

University of Alberta

Improving the Quality of Use Case Models and their Utilization in

Software Development

by

Mohamed El-Attar

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software Engineering

Department of Electrical and Computer Engineering

Edmonton, Alberta

Fall 2009

Dedications

As ever, my parents Sherif El-Attar and Shahrzad Badawy are a constant source

of support and encouragement. Their efforts do not go unnoticed, supporting me

in every possible way and every step of the way, especially during the tougher

latter stages of my degree, and are greatly appreciated. My parents have always

been, and will always be, the rock of my life and without their constant prayers,

never-ending love and support; I would not amount to anything. I am also very

appreciative to the support given to me by other family members, especially my

sister Iman El-Attar and brother Omar El-Attar, I miss you both and I am always

thinking of you. I would also to make a very heartfelt dedication of this thesis to

my grandparents, Mahmoud El-Attar (Geddo), Soraya El-Attar (Nona), Sameeha

Badawy (Teita) and my late grandfather El-Sayed Badawy (Geddo El-Sayed). I

love you all very dearly and miss you all very much.

to Mahmoud El-Attar

(Geddo)

Abstract

Use Case modeling has been constantly gaining popularity as the technique of

choice for eliciting and documenting functional requirements. The deployment of

Use Case models in industry has resulted in many positive experience reports

being published. The inclusion of Use Case modeling into the Unified Modeling

Language (UML) (OMG 2005) has aided its widespread use in industry,

especially within the object-oriented community.

 One of the most attractive aspects of Use Case modeling is its technical

simplicity, allowing stakeholders with differing backgrounds, to have a common

understanding of the requirements. This technical simplicity can be deceptive, as

many modelers create models that are incorrect, inconsistent, and ambiguous and

contain restrictive design decisions. In Use Case driven development processes,

Use Case models are used to drive the design and test phases. While a number of

techniques have been proposed to develop test cases from Use Case models, these

techniques tend to suffer from two major shortcomings. The techniques are

technically too complex to be effectively used by its potential users (business

analysts and customers); and the inability to use these techniques in the early

stages of development.

 This thesis describes work tackling these deficiencies. Support for

developing higher quality Use Case models is achieved by developing a modeling

syntax that ensures consistency when constructing Use Case models. A controlled

experiment was performed to empirically evaluate the effectiveness of using the

modeling syntax. In addition, a technique based on utilizing antipatterns to detect

potentially defective areas in Use Case models was developed. The technique

prompts modelers to revise and remedy poor design decisions, yielding superior

quality models. Finally, a framework was developed, which utilizes Use Case

models, to develop acceptance tests. The framework was designed to account for

the technical abilities of its potential users.

Acknowledgements

I am indebted to my supervisor Dr. James Miller for his invaluable advice and

criticism. Dr. James Miller has welcomed me to his research group with open

arms since day one. Without him this thesis would genuinely not have been

completed. I am very grateful for his support throughout my research. I am also

very grateful for his essential advice towards my future academic and industrial

careers. I regard Dr. James Miller not only as an excellent supervisor, but also as a

best friend. I would like to thank Dr. Lionel Briand for accepting my enrollment

into his Software Engineering undergraduate project back in the summer of 2002

and for inspiring to pursue a graduate degree in the field.

 I would also like to thank my fellow graduate students at the department

of Electrical and Computer Engineering, University of Alberta, who volunteered

to take part in a controlled experiment performed during this research.

 A number of other people that I would like to thank for taking time out of

their busy schedules to answer my technical questions, namely Mr. Brian

Berenbach, Mr. Scott Ambler, and Mr. Kurt Bittner.

The research contained within this thesis was supported by a number of

Graduate Teaching Assistant position with the Department Electrical and

Computer Engineering, University of Alberta. Travel to conferences was

supported by the Department. Their support is gratefully acknowledged.

Publications

The research contained in thesis is based on a number of publications. These are

as follows:

Chapter 3:

• Producing Robust Use Case Diagrams via Reverse Engineering of Use Case

Descriptions. M. El-Attar, J. Miller, Journal of Software and Systems

Modeling, 2007.

• A User-Centered Approach to Modeling BPEL Business Processes Using

SUCD Use Cases. M. El-Attar, J. Miller, Journal of Software Developement

and Theory, Practice and Experimentation - e-Informatica, 2007.

• A Subject-Based Empirical Evaluation of SSUCD's Performance in Reducing

Inconsistencies in Use Case Models, M. El-Attar, J. Miller, Journal of

Empirical Software Engineering, 2009.

• AGADUC: Towards a More Precise Presentation of Functional Requirements

in Use Case Models, M. El-Attar, J. Miller, 4
th

 ACIS International Conference

on Software Engineering, Research, Management and Applications, 2006.

Chapter 4:

• Improving the Quality of Use Case Models Using Antipatterns, M. El-Attar, J.

Miller, Journal of Software and Systems Modeling, 2009.

• Matching Antipatterns to Improve the Quality of Use Case Models, M. El-

Attar, J. Miller, 14
th

 IEEE International Requirements Engineering

Conference, 2006.

• A Systematic Review and Formulation of Use Case Modeling Antipatterns,

M. El-Attar, J. Miller, Journal of Information and Software Technology,

(under review).

Chapter 5:

• Developing Comprehensive Acceptance Tests from Use Cases and

Robustness Diagrams, M. El-Attar, J. Miller, Requirements Engineering

Journal (under review).

Contents

CHAPTER 1 - NTRODUCTION... 1

1.1. THE REQUIREMENTS ENGINEERING PROCESS .. 2
1.2. ISSUES WITH REQUIREMENTS ENGINEERING.. 5
1.3. THESIS CONTRIBUTION ... 7
1.4. THESIS OUTLINE .. 8

CHAPTER 2 - A REVIEW OF UC MODELING ISSUES AND POSSIBLE IMPROVEMENTS 11

2.1 UC MODELING ... 11
2.2 COMPONENTS OF A UC MODEL ... 12
2.3 SEMANTICS OF THE UC MODELING NOTATION.. 14

2.3.1 Use Cases.. 14
2.3.2 Actors.. 15
2.3.3 Relationships .. 15
2.3.4 Association.. 16
2.3.5 Relationships between UCs Only .. 17
2.3.6 Actor Generalization... 19

2.4 IMPROVING UC MODELING... 20
2.4.1 Improving the Quality of UC Models .. 20
2.4.2 Improving the Requirements Engineering Process Using UC Models 23

2.5 THESIS CONTRIBUTIONS TOWARDS IMPROVING UC MODELING .. 26
2.5.1 Improving the Presentation of Functional Requirements in UC Models 26
2.5.2 Improving Consistency in UC Models.. 27
2.5.3 Consequences of Inconsistencies in UC Models .. 28
2.5.4 Inconsistencies: A Closer Look .. 30
2.5.5 Reducing Inconsistencies in UC Models with SSUCD – An Empirical Evaluation..... 33
2.5.6 Using Antipatterns to Improve the Quality of UC Models 35
2.5.7 Towards Achieving the Benefits of Acceptance Testing for UC-Driven Development

Processes 35

CHAPTER 3 - USING STRUCTURE TO IMPROVE THE QUALITY OF USE CASE MODELS................. 39

3.1 IMPROVING THE PRESENTATION OF FUNCTIONAL REQUIREMENTS IN UC MODELS 39
3.1.1 Introduction .. 39
3.1.2 Related Work .. 40
3.1.3 The AGADUC process and the SUCD Structure ... 41
3.1.4 Mapping UC Descriptions to UCADs ... 43
3.1.5 The Library System Case Study ... 49

3.1.5.1 Displaying UCADs and Their Dependencies.. 52
3.1.6 AREUCD – Automating the ARADUC Process.. 55

3.2 PRODUCING CONSISTENT USE CASE MODELS VIA REVERSE ENGINEERING OF USE CASE DESCRIPTIONS 57
3.2.1 Introduction .. 57
3.2.2 Related Work in UC Authoring.. 57

3.2.2.1 Maintaining the Readability of UC Descriptions... 60
3.2.3 Simple Structured UC Description (SSUCD) ... 61

3.2.3.1 A Brief Introduction to the Elements of SSUCD.. 62
3.2.3.2 Formalizing the SSUCD Structure Grammar ... 69

3.2.4 Consistency and Mapping Rules between UC Descriptions and Diagrams............. 69
3.2.5 Tool Support Using SARUECD ... 74
3.2.6 SSUCD Modeling Language Design... 77

3.2.7 Online Hockey Team Store System Case Study ... 84
3.3 A SUBJECT-BASED EMPIRICAL EVALUATION OF SSUCD’S PERFORMANCE IN REDUCING INCONSISTENCIES

IN USE CASE MODELS .. 96
3.3.1 Introduction .. 96
3.3.2 Experimental Planning.. 96

3.3.2.1 Experiment Definition .. 96
3.3.2.2 Experiment Context.. 97
3.3.2.3 Hypotheses Formulation .. 98
3.3.2.4 Subject Selection .. 99
3.3.2.5 Experimental Design and Tasks .. 99
3.3.2.6 Time Allocation... 101
3.3.2.7 Instrumentation ... 101
3.3.2.8 Analysis Procedure ... 102
3.3.2.9 Scoring and Measurement ... 102

3.3.3 Analysis and Interpretation .. 111
3.3.3.1 Performed Analysis .. 113
3.3.3.2 SSUCD vs. UNL – Inconsistencies.. 114
3.3.3.3 SSUCD vs. UNL – Completeness ... 116
3.3.3.4 SSUCD vs. UNL – Understandability ... 118
3.3.3.5 SSUCD vs. UNL - Fault-Free and Non-Analytical Information ... 119
3.3.3.6 Airline Ticketing System vs. Banking System .. 122
3.3.3.7 Group A vs. Group B ... 125

3.3.4 Threats to Validity .. 127
3.3.4.1 Conclusion Validity ... 127
3.3.4.2 Internal Validity .. 128
3.3.4.3 Construct Validity ... 128
3.3.4.4 External Validity ... 129

CHAPTER 4 - IMPROVING THE QUALITY OF USE CASE MODELS USING ANTIPATTERNS132

4.1. INTRODUCTION ... 132
4.2. RELATED WORK .. 133

4.2.1. Computer-supported Verification of UC Models – State of the art 133
4.2.2. Other Approaches... 133

4.3. UC MODELING ANTIPATTERNS .. 135
4.3.1. Advantages of Using Antipatterns: What Can Antipatterns Do? 136
4.3.2. Matching Antipatterns With UC Models .. 137
4.3.3. Using OCL to Describe Unsound Diagrammatic Structures 138
4.3.4. Domain Independent vs. Domain Dependent Antipatterns.................................. 141
4.3.5. A Systematic Review Process for Antipattern Development................................. 144

4.3.5.1 Data Classification Scheme and Scope ... 146
4.3.5.2 Search Strategy .. 147
4.3.5.3 Filtering the Results.. 148
4.3.5.4 Filtering the Results.. 149
4.3.5.5 Results Analysis .. 150

4.3.6. Examples of UC Modeling Antipatterns.. 151
4.4. TOOL SUPPORT USING ARBIUM ... 222
4.5. EVALUATION... 224

4.5.1. Definition and Motivation .. 224
4.5.2. Case Study Formulation.. 225
4.5.3. Analysis and Interpretation of the Results.. 230
4.5.4. Discussion of Results and Validation .. 240

4.6. COMPARISON OF ALTERNATIVE APPROACHES.. 243

CHAPTER 5 - DEVELOPING COMPREHENSIVE ACCEPTANCE TESTS FROM USE CASES246

5.1. INTRODUCTION ... 246

5.2. DEVELOPING ACCEPTANCE TESTS FROM USE CASES ... 247
5.2.1. Phase 1: Developing High Level Acceptance Tests for Each Use Case 256
5.2.2. Phase 2: Performing Robustness Analysis .. 260
5.2.3. Phase 3: Developing Executable Acceptance Tests for Each Use Case 268

5.3. TOOL SUPPORT WITH UCAT.. 270
5.4. EVALUATING THE EFFICIENCY OF THE DEVELOPED TESTS.. 272
5.5. THE RESTOMAPPER SYSTEM CASE STUDY .. 272

5.5.1. UC: Generate Restaurant Map for City... 277
5.5.1.1 Examining the UC Descriptions and Creating its HLATs (Phase 1) 278
5.5.1.2 Robustness Analysis (Phase 2).. 279
5.5.1.3 Creating Executable Acceptance Tests (Phase 3) ... 280

5.5.2. Efficacy of the Developed Acceptance Tests... 282
5.6. ROLE OF THE DEVELOPED ACCEPTANCE TESTS ... 283

CHAPTER 6 - CONCLUSIONS...285

6.1. SUMMARY ... 285
6.2. CONTRIBUTIONS AND RESULTS ... 286

6.2.1. Improving the Understandability of Functional Requirements with AGADUC..... 286
6.2.2. Reducing Inconsistencies with SSUCD... 286
6.2.3. Using Antipatterns to improve the Quality UC models... 288
6.2.4. Producing Acceptance Tests from UC Models .. 290

6.3. FUTURE WORK ... 291
6.3.1. Future Work Based on Structured UCs ... 291
6.3.2. Future Work Based Using Antipatterns .. 292
6.3.3. Future Work Based Developing Acceptance Tests from UC Models..................... 293

BIBLIOGRAPHY ..294

APPENDIX A - SUCD E-BNF...310

APPENDIX B - ACTOR AND UC DESCRIPTIONS OF THE LIBRARY SYSTEM CASE STUDY..............314

APPENDIX C - SSUCD E-BNF ...316

APPENDIX D - SCORING UCS DEVELOPED IN THE EXPERIMENT..318

D.1. SCORING UCS FROM THE BANKING SYSTEM DEVELOPED IN UNL .. 318
D.2. SCORING UCS FROM THE AIRLINE TICKETING SYSTEM DEVELOPED IN SSUCD................................ 320

APPENDIX E - SYNTAX FOR CREATING COLUMNFIXTURES AND ROWFIXTURES324

APPENDIX F -ROBUSTNESS ANALYSIS OF THE “GENERATE RESTAURANT MAP FOR CITY” UCS 327

APPENDIX G - ANALYZING UC “DISPLAY ROLLOVER INFORMATION”.......................................330

G.1. EXAMINING THE UC DESCRIPTION AND CREATING ITS HLATS (PHASE 1)...................................... 331
G.2. ROBUSTNESS ANALYSIS (PHASE 2) .. 332

List of Tables

Table 1-1: Examples of errors and mistakes that can be committed during Requirements

Engineering. ... 5
Table 2-1: UC description template ... 13
Table 2-2: Quality attributes of a UC model .. 22
Table 3-1: shows the UC description of the Borrow Book UC described in SUCD 50
Table 3-2: Quality principles that should be present in modeling languages 78
Table 3-3: A summary of SSUCD’s language constructs and their purposes 79
Table 3-4: Five dependent variables and their corresponding hypotheses 98
Table 3-5: Experimental design.. 100
Table 3-6: Details of the two systems used in this experiment .. 100
Table 3-7: defect examples... 103
Table 3-8: Scoring Strategy.. 108
Table 3-9: Mann-Whitney test for the ‘Inconsistencies’ results... 115
Table 3-10: Cliff’s delta for the ‘Inconsistencies’ results... 115
Table 3-11: Mann-Whitney test for the ‘Completeness’ results... 118
Table 3-12: Cliff’s delta for the ‘Completeness’ results... 118
Table 3-13: Mann-Whitney test for the ‘Understandability’ results... 119
Table 3-15: Mann-Whitney test for the ‘Fault-Free’ results... 121
Table 3-16: Mann-Whitney test for the ‘Non-Analytical’ results .. 121
Table 3-17: Cliff’s delta for the ‘Fault-Free’ and ‘Non-Analytical’ results 122
Table 3-18: Descriptive statistics of the results.. 123
Table 3-19: Mann-Whitney test for all quality attributes ... 123
Table 3-20: Cliff’s delta for all quality attributes... 123
Table 3-21: Descriptive statistics of the results.. 126
Table 3-22: Mann-Whitney test for all quality attributes ... 126
Table 3-23: Cliff’s delta for all quality attributes... 127
Table 4-1: Antipattern template.. 136
Table 4-2: Types of antipatterns... 142
Table 4-3: First Iteration Matches .. 231
Table 4-4: First iteration analysis ... 232
Table 4-5: Second iteration matches .. 239
Table 4-6: Second Iteration Analysis ... 239
Table 4-7: Addressing issues in the MAPSTEDI UC model.. 240
Table 4-8: Examining the MAPSTEDI UC model for violations of the heuristics presented in

(Berenbach 2007) ... 243
Table 5-1: User acceptance testing vs. system testing.. 248
Table 5-2: Desirable characteristics of a technique aimed at developing acceptance tests 250
Table 5-3: HLAT format: The first column of a HLAT defines a unique test ID. 259
Table 5-4: Robustness diagram objects .. 261
Table 5-5: Properties of the RestoMapper UC model .. 274
Table 5-6: Objects in the domain model .. 276
Table 5-7: HLATs for the Generate Restaurant Map for City UC .. 279
Table 5-8: Results of performing robustness analysis on the Basic Flow 280
Table 5-9: Results of performing robustness analysis on the Alternative Flow 280
Table 5-10: Coverage provided by the created EATs .. 283
Table G-1: HLATs for the Display Rollover Information UC ... 331
Table G-2: Results of performing robustness analysis on the Basic Flow 335
Table G-3: Results of performing robustness analysis on the Alternative Flow: Clicked on

coordinates with multiple restaurants .. 336
Table G-4: Results of performing robustness analysis on the Alternative Flow: Clicked on

coordinates with no restaurants ... 337

List of Figures

Figure 1-1: The Requirements Engineering Process and its Sub-disciplines 4
Figure 2-1: Explanatory UC diagram ... 12
Figure 2-2: The application of the REUCD process to systematically generate UC diagrams from

descriptions .. 32
Figure 2-3: V-Model development process .. 36
Figure 3-1: The AGADUC process.. 43
Figure 3-2: Conversion of a Header to activities in swimlanes ... 45
Figure 3-3: Transforming RESUME and AFTER statements .. 46
Figure 3-4: The Library system UC diagram ... 49
Figure 3-5: The UCADs of the entire UC model ... 54
Figure 3-6: AREUCD generating the UCADs for the UC model .. 56
Figure 3-7: UC name and its representation... 63
Figure 3-8: Abstraction and implementation in UCs and their representation 64
Figure 3-9: Generalization between UCs its representation ... 65
Figure 3-10: Associations between UCs and actors and its representation 65
Figure 3-11: The include relationship represented in the UC description body 66
Figure 3-12: The extend relationship represented in the UC description body. 68
Figure 3-13: Systematically generating UC diagrams from descriptions and description skeletons

from diagrams .. 71
Figure 3-14: A screenshot of SAREUCD after transforming the descriptions to an object model 75
Figure 3-15: A UC description ... 77
Figure 3-16: The UC diagram after three UC descriptions are read... 90
Figure 3-17: The UC diagram after five UC descriptions are read... 93
Figure 3-18: The UC diagram after all UCs and actors are read .. 94
Figure 3-19: Illustration of the box and whiskers plot’s diagrammatic notation.......................... 111
Figure 3-20: Inconsistencies - Airline Ticketing System ... 114
Figure 3-21: Inconsistencies - Banking System ... 115
Figure 3-22: Completeness - Airline Ticketing System ... 117
Figure 3-23: Completeness - Banking System ... 117
Figure 3-26: Fault-Free - Airline Ticketing System ... 119
Figure 3-27: Fault-Free - Banking System... 120
Figure 3-28: Non-Analytical - Airline Ticketing System... 120
Figure 3-29: Non-Analytical - Banking System... 121
Figure 4-1: The simplified version of the UC metamodel used in ARBIUM............................... 141
Figure 4-2: A good scenario of an actor being directly associated with a generalized UC.......... 152
Figure 4-3: The execution flow of a generalization relationship ... 153
Figure 4-4: A bad scenario of an actor being directly associated with a concrete generalized UC

.. 154
Figure 4-5: The generalized UC is set to be abstract to make sure that one of its specializing UCs

services the actor’s request. .. 155
Figure 4-6: Direct access to the generalized UC is avoided and replaced with direct access to its

specializing UCs... 156
Figure 4-7: UC Car Not Found was incorrectly used for the purposes of containing common

functionality and exception-handling behavior. ... 157
Figure 4-8: The shared UC is broken into two separate UCs, each serving a different purpose. . 159
Figure 4-9: Functional decomposition of the Prepare Coffee UC .. 160
Figure 4-10: Improper use of the extend relationship to promote functional decomposition 163
Figure 4-11: Extending UCs disjointed to properly handle different exceptional situations. 166
Figure 4-12: Sequencing a set of UCs to make a phone call .. 167
Figure 4-13: Creating a virtual call sequence between UCs using pre and postconditions 168
Figure 4-14: A good scenario of directly accessing an extending UC to allow independent

initiation of an optional service .. 170

Figure 4-15: The extension UC is used to notify the actor of an exceptional situation. 171
Figure 4-16: The actor is allowed to directly access the extension UC since the actor is the source

of information required by the extension UC. .. 171
Figure 4-17: The extending UC communicates with the actor decide how to deal with an

exceptional situation... 172
Figure 4-18: Setting the navigation allows the UC to initiate communication with the actor...... 175
Figure 4-19: The base UC should be the one conveying the extension UC its required information

instead of the actor. .. 175
Figure 4-20: Setting the navigation direction to ensure that the actor does not start the interaction

with the extension UC. ... 176
Figure 4-21: Two actors that play a similar role when executing a UC 176
Figure 4-22: A model representing instances of an actor ... 177
Figure 4-23: Two actors appropriately associated with a UC .. 177
Figure 4-24: The overlapping roles between the two actors should be generalized into a separate

actor.. 179
Figure 4-25: The model should represent the role of a class of users not instances of them........ 179
Figure 4-26: an abstract UC including subroutine behavior and being extended by a UC

containing exceptional or optional behavior .. 182
Figure 4-27: An abstract UC including UCs that contain specialized behavior 183
Figure 4-28: The abstract UC now set to be concrete.. 184
Figure 4-29: The abstract UC is associated with its specializing UCs using the generalization

relationship ... 185
Figure 4-30: Multiple generalizations of one UC .. 186
Figure 4-31: The generalized UC should be included by the other UCs that need it 187
Figure 4-32: Duplicating functionalities for the generalized and specialized UCs 187
Figure 4-33: Only the appropriate include/extend relationships remain....................................... 189
Figure 4-34: An actor directly association with an unimplemented abstract UC 190
Figure 4-35: Two actors initiating one UC... 192
Figure 4-36: Only one actor should initiate a UC .. 194
Figure 4-37: Two different actors with the same name.. 194
Figure 4-38: The actors are given more distinguishing names... 196
Figure 4-39: Two subsystems are presented as two UC diagrams, both containing the name actor

.. 197
Figure 4-40: A Keyboard actor is used to enter billing information... 205
Figure 4-41: A Printer actor is required to print statements. .. 205
Figure 4-42: The Keyboard actor is replaced with the actual actor Customer. 207
Figure 4-43: Extending the metamodel to support actor to actor associations 213
Figure 4-44: Two UCs trading information to provide a service ... 214
Figure 4-45: A main UC is communicating with other UCs by “calling” them to retrieve necessary

information ... 215
Figure 4-46: A UC communicating with the other to provide exceptional behavior.................... 215
Figure 4-47: Extending the metamodel to support UC to UC associations context 217
UseCase.. 217
Figure 4-48: Communicating UCs merged into one... 218
Figure 4-49: Communicating UCs are included by a UC that provides a separate complete service

.. 218
Figure 4-50: The UC containing exceptional behavior now extends the base UC 219
Figure 4-51: An overview of how ARBIUM and USE can automate the detection process........ 224
Figure 4-52: The UC diagram of the “Database Access” subsystem ... 227
Figure 4-53: The UC diagram of the “Database Queries” subsystem .. 227
Figure 4-54: The UC diagram of the “Database Integrator” subsystem....................................... 227
Figure 4-55: The UC diagram of the “Database Edits” subsystem .. 228
Figure 4-56: The UC diagram of the “Administrative Process” subsystem 228
Figure 4-57: The Database Access UC diagram after the first iteration....................................... 237
Figure 4-58: A merged view of the remaining three UC diagrams after the first iteration........... 238
Figure 4-59: The Administrative Process UC diagram after the first iteration............................. 238

Figure 5-1: The overall process of developing high and executable acceptance tests per UC 255
Figure 5-2: Developing HLATs by analyzing the UC text and domain model 260
Figure 5-3: The banking system UC model.. 263
Figure 5-4: The “Withdraw Cash” UC description (left) and domain model (right).................... 263
Figure 5-5: The robustness diagram corresponding to the “Withdraw Cash” UC........................ 265
Figure 5-6: The updated “Withdraw Cash” UC description (top) and domain model (bottom) .. 266
Figure 5-7: ActionFixture example of performing transactions.. ... 269
Figure 5-8: UCAT – associating FIT tests with the “Withdraw Cash” UC.................................. 271
Figure 5-9: UCAT – displaying test results of the “Calculate Investments” UC 271
Figure 5-10: The UC diagram of the RestoMapper application ... 273
Figure 5-11: The RestoMapper UC model into UCAT .. 274
Figure 5-12: The initial domain model of the RestoMapper system .. 275
Figure 5-13: Textual description of the Generate Restaurant Map for City UC.......................... 278
Figure 5-14: EAT of the Basic Flow .. 281
Figure 5-15: EAT of the Alternative Flow: Invalid Zoom Setting ... 281
Figure 5-16: Subsection of the V-Model development process emphasizing the role of acceptance

tests... 284
Figure D-1: Example Banking system UC diagram developed by a subject................................ 318
Figure D-2: Example Airline Ticketing system UC diagram developed by a subject.................. 321
Figure E-1: ColumnFixture example of calculating the return on one year investments.. 324
Figure E-2: RowFixture example of checking account activities. .. 325
Figure E-3: ActionFixture example of performing transactions... 325
Figure G-1: Textual description of the Display Rollover Information UC................................... 331
Figure G-2: EAT of the Basic Flow ... 338
Figure G-3: EAT of the Alternative Flow: Clicked on coordinates with multiple restaurants 339
Figure G-4: EAT of the Alternative Flow: Clicked on coordinates with no restaurants 339

1

Chapter 1

Introduction

Software Requirements Engineering is an important aspect of any software

project. Requirements Engineering is the process of determining what is to be

produced in a software system. In developing a complex software system, the

requirements engineering process has the widely recognized goal of determining

the needs for, and the intended external behavior, of a system. In their pioneering

book on Software Requirements Engineering (Sommerville and Sawyer 1996),

Sommerville and Sawyer define Requirements Engineering as follows:

“Requirements are…a specification of what should be implemented. They are

descriptions of how the system should behave, or of a system property or

attribute. They may be a constraint on the development process of the system.”

It can be deduced from this broad definition that there are different types of

requirements information that to need to be gathered, which can be generally split

into three categories (Wiegers 2003):

• Business requirements describe why the product is being built and identify the

benefits that both the customers and the business will reap.

2

• User requirements, often captured in the form of use cases, describe the tasks

or business processes a user will be able to perform with the product.

• Functional requirements describe the specific system behavior that must be

implemented. The functional requirements are the traditional "shall"

statements found in a software requirements specification (SRS) document.

1.1. The Requirements Engineering Process

The term Requirements Engineering is a general term used to encompass all

activities related to the requirements process. The requirements engineering

process can be fine-grained into two main categories: (a) Requirements

Development; and (b) Requirements Management (Wiegers 2003). Requirements

Development is further subdivided into four main activities (see Figure 1-1). Even

though these activities usually do not occur exclusively, they generally occur in

sequence. The four activities of Requirements Development are:

� Elicitation

This activity is concerned with the acquisition of information and data that will

ultimately be used to determine the needs or conditions to meet for a new or

altered software product. This activity ideally begins with identifying stakeholders

and determining their expectations using a number of techniques such as

conducting interviews, workshops and observing them perform duties in their

workplace. Stakeholders include beneficiaries, customers and end-users. There

are also other sources for requirements that need to be considered, such as

3

previous software products that are in place or have been used in the past and

general domain knowledge.

� Analysis

This activity involves an analysis of the information and data gathered during the

elicitation activity. Analysis is performed to:

o Determine and discard irrelevant and redundant data;

o Identify conflicting requirements of the various stakeholders; and

o Determine other requirements “missed” during the requirements

elicitation activity.

The ultimate goal of performing requirements analysis is determining exactly

what the stakeholders actually need and what can be expected from the software

product.

� Specification

Requirements specification is the activity of presenting and documenting the

requirements. This activity is required for two critical reasons: (a) to allow

business stakeholders such as customers and end-users to verify and “sign-off” on

the software product to be built: and (b) for the development team to determine a

design solution that will realize these requirements. Requirements can be

presented in multiple forms and using a number of techniques. For example:

o A Software Requirements Specifications (SRS) document.

o Use Case Models.

4

o User Stories.

o Formal methods.

o Prototypes.

Each technique has advantages and disadvantages.

� Verification

Upon specifying the requirements, they need to be verified. This is a critical

activity that ensures that the “right” system will be built. At the business end,

stakeholders such as the customer and end-users ensure that their needs will be

satisfied by verifying and agreeing upon the specified capabilities, behavior and

limitations of the software product. At the development end, developers verify the

specified requirements to ensure that they have an accurate understanding of the

software system’s capabilities, behavior and limitations.

Figure 1-1: The Requirements Engineering Process and its Sub-disciplines

Requirements Management, much like Software Management, involves the

tracing, estimation and overall management of the activities included in

Requirements Development, and it encompasses the entire life cycle of a project

(Hood et al. 2007; Leffingwell et al. 2000). Some software development

methodologies require that the entire (or at least the majority of the) Requirements

5

Engineering phase be conducted up front. However, it is uncommon that the

information and data necessary to produce a complete and stable set of

requirements is available up front. Hence, there are other development

methodologies that divide the Requirements Engineering effort throughout the

development life cycle. Regardless of the development methodology used,

Requirements Management is required for administrative, legal and financial

purposes.

1.2. Issues with Requirements Engineering

Requirements engineering can impact the success of a given project in multiple

ways. Improper practice or lack of Requirements Engineering can lead to the

development of the “wrong” system or a system that is later judged unsatisfactory

or unacceptable, has high maintenance costs, or undergoes frequent changes

(Wiegers 2003). Poor Requirements Engineering practices may occur during any

of the Requirements Engineering activities. Mistakes and improper practice may

occur during any activity of the Requirements Engineering process (see Figure 1-

1). This is further clarified with examples as shown in Table 1-1.

Table 1-1: Examples of errors and mistakes that can be committed during

Requirements Engineering.

Activity Examples of Errors and Mistakes due to Improper Practice

Elicitation

� Information and data gathered can be incorrect.

� Important requirements are missed.

� Inadequate user involvement.

� Inadequate preparation to interview users or for conducting

6

workshops.

� Insufficient domain knowledge acquisition.

Analysis

� Inability to detect conflicting requirements.

� Inability to discard redundant and irrelative information and

data.

� Improper classification of stakeholders.

� Improper definition of project scope.

� Incorrect assumptions.

Specification

� Specified requirements are incorrect.

� Specified requirements are ambiguous.

� Requirements are specified in a form that is too difficult to

understand.

� Requirements specifications are incomplete.

Validation

� Inadequate user and customer involvement to properly verify

all specified requirements.

� Inadequate involvement from the development team to verify

all specified requirements.

� Test cases produced are insufficient to encompass all (or at

least the most common and critical) usage scenarios.

Management

� Incorrect tracking of requirements specifications leading to a

set of requirements that are out-of-date, incorrect and

incomplete.

� Incorrect tracking of the Requirements Engineering budget and

7

inaccurate effort estimation techniques, leading to cost

overruns and schedule delays.

� Improper handling of legal issues leading to costly law suits.

Mistakes and errors such as those presented in Table 1-1 lead to the injection of

defects at the Requirements phase. It is a well known fact that the cost of

detecting and fixing bugs or defects introduced at the requirements phase

escalates significantly as they propagate to later development phases such as

coding and testing (Boehm 2005; Fagan 1976; Gilb et al. 1993; Wohlin et al.

1990). Therefore, it is most beneficial to improve Requirements Engineering to

eliminate or at least minimize any defects.

1.3. Thesis Contribution

Requirements Engineering is a thriving research area. Researchers and

practitioners in academia and industry search for ideas and solutions to improve

every aspect of Requirements Engineering. A detailed roadmap of Requirements

Engineering research can be found in (Betty et al. 2007). This thesis presents

research that aims to improve Requirements Specification and Verification, in

particular to improve the quality and usage of Use Case (UC) Models. UC

Modeling, which will be discussed in detail in Chapter 2, is a popular technique

for specifying functional requirements. Given its popularity, especially since UC

models are part of the very widely used UML (OMG 2005), UC models provide

an excellent venue to improve Requirements specification and validation efforts,

8

and hence improving the Requirements Engineering process in general. This can

be achieved by improving various aspects of UC models. In particular, this thesis

makes the following contributions:

� An approach that bridges the gap between the analysis phase and the

design phase by systematically transforming UC models into activity-like

diagrams as a means to unambiguously communicate the intended

functional requirements.

� A structure that will improve quality in UC models by ensuring their

consistency.

� A technique based upon detecting antipatterns (discouraged modeling

practices) that will prompt modelers to reconsider their design and perhaps

change it to improve the quality of the developed UC model.

� A technique that utilizes UC models to produce a comprehensive set of a

User Acceptance Tests to improve the validation activity of functional

requirements by its users.

1.4. Thesis Outline

The remainder of this thesis takes the following form:

Chapter 2: The body of the thesis begins with an introduction to UC modeling,

its basic concepts and common terminology. This Chapter also presents a review

of UC modeling issues as described in the literature, which suggested the main

areas of research which should be undertaken to improve UC modeling.

9

Chapter 3: This Chapter introduces the concept of utilizing a structure to author

UC descriptions to improve the overall UC modeling efforts. This Chapter has

three major Sections:

� Section 3.1 presents the AGADUC process and the SUCD structure,

which were developed to systematically generate activity-like diagrams

that provide a more precise presentation of a system’s functional

requirements.

� Section 3.2 presents the SSUCD structure, which is a simplified version of

the previously developed SUCD. SSUCD is used to aid UC authors in

developing consistent UC models and thus improving the quality of the

models they create.

� Section 3.3 presents an empirical evaluation of SSUCD vs. unstructured

natural language (UNL) to gauge the accessibility of SSUCD by its

potential users and to compare its effectiveness in reducing inconsistencies

in comparison to using UNL.

Chapter 4: This chapter presents work that resulted in developing a new

technique that utilizes antipatterns as a mechanism for improving the quality of

existing UC models. The technique is based on recognizing questionable

modeling decisions and prompting the modeler to reconsider these decisions. The

result of this technique is that the modeler would make better educated modeling

decisions, which may lead the modeler to change the model accordingly or leave

it unchanged.

10

Chapter 5: This chapter presents a new technique that will improve

Requirements Validation by developing a more comprehensive set of User

Acceptance Tests. The technique primarily utilizes UC models as a basis for

developing acceptance tests.

Chapter 6: The final chapter summarizes the content and contributions of this

thesis, considers further work related to this research, and presents some

conclusions.

11

Chapter 2

A Review of UC Modeling Issues and

Possible Improvements

As a prelude to describing the issues associated with and possible improvements

for UC modeling, this Chapter begins with introducing UC modeling, its main

components as well as its notational syntax and semantics. This Chapter then

provides an in-depth review of the UC modeling literature to expose the

limitations, drawbacks and possible improvements that motivated the research

work presented in subsequent Chapters.

2.1 UC Modeling

UC modeling (OMG 2005), since it was introduced in the early 1990s by Ivar

Jacobson has been constantly gaining wide acceptance by analysts, designers,

testers and other stakeholders of a project. UC modeling can be used to drive the

design phase, the testing phase (Jacobson 1992, Kaner et al. 2003) and can be

utilized for managerial purposes such as effort estimation (Anda et al. 2001b) and

business modeling (Jacobson et al. 1995). The success experienced by UC

modeling is chiefly because it is very simple to use to effectively describe the

functional requirements of a system. Another attractive aspect of UC modeling is

12

that it contains a small diagrammatic notational subset and a large degree of

natural language. This allows all of the stakeholders within a project to

understand the UC model – even those who are not technically equipped. This in

turn will ensure that all stakeholders have a common understanding and

agreement upon the capabilities and features of the system.

2.2 Components of a UC Model

A UC model contains three main components; (a) a diagram, (b) textual

descriptions of the UCs, and (c) a glossary. Each component serves a different

purpose and they are explained in further detail below:

I. UC Diagram: The diagram serves as a visual summary of the involvement

between the system’s users and the services it offers. A UC diagram is

composed of actors, UCs, the system boundary and several types of

relationships between actors and UCs (see Figure 2-1). The modeling

semantics behind each diagrammatic element is further explained in Section

2.3.

Figure 2-1: Explanatory UC diagram

13

II. UC Descriptions: Each UC must have a written description that clearly

describes its behavior and purpose. Therefore, there is a “UC Description”

component for each UC. A template is usually used to compose UC

descriptions. There exist many templates to describe UCs. Various templates

are used to describe UCs at various levels of abstraction, or to target specific

domains. The template considered throughout this thesis is shown in Table 2-

1. This template is considered since it contains sections that are commonly

present in most UC templates.

Table 2-1: UC description template

Brief Description: A brief description of the UC’s main behavior.

Preconditions: All the preconditions that must be satisfied before the execution

of the UC can commence.

Basic Flow: A list of events that would “normally” occur when the UC is

performed.

Alternative Flows: A list of events that cover behavior that is optional,

exceptional or just significantly different from the basic flow.

Sub-flows: A list of events representing a segment of behavior within the UC.

Those events need to have a clear purpose and are “atomic”.

Postconditions: All the postconditions that must be satisfied before the

execution of the UC can be successfully completed.

Extension Points: Particular locations in the flow of events where additional

behavior can be inserted or attached.

Special Requirements: Any additional special requirements required by the

14

UC for its proper execution.

III. Glossary: This component is not exclusive to UC models. The glossary is

used to describe terms found in the entire set of documents of a project. For

the purposes of UC models, the glossary should contain a brief description of

the actors, the UCs and any other terms described in the UC model.

2.3 Semantics of the UC Modeling Notation

Constructing UC models requires knowledge of its notation and the semantics

behind each notational construct. As mentioned previously, a UC diagram

contains UCs, actors and a limited set of relationships that combine these

elements together. In this Section, a detailed explanation of each notational

construct and its semantics is presented.

2.3.1 Use Cases

UCs are the building blocks of a UC diagram. UCs represent the set of services

that the underlying system provides to its beneficiaries. A service represented by a

UC must be complete and meaningful. Graphically UCs are depicted as ovals

with its intended service written in the center of the oval. There exist two types of

UCs: (a) concrete UCs, and (b) abstract UCs. In conformance with Object-

Oriented concepts, a concrete UC can be initiated (“performed”) to provide a

complete and meaning service to an actor. This is the nominal type of UC. An

abstract UC cannot be solely initiated. An abstract UC needs to be implemented

15

by other concrete UCs in order to provide a meaningful service to an actor. An

abstract UC provides a high-level description of a functionality that needs to be

performed. UCs that implement an abstract UC provide details of how this

functionality is performed. For a UC to implement the functionality of an abstract

UC, it is linked to it through an implementation relationship. An abstract UC is

graphically distinguished from concrete UCs be having its label in an italic font

and by having the <<abstract>> stereotype depicted in the UC oval. The

implementation relationship as well as other types of relationships will be

discussed in greater detail in Section 2.3.5.

2.3.2 Actors

An actor is any external entity that interacts with the system at hand. An actor

does not have to be a human. An actor can be other systems too. Beneficiaries of a

system’s services are usually modeled as actors however not every actor is a

beneficiary. Primary actors are the actors that are involved with the system to

attain a service from the system. Secondary actors are actors that are involved

with the system in order to facilitate the delivery of a service to the primary actor.

Graphically actors can be depicted using any icon. Traditional human actors are

depicted as stick-man figures.

2.3.3 Relationships

There are a limited number of relationships that can exist between elements of a

UC model. Relationships define the nature of the association between elements of

16

a UC model. There are relationships that are only valid between UCs; a single

type of relationship that is only valid between actors and UCs; and a single type

of relationship that is only valid between actors.

2.3.4 Association

The association relationship is the only type of relationship that is allowed

between a UC and an actor. The association relationship simply means that the

actor is “involved” with the given UC and can benefit from its services. The

association relationship also means that an actor can initiate a UC, or the UC can

initiate an interaction with the actor. Graphically, an association relationship is

represented using a solid line between the actor and the UC. Directed association

relationships are similar to regular association relationship with the only

difference being that it specifies that only one of the involved parties is allowed to

initiate an interaction. This is determined graphically by amending an arrowhead

to one end of the association relationship. If the arrow is pointing towards the

actor, this means that only the UC is allowed to initiate an interaction between

itself and the actor. Meanwhile, if the arrow is pointing towards the UC, this

means that only the actor is allowed to initiate an interaction between itself and

the UC.

17

2.3.5 Relationships between UCs Only

There exist four types of relationships between UCs

• Inclusion

An inclusion relationship is used to “factor-out” a number of “steps” that are

common between a number of UCs. The inclusion relationship visually shows the

commonality in the behavior of two or more UCs. An inclusion UC contains

routine-type behavior. An inclusion UC is a UC is that is included by another

(base) UCs. When a base UC is performed, it “invokes” the behavior contained in

the inclusion UC every time. There is no condition set to “invoke” the inclusion

UC. It is important to note that since the inclusion UC contains behavior that

would normally be in the base UC, the base UC is now “incomplete” by itself,

and that is why the inclusion UC needs to be “invoked” every time. The notation

of an inclusion relationship is shown in Figure 2-1. Note that the inclusion UC is

the one being pointed at by the arrow.

• Extension and Extension Points

An extension relationship is used to allow one UC:

• to handle an exceptional (or erroneous) situation that occurs within the base

UC; or

• it is used to insert additional optional functionality.

An exceptional situation can be thought of as a very complicated alternative flow.

Whereby, if we would describe an alternative flow within the base UC, then the

18

description of the alternative flow would be so long that it will obscure the

principle purpose of the base UC. Exceptional situations often lead to situations

where the intended service is not delivered at all. In fact, there would be

“recovery” or “clean-up” procedures required due to that exceptional situation

arising.

Additional optional behavior on the other hand is different but much

simpler to identify. Additional optional behavior simply performs additional

procedures or functionality in addition to the functionality already described in

the base UC. This behavior is optional in nature with respect to the functionality

already described in the base UC. It is also useful to model behavior that is

intended for future releases, or a service that in itself is quite different from the

service provided by the base UC.

Regardless of the intent behind an extension relationship, a condition must

be set and satisfied in order for the extension UC to execute. The condition is a

property of the extension relationship itself. The notation of an extension

relationship is shown in Figure 2-1. Note that the extension UC is the one that

originates the arrow while the base UC is the one that is being pointed to by the

arrow.

Extension Points represent specific locations within the base UC where the

behavior from the extension UC will be inserted. Graphically an extension point

is depicted by drawing a horizontal line under the name of a UC and listing the

name of the extension point underneath.

19

• Generalization

This relationship is analogous to the generalization relationship of Object

Oriented design. A child is said to specialize the parent UC, while the parent UC

is said to generalize the child UC. The graphical notation is indeed the same as in

UML class diagrams. The parent UC will contain general behavior that is

applicable to all children UCs that specialize it.

• Implementation

The implementation relationship exists between an abstract UC and a concrete

UC that is said to implement it. The graphical notation is exactly the same as the

generalization relationship which can be a source of confusion. Abstract UCs as

mentioned earlier are “incomplete” UCs; hence, they cannot be “initiated”. That

is, they cannot be executed on their own (obviously because they are

“incomplete”). An abstract UC will usually describe a service that can be

performed in a number of ways. The means of implementation is described by the

child UC. The notation of the implementation relationship is similar to that of the

generalization relationship, where the arrowhead points towards the parent UC.

2.3.6 Actor Generalization

The actor generalization relationship has the same semantics as the UC

generalization relationship. The actor generalization relationship indicates that a

parent actor contains general characteristics with respect to the child actors that

specialize it. Actors are external entities to the system and hence intricate details

20

of how they work should not be described but rather how they relate to the

system. The actor generalization relationship is merely used to provide further

information about how the actors involved with the system relate to each other,

but not for the purposes of providing an in-depth explanation of their inner

workings. The actor generalization relationship is depicted similarly to the UC

generalization relationship.

The previous sections provided a brief introduction to UC modeling. A more in-

depth explanation of UC modeling concepts and its notation can be located in

(Bittner et al. 2002; Overgaard et al. 2003).

2.4 Improving UC Modeling

The general motivation behind the research presented in thesis is to improve two

aspects of UC modeling:

1. Improve the quality of UC models produced; and

2. Improve the Requirements Engineering Process using UC models.

2.4.1 Improving the Quality of UC Models

As a prerequisite to improving quality in UC models, it is necessary to identify

the quality attributes that a UC model should embody. The literature has

identified many quality attributes of UC models and have also proposed many

approaches to improve the quality of UC models (Anda et al. 2002, 2001a;

Belgamo et al. 2005; Ben Achour et al. 1999; Bittner et al. 2002; Booch et al.

