K_ { =  0.
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The instantaneous transition matrix can be obtained in the similar way as the 

instantaneous default probability, the instantaneous transition probability from state i to 

state j  (i ^  j ,  i, j  =  1,2, • • ■ , K  -  1) is

J j < Y t - + y < D j - 1

Aij 6  [0, oo) because the interval (Dj -  Yt- , D j - 1 -  Yt- \  is bounded away from 0. And the 

instantaneous transition probability from i to absorption state K  is

Ai&f — v( (—oo, — Tt-]), Yt- € (Di, Di_i\.

When i/((-o o ,0 ))  =  0, Ay =  0 if  i >  j .  When v((0, oo)) =  0, Ay =  0 if  i <  j .  The

4.6 Summary and extension

We model the firm value as an exponential Levy process (equation (4.4)) and the default 

threshold is predictable. Starting with the first-passage firm value model, the instantaneous 

default probability h* is the Levy measure of X  on the interval (—oo, —!)_], where Yt-  is 

the log ratio of the (pre) firm value and threshold and it measures the distance to default. 

We decompose the default time into two parts: a totally inaccessible stopping time with 

intensity h% and a predictable stopping time.

By assuming the default is only caused by jumps, we discover that it is an intensity- 

based model. In the general case, assume that Y  is also a Levy process, the PIDE of the 

defaultable bond price (4.19) is derived. The PIDE for the survival probability (4.10) is 

a special case of (4.19) with zero interest rate and zero recovery amount. The solution to 

(4.10) with terminal condition (4.11) is not closed form except for some special cases.

instantaneous transition matrix is

(  — A  i ( X t )  A 12( X t )  A 13( X t )

A 2 1 W  - A 2( X t )  A 23( X t )

A x( t )  =  : ;
A ir - i jp f t)  Ak _ i i2(X()

0 0

Aitf(Xt) \
A  2 K ( X t )

0
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The results can be generated to additive process with local characteristics. For example, 

let (o f, ut , 7t) be the local characteristics of Yt =  In Vt -  In Dt with

r T

/  /  ex ut ( d x ) d t  <  oo,
Jo J\ x\> ll \ x \ > l

T  is the maturity od the default bond. The default intensity is h* =  vt ((—oc, —Yt-]) =: 

h*(t, Ff_) and and define LB(t ,  Yt , rt) be

1 ,

+

Bt +  'jtBy +  a{r)Br +  ^ [o fBYY +  b(r)2 Brr +  2 patb(r)BYr}

/  {(B(t, y +  x, r )  — B(t ,  y, r))I{x>- y} -  xBY(t, y, r)I{\x\<iy]ut (dx). 
Jn

Then the PEDE (4.19) can be modified as

LB( t , y , r )  =  (r +  h*(t, y))B(t ,  y, r) -  h*(t,y)fj,c ( t , y , r ), t  e  [0, T ] , y >  0
B( T, y , r )  =  1, y >  0.

4.7 Risk-neutral measure vs. physical measure

In the intensity-based model, the default intensity under the physical measure h*p is 

different from the default intensity under the risk-neutral measure h*Q not only in current 

levels but also in dynamics. Generally, h*® > h*p due to the that investors are risk-aversion 

and their difference reflects the premium for default-timing risk. Duffie & Singleton 

[19] show two approached to parameterize h from h*p . One is to infer information 

about h*Q from the market prices of defautlable bonds. The other is to parameterize the 

transformation between h and h*p  explicitly. In our model, their relation lies on the 

equivalent martingale transformation of the firm values.

The EMM transformation for Levy processes has been studied in Chapter 3. Assume 

that under P,  the firm value follow an exponential Levy process

lnVt =  In V o + j y t + a v W f +  f  f  x[N(ds,  dx) — v p (dx)ds\+ f  (  xN(ds ,dx) ,
J\x\<\  Jo J \ x \ > \ J o

with Jjx|>;1 exv p (dx) <  oo. After the martingale measure transformation

In 14 =  lnV o+ 7y£-t-oyiTt ' f  x [ N ( d s , d x ) - v Q(dx)ds} +  [  [  xN(ds ,dx) ,
M<i Jo J |x|>i Jo
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with Jjx|>:l exv Q(dx) <  oo and 7^  satisfies

The key points of the transformation are

uQ(dx) =  e^eX p>vp {dx), f  (e ^ -  1 )2 v p (dx) <  00

W f  =  W f  +  cry1 — 7y — [  x(vp -  vQ)(dx) t.
J\x\<\

Here we use cf)(ex — 1) since the firm value process is an exponential Levy process, while we 

use o(x)  in Chapter 3 where the asset processes are stochastic exponential Levy processes. 

An exponential Levy process eLt satisfies the SDE

See Proposition 8.22 in Cont & Tankov [12] for the details of the relation between ordinary 

and stochastic exponential.

Under measure P  and Q, the firm values (the threshold) are at the same level but with 

different dynamics. Then the values of Yt =  In Vt —In D t are the same under both measures. 

The instantaneous default probabilities are

Their current levels and dynamics differ from each other except the case of v p =  v®, where 

they have the same value with different dynamics. Their difference is

deLt =  eLt~ dLt +  ^ d[Lc, Lc]t +  (eALt -  1 -  A Lt) = : eLt~dLt ,

where Lt is a Levy process and eLt is a stochastic exponential of Lt . The Levy measure of 

L and L satisfies

1'l(A ) =  vi(A) ,  A =  {ez -  1 : z  € A}  =  {x : ln (l +  x) € A}.

y >  0 . (4.20)
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In one-dimension case, recall that <j)(x) =  -  ln (l +  nx)  in the numeraire portfolio, tt the 

equation (3.6) based on the stochastic exponential form as

7 i — a2n — [  X ^ u(dx) =  0 .
Jn 1 +  'KX

7 i is the instantaneous return on assets minus the risk-free interest rate. 71 >  0 in the 

risk-aversion world, then ix >  0. The difference in (4.20) is

/ >  ~ >  -  x v  m  =  £ '  - 1)  >  0 ,

since ez — 1  € (—1, 0) as z < —y <  0.

4>(x) — ln (l +  fjx) in the (Follmer-Schweizer) minimal martingale measure and 

fj — —{a2 +  x 2 u(dx ) ) ~ 171 <  0. The difference in (4.20) is

f  (e<K«2-i) _  1 ̂ vp {dz) =  f  i){ez -  i ) v p (dz) > 0 .
J —  0 0  j  — DC

<j>(x) =  fjx in the minimal entropy martingale measure and fj satisfies equation (3.8)

7 i +  &2y  +  [  x(ef)X — 1 )u(dx) =  0 .
J n

If fj >  0, then x(ef,x — 1) >  0 for all x  and the equation above does not hold. Thus fj must 

be negative and the difference in (4.20) is

f  V( e ^ z~i) -  1 )vp (dz) =  f  “( e ^ - D  -  1 ) vp {dz) >  0 .
«/—OO J — OO

For the three risk-neutral measures, the instantaneous default probability under the risk-

neutral measure is higher than the instantaneous default probability under the physical

measure in the risk-aversion world. If  investors are risk-favor, 71 <  0 and h f  -  h f  <  0 .

If  investors are risk-neutral, 71 =  0 and there is no difference between h*® and h*p .
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Examples of first-passage models with 
Levy processes

Define r  :=  inf{f >  0 : X t >  b} and inf0  =  oo, where b >  0 and X  is a 

one-dimensional Levy process with generating triplet (<j2,7, v )  on the stochastic basis 

(0 , P,  F  =  {P)t>o, P)- Then r  is a stopping time with respect to P.  If a  ^  0, the stopping 

time t  does not have an associated intensity but its instantaneous default probability does 

exist as

L P ( t < r < t  +  s\Pt ) ,. P ( X t +s- X t > b - X t \Pt) _
h t  =  lim — ------------------ 1— 1 =  lim ------------------------------ 1— t > t.s|0 s  sio s

While (7 =  0 does not guarantee the existence of the intensity because the drift of X  

may also cause the default. The formula used here is slightly different from the one used 

in Chapter 4, equation (4.6). We choose the ^-adap ted  version just for simplifying the 

expression.

