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Abstract—This paper introduces a novel approach towards an 
implementation of head pose estimation techniques for the 
application of noise control. An existing multi-stage process, 
which uses convolutional neural network (CNNs), for head pose 
estimation is modified, implemented, and validated for moving 
target active noise control. With evaluation and development of 
application focused methodologies, this paper highlights the 
modifications necessary alongside the challenges involving real-
time tracking. Utilizing such a method to improve noise comfort 
within aircraft cabins through an integrated real-time tracking 
system allows for the capability to create a zone of quiet bubble 
around a passenger’s head during their flight time. Through 
various stand-alone and integrated system tests, the head 
tracking algorithm proposed shows desirable accuracies, 
exhibited through low total average % errors. Additionally, the 
integrated system also shows positive results with low tracking 
errors alongside effective real-time capabilities. The overall 
implementation provides a convincing solution for head-
tracking system to be integrated with active noise control for 
moving targets within aircraft cabins. 

Keywords: computer vision; head pose estimation; convolutional 
neural network; active noise control; noise comfort 

I.  INTRODUCTION  

Improving passenger comfort has been at the forefront of 
research for the aviation industry where noise control is one of 
the largest components to improving passenger comfort within 
business jets. The noise is primarily generated from the 
aerodynamic boundary layer flow noise surrounding the aircraft 
cabin [1]. A method called Moving Target Active Noise Control 
(ANC) [2, 3, 4, 5, 6, 7] is utilized, where the objective is to track 
the passengers’ ear locations and maintains a desirable dB 
reduction. With secondary speakers, the primary noise generated 
from the aerodynamics around the fuselage of the aircraft can be 
neutralized.  

Since the main objective is to improve the noise comfort 
within an aircraft cabin in real-time, the head tracking system is 
highly constrained by the weight-requirements. The head-
tracking system must utilize a lightweight input sensor while 
providing the desired accuracy with minimal latency. With the 

rapid growth in computer vision systems through Convolutional 
Neural Networks (CNNs), using a camera and adopting a neural 
network method allows for the implementation of this head-
tracking system.  

A popular method in computer vision is head pose estimation, 
which is a method that extracts a human head’s orientation from 
imagery primarily attained from cameras [8]. There are various 
intermediate steps performed internally before attaining the 
head’s directional information some of which include, face 
detection, facial features’ key point extraction, and solving the 
2D to 3D rotation transformation which provides the desired 
Euler angles - yaw and pitch [9, 10].  

To attain the pose estimations, the first stage is to detect the 
face and attain the facial feature key points, one such method 
that simultaneously performs face detection and facial landmark 
detection is a cascaded multi-task three-stage framework called 
MTCNN [11]. This method has proven to have high accuracies 
while being able to tackle challenges such as large pose 
variations and unfavourable lighting conditions. This detection 
model is then adapted to calculate the Euler angles using the 
facial landmarks detected, intrinsic camera parameters, 
rotational matrices, and perspective-n-point solver [12]. This 
paper focuses on adapting and implementing an existing vision-
based face detection framework, to attain the head pose 
estimations primarily the yaw and pitch Euler angles to 
successfully track the passenger’s ear location within an aircraft 
cabin. Along with the modifications made to the existing 
MTCNN framework, a novel integration of unique face 
detection is introduced, this identifier neglects any new face 
detected outside the initial face detected. This ensures the 
speaker motion system to track the position of the first passenger 
detected and reduces any disturbances or unwanted movements.  

The head pose estimation method is then validated with a dual 
axis gimbal and lays the foundation for real-time moving target 
tracking noise control. The paper is separated into 5 sections, 
where background is discussed in section II, followed by 
methodology in section III, implementation in section IV, and 
lastly conclusion in section V. 



 

   

II. BACKGROUND 

A. Face Detection - Mutli-Task Cascaded Convolutional 
Neural Network (MTCNN) 

The overall framework of MTCNN can be split into three 
stages namely, the proposal network (P-Net), the refine network 
(R-Net), and the output network (O-Net). The training process 
for these CNN detectors is based on three specific tasks, face 
classification, bounding box regression, and facial landmark 
localization. 