21

2005; Cockburn 1995, 2000; Constantine et al. 1999; Firesmith 1999; Harwood

1997; Jaaksi 1998; Jacobson et al. 1992; Kaner et al. 2003; Kulak et al. 2000,

Larman 2001; Mattingly al. 1988; McCoy 2003; Regnell et al. 1995; Rosenberg et

al. 1999, 2007; Schneider et al. 1998; STEAM 2009). For example, (Ben Achour

et al. 1999; Cockburn 1995, 2000; Kaner et al. 2003; STEAM 2009) present

styling guidelines and templates to improve the authoring process of UCs. Other

templates were also presented in (Cockburn 1995, 2000; Höst et al. 2000;

Jacobson et al. 1992; Larman 2001; McBeen 2007). In (Kaner et al. 2003),

guidelines were proposed to help identify actors and UCs. Other guidelines and

techniques aim to help modelers avoid UC modeling pitfalls (Anda et al. 2002;

McCoy 2003). Even though the heart of a UC model is in its UC descriptions

(Anda et al. 2001a), the UC diagrams serve a different yet important purpose and

are commonly used in industry, for example (MAPSTEDI 2008; FAIN 2008;

SCM 2008; CancerGrid 2008). In turn, other guidelines were proposed to enhance

the quality of UC diagrams (Bittner et al. 2002; Rosenberg et al. 1999). Based on

the literature, the quality attributes of UC models can be divided into five major

categories as shown in Table 2-2. It can be deduced that an improvement in any

quality attribute, while not changing any other, improves the overall

understandability of the UC model.

22

Table 2-2: Quality attributes of a UC model

Quality

Attribute

Definition

Consistency

The UC diagram must conform to the concepts contained in

the UC descriptions and vice versa. Consistent facts and

information must be present across UC descriptions. If a UC

model contains more than one UC diagram, consistency

must exist between UC diagrams with respect to elements

that they depict.

Completeness

The underlying requirements must correctly be represented

by the UC diagram and textual descriptions. This means that

all information and facts that are expected to be in the UC

descriptions and diagram must be present.

Fault-Free

The UC diagram and descriptions must not contain any

information or facts that are incorrect, which misrepresent

the underlying requirements.

Analytical

The model should be analytical, meaning that it should only

describe what the system should do. This includes the

exclusion of any design or implementation decisions,

including interface details. Except those explicitly defined

by the customer.

Understandability

The model must be presented in a readable form. The

information contained in the UC descriptions must be

23

precise and unambiguous. The model should also not

contain repeated information as this may lead to confusion.

All stakeholders must share a common understanding of the

presented functional requirements.

A UC model lacking any of the quality attributes, presented in Table 2-2, is likely

to lead to harmful consequences. Anda et al. (Anda et al. 2001a) outline a

comprehensive list of potential harmful consequences that can result from a

deficiency in any quality attribute.

2.4.2 Improving the Requirements Engineering Process Using UC Models

The Requirements Engineering phase is very influential towards the overall

success of a Software Development project since it affects the success of each

subsequent development phase.

As mentioned in Section 1, the Requirements Engineering process consists

of two sub-disciplines; Requirements Development and Management. In order to

improve the Requirements Engineering Process, it is necessary identify the role of

UC modeling in performing these activities.

� Requirements Development

� Elicitation

In UC modeling, a UC is used to document one or more usage scenarios that

pertain to achieving a goal. From an elicitation stand point, UC modeling prompts

24

the requirements analyst to identify functional requirements in terms of the

services the system will offer its beneficiaries. The analyst will then be prompted

to identify the possible successful and unsuccessful scenarios that may occur

while attempting to attain these services. The analyst will also be prompted to

identify the potential external entities (actors) that will be interacting with the

system while it performs its duties.

� Analysis

Upon identifying the services that a system will provide and its usage scenarios,

an analyst will be able to determine key aspects of the system, such as:

o The most common usage scenarios and the exceptional ones. This will

allow the analyst to determine the Basic Flow and Alternative Flows.

o Common and repetitive workflows. This will allow the analyst to

determine Sub-flows and inclusion UCs.

o Additional required usage scenarios such as exception handling scenarios.

o The most common users of the system.

These analyses are made possible through various features of a UC model such as

the availability of various types of relationships and the basic components of a

UC description template. To further elaborate, the existence of the inclusion

relationship will prompt an analyst to consider common and repetitive workflows.

25

� Specification

The simplicity of the requirements specification using UC models is one of its

most attractive features. The UC diagrams notational constructs and syntactical

rules are limited and relatively easy to learn. UC descriptions are authored using

UNL, which allows the author the highest degree of flexibility and freedom in

documenting the requirements.

� Validation

The relative simplicity of the UC modeling, which makes UC models easy to

construct, also makes UC models easy to read. The readability of UC models

makes them accessible to stakeholders who do not have a strong technically

background. This accessibility allows all stakeholders to have a strong and

common understanding of a UC model, which will improve the validation efforts.

The UC diagram provides an initial and very quick form of validation. Visually, it

can be easily determined whether the requirements specifications are missing key

functional requirements (UCs). Similarly, it can also be determined whether the

requirements specifications contain unnecessary or redundant requirements. The

UC descriptions are authored using templates and UNL, which improves their

readability. The readability of UC descriptions allows its reader to better validate

the underlying requirements.

26

� Requirements Management

UC modeling facilitates a number of managerial activities, for example:

o Tracking the progress of a project.

o Effort estimation (Anda et al. 2001b) and work allocation.

o Prioritization of requirements and scheduling (Firesmith 1999).

2.5 Thesis Contributions towards Improving UC Modeling

The following subsections will present a literature review and outline specific

issues with UC modeling that led to the research presented in this thesis. The

techniques proposed in these Chapters do not solve all UC modeling issues nor do

they provide silver bullet solutions. The techniques however offer genuine

solutions that contribute towards the two main goals previously mentioned in

Section 2.4 and help alleviate a number of UC modeling issues.

2.5.1 Improving the Presentation of Functional Requirements in UC

Models

UC models describe functional requirements as a set of interactions between a

software system and its environment. In essence, UC descriptions state a set of

workflows that will allow a system’s users to benefit from its services. It is

critical that designers have a common and precise understanding of what these

workflows are. Otherwise they are in danger of building the ‘wrong’ system. In

order to improve the understandability and readability of UC models, it is

important to clearly define the underlying workflows, removing any source of

27

ambiguity and ensuring that all team members have a common and consistent

understanding of these workflows. Traditionally, UC descriptions are authored

using UNL. However, relying on textual descriptions is insufficient to fulfill such

an important requirement. There are several factors attributing to such a

shortcoming:

(a) Workflows may contain concurrent flows, loops, branches and conditions.

These elements are difficult to describe precisely using textual descriptions.

(b) The problem described in (a) is compounded further if the workflows span

several UCs, which is not unusual.

(c) Analysts’ writing skills vary significantly amongst individuals.

In Section 3.1, a new approach named AGADUC (Automated Generation of

Activity Diagrams from UCs) was developed to overcome these limitations by

graphically depicting workflows contained within UC descriptions. The UC

descriptions are embedded with a structure named SUCD (Structured UC

Descriptions) to facilitate AGADUC. SUCD also ensures consistency within the

UC model.

2.5.2 Improving Consistency in UC Models

The large degree of informality contained in the UC descriptions often causes UC

descriptions to be inconsistent with their corresponding UC diagrams. Moreover,

inconsistencies may reside within the UC descriptions themselves. In a UC driven

approach (Jacobson et al. 1995) such as the Rational Unified Process (RUP)

(Kroll et al. 2003; Kruchten 1998), UC models are used to produce other UML

28

artifacts such as activity and sequence diagrams (El-Attar et al. 2006; Gomaa

2000, 2002; Jacobson et al. 1992; Larman 2001; Overgaard et al. 2005;

Rosenberg et al. 1999). Hence, it is important to invest in producing high quality

UC models that will yield the production of other high quality UML artifacts.

Consistency is a key quality attribute of UC models. Ensuring the consistency

between UC descriptions and their corresponding diagrams requires a great deal

of discipline from analysts, which seldom exists. Moreover, producing consistent

UC models has been chiefly dependant on the experience of analysts. The

expertise of analysts in industry varies significantly. Often, junior analysts are

required to develop UC models, which will be highly vulnerable to

inconsistencies. The produced inconsistent UC models may potentially lead to the

production of low quality software systems.

2.5.3 Consequences of Inconsistencies in UC Models

Many researchers have determined that inconsistencies in a UC model have

harmful consequences. Inconsistencies can exist in UC models in various forms.

The consequences of inconsistencies are discussed in the literature.

• The UC modeling defects outlined by Anda et al. (Anda et al. 2001a) indicate

that inconsistency is a key category of defects which severely hampers the

overall quality of a UC model. The consequences of the stated forms of

inconsistencies were also outlined, which was shown to affect every aspect of

the development process – from producing wrong, missing and inaccurate

functionalities to producing systems that are difficult to test.

29

• Chandrasekaran (Chandrasekaran 2008) has explained that inconsistencies in

a UC model are generally symptomatic of one of two problems; firstly, the

UC model might be handling concepts that are not defined or understood

properly. Secondly, there may be an ambiguity in the domain model.

• Lilly (Lilly 1990) and Bittner et al. (Bittner et al. 2002) outlined a number of

inconsistencies that explicitly exist in UC diagrams as well as other types of

inconsistencies that may exist throughout a UC model. These authors have

also explained the harmful consequences of these inconsistencies. For

example, in (Lilly 1990), it is shown that an inconsistent system boundary

may cause designers to implement the behavior of entities external to the

system. This, in turn, requires more effort from the development team than is

actually required, causing the project to fall behind schedule and go over

budget.

• Ambler (Ambler 2007) warns that inconsistencies in UC models are usually a

sign of missing or vague information. The literature has repeatedly shown that

teams often fail due to a lack of details in a UC model rather than too much

detail (Bittner et al. 2002). Ambler also warns that too many inconsistencies

may cause the UC model to become “out-of-date” and therefore rendering it

useless. Therefore, UC models need to remain consistent to be effective in the

development process.

• Consistency has always been a sought after and an essential quality attribute

for UC models (Anda et al. 2001a; Ben Achour et al. 1999; Firesmith 1999;

Jaaksi 1998; Kulak et al. 2000; Rosenberg et al. 1999). Reviewing UC models

30

is a highly recommended practice (Armour et al. 2000; Kulak et al. 2000;

Schneider et al. 1998) useful to assure that UC models possess a great deal of

consistency.

• Other researchers have devised techniques to incorporate and ensure

consistency in UC models. McCoy (McCoy 2003) introduces a tool, which

provides a template for modelers to input information about their UCs into a

repository. The template ensures consistency during entry of the information.

Ben Achour et al. (Ben Achour et al. 1999) compiled a set of styling and

content guidelines to improve the quality of the UC descriptions. A number of

these guidelines are either directly or indirectly aimed at ensuring consistency

within the UC descriptions. Butler et al. (Butler et al. 2002) introduced the

concept of refactoring UC models. Butler explained that refactoring can

improve the consistency of the UC models. Ren et al. (Ren et al. 2004) has

developed a tool that implements the refactoring concepts presented in (Butler

et al. 2002).

2.5.4 Inconsistencies: A Closer Look

An obvious argument at that point would be: if the heart of the UC model is in the

descriptions while the diagrams only serve as a visual roadmap then:

Why bother with the UC diagram? Why not just use the UC descriptions

only to drive the development process? In such a case, when only the

descriptions are considered, then ensuring the consistency between the UC

descriptions and their diagrams is not important!

31

Even though this argument might be valid for very trivial systems, there still

remain several problems if only the UC descriptions are considered. If the system

is very complex, then a UC description might span over five pages to be

adequately described (Bittner et al. 2002). In such a case, if a team member

wanted to know about the actors associated with a given UC, it would be more

efficient and accurate to simply look up this information in the diagram rather

than going through several pages of text. UC diagrams are able to provide an

overview of a system at a glance; while examining a set of UC descriptions

cannot. Therefore, stakeholders might be misled about the general purpose of the

system if the UC diagram did not accurately represent the descriptions. Hence,

UC diagrams remain an indispensable component of UC models, and therefore if

a UC diagram does not have an accurate representation of the descriptions, then

this will lead to the design of a faulty system.

It can be concluded that it is desirable to minimize inconsistencies within UC

models. Therefore, it is essential to devise a structure that will aid the production

of consistent UC descriptions. It is also important that this structure can be used to

ensure the consistency between the UC descriptions and their corresponding

diagrams; while maintaining the ability of these diagrams to be understandable to

all stakeholders, including “non-technical” stakeholders.

In Section 3.2, a structure is proposed to assist with the description of

UCs. The proposed UC description structure is called SSUCD (Simple Structured

UC Descriptions). SSUCD serves as a guideline for authors in producing their

32

UCs. Moreover, the SSUCD form will allow the UC descriptions to be machine

readable. A technique named Reverse Engineering of UC Diagrams (REUCD)

was devised, which will systematically generate UC diagrams from UCs that are

described in the SSUCD form. UC diagrams are developed at a much higher level

of abstraction than UC descriptions. Hence, UC diagrams can be accurately

reverse engineered from UC descriptions using REUCD. REUCD extracts limited

information from UC descriptions to generate UC diagrams. Figure 2-2 shows an

overview of SSUCD and REUCD. The REUCD process may also be reversed,

whereby the UC diagram is initially developed and used to systematically

generate ‘skeletons’ for the UC descriptions. Details about the events occurring in

the UCs can then be manually completed. However, the theme throughout this

thesis will be aimed at initially composing UC descriptions then systematically

generating the diagrams from them, since UC descriptions contain all the

information required to produce a complete UC diagram. A tool named

SAREUCD (Simple Automated REUCD) was developed to automate the

REUCD process and increase the speed and accuracy of its application.

Figure 2-2: The application of the REUCD process to systematically generate UC

diagrams from descriptions

33

Using the SSUCD structure and the REUCD process ensures that the UC

descriptions and their diagram(s) are consistent with each other. For example, if

the descriptions state that a certain UC is associated with a certain actor, then it

will be ensured that an association relationship in the UC diagram will be

depicted linking the given UC with the given actor. The SSUCD structure and the

REUCD process do not however ensure that inconsistencies, present in the

segments that are written in UNL, will be detected or eliminated. These segments

require domain expertise to verify their consistency. For example, if a UC states

that a theatre’s seating capacity is 1200 while another UC states that the given

seating capacity is 1400, then this type of inconsistency requires manual

inspection (or review) to be detected and eliminated.

2.5.5 Reducing Inconsistencies in UC Models with SSUCD – An Empirical

Evaluation

The SUCD structure, which was developed to facilitate the AGADUC process,

can also be used to ensure consistency within a UC model (see Section 3.1.2).

However, a preliminary experiment conducted has shown that SUCD is too

complex to be effectively used to create consistent UC models. This is because

the SUCD structure was primarily devised to facilitate the systematic generation

34

of UML activity-like diagrams from UC descriptions. The preliminary experiment

compared the usage of SUCD with UNL to develop UC models; it involved 17

graduate Software Engineering students who voluntarily agreed to participate in

this experiment. The results of the initial experiment indicated that the SUCD

structure was too complex to utilize in comparison to UNL, causing subjects to

inject many inconsistency errors into their UC models. UNL UC models

contained an average of 2.71 inconsistency mistakes per student, while SUCD UC

models contained an average of 3.98 inconsistency mistakes per student. Upon

further analysis of the results, approximately 88% of the inconsistency errors

present in the SUCD UC models were due to syntactical errors, the remaining

12% were due to incorrect omissions by the subjects. Further analysis revealed

that approximately 67% (out of the 88%) of the inconsistency errors were caused

by inappropriately utilizing structural elements that SUCD possesses which allow

the systematic transformation of UC models to UML activity-like diagrams.

These additional structural features are unnecessary for the purpose of only

ensuring the consistency between UC diagrams and their corresponding UC

descriptions.

Even though SSUCD is a much simpler version of SUCD, it was still

unknown if it was simple enough to be accessible to its potential users. Therefore,

a subject-based empirical study that evaluates the usability of SSUCD was

conducted and presented in Section 3.3. The subjects chosen exemplify potential

users whom do not have prior knowledge of SSUCD. None of the students who

35

participated in the initial experiment have also participated in the main

experiment presented in Section 3.3.

2.5.6 Using Antipatterns to Improve the Quality of UC Models

The notation and guidelines for creating UML artifacts, including UC models, are

clearly defined in (OMG 2005). However, mechanisms to construct semantically

correct and verifiable diagrams are not discussed (OMG 2005). A UC model must

accurately represent an analytical view of a system’s functional requirements. In

Chapter 4, an approach is presented that aims to tackle this issue by searching for

the existence of antipatterns in UC models. Antipatterns represent debatable

diagrammatic and textual structures. Their detection prompts a “review” of the

debatable structures to either undertake corrective actions or to verify their

correctness. The effectiveness of this technique is dependent on the original state

of a UC model. Applying this technique will help bring a given UC model into a

form that more accurately represents its system’s functional requirements, ideally

yielding a flawless UC model.

2.5.7 Towards Achieving the Benefits of Acceptance Testing for UC-Driven

Development Processes

There are many benefits in using acceptance testing (Sauvé et al. 2006). Creating

acceptance tests is a cost effective procedure, as it allows the customer to express,

from a new viewpoint, a system’s requirements through a set of tests, which in

turn provides developers with a better understanding of a system’s expected

behavior. Ultimately, this will lead developers to build a system that more closely

36

meet the customer’s expectations and requirements. Moreover, the resulting set of

tests can evolve as a project’s requirements develop and change. Acceptance

testing can be used as a mechanism to define acceptable external quality.

Acceptance tests can be used to track a project’s progress and to determine when

development is complete. User acceptance tests are created in the early phases to

obtain customer approval and to drive the development process. These tests are

constructed using simple, but sufficient, syntax to allow them to be

understandable to non-technical stakeholders, while retaining the traditional

machine executable nature of software tests. In addition, these tests partially

fulfill the perceived need for increased customer involvement during requirements

construction and system evaluation as the tests are produced in consultation with

the customer (Agarwal et al. 2002; Good et al. 1989; Goodhue et al. 1959; Gould

et al. 1983, 1985, 1991; Mantei al. 1988; Rosson et al. 1987). Acceptance testing

is therefore a key component of the V-model development process and it is the

basis for all other testing phases (see Figure 2-3).

Figure 2-3: V-Model development process

37

Acceptance tests are developed from requirements artifacts. In agile processes,

acceptance tests are often constructed from User Stories (USs) (Cohn 2004);

however, large-scale development projects that deploy a more rigorous

development process such as the V-Model do not utilize USs. It is common for

large-scale software projects within a V-Model development process to deploy a

model-oriented approach throughout the development process. The UML in

particular has become the de-facto modeling language for large-scale object-

oriented software development, which has resulted in the widespread use of UC

models (OMG 2005) for requirements analysis and modeling. Yet, there lacks a

process that allows analysts and customers to develop acceptance tests from UC

models. In Chapter 5, such a process is defined; that is, using requirements

artifacts normally available during early development phases to drive, or at least

support, the production of user acceptance tests. UC models place an emphasis on

system boundaries, and user-to-system expectations and interactions, providing an

excellent source for user acceptance tests. The process defined in Chapter 5 is

based on using UC models, robustness diagrams (Jacobson et al. 1992; Rosenberg

et al. 1999, 2005) and domain models. A tool named UCAT (Use Case

Acceptance Tester) was developed to provide automation support for executing

acceptance tests developed through this approach. It is important to note that the

approach proposed in Chapter 5 does not attempt to replace or improve upon any

other approaches that develop acceptance tests. The approach provides a

mechanism to develop executable acceptance tests based on UC models.

38

Throughout this thesis, each research area presented is accompanied with further

literature review. Each literature review will be focused on presenting the

motivation behind its corresponding research component. Wherever applicable,

each literature review will also detail how other approaches compare to the

approach presented.

39

Chapter 3

Using Structure to Improve the

Quality of Use Case Models

3.1 Improving the Presentation of Functional Requirements in

UC Models

3.1.1 Introduction

The AGADUC (Automated Generation of Activity Diagrams from UCs) process

uses UC models to generate UML activity-like diagrams that represent the

embedded workflows in the UC textual descriptions. This hybrid solution

combines the notation of UC diagrams and activity diagrams and hence the

resulting artifacts are called UCADs (UC Activity Diagrams). To facilitate this

technique, UC descriptions were created using a structure named SUCD

(Structured UC Descriptions). Another advantage of embedding SUCD’s

structural constructs in UC descriptions is that it can be used to systematically

ensure consistency within a UC model. Automation support for this approach is

provided by the tool AREUCD (Automated Reverse Engineering of UC

Diagrams). A simplified Library system case study is presented to demonstrate

the feasibility of the proposed approach and the application of AREUCD.

40

3.1.2 Related Work

Automated generation of activity diagrams from UC models is an active area of

research. At the time of conducting this research there exist two tools that

automate the generation of activity diagrams from UC models. The tools are

called the “Optimal Trace” (Optimal Trace 2008) and “TopTeam Analyst”

(TopTeam 2008). Both tools do not produce UML activity diagrams, but rather a

simplified version of activity diagrams, which their developers refer to as ‘Flow

diagrams’. ‘Flow diagrams’ is not a UML standard, however as mentioned earlier,

they do bear a resemblance to UML activity diagrams. This Section presents a

technique that was developed to automatically produce UCADs that adhere to the

syntax rules and notation standard of UML activity diagrams. The technique

overcomes limitations experienced by the two tools mentioned earlier by

providing features to support the following activity diagram modeling concepts:

• Activities and other basic notation such as ‘start’ and ‘end’ of flows.

• Concurrencies.

• Diagram nesting: The technique provides a mechanism that will allow

modelers to setup their diagrams at the abstraction level they need.

• Alternative flows that branch from a specific location in the activity

diagram as well as alternative flows branching from general areas in

the activity diagrams

• Exception handling flows that initiate from a specific location in the

activity diagram as well as alternative flows initiate from general areas

in the activity diagrams.

41

• Generation of separate activity diagrams for (basic flows + alternative

flows), Extension Points and Sub-flows.

• Combination of UC modeling and activity diagram notations to

support the modeling of relationship between UCs and between UCs

and actors. Hence, allowing modelers to review the relational

dependencies in a UC model.

• Support for abstract UCs and their corresponding activities.

3.1.3 The AGADUC process and the SUCD Structure

SUCD is a simple structure, with very limited syntax, that acts as a guideline to

the authoring process and provides means to enhance clarity in the description of

the UC workflows. The formal grammar of SUCD is presented in appendix A.

SUCD provides mechanisms to precisely describe concurrent flows, looping, and

branching and condition evaluation. The formality of SUCD allows our featured

tool AREUCD to automatically generate the corresponding UC diagrams from a

set of UC descriptions. Most authoring styles utilize a template to guide the

authoring process. A study performed by (Anda et al. 2001a) has shown that the

use of templates significantly increases understandability. Templates force

analysts to consider and identify key aspects of each UC. The study has also

shown that UC descriptions that utilize a template are easier to understand by its

readers. A survey in (Anda et al. 2001a) of the different templates used by

(Cockburn 2000; Harwood 1997; Jaaksi 1998; Kulak et al. 2000; Mattingly al.

1988; Schneider et al. 1998) has shown that even though each template is unique,

42

they all share common sections. Therefore, the SUCD structure is based on a

template that contains these common sections (see Table 2-1). SUCD embeds

certain structure in a select subset of the common sections, namely: (a) Use Case

Name, (b) Basic Flow, (c) Alternative Flows, (d) Sub-flows and (e) Extension

Points. This template can be easily altered and tailored to cater to any specific

needs as long as it does not affect the five sections named previously. It is

important to note that this Section focuses mainly the AGADUC process while

only referring to SUCD. We strongly recommend to our readers to take a quick

overview of the SUCD structure. An article containing the complete

specifications of SUCD and its formal grammar is also located at (STEAM

2009b).

The AGADUC process is dependent on UC descriptions being described

using the SUCD structure in order to produce UCADs. The use of UCADs

minimizes the gap between the analysis phase and the design phase by improving

the understandability of the workflows. Automation of this process provides a

great advantage in that there will be no additional effort required to generate the

UCADs or to ensure their consistency with the UC model. Changes applied to the

UC model are automatically applied to the UCADs. Conversely, changes applied

to the UCADs are automatically applied to the UC model. These advantages

allow AGADUC to be utilized within agile software development processes, such

as XP (Extreme Programming) (Beck 1999), as well as MDA (OMG 2005)

(Model-Driven Architecture) software development processes such as RUP (Kroll

43

et al. 2003; Kruchten 1998). Figure 3-1 provides an overview of the concepts and

advantages of the AGADUC process.

Figure 3-1: The AGADUC process

3.1.4 Mapping UC Descriptions to UCADs

In this section we explain the systematic mapping of the UC descriptions (in

SUCD structure) to UCADs. This section will show how the notation of UC

diagrams and activity diagrams can be integrated to model the workflows between

different UCs and the workflow within each UC to enhance the overall readability

of the analysis model. As mentioned in the previous section, there are only five

sections in a UC description that are structured; Use Case Name, Basic Flow,

Alternative Flow, Sub-flow and Extension Points Sections. For every UC,

AGADUC generates a single activity diagram to represent the Basic Flow and

Alternative Flows merged together. AGADUC also generates a separate activity

diagram for each Sub-flow and Extension Points. All the activity diagrams are

44

generated simultaneously to show how they relate to each other (see Figure 3-1).

The five sections are constructed using Headers, which is the basic building

block. Minor syntactical features differentiate these sections to cater to their

unique purposes. The following subsections will start by explaining the basic

concept of a Header, and how it is used to create sequences of activities. Later, it

will be shown how other syntactical features of SUCD can be used to graphically

construct concurrent flows, loops, decision nodes and conditions.

� Headers: The Basic Building Block

Headers describe a conceptual task that needs to be performed. Actions enclosed

in headers describe the steps that are required to perform the desired task. Each

action enclosed in a header is directly represented by an activity in an activity

diagram. Actions and activities have a one-to-one mapping. The {Enter Member

Information} header, which is responsible for adding the new member’s

information into the system, is translated into the following activities shown in

Figure 3-2.

� Swimlanes

Swimlanes are used to assign the responsibility of a given action/activity to a

specific actor, unless it was performed by the system. A swimlane is created for

each actor involved in an activity diagram of a flow, in addition to a swimlane

created for the system. Each action is suffixed by the entity that is responsible for

that action, whether it was an actor or the system itself (see Figure 3-2).

45

� Concurrent Flows: Using AFTER and RESUME Statements

The AFTER and RESUME statements are embedded before the first action in a

header, and after the final action in a header, respectively. The AFTER statement

is used to model the concept of flow joining. AFTER statements indicate that the

actions of the corresponding header will not be performed unless the final

action(s) of the stated headers in the AFTER statement are completed. This

creates a synchronization bar to sink all the involved flows into the current header

(see Figure 3-3).

{BEGIN enter member information}

• Librarian� Enter member’s name

• Librarian� Enter member’s address

• Librarian� Enter member’s phone number

• SYSTEM � Store member’s information

{END enter member information}

Figure 3-2: Conversion of a Header to activities in swimlanes

46

{BEGIN Header 1}

AFTER {Header 2} {Header 3}

…

• actions

…

RESUME {Header 4} {Header 5}

{END Member Information}

Figure 3-3: Transforming RESUME and AFTER statements

Conversely, the RESUME statement is used to model the concept of flow forking.

RESUME statements indicate that when the final action in the current header is

completed, the first action(s) in the headers stated in the RESUME statement

must be performed concurrently. This creates a synchronization bar to dissect the

flow to reach the corresponding activities (see Figure 3-3). Note that the activities

labeled HeaderX are only high-level views of the sequences of actions they

represent.

It can be easily inferred that the concept of looping can be easily modeled

by stating an earlier header in a RESUME statement.

47

� Branching and Condition Evaluation: Using AT and IF Statements

 AT and IF statements are used to facilitate the declaration of alternative flows.

An alternative flow initiates from a discrete location in the Basic Flow upon a

given condition being satisfied. The location is indicated by the AT statement,

which states the header and the enclosed action where a corresponding condition

will be evaluated. This creates a decision diamond immediately after the stated

action. The condition itself is stated using the IF statement. The condition is

depicted in square brackets on the branching flow. Alternative flows cannot have

their own alternative flows, as it is believed that such situation should warrant the

creation of a separate UC (extension UC). The AT and IF statements are also used

to describe Extension Points (explained next). After all, Extension Points are just

alternative flows that are too complex to fit within the context of the base UC,

where it is also believed that it may obscure the real purpose of the UC. The

alternative flows described within Extension Points may actually initiate from any

type of flow within the base UC. Hence, the FLOW statement is used to state

which flow in the base UC does the given header in the AT statement reside (see

Figure 3-5). If an Extension Point is public, the condition stated by the IF

statement is depicted on the extend relationship arrow connecting the base UC

and the extension UC. Otherwise, if an Extension Point is private to a base UC,

the condition is simply depicted on the flow arrow. The application of alternative

flows and Extension Points are further illustrated later in the Library case study

(Section 3.1.4).

48

� Performing Sub-procedures: Using INCLUDE and PERFORM

Statements

Inclusion UCs and Sub-flows are used to model sub-procedural behavior that

would otherwise cluster the Basic Flow of the base UC if it was described within

the Basic Flow. Clustering the Basic Flow greatly reduces its readability. At any

given point in a Basic Flow, if the behavior of an inclusion UC is required, the

INCLUDE statement is used by providing the name of the inclusion UC. The

include relationship notation is extended between the activity requiring the

inclusion UC and the inclusion UC. Similarly, if the behavior described in a Sub-

flow was required, the PERFORM statement is used by providing the name of the

desired Sub-flow. The control flow notation is extended between the activity

requiring the Sub-flow and the Sub-flow UCAD. This link is stereotyped with

<<Perform>>. The application of these concepts is further illustrated later in the

Library case study (Section 3.1.4).

� Abstraction and Generalization

Abstraction is also supported by SUCD, however since abstract UCs do not

contain any actions, then there will be no corresponding activities generated,

yielding to an empty UCAD. The generalization relationship does not model the

workflow between UCs; hence, the UCADs of the parent and child UCs are

separately modeled.

49

3.1.5 The Library System Case Study

The Library system presented in this section is simplified due to space

restrictions. However, this case study illustrates most features and concepts of

generating UCADs using AGADUC. The Library system only allows its members

to borrow books. It is a requirement for a Librarian to authenticate into the

system before being able to perform this transaction. If a Member attempts to

borrow a book while having an overdue balance, the system provides a friendly

reminder to the Member to pay off his balance. Figure 3-4 shows the UC diagram

of the Library system.

Figure 3-4: The Library system UC diagram

Table 3-1 shows the description of the Borrow Book UC in SUCD format. The

remaining two UC descriptions as well as actor descriptions are shown in

Appendix B.

50

Table 3-1: shows the UC description of the Borrow Book UC described in SUCD

Use Case Name:

Borrow Book

Brief Description:

This use case is initiated by a Member to allow that

member to borrow a book. A Librarian is then involved

to carry out the transaction.

Preconditions:

The book must exist

Basic Flow:

{BEGIN Use Case}

{BEGIN bring book to borrow}

• Member -> Brings the book he/she would like to

borrow

• PERFORM Retrieve book information (2)
• Member -> Provides library card

• Librarian -> Scans member's card

{END bring book to borrow}

{BEGIN authenticate librarian}

• INCLUDE Authenticate Librarian (1)
{END authenticate librarian}

{BEGIN scan book}

• Librarian -> Scan's book's barcode

RESUME {update member's record} {update book's

status} (5)

{END scan book}

{BEGIN update member's record}

• Librarian -> Updates the Member's record with the

newly borrowed book

RESUME {END}

{END update member's record}

{BEGIN update book's status}

• SYSTEM -> Changes the book's status in the database

to 'Borrowed'

{END update book's status}

{END Use Case}

Alternative Flows:

51

Sub-flows:

SUB-FLOW Retrieve book information

{BEGIN enter and retrieve book information}

• Librarian -> enter's the book's name or barcode

• SYSTEM -> retrieve the given book's information

from database

{END enter and retrieve book information}

Postconditions:

The number of borrowed books in the member's record

is increased by one

Extension Points:

PRIVATE EXTENSION POINT

FLOW Basic Flow (3)

AT {scan book} (4)

• Librarian -> Scans the book's barcode

IF barcode cannot be scanned

{BEGIN enter barcode manually}

• Librarian -> Enters the book's barcode number

manually

{END enter barcode manually}

CONTINUE {update member's record} {update book's

status}

PUBLIC EXTENSION POINT

Balance overdue (6)

Special Requirements:

System must be online

In lay terms, the Borrow Book UC starts with the Member providing the book

that he/she would like to borrow. The Librarian scans the book to retrieve its

information from the system and then authenticates to get permission to carryout

the borrowing transaction. Retrieval of the book’s information is performed by the

Sub-flow ‘Retrieve book information’. As stated by the private Extension Point

‘enter barcode manually’, if the book’s barcode cannot be scanned, the

Librarian then enters the barcode manually. A public Extension Point is available

to be ‘plugged’ into by an extension UC to model the behavior required to handle

52

an overdue balance. Other information such as the pre and postconditions of the

UC is written in natural language, which can be obtained directly from the UC

description.

This UC illustrates a number of key points. Firstly, to authenticate the

Librarian, the inclusion UC Authenticate Librarian was included using the

INCLUDE statement (see (1) in Table 3-1). Secondly, the Basic Flow that

requires the behavior described in the Sub-flow in order to retrieve the given

book’s information, which was done using the PERFORM statement (see (2)).

Thirdly, the private Extension Point provided, stated that the condition ‘IF

barcode cannot be scanned’ must be evaluated at the Basic Flow (using FLOW

(see (3)), at the header ‘scan book’ (using AT (see (4)), when the Librarian

attempts to scan the book’s the barcode. Fourthly, a public Extension Point was

declared to allow an extension UC to handle an overdue balance situation (see

(6)). The extension UC would then be Balance Overdue. Finally, the flow at the

Basic Flow was forked after the book was scanned (using RESUME, see (5)).

3.1.5.1 Displaying UCADs and Their Dependencies

Traditional UC diagrams only show the relationships between the UCs. On the

other hand, the greatest advantage of AGADUC is that it clearly shows how UCs

are dependent on each other, and the internal details of how and when they

interact with one another. Moreover, AGADUC also depicts the dependencies

between different types of flows within a UC, such as that between a Basic Flow

and a Sub-flow. Traditionally, such dependencies will need to be uncovered by

53

iterating through pages of text, leading the reader to lose sight of the dependencies

between the workflows. In the Library system, there is one include and one extend

relationship. The Borrow Book UC has a single Sub-flow and one private

Extension Point, each having a separate workflow that is required by the Basic

Flow. Figure 3-5 shows all the UCADs of the entire model.

54

Figure 3-5: The UCADs of the entire UC model

55

3.1.6 AREUCD – Automating the ARADUC Process

Upon completing the descriptions file, AREUCD generates the UCADs for UCs,

showing the entire set of workflows of each UC and between UCs. Figure 3-6

shows AREUCD after it has analyzed the UC descriptions and generated the

UCADs. It can be shown that the include relationship can be traced to a specific

UCADs inside the base UCs (see Figure 3-6). Upon examining the UCADs of

these flows (middle pane), it is possible to trace the specific action/activity that

triggered the include relationship. Such information cannot be retrieved from

traditional UC diagrams. Similarly with the extend relationship, it can be shown

that the extension behavior is provided by the Extension Point located at the

Balance Overdue UC, whereby the location inside the base UC where the

extension behavior may be inserted, and the condition that needs to be evaluated

are shown.

AREUCD can generate the activity diagrams that are contained within the

UCs. The activity diagrams are generated in XML format, which is the industry

standard to store model data. The XML files representing the activity diagrams

are also located at (STEAM 2009b). AREUCD has also computed all the

workflows that spanned several activity diagrams, using PERFORM (7),

INCLUDE (8) and Extension Points (9) (see Figure 3-6). Since the notation

required to model UCADs is not yet available in UML modeling tools, it is not

possible for AREUCD to generate XML files that show the relations between any

two UCADs.

56

With AREUCD, there is very minimal effort required to apply the

AGADUC process. Upon support availability for the required notation by leading

UML modeling tools, AREUCD will in turn be upgraded to produce XML files

that show complete UCADs.

Figure 3-6: AREUCD generating the UCADs for the UC model

57

3.2 Producing Consistent Use Case Models via Reverse

Engineering of Use Case Descriptions

3.2.1 Introduction

Informal UC models are prone to contain problems, which lead to the injection of

defects at a very early stage in the development cycle. In this section, a structure

named SSUCD is presented that will aid the detection and elimination of potential

defects caused by inconsistencies present in UC models. The structure contains a

small set of formal constructs that will allow UC models to be machine readable

while retaining their human readability by retaining a large degree of UNL. This

Section will also propose a process which utilizes the structured UCs to

systematically generate their corresponding UC diagrams and vice versa. Finally,

a tool was developed to provide support for the new structure and the new

process. To demonstrate the feasibility of this approach, a simple study is

conducted using a mock online hockey store system.

3.2.2 Related Work in UC Authoring

There have been many different approaches to authoring UC descriptions. Each

approach is devised to describe UCs at different levels of detail and structure. For

example, UCs can be described using a single short paragraph. Caution must be

exercised while describing UCs in such form as this approach tends to assume

that other stakeholders have a great degree of domain knowledge, which is not

always the case. On the other hand, UCs can be described using a “full blown”

58

approach that mentions every possible detail. Some approaches structure the UC

descriptions very carefully, while others do not incorporate any structure.

Johansson (Johansson 2004) analyzed and discussed problems that arise when

attempting to construct a UC model and write the corresponding descriptions of

UCs for a weather station system. The problems were principally caused by a lack

of guidelines for authoring UC descriptions. The paper concludes by urging for

guidelines for UC modeling.

• A number of authors have developed such guidelines, principally: Ben Achour

et al. (Ben Achour et al. 1999) examined two different types of guidelines;

styling guidelines (SGs) and content guidelines (CGs). The styling guidelines

were mainly derived from current best practices such as those presented in

(Harwood 1997; Schneider et al. 1998). The styling guidelines are used to

improve the quality of UC structures. On the other hand, content guidelines

were mainly derived from linguistics, artificial intelligence and previous

experiences in applying Case Grammars to requirements analysis. The content

guidelines are used to indicate the expected contents of UCs. The authors

present an evaluation of their work which comprises seven hypotheses, three

of which are related to CGs and the remaining four are related to SGs. The

experimental procedure involved 69 software engineers who had professional

experience and participated in a half day presentation on UC authoring and

modeling. The results of the study conclude that UC authoring guidelines

generally improve the quality of the descriptions. The authors emphasize that

even though authoring guidelines helped, they rarely lead to perfect UCs.

59

Therefore, the authors suggest that the UC descriptions should be checked

whenever quality is an issue.

• Firesmith (Firesmith 1999) described a broader range of guidelines. These

guidelines fall into the following categories: modeling tools and languages;

modeling externals; modeling UCs; modeling UC paths; and general

guidelines.

• A number of UC authoring guidelines have been devised to capture the

requirements for special types of systems. Anderson et al. (Anderson et al.

2001) described styles of documenting business rules in UCs. Constantine et

al. (Constantine et al. 1999) and Biddle et al. (Biddle et al. 2002) described

styles that lead to ‘essential’ UCs. Wirfs-Brock (Wirfs-Brock 1993) has also

promoted a conversational style of authoring UCs.

• Cockburn (Cockburn 1995) described a set of eighteen different styles of

writing UC descriptions, collected while working upon various projects,

matching one by Jacobson (Jacobson et al. 1992). The work presented by

Bittner et al. (Bittner et al. 2002) further developed this style of UC authoring.

However, this style in its current state experiences several limitations:

60

a) The authoring style lacks the required amount of structure to allow the UC

descriptions to be machine readable, which will impede the systematic process

of:

o Generating UC diagrams from the descriptions.

o Generating the ‘skeletons’ of UC descriptions from the diagrams.

o Verifying the consistency between the UC diagram and the

descriptions.

b) There is no mechanism available to:

o Declare generalization relationships between UCs.

o Declare generalization relationships between actors.

o Declare abstract UCs.

o Declare abstract actors.

o Declare that a UC implements an abstract UC.

o Allow an extension UC to reference the base UC it extends.

The structure SSUCD was developed to overcome the limitations outlined above.

The key feature of SSUCD is that it will ensure the consistency between the UC

descriptions and their corresponding diagrams.

3.2.2.1 Maintaining the Readability of UC Descriptions

The core feature behind the popularity of UC models is the great deal of UNL that

the UC descriptions contain. The informality contained in UC descriptions makes

it accessible by stakeholders who are not familiar with common programming

jargon and acronyms. Customers are often not technical specialists and thus the

61

informality in UC descriptions allows them to read and review the UC

descriptions and provide feedback. UNL is an indispensable component of UC

descriptions. Unfortunately, it is impossible to formally analyze UC descriptions

that are completely composed of UNL. UC descriptions become highly vulnerable

to poor quality attributes such as inconsistencies, incorrectness and

incompleteness. UC descriptions can be formally analyzed only if they adhere to a

formal structure. However, describing UCs using only formal constructs will

greatly reduce their readability and make them inaccessible to many stakeholders.

Therefore, a tradeoff must exist between the amount of UNL and formal

constructs that UC descriptions may contain. The SSUCD structure provides a

hybrid solution to this problem. The SSUCD structure contains a very limited set

of formal constructs, the minimal amount required, while allowing analysts the

flexibility and liberty of using as much UNL as possible. The SSUCD structure

will allow a great deal of formal analysis to be performed on the descriptions

while retaining their readability. Further structure can be added to the SSUCD

descriptions in order to generate other types of UML artifacts. For example, the

SUCD structure (STEAM 2009b) adds more formality and structure to SSUCD

descriptions to allow the systematic generation of activity diagrams.

3.2.3 Simple Structured UC Description (SSUCD)

In this section we describe the SSUCD structure. UCs described using the

SSUCD structure contains four main sections, these are: (a) Use Case Name, (b)

Associated Actors, (c) Description, (d) Extension Points and Extended Use Cases.

62

With the exception of the “Description” section, these sections utilize a handful of

keywords to embed the required structure. All keywords are written in uppercase

for readability purposes. The “Description” section on the other hand is

populated using UNL to allow for maximum flexibility and expressiveness by UC

authors. Other sections can be added to cater to specific needs; the additional

sections must be contained as subsections of the “Description” section. There

have many templates presented in the literature for describing UCs (Cockburn

1995; Harwood 1997; Jacobson et al. 1992; Kulak et al. 2000; Mattingly al. 1988;

Schneider et al. 1998). The structured sections incorporated by SSUCD are the

common sections found in many templates presented in the literature.

3.2.3.1 A Brief Introduction to the Elements of SSUCD

For a fully detailed reference guide to SSUCD and its syntax, we refer interested

readers to (STEAM 2009). The subsequent sections will briefly present the

structural elements of SSUCD and how they are used to map UC descriptions to

diagrams (see Table 3-2), which is further illustrated using the Online Hockey

Store System presented in Section 3.2.7.

(a) Use Case Name Section:

The “Use Case Name” section states characteristic properties about a given UC.

This section starts with the label “Use Case Name:”

63

Structural elements and keywords:

a) The name of the UC:

The “Use Case Name” section must state the name of the UC.

b) If the UC is abstract:

This is stated using the keyword ABSTRACT. If the UC is not abstract then this

keyword is omitted. On the other hand, if the UC implements an abstract UC,

then this is stated using the keyword IMPLEMENTS followed by the name of the

abstract UC. Similarly, if the UC does not implement any abstract UCs, then this

keyword is omitted.

c) If the UC specializes other UCs:

This is stated using the keyword SPECIALIZES followed by the name of the

parent UC. If the UC does not have any parents, then this keyword is omitted.

Mapping information and examples:

a) The name of the UC:

The name stated in the “Use Case Name” section must have a UC symbol (an

oval) in the diagram with a matching name (see Figure 3-7).

Use Case Name:

Buy On Sale University

Merchandise

Figure 3-7: UC name and its representation

64

b) Abstract UCs and their Implementation:

The name of an abstract UC is displayed in italic font in the diagram. A UC

implementing an abstract UC creates a generalization relationship arrow in the

diagram, originating from the implementing UC and directed towards the abstract

UC (see Figure 3-8).

Use Case Name:

ABSTRACT

Buy University Merchandise

Use Case Name:

Buy On Sale University

Merchandise

IMPLEMENTS Buy

University Merchandise

Online

Figure 3-8: Abstraction and implementation in UCs and their representation

c) Generalization Between UCs:

The UC name, as specialized by a child UC, creates a generalization relationship

link between the involved UCs, originating from the child UC and directed

towards the parent UC (see Figure 3-9).

Use Case Name:

Buy University Merchandise

65

Use Case Name:

Buy On Sale University

Merchandise

SPECIALIZES Buy

University Merchandise

Figure 3-9: Generalization between UCs its representation

(b) Associated Actors Section:

Actors are associated with UCs to perform the described behavior and to achieve

a certain goal. Actors can be associated with UCs for various reasons. Each UC

must specify the actors that are involved with it. The “Associated Actors” section

is used to list the involved actors with only commas separating them.

Mapping information and example:

Actors listed in this section must have an association relationship link connecting

the UC and the corresponding actors in the diagram (see Figure 3-10).