The default time r  with constant barrier is also called the time to ruin in ruin problem for 

Levy-typed risk processes. A lot of works have been done in ruin probabilities, one may 

refer to Asmussen [2] for more information.

Before analyzing the default event in the jump diffusion processes, we deals with the 

first-passage time of jump processes. Examples are the jump processes with nondecreasing

81
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sample paths with/without drifts and the jump processes whose sample paths are not 

monotone. The instantaneous default probabilities, the survival probabilities, the hazard 

functions and the PIDEs of survival probabilities are analyzed in each case.

5.1 Jump processes with a =  0

5.1.1 Hazard rate and intensity when r  is totally inaccessible

Since the stopping time is defined as the first time that the Levy process approaches to a 

positive number b, { X t <  b} D { r  >  t }  =  {Xs <  b,s  G [0, t]} and (X t <  b} =  { r > t }  

if and only if  X  has a nondecreasing sample path. Given { r >  f), the instantaneous arrival 

probability is

L P ( X t +s- X s > b - X t \Xt) , ri v  „  , / v s  v  ,
ht =  l im -------------------------------------- =  u([b -  X t , oo)) = : h(Xt), X t <  b.

sj.0 S

It is an increasing function of X t with the condition X t < b and it is adapted to P t- 

xv{dx)  <  0 in addition to a =  0, h(Xt) is the intensity of r ,  then

P
f  h(Xs)I{T>s}ds 

Jo

is a P-martingale. Then the probability density function and the hazard function are

/(()  =  =  E[hixt)Ilr>l)],
f ( t )  E[h(Xt)I{r>,}\

A(t) -  W T T ) -  £[/,.>„] - m x ‘)\r>t \ .
If X t has nondecreasing sample path, the survival probability is 5(f) =  P ( X t < b) and 

/( f )  =  E[h(Xt)I{Xt<b}\, A(f) =  E[h(Xt)\Xt < b] respectively.

Let En =  { X ti <  b, ti =  i t /n,  i =  1 . . . n } ,  then Ex D E 2 5  • • • and limn_ 00En =  

{ t  >  t }  — n ™=1 En. For n =  1 ,2 , . . . ,  the probability density function of r

f{ t )  < . . . <  E[h(Xt)I{En+l}\ < E[h(Xt)I{En}\ < . . . <  E[h(Xt)I{Xt<b}\.

Since ht is an increasing function of X t with the condition X t <  6_, where 6_ is the 

possible value of X t that is most closed to b from below. For instance, b_ =  [6J for non­

integer b and 6_ =  b -  1 for integer b when X t is a Poisson process. Thus h(Xt ) <  h{bJ).
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If h ( b - )  <  oo, for each n

f ( t )  =  E[h(Xt)I{T>t}} =  E[h(Xt)I{En}\ -  E[h(Xt)I{En,T<t}\,

f ( t )  <  E[h(Xt)I{En}\ := Rn,

f ( t )  >  E[h(Xt)I{En}\ - E [ h ( b _ ) I {En,T<t})

=  E[h(Xt)I{En}] -  h{b. ) [P(En) -  P ( t  >  t ) }  =: Ln.

Since

Ln+i -  Ln =  E[(h(Xt) -  h(b_))(I{En+l} -  I{En})] >  0, 

as a conclusion, for n =  1, 2 , . . .

Li <  L2 <  . . .  <  Ln <  . . .  <  f (x)  < . . . < R n < . . . < R 2 < R i ,

and f (x)  =  limn^oo Ln =  lin^^oo, Rn. f i t ) =  Ln =  Rn for any n if  X t has a 

nondecreasing sample path.

On the other hand for each n, the hazard function satisfies

P ( r  >  t )  v ’  

Define h™ =  E[h(Xt)\En\, then

P ( E n )  _ 1
P ( t  >  t )

(5, ,

„  B\h{X, )IEJ  ,  £[fc(X«)feJ _  E{h(b. )IE„]
k< =  P ( £ J  5  P ( r  >  () ' k P( En) = h { K )  “ d

m x s s A . h(b_
P ( t  >  t )  K

P ( E n ) _ 1
P ( t  >  t )

^ E[h(Xt)IEJ  
-  P ( t >  t ) 4

P { E n )  

[ P ( t  >  t )
-  1

Thus hf  and ht are in the same range as in (5.1). In most cases that the joint distribution of 

X t and its running maximum is unknown, we may use hf  to estimate A(f) =  E[h(Xt)\r >  

t\ — limn^oo h f .  The absolute error is much less than h { b P ) [ p ^ f ]t) — 1] provided that 

h(b-) <  oo. When n  increases, the value becomes smaller and approaches to 0 as n  goes 

to infinity.

For each example with explicit form of the survival probability, we will show its survival 

function, probability density function, the instantaneous arrival probability and check 

whether the conditional expectation E[ht\r > t] is equal to the hazard function. (They
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are equal if ht is the intensity.) Moreover, let Yt =  b -  X u we will calculate the following 

functions on y >  0

rl)(t,y) =  P { t >  T\Yt =  y),
^  d\n*p(t ,y)

A ( T - t , y )  = ------- ^ ----- ,

% )  =  1}m \ ( T - t , y ) .

And we will check the PIDE (4.13) of ip(t, y)

i ’t -  ^ y +  +  J {x+V>o y b P f a v  +  x ) -  ^ y ) \ v W  =
4>{T,y) =  1.

5.1.2 Compound Poisson process with positive jumps

1. Poisson process

Let Nt be a Poisson process with intensity A and the threshold level b =  n, a positive 

integer. Obviously, r  =  inf {t >  0 : Nt >  n} is the nth jump time of Nt, which follows a 

gamma distribution with shape n and rate A, denoted by Gamma (n, A). Since the sample 

path of Nt is nondecreasing, { r  >  t }  =  {Nt < n}.  The survival function and the density 

function are

P , T > () =  g £ ^  =  P(JV, < n ) ,

m  =  A(Ar („)6 *  =  =  " - ! ) •

On ( r  >  t \ ,  the intensity can be obtained by analyzing the instantaneous behavior of Nt as

P( Nt+s =  n\Nt)
hf — l im :

s |0  S

lim P (Nt+s ~ Nt =  1’Nt =  n -  1 |M)
sj.0 S

.. i ;„  Xsl{jyt=n- 1}
“  i fO  ---------- ~S----------  ~ X I i N t = n - 1}.

Its conditional expectation is

E[ht \r > t \ =  XP(Nt =  n -  1 ) / P { Nt < n )  =  f ( t ) / P ( r  >  t ), 

which is exactly the hazard function.
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Here Yt =  n -  Nt, and the survival probability P ( t >  T\Yt =  y) is

y- 1

i= 0  i = 0

Thenip G C 1([0,T1]), y =  1, 2 , . . .  The forwardhazardrate A(T-£,  y) =  - d i n i p( t , y) /dT

1S , , A HT -  t )y~1 e~x(T~t  ̂ , , ,  , \ P ( N x - t =  y -  1)
A ( T - *,y ) “  (y - 1)! ^ , y )

The instantaneous default intensity may be rewritten as a function of y as

h(y) =  lim A(T - t , y )  =  XP(N0 =  y -  1) =  XI{y=1}.

Consider the PIDE representation of tp, the Levy density of Y  is v{dx) =  XI{x=- \ }dx  and 

then

i pt+ [ip(t,y +  x) - i p { t , y ) } v (dx)
J {x>-y}

=  A(T -  t, y)ip(t, y) +  A y -  1) -  y)]/{„-i>o}

=  AP( NT- t =  y -  l)/{y>o} -  XP(NT- t =  y -  1 )/{„>i} 

=  XP(Nx-t  =  y ~  l ) I {y=i} =  XP(NT_t =  0) 

=  XI{y=1}ip(t, 1) =  h(y)ip(t, y).

The terminal condition is ip(T, y) =  1, y >  0.

