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ABSTRACT

The problems of tension, simple shear and torsion are
solved using a hypoelastic constitutive equation similar to the
Prandt]-Reuss equation for an elastic-plastic material. It is shown
that the hypoelastic solutions give underestimates for the force vari-
ables of the classical elastic-plastic solutions in these particular
problems.

Simple extension and torsion of a circular and square bar
are investigated experimentally for commercially pure aluminum. A
work-hardening function is approximated from the results of the tension
test. The torsion problem is then solved for both the circular and
square cross section using hypoelastic theory. The theoretical and

experimental results are compared for the work-hardening material.
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CHAPTER 1
INTRODUCTION

The mathematical study of the stresses and strains in plas-
tically deformed metals began a century ago. In 1864 Tresca proposed
that a metal yielded plastically when the maximum shear stress attained
a critical value. A system of five equations governing the stresses
and strains in two dimensional flow was proposed by Saint-Venant in
1870 [23]. Saint-Venant postulated that the directions of maximum
shear strain rate coincided with the directions of maximum shear stress.
In 1871 Lévy proposed three-dimensional relations between stress and
rate of plastic strain. In 1913 von Mises suggested a yield criterion
which is probably the most widely used today. Von Mises also inde-
pendently proposed equations similar to Levy's. In 1926 Lode conducted
a series of experiments showing the validity of the Levy-Mises stress-
strain relations to a first approximation. 1In 1930 Reuss, following
an earlier suggestion by Prandtl, generalized the theory so that elastic
strains were accounted for. Schmidt (1932) and Odqvist (1933) showed
in different ways how work-hardening of the metal could be incorporated
into the Lévy-Mises equations. Little progress was made in the next
decade. However, since World War Il significant advances have been
made in the solution of special problems.

A large amount of the difficulty encountered during the solu-



tion of elastic-plastic problems arises because there are often two
di fferent regions separated by the elastic-plastic boundary. Hooke's
Law is associated with the elastic region while the elastic-plastic
constitutive equations govern the plastic region. The elastic-plastic
boundary is found as part of the solution.

In 1955 Truesdell [1] proposed the theory of hypoelasticity

where the constitutive equations are of the form;

rate of stress = f(stress, rate of deformation),

where the function f is a homogeneous and linear function with respect
to the rate of deformation. Chapter Il shows the development of the
hypoelastic theory and shows how the hypoelastic equations may be used
to represent an elastic-perfectly plastic solid or a work-hardening
material. The advantage in using hypoelastic theory is that the entire
body is governed by one consti tutive equation and the problem of finding
an elastic-plastic boundary disappears.

Truesdel) applied hypoelastic theory to simple problems in-
volving homogeneous deformation. A.E. Green [14,15] also applied hypo-
elastic theory to the problems of simple extension, simple shear and
torsion of a circular bar using a particular form of the hypoelastic
equations. Solutions for loading were fitted together with solutions
for unloading. Green obtained solutions using a dynamically correct
form of the rate of stress. The solutions were then simplified by

assuming that a certain material constant (u/k) was large with respect



2a
to unity. In 1960 Bernstein [6,7] showed that by changing the initial

stresses a particular hypoelastic constitutive equation could describe
two totally different materials.

Chapter 111 contains the solutions of some simple problems
using both hypoelastic and elastic-perfectly plastic theory. Compari-
son of the two theories is made wherever possible. It is shown in
Chapter IIl that under certain conditions the dynamically correct form
of stress rate may be replaced by the material rate of stress and the
solutions obtained with this approximation are the same as the simplified
solutions obtained by Green [14,15] in a different way. This is important
because the use of the material stress rate simplifies most problems
considerably. This thesis applied hypoelastic theory to a non-homogeneous
deformation problem (torsion of a square bar) and uses the material
rate of stress.

Chapter IV describes some experimental work that was carried
out using a work-hardening material. Torsion and tension tests were
performed on commercially pure Aluminum specimens.

In Chapter V various work-hardening problems are solved
using a particular form of the hypoelastic constitutive equation. The
work-hardening function is evaluated from the results of the experi-
mental tension test. This function is then used in the hypoelastic
constitutive equation to predict the results of the torsion experiments

for a square and a circular cross-section.



CHAPTER 11
THE RELATION BETWEEN HYPOELASTICITY AND PLASTICITY

2.1 The General Hypoelastic Constitutive Equation

The classical linear theory of elasticity is based on the

relation

stress = g(small strain from an unstressed state) (2.1)

where g is a single valued function. This relation has been generalized

for the theory of finite strain as

stress = h(finite strain) (2.2)

where h is a single valued function. Truesdell [1] suggested that the
basic assumption (2.1) of the classical linear theory could be regarded
as a first approximation to a more general theory of finite strain dif-

ferent from (2.2) and proposed the relation

stress increment = fl(strain increment)

or

rate of stress = fz(rate of deformation)



where f] and fz are single valued functions.
Further, Truesdell sought to free this concept of elasticity
from any connection with a natural or otherwise preferred state. It

was proposed that the constitutive equation may depend on the current

stress, so that
rate of stress = f(stress, rate of deformation) . (2.3)

This theory may be regarded as representing a material in
which the stress is built up by increments which at any instant obey
a linear stress increment-strain increment relation with coefficients
depending upon the current stress. The response predicted by equation
(2.3) 1s identical to that predicted by the classical theory ‘f the

strain is infinitesimal.

Equation (2.3) can be written as

D

Feor = f 0. d) (2.4)

where

]
UThRE A RAIRL

is the rate of deformation tensor, v, are the velocity components and

the semi-colon denotes covariant differentiation. The stress tensor



is denoted by o: while Db:/vt is the "rate of stress" which may take

one of various forms each of which must be objective in order that the
constitutive equation be dynamically correct.
The rate of stress that is used in this thesis is the co-

rotational derivative,

k k
Do Do
L. &, km_ mKk
) t + cmu,. - O,.um (2-5)

where

. )
wig * 7 Mgy
are the components of the spin tensor and

k k
Dol %0

s L, K
bt~ 3t "°z;m”m

is the materfal derivative of the stress tensor.

Prager [2] has discussed certain other definitions of stress
rate and has noted that the definition given by equation (2.5) has the
property that zero stress rate implies that the stress invariants are
stationary whereas the other definitions do not have this property.

The stress rate (2.5) used in this thesis was derived by
Noll [3] and earlier by Jaumann [4] in a different way. The Jaumann
stress rate measures the material rate of change of the stress components

with respect to coordinate axes that rotate with the material and {n-



stantaneously coincide with the fixed axes.

Returning now to the general form of the constitutive equation

for hypoelasticity, equation (2.4) can be rewritten as

i
ot
i,k
vil = fj(dl,t:) (2.6)

where

are the components of the stress tensor with twice the elastic shear
modulus as the unit of stress.

A1) constitutive equations must satisfy certain invariance
requirements.' In order that the well known principle of objectivity
be satisfied, it can be shown that the function f must be a hemitropic
function of d and T, where f, d and T are the matrix equivalents of
f;. dX and t] respectively.

According to a theorem of Rivlin [5], a hemitropic polynomial

f of two tensor variables g and I can be represented in the form
f(d,T) = a1 ¢+ a2,,d + 2 dz +a,T+a T2 (2.7)
b e d 00- 10~ 20~ ol- 02~ *
+ a,,(Td + dT) + a,,(dT2 + T2q)
) } AP 12° - -~ -

ran (@10 16 ¢ ayy (P o 8T

*For simplicity matrix notation, which is valid in general coordinates,
is now used.



Use has been made here of the Cayley-Hamilton theorem which states that

a square matrix satisfies its own characteristic equation. That is

3 2

2 3,
g = ‘d g - Ild g + IIId , I ltI - IItI + IIIt
where 1, II and II] are the first, second and third invariants re-
spectively. The coefficients 3.8 above are functions of the ten in-

variants Id' lld. llld. lt. Ilt. Illt. R, N, P, Q of which the last

four are the joint invariants defined as

o kot R
R=tid , N tltmd:

P= t:d;d: , Q= t:t;d:d: .

By using the principle of material objectivity, the function
f has been put in the form of equation (2.7). This equation can be re-
fined further by applying dimensional invariance.

One of the hypoelastic hypotheses is that no constitutive co-
efficient of a hypoelastic material can have a dimension independent of
stress. Since there is no modulus with dimension "time", there is no
relaxation effect.

Since vt;/vt and d; are of dimension t']. where t s time,
equation (2.6) must reduce to the forn'

*The more general bodies which do not have the restriction of linearity
in dl are called hygrosteric by Noll [3].
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14
o alk 42
ﬂi Aye % (2.8)
where A;: is a dimensionless function of t;. It may be deduced from

equation (2.7) that 80 " 8 "3 " 0, 259+ 29 and a, are of degree

one in d: and 310° M and a,, are independent of d: . The joint in-
variants

do not appear since they are of degree two in d: .