Example:

Use Case Name:

Enroll New Member

Associated Actors:

Librarian, Member

Figure 3-10: Associations between UCs and actors and its representation

66

(c) Description Section:

The “Description” section contains the core behavior of the UC. As mentioned

earlier, the “Description” section is intentionally designed to be populated using

natural language to allow UC authors utmost flexibility with respect to describing

their UCs. Another reason is to minimize the amount of learning required by the

users of SSUCD. If an author needs to add a new section, the new section is

simply written using natural language as part of the “Description” section.

Use Case Name:

Enroll New Member

Description:

… before a new member

can be enrolled,

INCLUDE <Authenticate

User> must be performed

to authenticate the staff …

Figure 3-11: The include relationship represented in the UC description body

Structural elements and keywords:

There is only one keyword in this section which states that the given UC includes

another UC. An include relationship is stated using the keyword INCLUDE

followed by the name of the inclusion UC enclosed in angled brackets

“INCLUDE <inclusion UC name>“.

67

Mapping information and example:

An INCLUDE statement present in the “Description” section of a UC creates an

include relationship link originating from the base UC and directed towards the

inclusion UC stated in the INCLUDE statement (see Figure 3-11).

(d) Extension Points Section and Extended Use Cases Section:

The “Extension Points” section lists all the public extension points that belong to

the given UC. Although there are two types of extension points; public and

private, only public extension points appear on the UC diagram. Hence, private

extension points can be described using natural language within the Description

“section” without the need to add further structure. The “Extended Use Cases”

section lists all the UCs that the given UC extends.

Example:

Use Case Name:

Buy University

Merchandise Online

Extension Points:

out of stock

Use Case Name:

Product Out of Stock

68

Extended Use

Cases:

Base UC Name: Buy

University

Merchandise Online

Extension Point: out

of stock

IF selected product is

out of stock

Figure 3-12: The extend relationship represented in the UC description body.

Structural elements and keywords:

• The Extension Points Section

Base UCs that are extended should not have any knowledge of their extension

UCs. Base UCs only provide public extension points for extension UCs to specify

the locations where the extended behavior will be inserted. This is because base

UCs are expected to be complete even without the incorporation of the extension

UCs. Public extension points listed under an “Extension Points” section are

separated using carriage return.

• The Extended Use Cases Section

Conversely, extension UCs are expected to have knowledge of the base UCs they

extend. The “Extended Use Cases” section lists the base UCs that the given UC

69

extends. An extended UC is stated using the keyword “Base UC Name:” followed

by its name. If an extension UC extends a base UC at a given public extension

point, the extension point is stated using the keyword “Extension Point:” followed

by the name of the extension point. Therefore, using the “Extension Point”

construct is optional since stating a public extension point for a given extend

relationship is optional. If a condition needs to be set for an extend relationship,

this is stated using the keyword “IF” followed by the condition written in natural

language. Specifying a condition for an extend relationship is optional. Hence,

using the “IF” construct is also optional (see Figure 3-12).

3.2.3.2 Formalizing the SSUCD Structure Grammar

It is essential for the grammar and constructs of the SSUCD structure to be

formalized. Formalizing the SSUCD structure will provide a strict guideline to

UC authors when composing UC descriptions, so that there is no disagreement or

ambiguity as to what is allowed and what is not. The grammar of the SSUCD

structure is defined in E-BNF and can be located at (STEAM 2009).

3.2.4 Consistency and Mapping Rules between UC Descriptions and

Diagrams

In this section we will introduce the REUCD process which is used to

systematically map SSUCD’s structural constructs to diagrammatic notations that

form UC diagrams. This systematic process is automated using the tool

70

SAREUCD (see Section 3.2.5), which will ensure the consistency and speed of

the process.

The process of generating UC diagrams from UC descriptions and vice

versa is analogous to generating complete and accurate UML class diagrams from

code and generating code structures from UML class diagrams. The reason UML

class diagrams cannot be used to generate complete programs is because they act

as a visual summary of a program’s static structure. UML class diagrams are at a

higher level of abstraction compared to code. On the other hand, a complete

program will contain more than enough details required to generate complete and

accurate UML class diagrams.

UC descriptions (analogous to code) contain far more details than UC

diagrams (analogous to class diagrams). UC diagrams are at a higher level of

abstraction than the descriptions. Therefore, given a set of UC descriptions, a

complete and accurate UC diagram can be systematically produced (see Figure 3-

13a). However, if modelers choose to create UC diagrams manually first, which is

often the case; a ‘skeleton’ of the UC descriptions can be systematically produced

(see Figure 3-13b). Detailed descriptions of the UC are later added manually by

analysts to ‘flesh out’ the generated ‘skeletons’. After the UC descriptions are

complete, an updated version of the UC diagram can be systematically generated.

Users of SSUCD and REUCD will not be burdened with performing these

transformations since they will be carried out by the tool SAREUCD.

71

Figure 3-13: Systematically generating UC diagrams from descriptions and

description skeletons from diagrams

Consistency rules and mapping concepts between UC description structures and

UC diagrams are shown below:

• Use Case Name:

1) A use case description with a given use case name generates a use case in the

diagram with a matching name.

2) Every use case description must have a corresponding use case in the diagram

with matching names (see Table 1-1).

3) Every use case in a diagram must have a corresponding use case description

with matching names (see Table 1-1).

72

• The INCLUDE Statement:

1) An inclusion use case in a diagram must be initiated at least once by each base

use case that includes it, using the include statement in the Description

section.

2) An INCLUDE statement in a base use case must refer to a use case that exists

in the diagram

3) An INCLUDE statement in a base use case results in an include relationship

link between the base use case and the extension use case.

• Public Extension Points:

1) At the base use case, any depicted public extension points must be stated

under the Extension Points section.

2) At the extension use case, the Base UC Name must state the name of a use

case that exists in the use case diagram.

3) The use case name indicated under the Base UC Name section must be

connected to the given use case in the use case diagram using an extend

relationship.

4) The extension point stated in the Extension Point Section must exist at the

base use case stated in the Base UC Name section stated right above it.

5) If an ‘IF’ statement is used, the condition stated must be depicted as a UML

condition in the use case diagram as part of the extend relationship link.

73

• Associations Between Actors and Use Cases:

1) An actor must be depicted in the diagram.

2) An actor must be linked with that use case using an association relationship in

the diagram.

• Generalization Between Use Cases:

1) A use case name stated as generalized in another use case’s Use Case Name

section creates a generalization relationship link between the involved use

cases.

2) A specializing use case must refer to a different use case that exists in the

diagram

3) A specializing use case must refer to a use case in the diagram that is

specializes.

4) The specializing use case must have a generalization relationship directed

towards the generalized use case in the diagram

• Abstract Use Cases and their Implementation:

1) The name of an abstract use case is displayed in italic font in the diagram. A

use case implementing an abstract use case creates a generalization

relationship arrow in the diagram, originating from the implementing use case

and directed towards the abstract use case.

2) An implementing concrete use case must refer to an abstract use case that

exists in the diagram.

74

3) An implementing concrete use case must refer to an abstract use case that it

implements.

4) The entire header tree structure of the abstract use case must exist and be

implemented in the concrete use case.

5) A use case description written in abstract form (italics) must have a

corresponding use case in the diagram with its name displayed in italics.

6) An abstract use case in the diagram must have a corresponding use case

description written in abstract form (italics).

• Generalization Between Actors:

1) An actor name stated as generalized in another actor’s Actor Name section

creates a generalization relationship link between the involved actors.

2) A specializing actor must refer to a different actor that exists in the diagram

3) The specializing actor must have a generalization relationship directed

towards the generalized actor in the use case diagram.

4) Every actor description with a given name must have a corresponding actor in

the diagram with a matching name.

5) Every actor in the diagram with a given name must have a corresponding

actor description with a matching name.

3.2.5 Tool Support Using SARUECD

Tool support is essential for the effective application of the REUCD process. For

a highly complex software system, the corresponding UC model may contain up

75

to four hundred UCs. UCs are not sorted in any chronological order. Relationships

linking UCs with other UCs and actors are also not sorted in any fashion either.

Therefore, performing the REUCD process for such a system manually is a very

cumbersome task that is error prone. Even for a relatively smaller UC model, one

that contains twenty UCs, the application of the REUCD process is still

vulnerable to mistakes.

Figure 3-14: A screenshot of SAREUCD after transforming the descriptions to an

object model

The tool SAREUCD (Simple Automated REUCD) supports the generation of UC

diagrams from UC descriptions and vice versa (see Figure 3-14). In order to

generate UC diagrams from UC descriptions, SAREUCD is loaded with a UC

description file. SAREUCD parses through the descriptions of all the given UC

76

descriptions and actors and generates a file containing the corresponding UC

diagram. The UC diagram is generated in XML in order to be viewable by most

UML modeling tools. However, since the format of the generated XML files

generated by UML modeling tools vary, the XML files generated by SAREUCD

is only viewable by MagicDraw 10.5. Conversely, in order to generate UC

description ‘skeletons’, SAREUCD is loaded with UC diagram file. The UC

diagram can be generated by a UML modeling tool. The UC diagram must be in

XML format; however this is not an issue since almost all UML modeling tools

generate information about their models in XML format. Upon parsing the

diagram or description files, the properties of the given UC model is displayed.

It is impractical to require or expect UC authors to spend a great deal of

time and effort learning the syntax of SSUCD and its consistency and mapping

rules, especially since UC authors often have a business background rather than a

technical background. Even if the syntax of SSUCD and its mapping rules were

understood, creating the UC descriptions and their diagrams manually is error

prone. Authors may inject many syntactical and inconsistency errors in the

descriptions. It is highly desirable to reduce the time and effort spent learning

SSUCD. Therefore, SAREUCD provides a simple GUI interface for creating and

editing UC descriptions (see Figure 3-15). This saves authors the time to learn

many keywords and other syntax rules.

77

Figure 3-15: A UC description

3.2.6 SSUCD Modeling Language Design

Languages are designed to achieve a purpose, whether it is to create programs or

models. To create a high quality modeling language, certain quality principles

must be considered and embedded into the modeling language. The presence of

these quality attributes in any modeling language is essential to its usability and

its adoption for widespread use. The literature has provided many guidelines for

constructing languages. Paige et al. (Paige et al. 2000) presented guidelines and

quality principles specifically for modeling languages. These quality principles

78

are summarized in Table 3-2. This section will discuss the design of the SSUCD

modeling language and its adherence to these quality principles.

Table 3-2: Quality principles that should be present in modeling languages

Simplicity The language does not contain any unnecessary complexity.

Uniqueness There are no overlapping features or redundant ones.

Consistency The language elements and features allow the required goals

to be met.

Seamlessness The ability to generate code from the models.

Reversibility Changes at any point in the development can be propagated

back to the models.

Scalability The ability to model large and small systems.

Supportability The ability for humans to utilize the language and the

availability of tool support.

Reliability The language promotes the development of reliable software.

Space economy Models produced must be concise, showing the required

information without clustering the view.

Simplicity

The fundamental purpose of SSUCD is to ensure the consistency between the UC

diagrams and their descriptions. All language constructs are designed with this

goal in mind. If there are any segments in the UC descriptions that are not

reflected in the diagrams, then they are not structured. Instead, they are populated

using natural language, which is the original and most flexible method of

authoring. The following is a summary of the entire list of constructs provided by

79

SSUCD, sorted by their corresponding section, and how they affect the

presentation and the consistency between the descriptions and the diagrams (see

Table 3-3):

All language constructs are aimed towards achieving the ultimate goal of

consistency between the descriptions and the diagrams. There are no constructs in

SSUCD that do not contribute towards this goal. Furthermore, the grammar

indicates that many sections, such as the “Extension Points”, can be entirely

omitted if not required, which further simplifies the authoring task.

Uniqueness

As shown above in Table 3-3, there are no overlapping features provided within

SSUCD. All language features serve a unique purpose and are vital to ensure

consistency, hence there is also no redundant features.

Table 3-3: A summary of SSUCD’s language constructs and their purposes

Section Keyword Diagram representation

ABSTRACT Abstract UCs appear in italic

font in the diagrams.

SPECIALIZES Results in the creation of

generalization relationship

links in the diagrams.

Use Case Name

IMPLEMENTS Results in the creation of

generalization relationship

links in the diagrams.

80

The name of the UC

in natural language

A UC with the given name is

shown in the diagram.

Description

INCLUDE The INCLUDE statement

can be embedded within the

text, and it will result in the

creation of an include

relationship link in the

diagram.

Base UC Name Results in the creation of an

extend relationship link in

the diagrams.

Extension Point Optional to the user. The

extension point name is

displayed on the extend

relationship link.

Extended Use Cases

IF Optional to the user. The

condition is displayed on the

extend relationship link.

Extension Points

The name of a public

extension point

Results in the display of an

extension point within the

oval of the given UC in the

diagram.

81

Consistency

Using the list of features provided by SSUCD, UC authors can ensure the

consistency between the UC descriptions and the diagrams. This is evident by the

ability of the tool SAREUCD to generate UC diagrams from the descriptions and

vice versa.

Seamlessness

This quality is intended for design modeling languages that are required to

provide an easy and direct transition to code. Hence, this quality is not directly

applicable to SSUCD since it is an analytical modeling language that is not

intended to show a solution which results in code, but rather to provide an

analytical view of what the system is required to do. However, for the purposes of

SSUCD, it can be shown from Table 3-3 that SSUCD constructs can be mapped

directly to the notation of UC diagrams. Therefore, for a given set of descriptions,

there is no complex computation required to develop their corresponding diagram.

Reversibility

The REUCD process utilizes the SSUCD constructs to systematically generate

UC diagrams from the descriptions. Moreover, the REUCD process can also be

reversed to systematically produce UC description (skeletons) from UC diagrams.

Both these process (forward and reverse) are automated using the tool

SAREUCD. Reversibility of SSUCD is discussed in great detail at (STEAM

2009).

82

Scalability

UC modeling, in its current form, is used to model very large systems. However,

these large models suffer from very poorly written descriptions since they are

embedded with numerous inconsistency errors. SSUCD does not impede or

hinder the production of UC descriptions. In fact, it provides an interface that

guides the author while developing the descriptions. SSUCD, along with

SAREUCD, encourages the author to consider aspects that would normally be

ignored if the UCs were to be authored in a traditional fashion. For example, if a

given base UC includes another inclusion UC, SSUCD requires the authors to

consider where exactly in the behavior of the base UC will the behavior of the

inclusion UC be performed. With regards to the additional effort required for

creating syntactically correct descriptions, and avoiding the injections of human

errors, SAREUCD eliminates this problem in two ways; it guides the authoring

process to prevent the injection of errors and it performs all the required syntax

checks to notify the user of any existing errors and how to correct them.

Therefore, it can be argued that using SSUCD can only help the scalability of UC

modeling as a functional requirements elicitation technique. The simplicity of

SSUCD allows it be also used to model small systems as well. This is evident by

the Online Hockey Store System case study presented in Section 3.2.7, which can

be considered a relatively simple system.

83

Supportability

Perhaps the most important quality principle; if users do not have the adequate

support to be able to use the language, then the language is useless. Users of any

language, whether it is a modeling language or a programming language require

tool support to help them produce models and programs. Tool support provided

by SAREUCD is essential to the usability of SSUCD and the execution of the

REUCD process. As mentioned previously, it is unrealistic to expect users of

SSUCD of review its E-BNF syntax specifications in order to use it. SAREUCD

was designed to perform most of the duties directly related to adopting SSUCD

when describing UCs, whereby users need to be only concerned with writing the

UCs instead of worrying about adhering to syntax rules.

Reliability

Producing reliable software is the principal objective of SSUCD. SSUCD ensures

that the two major components of UC models are consistent. Consequently,

understandability of UC models will significantly improve, which is vital to the

success of a project that utilizes some form of a UC driven development process.

Reliability and the cost of inconsistencies are discussed in great detail in Chapter

2.

Space economy

SSUCD’s structural elements exist only within the UC descriptions. Visually, the

presence of SSUCD within the textual descriptions is only in the form of a

84

handful of English keywords. Therefore, the size of the UC descriptions in large

will visually remain the same whether or not they were structured with SSUCD.

Viewing the descriptions with SAREUCD further enhances their readability since

SAREUCD hides a large subset of SSUCD’s keywords and structure to present

the descriptions in a more natural form (see Figure 3-15).

3.2.7 Online Hockey Team Store System Case Study

The following case study is used to demonstrate how UC descriptions are

presented in the SSUCD form and to demonstrate the application of the REUCD

process. This case study will also illustrate the concepts, described in Sections

3.2.3 and 3.2.4, to systematically generate UC diagrams from UC descriptions

using the REUCD process. The case study is about a simplified Online Hockey

Team Store system. The presented system is simplified for clarity, yet complex

enough for the purposes of demonstrating the SSUCD structure and the REUCD

process.

The system allows customers to purchase tickets for upcoming hockey

games. To buy a ticket, a customer needs to choose the game he/she would like to

attend from the team’s online calendar. The customer selects the desired section

in an area where he/she would like their tickets to be along with the quantity of

tickets requested. Upon retrieval of this information, the system will search the

database for the requested tickets. If the tickets are available, the customer is

prompted to either accept or reject the offered seats. If the customer accepts the

offered seats, the customer is then directed to a billing page where the purchase

85

transaction can take place. Otherwise, if the tickets are not available, the customer

is informed about the unavailability and then requested to submit another search

for tickets. Occasionally, tickets for certain games in certain sections of the

hockey arena may go on sale. Unlike regular priced tickets, a customer may

purchase a maximum of six on sale tickets. The system also allows customers to

purchase team merchandise such as hockey jerseys, sticks, and pucks. When

choosing a merchandise item, the customer may provide customization requests

for an extra cost. Available customization options depend on the type of item. For

example, if the item was a hockey jersey, the customer may choose to have

his/her name sewed on the jersey along with their favorite number. Meanwhile, if

the item was a steel pen, the customer may have a name (or other words)

engraved on the pen. To boost merchandise sales, a customer may enter a ticket

number while purchasing merchandise for a chance to win a grand prize. A

customer may purchase tickets and team merchandise using a credit card or a

team hockey card. If the customer chooses to purchase using a credit card, an

external credit card authorization system is utilized to verify the validity of the

given credit card information. Meanwhile, if the customer chooses to purchase

using a team hockey card, the customer is requested to enter a PIN. The system

internally verifies the PIN with the associated hockey team card to approve the

transaction. For any purchase, the customer is requested to enter billing

information. The billing information is used for market survey purposes and

delivery of tickets and team merchandise. Billing information would include the

customer’s name, phone number and address.

86

This simplified system contains seven UCs and two actors. The formal UC

and actor descriptions are presented below. For illustrative purposes, the evolution

of the UC diagram is shown below (see Figure 3-16�3-18).

Actors:

1) Actor:

Customer

Brief Description: This actor may purchase hockey tickets at regular price or

on sale. This actor may also purchase team merchandise. The actor will be

requested to pay using a credit card or a team hockey card.

2) Actor:

Credit Card Validation System

Brief Description: This actor ensures the validity of a given a credit card

number and an expiry date.

Use Cases:

1) Use Case Name:

Buy Tickets

Associated Actors:

Customer

Descritpion:

87

Preconditions:

At least one game and one seat is available

Brief Description: This UC is responsible for allowing customers to purchase

as many tickets as they need in any section.

Basic Flow:

The system presents the different sections that exist in the arena and the price

for a single seat in each section. The customer then enters information about

the required tickets and submits order request. The system searches for the

required tickets and prompts the Customer to accept or reject the offered

seats. The customer accepts to purchase ticket and INCLUDE <Perform

Transaction> to complete the transaction.

Alternative Flows:

• If tickets not available, the system notifies the Customer that the requested

tickets are unavailable and the UC restarts.

• If the tickets were rejected, the system notifies the Customer that the

cancellation has been confirmed and the UC restarts

Postconditions: If tickets are issued, these seats become unavailable for future

Customers

88

2) Use Case Name:

Buy On Sale Tickets

SPECIALIZES Buy Tickets

Associated Actors:

Customer

Description:

Preconditions:

At least one game and one seat is available

Brief Description: This UC is responsible for allowing Customers to

purchase a maximum of six on sale tickets.

Basic Flow:

The system presents the different sections that exist in the arena and the price

for a single seat in each section. The Customer then indicates interest to

purchase on sale tickets and submits an order to request tickets. The system

retrieves the information about the required tickets and searches for them. The

system prompts the Customer to accept or reject the offered seats. The

Customer accepts to purchase tickets and INCLUDE <Perform

Transaction> is performed to complete the transaction.

89

Alternative Flows:

• If the tickets not available, the system notifies the Customer that the

requested tickets are unavailable and the UC restarts.

• If the Customer requested too many tickets, the system notifies the

Customer that the requested number tickets exceed the maximum allowed

of six and the UC restarts.

• If the tickets were rejected, the system notifies the Customer that the

cancellation has been confirmed and the UC restarts

Postconditions: If tickets are issued, these seats become unavailable for future

Customers

3) Use Case Name:

ABSTRACT

Perform Transaction

Brief Description: This UC is responsible for allowing customers to pay for

their selected items

Preconditions:

At least one ticket is requested for purchase

Postconditions:

If tickets are issued, these seats become unavailable for future customers

90

If merchandise is sold, the merchandise database is updated

Figure 3-16: The UC diagram after three UC descriptions are read

4) Use Case Name:

Purchase With Credit Card

IMPLEMENTS Perform Transaction

Associated Actors:

Customer, Credit Card Validation System

Preconditions:

At least one item is requested for purchase

Brief Description: This UC is responsible for allowing Customers to pay for

their selected items using a credit card

Basic Flow:

The system requests Customer to enter billing information. The Customer

then enters the billing information and selects to pay using a credit card. Upon

entering and submitting the credit card information, the given credit card is

validated by the Credit Card Validation System and a receipt is printed.

91

Alternative Flows:

• If the credit card information is incorrect, the system notifies the

Customer that the credit card information is incorrect and requests the

Customer to enter the credit card information once again.

Postconditions: If tickets are issued, these seats become unavailable for future

Customers

5) Use Case Name:

Purchase Using Hockey Team Card

IMPLEMENTS Perform Transaction

Associated Actors:

Customer

92

Preconditions:

At least one item is requested for purchase

Customer has a hockey team card with a set PIN

Brief Description: This UC is responsible for allowing Customers to pay for

their selected items using a preauthorized payment plan setup on their hockey

team card

Basic Flow:

The system requests Customer to enter the billing information. The

Customer then enters the billing information and selects to pay using a

hockey team card. The Customer then enters team hockey team card number

and PIN. The system verifies the card number and PIN and prints a receipt.

Alternative Flows:

If the card information is invalid the system notifies the Customer that the

hockey card information is incorrect and requests the Customer to enter the

hockey card information once again.

Postconditions: If tickets are issued, these seats become unavailable for future

Customers

93

Figure 3-17: The UC diagram after five UC descriptions are read

6) Use Case Name:

Buy Team Merchandise

Associated Actors:

Customer

Brief Description: This UC is responsible for allowing customers to buy team

merchandise such as jersey, hockey sticks, mugs and other collectibles

Basic Flow:

The system displays catalogue with all team merchandise items. The

Customer then selects the desired items to purchase, the desired quantity and

any desired customization information. The INCLUDE <Perform

Transaction> UC is performed to complete the transaction. The Customer

finally enters a ticket number (if one is available) for a chance to win.

Extension Points:

 Grand Prize Giveaway

94

Figure 3-18: The UC diagram after all UCs and actors are read

7) Use Case Name:

Winning Ticket Entered

Associated Actors:

Customer

Extended Use Cases:

Base UC Name: Buy Team Merchandise

Extension Point: Grand Prize Giveaway

IF the winning ticket was entered

Brief Description: This UC is responsible for the situation where a winning

ticket was entered.

Basic Flow:

95

If the winning ticket was entered, the system notifies the Customer that they

won the grand prize. The Customer enters phone number for a service

representative to call

The final UC diagram (Figure 3-18) was systematically generated despite the

descriptions containing very limited structure. Therefore, as discussed in Section

3.2.6, the ultimate goal was achieved by providing the minimal amount of

structure without adding unnecessary complexities. The UC descriptions file and

the XML file representing the diagram may be found at (STEAM 2009).

96

3.3 A Subject-Based Empirical Evaluation of SSUCD’s

Performance in Reducing Inconsistencies in Use Case

Models

3.3.1 Introduction

While the SSUCD structure was specifically designed to be simpler to use than

SUCD, this is no guarantee that it will possess suitable characteristics for its user

group. This user group includes sub-groups with little or no technical background.

Hence, the suitability or usability of these characteristics need to be evaluated via

a subject-based empirical study, which is presented in this section. The controlled

experiment described in this Section took place at the University of Alberta,

Canada. This experiment follows the well-known experimentation process

proposed by Wohlin et al. (Wohlin et al. 2000). According to the template

proposed in (Wohlin et al. 2000), the following subsections describe the

experiments: definition, context, hypotheses formulation, subject selection,

design, instrumentation and measurement techniques, and validity evaluation,

respectively.

3.3.2 Experimental Planning

3.3.2.1 Experiment Definition

The main research question posed by this experiment is whether the usage of the

SSUCD structure to author UC descriptions results in developing UC models with

higher consistency levels in comparison to using traditional UNL. The secondary

97

research question is whether the usage of the SSUCD structure changes the other

quality attributes in comparison to using UNL. It is possible that even if SSUCD

improves consistency that it reduces the overall quality of UC models by

negatively impacting other quality attributes. The usage of UNL is used in this

experiment as the control situation since it is the most commonly used form in

industrial settings.

Since the issue of inconsistencies between UC diagrams and descriptions

is the only issue that is tackled directly by SSUCD, we first assess whether using

SSUCD will indeed improve the consistency between these components. In

addition, we assess its impact upon other quality attributes affecting UC models.

If SSUCD’s structural elements were excluded from UC descriptions, the

resulting artifact would simply be UC descriptions in UNL form. Therefore, the

only independent variable is the use of the SSUCD structure; and hence two

treatments exist, SSUCD and UNL (non-SSUCD). This experiment also has five

dependent variables upon which the treatments are compared: inconsistency

mistakes (I), content completeness (C), false facts and information (I’), non-

analytical facts and information (NA) and other elements that reduce

understandability (U).

3.3.2.2 Experiment Context

This experiment involved Electrical/Computer/Software Engineering graduate

students. It was conducted as part of a voluntary mini-course, which did not

contribute towards the subjects’ degree requirements. The course was divided into

98

two major components. The first was a series of five one-hour lectures to

introduce UC modeling concepts and techniques, and to allow them to practice

these techniques using a number of examples. The second component of the

course was two lab exercises that constituted the experimental tasks. The students

were not informed about the hypotheses under investigation.

3.3.2.3 Hypotheses Formulation

Five hypotheses were produced to account for the potential effects of using

SSUCD to develop UC descriptions (see Table 3-4). The alternative hypothesis

(Ha) for the consistency variable (I) indicates that it was expected that there would

be less instances of inconsistency when using SSUCD. Inconsistency is the only

one-tailed hypothesis as SSUCD was intentionally designed to tackle this issue,

and thus it is expected that UC models constructed with SSUCD will contain

lower counts of inconsistencies. However, since SSUCD was not designed to

directly improve the other attributes, the remaining hypotheses are considered as

non-directional hypotheses (see Table 3-4).

Table 3-4: Five dependent variables and their corresponding hypotheses

Dependent

Variable

Null Hypothesis

(Ho)

Alternative Hypothesis

(Ha)

Inconsistency (Ho1): I (SSUCD) ≤ I (UNL) (Ha1): I (SSUCD) > I (UNL)

Completeness (Ho2): C (SSUCD) = C (UNL) (Ha2): C (SSUCD) ≠ C (UNL)

Fault-Free (Ho3): I’ (SSUCD) = I’ (UNL) (Ha3): I’ (SSUCD) ≠ I’ (UNL)

Non-Analytical (Ho4): NA (SSUCD) = NA (UNL) (Ha4): NA (SSUCD) ≠ NA (UNL)

Understandability (Ho5): U (SSUCD) = U (UNL) (Ha5): U (SSUCD) ≠ U (UNL)

99

3.3.2.4 Subject Selection

All graduate level students with an undergraduate background relative to software

development were invited to participate. In total, 34 students voluntarily agreed to

participate. It is important to note that none of the students participated in the

original study (see Section 2.5.4). Informal interviews with the subjects have

indicated that none of them had previous exposure to UC modeling. It is

beneficial that the subjects did not have UC modeling experience as there would

have been a tendency to ignore the techniques and concepts taught in the lectures;

and instead, apply the techniques that they were more familiar with from their

experience. However, it must be noted that the fact that the subjects lack any UC

modeling experience may raise concern with respect to external validity. This

issue is discussed in more detail in Section 3.3.6.4.

It is not possible to determine and compare the subjects’ relative

educational experience, as the subjects have pursued their undergraduate studies

in various universities situated in various countries, and underg`raduate programs

vastly differ. However, the fact that they are all graduate students is indicative of

their general abilities.

3.3.2.5 Experimental Design and Tasks

This experiment required all subjects to consider two distinct systems, an Airline

Ticketing system (Overgaard et al. 2005) and a Banking system (Gomaa 2000).

The ideal solutions for both of these systems are presented in their respective

sources. It was critical to use externally developed systems to eliminate biases,

100

since SSUCD is developed through this research work. The subjects were

randomly assigned into two groups (A and B) of 17 subjects each. For each part

of this experiment, the subjects were given the Requirements Documents (RDs) of

the respective systems and were asked to develop the entire UC model. To

mitigate the effect of individual and group abilities, a 2 × 2 partial factorial design

with repeated measure is utilized (see Table 3-5 for details).

Table 3-5: Experimental design

 Group A Group B

Week 1 Introduction to UC modeling - 2 lectures (approx. 2 hours total)

Week 2
UC modeling practice using UNL and SSUCD – 3 lectures (approx. 3

hours)

Week 3

U
N

L

Develop Airline

Ticketing system

S
S

U
C

D

Develop Airline

Ticketing system

Week 4

S
S

U
C

D

Develop Banking system

U
N

L

Develop Banking system

Table 3-6: Details of the two systems used in this experiment

 Airline Ticketing

System

Banking System

of UCs 3 4

of actors 1 1

of relationships and their

types

2 associations

1 extend

1 include

3 associations

3 include

of functional facts 11 21

Table 3-6 shows the structural and content details of both systems; note that the

Banking system was slightly modified from its original version so that its

“difficulty level” would be closer to the Airline Ticketing system. The Banking

101

system still contains one more UC than the Airline Ticketing system, and requires

more information and functional facts to be stated in the corresponding UC

descriptions. Meanwhile, the relationships contained in the Airline Ticketing

system seem to be more “complex” to identify than those of the Banking system,

even though the Banking system contains two more relationships. Relationships

from the Banking system are more repetitive and more explicitly stated than the

relationships from the Airline Ticketing system. The Airline Ticketing system

contains an extend relationship which the Banking system lacks.

3.3.2.6 Time Allocation

As the exercises were relatively small, subjects were expected to finish them in

approximately 1 hour (±15 minutes). Subjects did not have to face any timing

pressures since both sessions were 3 hours long. All subjects finished their tasks

and no great time differences were witnessed.

3.3.2.7 Instrumentation

Tool support is available for SSUCD using SAREUCD (El-Attar et al. 2006a).

SAREUCD provides a GUI interface that allows its users to focus entirely on

describing their UCs without accounting for SSUCD’s syntactical requirements.

Tool support is also available to describe UCs in UNL, such as [Analyst Pro 2008,

Optimal Trace 2008, Use Case Studio 2008, TopTeam 2008). The Subjects were

not allowed to use any tools that are specifically designed to support the authoring

of UCs, whether in SSUCD on UNL. The rationale behind this decision is to

102

compare the effectiveness of using SSUCD and UNL as a means to write UC

descriptions, and eliminate any biases that might be introduced by tool support.

3.3.2.8 Analysis Procedure

Under the assumption that all deficiencies have an equal unit weighting, the

quantitative data presented in this Section can be considered as discrete count

data. Unfortunately, we have no causal explanation as to the nature of the

distribution that the data points are sampled from. Using a statistical exploratory

analysis approach, we examined the various data sets for their compliance to

normality assumptions using the Shapiro-Wilk test (Shapiro et al. 1972). This test

was selected as it tends to be more powerful than other common “normality” tests

(such as Anderson-Darling and Kolmogorov-Smirnov) and does not require that

the mean or variance of the hypothesized normal distribution to be specified in

advance. For more details on this technique see (Shapiro et al. 1972). This test

indicated that several of our datasets are non-normal. Hence, we will adopt a

conservative approach in all of our quantitative analysis and consider all datasets

as being sampled from non-parametric distributions.

3.3.2.9 Scoring and Measurement

This section presents examples of the defects listed in Chapter 2 as well as how

they were scored. Please note that the entire set of defect examples is very

extensive and would require a great deal of space to present. Table 3-7 presents a

103

large cross section of defect examples. Table 3-8 presents the scoring strategy for

each quality attribute.

Table 3-7: defect examples

Category Examples

1. Diagram vs. Diagram Inconsistencies:

� A UC, actor or relationship that is depicted in the UC

diagram but not described or mentioned in the UC

descriptions.

2. Diagram vs. Descriptions Inconsistencies:

� A relationship originating from UC-A (or Actor-A)

towards UC-B (or Actor-B) in one diagram, while

another diagrams show that the relationship originates

from UC-A (or Actor-A) towards UC-B (or Actor-B).

� A relationship that is present between two elements in

one diagram but not present between the same elements

in another diagram.

� Two elements sharing a particular type of relationship

between them in one diagram but share another type of

relationship between them in another diagram.

Inconsistency

3. Diagram vs. Descriptions Inconsistencies:

� Two contradicting statements.

Completeness

1. A missing statement of necessary facts.

� Assuming a UC called “Deposit Funds” that describes

104

the functionality regarding the depository of funds in an

ATM machine. If that UC fails state that the customer

must have at least one account at the bank that owns the

ATM machine in order to be able to deposit the funds,

then this counts as a defect.

2. An exclusion of necessary activities that take place in a

UC.

� For the “Deposit Funds” UC, assuming the ATM

requires the customer to indicate the type of deposit that

they will be making (cash or check), if the UC fails to

state that the customer should be prompted for this

information, then this counts as defect.

3. A missing statement of a dependency between elements.

� For the “Deposit Funds” UC, assuming that the UC

depends on another UC that validates the customer’s PIN

through an inclusion relationship, if the UC fails to state

this dependency, then this counts as defect.

4. A missing actor description.

� All actors must be described. If an actor description is

missing, then this counts as a defect.

5. A missing diagrammatic element or description.

� If an actor, UC or relationship is supposed to be depicted

in the UC diagram but is not, then this counts as a defect.

105

1. An incorrect fact or information about an actor.

� Assuming an actor representing a customer of a lottery

system and the description of the actor states that the

actor should be at least 18 years of age, when the actor

should actually be at least 21 years of age.

2. An incorrect activity that occurs in a UC.

� After an email is downloaded, it is stated that the entire

set of emails in the inbox are scanned for viruses, when

only the downloaded email should be scanned.

3. An incorrect fact stated in a UC.

� The seating capacity of a stadium is stated as 90,000,

when it should be 95,000.

Fault-Free

4. An incorrect dependency (or dependencies) between

elements.

� A UC responsible for allowing visitors to browse the

online Library catalogue indicates a dependency on

another UC that allows visitors to login as members,

when visitors do not need to login since anyone (not only

members) can browse the Library catalogue.

Non-Analytical

1. The description of any GUI elements.

� The use of drop-down menus on a certain page or the use

of certain colors in the design of a website.

106

2. The statement of using a certain algorithm or procedure

to perform a certain activity.

� Determining the optimum route between two locations

3. Any presumption regarding how an actor, which is an

external entity, will perform its own internal tasks.

� For example, how an external Credit Card Verification

system actually verifies a credit card.

1. Unnecessarily repeated information or facts about actors

or in UCs.

� For the “Deposit Funds” UC, stating multiples times that

the customer must have his PIN validated. Validating the

PIN should occur once at the start of the UC. Stating this

action multiple might lead to confusion as to whether the

system should validate the PIN multiple times while that

UC is being performed.

Understandability

2. Very small UCs: these are UCs that do not contain

enough behavior to deliver a meaningful service to an

actor and hence need to be “linked” together or

“combined” in order to provide such a service.

� Assuming in a telephony system, a set of UCs named

“Enter Destination Number”, “Get Connection” and

“Ring Destination Phone”. These UCs collectively are

responsible for carrying out a phone call. These UCs

107

should be combined into a single UC called “Place

Phone Call”.

3. Very big UCs: these are UCs that offer more than one

meaningful service; each service should ideally be

delivered by a separate UC.

� Assuming in an ATM system a UC is responsible for

withdrawing, depositing and transferring funds. This UC

offers more one service and should be split into three

UCs named “Withdraw Funds”, “Deposit Funds” and

“Transfer Funds”.

4. Ambiguous information stated in an actor or UC

description.

� For a cruise control system, a UC stating that the cruise

control will be deactivated once vehicle to traveling at a

very low speed. It is ambiguous as to what is the exact

threshold to automatically deactivate the cruise control

system.

108

Table 3-8: Scoring Strategy

Category Scoring Strategy

Inconsistency

All “Inconsistency” defects are scored similarly (as a

discrete count of ‘1’) regardless of their type.

“Inconsistency” is scored as the sum of unique

inconsistencies committed in the UC model. For example,

for inconsistencies of type (c), if a fact was stated as “A”

three times while stated as “B” elsewhere, then this counts as

one “Inconsistency” defect since the inconsistency is the

same (A ≠ B). Meanwhile, if a fact was stated as “A”, “B”

and “C” in three different locations of the descriptions, then

this counts as three “Inconsistency” defects since A ≠ B, A ≠

C and B ≠ C.

Completeness

All “Completeness” defects are scored similarly (as a

discrete count ‘1’) regardless of their type. If a fact-A was

required to be stated at two unique locations in the UC

descriptions but was missed both times, this is scored as two

defects. Note that scoring of the textual descriptions in the

“Completeness” category is based on the facts, relationships

and activities that are supposed to be present, not the

existence of the actual UC description. For example, if fact-

A and fact-B are supposed to be described in UC-A but were

instead described under a similar UC, called UC-B, then no

109

“Completeness” defects are scored, instead another defect is

scored under a different category depending on the actual

situation.

Fault-Free

All “Fault-Free” defects are scored similarly (as a discrete

count ‘1’) regardless of their type. “Fault-Free” is scored as

the sum of unique “Fault-Free” defects committed in the UC

model. For example, if a UC states fact-A twice and fact-A

is incorrect then this counts as a single “Fault-Free” defect.

If a UC states a correct fact-A and an incorrect fact-B, then

this counts as a single “Fault-Free” free defect as well as an

“Inconsistency” defect.

Non-Analytical

All “Non-Analytical” defects are scored similarly (as a

discrete count ‘1’) regardless of their type. “Non-Analytical”

is scored as the sum of unique “Non-Analytical” defects

committed in the UC model. For example, if it was

mentioned multiple times that volume control will be

handled as two “Up” and “Down” buttons rather than a drag-

able lever, then this counts as one “Non-Analytical” defect.

If UC-A states that it will be presented as a menu item in a

menu, and UC-B states that will be presented as another

menu item, then this counts as two “Non-Analytical” defects

since these are two distinct GUI decisions.

Understandability All “Understandability” defects are scored similarly (as a

110

discrete count ‘1’) regardless of their type. In the case of

unnecessary repeated information (type (1)), defects are

scored based on the number of repetitions that a certain fact

or information was repeated. For example, if a fact-A was

unnecessarily repeated five times, then this counts as a five

“Understandability” defects. For the remaining types of

“Understandability” defects, scoring based on the sum of

unique “Understandability” defects committed in the UC

model. For example, if ambiguous information such as very

low speed was stated multiple times, then this counts as a

single “Understandability” defect.

Appendix D shows two partial UC models developed by subjects during the

experiment and their evaluation with respect to “Inconsistency” only. One partial

UC model is of a Banking system developed with UNL, while the other of an

Airline Ticketing system developed with SSUCD. The respective UC models

were not shown in their entirety due to space limitations. Each partial UC model

consists of a UC diagram
1
 and three UC descriptions. A detailed walkthrough of

how “Inconsistency” defects were detected and scored is also presented. Scoring

of other quality attributes are not shown due to space limitations as they would

require the presentation of the entire UC model and very lengthy walkthroughs of

how their defects were detected and scored.

1
 The UC diagrams in appendix D were redrawn using a UML modeling tool for clarity and

presentation purposes.

111

3.3.3 Analysis and Interpretation

For each of the non-parametric variables, we present a descriptive summary in

terms of a notched box and whiskers plot (see Figure 3-19). The notched box

shows the median, lower and upper quartiles, and confidence interval around the

median. The vertical lines show the non-parametric 95% percentile range. The

upper and lower horizontal lines show the upper and lower quartiles respectively.

The middle horizontal line shows the median. Tilted lines stemming from the

median show the confidence interval around the median. The dotted-line connects

the nearest observations within 1.5 IQRs (inter-quartile ranges) of the lower and

upper quartiles. The crosses (+) and circles (o) indicate possible outliers –

observations more than 1.5 IQRs (near outliers) and 3.0 IQRs (far outliers) from

the quartiles.

Figure 3-19: Illustration of the box and whiskers plot’s diagrammatic notation

In addition, we test for differences between the medians of related samples using

the Mann-Whitney U statistic (of the 1
st
 sample) as described in (Siegel et al.

1988). The probability provided should in general be considered as an

underestimation due to the presence of a number of ties within the datasets which

prevents us from using an exact test. The confidence intervals around the

112

difference between medians are also computed using the well-known Hodges-

Lehmann method (Lehmann 1998); all confidence intervals are given at the

standard 95% level.

Finally, for major results from statistical significant testing, we will

provide an estimate of the size of the difference between the two groups by

estimating the associated effect size. Cliff’s delta (Cliff 1993, 1996, 1996b) is

used as a non-parametric effect size measure. Kromrey et al. (Kromrey et al.

1998, 2005) and Hess et al. (Hess et al. 2005) have empirically demonstrated that

Cliff’s delta is superior to Cohen’s d and Hedges’ g when the data is non-normal

or possesses variance heterogeneity. Cliff’s delta examines the probability that

individual observations within one group are likely to be greater than the

observations in the other group:

∆= Pr(xi1>xj2) – Pr(xi1<xj2)

Where xi1 is a member of population one and xj2 is a member of population two.

Cliff’s δ̂ has two alternatives in terms of estimating its associated

variance. In this article, we will utilize the “consistent” estimate of the variance
2

as it allows the construction of the associated asymmetric confidence intervals, at

95%, around the sample value of δ̂ . However, it should be noted that Cliff (Cliff

1996b) states that this approach produces highly conservative confidence

internals, especially with low numbers of subjects, and advises against hypothesis

testing based upon these estimates.

2
 Kromrey and Hogarty [38] empirically demonstrated that the choice of variance procedure is

relatively unimportant across a wide range of circumstances.

113

Unlike Cohen’s d, Cliff’s δ̂ has no universally accepted linguistic

interpretations and hence we will in general refrain from directly inferring

linguistic size statements from it. Although clearly, values approaching the

extremes of the effect size range can be considered “large”, to borrow

terminology from Cohen’s d. Despite Cliff’s recommendation, we will utilize the

effect size measure to compute exploratory significance hypothesis testing. The

risk that the tests are in fact measuring beyond the 95% level is not considered to

be too important in these circumstances. Due to a lack of casual theory, we were

unable to propose directional hypothesis for the majority of the hypotheses

examined. This limitation can now be resolved. For two populations, if zero is

included within the confidence interval of Cliff’s delta then the populations are

considered equal; if the confidence interval only includes negative numbers then

UNL > SSUCD (favoring UNL subjects); if it only includes positive numbers

then SSUCD > UNL (favoring SSUCD subjects).

3.3.3.1 Performed Analysis

The analysis performed investigates the effects of the treatment variables and

experimental artifacts in isolation: in Section 3.3.3.2�3.3.3.5 the effect of using

SSUCD vs. UNL on each system separately with respect to various quality

attributes; in Section 3.3.3.6, the results obtained for the Airline Ticketing System

vs. Banking System with respect to each quality attribute individually by both

groups; and in Section 3.3.3.7, the performance of Group A vs. Group B with

respect to each quality attribute individually, using both systems.

114

3.3.3.2 SSUCD vs. UNL – Inconsistencies

As stated in Chapter 2, while three types of inconsistencies are considered; neither

system provides the subjects with the opportunity to commit inconsistency

mistakes of types (b) and (c). Figure 3-20 shows the results for the combined

count of inconsistencies for the Airline Ticketing system. Table 3-9 shows that

SSUCD subjects have statistically significant (lower) inconsistency values than

UNL subjects. This indicates that the embodiment of SSUCD structural constructs

in the UC descriptions explicitly prompts subjects to consider and crosscheck

diagrammatic and descriptive elements for consistency. This statistical

significance is further confirmed as the confidence interval around δ̂ includes

only positive values (see Table 3-10).

Inconsistencies - Airline Ticketing System

-8

-7

-6

-5

-4

-3

-2

-1

0

SSUCD Count Combined UNL Count Combined

C
o

u
n

t

Figure 3-20: Inconsistencies - Airline Ticketing

System

 n

SSUCD 17
UNL 17

115

Inconsistencies - Banking System

-8

-7

-6

-5

-4

-3

-2

-1

0

SSUCD Combined UNL Combined

C
o

u
n

t

Figure 3-21: Inconsistencies - Banking System

 n

SSUCD 16
UNL 17

Figure 3-21 shows the results of the combined inconsistency count from the

Banking system. Once again, the results show that SSUCD subjects, statistically

significantly, commit less inconsistency mistakes than their UNL counterparts

(Table 3-9); this picture is re-enforced by the “large” positive δ̂ value and a

confidence interval that only includes positive values (Table 3-10).