2. Compound Poisson process with exponential jumps

Now consider a compound Poisson process as

N t

Xt  =  Y , J u  (5.2)
1 = 1

Ji’s have independent and identical exponential distribution with parameter y >  0. Given 

Nt =  k, the distribution of X t is Gamma (/c. y), thus the survival function and the 

probability density function of r  are

e~xt(Xty

2 = 0

P ( r > t ) =  P ( X t < b )  =  ^ 2 ----- ^ - G ( 6; i,y) ,
2 = 0  *■

. e~Xi(Xty e-^OnbY 
= AE  (5-3)
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Where G (6; i, r j ) ,b>  0 is the CDF of gamma distribution with shape i >  0 and rate r? >  0, 

which satisfies

thus the expected intensity conditioned on { r >  t }  is the hazard function as E[ht | r  > 

t] =  f ( t ) / P ( r  >  t). We will not analyze the forward hazard function and the PIDE 

representation of the survival function here since it is the special case of the next example 

where the drift g =  0 .

In these two examples, the events occur at one o f the random jump times of Poisson 

process. The default time can be represented as

where r,t is the ith jump time of Nt with density /,(£) =  git: i, A) and A, =  { t  =  r2} =  

{ X Ti >  b , Xs < b,s  € [0,7*)}. For instance, At =  { X Ti >  b, X Ti l <  b} when the sample 

path of X  is nondecreasing. In this examples, the CDF of X Ti is G(-: i.rj) and the i th jump 

size X T> —X T i_ 1 follows an exponential distribution with parameter g, which is independent

Moreover, let g(b]i,g)  be the associated density function. On { r >  t },

ht =  lim
s |0

P ( X t +s- X t > b - X t \Xt) Xt  <  b
s

lim
siO

P ( Nt+s - N t =  l , J > b - X t \Xt)
s

lim
sj.0 s

with the conditional expectation

E[ht \r >  t\ =  \e~'>bE[e'XtI{Xt<b}] / P ( Xt <b) .

And

E [ e ^ I {Xt<b}] =  enx0 P( Nt =  0) +  

„-At , V '  e - xt{ \ t y  rf f i x * - 1 dx

OO
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of X Ti_1. That is X Ti and X Ti_x do not dependent on the behavior of r,. Thus the probability 

of Ai  can be calculated directly as

It is true if the events At do not dependent on the random jump times r z, the density 

function o f the first passage time will be / ( f )  =  /  A)P(A(). Otherwise, the

survival probability is P ( r  > t )  =  X X i P ( Ti >  ^  A )-

3. Compound Poisson process with exponential jumps and positive drift 

Now consider the case that a drift f i t  is added to X (. If u <  0, the occurrence of 

the event { X t +  f i t  > b} will be caused by the random jumps only with intensity 

\ e-v(b-xt-id) on j T •> £ j But x f +  fit does not have nondecreasing sample path and 

then P ( t  > t )  ^  P ( X t +  f i t  <  b). In this case, the survival function can be obtained as

If fi >  0, the occurrence of the event { X t +  fit >  b} will be caused not only by the 

random jumps but also by the nature increase of the drift. Thus, the first passage time does 

not have an associate intensity because of the increasing drift.

And the density function of r ,  equation (5.3) can be obtained as

m
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Vt € [0,b/p),  the survival function and density function of the first passage time are
oo / \ i \ ,i

P { r > t )  =  P ( X t +  p t < b )  =  Y ~ — ----- G(b-nt \ i ,T)) ,

m  =  A £  e- A X L g{b -  „ t; i, „) -
i = 0 i = 1   •' '-------

caused by random jumps caused by the increase of  drift

:= I t + 11*

The second part Ht can be rewritten as (p x the PDF of X t +  (it at b). In this case, the event 

A, =  { X Ttl  +  (iTi-i <  b , XTi +  (iTi >  b} depends on r2, thus the density function cannot 

be represented as X ^ i  h X)P(Ai).  The instantaneous arrival intensity is

h _  j|m P(Xt+s  +  +  s) P b\Xt)
4 sj.0 s

XsP(J >  b — X t — p(t  +  s)|X t) +  (1 — As)/{xf+ji(t+s)>b}
=  lim

sj.0 S

= Ae-AP-Xt-r,t) + lim hxi+At+s)>b}' 
s |0  S

Given { r >  t } =  { X t +  (it < b}, there exists a constant e >  0 such that e =  b — (Xt +  (it). 

Then for all s <  e/p,  I{x,+^(t+s)>b} =  f^s>e} =  0. Thus ht =  which shows

the motion of the random jumps. And the survival function S(t) f  (in fact <)E[e~^o 

But in the sense of the conditional expectation, E[ht \T > t] is equal to

( E [ \ e - ^ x^ I {Xt+ia<b}] +  lim p ( b > X t + p t > b - p s ) \  + ^t < h )
\  fi|0 s J

^It +  lim Y  e~Xi(Xty  G (b -  M  v) -  G (b ~  id — p s ; i, rj) j  >  ^

=  + Y  ^  ̂ j  / p (r  > t ) =  f ( t ) / p (T > t ).

It is the hazard function when t 6  [0,b/p).

Here Yt =  b — (pt +  X ^ o  *̂)> M > 0, Jt ~  exp (77) and the Levy density o f Y  is 

v(dx) =  f x<0 jXrjer,xdx. Given Yt =  y >  0, the survival probability P ( r  > T \ Y - t  =  y), 

T  e  [0, b / p ) is
OO

y) =  ^ 2  P{ Nr - t  =  i )G(y -  p ( T  -  t); i, rj),
i = 0
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which is zero if  y <  g ( T  — t). Then ip € C'1,1([0, T] x (/x(T - 1), oo)). The forward hazard 

function is

z=0

+M £  ^ (W r-t =  *)s(y -  v ( T  - 1 )\ i, y ) |  /V (f, y), 

and the instantaneous default intensity

Hv)  =  Ijm A (T — t ,y)  =  Ae“TO.

Now consider the PIDE representation of ip, first ipt +  ( -fi)'ii’y is equal to

OO
M T - t , y ) i p ( t , P (N r - i  =  •)«(» -  M (r

=  Ay ' P(JvT_, =  i ) ^ <- riT- ,)ll ' » b - M r - t ) ) ^
i!

i = 0

Second,

/  [^(t,x + y) -^(t,j/)]i/(dx)
J  x - \ - y >  0

/  ip(t, x +  y)v(dx) — /  ip{t ,y)v(dx)
J  x + y > y ( T - t )  J x + y > 0

° ° '  / * 0  p x + y - / i ( T - t )

A y ; P( Nr - t  — a) /  /  g(z; i , y)dzdx
i = 0  Jn(T-t)-y Jo

- W ( t , y ) (  1 -  e7̂ ) ,

the double integration is

r y - i i ( T - t )  p Or y - y t ( i  - t )  p u

/  /  yer)Xdxg{z\ i , y)dz
Jo J  y ( T - t ) - y + z

r y - t i ( T - t )

/  ( l  — i ,  77)^2:
Jo

G(y -  fi(T -  t); i, y) -  ~  ^  ~  ^
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Thus the left side of the PIDE is

' ipt-y' ipyP bi>(t,x +  y) - ip{ t , y) ]v(dx)
Jx+y>0

CO
= A Y ,  p iNr - t  =  i )G(y -  y ( T  -  t ); i, V) -  Xip(t, y)(  1 -  e"™)

«=o
= A e~nv^(t,  y) =  h(y)ip(t, y).

The terminal condition is P(T, y) — 1, y > y ( T  — t).

5.1.3 Coin tossing problem

Consider the process { X t } t > 0 with the form (5.2), where J , ’s are independent identically 

distributed Bernoulli variables with distribution P ( J  =  - 1 )  =  P ( J  =  1) =  1/2. Its 

sample path is not monotone and { r  > t }  C { X t < n}.  Such process is referred as coin 

tossing at random times in Baxter & Donsker [4]. It has been shown that for each positive 

integer n =  1, 2 , . . .

P(  sup X s < n) =  1 — n [  e~Xs- n^ S  ̂ds,
0<s<t Jo s

here In(x) is the modified Bessel function of the first kind with the expression

(x 2 /4)k ^  (x / 2 f k+n
i  (x ) =     =  y ^  ■

} \ 2 /  k\T(n +  k +  1) ^k=Q k\T(n +  k +  1) ^ k \ { n  +  k)V

Define r  =  inf{f >  0 : X t >  n},  n =  1 ,2 , . . . ,  then for each n,  the survival function, 

the density function and the hazard function are

P ( t  > t )  =  P {  sup X s < n) — 1 — n  f
0<s<t Jo

T)
f i t )  =  j e ~ xtIn(Xt),

H t )  =  f ( t ) / P ( T > t ) .