Since a g are power series in T, equations (2.6) and (2.7)
reduce to

oT
75 ° 6 agl + 0yd + 6 ol + Ragl (2.9)

* FoydT + T0) + 6 agT” + RagT
+ Moyl + 7 agldT? + T20) + RagT?
. T+ Tz
Najgl + Moyl

for a compressible solid, where o (y = 0,1,2,...,11) are dimensionless

analytic functions of the three principle invariants of T:



a * %(lt'”t'lut)

and
RPN
For an incompressible medium it can be shown that
;ri" "2?1* (a) + B)d + 7 ag(dT + T0) +
(agR + azN)T + (agR + oy gN)T + (2.10)
(agh + ayWIT* + 7 og(dt? + T°) .
If

v

%,(0,0,0) = 1 and a,(0,0,0) = .2% "=

where A and 1 are Lamé constants and v is Poisson's ratio, the constitu-
tive equations of hypoelasticity reduce to those of the classical theory
of elasticity as a first approximation.

However, the constitutive differential equations (2.9, 2.10)
and the initial conditions are not enough to define uniquely the hypo-
elastic material behavior. A hypoelastic material is defined by the

assignment of a set of constitutive differential equations (2.8) and a



10

corresponding equivalence class of stress configurations. Bernstein [6,7]
has shown that by changing the initial stress, a particular constitu-

tive equation may define totally different materials.

2.2 An Elastic-Perfectly Plastic Constitutive Equation

The following discussion assumes that the elastic part of the
strain is small and can be regarded as infinitesimal. The rate of de-
formation tensor dij may then be written as the sum of an elastic

part d:j and a plastic part dgj (3]

.d®, 4+
dij dij + dij

At this stage it is convenient to consider strain increments rather
than rates of deformation so that the total strain increment de,J can
be written as the sum of an elastic and a plastic part.

= de® P
de1J de1j + deij (2.11)

The strain increment deij [9) is defined by the equation
e b2 9
deyy ° 7 (3xj (duy) + 5y (dug))
where du‘ is the incremental displacement of a point whose current

position-vector is L referred to fixed Cartesian axes (Ox‘). It
should be noted that du, does not denote u‘(f + dx) - “im'



n

1f the total strain is small the total strain rate is {dentical

to the rate of deformation and can be written as

. 1
TR TR AURRAIRY

where vy are the velocity components referred to rectangular Cartesian
axes {0x1} and a comma preceding a subscript denotes partial differen-
tiation with respect to the appropriate spatial variable.

An assumption of classical plasticity is that there exists
a yield condition described by the equation

f(°1j) s 0

where 93 is the symmetric stress tensor and the sign of the yield
function f is chosen so that f < O corresponds to the elastic regime.
The function f also depends on the temperature and prior history of
work-hardening and heat treatment.

The flow rule [8] for perfectly plastic materials associated
with the yield function f(oij) is given by

. 2.12
1" % (2.12)

where it is assumed that the yield function f is regular at the stress
point considered and dﬁj are the plastic rates of deformation. i is a
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non-negative scalar factor of proportionality and is not a material

constant, but varies during the deformation and

Xe0 if £<0 or iff=0 andf =210, <0

x>0 1f f=0 and f=0.

The function f is often called the plastic potential. An example of
such a function is the von Mises yield function, which is considered
later.

For a perfectly plastic solid with a constant state of stress
at the yield point non-vanishing strain rates may occur. However, for
a work-hardening material, an increase of stress beyond the yield limit
s required to produce non-vanishing strain rates. The flow rule for

a work-hardening material with a regular yield surface is

. . ¢ - 3f
d':j 0 if £<0 orif f Oandf-aou 04y <0

s —a-L.  § p
d‘:J gao”f if f=0 and f>0

where the positive work-hardening function g may depend on the stress
and strain histories, but is independent of stress rates. Therefore
the plastic rates of deformation for loading (i’ > 0) are assumed to be

linear functions of the stress rates.



It is assumed that metals are plastically incompressible.

Consequently

kk-o.

With the assumptions of isotropy and absence of Bauschinger effect,
along with the experimental fact that yielding is to a first approxi-

mation unaffected by moderate hydrostatic tension or pressure, it can

be shown [9] that the yield function can be put in the form
f(lls.llls) =0

where

Mg = 35155y Hlg = 7545 Sy Sy

13

and f is an even function of llls. S‘J is the deviatoric stress tensor.

Von Mises suggested the following yield function for a non-

work-hardening material;

s 2 s z

where k is a constant. That is

- 2
f:zS'J S‘j - k
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Equation (2.12) then yields
P .
In terms of strain increments this can be written as

dc';j = dr Sy - (2.13)

From Hooke's Law
ds
e _ 1] do
“13 ol N 845
where do * do“n . Equation (2.11) then implies that
ds
el do
dogg = gl + BSyy T by

These equations, which are known as the Prandt]-Reuss equations, may

be rewritten as

(o) ds
deyy ° —iles, o
(v)
de = de® = & (2.14)
(¢)
.

S4g S1y
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where

Equation (2.14b) is the compressibility condition. The external work

dW per unit volume done on the element during the strain increment

de” is

o = di, + dW
where
s . ] p
dw, 2y de” , dlip 511 dcu . (2.15)

dﬂ. is the elastic recoverable energy while dW_ is the plastic work per

p
unit volume. Now since plastic distortion is irreversible in the thermo-

dynamic sense,

dﬂp>0

during plastic deformation.” From equations (2.13) and (2.15) it follows
that

*Yield surfaces in stress space which do not enclose the origin are
not considered.



dﬂp-2k2dx>0.

Now during loading in the plastic region
P o deP
The trace of the product of both sides with SiJ is
S,  de®, = dA S, 5., = 2k da
LP B B 13 74
or
o = A defy Sy oefy
A s z .
2k 2k

Therefore during loading in the plastic regime

ds S, , de
Bad K P 1 Mt 1)
dcu * = S1J

2k
- 90
de ’X#!y

- %8
513 513 2k

For unlosding or during loading when S, S, < 2°

16

(2.16)
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deij.Tll

do
de * 47w

The above is one example of the constitutive equations used in the
solutfon of elastic-perfectly plastic problems. It should be noted
that the stress increments in the above equations are referred to
fixed axes and are not objective. However, if the rotations are

small these equations are valid.

2.3 A Hypoelastic Constitutive Equation Similar to the Prandtl-Reuss

Equation

In this section, it will be shown that under the proper as-
sumptions the constitutive equation for a hypoelastic body can be re-
duced to a form resembling that of the elastic-perfectly plastic body
described in Section 2.2.

From Section 2.1 it is clear that in developing the theory
of hypoelasticity, no assumptions are made as to the magnitudes of the
deformations. The theory is completely general and applies to large
as well as small deformations. If the dynamically correct form of the
Prandtl-Reuss equations is used, the only assumption concerning magni-
tudes of deformations is that the elastic strain is infinitesimal.

The constitutive equation (2.16) for the elastic-perfectly
plastic body obeying the von Mises yield criterion is a combination of

classical linear elasticity and pure plastic flow in which the components
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of deviatoric strain rate are proportional to the components of de-
viatoric stress.

The constitutive equations (2.9) and (2.10) for the com-
pressible and incompressible hypoelastic body are general in that
they may describe many different materials depending on what values
are given for the coefficients in the equations.

Hypoelastic and plastic constitutive equations are rate
independent. Consequently the hypoelastic theory can not, for example,
describe a viscous fluid. Also in both the hypoelastic theory and
the plastic theory as described in Section 2.2 it is assumed that the
materials are isotropic.

Thomas [10] has obtained the dynamically correct form of the
Prandtl-Reuss equations in terms of stress rates rather than stress

increments. These equations, referred to a fixed system of curvilinear

coordinates {Oy1 }, are

DS
v e i :
diy z;"vfl *XSy - (2.17)
The sywbols used in the equation are defined above.
Now for loading in the plastic domain
. S, a:P
\ s ij 1§
2k

Substitution into equation (2.17) yields



19

1 vsi ' Sm d:
i e T =z S (2.18)

where the second term on the right is present only for loading in the

plastic zone. For an elastically compressible material
) L . (2.19)

Consider, now, the general constitutive equation (2.9) for

a compressible hypoelastic material.

ot
1 3
"6!1 ag ddyg * @95 * 92 dactey * 3 tadkebyy
1
¢ gagdg b, ot d ) ¢ ag )t by + ag tdy,tyy
(2.20)
\
+ap t,t 085+ 7 9801 btttk timdny)
+ ag t, 4y tiates * %10 tkatiadmktiy * 011 teatindmktintng -
It (M)

AL h e )2
%% * Y (tw

@ =)



. _h
o T "

h
@3 % = ¥ by

all other ay ® o,

then equation (2.20) becomes

t

ot d
i . A Kk Yedes
‘D'{'t dig * 75 by * Mty - 1 Sy Yyy - =3

Let

Then equation (2.21) can be rewritten as
Do o
[Iad f I A ) kk
% dig * & Gy T 57 g T T 4y

o, d
kkLL
(okldll - } .