Table 3-9: Mann-Whitney test for the ‘Inconsistencies’ results

Table 3-10: Cliff’s delta for the ‘Inconsistencies’ results

Confidence Interval around delta (δ̂) System
Cliff’s delta

(δ̂)
Variance

maximum minimum

Airline Ticketing
System

0.450 0.030 0.673 0.112

Banking System 0.764 0.028 0.783 0.435

Alternative Hypothesis - (Ha1): I (SSUCD) > I (UNL):

System Technique Rank sum Mean rank U

SSUCD 362.5 21.32 79.5
Airline Ticketing System UNL 232.5 13.68 209.5

SSUCD 337.5 21.09 70.5
Banking System UNL 223.5 13.15 201.5

System
Difference
between
medians

95.2% CI
Mann-

Whitney U
statistic

1-tailed p

Airline Ticketing System 1.0 0.0 to +∞ 79.5 0.010

Banking System 1.0 0.0 to +∞ 70.5 0.010

116

3.3.3.3 SSUCD vs. UNL – Completeness

Figure 3-22 shows analysis with respect to ‘Completeness’ with the Airline

Ticketing system. Remember, that the completeness of a UC model cannot be

determined by the UC diagram, but only by the contents of the UC descriptions.

The UC descriptions need to collectively state certain facts. The Airline Ticketing

system collectively contains 12 distinct facts. These can be divided into

subcategories according to functionality supplied by the system. Individually the

subcategories contained insufficient sample sizes to allow “safe” statistical

analysis to be performed. Considering the combined completeness count produced

for the Airline system, Table 3-11 shows that there was a statistical significance

between the performance of the SSUCD and UNL subjects. The positive range of

the confidence interval around δ̂ (Table 3-12) indicates that SSUCD subjects

have an overall higher completeness count than UNL subjects. As SSUCD

explicitly promotes consistency, subjects are likely to be more inclined to

reconsider the identified relationships by re-examining the Requirements

Document. This in turn will incline subjects to consider and outline the contents

of their UC descriptions before authoring them. Subjects have later confirmed

during informal interviews that they believe that SSUCD did provoke them to

undertake a more rigorous approach towards authoring their UCs.

117

Completeness - Airline Ticketing System

6

7

8

9

10

11

12

13

SSUCD Combined UNL Combined

C
o

u
n

t

Figure 3-22: Completeness - Airline Ticketing

System

 n

SSUCD 17
UNL 17

Completeness - Banking System

8

10

12

14

16

18

20

22

24

26

SSUCD Combined UNL Combined

C
o

u
n

t

Figure 3-23: Completeness - Banking System

 n

SSUCD 16
UNL 17

Figure 3-23 shows the analysis with respect to ‘Completeness’ with the Banking

system. Tables 3-11 and 3-12 show that no statistically significant difference was

observed within the data from the Banking System.

118

Table 3-11: Mann-Whitney test for the ‘Completeness’ results

Table 3-12: Cliff’s delta for the ‘Completeness’ results

Confidence Interval around delta (δ̂) System
Cliff’s delta

(δ̂)
Variance

maximum minimum

Airline Ticketing
System

0.460 0.030 0.680 0.122

Banking System 0.243 0.038 0.567 -0.147

3.3.3.4 SSUCD vs. UNL – Understandability

Figure 3-24 shows the results for ‘Understandability’ with respect to the Airline

Ticketing System. The results show a statistically significant difference between

the performance of SSUCD and UNL subjects (Table 3-13). The positive range of

the confidence interval around δ̂ (Table 3-14) indicates that SSUCD subjects

have performed better than UNL subjects. This might be attributable to the fact

that SSUCD prompts subjects to consider and plan the contents of their UCs

before they start authoring them. No statistical significance was observed with

respect to the Banking System (see Figure 3-25 and Table 3-13).

Alternative Hypothesis - (Ha1): C (SSUCD) ≠ C (UNL):

System Technique Rank sum Mean rank U

SSUCD 364.0 21.41 78.0
Airline Ticketing System UNL 231.0 13.59 211.0

SSUCD 305.0 19.06 103.0
Banking System UNL 256.0 15.06 169.0

System
Difference
between
medians

95.2% CI
Mann-

Whitney U
statistic

1-tailed p

Airline Ticketing System 1.0 0.0 to 2.0 78 0.018
Banking System 1.0 -1.0 to 4.0 103 0.231

119

Table 3-13: Mann-Whitney test for the ‘Understandability’ results

3.3.3.5 SSUCD vs. UNL - Fault-Free and Non-Analytical Information

The results for the ‘Fault-Free’ quality attribute with the Airline Ticketing System

and the Banking System are shown individually in Figures 3-26 and 3-27,

respectively. Results for the ‘Non-Analytical’ quality attribute are shown in

Figures 3-28 and 3-29, respectively. No statistical significant differences were

observed for either quality attribute with either system (Tables 3-15 – 3-17).

Fault-Free - Airline Ticketing System

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

SSUCD Combined UNL Combined

C
o

u
n

t

Figure 3-26: Fault-Free - Airline Ticketing

System

 n

SSUCD 17
UNL 17

Alternative Hypothesis - (Ha1): U (SSUCD) ≠ U (UNL):

System Technique Rank sum Mean rank U

SSUCD 385.5 22.68 56.5
Airline Ticketing System UNL 209.5 12.32 232.5

SSUCD 243.0 15.19 165.0
Banking System UNL 385.5 22.68 56.5

System
Difference
between
medians

95.2% CI
Mann-

Whitney U
statistic

1-tailed p

Airline Ticketing System 2.0 1.0 to 3.0 56.5 <0.01
Banking System -1.0 -2.0 to 1.0 165 0.289

120

Fault-Free - Banking System

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

SSUCD Combined UNL Combined

C
o

u
n

t

Figure 3-27: Fault-Free - Banking System

 n

SSUCD 16
UNL 17

Non-Analytical - Airline Ticketing System

-2.5

-2

-1.5

-1

-0.5

0

SSUCD UNL

C
o

u
n

t

Figure 3-28: Non-Analytical - Airline

Ticketing System

 n

SSUCD 16
UNL 17

121

Non-Analytical - Banking System

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

SSUCD UNL

C
o

u
n

t

Figure 3-29: Non-Analytical - Banking

System

 n

SSUCD 16
UNL 17

Table 3-15: Mann-Whitney test for the ‘Fault-Free’ results

Table 3-16: Mann-Whitney test for the ‘Non-Analytical’ results

Alternative Hypothesis - (Ha1): I’ (SSUCD) ≠ I’ (UNL):

System Technique Rank sum Mean rank U

SSUCD 330.5 19.44 111.5
Airline Ticketing System UNL 264.5 15.56 177.5

SSUCD 297.5 18.59 110.5
Banking System UNL 263.5 15.50 161.5

System
Difference
between
medians

95.2% CI
Mann-

Whitney U
statistic

1-tailed p

Airline Ticketing System
1.0

0.0

to 2.0

111.5

0.236

Banking System 1.0 -1.0 to 2.0 110.5 0.348

Alternative Hypothesis - (Ha1): C (SSUCD) ≠ C (UNL):

System Technique Rank sum Mean rank U

SSUCD 330.5 19.44 111.5
Airline Ticketing System UNL 264.5 15.56 177.5

SSUCD 258.5 16.16 149.5
Banking System UNL 302.5 17.79 122.5

System
Difference
between
medians

95.2% CI
Mann-

Whitney U
statistic

1-tailed p

Airline Ticketing System 0.0 0.0 to 1.0 111.5 0.186

Banking System
0.0

0.0

to 0

149.5

0.546

122

Table 3-17: Cliff’s delta for the ‘Fault-Free’ and ‘Non-Analytical’ results

Confidence Interval around delta (δ̂) Attribute System
Cliff’s delta

(δ̂)
Variance

maximum minimum

Airline 0.242 0.040 0.573 -0.157
Fault-Free

Banking -0.188 0.040 0.202 -0.526
Airline 0.228 0.029 0.520 -0.111 Non-

Analytical Banking 0.099 0.026 0.391 -0.211

3.3.3.6 Airline Ticketing System vs. Banking System

In this section, we investigate the relationship between the two documents; or to

be more precise, either the relationship between the documents or the possibility

of a learning effect. Unfortunately, due to the limited partial factorial nature of the

experimental design, we are unable to distinguish between these two factors.

However, for simplicity, this section will only refer to the evaluation with respect

to the documents. While, it is believed that many formulations are possible, we

will simply compare the rescaled (or weighted) performance of the subjects with

respect to only the documents. This rescaling is implemented by subtracting the

minimum score achieved by any subject, regardless of technique, from the current

score under consideration and dividing this result by the maximum score achieved

by any subject, regardless of technique. Note that the maximum score achieved by

a subject is similar to the theoretical maximum score for “Completeness”; and that

the other quality attributes do not possess a theoretical maximum score.

123

Table 3-18: Descriptive statistics of the results

Normalized System n Median IQR 95% CI of Median

Airline 34 0.833 0.375 0.667 to 0.833
Inconsistencies

Banking 33 0.857 0.429 0.714 to 1.000

Airline 34 0.909 0.250 0.818 to 1.000
Completeness

Banking 33 0.857 0.238 0.762 to 0.905

Airline 34 0.875 0.250 0.750 to 1.000
Fault-Free

Banking 33 0.625 0.500 0.625 to 0.875

Airline 34 1.000 0.500 0.500 to 1.000
Non-Analytical

Banking 33 1.000 0.250 1.000 to 1.000

Airline 34 0.667 0.333 0.500 to 0.833
Understandability

Banking 33 0.375 0.375 0.250 to 0.500

Table 3-19: Mann-Whitney test for all quality attributes

Normalized System Rank sum Mean rank U

Airline 1005.0 29.56 712.0

Inconsistencies Banking 1273.0 38.58 410.0

Airline 1291.0 37.97 426.0
Completeness Banking 987.0 29.91 696.0

Airline 1368.0 40.24 349.0

Fault-Free Banking 910.0 27.58 773.0

Airline 1068.0 31.41 649.0

Non-Analytical Banking 1210.0 36.67 473.0

Airline 1375.0 40.44 342.0
Understandability

Banking 903.0 27.36 780.0

Normalized

Difference
between
medians 95.2% CI

Mann-Whitney U
statistic 2-tailed p

Inconsistencies
-0.071 -0.19 to 0 712 0.052

Completeness
0.048 0.0 to 0.100 426 0.088

Fault-Free
0.125 0.0 to 0.250 349 0.007

Non-Analytical
0.000 -0.25 to 0 649 0.191

Understandability 0.250 0.083 to 0.333 342 0.006

Table 3-20: Cliff’s delta for all quality attributes
Confidence Interval around delta

(δ̂) Normalized
Cliff’s delta

(δ̂)
Variance

maximum minimum

Inconsistencies 0.269 0.020 0.520 -0.024

Completeness -0.241 0.022 0.058 -0.499

Fault-Free -0.378 0.019 -0.090 -0.608

Non-Analytical 0.157 0.016 0.389 -0.095

Understandability -0.390 0.021 -0.086 -0.627

124

Table 3-18 shows the results of the subjects’ performances for both systems with

respect to each quality attribute. A statistically significant difference was

observed for the ‘Fault-Free’ and ‘Understandability’ attributes (Table 3-19).

Table 3-20 further indicates that subjects performed better with the Airline

Ticketing system with respect to those two quality attributes. Further examination

of the subjects’ performances was conducted to shed more “light” into this

situation. The ‘Fault-Free’ category consists of two subcategories: ‘Incorrect

Facts’ and ‘Incorrect Diagrammatic Elements’. It was revealed that the Banking

system subjects committed more mistakes in both subcategories. The Banking

system subjects performance was “very poor” in the ‘Incorrect Facts’ subcategory

as they committed 57 errors in comparison to only 24 by the Airline Ticketing

system subjects. This might be attributable to the fact that the Banking system

requires subjects to state almost twice as many correct facts (21) than the Airline

Ticketing system (11). The ‘Understandability’ category consists of four

subcategories: ‘Ambiguous Information’, ‘Repeated Facts’, ‘Very Big UCs’ and

‘Very Small UCs’. It was revealed that the Banking subjects consistently scored

poorer in all subcategories with the exception to the “Ambiguous Information”

subcategory. In particular, the Banking system subjects committed 68 “Repeated

Facts” mistakes compared to only 18 for the Airline Ticketing system subjects.

This can also be attested to the fact that the Banking system would ideally contain

three include relationships compared to only ideally one include relationship in

the Airline Ticketing system. Upon examining the subjects’ UC models, it was

found that subjects have a tendency to restate facts at the base UC and the

125

inclusion UC, leading to a much higher count of ‘Repeated Facts’ by the Banking

system subjects. Another finding is that the Airline Ticketing system subjects had

no instances of ‘Very Big UCs’ compared to 14 for the Banking system subjects.

The Banking system subjects’ UC models proved that many subjects merged the

three main services: Transfer Funds, Withdraw Funds and Query Account, into

one base UC. As stated in (Gomaa 2000), each of these three main services

should ideally be described in a separate UC. Another common mistake was that

subjects merged the behavior required to validate the card’s PIN into each

transaction oriented UCs. Once again, (Gomaa 2000) shows that procedure of PIN

validation should ideally be contained in a separate UC. These issues can be

avoided in the future by training subjects to better identify individual goals that

warrant an individual UC, and to identify tasks that are common between multiple

UCs that should be contained in a separate UC. The differences in the two

remaining subcategories of ‘Understandability’ were marginal.

3.3.3.7 Group A vs. Group B

Table 3-21 shows the results of the subjects’ performances in each group with

respect to each quality attribute. It is important to evaluate the performance of

each group as significant differences in performance can bias the results towards a

particular technique. For this analysis, the score for each subject in each group for

each quality attribute were added for both systems. In this section we are

comparing the rescaled performance of the subjects with respect to each quality

attribute. As shown in Tables 3-22 and 3-23, no statistically significant difference

126

was observed between the groups for any of the quality attributes, which indicates

that no evidence exists which suggests that subject allocation has introduced a

significant bias into the experiment.

Table 3-21: Descriptive statistics of the results

Normalized Group n Median IQR 95% CI of Median

A 34 -0.800 0.407 -1.000 to -0.600
Inconsistencies

B 33 -0.833 0.500 -1.000 to -0.500

A 34 0.909 0.190 0.810 to 0.952
Completeness

B 33 0.857 0.182 0.762 to 0.909

A 34 -0.750 0.250 -0.875 to -0.750
Fault-Free

B 33 -0.750 0.500 -0.875 to -0.625

A 34 -1.000 0.250 -1.000 to -0.750
Non-Analytical

B 33 -1.000 0.500 -1.000 to -0.667

A 34 -0.500 0.473 -0.750 to -0.286
Understandability

B 33 -0.500 0.417 -0.667 to -0.375

Table 3-22: Mann-Whitney test for all quality attributes

Normalized Group System Rank sum Mean rank U

A Airline 1144.5 33.66 572.5

Inconsistencies B Banking 1133.5 34.35 549.5

A Airline 1225.5 36.04 491.5
Completeness B Banking 1052.5 31.89 630.5

A Airline 1091.5 32.10 625.5

Fault-Free B Banking 1186.5 35.95 496.5

A Airline 1127.5 33.16 589.5

Non-Analytical B Banking 1150.5 34.86 532.5

A Airline 1153.5 33.93 563.5
Understandability

B Banking 1124.5 34.08 558.5

Normalized
Difference between

medians
95.2% CI

Mann-
Whitney U
statistic

2-tailed p

Inconsistencies 0.000 -0.167 to 0.14 572.5 0.883

Completeness 0.004 -0.043 to 0.091 491.5 0.379

Fault-Free 0.000 -0.250 to 0.125 625.5 0.411

Non-Analytical 0.000 0.000 to 0 589.5 0.672

Understandability 0.000 -0.167 to 0.167 563.5 0.975

127

Table 3-23: Cliff’s delta for all quality attributes

Confidence Interval around delta (δ̂)
Normalized

Cliff’s delta

(δ̂)
Variance

maximum minimum

Inconsistencies 0.020 0.023 0.303 -0.265

Completeness -0.124 0.023 0.172 -0.399

Fault-Free -0.031 0.024 0.263 -0.320

Non-Analytical 0.051 0.016 0.291 -0.196

Understandability 0.004 0.024 0.293 -0.284

3.3.4 Threats to Validity

In this section we present threats to the validity of the study in accordance with

the standard classification (Wohlin et al. 2000).

3.3.4.1 Conclusion Validity

Heterogeneity exists in any student-based experiment. If a large degree of

heterogeneity exists within the subjects, there is a serious validity threat that the

variations in the observed results can be more attributed to individual differences

rather than the prescribed techniques. In order to increase homogeneity, our

experiment was conducted with graduate Electrical/Computer/Software

Engineering students as subjects who were novice UC modelers before this

experiment; and who all underwent the same seminars and practice. In addition,

our analysis of the relative performance between the groups provides additional

evidence that this threat is not a significant concern.

 Choosing subjects who are novice UC modelers also aided in assuring that

the subjects applied the prescribed methods instead of techniques they might have

learned previously. At the start and during each session, subjects were reminded

128

to use the prescribed technique for the given session and were given a brief

review of the technique and how it is applied.

3.3.4.2 Internal Validity

To combat any fatigue or maturation threats, the experimental tasks were

scheduled to take place in 3 hour sessions. Subjects were allotted 3 hours in order

to complete experimental tasks that would usually last approximately 1 hour (±15

minutes). Therefore, the subjects did not feel any significant time pressure to

complete the tasks.

 Population selection was based on availability sampling as subjects

participated in this experiment on a voluntary basis, which raises the issue of self-

selection. It is only possible to mitigate this threat by conducting this experiment

as a mandatory component of a course, which is not a feasible idea since this will

affect the learning value that the subjects were originally intended to receive by

the course. On the other hand, the fact that subjects participated on a voluntary

basis mitigates against morality threats as subjects are self motivated to learn from

and participate in this experiment.

3.3.4.3 Construct Validity

The design of this experiment aimed to minimize the construct validity of the

dependent variables. Subjects were chosen randomly to form two groups; and

effects of individual capabilities, system differences and ordering effects were

minimized through a traditional 2 × 2 fractional factorial design. In addition, the

129

experimental data is analyzed with respect to these effects. Biasness towards

SSUCD or UNL with respect to the systems was eliminated by using the

Requirements Documents of two UC models provided by two different authors,

who have no connection with this experiment.

3.3.4.4 External Validity

Another inherit external threat is that this experiment utilized students as subjects;

hence, it is unsafe to generalize these results to software professionals,

specifically analysts. However, in general, the difference between students and

professionals is not always clear cut with respect to software engineering related

activities, as reported by Höst et al. (Höst et al. 2000) and Arisholm et al.

(Arisholm et al. 2003) in other controlled experiments. In fact in Arisholm et al.

(Arisholm et al. 2006), the authors argue that students are better representatives in

controlled experiments than professionals. The authors argue that professionals

have a tendency to stray away from the techniques they were instructed to apply

and resort to techniques they developed from previous experiences in industry. In

industry, users of SSUCD will be experienced professionals rather than

inexperienced students. The results presented by this experiment are only valid

when the subjects are inexperienced. Another experiment will be required to

evaluate the effect that previous experiences might have on the application of

SSUCD.

 As is often the case with controlled experiments, our experiment was

conducted on a relatively small artifact; and hence it is unsafe to generalize it to

130

full-scale industrial settings and artifacts. Full-scale industrial UCs are of a

significantly largely scale than those that were considered in this study. Larger

UC models will inherently require more time to develop compared to those

developed in our experiment. Users of SSUCD will naturally become less

conformant to its formal syntax when using SSUCD over a longer period time.

This issue can however be alleviated through tool support (SAREUCD (STEAM

2009)). Moreover, larger UC models contain more actors, UCs and relationships

connecting them, all of which should be textually described. The larger number of

elements in a UC model increases vulnerability to “inconsistencies”. Industry-like

UC models represent larger and more complex systems, where the interactions

between actors and the system are more intricate and the functionalities offered by

the system are more sophisticated. For such UC models, there is a greater

vulnerability towards missing required “correct” information and inserting

“incorrect” information. As the number of functionalities increase, there is a

greater possibility to combine too much functionality into one UC creating ‘Very

Big UCs’, and vice versa, creating ‘Very Small UCs’. Naturally, with more to

describe, there will be more instances of repetitive information and ambiguous

information. All these are elements that hinder the understandability quality of a

UC model. As SSUCD is however designed to increase the qualities of UC

models, it is believed that it is ideally positioned to perform well under these

circumstances, but clearly another study is required to start exploring this

conjuncture.

131

132

Chapter 4

Improving the Quality of Use Case

Models Using Antipatterns

4.1. Introduction

While UC models are simple to create and read; this simplicity is often

misconceived, leading practitioners to believe that creating high quality models is

straightforward. Therefore, many low quality models that are inconsistent,

incorrect, contain premature restrictive design decision and contain ambiguous

information are produced. To combat this problem of creating low quality UC

models, this Chapter presents a technique that utilizes antipatterns as a mechanism

for remedying quality problems in UC models. The technique, supported by the

tool ARBIUM, provides a framework for developers to define antipatterns. The

feasibility of the approach is demonstrated by applying it to a real-world system.

The results indicate that applying the technique improves the overall quality and

clarity of UC models.

133

4.2. Related Work

Many researchers and practitioners have devised techniques to improve the

quality of UC models. The following is a brief summary of their approaches:

4.2.1. Computer-supported Verification of UC Models – State of the art

Berenbach (Berenbach 2004) describes a set of software-supported

(DesignAdvisor) heuristics to create large verifiable analysis models. This

approach can be highly restrictive as many organizations only use a subset of

UML; moreover, many organizations have procedures that utilize in-house design

heuristics. These restrictions are resolved by ARBIUM, the tool presented in this

Section. ARBIUM provides support for analysts to define and verify their own

heuristics in addition to being equipped with a set of predefined rules that are

applicable to any UC model. The antipatterns defined in this Chapter encompass

all of the heuristics presented in (Berenbach 2004) that pertain to UC modeling. It

is believed that this approach, Berenbach (Berenbach 2004), presents the current

state of the art in computer-supported verification of UC models; and hence, this

approach will be compared against our approach in the case study presented in

Section 4.6. The heuristics in (Berenbach 2004) will be presented in Section 4.5

and the antipatterns that embody these heuristics will be identified.

4.2.2. Other Approaches

The work presented in this Chapter should be regarded as building upon

foundations laid by others. However, most of these pre-existing guidelines are

134

informal and are provided at a very abstract level. In this Section, we will briefly

outline other related work which tackles the identified problem.

The UC modeling inspection technique presented in (Anda et al. 2002) is

based upon recommendations provided in (Armour et al. 2000; McCoy 2003;

Schneider et al. 1998), is focused on textually-oriented domain-dependent defects

in UC models. In order to effectively apply these guidelines and inspection

techniques, a great deal of UC modeling expertise is required and therefore these

techniques will not be evaluated in Section 4.6. Linguistic techniques (Fantechi et

al. 2002; McCoy 2003) and tools (McCoy 2003; Ren et al. 2004; Ryndina et al.

2004) do not perform any verification upon the semantics of the UCs and their

relationships. However, UC modeling semantics are carefully considered when

developing antipatterns and applying our technique. UC refactorings (Butler et al.

2002; Ren et al. 2003, 2004; Rui et al. 2003; Xu et al. 2004) were developed to

address simple defects in UC models. The refactorings are based on simple

heuristics which can be found in a small subset of our antipatterns. Ryndina et al.

(Ryndina et al. 2004) developed a computer-supported approach to verify UC

models. However, the approach does not support the basic UC modeling syntax

defined in (OMG 2005); specifically (a) all types of relationships amongst UCs,

(b) the generalization relationship between actors and (c) multiple actor

associations with a single UC. ARBIUM is designed to support these basic UC

modeling notations.

It should be noted that it is not necessary to apply the antipatterns

technique exclusively. In fact, we recommend that other approaches should be

135

used in addition to using antipatterns. The resulting UC models will be of higher

quality in comparison to using any approach exclusively.

4.3. UC Modeling Antipatterns

The technique presented in this Chapter focuses on deficiencies that require

human cognition to verify. Therefore, the approach can be characterized as “risk-

based”, meaning that a “poor” UC modeling structure does not necessarily

indicate that a defect certainly exists; rather it indicates that the structure in

question may lead to potential defects. In this section, we describe a new

technique to find these situations in UC models. The final judgment, with regard

to correctness, can only be taken by a domain expert. The proposed quality

improvement technique is based on identifying modeling practices that are likely

to lead to harmful consequences. While it is impossible to formally analyze the

UNL found in textual descriptions, UC diagrams can be formally analyzed due to

their adherence to a rigorous syntax (OMG 2005). Therefore, an informal review

process will be required to analyze textual descriptions, while inappropriate

design decisions in UC diagrams can be formally detected.

To effectively apply this approach, a repository of (anti)patterns which

articulate poor UC modeling habits and decisions is required; our initial

repository is described in Section 4.3.6. An advantage to this approach is that it

can be applied in the early phases of the development cycle where UC models are

often incomplete.

136

4.3.1. Advantages of Using Antipatterns: What Can Antipatterns Do?

Learning from previous experiences and mistakes is the main concept behind

using antipatterns. An antipattern explains why a given structure may cause

deficiencies in a UC model. An antipattern will also provide a detection

mechanism to guide modelers to areas in the UC model where an antipattern may

exist, be it in the UC diagram, the descriptions, or both. Most importantly, an

antipattern will explain why such a debatable structure seemed appropriate in the

first place. Finally, an antipattern provides suggestions upon improving the

current structure to avoid potential consequences. Basically, an antipattern

provides key information to guide modelers from a fallacious solution to a

superior solution (Coplien 2007). Table 4-1 shows the antipattern template used in

this Section. The purpose of each field is described briefly in Table 4-1 and in

more detail in Section 4.3.2.

Table 4-1: Antipattern template

Antipattern Name: The title of the antipattern.

Description: A description of the faulty decisions or techniques.

Rationale: A list of the deceptive or seductive reasons as to why the fallacious

solution seemed to be appropriate.

Consequences: A list of the harmful consequences that could be sustained from

applying the fallacious solution.

Detection:

Where – A guide to the areas where the antipattern can exist.

How – Instructions that are used to positively identify a match for the

137

 antipattern.

Improvement: A list of actions that can be performed to convert a fallacious

solution into a superior solution or avoid the fallacious solution.

4.3.2. Matching Antipatterns With UC Models

As mentioned earlier, poor modeling decisions may exist in the UC diagram, the

descriptions, or both. The “Detection” section in an antipattern contains detailed

guidelines to match the antipattern. For poor modeling decisions that exist in UC

diagrams, an antipattern will outline a set of diagrammatic elements that represent

a debatable structure. Detecting a match for such antipatterns can be achieved by

juxtaposing the antipattern’s stated unsound diagrammatic structure with the

actual UC diagram. As for poor decisions that exist in textual descriptions, the

“Detection” section will guide analysts to particular field(s) of a UC template

where an antipattern match can be detected. If an antipattern is matched; the

analysts are then required to verify the correctness of the UC model.

Upon reviewing an antipattern match, corrective measures may be

required. If corrective measures were undertaken, this may consequently

eliminate previously detected antipattern matches that have not been reviewed.

Alternatively, undertaking corrective measures may cause new antipatterns to

surface. Therefore, the antipattern matching process must be performed iteratively

until all antipattern matches have been addressed.

138

4.3.3. Using OCL to Describe Unsound Diagrammatic Structures

Unsound structures described in NL are inherently ambiguous. Ambiguity can be

eliminated by describing unsound diagrammatic structures referred to by

antipatterns using OCL constraints (Warmer et al. 1998). During the matching

process, if the constraints were not satisfied, then an antipattern match is detected.

Wherever possible, antipatterns will be augmented with OCL statements to

automate or semi-automate their detection.

Traditionally, OCL statements are used to describe constraints in class

diagrams or object models. In order to describe diagrammatic UC structures using

OCL, the UC diagram must be transformed to an object model. This is possible

since every instance of a UC diagram conforms to the metamodel provided by

OMG (OMG 2005). Each element in a UC diagram maps onto one or more

metaclasses. However, it is clearly impractical to expect analysts or domain

experts to study hundreds of pages of documentation explaining thousands of

metaclasses, most of which are not exclusive to UC diagrams, in order to

construct their OCL statements. To increase the accessibility of our approach, a

simplified metamodel was created (see Figure 4-1), which contains only four

classes and a limited number of associations linking these classes together. All

these metaclasses are exclusive to UC diagrams. The simplified metamodel does

not need to support the entire notational set of UC diagrams. The smaller

metamodel will encourage the adoption of the metamodel by analysts and

minimize the learning curve while supporting the notational subset most

139

commonly used, and which encompasses most UC diagrams. The metamodel can

easily be extended to support any additional notation required.

The metaclasses shown in Figure 4-1 represent actors, UCs, the

association relationship, the generalization relationship (both between actors and

UCs), abstraction, the include relationship, the extend relationship and extension

points. The following is a brief description of the metamodel elements:

• Instances of the UseCase and Actor classes are assigned names using the

name attribute, and a Boolean abstract attribute that indicates whether they

are abstract or concrete. The extensionLocation attribute of the ExtendsAt

association class is used to state the extension point to which an extend

relationship link is referring.

• For the ExtendsAt association class, the extensionUC role indicates that the

extension UC extends the base UC. The extended extension point is referenced

by the extensionLocation attribute. The ExtendsAt relationship is required

since the extension point referred to is a property of the extend relationship.

The base UC is specified using the base role.

• An extend relationship that does not refer to an extension point is indicated

using the Extends association. For the Extends association, the extension

role indicates the extension UC. Meanwhile, the base UC in turn is specified

using the base role.

• An include relationship is specified using the Includes association. For the

Includes association, the inclusion role indicates the inclusion UC being

included by a base UC which is in turn indicated by the base role.

140

• The generalization relationship between UCs is supported by the

Specializes_use_case association. The Specializes_use_case association

has one UseCase object assigned the parent role, while another UseCase

object is assigned the child role.

• The generalization relationship between actors is supported by the

Specializes_actor association. The Specializes_actor association has one

Actor object assigned the parent role, while another Actor object is assigned

the child role.

• The Associated_With association represents an association relationship

between an actor and a UC. The actor end of the association relationship is

assigned the actorEnd role, while the UC end of the relationship is assigned

the useCaseEnd role.

• Directed associations are represented with the DirectedAssociation

association class, the directedActorEnd role indicates the actor involved in

the association, while the directedUCEnd role indicates the UC involved in

the association. The String attribute directTowards can be set to either “UC”

or “Actor” to indicate where the association link is directed towards.

141

Figure 4-1: The simplified version of the UC metamodel used in ARBIUM
3

Automated support is available to examine diagrammatic constructs using OCL

and the above metamodel. Unfortunately, examination of textual descriptions

remains a manual process. The tool supported antipatterns shown in Section 4.4

are augmented with OCL statements whenever possible to automate or semi-

automate their detection.

4.3.4. Domain Independent vs. Domain Dependent Antipatterns

Antipatterns can either be domain-independent (DI) or domain dependent (DD).

DI antipatterns make no assumptions about the underlying domain and hence are

applicable to any UC model. Researchers can derive DI antipatterns by

understanding the semantics of the UC modeling notation and the purpose behind

3
 Some elements of the metamodel are present to more effectively benefit from the features

provided by USE (UML-based Specification Language), which is used in addition to ARBIUM to

automate the detection process (Section 4).

142

each component of a UC model. DD antipatterns represent additional, specialized

antipatterns which seek to encode an organization’s specific objectives for a

specific project or domain. Analysts should collaborate with domain experts to

develop DD antipatterns. Using OCL and the simplified metamodel, analysts can

quickly define DD antipatterns.

Antipatterns can be further subdivided – with respect to their suitability of

being machine readable (see Table 4-2). The principal advantage of antipatterns

that are machine readable is that they can be (semi-)automatically matched.

Diagrammatic structures are described using OCL as a set of constraints, which is

used by ARBIUM to perform the matching process. The process of matching

textual patterns cannot be automated as UNL cannot be formally analyzed.

Therefore, a review process is required to detect matches for textual patterns

described by antipatterns. The availability of tool support to match an antipattern

is dependent on the information provided in its “Detection” section.

Table 4-2: Types of antipatterns

Situation

Full Automation

Support Available

Semi-automation

Support Available

No Automation

Support Available

Domain-independent

Antipatterns

(1) (2) (3)

Domain Dependent

Antipatterns

(4) (5) (6)

143

Type (1): This Section mainly focuses on this type of antipattern. A large number

of Type (1) antipatterns are presented in detail in Section 4.3.6. The detection

process of these antipatterns can be fully automated as they only require analysis

of UC diagrams.

Type (2): For this type of antipattern, ARBIUM can be used to detect the

diagrammatic structure described by an antipattern; subsequently a review process

is required to analyze the corresponding textual descriptions.

Type (3): For this type of antipattern, the review process needs to be conducted

manually since these antipatterns require the examination of textual descriptions.

No automation support can be provided to detect this type of antipattern. A

number of Type (3) antipatterns are described in Section 4.3.6.

Type (4): These DD antipatterns are machine-readable. Analysts use the

simplified metamodel to compose OCL statements that describe the debatable

construct. Analysts will need to collaborate with domain experts to develop these

antipatterns.

Type (5): Similar to Type (4) antipatterns, analysts will need to collaborate with

domain experts to develop this type of antipatterns. Unlike Type (4) antipatterns,

Type (5) antipatterns require a review or inspection of textual descriptions in

addition to the UC diagrams.

144

Type (6): DD antipatterns are again developed through a collaborative effort

between analysts and domain experts. A manual review process needs to be

performed in order to match this type of antipatterns as they require examination

of textual descriptions.

4.3.5. A Systematic Review Process for Antipattern Development

The antipatterns developed in this Chapter are based on widely accepted

guidelines and best practices, as well as a thorough understanding of the UC

modeling notational syntax and semantics. A systematic review process was

deployed in order to obtain such relevant information. The review process used is

a light-weight adaptation of the systematic literature review proposed in

(Kitchenham 2004). In (Kitchenham 2004), the purpose of a systematic review

process is defined as:

“…a means of identifying, evaluating and interpreting all available

research relevant to a particular research question, or topic area, or

phenomenon of interest.”

A systematic review process consists of three main steps: (a) Planning, (b)

Execution and (c) Result Analysis. In the planning stage, research objectives are

identified and a review protocol is created. The purpose of the review protocol is

to specify the research questions that need to be answered, or a research objective

145

that needs to be satisfied, and the method by which the review process will be

executed. During the execution phase, a broad spectrum of literature is selected,

which is then subjected to preset inclusion and exclusion criterion. Before

executing the review process, it is required to approve the review process protocol

in order to determine its feasibility. Approval of the review process protocol can

be obtained by asking subject matter experts or by conducting a trial execution of

the protocol. Similar to the planning phase, the execution phase is also evaluated

to determine if the literature identified for consideration appropriately yields

relative information that can used towards answering the original research

questions. During the results analysis phase, the literature selected for

consideration is analyzed and the information of interest is gathered and

synthesized to answer the original research questions and objectives. The reason

for devising a light-weight version of the systematic review process presented in

(Kitchenham 2004) is that while the rewards of a full systematic literature review

is greater than the review process used in this work, it was revealed that there

remains unresolved issues with conducting a full systematic review (Mian al.

2005). In particular, a full systematic review process is extremely time-consuming

(Woodall et al. 2006). A full review process entails quantitative analysis which is

not applicable due to the qualitative nature of the information being searched for

in this research. The light-weight adaptation is to use two databases (Amazon and

IEEE Xplore), in addition to the official OMG UML specification (OMG 2005).

The following subsections will describe the review process protocol in more

detail.

146

4.3.5.1 Data Classification Scheme and Scope

The result of the literature review is to determine information regarding certain

aspects of UC modeling. These aspects are used to categorize the analyzed

information using the following data classification scheme:

� Information that explains UC modeling, its notation, syntactical rules and

semantics.

� Information regarding how to properly apply UC modeling, such as best

practices, recommendations, high quality attributes, patterns and

blueprints.

� Information regarding what not to do in UC modeling, such as mistakes,

pitfalls, drawbacks and poor quality attributes.

To gather these types of information, a scope for the review process was set. The

scope of the review only considered literature available in the form of books,

scientific journals, conference and workshop proceedings, as well as the OMG

UML specification (OMG 2005). This criterion was chosen as it presents the most

credible set of scientific sources for information related to UC modeling. Books

contain valuable UC modeling industrial experience, recommendations and best

practices. Scientific journals, conference and workshop proceedings provide

cutting-edge research results and solutions in the field of UC modeling. Finally,

the OMG UML specification represents the definitive source for the UC modeling

notation, syntactical rules and semantics.

147

4.3.5.2 Search Strategy

The search for books was conducted using the Amazon database

(http://www.Amazon.com) as it can be argued that it is one of the largest

databases for books available on the Internet. The search for scientific journals,

conference and workshop proceedings was performed using the IEEE Xplore

database (http://ieeeexplore.ieee.org), since the IEEE Computer Society is

considered a leading venue for Software Engineering research results (Glass et al.

1993). The OMG UML specification is available online at (OMG 2005).

The correctness of the search results returned by search engines is

dependent on the search terms used to execute the search. The online search

process was conducted as follows:

1. Derive the most relevant terms from the research objective.

2. Derive the most relevant terms from literature already reviewed prior

to this research work.

3. Identify any alternative synonyms and spellings for the set of terms

derived.

4. Derive as many search term combinations as possible.

Based on this strategy, a large number of search terms were developed, such as:

Use Cases OR Use Case Antipatterns OR Use Case Models OR Use Case

Modeling OR Use Case best practices OR Use Case pitfalls OR Use Case

mistakes OR Use Case suggestions OR Use Case drawbacks OR Use Case

authoring OR Use Case descriptions OR Use Case diagrams OR Use Case

148

recommendations OR Use Case warning OR Use Case syntax OR Use Case

metamodel.

4.3.5.3 Filtering the Results

An inclusion and exclusion criteria is required to filter the results returned by the

search matches. The purpose of the inclusion criteria is to ensure that only

literature that discusses UC modeling itself is included in the analysis. The

purpose of the exclusion criteria is to avoid literature that only mentions UC

modeling in a contextual manner. The following inclusion and exclusion criteria

were applied:

� Inclusion criteria: Can this literature resource be categorized to

discuss UC modeling, including its application, best practices, syntax,

pitfalls, recommendations, quality improvement, notation, syntactical

rules or semantics?

� Exclusion criteria: Can this literature resource be considered to only

mention the terms UC modeling or only provide a UC model without

discussing the practical aspects of UC modeling or its notation?

For each book, the inclusion and exclusion criterion were applied by reading the

title, preface and its short description if available (and if necessary). For books

that satisfy the inclusion criteria while not satisfying the exclusion criteria, its

table of contents is examined to determine which chapters relate to UC modeling.

Upon determining the relative chapters in the book, the inclusion and exclusion

criteria are applied once again to exclude irrelevant chapters. For each journal,

149

conference and workshop proceedings, the inclusion and exclusion criteria were

applied by reading the title and abstract (if necessary). For the OMG UML

specification, the inclusion and exclusion criteria were applied by reviewing the

table of contents and determining the chapters relevant to UC models. The search

strategy was successfully piloted and its results were verified before executing a

full search process.

4.3.5.4 Filtering the Results

The following process was applied to execute the search for the information

required to satisfy the research objective:

1. Apply the search strategy outlined in Section 4.3.5.2.

2. Record bibliographical details of matches returned by search engines

as a result of executing the search strategy.

3. Apply the inclusion and exclusion criteria outlined in Section 4.3.5.3.

4. Remove bibliographical details of matches that do not satisfy the

inclusion criteria and do satisfy the exclusion criteria.

5. For each book in the bibliography after applying step (4), the inclusion

and exclusion criterion are applied to record relevant chapters.

6. The resulting set of relevant chapters in books and relevant research

papers are fully read. The relevant chapters in the OMG UML

specifications are fully read. The contents of relevant chapters and

papers are analyzed and categorized according the data classification

scheme described in Section 4.3.5.1.

150

The set of references yielded from applying the filtering process are shown below:

• Books: (Adolph et al. 2002; Armour et al. 2000; Bittner et al. 2002; Booch et

al. 2005; Cockburn 2000; Gomaa 2002; Kroll et al. 2003; Kruchten 1998;

Kulak et al. 2000; Overgaard et al. 2005; Schneider et al. 1998)

• Journal papers: (Cockburn 1995; Constantine et al. 1999; Jaaksi 1998;

Medvidovic al. 2002)

• Conference proceedings: (Anda et al. 2001a; Anda et al. 2002; Anderson et al.

2001; Ben Achour et al. 1999; Berenbach 2004; Butler et al. 2002;

Chandrasekaran 2008; Fantechi et al. 2002 Firesmith 1999; Gogolla et al.

2002; Lilly 1990; McCoy 2003; Ren et al. 2003, 2004; Rui et al. 2003; Xu et

al. 2004)

• Workshop proceedings: (Fabbrini et al. 2001; Gomaa 1997)

• Formal syntax specifications of Use Case models: (OMG 2005)

4.3.5.5 Results Analysis

Upon executing the search process, the resulting literature matches were read and

a great deal of qualitative information was gathered and categorized. Information

in the literature that is presented in the form of UC modeling best practices,

patterns and blueprints, is analyzed to develop antipatterns that are based on not

following these recommendations. Information regarding poor UC modeling

techniques, patterns and poor quality attributes, is analyzed to develop

antipatterns that are based on committing such mistakes and pitfalls. Finally,

151

information that explains the UC modeling approach, its notational syntactical

rules and semantics, is analyzed to develop antipatterns based on modeling

structures that will violate the intended semantics. The set of antipatterns

developed are presented in Section 4.3.6. The set of antipatterns presented in this

Chapter do not encompass every possible antipattern that may exist; it is however

the most comprehensive set of anti-patterns which can be derived from the current

literature on the topic.

4.3.6. Examples of UC Modeling Antipatterns

� Antipattern Name

a1. Accessing a generalized concrete UC - Automation Support: Type (1)

� Description

 A family of UCs that represent a framework of services offered by a system can

be defined using the generalization relationship. The services offered by these

UCs are very similar and share a common theme. Modelers can define a hierarchy

between the UCs using the generalization relationship. The general behavior

shared by these services is contained in a generalized UC. Meanwhile, specific

behavior tailored to cater to some requirements of the system’s users, are

contained in specialized UCs. To access this framework of services, an actor is

associated with the generalized UCs to indirectly access all of the services offered

by this family of UCs.

152

� Rationale

 An association can be created between an actor and a generalized UC for two

reasons:

(1) The generalized UC contains behavior that individually can be useful to that

actor.

(2) The operational mechanisms of the generalization relationship in UC

diagrams are similar to that of class diagrams. Therefore, modelers may utilize

the concept of polymorphism in their UC model. Hence, when an actor

initiates a generalized UC, the service request can be delegated to one of its

specializing UCs.

Figure 4-2: A good scenario of an actor being directly associated with a generalized

UC

For example, in Figure 4-2, the UC Enroll Student is a concrete UC that

describes the procedure of enrolling a regular student. Special types of

students enrolling into the University receive special consideration. A student

who is a relative of a faculty member is entitled to a tuition discount, in

addition to free access to the University’s health services. This type of student

will be enrolled using the Enroll Faculty Member Relative Student UC. On

the other hand, the university offers several online programs. Students

enrolled in such programs are considered off-campus students and thus they

153

are relieved from paying the University’s health services. Moreover, since

online courses are virtual, the system does not need to check for availability

inside the classroom. Students enroll into online programs using the Enroll

Online Student UC.

In summary, special types of students are enrolled using one of the specializing

UCs. Meanwhile, a regular student will be enrolled using the generalized UC.

� Consequences

Often generalized UCs only contain fragments of general behavior that is used by

its specializing UCs. Therefore, generalized UCs are often incomplete. Such

incomplete generalized UCs contain “blanks” that are intended to be “filled” by

special behavior contained in the specializing UCs. Figure 4-3 provides a visual

overview of the operational mechanisms of the generalization relationship.

Figure 4-3: The execution flow of a generalization relationship

154

If the generalized UC is concrete, it can standalone as a complete UC which can

be exclusively initiated. However, if an actor makes an exclusive initiation

request to such generalized UC, incomplete meaningless behavior will be

executed. Figure 4-4 shows a shoe store system that exposes this pitfall.

Figure 4-4: A bad scenario of an actor being directly associated with a concrete

generalized UC

 The shoe salesman may apply one of two promotional offers to a shoe purchase.

The first offer allows customers to get double the airmiles they normally would

get on their purchases. This offer is applied by performing the Dispense Double

Airmiles UC. The other offer entitles customers to a 10% discount on their

purchases. This offer is applied by executing the Apply 10% Discount UC. The

generalized UC Apply Special Offer is concrete, and it contains general behavior

responsible for applying any promotional offer. Since this generalized UC is

concrete, it can be exclusively initiated by the Shoe Salesman. If the

generalized UC was exclusively initiated, no particular special offer will be

applied to a given purchase.