Face Classification: The face classification is defined as a 
two-class classification problem, which pertains to classifying 
the image as a face or not a face. Cross-entropy loss is used for 
each sample x௜, as shown in (1). 
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Where p
௜
 represents the probability of the sample being a face, 

determined by the network, and y௜
det  denotes the ground-truth 

label which is either 0 or 1. 
Bounding Box Regression: The bounding boxes are based 

on four main labeled locations left, top, height and width, the 
regression problem utilizes the Euclidean loss for each sample 
x௜, as shown in (2). 
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Where yො௜
box  is the regression value attained from the network 

and y௜
box  represents the labeled ground-truth coordinates. All 

truth-values and predicted values belong to either of the four 
coordinates mentioned above. 
Facial Landmark Localization: The facial landmark detection 
takes a similar approach to that of the bounding boxes as seen 
earlier, Euclidean loss function is shown in (3). 
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Where yො௜
landmark  is the predicted coordinates attained from the 

network and y௜
landmark is the true labeled coordinates.  

Since there are three different networks involved to perform 
multiple tasks within each CNN, an overall learning target takes 
each learning objective and balances it within each network 
architecture. The overall learning target is shown in (4). 

   min ∑ ∑ αjβ௜
j
L௜

j
j∈{ௗ௘௧,௕௢௫,௟௔௡ௗ௠௔௥௞}

N
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Where N is the total number of training samples, αj represents 
the importance of task for that particular network which is 
categorized as the following: αdet = 1, αbox = 0.5, and αlandmark= 
0.5 in the P-Net and R-Net, while αdet  = 1, αbox  = 0.5, 
and αlandmark= 1 in the O-Net. β௜

j  is the sample type indicator 

which can be interpreted as β௜
j

∈ {0, 1}. Lastly, L௜
j  is the loss 

functions shown in equations (1)-(3). Figure 1 outlines the 
structure for the P-Net, R-Net, and O-Net [11]. 

B. Perspective-n-Point Problem 

One of the problems that have been predominant in the computer 
vision research field is the motion estimation of an object when 
the camera is fixed at a certain position, this motion estimation 
has been termed to a Perspective-n-Point (PnP) problem as seen 
in figure 2. Where the objective is to estimate the position and  

 

  
Figure 1: MTCNN Overall Architecture [11] 

 
Figure 2: General Procedure of Pinhole Camera Model [13] 

 

rotation of a calibrated camera based on an identifiable 3D-2D 
point mapping between a 3D model and its corresponding image 
projections. The PnP problem has proven to be able to achieve 
accurate results while maintaining robustness with the 
estimations, there are various components within this problem 
definition which would require the analysis of an appropriate 
camera model.  

Based on the research performed on various camera models, 
the pinhole model is the most popular which defines an 
explainable projection of a point in the 3-D world coordinate 
system to the 2-D image plane. Consider point p in the 3-D world 
coordinate system defined as: ൛W: wo,wx,wy,wzൟ , and the 
relative position of p in this system is defined to be 
Xw=(xw,yw,zw,1)T. The pinhole camera model for a particular 
point p can be defined as shown in (5). 

   m'=DK0MXw            (5) 

Where,  
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And  

   M= ቂ
R t
0 1

ቃ            (7) 

The general outlined procedure of the pinhole model, where 
the first step utilizes matrix M defined in (7) to transform the 
coordinates of p from its world coordinates into the camera 
coordinates, where R is a 3 x 3 matrix that corresponds to 
rotation of the camera and t is a 3 x 1 translation vector. Then, 
K0  projects point p onto the image plane which utilizes the 
camera focal length f and the optic center of the plan (x0, y0). 
Finally, matrix D which contains the individual pixel size 



 

   

(𝑑𝑥, 𝑑𝑦) in a CCD/CMOS image sensor with an intersection 
angle of 𝜃, discretizes 2-D coordinates in the Image Coordinate 
System {I}. Based on these steps, the multiplication of matrices 
D and K0  contains the intrinsic properties while matrix M 
contains the extrinsic properties. With a calibrated camera, the 
extrinsic parameters can be estimated using a set of 3-D points 
in the world coordinates and their comparable 2-D projections in 
the image coordinates [13]. 

III. METHODOLOGY 

To achieve a real-time head tracking mechanism using vision 
reference, accurate estimations of the head rotation angle, and 
position are required. Additionally, it is necessary to avoid 
disturbances which are inherent within an aircraft cabin 
environment. Two methodologies are established individually, 
Euler Angle Estimation and Unique Face Identification, which 
can be integrated into a single head pose estimation. The 
individual systems’ architecture and their working principles are 
discussed below. 