20

(2.21)

(2.22)

Equation (2.22) can be written in terms of the deviatoric and hydro-
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static components;

0S S, ,d!
1 B4y .0 L e
?Lu B. 2-3";) d. (2.24)

Equation (2.23) is similar to the Prandtl-Reuss equation (2.18) ex-
cept that the second term on the right hand side of equation (2.18)
is present only for loading in the plastic zone while the corresponding
term in equation (2.23) is present for all "loading" deformations.
Also in the elastic-perfectly plastic theory, d;J is divided into elastic
and plastic components whereas this is not true in hypoelasticity. Thus
the second term on the right hand side of (2.18) is not quite the same
as the corresponding term in equaticn (2.23) even though we may be
loading in the plastic region.

Upon comparing equations (2.19) and (2.24) it is noticed
that in equation (2.24) “d" is the total rate of dilatation while in
the elastic-perfectly plastic theory it is assumed that the body is
plastically incompressible.

Truesdell [12] has shown that for certain incompressible
hypoelastic solids, the constitutive equation can be written as

s S_d
1 1 " N
E_D!i-d“’-_z_k!_sij.
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The di fferences between this equation and the corresponding one in
classical plasticity are identical to those stated above for the com-
pressible body.

Further comparison between the two theories may be made in
regard to the notion of a yield criterion. In the theory of plasticity
a yield criterfonis assumed. Truesdell [13] on the other hand has
shown that by using the equations of hypoelasticity one can obtain
what is called a hypoelastic yield as one of the results in the solu-
tion of the simple shear problem. In the paper referred to above,
Truesdell solves the problem of simple shear using equation (2.23)
and compares the hypoelastic yield to the von Mises yield for various

values of (u/k).

2.4 A Hypoelastic Constitutive Equation Suitable for Some Work-

Hardening Materials

The hypoelastic constitutive equation derived earlier in
this chapter can be written as

or, .
‘Dt‘t = djy e n Tl Ty (2.25)

where T‘J . Sij/2“ and h = - Zuzlkz. However, in general h is a di-

mensionless function of J and K where

)
J* 3 TTke
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K= 3 TeaTonTmk -

In Chapter V, this thesis considers the application of
equation (2.25) to problems involving work-hardening solids. The
assumption is made that h is a function of J only. The functional
relationship for commercially pure aluminum is approximated from the
results of a simple tension experiment. The constitutive equation
(2.25) is then used to solve the torsion problem for this material
for both square and circular cross-sections, and the solutions are

compared to experimental results.
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CHAPTER 111
SOLUTIONS TO SOME HYPOELASTIC PROBLEMS AND COMPARISON
TO CORRESPONDING ELASTIC-PERFECTLY PLASTIC SOLUTIONS

This chapter contains the solutions of some problems using

the hypoelastic constitutive equation

o7

ij ' 2 u
2

where a” = Zuz/k2 and M' = Tkzdﬂz' Comparisons are made to the
classical elastic-plastic solutions in which the Prandt]-Reuss equations

and the von Mises yield criterion are used.

3.1 Simple Extension

Consider the velocity field

vy = c(t) x "z"s“zt'l"z "3"5'9')"3

for an incompressible material where the components of velocity are

referred to a Cartesian coordinate system. Then

' e - _C
dig* %4319 -3




and the rate of spin tensor is zero. Assume

" h
T 0 ©
T .o JI oo
11'5‘1 7
T
0 0 -3
|

The constitutive equation can be written as

ot
i L 24
‘b‘t‘l* Tokg * Tt = %5 % TadkaTyg (3.1

Now since Wy g s 0 and the stresses are assumed to be homogeneous,

equation (3.1) becomes
.3,

or since ¢ is assumed to be a monotonically increasing parameter

:2--1-%«212. (3.2)

Equation (3.2) and the initial condition that T = O when c = 0 implies
(4] that

1.4 unh('/;uc)
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or

s 1 5 \
T = o (3) tanh (/3%::, .
The classical elastic-plastic theory predicts that
. 1k
T ¢ if ¢ < 5 (u)

and
Tk ® reapyd

where “c” 1is the logarithmic strain.
Figure 3.1 shows the relationship graphically between di-
mensionless deviatoric stress and logarithmic strain for both the

elastic-plastic theory and the hypoelastic theory when u/k = 1000.

3.2 Simple Shear

In this section the problem of simple shear is considered
for both the elastic-plastic solid and the hypoelastic solid. The
problem is solved for both cases using the objective stress rate qu

and the non-objective stress rate ait .

The velocity field, referred to fixed Cartesian axes Oxi. is

v]-Z;:(t)xz.vz-va-O
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and 2c = tan £ where £ is the angle of shear as shown in Figure 3.2.
The equations of motfion are satisfied if body forces are

zero and ¢ = 0.

X2
//' ;;7
7 1 /
41",', -7 /
[ ---r I
/ ) |
¢ ! / /
s/ / /
/ [ /
/ / /
/ / x
/ / 1
Ll /

Fig. 3.2 Typical Rectangular Element in Simple Shear
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The rate of deformation tensor is

0 ¢ 0
diJ H dij = c 0 O
0 0 O
while the spin tensor is given by
0 ¢ 0
w‘j = ’é 0 0 .
o 0 O
Assume
T S 0
Sij s S 'T 0
0 0 0

where $1.1 is the deviatoric stress tensor and
T=sT(t) S=5(t) .

That is, 1t is assumed that a state of homogeneous stress exists. The

deviatoric stress is used rather than the non-dimensional deviatoric



stress in the simple shear problem.

The elastic-perfectly plastic solutions are now obtained
using both the dynamically correct form of the Prandtl-Reuss equations
(i.e. with the Jaumann stress rate) and the approximate form with the
material derivative of stress. The hypoelastic shear problem is then
solved using both the Jaumann and the material stress rate.

If the Jaumann stress rate is used, the elastic-plastic

theory predicts that

DS, .
'D'{'t * Sikkg * Sy = 2u dgy

during elastic deformation. It follows that

=25 (3.3)

and

L..m0a . (3.4)

Integration of equations (3.3) and (3.4) subject to the initial condi-
tions that T= 0 and S = O when c = 0 leads to

T = u(l - cos2c)

29



S =y sin 2.

The yield criteria predicts that the material yields when

2
cos2c = 1 - & (3.5)
2
Then
2
K
T'z-u—
and

>

S=k - .
W

For the yield point to exist equation (3.5) implies that

The Prandti-Reuss equation

oS
1 ;
T+ Sy * Sy 8 - ¥ Sty
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2
implies that for 2c > cos”! (1 - !‘—2)

2u
a7 _ o _ 2
- s :E-ST (3.6)
and
¢ . 2 2
E -ZT-:E-S 02\1 . (3.7)

Equations (3.6) and (3.7) imply that

'I'Z#Sz-lt2

during plastic deformation. In other words the maximum shear stress
remains constant. This is merely a statement of the yield criterion.
To find the individual components of stress during plastic

flow, the equations

1/2
[ 1] 212
s 2() - T) (k-
& ( J’t ) ( )

2
s-(uz-tz)’



are solved subject to the condition

kz k2
T'T\T when cosZc-l--z—z-
(V)

If the material stress rate is used in place of the Jaumann
derivative then

T=0 _1
k
2<:5u
S = 2uc
and
1
T=0
2c>!‘-
-u
S= Kk

For most metals k/u << 1. Consequently these two solutions

ave almost identical.

The hypoelastic constitutive equation

0s
i \
'U!‘l * Sqpvig * Syuxy * 2udyy - ;'? SkadxeS1y (3.8)

in which the Jaumann stress rate is used, reduces to

32
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%-ﬁ-%ﬂ
and
3‘%--27-%5%2;:
for simple shear. Again the initial conditions are
(S)eag = ©
and
(Meag * 0 -
For S to remain real it can be shown that
E;l .
If the material rate of stress is used, equation (3.8) reduces to
%‘t * W dyy - :isu‘usu :

The resulting differential equations are



and

subject to the initial conditions

(s)c-o =0
and
(Mo * 0 -
Therefore
T=0
and

S = k tanh () .

The results of the four solutions are shown graphically in
Figures 3.3 to 3.6. Figure 3.3 shows a plot of t/k vs. tan § for various



values of u/k where

1=/ T°+8S

and
tan £ = 2Cc .

For the values of u/k used in Figure 3.3 the results obtained using
the material derivative are the same as those obtained when using the
Jaumann derivative. It can be seen that in the hypoelastic solution,
t/k rapidly approaches unity from below.

Figure 3.4 indicates however that for u/k = 1 the same re-
sults are not obtained when the material stress rate is used in place
of the Jaumann stress rate. In fact a different yield point is ob-
tained when the material derivative replaces the Jaucann derivative
in the elastic-plastic theory. Figures 3.5 and 3.6 show the values
of T/k and S/k for u/k = | when the Jaumann stress rate is used.

It can be shown that if the Jaumann stress rate is used,
T/k approaches k/u asymptotically from below for both the elastic-
plastic and the hypoelastic solutions. At the same time S/k rises
above v 1 - kzlu2 and then approaches /1 - kzluz asymptotically from
above. The only difference between the elastic-plastic and the hypo-
elastic solutions 1is that t/k = 1 in the plastic solution whereas t/k

35
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approaches 1 from below in the hypoelastic solution.