� Detection

Where – Search for any generalized UCs in the “UC Diagram”. How – – If a

generalized UC is found, find out if this generalized UC is concrete. The

155

generalized UC must be associated with an actor. Concrete UCs are labeled using

regular font. Meanwhile, abstract UCs are labeled using italic font.

OCL Description:

context UseCase

inv AccessingGeneralizedUseCaseByActor:

not ((not (self.isAbstract)) and self.actorEnd->size

> 0 and self.child->size >0) inv

AccessingGeneralizedUseCaseByActor:

not ((not (self.isAbstract)) and self.actorEnd->size

> 0 and self.child->size >0)

� Improvement

(1) Unlike concrete UCs, an abstract UC cannot be initiated. Setting the

generalized UC in the shoe store system shown in Figure 4-4, which contains

incomplete behavior, to be abstract will prevent it from being initiated (see

Figure 4-5):

Figure 4-5: The generalized UC is set to be abstract to make sure that one of its

specializing UCs services the actor’s request.

156

(2) Explicit associations between the actor and the specializing UCs can be

created in place of the association between the actor and the generalized UC

(see Figure 4-6). The explicit associations with the specializing UCs will

enforce the service request to be performed through one of the specializing

UCs. Hence, this technique will ensure that the generalized UC is not initiated

directly and exclusively. It is worth mentioning that the improved solution

presented in (1) is often superior. This approach may cluster the UC model,

especially if there are many specialized UCs. Moreover, the solution presented

in (1) preserves the semantics behind the original design.

Figure 4-6: Direct access to the generalized UC is avoided and replaced with direct

access to its specializing UCs

� Antipattern Name

a2. UCs containing common and exceptional functionality - Automation

Support: Type (1)

� Description

The reuse of a preexisting UC is achieved by making it both an extension UC and

also an inclusion UC. For example, in a car dealership system (see Figure 4-7),

when a new car arrives at the dealership, it is recorded into the database of the

157

dealership using the Add New Car UC. A precondition to adding the new car to

the dealership’s database is that the car must not already exist at the dealership.

Therefore UC Add New Car includes UC Car Not Found to check for that

precondition. UC Update Car’s Information is responsible for updating the

information related to a particular car, such as, its current mileage or where it is

located (assuming several branches). In order to update a particular car’s

information, this car must exist in the dealership’s database. An error is generated

if the given car does not exist in the database. Therefore, UC Update Car’s

Information is extended by UC Car Not Found to handle this error generated.

 This eventually leads to the discouraged construct where a UC (Car Not

Found), is an extension and inclusion UC.

Figure 4-7: UC Car Not Found was incorrectly used for the purposes of containing

common functionality and exception-handling behavior.

� Rationale

Object-oriented modeling and design strongly promotes the concept of reuse.

When modelers are constructing their UC models, they are keen to reuse much of

the functionality contained preexisting in UCs. UC modeling offers mechanisms

through its extend, include and generalization relationship to allow this reuse.

Reusing UCs also prevents the cluttering of the UC with many redundant UCs.

However, when applying the concept of reuse, the include and the extend

158

relationships can be misused leading to the creation of UCs containing both

common and exception-handling behavior.

� Consequences

The shared UC currently contains common and exceptional behavior required by

the two base UCs. Therefore, when either of the base UCs initiate the shared UC,

additional undesired functionality is performed. To further elaborate, during the

operation of the including base UC Add New Car, UC Car Not Found is

initiated to check that the given car does not exist in the database. However, UC

Car Not Found will unnecessarily also perform the procedure of trying to update

a car’s information that does not exist. On the other hand, if the UC Update

Car’s Information is performed to update the information of a given car that does

not exist in the database, UC Car Not Found is initiated to handle the generated

error. In this situation, the UC Car Not Found will unnecessarily check if the

given car does not exist in the system.

� Detection

Where –Search for any included UCs in the UC diagram. How – If an inclusion

UC is found, check if this inclusion UC is extending other UCs.

OCL Description:

context UseCase

inv ExtendingMoreThanOneUseCase:

not (self.extended->size + self.extendedUC->size > 1)

159

� Improvement

Check if the shared UC contains functionality suitable for only one of the base

UCs. This can be achieved by examining the contents of the shared UC.

(1) If the shared UC contains functionality suitable for only the base UC that

includes it, the extend relationship should be removed. A new extension UC

should be created to handle the exceptional situation generated by the other

base UC. The resulting model is illustrated in Figure 4-8.

(2) If the shared UC contains functionality suitable only for the base UC that it

extends, the include relationship should be removed. A new UC should be

created and included by the other base UC, again resulting in the model

shown in Figure 4-8.

In both cases (1) and (2), the UCs should be renamed to be more indicative of

their respective purposes.

(3) In the case that the shared UC does indeed contain both common behavior and

exception handling behavior. The shared UC should be split into two separate

UCs. Each of the newly created UCs should only contain functionality

appropriate to the base UC. Once again, resulting is the same model (see

Figure 4-8).

Figure 4-8: The shared UC is broken into two separate UCs, each serving a different

purpose.

160

� Antipattern Name

a3. Functional decomposition of UCs: Using the include relationship -

Automation Support: Type (1)

� Description

Functional decomposition most commonly occurs due to the misuse of the include

relationship. The inclusion UCs are set to describe tasks that are required to

perform a complete service that is offered by their base UC. The tasks described

by the inclusion UCs represent functions in a program, or menu options. For

example, in the espresso machine system shown below (see Figure 4-9), the

inclusion UCs together are used to prepare a cup of coffee. Such inclusion UCs

are not used by any other UC and are not associated with any actors

Figure 4-9: Functional decomposition of the Prepare Coffee UC

� Rationale

Dissecting analytical UCs into functions yields a set of “smaller” UCs that are

naturally easier to implement. Overall, this will lead to a speedier implementation

of the system. Creating “smaller” UCs is particularly attractive to modelers since

they are easier to understand and code. Consequently, in later development

phases, the “smaller” UCs will easier to test and maintain. Functional

161

decomposition can be use to embody design decisions that analysts would like to

enforce throughout the development of a system.

� Consequences

UC modeling is used to model the behavior of a system at the conceptual level.

UCs should represent services that a system offers to its actors. An actual UC

describing a complex service can easily be decomposed to hundreds of

collaborating functions. The “smaller” UCs offer no value to the system’s users if

executed individually. Being able to abstract the actual service offered by these

numerous functions by examining many “smaller” UCs is a very difficult task.

One can at best guess what service these UCs will offer when performed together.

Therefore, the “smaller” UCs created as a result of functional decomposition

obscure the real purpose of the system. For complex systems, it is more likely that

this “guess” will be incorrect. At that point, it is up to the designers’ domain

knowledge to design the correct system. Moreover, functional decomposition of

UCs may lead to more complex descriptions of the interactions between the

actors. Functional decomposition embodies premature design decisions which

severely limits the creativity of designers and enforces them to abide to these

decisions.

� Detection

Where – Look for an inclusion UC inside the UC diagram. How – Upon finding

an inclusion UC, count the number of UCs that include it. If the inclusion UC is

162

included once, then the antipattern is matched. It is important to note that in order

to positively match this antipattern; the inclusion UC must not be associated with

any actors or UCs in the UC model.

OCL Description:

context UseCase

inv NotJustOneInclude:

not (self.base->size = 1)

� Improvement

The behavior described in inclusion UCs must be combined into UCs that

individually offer a complete and meaningful service to a system’s user.

 For the espresso machine system shown in Figure 4-9, the behavior

described by UCs Pour Hot Water, Add Cream Or Milk and Add Sugar should

be merged into the UC Prepare Coffee. It can be deduced that the user will not

benefit from pouring hot water only, or having a cup with only sugar in it. The

real value offered to the user is the preparation of a cup of coffee. Hence, from a

conceptual point of view, a single UC called Prepare Coffee (which already

exists) should be individually responsible for preparing a cup of coffee.

163

� Antipattern Name

a4. Functional decomposition of UCs: Using the extend relationship -

Automation Support: Type (2)

� Description

Another form of functional decomposition is the improper use of the extend

relationship. An extension UC inserts additional behavior to a base UC that it

extends. Extension UCs are required to know the exact locations, known as

“extension points”, inside a base UC where their additional behavior will be

inserted. Naturally, this additional behavior is very specific to the respective base

UC. If an extension UC contains general behavior that would be useful to more

than one base UC, this would be a strong indication that the extension UC has

degraded into a function. For example, in the following racquet sports store

system (see Figure 4-10), the UC Equipment Damaged extends both the Sell

Racquet and Sell Ball UCs.

Figure 4-10: Improper use of the extend relationship to promote functional

decomposition

It is the employee’s responsibility to ensure that any merchandise being sold is

not damaged. Whenever the employee encounters faulty merchandise, the

extension UC Equipment Damaged is initiated. In the case of a damaged ball,

the defective ball is discarded and a new ball is handed to the customer.

164

Meanwhile, an in-store technician can fix defective racquets, however if the

racquet is severely damaged, it is send back to the manufacturer for an exchange.

Hence it can be deduced that there are two different procedures for handling

defective balls and racquets, yet the structure shown in Figure 4-10 would

indicate a single procedure for handling any type of damaged merchandise.

� Rationale

Similar to what is described in the “Rationale” Section of the “Functional

decomposition of UCs using the include relationship” antipattern. Moreover, there

might be times where the extension UC is used to provide general functionality

that is specialized by the UCs it extends.

� Consequences

Similar to what is described in the “Consequences” Section of the “Functional

decomposition of UCs using the include relationship” antipattern. Moreover,

when functional decomposition is applied using the extend relationship; it is often

the case that the extending UC does not properly handle the exceptional situations

caused by the base UCs. This situation can be easily detected in the racquet sports

store system, since the procedure of handling a damaged racquet differs

significantly from the procedure of the handling a damaged ball. Therefore, it can

be easily deduced that more that one extending UC is required to handle the

different exceptional situations occurring.

165

� Detection

Where – Search for extension UCs in the UC diagram. How – Upon finding an

extension UC, count the number of UCs that the extension UC extends. The

antipattern is matched if the extension UC extends more than one UC. It is then

required that the analyst examines the behavior described by the extension UC to

check if it is too generic. If the extension UC was found to contain specific

behavior, it is then required by the analyst to ensure that this specific behavior is

in fact suitable for all the extended UCs.

OCL Description:

context UseCase

inv ExtendingMoreThanOneUseCase:

not (self.extended->size + self.extendedUC->size>1)

� Improvement

The behavior described in the extension UCs must be combined into UCs that

individually offer a complete service to a system’s user.

 For the racquet sports store system illustrated in Figure 4-10, the extension

UC Equipment Damaged should be divided into two separate extension UCs

(see Figure 4-11). Each of the newly created extension UCs will be specifically

designed to more appropriately handle the exceptional situations arising at their

respective base UCs.

 For the case when extended base UCs are used to specialize general

behavior described by their respective extension UC¸ a generalization relationship

166

would be more appropriate than an extend relationship to describe such a

relationship.

Figure 4-11: Extending UCs disjointed to properly handle different exceptional

situations.

� Antipattern Name

a5. Functional decomposition of UCs: Using pre and postconditions -

Automation Support: Type (3)

� Description

If a base UC is decomposed into “smaller” base UCs, it is often the case that the

“smaller” UCs need to be performed in particular sequence to properly execute

the intended complete service. UC modeling does not provide a “calling”

mechanism between UCs whereby UCs can “invoke” or “call” each other. UC

modeling deliberately does not provide such mechanisms, since UCs are expected

to provide complete services without the need to communicate with each other.

To workaround this limitation, modelers misuse the pre and postconditions in

UCs to explicitly declare a virtual call sequence between the UCs. It can be

deduced that the virtual sequence would most likely be the result of UCs

degrading into functions. For example, in a telecommunications system, a base

UC that is intended to make a phone call is instead decomposed into the “smaller”

167

UCs shown in Figure 4-12. The “smaller” UCs: Get Dial Tone, Retrieve Phone

Number Dialed, Establish Connection and Ring Destination Phone need to

execute in the sequence to properly make a phone call.

Figure 4-12: Sequencing a set of UCs to make a phone call

There are two methods that can be used to apply this concept (see Figure 4-13):

(1) Assuming two UCs named “N” and “N+1” respectively. A virtual call

sequence can be enforced between these two UCs by stating as a

postcondition for UC “N” that UC “N+1” must start and stating as

precondition to UC “N+1” that UC “N” must successfully be completed.

Recalling the telecommunications system from Figure 4-12, initiation of

Retrieve Phone Number Dialed UC is stated as a postcondition of UC Get

Dial Tone. Similarly, the successful termination of UC Get Dial Tone is

stated as precondition of UC Retrieve Phone Number Dialed.

(2) Implicitly, by restating the postconditions of UC “N” as the preconditions UC

“N+1”. Even though this method may be valid at times, it most likely will

lead to the over-specification of the conditions in one of the UCs.

168

Figure 4-13: Creating a virtual call sequence between UCs using pre and

postconditions

� Rationale

Similar to what is described in the “Rationale” Section of the “Functional

decomposition of UCs using the include relationship” antipattern.

� Consequences

Similar to what is described in the “Consequences” Section of the “Functional

decomposition of UCs using the include relationship” antipattern.

� Detection

Where – In the preconditions and postconditions of each base UC. How – (a) If it

is stated as a postcondition for a UC that another UC needs to be initiated, then

the antipattern is matched. (b) If it is stated as a precondition of a UC requires that

another UC needs to be successfully completed, then the antipattern is matched.

(c) The antipattern is matched if is found that the precondition of a UC and a

postcondition of another UC, state similar requirements for a particular variable

value. Naturally, it is more difficult to detect this situation as it requires further

examination of the descriptions of the respective UCs.

169

� Improvement

UCs that represent portions of a complete behavior must be reformed into UCs

that individually offer a complete meaningful service to a system’s user.

Therefore, for the telecommunications system illustrated above, since carrying out

a phone call is the real purpose behind the existence of the “smaller” base UCs,

the functionality of the sequences UCs should be combined into a single UC

called Make A Phone Call.

� Antipattern Name

a6. Accessing an extension UC - Automation Support: Type (1)

� Description

Similar to base UCs, extension UCs can be initiated by actors. Therefore,

modelers may associate an extension UC with any actor.

� Rationale

Extension UCs differ from regular base UCs in that they contain behavior that is

of an exceptional or optional nature. Modelers may need an actor to access such

behavior contained in an extension UC for a number of different reasons:

(1) If the extension UC contains optional behavior relative to the base UC, this

optional behavior may be exclusively useful to an actor. Therefore, an explicit

association is created between the actor and the extension UC to allow the

actor to execute this optional behavior without needing to initiate the base UC

170

first. This scenario is illustrated using the bookstore system shown below (see

Figure 4-14):

Figure 4-14: A good scenario of directly accessing an extending UC to allow

independent initiation of an optional service

The bookstore may occasionally put on a promotion that entitles a customer to

a free book sleeve with every purchase of a book. Hence, when the UC Sell

Book is performed to complete a sale transaction, the extension UC Give

Away Free Bookmark is initiated to carryout the promotional offer. At other

times, a bookstore employee may choose to give away a free book sleeve as a

courtesy gesture or for advertisement purposes, without a preceding book

purchase. Therefore, the Bookstore Employee actor needs to explicitly be

associated with the Give Away Free Bookmark UC, to be able to give away

free bookmarks without initiating the Sell Book UC.

(2) When an extension UC is handling an exceptional situation, it may be desired

to notify a particular actor that such an exceptional situation has occurred. An

association is created between the actor and the extension UC to allow the

extension UC to notify the actor of the occurrence of such an exceptional

situation. For example, in the Internet Service Provider system shown in

Figure 4-15, every time a customer’s account is updated, the system

automatically checks if there is any balance due on the customer’s account. If

171

there is a balance due, the extension UC Notify Customer of Balance Due is

initiated. The main purpose behind this extension UC is to notify the

Customer of the balance due on their account. The extension UC can be

configured to send an email or a statement letter to the corresponding

Customer.

Figure 4-15: The extension UC is used to notify the actor of an exceptional situation.

(3) The operation of the extension UC may require certain information to be able

to operate. If an actor is the source of this required information, modelers

create an association between the actor and the extension UC to allow that

actor to convey this required information. The required information was

already provided by the actor when the base UC was being performed. This

scenario is illustrated in Figure 4-16.

Figure 4-16: The actor is allowed to directly access the extension UC since the actor

is the source of information required by the extension UC.

If a Customer attempts to buy a music video that is not available, the

extension UC CD Out of Stock is initiated. An association is created between

the Customer and the extension UC since it is the Customer that knows the

172

title of the information. The UC records the title of the unavailable CD to

notify the store’s manager at a later point. The UC also stores the email

address of the Customer to notify that customer when the required CD

eventually arrives at the store.

(4) When an extension UC is initiated, it may be desirable to communicate with

an actor to retrieve decisions or other information from that actor with regard

to the sequence of actions required to handle the exceptional situation at hand.

Therefore, an association is created between the actor and the extension UC to

form a communication link to allow the decision making process to take

place. Unlike situation (3), the required information was not provided by the

actor when the base UC was being performed. The bakery shop system

presented in Figure 4-17 illustrates this scenario.

Figure 4-17: The extending UC communicates with the actor decide how to deal with

an exceptional situation.

If the Baker decides that particular bakery merchandise is not fresh, the

extension UC Bakery Not Fresh is initiated. The operation of this extension

UC mainly consists of prompting the Manager for a decision with regard to

what to do with the expired bakery merchandise. The Manager may opt to:

• Discard the expired merchandise;

• Give it away to shelters and charity;

173

• Give it away free to customers as a courtesy gesture; or

• Sell it at half price.

� Consequences

(1) The scenario presented by the bookstore system (see Figure 4-14) is

appropriate because the extension UC contains behavior that is complete and

optional. Moreover, it is desirable to execute this optional functionality

without initiating the extended base UC.

(2) In the scenario presented by the ISP system shown in Figure 4-15, the

association presented between the actor and the extension UC allows a bi-

directional flow of messages between the two entities. This means that the

Customer may initiate the extension UC Notify Customer of Balance Due,

regardless of an exceptional situation did occurring. Moreover, the Customer

may also interfere with the operation of the extension UC when it is initiated.

(3) The scenario presented by the music store system (see Figure 4-16) is

inappropriate because the Customer can directly initiate and interfere with

the operation of the extension UC CD Out of Stock. This is an undesired

effect because the Customer may convey a different title to the extension UC

than was requested by performing the base UC.

(4) In the scenario presented by the bakery shop system shown in Figure 4-17, the

Manager is supposed to communicate with the extension UC Bakery Not

Fresh only if the Baker finds bakery merchandise that is not fresh. However,

since the navigability of the association between the Manager and the

174

extension UC is not specified, the Manager may initiate the extension UC.

This is an undesired effect since the extension UC may be performed even if

all the bakery merchandise is currently fresh.

� Detection

Where – Search for any extension UCs in the UC diagram. How – If the

extension UC detected is directly associated with any actor in the model.

OCL Description:

context UseCase

inv AccessingExtensionUseCaseByActor:

not((self.extended -> size > 0 or self.extendedUC-

>size>0) and self.actorEnd->size > 0)

� Improvement

(1) Since this situation is deemed acceptable, no corrective actions required.

(2) The modelers need to explicitly state that the association between the

Customer and the extension UC Notify Customer of Balance Due, is a

one-way communication link. Unfortunately, UML lacks the required notation

to depict this type of association between actors and UCs. To workaround this

limitation, a UML note can be connected to the association link between the

two entities to explicitly state that this association is not bi-directional (see

Figure 4-18). Moreover, the navigation direction of the association link can be

specified to ensure that interaction between the two entities is started by the

extension UC.

175

Figure 4-18: Setting the navigation allows the UC to initiate communication with the

actor

(3) The base UC should be used to convey information to the extension UC.

Therefore, the association between the actor and the extension UC should be

removed. Instead, the extension UC CD Out of Stock should retrieve the title

of the unavailable CD from the base UC that it extends. The base UC Buy

Music CD should have the title of the unavailable CD since the Customer

would have provided the title when performing the base UC (see Figure 4-19).

Figure 4-19: The base UC should be the one conveying the extension UC its required

information instead of the actor.

(4) The bakery shop system requires the Manager to communicate with the

extension UC Bakery Not Fresh, in order to convey the Manager’s

decisions. The current association between the two entities satisfies this need.

However, it is also required that extension UC initiates the interaction between

the two entities. This can be achieved by setting the navigation direction of the

association link as shown in Figure 4-20.

176

Figure 4-20: Setting the navigation direction to ensure that the actor does not start

the interaction with the extension UC.

� Antipattern Name

a7. Multiple actors associated with one UC - Automation Support: Type (1)

� Description

A UC is associated with more than one actor.

� Rationale

The situation described above may occur due to different reasons:

(1) The actors associated play a similar role when performing the shared UC. In

other words, the actors will communicate with the shared UC in a similar

fashion. For example, the procedure of performing the UC Perform

Transaction in Figure 4-21, is the same when performed by the Manager or

Employee actors.

Figure 4-21: Two actors that play a similar role when executing a UC

177

(2) The modelers incorrectly depict instances of the system’s users instead a class

of the system’s users. This situation is illustrated in Figure 4-22; actors Adam,

Jane and Mary are all students who would like to enroll into the university.

Figure 4-22: A model representing instances of an actor

(3) The functionalities performed by the shared UC with each actor are very

similar in a general sense.

(4) The proper execution of the shared UC requires communication with two

different actors. For example, the Withdraw Cash UC in Figure 4-23,

requires the actor ATM Customer to input the amount of money to be

withdrawn, meanwhile the actor Bank System verifies that the requested

amount is available in that ATM Customer’s account.

Figure 4-23: Two actors appropriately associated with a UC

� Consequences

(1) Actors should communicate with a UC if they are playing unique roles while a

UC is being performed. Therefore, in the scenario shown in Figure 4-21,

178

designers will assume that the Manager and the Employee actor play

different roles when executing the Perform Transaction UC. Hence, the

implementation of the actors with respect to the execution of the UC will be

different even though they should be the same.

(2) The model illustrated in Figure 4-22 violates the true semantics of an actor.

This will yield to similar consequences as described above in (1). Moreover,

the model will need to be changed frequently as instances of a type of the

system’s users are frequently created and removed.

(3) The actual functionality developed will only cater to one of the actors, or

perhaps neither.

(4) The model shown in Figure 4-23 is appropriate as both actors Customer and

Bank System have different roles when the shared UC is performed.

� Detection

Where –Search for any UCs associated with actors in the UC diagram. How – If

the UC is associated with more than one actor.

OCL Description:

context UseCase

inv MultipleActorsAssociatedWithUC:

not (self.actorEnd->size > 1)

� Improvement

(1) The scenario illustrated in Figure 4-21 can be fixed by extracting the

overlapping roles between the associated actors and creating a new actor that

179

represents these roles, such as Sales Clerk. The involved actors will

generalize the newly created actor. This solution is illustrated below in Figure

4-24.

Figure 4-24: The overlapping roles between the two actors should be generalized

into a separate actor

(2) In the scenario shown in Figure 4-22, actors Adam, Jane and Mary represent

the role of a student. Therefore, an actor called Student should be created that

will represent all instances of a student. This solution is illustrated below in

Figure 4-25.

Figure 4-25: The model should represent the role of a class of users not instances of

them

(3) The shared UC should be split into separate UCs which accurately represents

the behavior of the system when interacting with each actor.

180

� Antipattern Name

a8. A description of an actor that is not depicted in the UC diagram - Automation

Support: Type (2)

� Description

The UC model contains a description of an actor; however, the actor is not

depicted in the UC diagram.

� Rationale

(1) Even though the behavior of the actor might be known, it is not clear at the

time how the actor will interact with the system.

(2) The shared UC should be split into separate UCs that accurately represent the

behavior of the system when interacting with each actor.

(3) The actor described is associated with many UCs. Therefore, depicting the

actor and its association with the UCs will clutter the UC diagram.

� Consequences

(1) It is acceptable to describe an actor before deciding how it interacts with the

system. However, it is essential that the actor’s association with the system be

eventually defined. If actor remains missing from the UC diagram, the UC

diagram will provide a false representation of the actor’s involvement with the

system.

181

(2) Timers and other input/output devices do not constitute actors. This issue is

discussed in the description of the “Representing devices as actors”

antipattern.

(3) This situation can be a result of having too many UCs. The “Too many UCs”

antipattern “a25.” (see Appendix A) describes the consequences of this

situation. If actor remains missing from the UC diagram, the UC diagram will

provide a false representation of the actor’s involvement with the system.

� Detection

Where – For every actor described. How – (a) If the actor is not depicted in the

UC diagram.

� Improvement

(1) The association of the actor with the system must be defined and appropriately

depicted in the UC diagram.

(2) The behavior of these devices should be included in the behavior of the UCs

they are associated with. If it is necessary to describe the behavior of a device,

such a description should be available in the supplementary requirements

document.

(3) First, the improvements stated by the “Too many UCs” antipattern should be

undertaken. If there remains too many UCs which one actor is associated with,

then reorganizing the layout of the UC diagram can be beneficiary. In any

event, the actor and its associations with the system must be depicted.

182

� Antipattern Name

a9. Using extension/inclusion UCs to implement an abstract UC - Automation

Support: Type (1)

� Description

An actor is directly associated with an abstract UC that is not implemented

through a specializing UC. The implementation of the abstract UC is done

through extension or inclusion UCs instead.

� Rationale

The scenario described above may occur for different reasons:

(1) Modelers find that the inclusion UCs contain subroutine behavior. On the

other hand, the extension UCs contain exceptional or optional behavior.

Therefore, the inclusion or extension UCs do not contain specialized behavior

with regard to the abstract UC and thus should not be modeled using the

generalization relationship. Figure 4-26 illustrates an example of this

scenario.

Figure 4-26: an abstract UC including subroutine behavior and being extended by a

UC containing exceptional or optional behavior

(2) Extension or inclusion UCs represent specialized behavior with respect to an

abstract UC. For example, in Figure 4-27, the abstract UC Make a Trade

183

can be implemented in the context of making a bonds trade, using the

inclusion UC Make a Bonds Trade, or a stocks trade, using the UC Make a

Stocks Trade.

Figure 4-27: An abstract UC including UCs that contain specialized behavior

(3) The model is so far incomplete. At a later point, specializing UCs will be

added to implement the abstract UC.

� Consequences

In first two scenarios described above, the extension/inclusion UCs are used to

directly implement the abstract UC. However extension/inclusion UCs contain

behavior different from the behavior specified in the abstract UC. To further

elaborate, the behavior contained in the extension/inclusion UCs does not realize

the behavior described in the abstract UC. Therefore, when the actor initiates a

service request, the behavior specified by the abstract UC will never be

performed since it is never realized by any UCs. Only specializing UCs may

implement abstract UCs.

� Detection

Where – Search for any abstract UCs. How – (a) the abstract UC is associated

with an actor, and (b) the abstract UC is extended by other UCs or including other

UCs, and (c) the abstract UC does not have child UCs.

184

OCL Description:

context UseCase

inv UsingIncludeAndExtendToImplementAbstractUC:

not((self.isAbstract) and (self.inclusion->size > 0 or

self.extension->size > 0 or self.extensionUC->size>0))

� Improvement

(1) In the scenario illustrated in Figure 4-26, the type of relationships between the

abstract UC and the other UCs Oil System Damaged and Check Oil Level

is appropriate and should remain unchanged. Unless the model is incomplete,

the abstract UC Perform Oil Maintenance should be set as concrete as

shown in Figure 4-28.

Figure 4-28: The abstract UC now set to be concrete

(2) In the scenario illustrated in Figure 4-27, the usage of the include and extend

relationships is incorrect because the extending/included UCs Make a Bonds

Trade and Make a Stocks Trade represent specialized behavior with respect

to the abstract UC Make a Trade. In this case, the specialization relationship

is considered to be the appropriate relationship between the UCs, and

therefore this model can be fixed as shown in Figure 4-29.

185

Figure 4-29: The abstract UC is associated with its specializing UCs using the

generalization relationship

(3) The modelers should review and consider adding the missing specializing

UC(s) whenever possible.

� Antipattern Name

a10. Multiple generalizations of a UC - Automation Support: Type (1)

� Description

A single UC specializing two or more UCs.

� Rationale

Modelers extract common behavior between two or more UCs and create a new

specializing UC that will contain this common behavior. For example, preparing

either a cargo or a passenger aircraft for a trip requires the cleaning of the aircraft.

As shown in Figure 4-30, the common behavior is contained in the UC Clean

Aircraft¸ which specializes the UCs Prepare Passenger Aircraft For Trip and

Prepare Cargo Aircraft For Trip.

186

Figure 4-30: Multiple generalizations of one UC

� Consequences

The behavioral semantics of the model is violated. The UC Clean Aircraft is not

a specialized version of the Prepare Passenger Aircraft For Trip and the

Prepare Cargo Aircraft For Trip UCs, which may lead to an incorrect

implementation of the system.

� Detection

Where - Search for a specializing UC. How – If that UC is specializing more than

one UC.

OCL Description:

context UseCase

inv MultipleGeneralizationsOfOneUC:

not (self.parent->size > 1)

� Improvement

The shared UC Clean Aircraft contains subroutine behavior required by the two

other UCs. Therefore, the specialization relationship should be replaced with an

include relationship. The include relationship is considered more appropriate

187

since the shared UC contains common behavior not specializing behavior. This

solution is illustrated below in Figure 4-31.

Figure 4-31: The generalized UC should be included by the other UCs that need it

� Antipattern Name

a11. Duplicating functionalities for the generalized and specializing UCs -

Automation Support: Type (1)

� Description

The relationships that a generalized UC has with other UCs are duplicated for the

specializing UC. As shown in Figure 4-32, the UC Authenticate User is

included by both the Perform Transaction and Withdraw Cash UCs. Moreover,

the UC Insufficient Funds is an extension UC for both the Perform Transaction

and Withdraw Cash UCs.

Figure 4-32: Duplicating functionalities for the generalized and specialized UCs

188

� Rationale

Modelers try to establish that the behavior contained in the inclusion and

extension UCs are applicable to both the generalized and the specializing UCs.

� Consequences

This situation will probably lead to the creation of duplicated or redundant code at

the implementation phase. This redundant code will be the implementation of the

inclusion and the extension UCs.

� Detection

Where - Search for a generalization relationship between two UCs in the UC

diagram. How – If both the generalized and specializing UCs have similar

relationships with other UCs in the model.

OCL Description:

context UseCase

inv DupFuncAtChildAndParentUCUsingInclude:

not (UseCase.allInstances->forAll

(u1 , u2 | ((self <> u2) and (u1 <> u2) and (self <>u1

))implies (self.inclusion->includes(u2) and

u1.inclusion-> includes(u2))))

inv DupFuncAtChildAndParentUCUsingExtend:

not (UseCase.allInstances->forAll

(u1 , u2 | ((self <> u2) and (u1 <> u2) and (self <>u1

))implies ((self.extended->includes(u2) or

189

self.extendedUC-> includes(u2)) and(u1.extended->

includes(u2)or self.extendedUC->includes(u2)))

� Improvement

The modelers need to determine whether a given included or extending UC is

applicable to all of the specializing UCs or only a subset of them. For example,

the Authenticate User UC must be executed to allow for any transaction to be

performed. Therefore, the Authenticate User UC is applicable to all of the

specializing UCs and thus there should be one include relationship in the model

between the Authenticate User and the Perform Transaction UCs as shown in

Figure A1-32. On the other hand, the extension UC Insufficient Funds describes

exceptional behavior responsible of handling a situation where a user requested to

withdraw a cash amount that is larger than what is available in the user’s account.

Hence, UC Insufficient Funds is only applicable to the Withdraw Cash UC, and

therefore there should only be one extend relationship between the Withdraw

Cash UC and the Insufficient Funds UC as shown in Figure 4-33.

Figure 4-33: Only the appropriate include/extend relationships remain

190

� Antipattern Name

a12. Accessing an abstract UC that is not implemented. - Automation

Support: Type (1)

� Description

An actor is directly associated with an abstract UC that is not implemented using

specializing UC(s) as shown in Figure 4-34.

Figure 4-34: An actor directly association with an unimplemented abstract UC

� Rationale

(1) This situation is most likely to occur when the model is incomplete. The

abstract UC will be implemented by specializing UCs in a later phase.

(2) Modelers may incorrectly assume that an abstract UC may be initiated to

offer a service to the initiating actor.

� Consequences

(1) This is an acceptable modeling practice as long as modelers eventually insert

the missing specializing UC(s) that will implement the abstract UC.

(2) Abstract UCs cannot be initiated and hence no behavior will be performed.

191

� Detection

Where - Search for an abstract UC in the “UC Diagram”. How – If that abstract

UC is associated with an actor and is not specialized by at least one UC. If the

abstracted UC is including other UCs or being extended by other UCs then

review the “Using extension/inclusion UCs to implement an abstract UC”

antipattern.

OCL Description:

context UseCase

inv AccessingUnimplementedAbstractUC:

not ((self.actorEnd->size > 0) and self.child->size =

0) and self.isAbstract))

� Improvement

(1) Modelers should review and consider adding the missing specializing UC(s)

whenever possible.

(2) The abstract UC should be set as concrete. This will enable that UC to be

initiated by the actor.

192

� Antipattern Name

a13. UC initiated by two actors - Automation Support: Type (1)

� Description

Two actors are associated with one UC. The associations point towards the UC

meaning that the UC was initiated twice. As shown in Figure 4-35, UC Withdraw

Funds is initiated by the actors Customer and Bank System.

Figure 4-35: Two actors initiating one UC

� Rationale

(1) This situation usually occurs because association links are mistaken for

information flow links. When the two actors are providing the UC with

information, then the associations with the UC are directed towards that UC.

In the ATM system shown in Figure 4-35, the Customer actor provides the

PIN for the UC, meanwhile the Bank System actor provides the UC with this

Customer’s current balance.

(2) Both actors play a similar role when the UC is being performed.

� Consequences

(1) It is not possible to determine which actor initiates the UC. Usually the

primary actor is the one that initiates a UC since the primary actor is the

193

primary beneficiary of the service provided by the UC. Therefore, it will be

not be intuitive to determine the primary actor.

(2) Unless extreme care was taken during the authoring of the UC description.

Designers will not be able to determine the correct sequence of interactions

between the actors and the UC.

(3) See the “A UC is associated with more than one actor” antipattern.

� Detection

Where - Search for a directed association relationship in the UC diagram that is

pointing towards a UC. How – If the UC has another association relationship

pointing towards it.

OCL Description:

context UseCase

inv UseCaseInitiatedBy2Actors:

not (self.directedActorEnd->size > 1)

� Improvement

(1) The sequence of interactions between the actors and the UC should be

reconsidered. Upon determining which actor is the one responsible for

initiating the UC, all other association relationship links connected with the

UC should be set to be bi-directional or directed towards the non-initiating

actors instead. For the ATM system, it is the Customer that initiates the

Withdraw Funds UC and the interaction with the Bank System is always

initiated by the UC to determine the Customer’s current balance. Therefore,

194

the association relationship with the Bank System should be directed towards

the Bank System, as shown in Figure 4-36 below.

Figure 4-36: Only one actor should initiate a UC

(2) See the “A UC is associated with more than one actor” antipattern.

� Antipattern Name

a14. Two actors with the same name - Automation Support: Type (1)

� Description

Two actors existing within a UC diagram with identical names. For example, the

system shown in Figure 4-37 has two sets of UCs. Each set of UCs carries out a

certain category of administrative duties. The UC sets are associated with two

actors named Administrator.

Figure 4-37: Two different actors with the same name

195

� Rationale

(1) This situation may occur if the actors’ roles are carried out by different

personnel with similar job titles.

(2) To enhance the layout of the UC diagram. Using several instances of the same

actors may prevent the cluttering of the diagram.

(3) Each instance of the actor is associated with a set of UCs that represents a

certain category of services.

� Consequences

For all three cases presented above, using two actors with similar names may

cause confusion as to whether the actors are actually similar or is there any subtle

differences between them. Designers may account for two distinct actors in their

design while the actors where actually the same entities and vice versa, leading to

redundant or incorrect implementation respectively.

� Detection

Where – For every actor in the UC diagram. How – If there exists another actor

with an identical name.

OCL Description:

context Actor

inv TwoActorsWithSameName:

not (a,b | a<>b and a.name = b.name)

196

� Improvement

(1) The actors should be given names that further distinguishes between them and

represents their duties more accurately (see Figure 4-38).

Figure 4-38: The actors are given more distinguishing names

(2) The consequences of depicting the same actor twice overweigh the layout

benefits that can be achieved by doing so. The layout of the UC diagram can

be improved by reconsidering the positioning of each diagrammatic entity

without the need to depict the same actor twice. However, if the diagram’s

layout and readability will radically improve, then this modeling practice can

be warranted. In this situation, the actors should be annotated with UML notes

to explicitly state that they are the same.

(3) Each set of UCs associated with one instance of the given actor represents a

separate subsystem. Subsystems can be considered as separate UC diagrams

which warrants the depiction of an actor present in a different UC diagram

(see Figure 4-39).

197

Figure 4-39: Two subsystems are presented as two UC diagrams, both containing

the name actor

� Antipattern Name

a15. An actor inside the system boundary - Automation Support: Type (1)

� Description

An actor is depicted within the system boundary.

� Rationale

(1) The actor represents the system itself and is depicted inside the system

boundary for labeling purposes.

(2) The actor represents an internal device which the system depends upon such

as a timer.

198

(3) The actor plays the role of the secondary actor for all UCs, whereby that actor

only aids in providing a service to the primary actors but is never the

beneficiary actor.

� Consequences

(1) This situation may cause confusion since the system itself is depicted as an

actor. Actors are external entities to a system, therefore depicting the system

as an actor may lead the model reader to believe that the system itself is an

external entity. Therefore, it would seem that the actual system represented by

the UC model does have a name.

(2) Timers and other input and output devices are not systems. Such devices only

facilitate the input and output of information. However, if it is necessary to

represent a device as an actor, the actor should remain outside the system

boundary. Leaving the actor inside the system boundary may lead designers to

believe that the device is a part of the system which needs to be designed and

implemented. The unnecessary additional effort spent designing such entities

(actors) causes the system to be more complex and often causes the project to

be behind schedule and over budget.

(3) Even if the given actor is always a secondary actor, the actor should remain

outside the system boundary. The consequences of leaving the actor inside the

system boundary are similar to that described previously in (2).

199

� Detection

Where – Within the system boundary in the UC diagram. How – If an actor can

be detected inside the system boundary.

� Improvement

(1) The system boundary should be labeled with the system’s name only and

without using an actor icon. The actor icon used to represent the system itself

should be removed.

(2) If the device is merely an input/output device, then the device should not be

represented as an actor. If it is necessary represent the device as an actor, the

actor should be located outside the system boundary.

(3) Secondary actors as any other type of actors should be located outside the

system boundary.

� Antipattern Name

a16. An unassociated UC - Automation Support: Type (1)

� Description

A UC is depicted in the UC diagram that is not associated with any other entity.

This means that the UC does not have an association relationship with the any

actor and does not have any include, extend or generalization relationship with

any other UC.

200

� Rationale

(1) The UC represents an internal functionality that the system needs to perform.

(2) The association relationship notation between the UC and an actor in the UC

diagram, or another entity such as a package or a subsystem, is missing.

(3) The include, extend or generalization relationship notation between the UC

and other UCs is missing.

� Consequences

(1) The purpose of UC modeling is to show the interactions that occur between a

system and its external entities in order to provide a service to an actor.

Internal functionalities do not offer an immediate service to actors.

(2) This situation may lead to a faulty design since the involved actors are not

accounted for during the design.

(3) This situation may lead to unnecessary additional design effort since the

behavior of the UC is dependent on the behavior of other UCs which have

already been accounted for in the design process.

� Detection

Where – For every UC in the UC diagram. How – If the UC does not have an

association relationship with the any actor and does not have any include, extend

or generalization relationship with any other UC.

201

OCL Description:

context UseCase

inv UnassociatedUC:

not(self.actorEnd -> size + or self.directedActorEnd

-> size = 0)

� Improvement

(1) UCs representing internal functionalities that do not provide any service to

any actor should be removed.

(2) Association relationships should be depicted between the UCs and any actors

involved with it.

(3) The correct type of relationship should be depicted between the UCs and any

other UCs that are involved with it.

� Antipattern Name

a17. A UC without a description - Automation Support: Type (2)

� Description

A UC is depicted in the UC diagram which does not have a corresponding textual

description.

202

� Rationale

(1) The UC is too simple and intuitive that it does not require the extra effort of

describing it.

(2) The authoring of the UC description was postponed to a later phase. This

situation usually occurs when the given UC is “unstable”. An “unstable” UC

is one that represents behavior that changes frequently, or one that has a high

probability of being removed from the system. The behavior of a UC may

change frequently if it represents a functional requirement that was not

completely and precisely defined.

� Consequences

For both situations described above, skipping the UC authoring process will lead

to assumptions about the UC’s behavior. For complex systems, assumptions are

often incorrect or inaccurate leading to a system that does not satisfy its

requirements. The UCs within the system will also be unclear. This means that it

is unclear how the given UC will be associated with other UCs and actors.

� Detection

Where – For every UC in the UC diagram. How – If there does not exist a

corresponding UC description.

� Improvement

203

(1) Even though a UC maybe simple and its behavior maybe fairly common and

well understood, a corresponding UC description must be written to explicitly

describe its behavior. This removes any ambiguity and prevents the

introduction of inaccurate and incorrect assumptions.

(2) Upon detecting a UC that is not described, a UC description must be authored

immediately. If the given UC is considered “unstable”, at least a simple

outline of its intended behavior should be written.

� Antipattern Name

a18. A described UC that is not depicted in the UC diagram - Automation

Support: Type (2)

� Description

A UC is described but is not depicted in the UC diagram.

� Rationale

For any given domain, there are common functionalities (UCs) that are expected

to exist. At times, it is not easy to determine how such UCs will integrate with the

rest of the system.

� Consequences

(1) The purpose of a UC diagram is to provide a visual summary of the system’s

functional requirements and its environment. Examining the UC diagram is

204

sufficient to gain an overview of the services that the system offers. If a UC is

not depicted in the UC diagram, stakeholders who were not directly involved

in creating the UC model may believe that the service is not offered by the

system.

(2) It will be unclear how the given UC will be associated with other UCs and

actors. Designers will be forced to make assumptions about the UC’s role

within the system. For complex systems, such assumptions are likely to be

incorrect or inaccurate, causing the production of a faulty system.

� Detection

Where – For every UC described. How – If the UC is not depicted in the UC

diagram.

� Improvement

The given UC must be depicted in the UC diagram. Moreover, its relationships

cases must be considered and appropriately depicted in the diagram.

� Antipattern Name

a19. Representing devices as actors - Automation Support: Type (1)

205

� Description

Devices such as printers, keyboards, scanners…etc, are represented in the UC

diagram as actors. This antipattern is a specialized version of the “An actor inside

the system boundary” antipattern and should be searched for after searching for

the “An actor inside the system boundary” antipattern.

� Rationale

(1) An input/output device is believed to be actor since it is the actual means of

I/O into and out of the system. As shown in the Figure 4-40, the Enter billing

information UC is associated with the actor Keyboard.

Figure 4-40: A Keyboard actor is used to enter billing information

(2) Often the fundamental goal of a UC is to utilize a given input/output device.

For example, a UC that is responsible for printing statements to customers is

associated with a Printer actor. This association stems from the fact that main

goal of the UC is to produce hardcopies of statements (see Figure 4-41).

Therefore, a printer device will always be required to perform this UC.

Figure 4-41: A Printer actor is required to print statements.

206

� Consequences

(1) Input and output devices are not systems or actors. They only facilitate the

input and out of data. Input devices are not the source of information; and

output devices are not the actual beneficiary of the information produced.

Therefore, the true source of information provided to the system, and the true

beneficiary of the information produced by the system, is unclear.

(2) Even though a particular device is required to perform the objective of a UC

as depicted in Figure 4-41, the UC model should not detail these devices. The

system should only be responsible for producing and accepting required

information, regardless of the mechanism used to achieve these purposes. This

decreases the flexibility and modularity of the system and adds unnecessary

constraints in the design, as the system is internally designed to deal with

particular devices. For example, if the system was required to send statements

to customers via email instead of mailing hardcopies to them, then significant

changes are required to accommodate the new requirement.

� Detection

Where – For every actor present in the UC diagram. How – If the actor’s name

resembles an input/output device.

OCL Description:

In order to compose an OCL description of this antipattern, the devices’ names

must be entered into OCL as a predicate.

context Actor

inv ActorsAsDevices

207

not (self.name = <device name1> or self.name =

<device name2> or...)

� Improvement

(1) The actual source of information should be the actor instead of the input

device. Similarly, for generated information, the beneficiary of the

information should be the actor instead of the output device. Therefore, in

Figure 4-40, the billing information required by the Enter billing information

UC was provided by the Customer. A keyboard was only used to facilitate

the input of the billing information (see Figure 4-42).

Figure 4-42: The Keyboard actor is replaced with the actual actor Customer.

(2) Input/output devices should not be considered in the UC model. This requires

that input/output devices should not be depicted as actors in the UC diagram.

Input/output devices should only be considered in the description of the UCs

� Antipattern Name

a20. Very large alternative flows - Automation Support: Type (3)

� Description

The description of a UC contains a very large alternative flow. The alternative

flow spans several pages and describes very complex behavior.

208

� Rationale

Firstly, modelers may not realize that extension UCs can be used to describe very

large and complex alternative flows. Secondly, modelers may want group all the

information related to the operation of one UC inside that UC. As an alternative,

modelers resort to writing large alternative flows.