A. Head Pose Estimation 

The head tracking system is primarily based on head pose 
estimation, which is an active computer vision research field that 
utilizes cameras to attain the angular rotation and position of the 
head. This work leverages this concept to estimate the angular 
rotation of a passenger’s head to initiate a real-time noise control 
strategy. A facial landmark-based approach has been utilized, 
where the first step is to detect the face and identify the critical 
facial landmarks, which are simultaneously performed by the 
utilized MTCNN method [11] with a high accuracy. Once this is 
complete, the following adaptations are applied to attain the 
head’s angular rotations with minimized disturbances and 
accurate estimations; unique face identification, 2D to 3D 
rotation, and Euler angle estimations. Figure 3 outlines the 
overall framework of this head tracking system.   
 
1) Euler Angle Estimation 
As explained in section II, a predominant issue with head pose 
estimation is the PnP problem, with the MTCNN method the 2D 
coordinates (x, y) of the facial landmarks can be attained, and the 
3D coordinates of those same points can be selected arbitrarily. 
For the application the 3D points selected are shown in table 1, 
they correlate to the five facial landmarks detected by the 
MTCNN model. The location of a point P in (X, Y, Z) camera 
coordinates can be attained based on these 3D locations of a 
point P in (U, V, W) world coordinates, with the rotation matrix 
R and translation vector t of the world coordinates with respect 
to the camera coordinates. This is defined in (8) where the 
rotation matrix and translation vector are unknown.  

  ൥
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The next relationship to consider is the representation of point P 
in the image coordinates with the intrinsic camera parameters 
which is shown in (9) below. Where u and v are the 2D 
coordinates of point P, s is the scaling factor, which is ignored 
for this use case, fx and fy are the focal lengths in the x and y 

  s ቈ
u
v
1

቉ =  ൥
fx 0 cx

0 fy cy

0 0 1
൩ ൥

X
Y
Z

൩            (9) 

directions and lastly, (cx, cy) is the optical center. By combining 
the intrinsic and extrinsic parameters in (8) and (9), the overall 
non-linear equation to solve is shown in (10). 
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To solve this equation, a method known as Direct Linear 
Transform (DLT) [14] which approximately estimates the 
rotation matrix R and translation vector t. Since the DLT method 
lacks the desired accuracy as the reprojection error requires 
iterative minimization, the Levenberg-Marquardt optimization 
method [15] is applied after the DLT. This optimization method 
iteratively solves this problem by perturbing the R and t matrix 
and vectors, respectively until the reprojection error decreases, 
allowing for accurate estimations of the rotation matrix and 
translation vector. Once the accurate R and t are attained, the 2D 
locations of the 3D facial points can be predicted on the image 
through a projection matrix that projects the 3D points onto the 
2D image. The pitch (θ), yaw (ψ), and roll (ϕ) Euler angles are 
calculated by decomposing the projection matrix into the 
rotation matrices Rx, Ry, and Rz which are rotations about the x, 
y, and z axis respectively. The projection matrix P and the 
combined rotational Directional Cosine Matrix (DCM) is shown 
in (11) and (12), respectively.  
  

  P =  ൥

r00 r01 r02 tx
r10 r11 r12 ty
r20 r21 r22 tz

൩                       (11) 

 
  RDCM = Rz

(ϕ)Ry(θ)Rx(ψ)         (12) 
The Euler angles can then be calculated from the RDCM matrix, 
for the purpose of this application only the pitch and yaw angles 
are considered and shown in (13) and (14), respectively.  

          θ = atan2 ቆ−RDCM31,ට൫RDCM11൯
2
+൫RDCM21൯

2
ቇ     (13) 

  ψ = atan2൫RDCM21, RDCM11 ൯                      (14) 
Lastly, the passenger and the camera coordinates vary slightly as 
the images attained from the camera are inverted which impacts  
the Euler angles calculated, to tackle this, the yaw angle ψ is 
inverted to accommodate the inversion between the world and 
camera coordinates. The final yaw angle utilized is shown in 
(15), while no change is made to the pitch angle calculated.  
                             ψ = −atan2൫RDCM21, RDCM11 ൯               (15) 
This method allows to accurately estimate the head pose at any 
given time and provides the ability to track the head with varying 
head poses. This establishes a framework to perform various 
experiments that tests the accuracies of the head pose 
predictions.  
 