Two conclusions can be drawn from the above exercise. It
appears reasonable to conclude that hypoelastic theory can be used as
an approximation for elastic-plastic theory in certain problems. This
s beneficial since in some cases the hypoelastic constitutive equations
are easier to solve. Also since u/k is approximately 103 for most
metals, the Jaumann stress rate can be replaced by the material stress
rate if the components of the rate of spin tensor are of the same order

of magnitude as those of the rate of deformation tensor.

3.3 Torsion

3.3.a Statement of the Problem

Consider a prismatic bar of any cross section twisted by
couples applied at the ends. The lateral surface of the bar is to be
free from external forces while the ends are allowed to warp in the
axial direction.

The X4 axis is chosen parallel to the generators with the
origin at one end as shown in Figure 3.7.

3.3.b Classical Elastic Torsion

saint-Venant [17] solved the classical elastic torsion problem
by the semi-inverse method. That is certain assumptions were made con-
ceming the deformations of the twisted bar and it was shown that a
solution could then be found that would satisfy the governing equations
and the boundary conditions. Then from the uniqueness of elastic solu-

tions it is known that this is the exact solution.
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= Xy

1

Fig. 3.7 Right Prismatic Bar Under Pure Torsion

The displacements are assumed to be

PRRLEAEN
PREEIE
us'“(“}nlz)

where 0 is the angle of twist per unit length and 0(x1 "‘2) is called
the warping function. Displacements and rotations are assumed to be

sma)l 0 that the boundary conditions may be referred to the undeformed
configuration.



Now since the strain tensor is defined as

1 301 L]

it follows that

€ " €)=y =e,=0
Y 0
‘13":‘33‘1""2) ’23'!‘%”‘1)'

From Hooke's law it follows that

Oyy 092 " 933" %120

o3 " ““%!T - %) oyt "9‘%; +x)

where u is the modulus of rigidity. If the stresses are to satisfy the

equilibrium equations and the boundary conditions then it can be shown
that

2 2
] Qa—!zt 0
31‘ 3x2

subject to the condition

38



39

’ .dx dx

9 2 ¢ 1
(5x1 - "2) ® (axz’ SV il

on the boundary, where S is a measure of length along the lateral surface
in the X)Xy plane. Body forces are neglected in the equilibrium equations.

The problem can also be formulated in terms of the Prandtl
stress function [18]. If

) 4
N3 " o (xq0%))

)
%23 axy (% "‘z)

where ¥ is the stress function, the governing equation is

2 2
l—!z + -a—!-z 8 o 2ue
3xl 3x2

subject to
Y = constant
on the boundary. For a simply connected region Y will be chosen to

be zero along the boundary.
It can also be shown that

H'ZU Y dx, dx,



where M represents the torque applied at the ends of the bar and the
integral is taken over the area of the cross section.

3.3.c Hypoelastic Torsion

Consider a hypoelastic material that obeys a constitutive
equation of the type

173 s, ,d!
122 keTke ¢
7;-5;1 di - —T 5 (3.9)

This equation was developed in section 2.3 for both compressible and
incompressible bodies.

Throughout this discussion Cartesian coordinates are used
and a suffix preceded by a comma denotes partial differentiation with

respect to the appropriate spatial variable.

Displacements and rotations are assumed small so that the
boundary conditions may be referred to the initial configuration.
The velocity field is assumed to be

2 s -9 ‘2 x3
'2 s 9 X x3
V3 s “(l‘ 0‘205)

where 5 is the rate of change of angle of twist per unit length. Then



N -
o

d;J = d‘J .

and

8
wy "7 2xq
L (%!T + %)

)
0 G- xp) |
0 (%%;* 11)
(%’ X‘) 0

.
-2x, -(%3; + %)

9
0 ’(‘a'%;' X‘)

L)

Upon replacing the Jaumenn stress rate by the material stress

rate, equation (3.9) becomes

ot .
1 [] z [ ]

where

T'J

~N

e

(3.10)
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Also
= a = ‘ '
TSk, * ST35 - %) ¢ ToalGe * )l = o
Now the material rate of stress is defined as
oT oT T
iy .1 i
-5t "kix'k't : (3.11)
Since
X3

equation (3.11) reduces to

oT o, a

'b‘l'tT‘t ® x31, X * 8 xy ax
Since stresses and stress rates are assumed to be independent of Xq the
last two terms in the above expression are omitted and the material
derivative can be replaced by the partial derivative with respect to
time. The constitutive equation (3.10) can then be written as

T

o L2
-ﬂl-d“-eo W,
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Since 6(t) 1s a monotically increasing function of time one can write

)
ot

0.
Then

3Ti

6-531-4;1 -8 al Wy, -

The six constitutive equations become

(a)

%“’ - - ot wry,
(b)

g%l - - of Wy,
(c)

2-3-3-- - o? W'y, (3.12)
(d)

fsil - -l
()

3'“!.3..%(%;"7- x,) - o W'Ty4

(f)

The initial conditions are



44

Tij s () when 00 .

From the initial conditions and the first four of equations (3.12)
it can be shown that

TW=Tpp=T33=T=0

for all 6 .

If body forces and acceleration effects are neglected, the

only non-trivial equation of motion reduces to

Consequently the stresses are derivable from a stress function ¢ where

N oapd T, -

T =
13 axz 23 ax]

The boundary conditions require that y be constant on the boundary and
since the section is simply connected the constant can be taken as zero.

The hypoelastic torsion problem reduces then to solving the equations

at
e - aztfa)(gg; - xp) = a%T)5T,, (%%5 vx)  (3.4a)

T

- (- “z'gs’(%§; ;) - ofT)3Ty (%f; -a) (3.048)
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where
.a .-a
IPRE ~TRES
2 1
and
v=0

on the boundary of the cross-section. Multiply equation (3.14a)

by oz'l’]a‘r” and equation (3.14b) by (i— - azT%:.’) and add the two equations.
The result is

aT aT

1 22, a3 My
9 ., .2 T1:1) 50 * “271372 NN
201 [g-g o0y 7))

(3.15)

Multiply equation (3.14a) by (% - 02T§3) and equation (3.14b) by
az'l'n'l’zs and add. The result fis

aT aT

12 13, 2 23
2 ,(f'°T§3)T6 + a7 Ty3Tp3 36
- %

(3.16)
[7-79°(T3 * 7))

The above operations are valid provided
(a)
0T glp3 # 0



(b)
7- a'Tiy 4 0
(3.17)
(c)
§-af13 80
(d)

¥- o212y 123 # 0

Multiplying equation (3.12e) by T3 and equation (3.12f) by T23 and
adding gives

F ke - Wiy - (185 + T3] -
Since W' is always positive it follows that

, - o3(18, o 123) >0 (3.18)

and 02(7%3 + T§3) approaches %» asymptotically from below. It is in-
teresting to note that the von Mises yield criteria is

z-a(fz 0T2

Assusption (3.17d) is therefore valid and since
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- o(13; + T33) > 0

2
then

U (A
and

§-a’T3 00

showing the validity of assumptions (3.17b) and (3.17¢). 1t is necessary
that T]3 # 0 and T23 # 0 for assumption (3.17a) to be true. The as-
sumption that T13 # 0 and T23 # 0 was also used in obtaining equation
(3.18).

Differentiating equation (3.15) with respect to X, yields
. (3 - ofT3 & (3,23> 20

T
u2

[F- 7 o1, + 13)]

a7 aT
13, N3 M3z, 2 3 N3
e T3 30 * °z'13 x, 8 °° TaT23 3% (—ax, )

+

(3.19)
[% I LRR R
2 My, "23)

T,
2 13, 2
[(}- o t23) T *a T el ¢ Maw™ * Taa &)
L

-3 oty Ty’



48

Differentiating equation (3.16) with respect to Xq yields

13) _ 502 33 33

1 2 ?
2 (z-a 723) 3% %, x 2 T23 ax, 30

!