On { t  ^  the instantaneous arrival intensity is 

A, =  lim ^ , + . = . » | X , )
sj.0 S

=  iim P & t + s  -  X t = l\xt = n - I)
stO  S

A .
-  2  iXt=n~1}'
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And f ( t )  — E[htI{T>t}\ =  %E[I{Xt=n-i,T>t}]- Assume that there are 2k +  n -  1 jumps in 

[0, t), let Xi  be the value of X t at i th jump of Nt and M  (k, n) be the number of paths such 

that X 0 =  0, X 2k+n- i  =  n — 1,-X* < n  for i =  1 ,2 , . . .  ,2k +  n — 2, k =  0 ,1 , . . . .  Then 

M ( k , n ) =  n( 2k+ n — \ )\/ {k\{n +  k)\) (see appendix A for proof). While the total number 

of paths of 2k +  n — I jumps is 22k+n~1. Thus the density function is

The other way to figure out the density function is based on the decomposition r =

E r =0 Tii{Akb where

A k =  (X 0 =  0 , X 2k+n =  n, Xi  <  n for i  =  1, . . .  , 2 k +  n -  1}

=  { X 0 =  0 , X 2k+n- i  =  n -  1, X 2k+n =  n, X { <  n for % =  1, . . . , 2 k +  n  -  2}.

The events do not depended on ris then f ( t )  =  YlkLo 9 ^  +  n > ^)P(Ak) with P ( A k) =

M  (k, n) /22k+n and the density is

k = 0  t  n , ) :

Here Yt =  n — E ^ o  P ( J  =  1) — P { J  — ~  1) =  1/2 and the Levy density of Y  is 

v{dx)  =  \ l { x=±i}. Given Yt =  y >  0, the survival probability is

f ( t )  =  2 E Î X̂t=n~1’T>t^

,2/c+n

k=0
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Then xp G C 1 ([0, T]), y =  1 ,2 , . . .  The forward hazard function is

A(r - ( , » )  = v e - VT- ' ) !s{Xp r_ ~ t ) )  m ,  y ) .

and the instantaneous default intensity

^  ( \ / 2 ) 2k+y(T -  t )2k+v~l A
A(S) =  lim A(T -  s) -  s g  S f e T k ) !  =  2

Thus h(y)xp(t,y) =  %I{y=i}^(f,y) and

i pt+ (ip(x +  y) - ip{y) )v(dx)
J x + y > 0

=  A(T -  t, y)ip(t, y) +  7; [V u> o} M** y +  1) ~  2/))

+ / {3y_ i >0}(V’( f ,y  - 1) -  VK*>y))],

then for t  G [0, T), PIDE (4.13) is equivalent to

A(T -  t, y)ip(t, y) +  |  y + 1 )  +  y -  1) -  2^(i, y)] =  0 if y >  2,
A(T -  t, y)xp(t, y) +  \[xp{t, y +  1) -  2^ ( f , y)] = 0  i fy  =  1,

with terminal condition xp(T, y) =  1, y >  1. We will prove it in appendix B.

At time t, X t is a discrete random variable, for each nonnegative integer n  =  0,1,.

P ( X t =  n )  =  P ( X t =  — n )

oo

=  ^  P( Nt =  2z +  n )  x P(there are i — l ’s and n +  i l ’s)
*=o
^ e-**(At)a+w /  2i +  n \  / 1  \ 2i+"
^  (2* +  n)! V * J  W

y .  e~At(Af/2)2i+ra
"  *!(i +  n)!2=0 V '

Since {r  >  t }  C <  n}, we may use /i* to estimate the hazard function.

%P(Xt =  n -  1)

(5.4)

hi =  E[ht \Xt < n
1 P (X t <  n) 

\ P { X t =  n -  1)

| ( i  +  P(xt =  o)) +  IX 1 1 p(xt =  i) ‘ (5‘5)

Figure 5.1 shows the difference of the estimated hazard rate and its true value h\ — A(t) 

in basis points, the parameters used are A =  0.6, n =  1,2,3,4 and t G (0,1]. 1 basis points
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= 0.01. The difference is small for high value of the level n and it increases with time. 

Figure 5.2 shows the relative difference of survival probability 5(f) and exp{— f* hjds}: 

1 -  exp{— /g h\ds}  /  S(t).  Both show that it is not bad to use h\ to replace A(f) at A =  0.6 

and t € (0 , 1].

The following table shows the maximum difference of hj — A(t) (in basis points) at 

different level: A =  0.6,1,10; t <  1, t <  10 and n — 1,2,3,4.  Most maximum difference 

happens on the end of the time horizon except for those two highlighted.

level n t <  1, A =  0.6 f <  10, A =  0.6 t <  1,A =  1 t <  10, A =  1 f <  1,A =  10
1 0.168439 3.800164 0.913636 6.506188 65.061880
2 0.063237 2.249781 0.327769 4.477918 44.779180
3 0.005520 1.202774 0.048034 2.922774 29.227740
4 0.000338 0.574709 0.004955 1.786208 17.862080

It is brought to our attention that the density function of the first passage time satisfies

/ ( f ; A, n) — 10 /(0 .It; 10A, n).

Thus

S(t;X,n) —

A(t;A,n) =

And

P ( X t =  n; A) =  P(Xo.u =  n; 10A);
\ ^ P(Xt  =  n — 1; A) _  n 1 10A P { X 0,lt — n — 1; 10A)

J 2 P ( X t <  n; A) U' 2  P ( X 0.lt < n; 10A)
=  0.1/i1(0.1t;10A,n).

Keeping At constant, we have A(t/a; aA,n) =  aA(t; A,n)  and hl (t/a\ a \ , n )  =  a h \ t ; X , n ) 

for any positive value of a. It is good to use h\ to estimate the hazard function only for 

small value of A and high value of n.

f  f ( s \ X , n ) d s =  f  10 /(0 .Is; 10A, n)ds 
Jo Jo

pO.lt
/  100/(0 .Is; 10A, n)d(O.ls) =  1005(0.1t; 10A, n);

Jo
f(t;  A, n) 10/(0.1f;10A,n)
5(t; A,n) 1005(0.1t; 10A, n)

=  0.1A(0.1t; 10A,n).
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5.2 Poisson-diffusion processes

Now we turn to the jump-dififusion processes. Let
N t

Xt  — fit +  O Wt  +  ^  ' Jii <7 > 0.
2 = 1

l_i is the drift, a  is the volatility, W  is a standard Brownian motion and AT is a Poisson 

process with parameter A, the jump sizes Ji, J2). .. are independently and identically 

distributed random variables. Two most used distributions of the jump size J  are normal 

distribution and double exponential distribution. Zhou [56] assumed the normal distribution 

o f J  and got some results in valuing defaultable securities. Kou & Wang [34] obtained 

some properties of the first passage times of the double exponential jump diffusion process. 

These two distributions of the jump size will be discussed in this section.

In this kind of model, the instantaneous arrival intensity is

here $(•) is the CDF of a standard normal distribution. It will be the overall hazard function 

at time t, and we call the first part the hazard function due to jumps and call the second part 

the hazard function due to diffusion.

5.2.1 Exponential jumps

Fist we list some results from Kou & Wang [34]. Define the first passage time of the jump 

diffusion process X t as

ht =  lim
40

P ( X t+s > b\Xt) _  ̂ ,
---------------------- , T > t

S

lim
40

XsP(Xt +  pis +  trW * +  J  >  6|Xt)  +  (1 — Xs)P(Xt +  fj,s +  crW* >  b\Xt)
s

where W* is a standard Brownian motion and is independent of X.  Thus

=  XP(J >  b -  Xt \ Xt).