2) Unique Face Identification 
Within an aircraft cabin setting, there are high possibilities for 
various personnel to interfere with the head tracking system, 



 

   

 
 

Table 1: Arbitrary 3D Points Selected 
Facial Landmarks Global Coordinates in (U, V, W) 

Left Eye (-165, 170, -115) 
Right Eye (165, 170, -115) 

Nose (0, 0, 0) 
Left Mouth Corner (-150, -150, -125) 

Right Mouth Corner (150, -150, -125) 

 
to tackle this problem a novel method called unique face 
identification has been developed which creates a sphere 
bounding box around the first face detected and ensures that any 
other faces that enter this sphere will be tagged as a “New Face 
Detected” and will prevent further angular calculations. Figure 
4 showcases the working mechanism of the unique face 
identifier, where the yellow bounding box attained from the 
MTCNN model is used as a reference to then create a dynamic 
sphere bounding box with an established d௜ and d௜_௠௔௫  which  
are the edge distances taken from the right side between the face 
bounding box, and the sphere bounding box.  
 

These distance measures dynamically change as the head 
moves, to reduce noisy tracking data during real-time unique 
face identification a distance ratio d௜ d௜_୫ୟ୶ (௜௡௜௧௜௔௟)⁄  is used as 
the metric to detect new faces. Where d௜ dynamically changes 
with head rotations and d௜_୫ୟ୶ (௜௡௜௧௜௔௟)  is the initial distance 
value established with the first detected face. Based on 
experimental analysis the valid head tracking distance ratio is 0.1 
< d௜ d௜_୫ୟ୶ (௜௡௜௧௜௔௟)⁄  < 0.85, anything outside this range would 
stop angular calculations and flag the system with a “New Face 
Detected” tag. This overall mechanism ensures angular changes 
from only one face is being calculated and processed for 
downstream control tasks, which reduces the likelihood of 
unnecessary data being transmitted.  

IV. IMPLEMENTATION 

Based on the methodology developed and explained in the 
previous section, the implementation is split into two 
components experimental setup and experimental results. The 
head tracking system is tested and evaluated as a stand-alone 
system initially and later integrated with a speaker motion 
system for real-time testing. The setup and results are separated 
in such a manner to understand the system’s behaviour at a finer 
level. Since the focus of the development of the head tracking 
system is to orient the speakers to follow the passenger’s ear, the 
dual-axis gimbal system and the head tracking system create a  

 

continuous loop in which the inputs from the head tracking 
mechanism are treated as the reference points for the gimbal 
system to adjust the position of the speakers accordingly. The 
motor control is determined by the encoders which aim to correct 
the motors’ position to match the reference input angle from the 
head tracking system. 

A. Experimental Setup 

1) Head Tracking System  
As seen in figure 6, the experimental setup for the stand-

alone system is done by placing a mannequin head above a turn 
table at 30 in. away from the source camera, the mannequin head 
is used for the tests as the MTCNN algorithm would have to 
recognize a human face in order to perform the detection. A turn 
table is used to accurately verify the angles predicted by the head 
tracking system, and a distance of 30 in. from the source camera 
is selected to simulate the realistic distance between the 
passenger and the camera within the aircraft cabin. Lastly, the 
source camera used for these experiments is a built-in laptop 
camera.  

The stand-alone system test is comprised of collecting data 
from a series of 9 different yaw positions set at 2 pitch positions, 
accumulating to a total of 18 tests. The yaw positions ranged 
from −40o to 40o and the two fixed pitch positions are 10o and 
20o, at each pitch position the turntable is set to the 9 different 
yaw positions where approximately 350 datapoints are collected 
at each position. Based on the data collected at each test, the 
average percent error is calculated for further analysis.  

2) Speaker Motion System 
The objective of the gimbal system is to orient the speaker in 

a way that the zone of quiet bubble is constantly maintained 
around the passenger's head even with position and angular 
changes of the head over time. The speakers’ motion is mainly 
defined in the pitch and yaw motion, figure 5 also showcases the 
coordinate frames where the yaw motion corresponds to the 
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speakers moving left and right with rotation about the y-axis, 
while the pitch motion is defined when the speakers move up 
and down with rotation about the x-axis. The angular 
information attained from the head tracking system is directly 
utilized for the motion of the speakers as they both share the 
same coordinate frames. The integrated system tests the dual-
axis gimbal motion with the head tracking system using a 
passenger’s realistic head movements, during testing the 
passenger moves the head dynamically in both pitch and yaw 
motion and the gimbal system replicates the motion of the head. 
As seen in figures 7 and 8, the participant moves their head in 
the pitch and yaw directions respectively. The test cases are 
classified into two scenarios: “Head Left” and “Head Right” 
depending on the location of the passenger’s head from the 
neutral position. The results for these tests are primarily reported 
based on the motion along the yaw axis since this direction has 
a higher range of motion than that along the pitch axis.  