2
aT a7 a7 aT
2 M3 23, 2 M3 M3, 2 s 23
a By T23 30 * T3k, X, 36 ° TaT23 3% (_axz )
. : (3.20)
2 .2
F-% o 2123 4 12)
LI 2 Tl IR MLl T M3, g, Ta
z-¢° 3T “1323"5_“ 13 3, 23 3%,

+
[ - ¥ty + 1)

Let

R NE SR TL 0 T

Now since

2 2

¢ can be eliminated from equations (3.19) and (3.20) to obtain

o7 ) PO | a7 of
2 2 13 2 23 " 13 213 23
2o g () BT w, W ' W, 23w
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aT.. of aT
2 23 M3 . 2 3 BT
“M3wm, 30 ' T3l ag ‘ Z) .22 (5D
re
e’
po2r, 13 2¥Ma. My o a3 2Ny
13 5xl 30 ax] 23 90 13 3x1 20
* -
8
aT aT 3T aT 3T
2 3 Ns 2 M3 2 23, 2,. N3 23
a"T13723 3%, (557 [ =5~ * o Ty3Ta3 56 30 (T3 3, Wy T23 3, )
- +
g2 g*
T, T, aT
2 2 137 2(r. N3 23
[ =52 + o*Ty3Tp 550 0“0y 5> 23, T
. -0,
84
or
aT aT
¢, 22 2 N3y 2.2 2 23
“”‘Bax(ae’ x(a”z"“nTzaax( )
aT aT af at aT
2.2 ,N3 My 23 M3, 13
- a"8% 5 (T3 55 | 13w, From ( =Ty 32 3wt 123 T, )

o7
+ (Dl

Ty M,
M35, * Tes 5‘_’ - a'T3Tp(Tyg ™ T2

aT aT Ty
¢ (58T 5Ty, (75 ax;3 * Ty 37;’

T23
T )]



Let

As 7282

¢ = o282
D« - 6Ty, ;;:—3* T2 ?’ + v2al(T) :I::s T23 T a:?)
- a¥1y3Tys (T :I;:a * o3 :‘1:—3 )
£ = - a’8i(Tyy ;;2& *Ts ax23’ + nad(Tyy aT? + Ty ;:%:1)
- a¥TyaTaa(Tyg :::3 * T :I?)
F =2t

Equations (3.13) and (3.21) then become

2
Aa—-z (g%) + 28 ———o ax axz (-g-) s =2 (Tg)
K ‘2 (3.22)

¢D-a:—](%%)0£-a-:;(-:*)or.o,
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It can be shown that

2

B -Ac--[}-%- a2(7$3+rg3)]3<o.

Therefore equation (3.22) is elliptic until infinite deformation at
which time it becomes parabolic.

The boundary condition associated with equation (3.22) be-

comes

B2
L]
o

(3.23)

on the boundary.

The hypoelastic torsion problem could also have been formu-
lated in terms of the warping function ¢, however it was found that
problems arose when trying to satisfy the boundary conditions in the
numerical procedure.

3.3.d Numerical Procedure for a Square Cross-Section

The governing equation (3.22) for hypoelastic torsion and
the associated boundary condition (3.23) will now be applied to a
square cross-section. Since the classical elastic and plastic solu-
tions possess eight fold symmetry, it is reasonable to assume that the
hypoelastic solution will behave similarly. Referring to Figure 3.8,
only the shaded area OMN in the first quadrant will be considered.



—= X,

s

TN P

a a
Fig. 3.8 Square Cross-Section of the Bar

In applying the boundary condition (3.23) to the triangle
OMN it is clear that

%x--o at X =a.

Due to the sysmetry of the stress function

3-:;(%)-0 at x, 0

and

Lo xex
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where n is the normal to the boundary ON.
Equation (3.22) becomes

2 2 2
Y Y Y Y oY

A + 2B ——+C + D+ ES—+F=0 (3.24)
ax‘! 3X] 3X2 axzi ax] 3x2

where A, B, C, D, E and F are functions of T13 and T23 , and

-
m
L% 0%
e

Since T]3 and T23 are zero when 0 = 0, the coefficients A, 8, C, D, E
and F can be evaluated at any point in the region OMN. Equation (3.24)
is solved for 3y/230 using a finite difference procedure. The stress
function ¢ is known to be zero initially and by using a forward inte-
gration of the type

v(0+40) = y(6-40) + 240 ig-é-e-)-o 0((Ae)3) R
or neglecting higher order terms

v(6+80) = y(e-28) + 240 - 3%%” .
v(6+a6) can be found at each point of the finite difference mesh. New
stresses can be found from the new stress function y(6+48) which are

then used to calculate new coefficients A, B, C, D, E and F. This pro-



cedure is repeated until the total angle of twist per unit length

reaches the desired amount.

An 11 x 11 finite difference mesh was set up in the octant
OMN as in Figure 3.9.

XzA

> X,

—’A-|"—

Fig. 3.9 Typical Gridded Region for Numerical Calculation

51.1'6.“
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where

]
A'w.

Since ¥ = Y(xl "‘2)' let Yo .n denote Y((n-l)A]. (n-l)A]) where n = |,
2,3 ... 1M andm=n, n+l, ..., 11. Similarly for the coefficients,

An.n denotes A((m-1)a,,(n-1)a))
B, n denotes B((m-1)4,.(n-1)3,)
Cp.n denotes C((m-1)4,,(n-1)a;)
Dp,n denotes D((m-1)4;.(n-1)a,)
Ey, n denotes E((m-1)4,,(n-1)4,)
Fu,n denotes F((m-1)a,,(n-1)8,)

Let the derivatives of Y. n be replaced by the following difference
]
equations

avl.ﬂ . Y10 " Ya-1,n

3%y 2ad
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m,n _ _m,ntl "~ myn-l
ax, 2ad
2
9 Ym!n . Yol n - 2Ym.n * Ym—an
3!1 GZAZ
2
3 Y. . Ymontl = Z'mon * Ymyn-1
ot a2e?
2
o | el 0t " Yme1,ne1 " Va1 0ol * Ymet e
9%y 3% PRI

The truncation error in each of the above approximations is O(azAz).
Substituting the above expressions for the derivatives of Y into equation
(3.24) results in fifty-five linear equations for fifty-five unknowns. The
fifty-five unknowns are the values of Y for the fifty-five points in

the octant OMN excluding the eleven points along the boundary MN where

Y is known to be zero from the boundary conditions. The equations are

of the form
P '-n’ le " L,R Yn n+l
m,Nn .! Ou.n a! m,N .2
+S Yn n-1 .1 'm—l L Yn-] n-1
m,n ‘2 m,n .2 m,Nn ‘!
Y Y Y
wt] . nel m-1,.n+l m+l.n-1
*Uaon -—.’_ - Uu.n __"!'_ * Yuon __.'2_
* - Fan

ns=1.2,...,10

msn,ntl,..., 10



where

Each time that the above equations were solved for the dimensionless

quantities V' n/a2 new stresses and the corresponding moment were cal-
1

2a

culated by the following equations. Since

and

it follows that

v(e020) = v(e-28) + 200(3%)



¥ (oava(on)) ¥ (0a-a(0a)) + 2a(0a) (:',) X
From equations (3.13) 1t is known that

.a .-a
LT 'a!;'T &

These stresses can be found approximately as

S v il /
(!%‘2) s (113). s ﬂ.ﬂ’%ﬂ .L"-I

m,n o,
and
(;f,i)m ) Yool tmln
Also
aa
.zu_".!. ..3{1 L ) ax, dx,
or
11
;:";3. 8 u &) ox, ox, (3.25)

where
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dx d
] -—J— t 1} -:g
dxl a ‘xz a

The double integral in equation (3.25) was evaluated by Simpson's
Rule.

The above numerical procedure was carried out using a model
360/67 1BM computer. The results are tabulated and the corresponding
graphs are given in Section 3.3.e.

3.3.e¢ Results for Torsion of Square Bar

The classical elastic theory for torsion of a square bar [19]
predicts that

and the bar begins to yield when
o = yigy ()

It can also be shown that the perfectly-plastic moment Hp is given by
]

4 k
Bk A I

2ua

For the numerical calculations it is assumed that

g = 1000
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so that

J,-g-x 1073

2ua

and the classical elastic-plastic theory predicts initial plastic flow
when

o, T

The numerical procedure described in Section 3.3.d calculates n/zua:‘.
Y/2ua,* $y4/2u, Sy5/2u and 1/2u** for values of (ea) up to 3(6a)y. Some
of these results are shown in Table 3.1 for an increment size of

a(ea) = 1%5-(13%2) . The computer printed out results for the first
increment, which is merely the classical elastic problem, and for every

twenty-fifth increment thereafter.

Graphs of leua3 Vs 6a, Y.‘xlzua Vs 6a and Tm‘x/ZH Vs 6a for

u/k = 1000 and A(6a) = (IEU“TSISE) are shown in Figures 3.10, 3.11,
and 3.12 respectively.

3.3.f Hypoelastic Torsion of a Circular Bar
For the case of a bar with a circular cross-section it can be

shown [14] that integration of equation (3.9) yields

*  J -
5 ]
b 12 L] S2 + S2

13° 723



s
wL = 3 (%) tanh (f ro)

where 6 is the angle of twist per unit length and r is a measure of

radial distance. The Jaumann derivative in equation (3.9) was replaced

by the material derivative in obtaining equation (3.26).
The torque is

a
M= 2nk ] r? tanh (§ re) dr
(]

or in dimensionless form

1

2
M K
i n(&) l (5) tanh (§ £ ea)d(D)

where "a" is the radius of the circular bar.

Simpson's Rule is used to evaluate the torque for various

values of 6a. For the computations, u/k = 1000 and n = 20. The

results are plotted in Figure 3.13 and compared with the elastic-

plastic and perfectly plastic solutions.

For the elastic-plastic solution,

M " k
—y*7° (0 < 62 < =
2’ VO on sy



"-ﬂl.ﬂ(_k.)
rw ik Rl A

Perfectly plastic theory predicts

i3 (h
Pl A

4

] > k .
W

(ea > 0) .