While when we look at its conditional expectation,

E[XP{J > b -  Xt \Xt )I{T>t}\

U — inf {t  >  0 : X t >  b}, b >  0 (5.6)
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where the jump size follows a double exponential distribution with density

f (x)  =  pr]ie~VlxI{x>o} +  qt)2 emxI{x<Q},

771, 7/2 > 0,p  G (0,1] are constant and p +  q =  1. Denote X n =  l im s u p ^ ^  X t on 

the set {rb =  o c } . Then the CDF of rb is P(rb <  t) =  P (sup0<s<t X s >  b). For any 

6  G ( - r /2, r/i), let the moment generate function of X t be

E[e9Xt] — exp {G( 8 )t}.  where

G(x) =  fix +  t(r2x2 +  A (-XHl— (. SSl------ ! j
2 V7?! -  X V2 +  x J

Lem m a 5.2.1 (See Lemma 2.1 in [34]) The equation

G{x) =  a  for all a >  0 

has exactly four roots: ff ,ai A, a- —A ,01 —A,a with

0 < A,a < Vl <  A,a < 00, 0 < A,a < % < A,a < 00.

In addition, let the overall drift o f  X t be d — p. +  X(f^ — ^ ), then as a —> 0,

0  f  0 if  d >  0, , „
,a 1 A* <  0, and^2’a ^  ’

where f3* and f32 are the unique roots o f G(x) =  0 with 0 <  0* < rj i <  d *2 <  oo.

The distribution of rb is represented explicitly in the form of its Laplace transform as 

following.

Theorem 5.2.1 (See Lemma 2.1 in [34]) For any a  > 0, let A,a and (32,a be the only two 

positive roots o f the equation G(x) =  a  with 0 <  A,a < Vi <  A, a < oo. Then the Laplace 

transform o f rb is

E\e~aTb] =  ^  1̂,a 2̂,a c~b0i a _|_ A,a ~  Vl Pi,a c-bdo. n
Vl A,a -  A,a Vl A,a “ A,a

If d >  0, A,a —*■ 0 as a  —► 0, then P ( t  < oo) =  lima^ 0 E[e~aTb] =  1. If  d <  0,

P ( r  < oo) < 1. Theorem 5.2.1 holds as long as A,a and A,a exist, which is the case

that {p >  0 , o  >  0} or {p >  0 ,a  =  0 , p  >  0}. If  p =  0, there is only one positive
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root and two negative roots for G(x) — a >  0. If p >  0 and a — 0, the equation has 

three roots: when p >  0, there are the two positive roots 0 <  0 \,a < f]i <  0 2 ,a <  oo 

and one negative root —0 3 ,a >  —r]2 \ when /j, <  0, there are the two negative roots 

0 <  — 0 A , a  <  —rj2 <  — 0 3 , a <  oo and one positive root 0 i , a  < Vi-

Now consider the PIDE representation of the Laplace transform of r  in (4.14), here 

Yt =  b — X t . Then

The Levy measure of Y  is u(dx) — \ f ( - x ) d x .  And the instantaneous default probability 

is

=  Aie~y/3l'a +  A 2e~v 2̂'a

and

h(y) =  \ P ( J  > y )  =  Ape~vm. (5.7)

The right side of the PIDE is

+ % )  +  A / l (a,x +  y ) f ( —x)dx — / f ( - x ) l ( a , y ) d x  . (5.8)

And

x > - y

f ( —x)dx =  l(a,y){q +  p ( l - e  vm)] =  l ( a , y ) ( l - p e  ym),
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Then the coefficient of A\e yfil a in (5.8) is

pP i,a  +   ̂ —  h(y) +  A on  2 pm
V2 + Pi,a Vl — Pi,a

G{Pi,a) -  % )  +  Ape ym =  a.

Similarly,the coefficient of A 2e V2n in (5.8) is also a. And the remaining term is

% )  -  Xpvi o-OTi + o-vn i =  h(y) — Ape =  0.
,Vl -  Pi,a Vl -  P2,a

Thus the right side of the PIDE, (5.8) is a(A\e~v®1" +  A 2 e~v/32<a) =  al(a, y),  the left side 

o f the PIDE.

The forward hazard function is

f ( T; t , y )
X ( T - t , y )  =

T, y)

and the instantaneous default probability will be

h(y) =  lim A(T — t , y ) =  lim L~l {l(a, y) }  =  lim al(a, y).
T —>t a —>oo a—>oc

As a —y oo, the two positive roots of equation G(x) — a are Pi>a —> r)i and d2,a —> oo. Let 

G(Pi,a) replace a, then

h(y) =  lim G(PUa)l(a,y)

I PPl.a +
a —►oo

A ) l (a,y ) +  lim X m  l(a,y)  
a—*°° Vl -  Pi,a

=  0 +  lim X p q l  x  ^ — Phl e-fV,ay =  xPe~my.
Vi ~  P i,a Vi

Now we may apply the result to our credit model. Let the nature log of the firm value 

(In Vt)t>o be a jump-diffusion process on the stochastic basis (f2, T,  F =  (Jrt )<>0, Q ) , Q  is 

the risk-neutral measure.

N t

In Vt =  In V0 -  X t =  In V0 -  fit -  a W t -  ^  J»,
2 =  1

then the firm value process follows the SDE

dVt =  Vt { - p  +  ^ cr2)dt -  adW t +  (e Jt -  1 )dNt (5.9)
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Under Q, the expected instantaneous return on V  is the risk-free interest rate r,

r  = - fl + ± a2 + \ E Q[e-J - 1 } .

Define the default time be r  =  inf { t  >  0 : Vt <  F }, then it is equivalent to

r  =  inf { t  >  0 : X t >  In Vo — In F },

which has the same form as rh in equation (5.6) with b =  ln(Vo/F) >  0. To simplifies the 

model, letp =  1, that is the jump size J  follows an exponential distribution with parameter 

77 — 771. Then Theorem 5.2.1 shows that the Laplace transform o f r  is

V - 0 1 , a  ft,q  ( F _ V la +  A ,a  (
L J V f o , a - l h , a \ V 0)  V 0 2 , a - f h , a \ V OJ

where /31>a and 0 2 ,a are two positive roots of the equation

/  \  ^ 2 2  \ . xa =  G ( x )  =  u x  +  -cr x -\----------, a >  0.
2 r j  —  x

The laplace transform of the CDF of r  is

poo poo pt
F(a) =  /  e~atF(t)dt  =  /  e~ai /  f(s)dsdt

Jo Jo Jo
1 1

=  a I  « - / ( • > * -

As Kou & Wang [34] discussed, numerical inversion of Laplace transform should be 

used to obtain the distribution of r, and they decided to use the Gaver-Stehfest algorithm 

since it is the one that does the inversion on the real line. Here is how the algorithm works. 

For any bounded real-valued function /(■) defined on [0, 00) that is continuous at t,

f ( t )  =  lim f n(t), where71—UX>

t  i+\ (2n)! v ”~v T\k (  n \  i n  , ,  In 2 .

On {r  > t},  the instantaneous default probability is

ht =  AQ( J  >  b -  X t \Xt) =  \e~ ^ b~x  ̂ =  A{F/Vt) \  (5.10)
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So at the beginning of the time horizon, the instantaneous default probability is not zero 

any more and it is

h0 =  A {F/Vof .

The hazard function which is considered as a function of time A(£) can be divided into 

two parts: the one due to random jumps is E®[ht \T > t] and the one due to the Brownian 

motion with drift is A(t) — E®[ht \T > t).

As mentioned before, we may use /i" =  E Q[h(Xt)\En] to estimate E®[ht \r >  t]. And

hi =  \ e~r>bE Q[er,XtI{Xt<b}}/Q{Xt <  b).

X t =  jit +  aWt +  Y lfh  Ji-> where the diffusion part y t  +  aW t ('.= x) follows a normal 

distribution with mean y t  and variance a 2 t, the jump part 1 v) follows a gamma 

distribution with rate 77 and shape k conditioning on Nt =  k, k =  1 ,2 ,  So
p OO p

Q( Xt < b) =  Q(Nt =  0) /  f (x)dx +  ^ Q { N t =  k) I f (x)g(y)dxdy,
J  { x < b }  fc=1 J  { x + y < 6 }

where f (x)  — exp { —^ S t  } x s(y) =  y hy k~1 e~riv/T(k)  is the

PDF of y given Nt =  k. Similarly, the expectation E® [enXtI{xt<b}\ is

p OO p
Q(Nt =  0) /  evxf (x)dx  +  £  Q(Nt =  k) f(x)g(y)dxdy.