B. Experimental Results 

1) Head Tracking System Results: 
Based on the 18 test cases defined earlier, the main metric  

used to measure the accuracy of the head tracking system is the 
average % error, as it would consider all ranges of the dataset 
and is described in (16).  

  Avg. %Error= 
∑ ቤ

vA(i)-vE
vE

ቤ.100%n
i =1

n
                       (16) 

Where vA is the actual observed value, vE is the static expected 
values, and n is the total number of data points within each 
particular test case. Based on the average % error calculated at 
each test, a total average is taken for better generalization. As 
seen in table 2 the total averages for both yaw and pitch motions 
were maintained predominantly under 5%, while the total 
average % errors at the 10o pitch angle is higher than those of 
the 20o pitch angle. Figures 9 a) and b) showcase the average % 
errors at each test for both yaw and pitch motions at the 10o and 
20o pitch angles, respectively. As it can be seen in both figures, 
the system is able to generalize the predictions in the yaw 
direction better than the pitch, where the errors are higher at the 
extreme yaw angles of ±40o.  

The model has an overall better performance at the 20o 
pitch angle, when compared to the 10o with very similar yaw 
errors but much higher pitch errors. Factors such as lighting and 
initial camera calibration contribute to the discrepancies in pitch 
performance between the two test categories. Lastly, the 
distribution of yaw % error at each test is also studied through 
boxplots, figures 10 a) and b) showcase the data distribution at 
each yaw test at the 10o and 20o pitch angles, respectively. It 
can be seen that the Interquartile Range (IQR) is predominantly 
within 5% for both tests, with an outlier in the  20o  pitch at 
−40o . Despite the single outlier, the system has shown 
promising consistencies with its accuracy by maintaining low % 
errors at each test. Based on the defined test conditions, the 
vision system is able to accurately predict the head poses while 
maintaining minimal errors. 

2) Integrated System Results: 
The real-time capabilities of the head tracking system are tested 
with the integrated system test, the head tracking is expected to 
relay the data to the speaker motion system to effectively move  

 
 
 

Figure 5: Speaker and Camera System Coordinate Frames  
 

 
Figure 6: Standalone System Test Setup 

 

       
  Figure 7: Integrated Pitch Test Setup      Figure 8: Integrated Yaw Test Setup 
 
the speakers. Figures 11 a) and b) shows the response of the 
speaker motion system with the real-time head tracking system, 
it can be seen that the head tracking system is able to provide 
head pose predictions consistently. The encoders are then able 
to follow the predicted head rotations very closely with some 
errors observed.  The integrated test validates the performances 
of the head tracking and the speaker motion system with respect 
to achieving the desired accuracy and low latency, which meets 
the overall objective of real-time noise comfort within an aircraft 
cabin.   

V. CONCLUSION  

In this study, a modified head pose estimation approach has been 
examined and integrated with a real time tracking mechanism 
for a moving target within aircraft cabins. The stand-alone tests 
prove the head tracking system’s accuracy at varied yaw and 
pitch angles where the dual axis prediction capability makes this 
a desirable approach for pose estimations of generic passenger 
head movements. The integrated system has provided a 
framework to accurately track the passenger’s head, while 
maintaining high accuracies and balancing effective real-time 
responses. The real-time capability of the overall system, while 
minimizing individual errors is very promising for active noise  
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Table 2: Total Average % Error Results 

Pitch Angle Total Average % 
Error (Pitch) 

Total Average % 
Error (Yaw) 

10o 5.22 3.41 

20o 2.71 3.23 

 

a)                  b) 

            

        Figure 9: Yaw & Pitch Average % Error. a) At 10o Pitch, b) At 20oPitch      

a)                b) 

                   

            Figure 10: Yaw % Error Boxplot. a) At 10o Pitch, b) At 20oPitch  

a)                b) 

                                                       

   Figure 11: Real-time Integrated Yaw Test. a) Head Right, b) Head Left 

control tasks that can improve the passenger’s noise comfort 
experience within the aircraft cabin. This head tracking approach 
has the potential to be extended to other pose estimation tasks 
such as driver assistance, motion capturing, and gaze estimation 
to name a few.  
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