TABLE 3.1

Results for Elastic-Plastic Torsion of a Square Bar

(ea) —13- ;1"—" Imax
2ua ua -23_
(x10*3) (x10*3) (x10*3) (x10*3)

0.0000 0.0000 0.0000 0.0000
0.001644 0.001844 0.0004834 0.001028
0.1233 0.1378 0.03614 0.07663
0.2465 0.2722 0.07162 0.1504
0.3698 0.4004 0.1058 0.2188
0.4931 0.5198 0.1383 0.2798
0.6164 0.6288 0.1686 0.3324
0.739% 0.7264 0.1965 0.3759
0.8629 0.8123 0.2220 0.4108
0.9862 0.8870 0.2449 0.4376
1.1095 0.951 0.2655 0.4577
1.2327 1.0056 0.2839 0.4721
1.3560 1.0516 0.3003 0.4821
1.4793 1.0903 0.3148 0.4888
1.6026 1.1228 0.3276 0.4932
1.7258 1.1501 0.3391 0.4960
1.8491 11731 0.3493 0.4978
1.9724 1.1924 0.3584 0.4989
2.0957 1.2088 0.3665 0.4996
2.2189 1.2227 0.3739 0.5000
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CHAPTER 1V
EXPERIMENTAL CONSIDERATION OF A WORK-HARDENING MATERIAL

Two separate tests, torsion and simple extension, are carried
out on commercially-pure Aluminum. The purpose of the torsion experi-
ments is to obtain a curve of moment versus angle of twist per unit
length for a work-hardening material. The tension test is performed
in order to obtain the work-hardening function which is used in calcu-
lating a moment versus angle of twist per unit length curve theoretically.

The theoretical and experimental results for torsion are then compared.

4.1 Torsion Tests

4.1.1 Experimental Apparatus

Since it was necessary to measure angles of twist as small

3

as 10°° rad. an apparatus which would measure small angles of twist was

designed. The device measures tangential displacements by a linear
transducer and the displacements are converted to angles of twist by a
calibration curve.

As is shown in Figure 4.1, circular mounts are attached to
the specimen at each end of the gauge length by means of screws. Four
indentations are made at each end of the gauge length at 90° from each
other and the points of the screws fit into these. This is to ensure
that the planes of the "spiders” (circular mounts) are perpendicular

to the axis of the specimen and also that the outer circular edges of
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Fig. 4.1 Spider Apparatus Mounted on Specimen

the spiders are concentric about the axis of the specimen. To the outer
edge of each spider 1s attached a very fine wire which is used to
measure tangential displacement. The displacesent is amplified by a
lever mechanism with a mechanical advantage of about ten before being
attached to the core of the transducer. Figure 4.2 shows the lever
arms and the transducers. A displacement of the transducer cores causes
a change in voltage which is measured by voltmeters connected to the
transducers.

Torques are measured by means of a set of four strain gauges
mounted at 45° on the shaft leading to the upper set of jaws on the
torsion machine. The dynamometer is explained in more detail in Section
4.1. 3.
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Fig. 4.2 Lever Arms and Transducers

4.1.2 The Test Specimens
The material used was commercially-pure Aluminum which was

annealed by the following procedure. The machined specimens were heated
gradually in an oven from room temperature to 700°F over a period of
forty-five minutes. The tesperature was controlled at 700°F for thirty
minutes and the specimens were then allowed to cool to room tesperature
overnight.

Two different cross-sections were used in the torsion tests.
The specifications are shown in Figure 4.18. The taper was kept to
within ¢ 0.001".
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7/8" dia. 7/8" dia.

0.362" dia. —1» 1.95" é/\> ;
0.377" 0.377" 1.75

3/8"
a‘gius

radius - Y

Circular Square
cross-section cross-section

Fig. 4.18 The Torsion Specimens
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4.1.3 Calibration and Experimental P
4.1.3.a Calibration of namoms ter

The dynamometer was calibrated by mounting a lever arm on the
upper jaws of the torsion apparatus and applying known moments by means
of pulleys and various weights as shown in Figure 4.3. As was mentioned
in Section 4.1.1, strain gauges were mounted on the shaft leading to
the upper jaws and the moments were correlated to the strain gauge
readings which were taken from a voltmeter.

Care was taken to minimize bending or axial loading during
the calibration. However, the arrangement of the strain gauges com-

Fig. 4.3 Calibration of the Dynamometer
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4.1.3 Calibration and Experimental Procedure

4.1.3.a Calibration of the Dynamometer

The dynamometer was calibrated by mounting a lever arm on the
upper jaws of the torsion apparatus and applying known moments by means
of pulleys and various weights as shown in Figure 4.3. As was mentioned
in Section 4.1.1, strain gauges were mounted on the shaft leading to
the upper jaws and the moments were correlated to the strain gauqe
readings which were taken from a voltmeter.

Care was taken to minimize bending or axial loading during

the calibration. However, the arrangement of the strain gauges com-

Tl 40T Tattirator o6 e grarcreter
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pensated for any bending or longitudinal straining. Two of the strain
gauges were in tension and were diametrically opposite while the other
two gauges were in compression and were also diametrically opposite.
Bending was compensated for since the gauges were opposite one another.
Axial stretching was compensated for since two of the gauges were in
tension and two were in compression.
Results of the calibration can be seen in Table 4.1 and

Figure 4.4. The calibration curve is linear and the conversion factor

from gauge readings to torque, as calculated by the ratio (I n,v,)/(z Viz)
i
1s 179 in-1b/mv.

4.1.3.b Calibration of Twist Measurement

The lower jaws on the torsion machine were rotated by a
"dividing head" which was connected by a chain-sprocket mechanism. It
was found that 5970 revolutions of the handle of the dividing head
were required to make one complete revolution of the lower jaws.

The specimen was then gripped in the lower jaws and the spiders
were attached. The wires from the transducer-lever arm apparatus were
secured to the outer edges of the spiders and the slack was taken up
by means of an adjustment in the apparatus. The voltage output readings
from the linear transducers could then be correlated with true angles
turned by the upper and lower spiders. Assuming that each revolution
of the dividing head handle turned the lower jaws through the same
angle, a calibration curve was plotted which converted voltage output
from the transducer to angle of twist for each spider. The calibration



readings for the circular specimen and the square specimen are shown
in Tables 4.2 and 4.3 respectively. The corresponding curves are
shown in Figures 4.5 to 4.8.

There was some slack in the system prior to the calibrations.

This shows up in the best-fit curves shown in Figures 4.5 to 4.8. It

took approximately 1/8 of a revolution on the handle of the dividing
hesd to take up the slack.

A curve of the type
]
N'CV*I

where N is the number of revolutions of the dividing head and V is the
voltage reading in volts was fitted to the calibration data so that

the quantity i: (!I1 - cVy - })2 1s minimized with respect to ¢. There-
fore

3 V1

The angle of twist is then given by
Sepdmlcved . (4.1)

Equation (4.1) for the circular specimen becams

09 9.16 x10°3 v +0.132 x 10°3 red .

79



for the upper spider and
0=8.18 x 10°3 v + 0.132 x 10~° rad.

for the lower. The corresponding equations for the square specimen

are

0= 9.19 x 103 v + 0.132 x 10°3 rad.
for the upper spider and
=822 x103V+0.132 x 1073 rad.

for the lower spider. Since the difference of the upper and lower
angles of twist is required, the term 0.132 x 103 rad. has no effect
on the results.

It was observed that when the transducer cores moved approxi-
mately one-tenth of an inch, the output voltage increased by about 0.6
volts. Voltage readings were taken on the one volt scale and the
voltages ran from 0.200 volts to 0.800 volts. When the voltage reached
0.800 volts the transducer core was reset to its initial position by
an adjustment in the lever arm apparatus, thus in effect resetting the
voltage reading to 0.200 volts. By using this procedure more sensitive
voltage increments could be read from the voltmeters. Another reason
for this procedure was that the final displacements were larger than
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the allowable displacements of the transducer cores.

4.1.3.c Experimental Procedure

As soon as each particular specimen was calibrated the upper
jaws of the torsion machine were tightened and the experiments were
performed.

A constant tension was maintained in the wires by attaching
some “dead weights” to the cores of the transducers by means of wires
and pulleys. The tension in the wires caused a negative moment of
magnitude 1.79 in.-1b. in the specimen.

It was also noticed that the angle measuring apparatus was
not reversible due to fiiction and possibly some slack in the gears.
For this reason, readings were taken for loading only.

Pins were inserted in each end of the specimens to help
ensure that there would be no slip in the jaws of the torsion machine.
If there was slip however, it had no bearing on the results because
the moment measured would still be the true moment and the difference
in the readings given by the two spiders would still give angle of
twist per unit length.