J { x < b }  fc=1 J { x + k < 6 }

Figure 5.3 show the overall hazard function in [0,10], estimated hazard function due to 

random jumps (hi) and their difference which can be considered as the estimated hazard 

function due to the movement of Brownian motion with drift. The parameters used are 

r =  0.06, a  =  0.4, A =  0 .6 ,77 =  10 and F/Vo =  0.5.

A more reasonable setting is to let the threshold level of default be the discounted value 

o f the face value, F e _r(r _ 0. Then the default event {Vt <  Fe~r<-T~^} is equivalent to

[ X t >  In Vo -  In F  +  r (T -  t )} =  { X t +  rt >  In V0 -  l n F  +  rT} ,

So the barrier b — In V0 -  In F +  r T  >  0 and the function G(x) =  (y  +  r)x  +  \ a 2x 2 +  

Xx/  (77 — x). The instantaneous default probability is

ht =  \ e-ri(b-Xt-rt) =  A ^ y e-,x(T-p < ^ ^  "
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Compared to the previous case, the default will be less likely to happen because of the 

lower default boundary.

Figure 5.4 show the overall hazard function, estimated hazard function due to random 

jumps (hi) and their difference when the threshold level of default is Fe~r{T~L). The 

parameters are the same as Figure 5.3 and the maturity is T  =  10.

Figure 5.5 compares the estimated default intensity due to jumps in two cases. In the 

latter case (discounted face value), the estimated default intensity is lower because its 

default barrier Fe~r{T~l) is much lower than the other one F  but the firm value processes 

are identical. The estimated default intensities are the same at maturity when two default 

barriers are both equal to F.  In fact, the instantaneous default intensity is \ {F / V t)n in the 

first case and it is Xe~'nr(T~t) (F/Vt)ri in the latter case. Figure 5.6 compares the overall 

hazard rate in two cases.

We also simulate the firm value process in [0,1], where there is only one jump at t  — 0.5. 

The initial firm value is 1 and the face value of bond is 0.5. The value is showed in Figure 

5.7 and there is no default in [0,1] for both threshold level F  and Fe~r(t~t>. The associated 

instantaneous default intensities for both threshold level are compared in Figure 5.8.

Figure 5.9 shows the overall hazard rates with three different initial leverages in the case 

that the threshold is F.  When I =  Vq/F =  6, it can be considered as a high grade issue and 

the hazard rate has an upward trend at the beginning and then remains flat. When I =  2, the 

hazard rate increases first and then follows a downward trend and remains flat thereafter. 

When I =  1.5, which is the lowest grade among the three, the hazard rate follows a similar 

pattern as the one when i  =  2 but with higher slopes. It increases dramatically at the 

beginning and reaches its highest at t  — 0.41. Overall, the hazard rate of a high grade issue 

is lower than the hazard rate of a low grade issue.

5.2.2 Normal jumps

Zhou [56] assumed that the jumps in equation (5.9) follows a normal distribution with 

mean nv and standard deviation av. Define the default time be

r  =  inf{t >  0 : Vt <  Dt } =  inf{t >  0 : In Vt — In V0 <  In Dt -  ln l/0},
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Vo > Do- Then the instantaneous default probability is

ht =  X Q ( - J  <  In A  - l n V t \Vt , D t) =  A<J>

where is the log ratio of Vt/ D t and 4>(x) is the CDF of a standard normal distribution.

Obviously, h increases with A, while decreases with R  and When R  >  — (iv , it will 

increase with ov\ when R =  — //„■, it will be invariant with ov; otherwise h will decrease 

with (Tx. A  measures the distance between the firm value and the threshold level. The 

lower the Rt, the higher the likelihood of default. The jump size J  with lower mean will 

have more chance to being small, so more chance to default. A and represent the jump 

risk. High value of A implies high frequency of jumps. Figure 5.10, 5.11 and 5.12 show 

how these four parameters (A, R. cr̂ ) affect the instantaneous default intensity (due to 

jumps) based on the normality assumption o f J.

Following the assumption in equation (4.7), the default time is defined as r  :=  inf (7 > 

0 : Rt +  JjAiVt <  0}, Rt >  0 before default, the default event will only be caused by 

unpredictable jumps. And it admits an intensity, ht . The estimated hazard rate is

Let A(t) be the hazard function, then the survival probability can be represented as

true for all t >  0 , then h\ >  \ ( t )  for all t > 0 and we say that hj overestimates the hazard 

function X(t). The survival probability based on h1 is less than its true value.

Now consider the dependence of default. Let R 1, R 2 be strictly positive diffusion 

processes as

The inequality is an application of Jensen’s Inequality on the convex function ex. And it is

dRl =  R i ^ d t  + GidWi), R l >  0 (5.11)

and define the default times as

t * =  i n f : R* +  J l/ \N t +  M *ANi <  0}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 5.2 Poisson-diffusion processes 102

Hi, Oi are constants. W }, W 2 are standard Brownian motions with dW }W 2 =  pdt. N t, 

N*, are independent Poisson process with arrival rate A, Ai, A2 respectively. The jump 

sizes (J 1, M 1) and ( J 2, M 2) are normal random variables with mean p [, /i2 and standard 

deviation a \, <x2 respectively. When A Nt =  1, the correlation coefficient of two associate 

jumps J 1 and J 2 is / v  Other random parts are mutually independent.

The individual default intensities are

h '(R l) -  (A +  A 0 * ( - ^ ± ^ ) ,

f c W )  =  (A +  A2) 4 ( - ^ ± ^
\  7T

with the joint default intensity

=  < A $ ( - ^ - ^ ) ,  i  =  1,2.
<7:,

Given the path of R l, the joint survival probability is

{
pt f*8 t*min{t,s} |

~  Jo hl<yRl^ d u ~  J0 h2(R t ) du +  j o K R i , R l ) d u \

=  Q(t x >  t)Q (r2 >  s)m in  ^edo h^ ’R̂ du, efo h(Rl ’Hu)duJ _

If R\ are constants, the joint distribution of the default times follows the bivariate 

exponential distribution. It has been studied in Giesecke [25]. The linear default time 

correlation coefficient is
h { R \R 2)

hl {Rl ) +  h2{ R ? ) -h ( R l ,R ?y  

and Spearman’s rank correlation is

3 h (R \R 2)
2h1(R 1) +  2h?{R?) -  h (R \ R? ) '

If  A =  0, then there is no common default for the two firms, while the individual 

intensities are correlated through W 1 and W 2 as

„ , ,, o dh1 dh2 ,
* * =  dR l clR2 R t a ^ P dL

Figure 5.13 simulating the R i values when R  ̂ — 1, /j, =  0.2, er, =  0.3 and p =  0.5. 

Figure 5.14 shows the associated default intensities, where A =  0.2, A, =  0.4, p \  =  —0.1
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and =  0.3. With these parameters, the joint default intensity increases with the 

correlation coefficient pw, which is shown in Figure 5.15. Figure 5.16 simulates the default 

events. The common Poisson process Nt jumps at time 1.5 and 6, the jump times o f iV/ are 

2.6 2.9 and 8.3, and there are 5 jumps of N.f in [0,10]. Firm 1 defaults at t =  6, and firm 2 

survives in [0 , 10].
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Difference of Hazard R ate  (in basis points)

0.16

0.12

0.08

0 0 4

 n = l 0.2 0.4 0.6 0.8 1

Time-  —a=3 

• n=4

Figure 5.1: Coin tossing: the difference h\ — A(t) increases with n.
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Relative Difference of Survival Probability

0.04%

0.03%

0 . 0 2 %

0 .00%

n = l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 9 1

—  - -n = 3  

 n=4

Figure 5.2: Coin tossing: the relative difference of survival probability and e x p { — f* h lsds}  
increases with n.
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Hazard Functions (in basis points): Default Level is Face Value

25

20

15

10 hazard rate due to BM overall hazard rate

5
hazard function due to jumps

0
52 3 4 6 7 8 9 100 1

Time

Figure 5.3: Exp-jumps: the overall hazard rate A(t), the estimated hazard function due to 
jumps h\ and their difference when the threshold level is the face value.
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Hazard Functions (in basis points): Default Level is Discounted Face Value