� Consequences

Alternative flows are used to describe small deviations from the basic nominal

flow of a UC. A very complex or large alternative flow may obscure the real

purpose of the UC. Such alternative flows significantly reduce the readability of

the UC.

� Detection

 Where – For every UC described. How – If the UC is not depicted in the UC

diagram.

� Improvement

Extension UCs can be used to describe large and complex alternative flows. This

in turn allows the original (which then would be a base) UC to be more readable

and its main purpose to be clearer.

209

� Antipattern Name

a21. Using the term “actor” in textual descriptions - Automation Support:

Type (3)

� Description

The description of a UC makes a reference to one of its involved actors by using

the term “actor”.

� Rationale

(1) The UC is associated with one actor. Therefore, the “actor” in this case is

known since there is only one.

(2) Several actors involved with a UC play the same role. Therefore, it is

redundant to state each actor by name. It is easier to use the term “actor” to

refer to any of the involved actors.

� Consequences

(1) Using the term “actor” reduces the clarity of the UC description as supposed

to using the name of the actor. A larger issue can also occur as the UC model

evolves, if at a later stage another actor was associated with the UC, then the

term “actor” will become ambiguous.

(2) This situation is a result of another antipattern match. The consequences of

this situation are described in the “A UC is associated with more than one

actor” antipattern. More specifically, this situation is similar to the first

210

situation (1) stated in the “A UC is associated with more than one actor”

antipattern.

� Detection

Where – In the description of every UC. How – If the term “the actor” was used

anywhere throughout the description of a UC.

� Improvement

(1) The term “actor” should be replaced with the actor’s real name.

(2) This situation can be corrected by addressing the originating “A UC is

associated with more than one actor” antipattern match. The appropriate actor

names should then be used in the UC description.

� Antipattern Name

a22. Using incorrect stereotypes - Automation Support: Type (2)

� Description

A relationship is depicted in the UC diagram that is annotated with an incorrect

stereotype. For example, a generalization relationship link that is annotated with

the stereotype <<include>>, or an extend relationship that is annotated with the

stereotype <<uses>>.

� Rationale

211

This type of mistake only occurs due to a lack of understanding of the underlying

semantics of the types of relationships available in UC modeling.

� Consequences

This will lead to a great deal of confusion and misinterpretation with regard to the

relationships that exist between a model’s entities, which in turn could lead to a

faulty design of the system.

� Detection

Where – For every relationship depicted in the UC diagram. How – (a) If the

relationship link between two entities is annotated with an incorrect stereotype.

� Improvement

It is recommended to first review the textual descriptions of the two given entities

to determine the true type of relationship that exist between them. The

relationship link should be corrected if necessary and annotated with the correct

stereotype.

� Antipattern Name

a23. An association between two actors - Automation Support: Type (1)

� Description

Two actors in the UC diagram are associated with an association relationship.

212

� Rationale

(1) The actors need to communicate and exchange information in order to

perform one or more UCs.

(2) One actor is a specialization of the other.

� Consequences

(1) A system needs only to account for the interactions between itself and its

actors. The design and implementation of the system will be based solely on

these interactions. Accounting for communications between actors or other

external systems will add unnecessary complexity to the design. Moreover,

assumptions made with regard to the interactions occurring between external

entities can be incorrect or inaccurate.

(2) A generalization relationship between two actors shows the hierarchical

relativity between the roles played by these actors. On the other hand, an

association between two actors shows that the actors are communicating.

Misrepresenting a generalization relationship as an association relationship

will lead to similar consequences to those described in (1).

� Detection

Where – For every actor in the UC diagram. How – If an actor is associated with

another actor by an association relationship.

213

OCL Description:

An association relationship between actors is a fairly uncommon practice. The

original metamodel will need to be extended to support this notation. The

extension will be in the form of an association relationship, named

Associated_With_Actor, stemming from the Actor class (see Figure 4-

43). This extension was not made part of the original metamodel since it is fairly

uncommon and hence it does not warrant the additional complexity.

Figure 4-43: Extending the metamodel to support actor to actor associations

context Actor

inv AssociationBetween2Actors

not (self.firstActor -> size + self.secondActor -

>size > 0)

� Improvement

(1) The association relationship should be removed. This allows designers to

focus only on the interactions between the actors and the system. Designers

should not worry about interactions that occur outside the system.

(2) The association relationship should be removed and replaced with a

generalization relationship to reflect the actual relationship between the

actors.

214

� Antipattern Name

a24. An association between UCs - Automation Support: Type (1)

� Description

Modelers require two UCs to communicate in order to carryout a meaningful and

complete service. The two UCs involved are then linked to each other using an

association relationship.

� Rationale

The scenario described above may occur due to different reasons:

(1) Each UC needs to provide information in order to carryout the required

service for the user. This scenario is shown in Figure 4-44. The UC Count

Shaft Rotations in Trip is responsible to calculate the distance traveled

during a given trip. Meanwhile, the UC Measure Time of Trip keeps track of

the time elapsed during that trip. The UCs Count Shaft Rotations in Trip

and Measure Time of Trip each provide necessary information in order to

calculate the average speed of the trip.

Figure 4-44: Two UCs trading information to provide a service

(2) One of the UCs need to initiate the other UC in order to carry out a

subroutine. This scenario is shown in Figure 4-45. The UC Calculate

Average Trip Speed initiates the UCs Count Shaft Rotations in Trip and

Measure Time of Trip in order to retrieve information necessary to calculate

the average speed of the current trip.

215

Figure 4-45: A main UC is communicating with other UCs by “calling” them to

retrieve necessary information

(3) One of the UCs contains exceptional or optional behavior relative to the other

UC. This scenario is shown in Figure 4-46. The UC Trip Has Not Started is

responsible for handling the error resulting from attempting to calculate the

average trip speed (when UC Calculate Average Trip Speed is being

performed) before a trip has even started. The error is caused since the

distance and time elapsed are both 0.

Figure 4-46: A UC communicating with the other to provide exceptional behavior

� Consequences

(1) In the scenario presented in Figure 4-44, the UC model is used as a design

tool instead of an analysis tool. The modelers used the UC model to show

internal implementation decisions. This obscures the real functionality and

services offered by the system to its users, leading to confusion between

various stakeholders. Moreover, descriptions of the UCs will include

instructions about the two UCs communicating with each other. Therefore, at

the implementation phase, every time the average trip speed is calculated, the

elapsed will be unnecessarily measured as well, and vice versa.

216

(2) In the scenario presented in Figure 4-45, the true semantics of the relationship

between the UCs are violated. The initiated UCs Count Shaft Rotations in

Trip and Measure Time of Trip contain subroutine behavior and thus do not

need to know about the internal behavior of their initiating UC. However, an

association relationship between two UCs requires the UCs to be aware of

each other’s behavior. Therefore, the initiated UCs will require additional

descriptions that will allow them be aware of the initiating UC.

(3) In the scenario presented in Figure 4-46, the true semantics of the relationship

between the UCs are violated, since the Trip Has Not Started UC contains

error-handling behavior with respect to the Calculate Average Trip Speed

UC. The Calculate Average Trip Speed UC provides complete behavior

individually. Hence, it is not required to be aware of the Trip Has Not

Started UC. As mentioned before in (2), an association relationship between

two UCs requires both UCs to be aware of each other’s behavior. Therefore,

the Calculate Average Trip Speed UC will require unnecessary additional

descriptions that will allow it to communicate with the Trip Has Not Started

UC.

� Detection

Where – The Analyst needs to search for any pair of UCs in the UC diagram.

How – If the UCs are connected with each other using an association relationship.

OCL Description:

217

Similar to the “An association between two actors” antipattern, association

relationships between UCs is also a fairly uncommon practice. The metamodel

will need to be extended to support the additional notation. The extension will be

in the form of an association relationship, named

Associated_With_UseCase, stemming from the UseCase class (see

Figure 4-47). This extension was not made part of the original metamodel since it

is fairly uncommon and hence it does not warrant the additional complexity.

Figure 4-47: Extending the metamodel to support UC to UC associations context

UseCase

inv AssociationBetween2UseCases

not (self.firstUseCase->size + self.secondUseCase-

>size > 0)

� Improvement

(1) This situation is yet another form of functional decomposition. The UCs

shown in Figure 4-44 need to be merged into one UC that will individually

calculate the average trip speed. The newly formed UC maybe called

Calculate Average Trip Speed. Therefore this scenario can be fixed as

shown in Figure 4-48.

218

Figure 4-48: Communicating UCs merged into one

However, in the case that the UCs need to remain separated, a new UC that

will be responsible of calculating the average trip speed should be created.

The newly created UC may then be set to use the existing UCs using the

include relationship as shown in Figure 4-49 to calculate the average trip

speed.

Figure 4-49: Communicating UCs are included by a UC that provides a separate

complete service

(2) The initiated UCs in Figure 4-45 Count Shaft Rotations in Trip and

Measure Time of Trip contain subroutine behavior required to calculate the

average trip speed. These subroutine behaviors should be able to execute

regardless of the context they are initiated in. Therefore, the association

relationship between the UCs should be replaced with the proper include

relationship as shown in Figure 4-49.

(3) The initiating UC in Figure 4-46 Trip Has Not Started contains exceptional

behavior with regard to the Calculate Average Trip Speed UC. Moreover,

the UC Calculate Average Trip Speed provides complete behavior in the

case of no exceptional events occurring. Therefore, the association

relationship between the UCs should be replaced with the proper extend

relationship as shown in Figure 4-50.

219

Figure 4-50: The UC containing exceptional behavior now extends the base UC

� Antipattern Name

a25. Too many UCs - Automation Support: Type (1)

� Description

The UC model contains numerous UCs. Detecting this antipattern is dependent on

the problem domain. Therefore, identifying how many UCs is too many requires

domain expertise and examination of UC models of similar systems. This

knowledge will yield an appropriate range for the number of UCs expected.

Therefore, this antipattern is matched only if the existing number of UCs far

exceeds the appropriate range.

� Rationale

(1) The system provides new functionalities and services which incorporates new

technologies that were not available in older similar systems. Moreover, the

system by nature is extremely complex, providing numerous services to many

actors.

(2) The UCs are designed to be simple and contain very simple behavior for

easier implementation. Such UCs usually contain very short flows, and often

represents GUI menu commands.

220

� Consequences

(1) This situation is acceptable since systems evolve and become more complex,

offering far more services than before.

(2) This is another form of functional decomposition. The UCs offer no meaning

individually and contain very little substance. The UCs are only useful when

combined and sequenced with other UCs.

� Detection

Where –The UC diagram. How – If the number of UCs far exceeds the expected

range.

OCL Description:

context UseCase

inv TooManyUseCases

not (UseCase -> size > <appropriate size>)

� Improvement

(1) No corrective actions are required.

(2) UCs that contain very little substance should be reformed into uses that offer a

complete meaningful service to a system’s user. UCs that contain

implementation details, such as GUI menu commands should be removed and

replaced with analytical UCs that describe what the system needs to do rather

than how it does it.

221

� Antipattern Name

a26. Depicted actors that do not have a corresponding description -

Automation Support: Type (2)

� Description

An actor is depicted in the UC diagram; however a textual description for the

actor is missing.

� Rationale

The actor represents an external entity that is fairly well known. A textual

description is then considered unnecessary.

� Consequences

 Even though the external entity which an actor represents might be commonly

known, a description for that actor is required to describe its capabilities and

limitations with respect to interacting with the given system. It is also important to

describe the services an actor seeks from the system. If such information is

missing, UCs developed at a later phase that are associated with the given actor

may falsely presume how the actor will interact with the system.

� Detection

Where – For every actor depicted in the UC diagram. How – If the actor does not

have a corresponding textual description.

222

� Improvement

A brief description of the actor, its capabilities, limitations and the services it

seeks from the system must be provided. The description does not need to be

long. A maximum of one paragraph that contains the required information will

suffice.

4.4. Tool Support Using ARBIUM

Examining the structure of a UC diagram is a process that can be fully automated.

For complex systems, a UC model may contain hundreds of UCs (Berenbach

2004); in addition, these UCs are not depicted in any chronological order.

Moreover, various types of relationships are depicted linking those UCs.

Inherently, these relationships are not depicted in any chronological order either.

Such systems also usually contain a large number of actors that are associated

with UCs using association relationship links. Ultimately the UC diagram can be

viewed as a large mesh of UCs, actors and relationship links. Attempting to detect

a match for a given diagrammatic structure described by an antipattern can be

very challenging, cumbersome and error prone. ARBIUM (Automated Risk-

Based Inspector of UC Models) provides automation support for detecting

diagrammatic structures. The presented technique does not target deficiencies that

can be detected via static analysis, such as syntax errors. ARBIUM is geared

towards detecting potential deficiencies that require human validation.

Unsound structures described in antipatterns are entered into ARBIUM as

OCL statements. The OCL statements adhere to the simplified metamodel

223

presented earlier (Figure 4-1) In addition to being able to describe and search for

custom made antipatterns, ARBIUM is provided with a set of predefined

antipatterns, which analysts may utilize to improve their models. The predefined

antipatterns are of the DI variety so that they can be applied to any UC model

regardless of its domain.

The matching process is aided by the tool USE (UML-based Specification

Environment). USE is a tool that checks the integrity of information systems

against constraints described in OCL (Gogolla et al. 2002). ARBIUM generates

two input files for USE: a specifications file and a script file. The specifications

file describes the class structure of the metamodel, and contains the set of

antipatterns specified by the analyst. The script file loads an object representation

of the actual UC diagram, based on the simplified metamodel. After completing

the matching process, USE presents any antipattern matches for analysts to

review. An overview of how ARBIUM, incorporating USE, can be used to search

for antipatterns is shown below (see Figure 4-51) A more detailed discussion of

ARBIUM is presented in (STEAM 2009c).

224

Figure 4-51: An overview of how ARBIUM and USE can automate the detection

process

4.5. Evaluation

In this Section we present a real world case study to demonstrate the application

of our proposed technique and to examine its feasibility. In addition, we compare

the results of using ARBIUM to drive the inspection process to the results of

using DesignAdvisor (Berenbach 2004).

4.5.1. Definition and Motivation

The main research question posed by this case study is whether the detection of

antipatterns and analysis of the resulting matches can improve the overall quality

of UC models. This is achieved on two fronts: (a) by restructuring the UC

diagrams to adhere to the notational syntax rules and semantics set by OMG

(OMG 2005); and (b) by changing UC descriptions to comply with recommended

guidelines and widely accepted practices (Section 4.3.5). Therefore, the

225

effectiveness of using our proposed approach will be assessed by comparing the

resulting UC model with the original UC model, with respect to the aspects

mentioned in (a) and (b).

4.5.2. Case Study Formulation

The proposed approach was applied to the MAPSTEDI (Mountains and Plains

Spatio-Temporal Database Informatics) (MAPSTEDI 2008) UC model.

ARBIUM was utilized to perform the matching process. The MAPSTEDI system

is being developed to allow the University of Colorado Museum (UCM), Denver

Museum of Nature and Science (DMNS), and Denver Botanic Gardens (DBG) to

merge their separate collections into one distributed biodiversity database. The

merged collections will include over 285,000 biological specimens. The system

will also be used as a research toolkit by geocoders to analyze biodiversity data in

the southern and central Rocky Mountains and the northern plains both spatially

and temporally. The MAPSTEDI system will be developed over three phases.

Upon completion of the project, MAPSTEDI will be able to “georeference” the

museum collection databases. Users’ search results will be provided by the

MAPSTEDI website in GIS-linked spatial-temporal coverage.

The UC model of the MAPSTEDI system contains several UC packages

that are used to model different subsystems of the target system. The UC model is

accompanied with UC descriptions. The descriptions play an essential role in

examining the validity of the UC diagrams and the model as a whole. The

226

MAPSTEDI UC model contains five UC packages which represent different

aspects of the system’s functionality. Each UC package contains one UC diagram:

• Database Access (Figure 4-52): The purpose of this UC package is to state

who may access the database and how. Users of the system can search and

download collections data. Users may also visualize biodiversity analysis.

Only research users are permitted to access sensitive data.

• Database Queries (Figure 4-53): This UC package provides a hierarchal

outline of the query functionalities performed by the system. The subsystem

queries local and distributed databases for collections data. There are two

distributed databases, the DMNS and DIGIR databases.

• Database Integrator (Figure 4-54): This UC package shows how the

collections data from separate databases (local and remote) are integrated after

being updated.

• Database Edits (Figure 4-55): This UC package outlines the operational

mechanisms for editing and updating the databases. The geocoder edits the

collections data and the databases are updated accordingly.

• Administrative Process (Figure 4-56): This UC package shows the

administrative functionalities and responsibilities. The subsystem backups and

restores collections data and application code. The subsystem also installs any

new updates.

227

Figure 4-52: The UC diagram of the “Database Access” subsystem

Figure 4-53: The UC diagram of the “Database Queries” subsystem

Figure 4-54: The UC diagram of the “Database Integrator” subsystem

228

Figure 4-55: The UC diagram of the “Database Edits” subsystem

Figure 4-56: The UC diagram of the “Administrative Process” subsystem

Currently the MAPSTEDI UC model suffers from a number of issues (listed

below) that decrease its quality. These issues are determined after examining the

UC diagrams and the corresponding UC and actor descriptions:

1. The public and research users are shown to have different roles when

accessing certain functionalities offered by the system, however they perform

the same role. Moreover, the UC diagram indicates that both public and

research users need to be involved with the system in order to perform certain

functionalities which is incorrect.

2. A dependency is created between UCs Download Collections Data and

Search Collections Data through improper use of pre and postconditions.

229

(Please refer to antipattern (a5.) for details regarding the implications of this

issue).

3. UCs in the Query Databases UC diagram are shown to extend each other,

meaning that some UCs introduce optional or exceptional behavior to the

functionality described in other UCs which is incorrect. The UCs have a

hierarchical relation with respect to the query services that they offer, which is

not shown.

4. The UC model presents a number of functionally decomposed UCs, such as

the Edit Collections Data, Upload DGB and UCM Data and Run QC

Tests UCs. This is detrimental to the analytical quality of the UC model.

Further implications of functional decomposition are presented in antipatterns

(a3.), (a4.) and (a5.).

5. The Database Edits UC diagram shows an incorrect type of dependency

between the Geocode Specimen UC and the Update Collections Data

UC.

6. The UC model contains a superfluous actor: Data Editor.

7. The Administrative Process UC diagram shows three UCs that are too generic

to allow either of the administrator actors to perform their intended duties.

8. The UC Model describes two actors that are system functionality not actors.

9. UC Query Remote Database is indirectly accessed by an actor while it

exclusively does not describe complete and meaningful functionality.

Many of these issues may have severe consequences downstream in the

development process. It is crucial to remove these issues from the UC model. In

230

the following subsections, our proposed technique will be applied to the UC

model in order to assess its ability to resolve these issues. All UC diagrams will

be juxtaposed with the entire set of antipatterns. While performing the matching

process, it is important to consider overlapping entities. That is, UCs or actors that

exist in more than one diagram. Considering overlapping entities help reveal

antipattern matches that may exist over multiple UC diagrams.

4.5.3. Analysis and Interpretation of the Results

The resulting antipattern matches shown in Table 4-3 require human inspection to

verify the correctness of the UC model. A total of 11 antipattern matches were

detected across all of the UC packages. An analysis of the antipattern matches of

the first iteration is shown in Table 4-4. All antipatterns detected in the first

iteration, with the exception of antipattern matches 1.2 and 6.1, are of Type (1).

Therefore, they were detected automatically by ARBIUM. Antipattern match 1.2

(Type (3)) was detected by manually applying the anti-pattern template to the

descriptions of the Download Collections Data and Search Collections Data

UCs of the Database Access UC diagram. Meanwhile, antipattern match 6.1

(Type (2)) was detected by manually applying the anti-pattern template to the

actor descriptions, while ARBIUM searched for these actors in the UC diagrams.

231

Table 4-3: First Iteration Matches

Match

No.

UC Diagram Antipattern Matched Elements involved

1.1.1

a6. Multiple actors associated

with one UC

Actors: Public User and Research

User

UCs: Download Collections Data,

Search Collections Data and

Visualize Biodiversity Analysis

1.1.2

Database

Access

a8. Functional decomposition:

Using pre and postconditions

UCs: Download Collections Data,

Search Collections Data

1.2.1

Database

Queries

a3. Functional decomposition:

Using the extend relationship

UCs: All five UCs illustrated in the

corresponding UC diagram.

3.1

a5. Functional decomposition:

Using the include relationship

UCs: Edit Collections Data and

Update Collections Data.

1.3.2

Database

Integrator
a5. Functional decomposition:

Using the include relationship

UCs: Upload DGB and UCM Data,

Run QC Tests and Update

Collections Data.

1.4.1

a5. Functional decomposition:

Using the include relationship

UCs: Geocode Specimen and Find

Locality

1.4.2

Database Edits
a4. Accessing an extension

UC

Actors: Data Editor and Database

Integrator.

UCs: Edit Collections Data and

Geocode Specimen.

1.5.1

Administrative

Process

a6. Multiple actors associated

with one UC

Actors: Database Administrator

and ArcIMS Administrator

UCs: Backup Process

232

1.5.2

a6. Multiple actors associated

with one UC

Actors: Database Administrator

and ArcIMS Administrator

UCs: Restore Process

1.5.3

a6. Multiple actors associated

with one UC

Actors: Database Administrator

and ArcIMS Administrator

UCs: Install Software Updates

1.6.1 System Wide

a7. A description of an actor

that is not depicted in the UC

diagram

Actors: Database Upload Process

and Database QA/QC Process

The Database Edits, Database Queries and Database Integrator UC Diagrams

were merged since they contain a number of overlapping entities. The merged UC

diagram (“Merged UC Diagram”) is presented in Figure 4-58.

Table 4-4: First iteration analysis

Antipattern Match 1.1.1:

Analysis:

Upon analysis of the three UCs which the actors Public User and Research

User are associated with, the actors were found to have similar roles when

performing the UCs.

Corrective Actions:

The role that the actors play in correspondence to the three given UCs will be

generalized into a separate actor (called User). The generalized actor is then

associated with the UCs, while the Research User remains the only actor

associated with UC Access Sensitive Data (Figure 4-57).

233

Antipattern Match 1.1.2:

Analysis:

The precondition of the Download Collections Data UC states that the Search

Collections Data UC must be initialized beforehand.

Corrective Actions:

Each UC offers a complete service individually hence they should remain

separate. However, the precondition stated by the Download Collections Data

UC should be removed.

Antipattern Match 1.2.1:

Analysis:

The extend relationship was used to represent the hierarchy between the query

services offered by the system.

Corrective Actions:

The extend relationships should be replaced with generalization relationships

(Figure 4-58).

Antipattern Match 1.3.1:

Analysis:

The Edit Collections Data UC represents subroutine type behavior that is

required by the Update Collections Data UC.

Corrective Actions:

The functionality described in the Edit Collections Data UC should be merged

with the description of the Update Collections Data UC and represented as a

234

“Sub-flow
4
”. Subsequently, the UC Edit Collections Data and it’s include

relationship link with UC Update Collections Data are removed from the

diagram (Figure 4-58).

Antipattern Match 1.3.2:

Analysis:

Analysis of the involved UCs show that updating the database requires the DGB

(Denver Botanic Gardens) and UCM (University of Colorado Museum) data to be

uploaded. Meanwhile, the task of uploading any data also requires that the data

undergo Quality Control (QC) tests.

Corrective Actions:

The Upload DGM and UCM Data and Run QC Tests UCs should be merged

into the Update Collections Data UC by modeling each as a separate “Sub-

flow” component. Moreover, the description of the “Sub-flow” component

responsible for uploading the data should indicate a requirement to execute the

other “Sub-flow” that is responsible for running the QC tests. UCs Upload DGM

and UCM Data and Run QC are removed from the Database Integrator diagram.

Meanwhile, an include relationship will be directed from the Update Collections

Data UC to the Query Remote Database UC, to replace the include

relationship that was present between the Run QC Tests and Query Remote

Database UCs (Figure 4-58).

Antipattern Match 1.4.1:

Analysis:

4
 A “Sub-flow” is a component of a UC description that describes subroutine-like behavior that is

exclusive only to the belonging UC.

235

The Find Locality UC represents subroutine type behavior that is required by the

Geocode Specimen UC.

Corrective Actions:

The functionality described in the Find Locality UC should be merged and

represented as a “Sub-flow” component of the Geocode Specimen UC. Hence,

UC Find Locality and it’s include relationship with UC Geocode Specimen are

removed from the diagram (Figure 4-58).

Antipattern Match 1.4.2:

Analysis:

The Edit Collections Data UC was merged into the Update Collections Data

UC as a result of antipattern match 1.3.1 in the Data Integrator UC diagram.

Therefore, actors Data Editor and Database Integrator are now associated with

the UC Update Collections Data. Moreover, UC Update Collections Data

now extends the Geocode Specimen UC.

(a) Upon analyzing the extended UC Geocode Specimen, it is discovered that

updating the database represents part of its required functionality.

(b) The data-editing role played by the Geocoder actor is modeled using the

Data Editor actor. However, the Geocoder is the only actor that edits this

data. Moreover, the model shows that the Geocoder already has indirect

access to the Update Collections Data UC, through the Geocode

Specimen UC.

Corrective Actions:

(a) The extend relationship between the involved UCs was used to indicate

236

subroutine type behavior. Therefore, this relationship should be replaced with

an include relationship directed from the Geocode Specimen UC to the

Update Collections Data UC. Hence, the Data Integrator actor is no longer

directly accessing an extension UC (Figure 4-58).

(b) Since the Geocoder actor already has indirect access to the Update

Collections Data UC, the Data Editor actor is no longer required and should

be removed (Figure 4-58).

Antipattern Matches 1.5.1, 1.5.2 and 1.5.3:

Analysis:

All three antipattern matches resulted from the same issue; the shared UCs are too

general to suit either the ArcIMS Administrator or the Database Administrator

actor. After reviewing the tasks of both actors, it was determined that the ArcIMS

Administrator actor accesses the system to backup and restore the application

code and to install code updates. Meanwhile, the Database Administrator actor

accesses the system to backup and restore the collections data, and to install

database updates.

Corrective Actions:

The three shared UCs should be split down into six UCs in order to properly

represent the administrative duties of the actors (Figure 4-59).

Antipatterns Match 1.6.1:

Analysis:

Two actors Database Upload Process and Database QA/QC Process where

237

described but never depicted in any UC diagram. The descriptions of the actors

however simply state functionality that is performed by the system itself, and

hence should be part of the UC descriptions.

Corrective Actions:

No corrective actions are required since the actor tasks were already stated in the

UC descriptions. The superfluous actors should be removed from the UC model.

Figure 4-57: The Database Access UC diagram after the first iteration

238

Figure 4-58: A merged view of the remaining three UC diagrams after the first

iteration

Figure 4-59: The Administrative Process UC diagram after the first iteration

As mentioned earlier, the proposed technique must be applied iteratively as

corrections and changes applied upon reviewing an antipattern match might cause

new antipatterns to surface. The matching process is repeated for a second

iteration. Table 4-5 shows the antipattern matches detected during the second

iteration, and Table 4-6 shows the corresponding analysis. All antipatterns

matched are of Type (1) and hence were detected by ARBIUM. The antipattern

matches were detected in the Merged UC diagram shown in Figure 4-58.

239

Table 4-5: Second iteration matches

Match

No.

UC

Diagram

Diagrammatic-Antipattern

Matched

Elements involved

2.1.1 a1. Accessing a generalized

concrete UC

Actors: Database Integrator

UCs: Query Remote Database and

Integrate Query Results.

2.1.2 a2. UCs containing common

and exceptional functionality

UCs: Query Remote Database,

Update Collections Data and

Geocode Specimen.

2.1.3

Merged UC

Diagram

(Figure 4-58)

a4. Accessing an extension

UC

Actor: Database Integrator

UCs: Update Collections Data

Table 4-6: Second Iteration Analysis

Antipattern Match 2.1.1:

Analysis:

This antipattern match resulted from replacing the inappropriately used extend

relationships with generalization relationships. The generalized UC Query

Remote Database is concrete and is indirectly accessed by the Database

Integrator actor through the Integrate Query Results UC.

Corrective Actions:

According to the “Accessing a generalized concrete UC” antipattern (a1.), this

situation may be fixed by setting the generalized Query Remote Database UC

to be abstract. To conserve space, this minor change to the merged UC diagram

(Figure 4-58) will not be shown.

240

Antipattern Match 2.1.2:

Analysis:

The shared UC Update Collections Data contains subroutine behavior relative

to the Geocode Specimen and Query Remote Database UCs.

Corrective Actions:

The include relationship with the UC and the Update Collections Data UC

should remain intact. Meanwhile, the extend relationship between the Update

Collections Data UC and the Query Remote Database UC should be replaced

with an include relationship. To conserve space, this minor amendment to the

merged UC diagram (Figure 4-58) will not be shown.

Antipattern Match 2.1.3:

Analysis:

This antipattern no longer exists due to the corrective actions undertaken after

analyzing antipattern match 2.1.2.

4.5.4. Discussion of Results and Validation

In this Section we assess whether the application of our technique resolved the

issues that existed in the original MAPSTEDI UC model (see end of Section

4.5.2). Table 4-7 provides a summary of the issues resolved by applying our

technique:

Table 4-7: Addressing issues in the MAPSTEDI UC model

Issue Discussion and Validation Resolved

1 The newly created generalized actor User represents the only role �

241

that exists while performing the shared UCs. Hence, the

generalization relationship between the actors Research User

and Public User, and their parent actor User, correctly indicates

that they have the same role while performing the shared UCs.

Having a single generalized actor access the previously shared

UCs also eliminates the misinterpretation that both the Research

User and Public User actors are required to be involved with the

system simultaneously in order to perform the UCs. The only

unshared UC Access Sensitive Data remains associated only

with the Research User actor.

2

Removal of the improper preconditions from the Search

Collections Data UC complies with a widely accepted authoring

guideline discussed in (Bittner et al. 2002). Now the Search

Collections Data UC is appropriately dependent on the

Download Collections Data UC through an include relationship

only.

�

3

The generalization relationships appropriately represent the

hierarchy of services offered by the UCs in the Query Databases

UC diagram.

�

4

The analytical value of the UC model is greatly improved as the

functionally decomposed UCs (Edit Collections Data, Upload

DGB and UCM Data and Run QC Tests) are removed. Their

respective functionalities are appropriately merged into their

�

242

respective base UCs so that the base UCs describe complete and

useful behavior.

5

The Geocode Specimen UC is now appropriately set to include

the Update Collections Data UC, representing the correct type of

dependency that exists between the UCs.

�

6

Each actor must have a distinct role. The Data Editor actor

represents part of the role already performed by the Geocoder

actor. The superfluous Data Editor actor is now removed from the

UC model, eliminating redundancy and improving

understandability.

�

7

UCs must contain the correct level of detail in order to provide a

complete and meaningful service to an actor. Each of the three

overly general UCs shared by the administrator actors are now

split into two separate UCs. The newly created UCs contain

specific behavior to allow each administrator actor to perform their

respective administrative duties.

�

8

Every actor described in the UC model must be depicted at least

once in a UC diagram. An actor is invalid if its description states

functionality that is performed by the system itself. Therefore,

actors Database Upload Process and Database QA/QC

Process are now removed from the UC model.

�

9

A UC should only be concrete if it can offer a complete service to

an actor, which is not the case with the Query Remote Database

�

243

UC. Therefore, the Query Remote Database UC was set to be

abstract to force one of its implementing UCs to carry out the

specific behavior of querying a remote database.

4.6. Comparison of Alternative Approaches

In order to fully evaluate the effectiveness of using antipatterns, it should be

compared to alternative approaches by applying them to the MAPSTEDI UC

model. As mentioned earlier in Section 4.2, only the approach presented by

Berenbach in (Berenbach 2004) can be compared to our approach since it does

not require significant human cognition to apply. The MAPSTEDI UC model was

examined to determine if it violates any of the heuristics presented in (Berenbach

2004); these violations will then be “resolved” in the model. Table 4-8 presents

the heuristics from (Berenbach 2004), and presents the number of violations

found in the MAPSTEDI model. Each heuristic is stated is followed by the

antipatterns that embody it; the heuristics from (Berenbach 2004) believe that the

model is defect free!

Table 4-8: Examining the MAPSTEDI UC model for violations of the heuristics

presented in (Berenbach 2007)

Heuristic

Violations

Detected

1 “Every UC must be defined.” (Covered by a17.)

Analysis: Every UC was appropriately defined. The template used

for each UC contained fields for the UC name, actors involved,

preconditions, postconditions and the actual description of the

0

244

intended behavior. The description section of each UC stated a basic

flow as well as alternative whenever applicable.

2

“Abstract UCs must be realized with included or inheriting

concrete UCs.” (Covered by a1. and a12.)

3

“A concrete UC cannot include an abstract UC (unless it is

realized).”

(Covered by a3., a9. and a12.)

Analysis: There was no abstract UCs in the original MAPSTEDI

UC model.

0

4

“Extending UC relationships can only exist between concrete

UCs.”

(Covered by a4., a6. and a9.)

Analysis: The extend relationship only existed in two diagrams: (a)

the Data Edits and (b) the Database Queries UC diagrams. The Data

Edits had one extend relationship between two concrete UCs.

Meanwhile, the extend relationships between all UCs in the

Database Queries UC diagrams are concrete.

0

5

“Use activity diagrams to show all possible scenarios associated

with a UC.”

6

“The definition of a UC must be consistent across all diagrams

defining the UC.”

7

“Use sequence diagrams rather than collaboration diagrams to

define one thread or path for a process.”

N/A

245

8

“Avoid realization relationships and artifacts in the analysis

models.”

Analysis: Only the UC model of the MAPSTEDI was available.

Moreover, this case study focuses on comparing approaches that

improve UC models early in the development cycle where only the

UC model is available.

246

Chapter 5

Developing Comprehensive

Acceptance Tests from Use Cases

5.1. Introduction

In agile development processes, the rewards from user acceptance testing are

maximized by using the practice to drive the development process. Traditionally,

User Stories are used in agile projects to describe a system’s usage scenarios; and

are utilized as a basis for developing acceptance tests. However, there remains a

significant subset of agile projects that utilize another popular functional

requirements modeling method, namely Use Case Modeling. This Chapter

introduces a technique that aims to achieve the benefits of acceptance testing, and

specifically acceptance test driven development, within agile approaches that

utilize Use Case Models. The approach is based on utilizing a number of artifacts:

Use Case Models “supported by” robustness diagrams and domain models. The

feasibility of the proposed approach is demonstrated by applying it to a real-world

system -- the RestoMapper system. The results show that a comprehensive set of

acceptance tests can be developed based upon Use Case Models.

247

5.2. Developing Acceptance Tests from Use Cases

Acceptance tests are developed from requirements artifacts. In agile processes,

acceptance tests are often constructed from USs (Cohn 2004); however, large-

scale development projects that deploy a more rigorous development process such

as the V-Model do not utilize USs. It is common for large-scale software projects

within a V-Model development process to deploy a model-oriented approach

throughout the development process. The UML in particular has become the de-

facto modeling language for large-scale object-oriented software development,

which has resulted in the widespread use of Use Case (OMG 2005) (UC) models

for requirements analysis and modeling. Yet, there lacks a process that allows

analysts and customers to develop acceptance tests from UC models. The focal

point of this Section is to define such a process; that is, using requirements

artifacts normally available during early development phases to drive, or at least

support, the production process. UC models place an emphasis on system

boundaries, and user-to-system expectations and interactions. This Chapter

proposes a UC driven approach to developing executable acceptance tests, based

on using UC models, robustness diagrams (Jacobson et al. 1992; Rosenberg et al.

1999, Rosenberg et al. 2005) and domain models. In this Chapter a tool UCAT

(Use Case Acceptance Tester) is presented, which provides automation support

for executing acceptance tests developed through our approach. It is important to

note that our proposed approach does not attempt to replace or improve upon any

other approaches that develop acceptance tests. Our approach provides a

mechanism to develop executable acceptance tests based on UC models.

248

The concept of developing tests from UCs is not new. There have been many

proposed techniques that attempt to generate system tests from UCs (Basanieri et

al. 2002; Briand et al. 2002; Nebut al. 2006; Ryser et al. 1999). However, none of

these techniques cater to the technical skill set of personnel who would carry out

the construction of acceptance tests, namely customers and Business Analysts

(BAs), whom are typically business-oriented rather than technically-oriented.

Before comparing our approach with other works, it is crucial to identify the

differences between user acceptance and system testing. System testing is similar

to user acceptance testing in that it is concerned with testing an entire system from

a black-box perspective. Both activities do not require knowledge of the

underlying code structure. However, user acceptance and system testing remain

distinct activities. Table 5-1 provides a detailed comparison between user

acceptance and system testing.

Table 5-1: User acceptance testing vs. system testing

 System Testing Use Acceptance Testing

What?

System testing compares the

Software Under Test (SUT) with

the requirements specifications.

System testing is a validation

activity to ensure that the SUT is

functioning as intended. For

example, considering a “simple

addition” program, a system test

User acceptance testing compares

the SUT with end-user

requirements. It is a verification

activity to ensure that the

development team will be building

the “right” system in the sense that

end-product will satisfy the end-

user requirements. For the “simple

249

would be to ensure that the output

is 7 when the inputs were 3 and 4-

addition” program, the behavior of

the Software to be built is verified

by an acceptance test that states

that the output produced when the

inputs are 3 and 4 should be 7.

Who?

Developers ideally create system

tests. The rationale behind this is

that upon the implementation of a

functionality, it is the developers

who are most knowledgeable of

using (or interacting) with the

software. Developers would have

in depth knowledge of the input

and output formats, which will

enable them to create system tests,

execute them and validate that the

SUT has indeed behaved as

intended.

Customers and end-users ideally

create user acceptance tests, often

with the aid of Business Analysts.

The reason being is that it is the

customers and end-users who are

most knowledgeable of the

problem domain and the required

functionalities to improve their

work processes. Meanwhile,

Business Analysts are trained

professionals who facilitate the

process of requirements gathering,

specification, analysis and

verification (such as through user

acceptance testing).

How?

As shown in Figure 5-1, user acceptance tests are a result of

requirements analysis. User acceptance tests are developed based on

various requirements artifacts. In large-scale development projects that

250

deploy a v-model development process, it is common to develop UC

and domain models as part of the requirements analysis process. Also

as shown in Figure 5-1, system tests are based on user acceptance tests

in addition to system design artifacts.

Based on the purpose and properties of acceptance testing outlined in Table 5-1,

there are desirable characteristics that should be present in any technique aimed at

developing acceptance tests, which will typically be used by customers and BAs

(Table 5-2).

Table 5-2: Desirable characteristics of a technique aimed at developing acceptance

tests

1. Low technical difficulty:

Software testing tools developed for customers and BAs are intentionally

designed to avoid any technical complexity, often relying on simple test tables

(also known as fixtures). Such tools include FIT/Fitnesse (Mugridge al. 2005) and

Selenium (Selenium 2008). Moreover, according to the duties and skills set of

BAs outlined by BABOK (Business Analysts Body of Knowledge) (BABOK

2009), which is a well recognized official reference used by BAs to attain their

BA certification, it can be deduced that a BA cannot be expected to perform any

activities that can be considered technically highly complex. For example, BAs

cannot be expected to perform complex mathematical calculations, formal

methods formulations or use complex languages to specify and verify

requirements. Similarly, it cannot be assumed that a customer can understand or

use technically difficult analysis techniques and languages. It is crucial that a

251

technique aimed at developing acceptance tests must require a skill set that can be

performed by BAs, whereby the developed acceptance tests are in a form that is

understandable by customers.

2. Can be applied in the early phases of development:

It is important to develop acceptance tests early in the development process since

according to the V-Model development process, the development of acceptance

tests play a key role in developing other types of tests (system, integrations and

unit tests) as the project progresses. During the early phases of development, it is

common that a significant amount of requirements and design details are missing,

or are only available at an abstract level. Hence, it is very important that a

technique aimed at developing acceptance tests can be applied without the

availability of such detailed information, while utilizing any abstract information

available.

3. Help bridges the gap between analysis and design phases:

According to the V-Model development process, the process of developing

acceptance tests along with requirements analysis should collaboratively guide the

system design, and in turn system tests. A technique aimed at developing

acceptance tests should bridge the gap between the analysis and design phases,

leading to a seamless transition between the two phases.

4. Produces executable tests:

Executing acceptance tests manually is an error-prone and cumbersome process.

It is desirable to develop executable acceptance tests to allow their execution to be

performed effortlessly and accurately.

252

5. Produces reusable acceptance tests

Many acceptance are comprised of common components, for example, setup and

cleanup tests. Therefore, it is highly beneficial to develop modular acceptance

tests that can be reused to compose additional acceptance tests.

In (Briand et al. 2002), a testing methodology named TOTEM was introduced.

TOTEM is used to develop test cases from various analysis artifacts, such as use

case models, sequence, collaboration and class diagrams. However, to effectively

deploy the TOTEM methodology, such analysis artifacts need to be heavily

augmented with OCL (Object Constraint Language) expressions. It can be argued

that learning OCL and effectively using it is an advanced skill beyond that can be

expected from a customer or a BA (Table 5-2-point (1)). Inspired by the approach

presented in (Briand et al. 2002), the technique introduced in (Nebut al. 2006) is

also based on extending UCs with contracts to facilitate test case generation. The

authors introduce a new language (similar to OCL) to express these use case

contracts. Similar to the work in (Briand et al. 2002), it can be deduced that the

approach presented in (Nebut al. 2006) is also beyond the capabilities of

customers and BAs (Table 5-2-point (1)). In (Ryser et al. 1999), an approach

named the SCENT-Method was introduced which uses scenarios embedded in

UCs to develop tests. The technique requires the formalization of scenarios into

statecharts. The systematically constructed statecharts are detailed with pre and

postconditions, data ranges, data values and non-functional requirements. The

statecharts then need to be crosschecked for any inconsistencies, incorrectness

253

and incompleteness. The authors have explicitly stated that a developer should

perform the tasks comprising the SCENT-Method; this implies that they are too

technically demanding to be performed effectively by a customer or a BA (Table

5-2-point (1)). The approach presented in (Basanieri et al. 2002) is based on two

main components: (a) a strategy called Cowtest (Cost Weighted Test Strategy),

and (b) a method to derive test cases from UML diagrams. The approach is tool

supported with Cow_Suite. While the approach can be applied in the early

development phases and based on abstract UML models, the approach is only

useful when detailed UML design artifacts are constructed, mainly sequence and

communication diagrams. Such a high level of detail can only be provided by

developers or designers, rather than by customers and BAs. Without the

availability of such detailed design artifacts, the tool can only render an abstract

outline of test plan. This is due to the fact that the approach does not attempt to

“understand” the requirements but rather systematically integrating scenario

“steps” from use cases to generate test cases (Table 5-2-point (2)). The approach

presented in this Section overcomes this limitation since it requires the customer

and BA to make sense of the requirements before creating tests. The tests

developed are hence more effective than tests generated by the approach

presented in (Basanieri et al. 2002) as they serve the purpose of evaluating the

outcome and behavior of a system rather than simply executing “steps” from use

case scenarios.

Apart from the approach presented in (Basanieri et al. 2002), none of the

other mentioned approaches produce executable tests (Table 5-2-point (4). It is

254

also important to note that none of the approaches assist in bridging the gap

between the analysis and design phases (Table 5-2-point (5)).

The approach presented in this Section is intentionally devised to account

for all the desired features and characteristics outlined in Table 5-2. The approach

presented in this Section provides customers and BAs with a technically simple

approach to develop tests that are more comprehensive and effective than those

created based on an ad-hoc approach. As such, the skill set required to perform

our approach is that within the typical capabilities BAs. The artifacts involved in

our approach are UC and domain models, and robustness diagrams. A BA is

typically expected to be able to develop UC and domain models, while robustness

analysis is a technique that a BA can learn and effectively use in a relatively very

short period. A customer can be expected to understand all artifacts involved in

our technique (Table 5-2-point (1)). Performing robustness analysis helps bridge

the gap between the analysis and design phases (Table 5-2-point (3)). The

approach can be applied in the early phases of development where a great deal of

requirements and design details are missing, while utilizing abstract information

available from the artifacts involved in our approach (Table 5-2-point (2)). The

acceptance tests produced are executable (Table 5-2-point (4)) with tool support

readily available. The acceptance tests produced are modular in nature and can be

reused to compose additional acceptance tests (Table 5-2-point (5)). The

compliance of our approach with the entire set of characteristics outlined in Table

5-2 is demonstrated in the case study presented in Section 5.5.

255

In this Chapter, the process of creating user acceptance tests from UCs consists of

three principle phases (see Figure 5-1):

Phase 1: Developing High Level Acceptance Tests (HLATs) for each UC to

evaluate a system’s behavior when a given UC is performed.

Phase 2: Performing robustness analysis to identify object level

information.

Phase 3: Developing Executable Acceptance Tests (EATs) for each UC

using the object level information (identified in Phase 2) that will realize

the HLATs previously created in the Phase 1.

Figure 5-1: The overall process of developing high and executable acceptance tests

per UC

256

5.2.1. Phase 1: Developing High Level Acceptance Tests for Each Use Case

HLATs provide an informal and abstract level description of acceptance tests.