4.1.4 Results of the Torsion Tests

The output voltage readings for the circular cross-section
and the square cross-section are listed in Tables 4.4 and 4.6 re-
spectively. These readings are then converted to moments and corres-
ponding angles of twist per unit length by the calibration equations
shown in Sections 4.1.3.a and 4.1.3.b. The results are shown in Tables



4.5 and 4.7. The angles of twist per unit length for Tables 4.5 and
4.7 are calculated by dividing the difference in angles turned by the
upper and lower spiders by the respective gauge lengths. As was
mentioned in Section 4.1.2 the gauge length for the circular specimen
is 1.95 in. whereas the square specimen has a gauge length of 1.75 in.

Figure 4.9 shows a plot of moment M versus angle of twist
per unit length 8 for the specimen of circular cross-section.

The classical elastic theory for torsion of a circular bar

of radius “a" predicts that

M. .
a1

The slope of the M Vs 6 curve in the elastic region then is

Since the radius of the circular specimen is 0.181 in., the initial
slope of the curve in Figure 4.9 should be

4
%(0.181) " (3 76 x 105) = 6.34 x 10° .

This slope is in good agreement with the experimental data. In calcu-
lating the dimensionless moments H/2u03. which are shown in Tables 4.8
and 4.9, the shear modulus u s taken as 3.76 x 10% pst [20]. The re-
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lation between H/Zuaa and 6a is shown graphically for the circular
cross-section in Figure 4.10 and for the square cross-section in
Figure 4.11. The initial slope for the circular specimen is approxi-
mately 0.825 whereas for the square specimen the initial slope is
approximately 1.15. The classical theory predicts an elastic slope
of n/4 or 0.785 for the circular specimen and 1.125 for the square
specimen [19].

The angles of twist were corrected so that the curves in
Figures 4.10 and 4.11 extrapolated through the origin. For the cir-

3

cular cross-section, 0.02 x 10°° was subtracted from the angles of

twist (6a) while 0.03 x 10°3 was added for the square bar.

4.1.5 Comparison Test

The purpose of the next test was to compare the angle of
twist per unit length obtained by the spider apparatus with that deter-
mined by strain gauges. Since strain gauges can be used to find angle
of twist per unit length for circular specimens, a commercially pure
Aluminum specimen was machined and annealed as described in Section
4.1.2.

The test diameter of the circular specimen was 0.371 in.
and the gauge length was 1.942 in. Four strain gauges were attached
at approximately the center of the test section of the specimen. The
strain gauges were mounted at 45° to the axis of the specimen so that
two of the gauges acted in tension and two in compression when the
specimen was twisted. The gauges were located at 90° to each other
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such that each similar pair were diametrically opposite. This arrange-
ment compensated for any bending or axial stretching.

The calibration curves for angle of twist determined by the
spider apparatus are shown in Figures 4.12 and 4.13 for the lower and
upper spiders respectively. The calibration readings are tabulated
in Table 4.10. The equations for converting voltage readings to angles
of twist are

0= 9.33 x 1073 v +0.526 x 1073 rad.

6= 8.48 x 10~ V + 0.526 x 10”3 rad.

for the upper and lower spiders respectively. These equations were
obtained by a least squares approximation.

Table 4.11 shows the strain gauge readings and the spider
voltage readings that were taken during the test. The strain gauge
readings are converted to angles of twist per unit length in Table
4.1) and the spider voltage readings are converted to their corres-
ponding angles of twist per unit length in Table 4.12. Figure 4.4
compares the two graphically.



4.2 Tension Test
A commercially pure Aluminum tension specimen with a circular

cross-section was prepared as in Section 4.1.2. Figure 4.15 shows the

specifications.
0.75"
1.175" dfa.
1.0"
£0.80" dia.
T—— Y -
1.78 0.367" dia.

Fig. 4.15 The Tensile Test Specimen



Four strain gauges were attached longitudinally at the center
of the specimen and were located at diametrically opposite positions
as in Figure 4.16.

Fig. 4.16 Cross-Sectional View of Tensile Specimen Showing
the Location of the Strain Gauges

The load and corresponding average strain readings are 1isted
in Table 4.13. Since the diamster of the test section was 0.367 in.,
the cross-sectional area was 0.106 1n.2. Also since [20] v = 0.33 and
E=10x lo' psi for commercially pure Aluminum, the deviatoric strain
can be found from

- -8
‘.“"nﬁ' 0"..“".‘3“0 ﬂ"



where m is given in units of psi. The corresponding deviatoric
stresses and strains are shown in Table 4.14 and plotted in Figure

4.17. In finding the non-dimensional deviatoric stress, u was taken
to be 3.76 x 10% psi [20).

87



TABLE 4.1

Torque Calibration
Moment Voltage
{in.1b) (mv)
0 0
2.20 0.013
6.61 0.038
11.02 0.062
15.43 0.087
19.84 0.1
24.25 0.135
28.66 0.160
33.07 0.184
37.48 0.208
4.9 0.232



TABLE 4.2

Calibration of Angle of Twist for Circular Specimen

No. of Revs. of Voltage Reading Voltage Increase
Dividing Head (volts) (volts)

Upper Lower Upper Lower
Spider Spider Spider Spider

0 0.200 0.200 0.000 0.000
1 0.287 0.312 0.087 0.112
2 0.39%4 0.432 0.194 0.232
3 0.525 0.565 0.325 0.365
4 0.620 0.689 0.420 0.489
5 0.775 0.217 0.575 0.617
6 0.2 0.351 0.67 0.751
7 0.377 0.473 0.777 0.873
8 0.509 0.610 0.909 1.010
9 0.600 0.732 1.000 1.132
10 0.753 0.270 1.183 1.270
n 0.260 0.402 1.260 1.402
12 0.3 0.531 1.37 1.5831
3 0.480 0.658 1.480 1.658
4 0.597 0.795 1.597 1.795



TABLE 4.3
Calibration of Angle of Twist for Square Specimen

No. of Revs. of Voltage Reading Voltage Increase
Dividing Head (volts) (volts)

Upper Lower Upper Lower

Spider Spider Spider Spider

0 0.200 0.200 0.000 0.000
1 0.310 0.328 0.110 0.128
2 0.410 0.439 0.210 0.239
3 0.520 0.562 0.320 0.362
4 0.635 0.690 0.435 0.490
5 0.780 0.220 0.580 0.620
6 0.268 0.332 0.668 0.732
7 0.375 0.460 0.775 0.860
8 0.510 0.600 0.910 1.000
9 0.620 0.730 1.020 1.130
10 0.750 0.268 1.150 1.268
n 0.250 0.400 1.250 1.400
12 0.350 0.520 1.350 1.520
13 0.465 0.659 1.465 1.659
14 0.580 0.780 1.580 1.780
15 0.700 0.300 1.700 1.900
16 0.230 0.440 1.830 2.040
17 0.329 0.566 1.929 2.166
18 0.440 0.690 2.040 2.290
19 0.560 0.220 2.160 2.420
20 0.680 0.348 2.280 2.548
rq) 0.800 0.464 2.400 2.664



TABLE 4.4
Experimental Data for Torsion of Circular Bar

No. of Revs. of Upper Lower Moment Output
Dividing Head Spider Spider (mv)
(volts)  (volts)

0 0.200 0.200 0.000
2 0.205 0.328 0.014
4 0.24) 0.512 0.039
6 0.267 0.701 0.06)
8 0.294 0.298 0.084
10 0.314 0.482 0.104
12 0.329 0.684 0.119
14 0.340 0.300 0.129
16 0.345 0.522 0.135
18 0.350 0.750 0.140
20 0.406 0.145
2 0.360 0.625 0.149
24 0.368 0.290 0.152
26 0.368 0.530 0.153
28 0.368 0.748 0.158
30 0.369 0.399 0.160
32 0.369 0.639 0.161
K 0.370 0.280 0.163
3% 0.379 0.540 0.165
38 0.380 0.790 0.168
40 0.389 0.440 0.169
Q2 0.400 0.656 0.1
“ 0.402 0.331 0.172
4% 0.402 0.582 0.174
48 0.417 0.213 0.177
50 0.420 0.451 0.179
82 0.420 0.703 0.180
54 0.431 0.320 0.181
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TABLE 4.5
Results for Circular Cross-Section
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TABLE 4.6
Experimental Data for Torsion of Square Bar

No. of Revs. of Upper Lower Moment Output
Dividing Head Spider Spider (mv)
(volts) (volts)
0 0.200 0.200 0.0N
2 0.220 0.330 0.081
4 0.240 0.474 0.074
6 0.265 0.635 0.110
8 0.305 0.207 0.143
10 0.320 0.409 0.162
12 0.333 0.620 0.176
14 0.353 0.259 0.188
16 0.369 0.478 0.194
18 0.380 0.715 0.200
20 0.400 0.352 0.207
22 0.4 0.601 0.210
24 0.435 0.230 0.220
26 0.440 0.473 0.220
28 0.44) 0.721 0.223
0 0.468 0.350 0.230
32 0.468 0.600 0.2
T | 0.488 0.220 0.240
k3 0.490 0.460 0.240
38 0.492 0.710 0.281
40 0.516 0.300 0.247
42 0.517 0.550 0.248
M 0.518 0.800 0.250
46 0.538 0.390 0.252
48 0.537 0.650 0.253
80 0.541 0.278 0.259
82 0.543 0.519 0.260
54 0.544 0.748 0.260
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TABLE 4.7