12

overall hazard rate10

8
hazard rate due to BM

6

4

hazard rate due to jumps

2

0
0 1 2 3 4 5 6 7 8 9 10

Time

Figure 5.4: Exp-jumps: the overall hazard function A(t), the estimated hazard function due 
to random jumps h\ and their difference when the threshold level is the discounted face 
value.
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Estimated Hazard Functions Due to Jumps (in basis points)

3.5

3.0
threshold level: face value

2.5

2.0

threshold level discounted face value1.5

1.0

0.5

0.0

30 1 2 4 5 6 7 8 9 10

Tim e

Figure 5.5: Exp-jumps: h\ is higher when the threshold level is the face value than the case 
that the threshold level is the discounted face value.
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Overall Hazar Functions (in basis points)

24

20

16

12

8

threshold level: discounted face value

4

0
5 7 8 92 3 4 100

Time

Figure 5.6: Exp-jumps: A(t) when the threshold levels are the face value and the discounted 
face value.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 5.2 Poisson-diffusion processes 110

Simulated Firm value Process in |0,1]

0.7

face value F=0.5

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90
Time

Figure 5.7: Exp-jumps: the simulated firm value process where there is only one jump in
[0 , 1]-
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Instant Default Intensities

0.45 r

0.4

0.35

threshold level face value

0 3

0.25

0.15

0.05

threshold level: discounted face value

0 0.2 0.3 0.4 0.5 0.70.1 0.6 0.8 0.9

Figure 5.8: Exp-jumps: ht is higher when the threshold level is the face value than the case 
that the threshold level is the discounted face value.
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O v e ra ll H a zard  F unction  (basis po in ts)

60

50

40

30

1 =2
20

10

0
20 3 4 5 6 7 8 91 10

Figure 5.9: Exp-jumps: the overall hazard rate follows an upward trend for a high grade 
issue; for a low grade issue, the hazard rate is hump shaped for the first few years and keeps 
flat thereafter. Here I =  V0/F  is the initial leverage.
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Instant Default Intensity

0.6 T

0.6 0.80 0.2 0.4 1.2

R: Log Ratio of firm  Value to Threshold

Figure 5.10: Normal-jumps: ht increases with mean jump rate A and decreases with R.
(/̂ 7r =  0, CTtt =  0.5.)
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Instant Default Intensity

•2 •1 .5 •1 -0.5 0 0.5 1.51 2

M ean Value of the Jump Size
• s ig m a = 0 .2  

• s ig m a = 0 .5  

- s ig m a = 0 .7

Figure 5.11: Normal-jumps: ht decreases with fj,T. It increases with when nw >  
and it decreases with ov when /z*- <  —R. (A =  1, R =  In 2.)
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Instant Default Intensity

•2 1.5 1 -0.5 0 0.5 1.5

M ean Value of the Jump Size
• Iambda=0.1 

lambda=0.5 
-  lam bda=l

Figure 5.12: Normal-jumps: ht increases with mean jump rate A and decreases with / v
(R  — In 2, a7r =  0.5.)
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4

3

2

1

0
_ 0  1 2 3 4 5 6 7 8 9  10

Time

Figure 5.13: Joint case: the simulated R  value, dR\ =  R\i().2dt +  0.3dW f), R  ̂ — 1 and
dW }dW f =  0.51.
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D efault In tensity

0 . 02

A h  A.

i i

\\ t

\ \  { A 
'•/ s ,

 hi
  h2

5

Time

Figure 5.14: Joint case: the default intensities, hl =  (A +  A j)$(—̂ r ^ ) ,  a decreasing 
function o f R. Here A =  0.2, A* =  0.4, =  —0.1 and o\. =  0.3.
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Joint default Intensity
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Figure 5.15: Joint case: the joint default intensity, increases. , <?7T
with / v
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Simulating die Default Time

5

4

3

2

1
R2

0

•1
Tim e

Figure 5.16: Joint case: t1 =  inf{t : +  J lA N t +  M lA N {  <  0}. A N t =  1 at 1.5, 6 ;
A N f — 1 at 2.6 2.9 and 8.3 Firm 1 defaults at time 6 and firm 2 survives.
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A
M ( k , n ) in coin tossing problem

We want to prove that

M ( k , n ) =  n ^ , +  fc =  0 , l , - - -  ; n  =  1,2, - - ■ . (A.1)
K!(n +  Kj!

M(k,n)  is the number of pathes such that X 0 =  0 , X 2k+n- i  =  n — l , X i  <  n for 

i =  1, 2 , • • • , 2k +  n  — 2, where
m 1

=  P (J  =  1) =  P (J  = - 1 )  =  -
i=0

Define # (•) be the number of paths satisfied the condition inside, then M(k,  n) is
k— 1

# ( A 0 =  0 , X 2k+n- i  =  n -  1) -  ^ 2  M(i ,  n) x # ( X 2i+n =  n, X 2k+n-i =  n  -  1)
t=0

When A; =  0, for each n =  1,2, • • •,

M (0 sn) =  # ( X 0 =  0 ,X 1 =  l )Jf2 =  2 , . . -  , X n^  =  n -  1) =  1 =  n(2  * 0 +  n  ~  1)!.
0 !(n +  0)!

For k =  1,2, ■ • • and n  =  1,2, • • ■, define

J  — M(k,n),
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and define
B(k n) =  W  +  n - l ) \

Then equation (A .l) is equivalent to

N(k,n)  =  B(k,ri),  k ,n =  1,2, ••• (A.2)

We will prove it for each k and n by inductive method.

When k =  1, for each n >  0,

=  M (0 ,n ) (  2 * 1 7  !*o° ~  1 )  =  1 =  | i  l 1̂  ;

M ( l , n )  =  (^2 * 1+I n ~ 1 '̂  - N ( l , n )  =  (n +  l ) - l  =  n.

When k =  2, for each n >  0,

i \ (  2 * 2  — 2 * 1  — l \  x / 2 * 2 - 2 * 0 - l \N(2,n)  =  M(l , r i )  ( 2 _ 1 J  +  M (0 ,n ) f 2 _ Q  J

(2 * 2  +  n - l ) !  ,
=  n . l  +  1 . 3  =  « +  3 = ( 2 _ I)!(n +  2 ) ! = B ( 2 , » ) .

Next, let’s show that N(l ,  1) — N(l  — 1,2) =  B(l,  1) — B(l  — 1,2) for each I >  1 by

assuming that (A.2) is true for k =  1, • • • , I — n, n =  1,2. First,

nII 1 1 - B H - l  21 ( a  +  1 - 1 ) '  ( 2 ( 1 - 1 ) +  2 - 1 ) !  ( 21 -1 ) !
1 '  ’ ’ ( i - l ) ! ( (  +  l)! ( ( - l - l ) ! ( i - l  +  2)! ( / ) ! ( ! - 1)1’

and N(l ,  1) -  N(l  -  1,2) is equal to

y i ,  l * ( 2i +  l - l ) !  f  2 l - 2 i - l \
2 o I a  _l  1 'i i 1 i — i ) 2 ^

1 * (2i +  1 -  1)! (  21 -  2i -  1 ^  2 * (2i +  2 -  1)! f  2(1 -  1) -  2i -  1

)•
i-i

i\(i +1)! V l ~ { )  *!(* +  2)! V l - l - ii=0 \ / \ / 2_o \ / \

1 J  +
y ^ 2 * ( 2 i +  l)! (21 — 2i — 3)!
2-^ i](i
i = 0

(21 -  1)! , ^  2 (j +  1) * (2j  +  1)! (21 -  2j  -  3)!
+ £(01(1 -1)1 U  0  +  1)10 + 2)! ( i - j - l ) ! ( i - j - 2 ) !

y ^ 2 * ( 2 i  +  l)! (21 — 2i — 3)!
J L  i!(i +  2)! (i — i — i)!(; — i — 2)\

(21 -  1)!