HLATs are composed of semi-narrative text. The purpose of HLATs is to

decouple the process of identifying the required set of acceptance tests from any

technical details pertaining to any particular programming language or syntax for

creating EATs. For each UC, a set of HLATs are developed to account for its

usage scenarios. HLATs are developed by examining a UC and its corresponding

domain model. A number of UC templates exist (Cockburn 2000; Harwood 1997;

Jaaksi 1998; Kulak et al. 2000; Mattingly al. 1988; Schneider et al. 1998); our

proposed approach is independent of any specific UC description template as long

as it appropriately defines basic and alternative flows. Ideally, a UC description

should also state its name, the actors involved, any triggers, pre and

postconditions, and extension points (Cockburn 2000).

Acceptance testing involves the development of a series of tests that

simulate various usage scenarios of the SUT. In order to simulate a usage scenario

(run a test), the SUT is provided with a series of input. This input can be data or

function calls. The tests are evaluated by checking the system’s resulting output.

Therefore, the process of creating the HLATs is based on examining the UC

descriptions and the domain model, while asking the following three key

questions:

257

Q1: What are the usage scenarios?

The purpose of asking this question is to identify the entire set of usage scenarios

from the UC descriptions. UC descriptions should ideally describe the entire set

of a system’s functional requirements, at least the most crucial and commonly

used ones. UC descriptions describe functional requirements in the form of

narrated scenarios, which makes UC descriptions an ideal source for indentifying

usage scenarios. It is common for a UC description to embody a number of

scenarios that may occur while delivering an intended service. As a guideline, the

basic flow of a UC represents an individual scenario, while each alternative flow

represents another individual scenario. It should be noted that it is not required to

examine the domain model in order to identify usage scenarios. The domain

model does not contain any information regarding how a system will be used. The

domain model only contains static information regarding real-world entities.

Q2: What are the required inputs or triggers?

Most UCs require an input or trigger in order for their embodied scenarios to be

performed. An actor, another UC, or another subsystem can provide this input.

For each scenario, it is required to determine the requisite inputs or triggers and

pre-conditions. For example, a system that verifies credit cards will require a

credit card number, expiry date and the cardholder’s name for input. It can be

deduced that the system cannot perform its validation functionality without first

obtaining this data. Therefore, the purpose of this question is to determine the

inputs, triggers and pre-conditions that are required to activate these embodied

258

scenarios. This information can be determined by examining the UC description

itself, or the domain model. Such information would ideally be present in a UC

description, since this information is essential to the business logic behind the

described scenario. Otherwise, the scenario may be incomprehensible, or worse,

misinterpreted. Information regarding inputs should also ideally be present in the

domain model, since inputs often represent elements of the real-world domain. In

the credit card example, a credit card is considered as part of the real-world

domain, and hence it is expected that the domain model will contain a class

representing credit cards. It is also expected that this class will contain attributes

representing the credit card’s number, expiry date and cardholder’s name, etc.

Q3: What output is expected from the UC?

The purpose of this question is to determine the criteria that will be used to

evaluate the success (or failure) of the system to deliver an intended service. The

output generated by the system is compared to the expected results that are stated

in UC descriptions. Every UC is expected to perform a step or a set of steps

resulting in outputs. The term “step” is defined in (Cockburn 2000) as an action

taken during the execution of a scenario that contributes towards the completion

of the scenario. The template presented in (Cockburn 2000) is considered an

industry standard. An output is intended for an actor, another UC, or another

subsystem. For each scenario, it is required to determine outputs and post-

conditions. Similar to Q2, information regarding outputs and post-conditions can

be located in the domain model in addition to UC descriptions. It is likely that the

259

output represents a real-world entity or attribute. For example, if a car travelled 10

kilometers in a given trip, the value displayed by the odometer is expected to be

10 kilometers greater than the value it displayed before the trip started. The

domain model representing such a system will ideally contain an attribute that

represents the distance travelled.

Answering the above questions will provide the necessary information required to

create HLATs pertaining to a single UC (see Figure 5-2). This process should be

iterated for each UC. HLATs of a given UC are defined in the form of a table.

The table is composed of three main columns, each row representing a distinct

HLAT. Table 5-3 presents the format of HLATs used in this Section. It is

important to note that HLAT tables do not contain any specific keywords as part

of its syntax. In Table 5-3, keywords such as precondition and input are used to

state pre-conditions and inputs used in a given test. However, analysts are free to

use any keywords that better suits their needs. The rationale behind not mandating

any particular syntax is to allow analysts the greatest flexibility while describing

their HLATs.

Table 5-3: HLAT format: The first column of a HLAT defines a unique test ID. The

test IDs used in this Chapter are a combination of the flow name and the belonging

UC name. The second column describes the pre and postcondition(s), as well as

inputs and triggers provided into the system to execute the given scenario. The third

column is used to describe the expected output.

Test ID Description Expected Results

UC-Name -Basic

Flow

Precondition: Preconditions

for running the flow.

Input: Data attribute-1

Input: Data attribute-2

The expected results in

natural language form.

260

Figure 5-2: Developing HLATs by analyzing the UC text and domain model

5.2.2. Phase 2: Performing Robustness Analysis

Without automation support, analysts can run acceptance tests manually, which

can be a cumbersome, time consuming and error-prone process. Therefore, the

proposed approach aims to develop executable acceptance tests (EATs) to allow

for automation support. The HLATs developed in the previous phase are refined

into EATs. This is achieved via robustness analysis. Robustness analysis involves

the analysis of robustness diagrams (Jacobson et al. 1992; Rosenberg et al. 1999,

2005) and their corresponding HLATs. Robustness diagrams provide a first-cut

attempt at linking UCs with objects already present in a domain model.

Robustness analysis will reveal “missing” objects from the solution domain that

are required to realize UCs and provide an initial view of the object structure and

behavioral aspects of a system without committing to any specific design. Ideally,

there is one robustness diagram for each UC. Objects identified from the solution

261

domain are classified as either: a boundary, a control or an entity object. Table 5-4

provides a brief description of each type of object.

Table 5-4: Robustness diagram objects

Object Symbol Description

Boundary

Boundary objects facilitate communication with Actors.

Control

Control objects act as coordinators of activities

implementing intended business processes. A control

object utilizes inputs provided by interface objects, along

with existing entity objects, to derive outputs that are “sent

back” to interface objects or used to update entity objects.

Control objects provide the “glue” between Boundary and

Entity objects. It is common for control objects not to

represent actual objects in the eventual class diagram but

to represent a series of function calls that carry out the

application logic.

Entity

Entity objects are typically entities that exist within the

domain model.

The notational set of robustness diagrams is relatively small with a small set of

syntax rules and semantics that are easy to understand, which makes them easy to

create, read and update. (The interested reader should consult Jacobson et al.

1992, Rosenberg et al. 1999, or Rosenberg et al. 2005 for detailed discussions on

robustness diagrams.) Actors can only be associated with Boundary objects, while

262

Boundary objects can only be associated with Control objects. Control objects can

be associated with any type of object. An Entity object cannot be associated with

another Entity object. Robustness diagrams also depict actors and UCs to

illustrate the involvement of the represented robustness diagram with actors and

other UCs. The three object types of robustness diagrams map well into the

Model-View-Controller (MVC) design pattern. Where a Boundary object maps to

the View concept, a Control object maps to the Controller concept, and an Entity

object maps to the Model concept. There lacks a formal approach to develop the

initial set of objects in robustness diagrams. However, the nature of UC

descriptions aids the derivation of the three types of objects:

• A scenario in a UC description will narrate an interaction of an actor with

the system, which prompts the need to consider the interface (Boundary

objects) that the actor uses to interact with the system.

• A scenario will also state the business logic required to deliver a service,

thereby prompting the introduction of Control objects.

• Entity objects (data) are required by Control objects to perform the

intended business logic.

After constructing a robustness diagram, the domain model should be updated

with new objects and attributes introduced while developing the robustness

diagram. Moreover, the corresponding UC description should be updated, to

ensure that it conforms to the robustness diagram and by implication the domain

model. Therefore, the term “robustness” is used since the construction of

robustness diagrams results in ensuring a consistent view between the UC and

263

domain models, while “filling in” information that might be missing in either

artifact. This information is essential for the construction of acceptance tests.

 These concepts are elaborated using the banking system UC model in

Figure 5-3. The “Withdraw Cash” and “Deposit Funds” UCs describe behavior

for withdrawing and depositing funds, respectively. The “Perform Transaction”

UC describes behavior for logging the transactions performed by its child UCs.

Finally, the “Calculate Investments” UC describes the behavior responsible for

calculating the return on investments. The “Withdraw Cash” UC description and

its respective domain model are shown in Figure 5-4.

Figure 5-3: The banking system UC model

UC Name: Withdraw Cash

Actors: Customer

Basic Flow: The Customer selects the account that

he wishes to withdraw money from and the desired

amount. The Customer can choose to withdraw

money from a cheque-ing or savings account. The

system checks if sufficient funds exists and

dispenses the appropriate amount.

Figure 5-4: The “Withdraw Cash” UC description (left) and domain model (right)

264

When analyzing the narrative text of the “Withdraw Cash” UC, it can be deduced

that the Customer interacts with the system through an interface that displays the

Customer’s accounts. A Boundary object is hence required to handle the

interaction of the Customer with the system and to display the respective

accounts. The domain model already contains such an object (AccountViewer),

and therefore instead of adding a new object, the Boundary object depicted in the

robustness diagram will represent the preexisting domain object. The Boundary

object will be responsible for retrieving the Customer’s account selection and the

desired cash amount. Before proceeding to analyze further text, it is important to

represent entities that handle the different account types (“CheqeuingAccount”

and “SavingsAccount”). The UC description then states that the system checks if

there are sufficient funds in the chosen account. A Control object is required to

handle this business logic; the newly created Control object “Check Sufficient

Funds”. Another Control object, “Dispense Cash”, handles the dispensing. The

UC description ends at this point; however, a vital logical operation is missing,

that of deducting the dispensed amount from the Customer’s account. Therefore, a

Control object “Deduct Amount” is introduced. The robustness diagram created is

presented in Figure 5-5.

265

Figure 5-5: The robustness diagram corresponding to the “Withdraw Cash” UC

The actor “Customer” is depicted and associated (only) with the Boundary object

“AccountViewer”. During the construction of the robustness diagram, two Entity

objects were introduced (“ChequeingAccount” and “SavingsAccount”). As shown

in Figure 5-5, “AccountViewer” is linked with a series of Control objects, starting

with “Check Sufficient Funds” and ending with “Deduct Amount”; these carry

out the business logic behind the Basic Flow of the UC. The control objects

“Check Sufficient Funds” and “Deduct Amount” are both linked to the Entity

objects “ChequeingAccount” and “SavingsAccount”, since they require access to

these objects to read and update them. The domain model should be updated with

these newly created Entity objects. Meanwhile, the UC description should be

updated accordingly. The updated domain model and UC description are shown in

Figure 5-6. The newly added text in the UC description is shown in italic font.

UC Name: Withdraw Cash

Actors: Customer

Basic Flow: The Customer selects the account that he wishes to withdraw

money from and the desired amount. The Customer can choose to withdraw

266

money from a chequeing or saving account. The system checks if sufficient

funds exist, and dispenses the required amount. The system then deducts the

dispensed amount from the appropriate account.

Figure 5-6: The updated “Withdraw Cash” UC description (top) and domain model

(bottom)

After creating the robustness diagrams and updating the UC and domain models,

robustness analysis is performed to refine each HLAT into an EAT. Acceptance

testing is a black-box activity. Executing an acceptance test simply involves the

injection of certain input into the system and the evaluation of the output it

produces. Therefore, in order to execute an acceptance test, it is required to

determine the object-level information that corresponds to the inputs and outputs.

This is the principle purpose of performing robustness analysis. HLATs, UC

descriptions and the domain model are used to perform robustness analysis.

HLATs are used since they already contain the scenarios (extracted from UC

descriptions) that require to be tested, and hence each EAT created will

correspond directly to a single HLAT. Moreover, HLATs state the inputs,

preconditions, outputs and postconditions of each scenario. UC descriptions are

used since they contain the narrative text that corresponds to each scenario

contained in an HLAT. The narrative text is used to perform tracing activities that

will allow us to ultimately determine the object-level information required to

produce EATs. The object-level information retrieved is that corresponding to the

267

inputs, preconditions, outputs and postconditions stated in HLATs. Note that

ideally domain models are not required for robustness analysis since at that point

the information that they contain should already be present in the UC

descriptions. Robustness analysis is performed by applying the following steps:

Step 1:

Determine the set of steps that are contained within each UC flow. A scenario (a

single UC flow) can be decomposed as a series of steps. However, many UC

flows are authored in a paragraph-like format. In this case, the extraction of

“steps” from a UC flow description will require human judgment. The narrative

text is divided into “steps” the purposes of performing “Step 2”.

Step 2:

For each of the steps determined from Step 1, we trace the flow of control

between the objects in the corresponding robustness diagram. This will allow us

to determine the set of objects that correspond to each step’s inputs,

preconditions, outputs and postconditions, previously stated in the corresponding

HLATs. These objects will be evaluated to determine if the system behaved as

expected. The object-level information resulting from robustness analysis is used

to create EATs (Phase 3).

268

5.2.3. Phase 3: Developing Executable Acceptance Tests for Each Use Case

Object-level information retrieved from robustness analysis is used to create

EATs that correspond to the previously developed HLATs. Even though the

ultimate goal of our approach is to develop a set of EATs, our approach is

independent of any implementation solution. Developers can use any automated

framework to develop and execute acceptance tests. A number of such tools are

readily available such as FIT/FITnesse (Mugridge al. 2005) and Selenium

(Selenium 2008). For illustrative purposes, in this Section we present the EATs

for the “Perform Transaction” UC, presented in Section 5.5.1.3, using the

FIT/FITnesse syntax, since it is arguably the most commonly used framework for

developing and executing acceptance tests. The FIT/FITnesse syntax contains a

small number of command keywords (Mugridge al. 2005). Tests are created in the

form of simple tables, more commonly known as FIT fixtures. FIT fixtures can be

created using spreadsheets or an HTML editor. FIT defines three standardized

fixtures to compose tests: (a) ActionFixture, (b) ColumnFixture, and (c)

RowFixture; each fixture represents a different “style” of test case. The syntax for

each type of fixture is designed to support a “style” of test case. For example,

ActionFixtures support certain keywords (described below) that allow it to be

used for step-by-step processing to check that a sequence of actions executed will

result in producing expected outputs. Each row in an ActionFixture (apart from

the fixture header) is a single “action”. A row is composed of a number of fields.

The first field of each row is used to specify one of the following commands:

269

• The Enter command: this field is followed by a field containing the name

of a data value entered, which is followed by a field containing the actual

data value.

• The Check command: this field is followed by a field containing the name

of a data value to be evaluated, which is followed by a field containing the

expected data value.

• The Press command: this field is followed by a field containing the name

of a function to be executed, which is optionally followed by a number of

fields containing the appropriate parameter data values.

The structure of an ActionFixture is shown Figure 5-7; and its application is

illustrated with a test that performs various transactions described by the “Perform

Transactions” UC. For the interested reader, a detailed explanation of the

ColumnFixture and RowFixture syntax is presented in Appendix E.

Figure 5-7: ActionFixture example of performing transactions. This test assumes a

scenario where the balance of both saving and cheque-ing accounts are nil. A

variable, “Amount”, is used to store values provided by the “Customer”. The

“Amount” variable is passed as a parameter during a series of function calls to

deposit and withdraw funds. The test ends by checking the balance of both accounts.

PerformTransactions

Check SavingsBalance 0

Check ChequeingBalance 0

Enter Amount 200

Press Deposit Amount

Enter Amount 300

Press Deposit Amount

Enter Amount 100

Press Withdraw Amount

Check SavingsBalance 200

Check ChequeingBalance 200

270

5.3. Tool Support with UCAT

The approach proposed in this Section describes the development of EATs and

associating them with their respective UCs. However, the FIT/FITnesse

framework is insufficient, as it is not equipped to handle UC models. To achieve

this goal, a tool named UCAT (Use Case Acceptance Tester) was developed to

enable UCs to be augmented with FIT fixtures (Figure 5-8); the tool includes

functionality from a previously developed tool SAREUCD (El-Attar et al. 2006a).

Using UCAT, an analyst can build an entire UC Model. Figure 5-8 shows the

banking system UC model built within the tool. The left-hand pane of the tool

displays the UCs in the UC model. The middle pane shows the actors involved in

the UC model. The right-hand pane displays all relationships that exist in the

model, including association, generalization, inclusion and extension

relationships. UCAT is initially based on the FIT/FITnesse framework to

maximize the accessibility of our approach; however it provides a flexible

interface which allows other acceptance testing frameworks to be quickly

integrated. Hence, currently UCAT requires that EATs be encoded according to

the FIT/FITnesse syntax (Mugridge al. 2005). Test results are also associated with

UCs and can be automatically run through UCAT, which aids requirements

traceability (see Figure 5-9).

271

Figure 5-8: UCAT – associating FIT tests with the “Withdraw Cash” UC

Figure 5-9: UCAT – displaying test results of the “Calculate Investments” UC

272

5.4. Evaluating the Efficiency of the Developed Tests

As mentioned earlier, acceptance testing is used as a validation process to ensure

that the right system is being built. Therefore, the efficiency of the developed

acceptance tests is dependent on the quality of the corresponding UC model. The

quality attributes of UC models are specific in Table 2-2 of Chapter 2. For

example, if a UC model is lacking the description of a particular functionality, it

will not be possible to create acceptance tests to test this functionality by

analyzing the UC model. It is the responsibility of the customer and analysts to

explore the most important usage scenarios and document them into the UC

model. This dependence on the quality of UC models, which heavily relies on the

skill and experience of analysts and customers, significantly impedes the ability to

empirically or formally validate the effectiveness of our proposed approach.

Producing high quality UC models is outside the scope of this Chapter.

5.5. The RestoMapper System Case Study

This Section presents the RestoMapper
5
 system case study to demonstrate how

the proposed approach can be used to produce acceptance tests using a UC model

and its associated robustness diagrams. The RestoMapper system is a mapping

application that locates restaurants in any city. RestoMapper provides a graphical

interface that allows its user to acquire detailed information regarding their

desired restaurants. The restaurant information can be displayed in pop-up or

5
 The RestoMapper system is based on the Mapplet system which is feature and discussed in great

detail in the book Agile Development with ICONIX Process: People, Process, and Pragmatism

authored by Rosenberg et al. [Rosenberg]. The RestoMapper system has been modified to prevent

any copyright infringements.

273

using an internet browser application. RestoMapper also contains a feature that

allows users to configure a display filter that will cause the application to display

only the restaurants that meet their desired criteria. The available criterion for

users is valet parking availability; smoking section availability; and live music.

The UC model of the RestoMapper system is presented in Figure 5-10. The UC

model was used as input to UCAT (Figure 5-11). The UC model contains one

actor and five UCs. A brief description of the model’s elements are shown in

Table 5-5.

Figure 5-10: The UC diagram of the RestoMapper application

274

Figure 5-11: The RestoMapper UC model into UCAT

Table 5-5: Properties of the RestoMapper UC model

Element Purpose

User

“User” is the sole actor interacting with the system and is the

only beneficiary of the system’s services. These services are

briefly explained below.

View Map

This UC describes the behavior required to display a map to

the “User”.

Filter Restaurants

The “User” is associated with this UC to specify display

settings, such as displaying restaurants with live music, a

designated smoking section and available valet parking.

Generate

Restaurant Map

This UC describes behavior responsible for determining the

components that will be depicted on the map. The

275

for City components are determined according to the city, zoom and

display settings selected by the “User”. The resulting map is

displayed via the “View Map” UC. The display settings are

configured by the “Filter Restaurants” UC.

Display Rollover

Information

This UC describes behavior that allows a “User” to retrieve

information regarding a particular displayed restaurant(s)

from the displayed map; and displays this information in a

pop-up window.

View Detailed

Restaurant Info

This UC describes behavior that allows a “User” to retrieve

comprehensive information regarding a particular restaurant;

and displays this information in an Internet browser.

For presentation and brevity purposes, only two UCs: “Generate Restaurant Map

for City” and “Display Rollover Information”, are described and elaborated with

robustness diagrams.

Figure 5-12: The initial domain model of the RestoMapper system

The preliminary domain model is presented in Figure 5-12. The domain model is

usually built through a brainstorming process. The following is brief description

of the objects contained in the initial domain model (see Table 5-6):

276

Table 5-6: Objects in the domain model

Object Purpose

MapViewer

Responsible for interacting with the

“User” and retrieving the “User’s”

viewing preferences.

RestaurantServer
Responsible for managing and providing

information regarding all restaurants.

MapServer Responsible for generating visual maps.

Map
Contains data regarding the map to be

displayed.

City Contains data regarding a single city.

Restaurant
Contains data regarding a single

restaurant.

DisplayFilter
Contains data regarding the “User’s”

filter settings.

RestaurantCollection
A collection of all restaurants in a given

city.

MultipleRestaurantCluster

A cluster containing a subset of

restaurants contained in

RestaurantCollection. The

cluster is derived according to the

“User’s” filter settings stored in

DisplayFilter.

277

The aim of applying our approach is to create a set of executable acceptance tests

that will cover usage scenarios described by UCs: “Generate Restaurant Map for

City” and “Display Rollover Information”. The following is an outline of the

analysis performed to produce acceptance testing for this case study:

• Sections 5.5.1: The UC description of the Generate Restaurant Map for City

UC is presented. The UC is analyzed in the proceeding subsections.

o Sections 5.5.1.1 (Phase 1): The textual description of the UC is

analyzed to create a set of HLATs, which test every flow in the UC.

o Sections 5.5.1.2 (Phase 2): Robustness analysis is performed using the

UC description and its corresponding robustness diagram. Robustness

analysis identifies the inputs and outputs of each flow and the objects

(from the robustness diagram) that correspond to the identified inputs

and outputs.

o Sections 5.5.1.3 (Phase 3): The identified objects are used to create

EATs to implement the HLATs previously created in Section 5.5.1.1.

• Appendix G follows a similar structure to that of Section 5.5.1 to analyze UC

“Display Rollover Information”.

5.5.1. UC: Generate Restaurant Map for City

This UC generates a map for a given city with restaurant icons according to

criteria set by a user. The actor “User” selects a city and the system retrieves the

list of restaurants and their coordinates from the database. The current display

filter settings are retrieved to determine the type of restaurants that can be

278

displayed. The “View Map” UC performs the displaying of the map. The UC

description is shown in Figure 5-13.

Basic Flow:

The MapViewer queries the RestaurantServer for restaurants within the provided

city. The list of restaurants retrieved are then stored in a RestaurantCollection.

Using a specified scale, the MapViewer obtains the Map for the provided city

from the MapServer. The MapViewer then proceeds to add an icon for every

restaurant contained in the RestaurantCollection that also meets the criteria

defined in the DisplayFilter. The display criteria can be used to specify

restaurant characteristics such as the availability of a smoking section, valet

parking and live music. UC View Map is then activated to display the map.

Alternative Flow: Invalid Zoom Setting

If the MapViewer determines that the map is zoomed out beyond a predefined

value, the MapViewer will not query the RestaurantServer. Instead, the

MapViewer will display a popup to the user indicating that the map is zoomed

out beyond an acceptable scale.

Figure 5-13: Textual description of the Generate Restaurant Map for City UC

5.5.1.1 Examining the UC Descriptions and Creating its HLATs (Phase 1)

We begin the process by examining the textual description of the UC (Figure 5-

13). The UC description contains two flows that require a zoom and display filter

setting, plus a specified city, to allow the system to generate a city map with the

appropriate restaurant icons displayed. The flows are similar with the exception of

279

having different zoom validity settings. The set of HLATs created are shown in

Table 5-7.

Table 5-7: HLATs for the Generate Restaurant Map for City UC

Test ID Description Expected Results

GRMC
6
-Basic Flow Precondition:

Run RestoMapper

Input: valid zoom setting

Input: display filter setting

Input: current city

A map with restaurant icons

on it based on a criteria set

by the display filter and

zoom setting

GRMC-Alternative

Flow:

Invalid zoom setting

Precondition:

Run RestoMapper

Input: invalid zoom

setting

Input: display filter setting

Input: current city

Popup message displayed:

“Invalid zoom setting, please

reduce your zoom setting”

5.5.1.2 Robustness Analysis (Phase 2)

After creating the HLATs, robustness analysis is performed to retrieve object

level information to create EATs. It is beneficial, though not mandatory, to

decompose a flow into steps. There does not exist systematic method to

decompose a flow into steps, therefore this task requires human judgment. For the

“Generate Restaurant Map for City” UC, three steps are identified in the Basic

Flow, and two in the Alternative Flow. Appendix F contains a demonstration of

how every step is traced through its corresponding robustness diagram to

determine the objects involved. The inputs, outputs and their representative

objects, identified from performing robustness analysis are shown in Tables 5-8

and 5-9 for the Basic and Alternative Flows, respectively.

6
 GRMC is an abbreviation standing for the Generate Restaurant Map for City UC and it is used to

create a unique test ID. Other test ID abbreviations are based on the name of the belonging UC.

280

Basic Flow:

1. Get Restaurants for Current City with Valid Zoom Setting.

2. Get Map.

3. Add Restaurant Icons to Map.

Table 5-8: Results of performing robustness analysis on the Basic Flow

Flow

Step

Input/Output Element or Action Representative

Objects

1 Input Current City MapViewer

1 Input Zoom setting MapViewer

3 Input Display filter settings DisplayFilter

3 Output Edited Map entity object containing

restaurant icons

Map

Alternative Flow: Invalid zoom setting

1. Generate Map for Current City with Invalid Zoom Setting.

2. Display pop-up.

Table 5-9: Results of performing robustness analysis on the Alternative Flow

Flow

Step

Input/Output Element or Action Representative

Objects

1 Input Current City MapViewer

1 Input Out of scale zoom setting MapViewer

1 Output Invalid zoom popup InvalidZoomPopup

5.5.1.3 Creating Executable Acceptance Tests (Phase 3)

Object-level information retrieved from robustness analysis is used to create

EATs that correspond to the previously developed HLATs. As mentioned earlier,

the EATs for the Basic Flow (Figure 5-14) and the Alternative Flow (Figure 5-15)

are formatted according to the FIT/FITnesse syntax. For presentation purposes,

only the EATs for the Basic Flow will be shown using UCAT. The remaining

EATs in this Section and Appendix G will be shown as fixture tables only.

281

Figure 5-14: EAT of the Basic Flow

MapViewer

Enter MapViewer.CurrentCity Current City

Enter MapViewer.ZoomSetting Valid Zoom Setting

Enter DisplayFilter.isValetParking True/False

Enter DisplayFilter.isSmoking True/False

Enter DisplayFilter.isLiveMusic True/False

Press MapViewer.DisplayMap()
Check InvalidZoomPopup.isDisplay() True

MapViewer.Map.DisplayedRestaurants

restaurantName X_Coordinate Y_Coordinate

Figure 5-15: EAT of the Alternative Flow: Invalid Zoom Setting

282

The EAT corresponding to the Basic Flow consists of two fixtures:

• an ActionFixture to input the required data (the current city, zoom

setting and display settings); and

• a RowFixture to examine that the Map is displayed the expected set of

restaurants.

Meanwhile, the EAT for the Alternative flow consists of an ActionFixture to input

the required data and to check that the InvalidZoomPopup has been

displayed. The EAT also includes a RowFixture to examine that the Map does not

contain any restaurants. Note that this fixture does not contain any elements

because no restaurants are expected to be displayed.

Data values shown in EATs throughout this case study are presented in

italics for the purposes of abstraction and generality. To make the tests

executable, abstract data values are replaced with concrete ones. For example, in

Figure 5-15, Current City can be substituted with the values of Chicago, New

York, etc…

5.5.2. Efficacy of the Developed Acceptance Tests

The efficacy of the EATs developed is dependent on the quality of the UC model

at hand. Acceptance testing is a validation process that the right system is being

built, which ideally should be correctly defined in the UC model. The set of EATs

created are based on analyzing the UC model of the RestoMapper system in its

current form. The proposed approach is based on extracting all usage scenarios

(flows) described in UC descriptions. The usage scenarios were used to create the

283

set of EATs shown throughout this case study, to cover the functionality

described by usage scenarios. Table 5-10 shows the usage scenarios encompassed

by the two UCs analyzed in this case study and their corresponding set of EATs.

Table 5-10: Coverage provided by the created EATs

Use Case Flow EAT

Basic Flow EAT shown in Figure

5-13

Generate

Restaurant Map

for City
Alternative Flow: Invalid zoom

setting

EAT shown in Figure

5-14

Basic Flow EAT shown in Figure

G.2 (Appendix G)

Alternative Flow: Clicked on

coordinates with multiple

restaurants

EAT shown in Figure

G.3 (Appendix G)

Display Rollover

Information

Alternative Flow: Clicked on

coordinates with no restaurants

EAT shown in Figure

G.4 (Appendix G)

5.6. Role of the Developed Acceptance Tests

The technique presented in this Chapter is designed to develop a comprehensive

set of acceptance tests for large-scale software development projects, in particular,

those that utilize the V-Model development process. While the process of

developing acceptance tests within a V-Model development process guides the

284

system design, the developed acceptance tests serve two additional purposes (see

Figure 5-16).

Figure 5-16: Subsection of the V-Model development process emphasizing the role

of acceptance tests

Firstly, acceptance tests are used as basis for developing systems, which in turn

guides the development of integration and unit tests. Secondly, after developing

the intended system, acceptance tests are executed to demonstrate to the customer

how the system will behave under various scenarios and that the system does

indeed generate the expected output in each of those scenarios. From a contractual

end, the customer uses the acceptance tests to determine whether to accept the

system of not.

285

Chapter 6

Conclusions

6.1. Summary

UC modeling is a very powerful requirements modeling tool, providing great

flexibility for requirements engineers to capture the behavioral essence of the

target system. In a UC driven development process, UC models are used to create

other UML artifacts leading to the eventual implementation of the target system.

Thus poorly constructed UC models may yield many inconsistencies between

subsequent UML artifacts, ultimately leading to many defects in the eventual

code. Unfortunately, UC modeling is often misapplied resulting in significant

numbers of defects. Hence, it is essential to produce high quality UC models.

A quality use case model improves every aspect of the development cycle.

There are several quality attributes that should exist in every use case model. A

use case model needs to be precise and unambiguous so that all stakeholders

would have a common understanding of the capabilities and constraints of the

system. A use case model needs to be analytical and should not contain any

assumptions about the design or implementation. An analytical use case model

should only describe what a system should do. Another essential quality attribute

is consistency. Many researchers and practitioners warn about the harmful

consequences of inconsistencies in use case models. Inconsistencies can

negatively affect every aspect of the development cycle as well as the

286

stakeholders. Relying on heuristics and experience to manually detect

inconsistencies can be cumbersome, error prone and requires a great deal of

expertise to be effective. Such expertise is often not readily available.

6.2. Contributions and Results

Several major contributions have been made to tackle the above mentioned issues.

6.2.1. Improving the Understandability of Functional

Requirements with AGADUC

In this thesis, a technique named AGADUC was developed that will automatically

produce UCADs (which contain UML activity diagrams) that adheres to the

syntax rules and notation standard of UML activity diagrams. UCADs provide a

visual representation of the functional requirements embedded within the UC

descriptions, allowing its stakeholders to gain an accurate understanding of the

flow of interactions and scenarios that take place. This technique is supported by

the tool AREUCD and resulted in the development of the SUCD structure which

paved the way to future work that will tackle the issue of inconsistencies in UC

models.

6.2.2. Reducing Inconsistencies with SSUCD

The potential for reducing inconsistencies in UC models resulted in the

introduction of the structure SSUCD. SSUCD serves as a guideline to UC authors.

The SSUCD structure along with the REUCD process enables the systematic

287

generation of use case diagrams and ensures consistency between the descriptions

and their diagrams. The generated diagrams will be complete and provide an

accurate representation of the use case descriptions. This process is automated by

SAREUCD. The REUCD process may also be reversed, where the use case

diagram is constructed before the use case descriptions. In that case, SAREUCD

can automatically generate use case description ‘skeletons’ from use case

diagrams. Analysts will then need to manually fill in the details of each use case

description. After filling in the details, SAREUCD can detect any inconsistencies

between the diagrams and the descriptions and notify the analysts about these

inconsistencies.

This thesis presents a subject-based controlled experiment which explores

a number of research questions. The first research question posed by this

experiment was to evaluate the effectiveness of using SSUCD to improve the

consistency level in UC models versus the use of traditional UNL. Consistency

solely is a highly sought after quality attribute in UC models. Another research

question posed by this experiment was to evaluate the impact of improving

consistency on other UC modeling quality attributes.

This experiment was conducted in the context a voluntary mini-course which

involved graduate students as subjects. Subjects applied both treatments (SSUCD

and UNL) to two distinct systems. The results of this experiment showed that

when SSUCD was utilized to develop both given systems, a statistically

significant improvement was achieved with respect to the consistency level of the

developed UC models. A statistically significant improvement was also observed

288

when using SSUCD with respect to the completeness and understandability levels

in one of the two systems. As far as the other quality attributes are concerned;

there was no statistical significance observed to support any possible conjecture.

 As predicted, all subjects finished their exercises in approximately 1 hour

(± 15 minutes). There was no significant difference between the times the SSUCD

and UNL subjects required to finish their exercises. Informal post-interviews

revealed that the subjects generally did not perceive SSUCD as an additional

burden to their authoring efforts, and that it was quite simple to “learn and apply”.

6.2.3. Using Antipatterns to improve the Quality UC models

In this thesis, a technique based on antipatterns that helps improve the quality of

UC models was devised. The application of the technique does not require any

artifacts in addition to UC models, this allows the technique to be applied early in

the development cycle, where other design artifacts are usually unavailable and

the cost of removing defects is minimized. Given the “informality” of UC models,

many approaches provide abstract guidelines towards improving UC models.

Using antipatterns provides analysts with a more systematic approach to improve

UC models, significantly reducing the dependency on skill and experience. A

large repository of antipatterns was developed to guide analysts in improving their

UC models. The repository contains 26 domain-independent antipatterns that can

be applied to any UC model. The majority of the developed antipatterns benefit

from (semi-)automation support to increase the accuracy and speed of their

detection. In addition to the provided antipatterns, a framework was developed for

289

analysts to create their customized antipatterns based on a simplified UC

modeling metamodel, where analysts can create their own antipattern descriptions

using OCL. The complexity of the metamodel was intentionally designed to

encourage its adoption by analysts and minimize the requisite learning curve,

while supporting the basic notational subset of UC models. Automation support

for detecting antipatterns is provided via the tool ARBIUM.. ARBIUM provides

(semi-) automated support for 23 antipatterns presented in the repository and

allows analysts to define their own antipatterns.

The effectiveness of the approach was demonstrated upon the MAPSTEDI

system. Before applying the proposed process, the MAPSTEDI UC model

suffered from a number of quality degradation issues. Most issues (antipatterns)

were detected automatically using ARBIUM. Most antipattern matches addressed

resulted in changes; however, there were also a small number of antipattern

matches that are considered false positives. This indicates that real-world UC

models are highly vulnerable to poor modeling habits and design decisions and

often require improvements. Many of these improvements were critical as they

improved the correctness and consistency of the UC models. Others enhanced the

understandability of the UC models and made them more analytical. The

antipattern matches revealed the issues that existed in the original UC model that

had been overlooked. The issues were addressed and resolved accordingly,

resulting in a higher quality UC model.

290

6.2.4. Producing Acceptance Tests from UC Models

The production of high quality UC models would be useless unless they were

better used to improve the Software Development process. A process is presented

that utilizes UC models as a basis for developing acceptance tests. The process

also utilizes domain models and robustness diagrams to aid and guide analysts in

developing a set of acceptance tests that cover a system’s common usage

scenarios, including unsuccessful scenarios. Acceptance tests are developed for

each UC individually then a more comprehensive set of acceptance tests are

developed that cover the functionality provided by multiple UCs. In the featured

case study, nine individual HLATs and EATs as well as four multiple HLATs and

EATs were developed using only three narrated UCs, their respective available

robustness diagrams and a domain model.

 The benefits of creating HLATs extend beyond the ability to create EATs.

The customer can use HLATs for the high-level validation of the requirements.

HLATs are more readable than EATs since they are composed of natural

language statements. HLATs can be quickly developed without the need to wait

for object level information to become available through robustness analysis.

 UC models adhere to a relatively small set of syntax rules. UC descriptions

are mainly comprised of UNL. It is naturally very difficult to devise systematic

technical solutions that are heavily dependent on analyzing UC models. Human

judgment is hence required while applying the proposed approach. Within our

proposed approach, human judgment is required breakdown basic and alternative

flows into scenarios, and to breakdown scenarios into steps. Human judgment is

291

also required to trace steps from a scenario in a robustness diagram. Furthermore,

the quality of the UC model, which is the basis for our approach, is dependent on

human skill and experience.

6.3. Future Work

The research presented in this thesis can be extended in several ways. This

Section outlines potential future work based on each approach presented in the

thesis.

6.3.1. Future Work Based on Structured UCs

To begin with, future work can be directed towards improving the SUCD

structure and the AGADUC process to allow analysts to describe more complex

workflows. The AGADUC process can be incorporated in leading UML modeling

tools. The tool AREUCD can be upgraded to generate XML files showing

complete UCADs that can be displayed on various UML modeling tools.

However, this is dependent on UML modeling tools providing adequate support

for the notation required to construct UCADs. Other techniques can be developed

to systematically generate other types of UML artifacts, such as sequence

diagrams, from UC models, thus minimizing the error injections by humans when

constructing these artifacts. Future work can also be directed towards developing

a semi-systematic approach that will convert SSUCD use cases into SUCD use

cases (El-Attar et al. 2006). The approach will require personnel with technical

expertise to carry out.

292

6.3.2. Future Work Based Using Antipatterns

Future work will initially be based around improving the usability (e.g. the

incorporation diagrammatic construct drawing package) of ARBIUM with respect

to the construction of new domain-specific anti-patterns. ARBIUM can also be

upgraded to perform limited textual analysis, making use of any structure that

may exist in UC descriptions, such as the actual template. Another beneficial

upgrade to ARBIUM is the implementation of transformation rules written in a

model transformation language such as QVT (QVT 2002)

(Queries/Views/Transformation) to formalize and automate changes applied to

UC diagrams.

Other future work can be directed towards creating a hierarchy of

antipatterns. The hierarchy will act as an antipatterns matching strategy for

analysts to apply the proposed technique more efficiently. Analysts will be able to

determine which antipatterns to look for first and when to start a new iteration.

This will help reduce the effort and time required to apply the technique. The

antipatterns matching strategy may then be implemented in ARBIUM to further

automate the technique and reduce the analyst’s workload.

Finally, it will be beneficial to improve the UC modeling notation in order

to prevent the occurrence of many antipatterns. For example, while analyzing a

large number of UC models and applying the proposed technique, it was

discovered that many antipatterns matches existed due to a notational limitation in

UC modeling. The extend relationship is used to model both exceptional behavior

and optional behavior. One of the greatest advantages of UC modeling is that it

293

contains a small notational set, allowing its ease of use. However, it may be

advantageous to introduce two additional relationships that explicitly represent

optional and exceptional behavior separately.

6.3.3. Future Work Based Developing Acceptance Tests from UC

Models

The success and effectiveness of the approach presented in Chapter 5 is dependent

on the experience level of the analyst(s) applying it. Therefore, future work can be

directed towards modifying the approach to become more systematic by utilizing

the limited formality provided by the SSUCD (El-Attar et al. 2006a) structure to

create acceptance tests. SAREUCD, which already supports SSUCD, can be

further upgraded to automate (or at least partially automate) the creation of EATs

based on UCs described in SSUCD structure.

294

Bibliography

[Adolph et al. 2002] S. Adolph and P. Bramble, Patterns for effective use cases.

Addison-Wiley, 2002.

[Agarwal et al. 2002] R. Agarwal and V. Venkatesh, “Assessing a firm’s web

presence: A heuritic evaluation procedure for the measurement of

usability,” Inform. Syst. Res., vol. 13, no. 2, pp. 168–186, June 2002.

[Ambler 2007] S. Ambler, “When is a Model Agile,” [Online]. Available:

http://www.agilemodeling.com/essays/whenIsAModelAgile.htm.

[Accessed: Nov. 2007].

[Analyst Pro 2008] Goda Software, Analyst Pro, ver. 6.0., [Online]. Available:

www.analysttool.com.

[Anda et al. 2002] B. Anda and D. I. K. Sjøberg, “Towards an Inspection

Technique for Use Case Models,” Proc. 14th Int’l Conf. on Software Eng.

and Knowledge Eng., 2002, pp. 127-134.

[Anda et al. 2001a] B. Anda, D. Sjøberg, and M. Jørgensen, “Quality and

Understandability in Use Case Models,” Proc. 15th European Conf.

Object-Oriented Programming, J. Lindskov Knudsen, ed., 2001, pp. 402-

428.

[Anda et al. 2001b] B. Anda, H. Dreiem, D. Sjøberg, and M. Jørgensen,

“Estimating Software Development Effort Based on Use Cases –

295

Experiences from industry,” Fourth Int’l Conf. on the Unified Modeling

Language, 2001.

[Anderson et al. 2001] E., Anderson, M. Bradley, and R., Brinko, “Use case and

business rules: styles of documenting business rules in use cases,”

Addendum to the Object-oriented programming, systems, languages, and

applications conference. 1997.

[Arisholm et al. 2006] E. Arisholm, L. Briand, S. Hove, and Y. Labiche, “The

Impact of UML Documentation on Software Maintenance: An

Experimental Evaluation,” IEEE Transaction on Software Engineering,

vol. 32, pp. 365-381, 2006.

[Arisholm et al. 2003] E. Arisholm and D. Sjøberg, “A Controlled Experiment

with Professionals to Evaluate the Effect of a Delegated versus

Centralized Control Style on the Maintainability of Object-Oriented

Software,” Simula Research Laboratory, Tech. Rep. 2003-6, 2003.

[Armour et al. 2000] F. Armour and G. Miller, Advanced Use Case Modeling.

Addison-Wiley, 2000.

[BABOK 2009] International Institute of Business Analysts, “Business Analysts

Body of Knowledge,” International Institute of Business Analysts, Version

1.6, 2009. [Online]. Available:

http://www.theiiba.org/AM/Template.cfm?Section=Body_of_Knowledge.

[Accessed February 2009].

[Basanieri et al. 2002] F. Basanieri, A. Bertolino, and E. Marchetti, “The

Cow_Suite Approach to Planning and Deriving Test Suites in UML

296

Projects,” Proc. Fifth Int’l Conf. UML: Model Eng. Languages and

Concepts and Tools, 2002, pp. 383-397.

[Beck 1999] K. Beck, Extreme Programming Explained: Embrace Change.

Addison Wiley Professional, 1999.

[Berenbach 2004] B. Berenbach, “The Evaluation of Large, Complex UML

Analysis and Design Models,” in Proc. 26
th

 Int’l Conf. on Software Eng.,

pp. 2004, pp. 232-241.

[Belgamo et al. 2005] A. Belgamo, S. Fabbri, and J. C. Maldonado, “TUCCA:

improving the effectiveness of use case construction and requirement

analysis,” Int’l Symp. on Empirical Soft. Eng., 2005.

[Ben Achour et al. 1999] C. Ben Achour, C. Rolland, N. A. M. Maiden, and C.

Souveyet, “Guiding Use Case Authoring: Results of an Empirical Study,”

Proc. IEEE Symp. on Requirements Eng., 1999.

[Betty] B. H. C. Cheng and J. M. Atlee, “Research Directions in Requirements

Engineering,” Future of Software Engineering, 2007, pp. 285-303.

[Biddle et al. 2002] B. Biddle, J. Noble, and E. Tempero, “Essential Use Cases

and Responsibility in Object-Oriented Development,” Proc. of 25
th

CRPITS, 2002, vol. 24, issue 1.

[Bittner et al. 2002] K. Bittner and I. Spence, Use Case Modeling. Addison-

Wiley, 2002.

[Boehm] B. Boehm, Software Engineering Prentice - Economics. Hall,

Englewood Cliffs, 1981.

297

[Booch et al. 2005] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified

Modeling Language User Guide Second Edition. Addison-Wiley, 2005.

[Briand et al. 2002] L. Briand and Y. Labiche, “A UML-Based Approach to

System Testing,” J. Software and Systems Modeling, pp. 10-42, 2002.

[Butler et al. 2002] G. Butler and L. Xu, “Cascaded Refactoring for Framework

Evolution,” Proc. Symp. on Soft. Reusability, ACM Press, pp. 51-57,

2001.

[CancerGrid 2008] “CancerGrid Tissue Tracking Database System,” [Online].

Available:

http://www.cancergrid.org/public/documents/2006/mrc/Report%20MRC-

1.2.2.1%20Tissue%20tracking%20database%20requirements.pdf.

[Accessed July 2008].

[Chandrasekaran 2008] P. Chandrasekaran, “How use case modeling policies

have affected the success of various projects (or how to improve use case

modeling),” Addendum to the Conf. on Object-Oriented Programming,

Systems, Languages, and Applications, 1997.

[Cliff 1993] N. Cliff, “Dominance statistics: Ordinal analyses To Answer Ordinal

Questions,” Psychological Bulletin, vol. 114, pp. 494-509, 1993.

[Cliff 1996] N. Cliff, “Answering Ordinal Questions With Ordinal Data Using

Ordinal Statistics,” Multivariate Behavioral Research, vol. 31, pp. 331-

350, 1996.