( / ) ! ( / -  1)!
B ( l , 1) -  B(l  - 1 , 2 ) .
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Then, we will show that N(l,  n  +  1) =  N(l ,  n )  +  N(l  — 1, n  +  2) and B(l,  n  +  1) =  

B(l,  n )  +  B(l  -  1, n  +  2) for n ,  I >  0 by assuming that (A.2) is true for k =  1, • • • , l ~  1,

Now we have the followings information,

i For each n =  1,2, • • •, M ( 0, n) =  1 and N(k,  n) =  B(k,  n) is true when k =  1,2.

ii For each k =  2,3, N(k,  1) — N ( k  — 1,2) =  B ( k , l )  — B(k  — 1,2) if 

N(l ,n)  =  B( l , n ) holds when I =  1, • • • , k — n, n  =  1,2.

iii For each k =  2,3, • • •, n  =  1,2, • • ■, A(A:, n  +  1) =  N(k,  n )  +  N( k  — 1, n  +  2) if 

N(l ,  n )  =  B(l,  n )  holds when I =  1, - ■ ■ , k — 1, n  =  1,2,3, • • •.

n  =  1,2,3, •••.

N ( l ,  n)  +  N ( I  — 1, n  +  2)

i!(n +  2 +  i)\

- 1 \  n(2i + n -  1)! /  21 -  2i -  1 \

*!(™ +  ̂ )! V l ~ l )

(n +  2)(2j +  n — 1)! /  2/ -  2j  -  1 \
(j -  l)!(n +  1 +  j)\  V l ~ i  )

- 1 \  \ (2i -f- n  — 1 )![ti(ti +  ? +  1) +  (n +  2)z]) /  2/ — 2% — 1
J  ^  i!(n +  i +  l)! \  l — i

- 1 \  (2i +  n  -  l)!(n +  1)(2* +  n) f  21 -  2% -  1 \
J iKn +  i +  l)! I l — i /

And

(21 +  n  — 1)! ( 2 ( / - l ) + n  +  2 - l ) !
(I -  l ) ! (n  +  l)\  +  ( I -  1 -  l ) ! (n  +  2 +  I -  1)!
(n  +  I +  1) * (22 +  n  — 1)! +  (I — 1) * (21 +  n  — 1)!

(J - l ) ! (n  +  Z +  l)!

( l - l ) \ ( n  +  l  +  l)\
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iv For each k =  2 ,3 ,  • • •, n =  1 ,2 ,  • • • , B( k , n +  1) =  B(k,  n ) +  B(k  — 1 , n  +  2).

When k =  3, clause ii shows that N ( 3,1) =  iV(2,2) +  5 (3 ,1 )  -  5 ( 2,2) =  5 (3 ,1 )  

since jV(2, n ) =  5 (2 , n ) for each n  >  0 which is given in clause i.

N ( 3 , 2) =  N ( 3 , 1) +  iV(2,3) =  5 (3 ,1 )  +  5 (2 ,3 )  =  5(3 ,2) ,  

N ( 3 , 3) =  N ( 3 , 2) +  N ( 2 , 4) =  5 (3 ,2 )  +  5(2 ,4 )  =  5(3 ,3) ,

iV(3, n — 1) =  AT(3, n — 2) +  AT(2, n) =  5(3, n -  2) +  5(2, n)  =  5(3, n  -  1), 

N { 3 , n )  =  N ( 3 , n - 1 )  +  N ( 2 , n  +  1) =  5(3, n -  1) +  5(2, n  +  1) =  5(3, n) ,  n >  1.
'-------------------------------------------- v-------------------------------------------- ' ' -------------------------------------------v--------------------------------------------'

clause Hi clause iv

Then N ( 3, n)  =  5(3, n)  is true for each n  =  1,2, • • •.

When k =  4, clause ii shows that N ( 4 ,1) =  Ar(3,2) +  5 ( 4 , 1) — 5 ( 3 ,2) =  5 ( 4 ,1) 

since iV(3,n) =  5(3, n)  for each n >  0. And then iV(4, n) =  Ar(4, n —1) +  N ( 3 , n  +  1) — 

5(4, n — 1) +  5(3, n +  1) =  5(4, n)  for n >  1.

By induction, we may conclude that N(k,n)  =  B(k.  n) for each k,n  =  1, 2, ■ • •. 

Equivalently, we have proved that M ( k , n ) =  n(2k +  n — 1)1/(k\(n +  k)\), for each 

A: =  0,1, • • •, n =  1,2, • • • .
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Equation (5.4) in coin tossing problem

First we recall the equation and denote, for t  6 [0, T),

Aft -  I  H T - t , y ) i p ( t , y )  +  ±[ip(t,y +  l ) + i p ( t , y - l ) - 2 ' i p ( t , y ) }  =  0 y >  2, 
A{T’y ) - \  +  y =  1,

with terminal condition ip(T, y) =  1, y  >  1. Where

«->-s us
and

A(T — t , y ) =  ye~Xi~T- t)I-̂ ~ _ t t ^ /^{t ,  y).

Let / ( f ,y )  =  A(T -  t , y) ip( t , y) =  dip(t , y) /dt  =  - d i p ( t , y ) / dT ,  which is the 

probability density function at time T  assessed at time t. Then f (T,  y) =  I{y=i}A/2 and

f ( t , y )  = y e - ^ I ' {X̂ ' j t t ) ) , t s  (0 , r ) .

Hie terminal value of A{t, y) is

A(T, 1) =  f (T,  1) +  ±ty(T,  2) -  2iP(T, 1)] =  ^  +  | ( 1  -  2) =  0

and

A{T, y) =  f (T,  y) +  ^bP(T, y +  1) +  ip(T, y -  1) -  2ip(T, y)\ =  0, y  >  2.
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Next we will prove that dA( t , y ) / d t  =  0 for t € [0,T) and y >  1.

When y >  2, the derivative dA(t,  y ) / d t  is

a f ( t , y )  - y e~HT~t)^  lu=r- * +  \ \ f & v  + : ) +  f & y - *) -  V & v ) ]

=  ^[ f ( t , y  +  l ) +  f ( t , y - l ) \  - y e_A(T-t)^ ;  ( “ “ )  l “ = T - ‘

=  e - ^  ^ [ ( y  +  i ) Iy+l{Xu) +  (y -  1)V x ( A «)] -  y ^  } |«=r-*.

Where
d / I y( X u ) \ _  ^  (2fc +  y -  l ) ( X ) 2 k + y u 2 k + y - 2  y X ^ ( 2 k  +  y -  l)(M)2fc+i>-i

1/ 

and

du \  u J A;!(y +  fc)! 2u k\(y +  k)\

( V +  I) ĵh-i(Am) +  (y -  l )V i(A u )

^  (y  +  l ) ( f ) a + »+1 ■ y  (y ~  1) ( t  ) 2fc+i;~ 1 (i/ ~  ! ) ( t  ̂
^  k\(y +  1 +  &)! k \ { y - l  +  k)\ (3/ — 1)!

( f  )y_1 y '  (V +  1) ( t )2fc+!/+1 Y '  (y ~  l ) ( %) 2k+y+1
k\(y +  l  +  k)\ ( fc+l)!(y +  fc)!

( f ) ^ 1 y . y ( y  +  2A: +  l ) ( ^ ) 2fc+̂ +1 

( y T 2 ) ! + ^  (A; +  l ) ! (y  +  l  +  fc)!

( t )""1 Y ' j/to +  a - 1) ( f )M+!/~1 3 / ( y - i ) ( T )y~1

( y - 2 ) ! ^  &!(y +  £;)! y!

^ (y +  2f c - l ) ( f )2fc+^~1

Thus dA(t ,  y ) / d t  =  0 for t €  [0, T) and y >  2. When y =  1, 

cL4(i, 1)
d£ A / ^ l J - e - ^ A  |u=T- t +  ^ [ / ( * ,2) - 2/ ( M ) ]

=  e~x^
A/2(A(T — t)) d f h( Xu) \

T  — t d u \ u  J u~T~t

and

d f h( Xu) \  _  y . (2k)(A)2k+lu2k- 1 ”  2 ( | ) 2fc+1u2fc~1

d u \  u )  &!(! +  £;)! ^  (/c -  1)1(1 +  fc)!

y ,  2(A)2/c+3u2fe+1 A/2(Au)
^  fc!(2 +A:)! “  « ’
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then dA(t,  \ ) / d t  =  0 for all t G [0, T ).

We conclude that dA(t,  y ) / d t  =  0 for t  G [0, T)  and y  >  1, thus A(t,  y) is constant in 

t. And this constant number is equal to its terminal value A(T, y) — 0. Equation (5.4) has 

been proven.
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