[Cliff 1996b] N. Cliff, Ordinal Methods for Behavioral Data Analysis. Lawrence

Erlbaum Associates, 1996.

298

[Cockburn 1995] A. Cockburn, “Structuring Use Cases with Goals,” Tech. Rep.

Human and Tech., 7691 Dell Rd, Salt Lake City, UT 84121, HaT.TR.95.1,

http://members.aol.com/acockburn/papers/usecaes.htm, 1995.

[Cockburn 2000] A. Cockburn, Writing Effective Use Cases. Addison-Wiley,

2000.

[Cohn 2004] M. Cohn, User Stories Applied: For Agile Software Development.

Addison Wiley, 2004.

[Constantine et al. 1999] L. L. Constantine and L. A. D. Lockwood, Software for

Use. A Practical Guide to the Models and Methods for Usage-Centered

Design. Addison-Wiley, 1999.

[Coplien 2007] J. Coplien, Software Patterns. SIGS, 1996.

[El-Attar et al. 2006] M. El-Attar and J. Miller, “AGADUC: Towards a More

Precise Presentation of Functional Requirement in Use Case Models,”

Proc. 4th ACIS International Conference on Soft. Eng., Research,

Management & Applications, 2006.

[El-Attar et al. 2006a] M. El-Attar and J. Miller, “Producing Robust Use Case

Diagrams via Reverse Engineering of Use Case Descriptions,” Journal of

Software and Systems Modeling, vol. 7, no.1 , pp. 67-83 , 2006.

[Fabbrini et al. 2001] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “The

Linguistic Approach to the Natural Language Requirements Quality:

Benefits of the Use of an Automatic Tool,” in Proc. 26
th

 Annual NASA

Goddard Software Workshop, 2001, pp. 97 – 105.

299

[Fagan 1976] M. E. Fagan, “Design and Code Inspections to Reduce Errors in

Program Development,” IBM Systems Journal, vol. 15, no. 3, pp. 182-211,

1976.

[Fantechi et al. 2002] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari,

“Application of Linguistic Techniques for Use Case analysis,” Proc. of

IEEE Joint Int’l Conf. on Requirements Eng., 2002, pp. 157–164.

[FAIN 2008] “FAIN Active Network Enterprise Model UC model,” [Online].

Available: www.ee.ucl.ac.uk/lcs/papers2000/lcs026.pdf. [Accessed July

2008].

[Firesmith 1999] D.G. Firesmith, “Use Case Modeling Guidelines,” Proc. of

Tech. of Object-Oriented Languages and Systems, 1999.

 [Gilb et al. 1993] T. Gilb and D. Graham, Software Inspection. Addison-Wiley,

Reading. 1993.

[Glass et al. 1993] R. L. Glass, I. Vessey, and V. Ramesh, “Research in Software

Engineering: An Analysis of the Literature,” J. Information and Software

Technology, vol. 44, no. 8, pp. 491-506, 2002.

[Gogolla et al. 2002] M. Gogolla, J. Bohling, and M. Richters, “Validation of

UML and OCL Models by Automatic Snapshot Generation,” Proc. 6th

Int. Conf. on the Unified Modeling Language, 2003.

[Gomaa 2002] H. Gomaa, Designing Software Product Lines with UML. Addison

Wiley Professional, 2004.

[Gomaa 2000] H. Gomaa, Designing Concurrent, Distributed, and Real-Time

Applications with UML. Addison Wiley, 2000.

300

[Gomaa 1997] H. Gomaa, “Use Cases for Distributed Real-Time Software

Architectures,” in Proc. of the Joint Workshop on Parallel and Distributed

Real-Time Systems, 1997, pp. 34–42.

[Good et al. 1989] M. Good, T. M. Spine, J. Whiteside, and P. George, “User-

derived impact analysis as a tool for usability engineering. in Proc.

CHI’86 Human Factors in Computing Systems, 1986, pp. 241–246.

[Goodhue et al. 1959] D. L. Goodhue and R. L. Thompson, “Task-technology fit

and individual performance,” MIS Quart., vol. 19, no. 2, pp. 213–236,

June 1995.

[Gould et al. 1991] J. D. Gould, S. J. Boies, and C. Lewis, “Making usable,

useful, productivity- enhancing computer applications,” Comm. ACM, vol.

34, pp. 74–85, 1991.

[Gould et al. 1983] J. D. Gould, J. Conti, and T. Hovanyecz, “Composing letters

with a simulated listening typewriter,” Comm. ACM, vol. 26, pp. 295–308,

1983.

[Gould et al. 1985] J. D. Gould and C. Lewis, “Designing for usability: Key

principles and what designers think,” Comm. ACM, vol. 28, pp. 300–311,

1985.

[Harwood 1997] R. J. Harwood, “Use Case Formats: Requirements, Analysis, and

Design,” Journal of Object-Oriented Programming, vol. 9, pp. 54-57, Jan.

1997.

[Hood et al. 2007] C. Hood, S. Wiedeman , S. Fichtinger, and U. Pautz,

Requirements Management: The Interface Between Requirements

301

Development and All Other Systems Engineering Processes. Springer,

2007.

[Höst et al. 2000] M. Höst, B. Regnell, and C. Wohlin, “Using Students as

Subjects – A Comparative Study of Students and Professionals in Lead-

Time Impact Assessment,” Empirical Software Engineering, vol. 5, pp.

210-214, Nov. 2000.

[Hess et al. 2005] M. R. Hess, J. D. Kromrey, J. M. Ferron, K. Y. Hogarty, and C.

V. Hines, “Robust Inference in Meta-Analysis: An Empirical Comparison

of Point and Interval Estimates Using the Standardized Mean Difference

and Cliff’s Delta,” Annual meeting of the American Educational Research

Association, pp. 36.

[Jaaksi 1998] A. Jaaksi, “Our Cases with Use Cases,” Journal of Object-Oriented

Programming, vol. 10, pp. 58-64, Feb. 1998.

[Jacobson et al. 1995] I. Jacobson, M. Ericsson, and A. Jacobson, The Object

Advantage. ACM Press, 1995.

[Jacobson et al. 1992] I. Jacobson, Object-Oriented Software Engineering. A Use

Case Driven Approach. Addison-Wiley, 1992.

[Johansson 2004] A. Johansson, “Confusion in Writing Use Cases,” Proc. of the

2
nd

 Int’l Conf. on Information Tech. for Application, 2004.

[Kaner et al. 2003] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in

Software Testing. John Wiley & Sons, 2003.

302

[Kitchenham 2004] B. Kitchenham, “Procedures for Performing Systematic

Reviews,” Tech. Rep. TR/SE0401, Keele University and Tech. Rep.

0400011T.1, National ICT Australia Ltd., 2004.

[Kroll et al. 2003] P. Kroll and P. Kruchten, The Rational Unified Process Made

Easy: A Practitioner’s Guide to the RUP. Addison-Wiley, 2003.

[Kromrey et al. 2005] J. Kromrey, K. Hogarty, J. Ferron, C. Hines, and M. Hess,

“Robustness in Meta-analysis: An Empirical Comparison of Point and

Interval Estimates of Standardized Mean Differences and Cliff's Delta,”

American Statistical Association 2005 Joint Statistical Meetings, 2005,

pp.7.

[Kromrey et al. 1998] J. Kromrey and K. Hogarty, “Analysis Options For Testing

Group Differences On Ordered Categorical Variables: An Empirical

Investigation Of Type 1 Error Control And Statistical Power,” Multiple

Linear Regression Viewpoints, vol. 25, pp. 70–82, 1998.

[Kruchten 1998] P. Kruchten, The Rational Unified Process: An Introduction, 2nd

ed. Addison-Wiley Longman Inc., 1999.

[Kulak et al. 2000] A. Kulak and E. Guiney, Use Cases: Requirements in Context.

Addison-Wiley, 2000.

[Larman 2001] C. Larman, Applying UML Patterns: An Introduction to Object-

Oriented Analysis and Design and the Unified Process, 2nd ed. Prentice

Hall, 2001.

[Leffingwell et al. 2000] D. Leffingwell and D. Widrig, Managing Software

Requirements: A Unified Approach. Addison-Wiley, 2000.

303

[Lehmann 1998] E. L. Lehmann, Non-Parametrics: Statistical Methods Based On

Ranks, Revised. Pearson, 1998.

[Lilly 1990] S. Lilly, “Use Case Pitfalls: Top 10 Problems from Real Projects

Using Use Cases,” Proc. of Technology of Object-Oriented Languages

and Systems, 1999.

[MAPSTEDI 2008] “MAPSTEDI UC Model,” [Online]. Available:

mapstedi.colorado.edu/documents/Mapstedi_High_Level_Use_Case_Mod

el.pdf. [Accessed July 2008].

[Mantei al. 1988] M. M. Mantei and T. J. Teorey, “Cost/benefit analysis for

incorporating human factors in the software lifecycle,” Comm. ACM, vol.

31, pp. 428–439, 1988.

[Mattingly al. 1988] L. Mattingly and H. Rao, “Writing Effective Use Cases and

Introducing Collaboration Cases,” Journal of Object-Oriented

Programming, vol. 11, pp. 77-84, Oct.1998.

[McBeen 2007] P. McBeen, “Use Case Inspection List,” [Online]. Available:

www.mcbreen.ab.ca/papers/QAUseCases.html. [Accessed Nov. 2007].

[McCoy 2003] J. McCoy, “Requirements use case tool (RUT),” Companion of the

18th Annual ACM SIGPLAN Conf. on Object-Oriented Programming,

Systems, Languages, and Applications, 2003, pp. 104–105.

[Medvidovic al. 2002] N. Medvidovic, D. Rosenblum, D. Redmiles, and J.

Robbins, “Modeling software architectures in the Unified Modeling

Language,” ACM Transactions on Software Engineering and

Methodology, vol. 11, pp. 2-57, 2002.

304

[Mian al. 2005] P. Mian, T. Conte, A. Natali, J. Biolchini, E. Mendes, and G.

Travassos, “Lessons Learned on Applying Systematic Reviews to

Software Engineering,” Proc. of the 3rd International Workshop

‘Guidelines For Empirical Work’ in the Workshop Series on Empirical

Software Engineering, 2005, pp 81-95.

[Mugridge al. 2005] R. Mugridge and W. Cunningham, Fit for Developing

Software: Framework for Integrated Tests. Prentice Hall, 2005.

[Nebut al. 2006] C. Nebut, F. Fleurey, Y. Le Traon, and J. Jézéquel, “Automatic

Test Generation: A Use Case Driven Approach,” IEEE Trans. on Soft.

Eng., vol. 32, no. 3, pp. 140-155, March 2006.

[OMG 2005] Object Management Group, “UML Superstructure Specification,”

Object Management Group, Dec. 2005, ver. 2.0 formal/05-07-04, 2005.

[Online]. Available: http://www.omg.org/docs/formal/05-07-04.pdf.

[Accessed: Dec. 2008].

[QVT 2002] Object Management Group, “MOF 2.0

Query/Views/Transformations RFP,” Object Management Group, Dec.

2002. [Online]. Available: http://www.omg.org/cgi-bin/apps/doc?ad/05-

03-02.pdf. [Accessed: Dec. 2008].

[Optimal Trace 2008] Compuware, Optimal Trace, ver. 4.1., [Online]. Available:

www.compuware.com/optimaltrace.

[Overgaard et al. 2005] F. Overgaard and K. Palmkvist, Use Cases Patterns and

Blueprints. Addison-Wiley, 2005.

305

[Paige et al. 2000] R. F. Paige, J. S. Ostroff, and P. J. Brooke, “Principles for

modeling language design,” Information & Software Technology, vol. 42,

no. 10, pp. 665-675, 2000.

[Regnell et al. 1995] B. Regnell, M. Andersson, and J. Bergstrand, “A

Hierarchical Use Case Model with Graphical Representation,” Proc. of

Second IEEE Int’l Symp. on Requirements Eng., 1995, pp. 270.

[Ren et al. 2003] S. Ren, K. Rui, and G. Butler, “Refactoring the Scenario

Specification: a Message Sequence Chart Approach,” in Proc. of 9
th

Object-Oriented Information Systems, 2003, pp. 294-298.

[Ren et al. 2004] S. Ren, G. Butler, K. Rui, J. Xu, W. Yu, and R. Luo, “A

Prototype Tool for Use Case Refactoring,” Proc. of the 6
th

 Int’l Conf. on

Enterprise Information Systems, 2004, pp. 173-178.

[Rosenberg et al. 2007] D. Rosenberg and S. Kendall, “Top Ten Use Case

Mistakes,” [Online]. Available:

http://www.sdmagazine.com/documents/s=815/sdm0102c/. [Accessed

Nov. 2007].

[Rosenberg et al. 1999] D. Rosenberg and K. Scott, Use Case Driven Object

Modeling with UML. Addison-Wiley, 1999.

[Rosenberg et al. 2005] D. Rosenberg, M. Stephens, and M. Collins-Cope, Agile

Development with ICONIX Process: People, Process, and Pragmatism.

Apress, 2005.

306

[Rosson et al. 1987] M. B. Rosson, S. Maass, and W. A. Kellogg, “Designing for

designers: An analysis of design practice in the real world,” Proc. CHI +

GI’87 Conf., 1987, pp. 137–141.

[Rui et al. 2003] K. Rui and G. Butler, “Refactoring Use Case Models: The

Metamodel,” in Proc. of 25
th

 Computer Science Conf., M. Oudshoorn ed.,

2003, pp. 4-7.

[Ryndina et al. 2004] O. Ryndina and P. Kritzinger, “Improving Requirements

Specification: Verification of UC Models with Susan,” Tech. Rep. CS04-

06-00, Department of Computer Science, University of Cape Town, 2004.

[Ryser et al. 1999] J. Ryser and M. Glinz, “A Scenario-Based Approach to

Validating and Testing Software Systems Using Statecharts,” Proc. 12

Int’l Conf. Software and Systems Eng. and Their Applications. 1999.

[Sauvé et al. 2006] J. P. Sauvé, Osório L. A. Neto, and W. Cirne, “EasyAccept: a

tool to easily create, run and drive development with automated

acceptance tests,” Proc. of the 2006 Int’l Workshop on Automation of

Software Test, pp. 111-117, 2006.

[Schneider et al. 1998] G. Schneider and J. Winters, Applying Use Cases – A

Practical Guide. Addison-Wiley, 1998.

[Selenium 2008] “Selenium Reference Documentation,” [Online]. Available:

http://www.openqa.org/selenium-core/documentation.html. [Accessed Jan.

21, 2008].

307

[Shapiro et al. 1972] S. S. Shapiro and M. B. Wilk, “An Analysis of Variance

Test for the Exponential Distribution,” TechnoMeterics, vol. 14, pp. 355-

370, 1972.

[Siegel et al. 1988] S. Siegel and N. J. Castellan Jr., Non-parametric Statistics for

the Behavioral Sciences, 2nd ed. McGraw-Hill, 1988.

[Sommerville 1996] I. Sommerville, Software Engineering, 5th ed. Addison-

Wiley, 1996.

[STEAM 2009] STEAM Laboratory website, University of Alberta, “Simple

Structured Use Case Descriptions,” [Online]. Available:

http://www.steam.ualberta.ca/main/research_areas/SSUCD.htm.

[Accessed Jan. 2009].

[STEAM 2009b] STEAM Laboratory website at the University of Alberta,

“SUCD Formal Syntax,” [Online]. Available:

http://www.steam.ualberta.ca/main/research_areas/Requirements_Capture.

htm. [Accessed Jan. 2009].

[STEAM 2009c] STEAM Laboratory website, University of Alberta, “Use Case

Modeling Antipatterns,” [Online]. Available:

http://www.steam.ualberta.ca/main/research_areas/Use%20Case%20Antip

atterns%20Website.htm. [Accessed Jan. 2009].

[SCM 2008] “Supply Chain Management UC Model,” [Online]. Available: ws-

i.org/SampleApplications/SupplyChainManagement/2002-

11/SCMUseCases-0.18-WGD.pdf. [Accessed July 2008].

308

[TopTeam 2008] TechnoSolutions, TopTeam Anaylst, ver. 2.05., [Online].

Available: www.technosolutions.com.

[Use Case Studio 2008] Rewritten Software, Use Case Studio, vers. 3.0., [Online].

Available: www.rewrittensoftware.com.

[Warmer et al. 1998] J. Warmer and A. Kleppe, The Object Constraint Language:

Precise Modeling with UML. Addison-Wiley, 1998.

[Wiegers 2003] K. Wiegers, Software Requirements (Pro-Best Practices), 2nd ed.

Microsoft Press, 2003.

[Wirfs-Brock 1993] R. Wirfs-Brock, “Designing Scenarios: Making the Case for

a Use Case Framework,” The Smalltalk Report, vol. 3, no. 3, Nov.-Dec.

1993.

[Wohlin et al. 1990] C. Wohlin and U. Korner, “Software Faults: Spreading,

Detection and Costs,” Software Engineering Journal, vol. 5, no. 1, pp. 33

– 42. 1990

[Wohlin et al. 2000] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,

and A. Wesslen, Experimentation in Software Engineering - An

Introduction. Kluwer, 2000.

[Woodall et al. 2006] P. Woodall and P. Brereton, “Conducting a Systematic

Literature Review from the Perspective of a Ph.D. Researcher,” 10th

International Conference on Evaluation and Assessment in Software

Engineering, Keele University, UK. 2006.

309

[Xu] J. Xu, W. Yu, K. Rui, and G. Butler, “Use Case Refactoring: a Tool and a

Case Study,” in Proc. 11
th

 Asia Pacific Software Eng. Conf., 2004, pp.

484-491.

310

Appendix A

SUCD E-BNF

S ::= UseCaseDescrption+ Actor+

Actor ::= Abstract? ActorName Implements? Specializes?

ActorName::= CharactersAndOrDigits+

UseCaseDescrption ::= NameSection

 BasicFlowSection?

 AlternativeFlowSection?

 Sub-flowsSection?

 ExtensionPointsSection?

 NameSection ::= ‘Use Case Name:’

Abstract?

UseCaseName

Implements?

Specializes?

 Abstract ::= ‘ABSTRACT’

 Implements ::= ‘IMPLEMENTS’ UseCaseName

 Specializes ::= ‘SPECIALIZES’ UseCaseName

BasicFlowSection ::= ‘Basic Flow:’

‘{BEGIN Use Case}’

Header*

‘{END Use Case}’

Header ::= ‘{BEGIN’ HeaderName ‘}’

AfterStatement?

Contents*

ResumeStatement?

‘{END’ HeaderName ‘}’

AlternativeFlowsSections ::= ‘Alternative Flows:’ AF*

311

AF ::= AtStatement

 IfStatement

 AFHeader

AFHeader ::= ‘{BEGIN’ HeaderName ‘}’

 Contents*

 ResumeStatement?

 ‘{END’ HeaderName ‘}’

Sub-flowSection ::= ‘Sub-flows: ’ Sub-flow*

Sub-flow ::= ‘SUB-FLOW’ Sub-flowName

 Sub-flowHeader

Sub-flowHeader ::= ‘{BEGIN’ HeaderName ‘}’

 Contents*

 ‘{END’ HeaderName ‘}’

Sub-flowName ::= CharactersAndOrDigits+

ExtensionPointsSection ::= ‘Extension Points: ’ EP*

EP ::= PREP | PUEP | PUEPDeclaration

PREP ::= ‘PRIVATE EXTENSION POINT’

FlowStatement

AtStatement

 IfStatement

PREPHeader

EPHeader

PREPHeader ::= ‘{BEGIN’ HeaderName ‘}’

 Contents*

 ResumeStatement

 ‘{END’ HeaderName ‘}’

PUEP ::= ‘PUBLIC EXTENSION POINT BEHAVIOR’

FlowStatement

AtStatement

 IfStatement

 EPHeader

BaseUCName ::= UseCaseName

HeaderInBaseUC ::= HeaderName

EPHeader ::= ‘{BEGIN’ HeaderName ‘}’

312

Contents*

‘{END’ HeaderName ‘}’

ContinueStatement

PUEPDeclaration ::= ‘PUBLIC EXTENSION POINT’

PublicExtensionPointName

ExtensionUCName ::= UseCaseName

HeaderInExtensionUC ::= HeaderName

Contents ::= Header | Statement

Statement ::= (‘•’ | Digit) (ActionStatement |

PerformStatement | IncludeStatement)

ActionStatement ::= Actor ‘�’ Action

Action ::= CharactersAndOrDigits+

FlowStatement ::= ‘FLOW’ FlowType

IncludeStatement ::= ‘INCLUDE’ UseCaseName

PerformStatement ::= ‘PERFORM’ Sub-flowName

ResumeStatement ::= ‘RESUME’ (‘{‘HeaderName’}’)+

AfterStatement ::= ‘AFTER’ (‘{‘HeaderName’}’)+

AtStatement ::= ‘AT’ ‘{‘HeaderName’}’ Statement*

IfStatement ::= ‘IF’ Condition

ContinueStatement ::= ‘CONTINUE {’ ReturnHeader ‘}’

UseCaseName ::= CharactersAndOrDigits+

HeaderName ::= CharactersAndOrDigits+

Condition ::= CharactersAndOrDigits+

FlowType ::= CharactersAndOrDigits+

ReturnHeader ::= CharactersAndOrDigits+

PublicExtensionPointName ::= CharactersAndOrDigits+

313

CharactersAndOrDigits ::= Character | Digit

Character ::= ‘a’| ‘b’ |...| ‘z’| ‘A’| ‘B’|...| ‘Z’

Digit ::= ‘0’| ‘1’ |...| ‘9’

314

Appendix B

Actor and UC Descriptions of the

Library System Case Study

Actor:

Librarian

Brief Description:

This actor is an employee of the library

Actor:

Member

Brief Description:

This actor is is a member of the Library who holds a

membership cards

Use Case Name:

Authenticate Librarian

Brief Description:

This use case authenticates library staff to be able

to perform administrative duties such as adding and

removing books or enrolling members into the Library

Preconditions:

Basic Flow:

{BEGIN Use Case}

{BEGIN get librarian's username and password}

• Librarian -> Enters username

• Librarian -> Enters password

• SYSTEM-> Validates login information

{END get librarian's username and password}

315

{END Use Case}

Postconditions:

Login log is updated whether authentication was

approved or not

Use Case Name:

Balance Overdue

Brief Description:

This use case is an extension UC that gets performed

if a member attempts to borrow a book while there is a

balance overdue on his/her account. The UC acts as

reminder to the Member to pay his overdue charges

Preconditions:

Extension Points:

PUBLIC EXTENSION POINT BEHAVIOR

EXTENDING {Borrow Book : Balance overdue}

FLOW Basic Flow

AT {bring book to borrow}

• Librarian -> Scans member's card

IF Member has an overdue balance

{BEGIN collect money}

• SYSTEM -> Notifies the Librarian that there is a

balance overdue on that member's account

• Librarian -> Notifies the member that there is a

balance overdue

{END collect money}

CONTINUE {authenticate librarian}

Special Requirements:

System must be online

316

Appendix C

SSUCD E-BNF

S ::= UseCaseDescrption+ Actor+

Actor ::= Abstract? ActorName Implements? Specializes?

UseCaseDescrption ::= NameSection

 ExtendedSection?

 DescriptionSection?

 ExtensionPointsSection?

 NameSection ::= ‘Use Case Name:’

Abstract?

UseCaseName

Implements?

Specializes?

 Abstract ::= ‘ABSTRACT’

 Implements ::= ‘IMPLEMENTS’ UseCaseName

 Specializes ::= ‘SPECIALIZES’ UseCaseName

 ExtendedSection ::= ‘Extended Use Cases:’

 Extensions*

 Extensions ::= ‘Base UC Name: ’ UseCaseName

 (‘Extension Point: ’ EPName)?

 IfStatement?

DescriptionSection ::= ‘Basic Flow:’

CharactersAndOrDigitsOrInclude*

CharactersAndOrDigitsOrInclude ::= IncludeStatement |

CharactersAndOrDigits

IncludeStatement ::= ‘INCLUDE <’ UseCaseName ‘>’

317

ExtensionPointsSection ::= ‘Extension Points: ’

EPName*

IfStatement ::= ‘IF’ Condition

ActorName::= CharactersAndOrDigits+

UseCaseName ::= CharactersAndOrDigits+

EPName ::= CharactersAndOrDigits+

CharactersAndOrDigits ::= Character | Digit

Character ::= ‘a’| ‘b’ |...| ‘z’| ‘A’| ‘B’|...| ‘Z’

Digit ::= ‘0’| ‘1’ |...| ‘9’

318

Appendix D

Scoring UCs Developed in the

Experiment

D.1. Scoring UCs from the Banking System developed in UNL

Figure D-1: Example Banking system UC diagram developed by a subject

Use Case Name: Perform Transaction

Preconditions: The customer must have an ATM card.

Basic Flow: The customer inserts their ATM card into the card reader and enters

the correct PIN. The customer is given a selection of performing a withdrawal,

query, or transfer. Once the customer chooses an option, the use case for the

selected transaction type takes place. Once the child use case has completed, a

receipt is printed and the card is ejected.

319

Alternative Flows:

� If the PIN is entered incorrectly three times or the card is lost or stolen, the

Confiscate Card use case is carried out.

� If the customer cancels the transaction, the Cancelled Transaction use case

takes place.

� If the transaction to be carried out by the child use case is not approved, the

Approval Failed use case is carried out.

Use Case Name: Perform Withdrawal

Preconditions: Sufficient funds must be available in the account that is to have

the money debited, the amount to be removed must not exceed the remaining

daily limit, and there must be sufficient funds in the local cash dispenser.

Basic Flow: The customer specifies that amount of money to withdraw and the

account to withdraw it from. The transaction is then approved and the requested

amount of cash dispensed, and then control returns to the Perform Transaction use

case.

Use Case Name: Approval Failed

Basic Flow: The customer is informed of the reason that the transaction was not

approved, and any pending transactions are cancelled.

320

Scoring:

1. The “Perform Transaction” is depicted as an abstract UC in the diagram but

this characteristic was not stated in the description. (1 defect)

2. The “Perform Transaction” is depicted to have two extension points both of

which were not stated in the description. (3 defects)

3. The “Approval Failed” UC is depicted to extend the “Perform Transaction”

but this fact was not stated in the “Approval Failed” UC. As an extension UC,

it is the “Approval Failed” UC that is responsible for indicating when and

under what clause will the exceptional it describes will be performed.

Meanwhile, in an alternative flow contained in the “Perform Transaction” UC,

it is mentioned that the “Approval Failed” UC is called upon to perform the

required, which is a description of an include relationship between the UCs

that was not depicted. These inconsistencies are a result of the same mistake

and hence are scored as one defect. (1 defect)

4. The “Perform Withdrawal” UC states at the end of the Basic Flow that

“control returns to the Perform Transaction use case” which is a description of

a include relationship rather than an implementation relationship. (1 defect)

Inconsistency defects total = 6

D.2. Scoring UCs from the Airline Ticketing System developed in SSUCD

321

Figure D-2: Example Airline Ticketing system UC diagram developed by a subject

Use Case Name: Order Tickets

Associated Actors: Clerk

Description:

Basic Flow: Clerk enters the name of the traveler then enters the flight name

which is INCLUDE <Find Flight> by the system based on the entered order

information, and the books the tickets.

 Sub Flows: Find Flight

 Postconditions: The tickets have been ordered

Extension Points: need help

Use Case Name: Use Help Page

Associated Actors: Clerk

Description:

 Basic Flow: The clerk invokes the help service and the order flight page is

brought up.

322

Alternative Flows: If the Clerk invokes the help service outside of ordering

tickets the main page is brought up.

Alternative Flows: If the Clerk invokes the help service outside of ordering

tickets the main page is brought up.

Extended Use Cases:

 Base UC Name: Order Tickets

 Extension Point: need help

 IF the clerk needs help while ordering a ticket

Scoring

1. For the “Order Tickets” UC:

� The depicted include relationship with the “Find Flight” UC was correctly

stated in the description.

� The depicted extension point “need help” was correctly stated in the

description.

� The depicted association with the “Clerk” actor was correctly stated in the

description.

� A Sub-flow was stated which indicates that “Find Flight” is a sub routine

described within the UC, which is incorrect since this behavior is described in

the inclusion UC “Find Flight”. This results in a inconsistency within the UC

description since the inclusion relationship was already stated. (1 defect)

2. For the “Use Help Page” UC:

323

� The depicted association with the “Clerk” actor was correctly stated in the

description.

� The depicted extend relationship with the “Order Tickets” UC is correctly

stated in the description.

� The depicted clause is correctly stated in the description.

� The description states the extension point (“need help”) at the “Order Tickets”

UC where the additional behavior is inserted. This information should be

depicted on the extend arrow but was not. (1 defect)

Inconsistency defects total = 2

324

Appendix E

Syntax for creating ColumnFixtures

and RowFixtures

A ColumnFixture is most suitable for checking rules and calculations – basically

input / output relationships in the absence of state information. For a given

business logic, a series of input values are provided and the resulting outputs are

checked accordingly. The fixture shown in Figure E-1 tests the return on

investment calculation, which is used to test the behavior described by the

“Calculate Investments” UC.

Figure E-1: ColumnFixture example of calculating the return on one year

investments. The name of the class under test is stated atop the fixture table, input

values populate the left hand side columns, while output values populate the right

hand side columns. The name of the input variable (or function) and the name of the

output variable (or function) are stated atop their respective columns. It is assumed

for the purposes of this example that the interest rate for savings accounts is 5%

while the interest rate for a chequeing accounts is 1%.

RowFixtures are more suitable for checking sets of data. Rows in the test data are

compared to the contents of objects under test. Test data is used to examine an

object under test for any missing or surplus (unexpected) data sets. The test shown

in Figure E-2 is also relative to the behavior described by the “Perform

OneYearInvestment

CurrentBalance AccountType ReturnOnInvestment()

10000 Savings 10500

5000 Savings 5250

1500 Chequeing 1515

325

Transactions” UC and it evaluates the transaction log after the transactions

performed in the test presented by the ActionFixture shown in Figure E-3. FIT

uses the fixtures created to generate code skeletons for later implementation.

Figure E-2: RowFixture example of checking account activities. The name of each

attribute in the test data row is stated atop its respective column, while the name of

the class under test is stated atop the fixture table.

Figure E-3: ActionFixture example of performing transactions.

When fixtures run, the data returned by the software under test is compared

against the values provided in the tables. Test results are indicated by color-

coding the cells containing the expected data (cell containing output). For

example, running the RowFixture shown in Figure E-2 will result in coloring the

data fields of “Balance” column. The following is the list of color codes for test

results is defined in [Mugridge al. 2005] and are briefly explained below:

• Green: The software returned an expected value.

• Red: The software returned an incorrect value.

• Yellow: The software caused an exception to be thrown.

TransactionLog

AccountType TransactionType Balance

Savings Deposit 200

Chequeing Deposit 300

Chequeing Withdraw 100

PerformTransactions

Check SavingsBalance 0

Check ChequeingBalance 0

Enter Amount 200

Press Deposit Amount

Enter Amount 300

Press Deposit Amount

Enter Amount 100

Press Withdraw Amount

Check SavingsBalance 200

Check ChequeingBalance 200

326

• Grey background: The cell was ignored for some reason.

• Grey text: When cell is left intentionally blank by the user, FIT will fill in

the answer from your software.

327

Appendix F

Robustness Analysis of the

“Generate Restaurant Map for City”

UCs

Basic Flow:

1. Get restaurants for current city with valid zoom setting

1.1. The MapViewer interface is provided with the current city and the zoom

setting by the “Generate City” UC or the User.

1.2. MapViewer invokes “get restaurants for city” given the current city and

the zoom setting

1.3. “get restaurants for City” then passes these parameters to “map scale is

OK?” to check the validity of the zoom setting.

1.4. Given the validity of the zoom setting, “map scale is OK?” then passes on

the two parameters to the RestaurantServer

1.5. RestaurantServer invokes MapServer to get the restaurant layer

1.6. MapServer returns the Restaurant layer to RestaurantServer

1.7. RestaurantServer then return the queried restaurants to “map scale is OK?

328

1.8. “map scale is OK?” then returns the restaurants to “get restaurants for

city”

1.9. “get restaurants for city” then creates the RestaurantCollection

Inputs: Current City, Zoom setting

2. Get Map

2.1. The MapViewer interface is provided with the current city and the zoom

setting by the “Generate City” UC.

2.2. MapViewer invokes “get map for City” and provides it with the two

external parameters

2.3. “get map for City” passes those two parameters to the MapServer which

return the required map data that can be used to build the map

2.4. “get map for City” uses the returned map data to build a Map

3. Add Restaurant Icons to Map

3.1. “add Restaurant icons to map” retrieves information about the

Restaurants to be displayed as icons from the RestaurantCollection

3.2. “add Restaurant icons to map” retrieves information about the desired

display filters from the DisplayFilter

3.3. “add Restaurant icons to map” add the qualifying Restaurants as icons by

editing the Map entity object

Inputs: DisplayFilter

Outputs: Edited Map entity object containing Restaurant icons

329

Alternative Flow: Invalid zoom setting

1. Get Restaurants for Current city with Invalid Zoom Setting

1.1. The MapViewer interface is provided with the current city and the zoom

setting by the “Generate City” UC or the User.

1.2. MapViewer invokes “get restaurants for city” given the current city and

the zoom setting

1.3. “get restaurants for city” then passes these parameters to “map scale is

OK?” to check the validity of the zoom setting.

1.4. “map scale is OK?” determines that the given zoom setting is invalid

invokes the “Show Invalid Zoom Popup” control object.

1.5. The “Show Invalid Zoom Popup” object then creates a the interface

object “Invalid Zoom Popup” to display a message prompting the User

change the zoom setting.

Inputs: Current City, Zoom setting

Outputs: Invalid Zoom Popup

330

Appendix G

Analyzing UC “Display Rollover

Information”

The “Display Rollover Information” UC extends the “View Map” UC to provide

additional information to the “User” about restaurants displayed in the map”. The

additional information are presented in the form of a popup and is only presented

when the “User” points to a restaurant icon or clicks on it with the mouse cursor.

The UC description is shown in Figure G-1.

Basic Flow:

When the user rolls the mouse cursor over a restaurant icon, the application

displays a map tip window containing the restaurant’s name. If the user clicks on

the restaurant icon, a popup is generated to display a variety of information about

the restaurant. Within the popup, the restaurant information is hyperlinked so that

the user may click them to retrieve even further information. This additional

information is provided by the View Detailed Restaurant Info UC.

Alternative Flow: Clicked on coordinates with multiple restaurants

If more than one restaurant is found at click coordinates, a list containing the

names of the clicked-on restaurant is created and displayed in a map tip window.

331

If the user clicks a restaurant name from the displayed list, the application

generates a popup containing further information regarding the selected

restaurant.

Alternative Flow: Clicked on coordinates with no restaurants

If no restaurants are found at click coordinates, then the click is ignored.

Figure G-1: Textual description of the Display Rollover Information UC

G.1. Examining the UC Description and Creating its HLATs (Phase 1)

A common precondition for all flows is that the map is displayed. For the Basic

Flow to be performed successfully, the map must contain at least one restaurant

icon. In order to perform the Alternative Flow: Clicked on coordinates with

multiple restaurants, where the “User” clicks on coordinates with multiple

restaurant icons, it is required that the map contain at least two restaurant icons

located at the same coordinates. Finally, for the Alternative Flow: Clicked on

coordinates with no restaurants, where a “User” clicks on nothing, it is not

necessary for the map to contain any restaurant icons. The set of HLATs created

are shown in Table G-1.

Table G-1: HLATs for the Display Rollover Information UC
Test ID Description Expected Results

DRI-Basic Flow Precondition: Map displayed with at

least one restaurant icon

Input: mouse movement over restaurant

icon

A MapTipWindow

showing the name of the

restaurant that is pointed

to by the cursor

332

Input: mouse click over a single

restaurant icon

A Popup window

containing various

information about the

selected restaurant

Precondition: Map displayed with at

least two restaurant icon displayed at

the same coordinates

Input: mouse click at coordinates with

multiple restaurant icons

A MapTipWindow

showing the names of the

restaurants that where

clicked on

DRI-Alternative Flow:

Clicked on coordinates

with multiple restaurants

Input: mouse click over a restaurant

name from a list

A Popup window

containing various

information about the

selected restaurant

DRI-Alternative Flow:

Clicked on coordinates

with no restaurants

Precondition: Map displayed Input:

mouse click where no restaurant icons

are displayed

Nothing

It is important to note that the output of the Alternative Flow: Clicked on

coordinates with no restaurants indicates that nothing should happen in response

to a mouse click. However, how is it possible to verify that nothing happened?

From a Software Testing perspective, to verify that nothing has happened, certain

data values need to be checked in order to determine that the system state has not

changed. Therefore, an infinite number of tests to explore an infinite number of

scenarios will be required to ensure that the system behaves correctly, which is

infeasible and unpractical. Therefore, it is a judgment call as to how many tests

should be created, and which specific scenarios they should address.

G.2. Robustness Analysis (Phase 2)

Tracing the steps in each flow indicate that MapViewer handles mouse inputs

(see Appendix B). For the Basic Flow and the Alternative Flow: Clicked on

coordinates with multiple restaurants, the interface object MapTipWindow

implements the display of the map tip window. The map tip window is generated

333

in response to a mouse pointer moving over it (Basic Flow) or a mouse clicking at

coordinates where multiple restaurant icons are present (Alternative Flow:

Clicked on coordinates with multiple restaurants). Meanwhile, for both the Basic

Flow and the Alternative Flow: Clicked on coordinates with multiple restaurants,

the RestaurantInfoPopup object handles the popup window containing

information about the selected restaurant. The results of performing robustness on

the flows are shown in Tables G-2 – G-4, respectively.

Basic Flow:

1. Display Map Tip Window containing the name of the pointed to Restaurant

icon

1.1. The “User” rolls the mouse cursor over a Restaurant icon presented by

the “MapViewer” interface.

1.2. The “MapViewer” detects that the mouse cursor is over a Restaurant icon

and invokes “Change cursor and highlight Restaurant icon” to change the

cursor to “selection hand” and the Restaurant icon to “selected

Restaurant”.

1.3. “Change cursor and highlight Restaurant icon” then invokes “Get

Restaurant name(s)” to get the name of the pointed to Restaurant.

1.4. “Create the Tip Text” is then invoked to create tip text containing the

Restaurant name.

1.5. “Show the tip window” is then invoked to show the tip window.

334

1.6. The tip window is then visually displayed and handled by the “Map Tip

Window” interface.

Inputs: Coordinates of mouse pointer that occurred over a Restaurant icon

Outputs: Map Tip Window containing the name of the Restaurant that had the

mouse roll over it

2. Display a popup window containing various information about the clicked on

Restaurant

2.1. The “MapViewer” interface is provided with the coordinates of a mouse

click from the “User”.

2.2. The “MapViewer” detects that the mouse was clicked on a single

Restaurant icon or name in a list.

2.3. The attributes of the clicked Restaurant is retrieved using “Get Restaurant

Attributes”

2.4. “Get Restaurant Attributes” retrieves the required Restaurant information

from the “Restaurant” entity that corresponds to the clicked Restaurant.

2.5. The Restaurant attributes are then used by “Show Restaurant Info Popup”

to prepare them for display.

2.6. After the Restaurant attributes are prepared, they are displayed and

controlled by the “Restaurant Info Popup” interface.

Inputs: Coordinates of mouse click that occurred over a Restaurant icon

335

Outputs: Popup window containing the information of the Restaurant that was

selected

Table G-2: Results of performing robustness analysis on the Basic Flow

Flow

Step

Input/Output Element or Action Representative

Objects

1 Input Coordinates of mouse pointer that

occurred over a restaurant icon

MapViewer

1 Output MapTipWindow containing the

name of the selected restaurant

MapTipWindow,

MapViewer

2 Input Coordinates of mouse click that

occurred over a restaurant icon

MapViewer

2 Output Popup window containing the

information of the restaurant that

was selected

RestaurantInfoPopup,

MapViewer

Alternative Flow: Clicked on coordinates with multiple restaurants

1. Generate Pop-up of Clicked Restaurants

1.1. The “MapViewer” interface is provided with the coordinates of a mouse

click from the “User”.

1.2. The “MapViewer” detects that the click was on multiple Restaurants and

invokes “Get list of Restaurants”.

1.3. The list of Restaurants are retrieved and stored in a

“MultipleRestaurantCluster” object.

1.4. The “MultipleRestaurantCluster” object then invokes “Get Restaurant

name(s)” to get the name of each Restaurant it contains.

1.5. “Get Restaurant name(s)” is then invoked to retrieve the name of each

Restaurant in “MultipleRestaurantCluster”.

336

1.6. “Create the Tip Text” is then invoked to create tip text containing the

Restaurant names.

1.7. “Show the tip window” is then invoked to show the tip window.

1.8. The tip window is then visually displayed and handled by the “Map Tip

Window” interface.

Inputs: Coordinates of a mouse click that occurred over multiple Restaurant icons

Outputs: Map Tip Window showing a list of Restaurants corresponding to the

Restaurants that were selected by the mouse click

2. Display a popup window containing various information about the clicked on

Restaurant � See Basic Flow

Inputs: Coordinates of a mouse click that occurred over a Restaurant name in a

Map Tip Window

Outputs: Popup window containing the information of the Restaurant that was

selected

Table G-3: Results of performing robustness analysis on the Alternative Flow:

Clicked on coordinates with multiple restaurants

Flow

Step

Input/Output Element or Action Representative

Objects

1 Input Coordinates of mouse click that

occurred over multiple restaurant

icons

MapViewer

1 Output MapTipWindow containing the a

list of the restaurant names

MapTipWindow,

MapViewer

2 Input Coordinates of mouse click that

occurred over a restaurant name

in the MapTipWindow

MapTipWindow,

MapViewer

2 Output Popup window containing the

information of the restaurant that

RestaurantInfoPopup,

MapViewer

337

was selected

Alternative Flow: Clicked on coordinates with no restaurants

1. Ignore Mouse Click

1.1. The “MapViewer” interface is provided with the coordinates of a mouse

click from the “User”.

Inputs: Coordinates of mouse click that occurred that do not match a Restaurant

icon coordinates

Outputs: None

2. Ignore mouse click.

Table G-4: Results of performing robustness analysis on the Alternative Flow:

Clicked on coordinates with no restaurants

Flow

Step

Input/Output Element or Action Representative

Objects

1 Input Coordinates of mouse click that

occurred over nothing

MapViewer

2 Output None RestaurantInfoPopup,

MapViewer

Section G.3. Creating Low Level Acceptance Tests (Phase 3)

The EAT corresponding to the Basic Flow consists of four fixtures (Figure G-2):

• An ActionFixture to simulate a mouse rollover on a single restaurant icon.

The ActionFixture also checks that a tip window (MapTipWindow) is

displayed;

• a RowFixture to check that the MapTipWindow is displaying the

expected restaurant;

338

• an ActionFixture to simulate a mouse click on the restaurant icon. The

ActionFicture checks that a pop-up window (RestaurantInfoPopup)

is displayed; and

• a RowFixture to examine that the RestaurantInfoPopup is

displaying information about the selected restaurant.

MapViewer.MapTipWindow.ListedRestaurants

restaurantName

Expected restaurant

MapViewer

Press MapViewer.mouseClicked Y coordinate X coordinate

Check MapViewer.RestaurantInfoPopup.

isDisplayed()

True

MapViewer.RestaurantInfoPopup.Restaurants

restaurantName isValetParking isSmokingAvailable isLiveMusic

Expected restaurant True or False True or False True or False

MapViewer

Press MapViewer.setMouseCoordinate Y coordinate X coordinate

Check MapViewer.MapTipWindow.

isDisplayed()

True

Figure G-2: EAT of the Basic Flow

The EAT corresponding to the Alternative Flow: Clicked on coordinates with

multiple restaurants consists of four fixtures (Figure G-3):

• An ActionFixture to simulate a mouse click over multiple restaurant icons

and that the MapTipWindow is displayed; while a subsequent

RowFixture examines the MapTipWindow produced to check that the

expected list of restaurant names is displayed; and

• A second ActionFixture to simulate a mouse click on a single restaurant

name displayed by the MapTipWindow, which is followed by a

RowFixture to check the details of the restaurant that was selected.

339

MapViewer.MapTipWindow.ListedRestaurants

restaurantName

Expected restaurant1

Expected restaurant2

Expected restaurant3

MapViewer

Press MapViewer.mouseClicked Y_2 coordinate X_2 coordinate

Check MapViewer.RestaurantInfoPopup.

isDisplayed()

True

MapViewer.RestaurantInfoPopup.Restaurants

restaurantName isValetParking isSmokingAvailable isLiveMusi

c

Expected restaurant1 True or False True or False True or False

Expected restaurant2 True or False True or False True or False

Expected restaurant3 True or False True or False True or False

MapViewer

Press MapViewer.setMouseCoordinate Y coordinate X coordinate

Check MapViewer.MapTipWindow.

isDisplayed()

True

Figure G-3: EAT of the Alternative Flow: Clicked on coordinates with multiple

restaurants

The EAT for the Alternative Flow: Clicked on coordinates with no restaurants

(Figure G-4) consists of one ActionFixture that simulates a mouse click over an

area with no restraurants and checks that RestaurantInfoPopup is not

displayed.

MapViewer

Press MapViewer.mouseClicked Y

coordinate

X

coordinate

Check MapViewer.RestaurantInfoPopup.

isDisplayed()

False

Figure G-4: EAT of the Alternative Flow: Clicked on coordinates with no

restaurants