Results for

uare Cross-Section

Moment
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TABLE 4.8

Summa 14 ults for Circular Bar

No. of Revs. of M +3 +3 -3
Dividing Head 5 .F (x10°7)  ea(x10°7) oa-o.oz.; 10
w (x10'3)
0 0.000 0.000 0.000
2 0.056 0.093 0.073
4 0.157 0.202 0.182
6 0.245 0.324 0.304
8 0.337 0.450 0.430
10 0.417 0.573 0.553
12 0.478 0.714 0.694
14 0.518 0.863 0.843
16 0.542 1.03 1.00
18 0.562 1.20 1.18
20 0.582 1.38 1.36
22 0.596 1.55 1.53
24 0.610 1.75 1.73
26 0.614 1.93 1.9
28 0.634 2.10 2.08
0 0.642 2.29 2.27
32 0.646 2.46 2.4
k. 0.654 2.65 2.63
36 0.662 2.84 2.82
38 0.674 3.03 3.0
40 0.678 3.2 3.19
a2 0.686 3.37 3.35
“ 0.690 3.86 3.54
46 0.698 3.76 3.74
48 0.7V} 3.93 3.91
50 0.719 4.10 4.08
82 0.723 4.30 ..28
54 0.727 4.46 4.4

e e A o i N R

i e ——— v



TABLE 4.9
Summary of Results for Square Bar

No. of Revs. of M +3 +3 -3
ua (x10*3)
0 0.039 0.00 0.03
2 0.146 0.096 0.126
4 0.263 0.203 0.233
6 0.391 0.321 0.35)
8 0.508 0.433 0.463
10 0.576 0.598 0.628
12 0.625 0.7 0.801
14 0.668 0.926 0.956
16 0.689 1.13 1.16
18 0.711 1.34 1.37
20 0.736 1.53 1.56
22 0.746 1.74 1.77
24 0.782 1.92 1.95
26 0.782 2.13 2.16
28 0.793 2.35 2.38
30 0.817 2.52 2.55
k v 0.821 2.74 2.77
4 0.853 2.92 2.95
36 0.853 3.12 3.1
38 0.856 3.35 3.38
40 0.878 3.0 3.52
2 0.881 3.72 3.7%
“ 0.888 3.4 3.97
4% 0.896 4.08 4N
448 0.899 4.32 4.35
50 0.920 4.5 4.54
82 0.924 4.72 4.75
4 0.924 4.92 4.95



TABLE 4.10

Calibration of Angle of Twist for Comparison Specimen

No. of Revs. of Voltage Reading Voltage Increase
Dividing Head (volts) (volts)

Upper Lower Upper Lower
Spider Spider Spider Spider

0 0.200 0.200 0.000 0.000
1 0.277 0.282 0.077 0.082
2 0.379 0.382 0.179 0.182
3 0.490 0.500 0.290 0.300
4 0.606 0.630 0.406 0.430
5 0.7V7 0.740 0.517 0.540
6 0.230 0.265 0.630 0.665
7 0.356 0.395 0.756 0.795
8 0.460 0.510 0.860 0.910
9 0.570 0.632 0.970 1.032
10 0.679 0.769 1.079 1.169
n 0.800 0.290 1.200 1.290
12 0.300 0.420 1.300 1.420
13 0.420 0.545 1.420 1.545
4 0.519 0.670 1.519 1.670
15 0.630 0.212 1.630 1.812
16 0.744 0.340 1.744 1.940
17 0.280 0.461 1.860 2.061
18 0.360 0.590 1.960 2.19%
19 0.470 0.723 2.070 2.323



TABLE 4.1
Experimental Data for Comparison Test

No. of Revs. of Average Strain Angle of Twist Spider Voltage Readings

Dividing Head Gauge Reading Per Unit Length (volts)
(x10*5) (x10*3 rad/in) o r o
0 0 0 0.200 0.200
2 43 0.46 0.203 0.280
4 103 . 0.227 0.443
6 169 1.82 0.250 0.621
8 2N 2.49 0.278 0.203
10 297 3.20 0.308 0.388
12 358 3.86 0.350 0.569
14 422 4.55 0.378 0.769
16 478 5.15 0.425 0.350
18 546 5.89 0.460 0.540
20 607 6.54 0.486 0.744
22 672 7.24 0.537 0.346
24 737 7.94 0.557 0.540
26 812 8.75 0.580 0.754
28 880 9.49 0.610 0.362
30 1) 10.3 0.620 0.576



TABLE 4.12

Calculation of Angle of Twist from Spider Voltage Readings

¥°]t‘9. Angle of Twist Diffe Angle Of‘l{'“t
ncrease gle of Twis rence per un
'6‘1’;121..';‘.':34“ (volts) (x10°3 rad) 1 Angle Length, ©
Upper Lower Upper Lower (x10*° rad) (x10%° rad/in)

0 0.000 0.000 0.000 0.000 0.000 0.00

2 0.003 0.080 0.028 0.678 0.650 0.33

4 0.027 0.243 0.252 2.06 1.81 0.93

6 0.050 0.421 0.467 3.57 3.10 1.60

8 0.078 0.603 0.728 5.11 4.38 2.26

10 0.108 0.788 1.01 6.68 5.67 2.92

12 0.150 0.969 1.40 8.22 6.82 3.5

14 0.178 1.169 1.66 9.91 8.25 4.25

16 0.225 1.350 2.10 11.45 9.35 4.8)

18 0.260 1.540 2.43 13.1 10.7 5.51

20 0.286 1.744 2.67 4.8 12.1 6.23

22 0.337 1.946 3.14 16.5 13.4 6.90

24 0.357 2.140 3.33 18.1 14.8 7.62

26 0.380 2.354 3.55 20.0 16.4 8.44

28 0.410 2.562 3.83 21.7 17.9 9.22

30 0.420 2.776 3.92 23.5 19.6 10.1



TABLE 4.13
Experimental Data for Tensile Test

o Load -8
Load Average Strain (0") o1 " .08 1.13 x 10 © oy,

(16.) (x10°%) (psi) (x10°6)
0 0 0 0
50 4 a2 5.3
100 % 043 10.7
150 19 1420 16.0
200 203 1890 21.3
250 264 2360 26.6
300 31 2830 32.0
380 532 3300 37.3
400 ne 3770 42.6
450 1822 4250 4.0
500 3335 47120 3.3
50 5349 5190 8.6
600 ms 5660 64.0
650 10130 6130 69.3
700 12060 6600 74.6
750 16610 7080 79.9

800 20060 7550 85.3



TABLE 4.14

Summery of Results for Tensile Test

n - -8
Ts,u— c:o"-l.laxlo m
(x10%) (x10*6)

0 0
“n.s 4.7
83.6 87.3

126 133

167 182

209 237

281 329

293 495

335 875

n 1770

a9 3280

" 5290

802 7650

544 10100

506 13000

628 16500

670 20800

101
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Moment (in.-b.)
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Fig. 4.9 Moment for Torsion of Circular Specimen
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CHAPTER V
SOLUTION OF SOME WORK-HARDENING PROBLEMS
AND COMPARISOM TO EXPERIMENTAL RESULTS

5.1 Determination of the Work-Hardening Function
The hypoelastic constitutive equation

1]
i ' '

is applied, in this chapter, to Engineering problems involving work-
hardening materials. The solutions are cospared to the experimental
results obtained for the tension and torsion tests involving com-
mercially pure Aluminum.

In applying equation (5.1) to the simple tension problem,
the resulting equation [14] s

%-u%m’

where T = s"/zu and ¢ is the deviatoric strain. Therefore

l 1
&
.T

. av
where J !-Tntu ,t’ 1f the slope §& can be found from the



deviatoric stress-deviatoric strain data shown graphically in Figure
4.17, then h can be obtained as a function of J. However in the
above form, h is indeterminate at the origin, and near the origin
both the numerator and denominator are extremely small resulting

in a large possible error in h. The following work-hardening function
does not have this defect;

H-ZJh-g%-l.

The hypoelastic constitutive equation (5.1) for a work-
hardening material will then be written as

My . N
ol = ojy + HGp T, (5.2)

where 0 > H > -1 and the second term on the right hand side vanishes
when J = 0.

The slope de/dT is approximated at each of the data points
in Figure 4.17 by a fourth order Lagrange interpolation formula. The
values are listed in Table 5.1 and plotted in Figure 5.1.

Let

o) =avoT -

and let & and b take values so that the initial and final g(T) is zero.

ns



A Fourier sine series,*
15
knT
g(T) = By sin( .
gy et
is fitted to the function g(T). Then

1 15 kT

%EW"”’T' ) 'k’"‘('l'f_ .

k=1

Since J-%Tz .

‘s
- b J - 1 E——
W L I kz'l & s “(/Jf )

1.000
168.8 x 10°
40.57
0.1103
1.577
-5.783
3.170
0.3168
5, = -0.9106
B, = 0.14%
8 = 0.1017

L o o OO o »
O. L) .. GP N -
[ ] [ ] . ] . " [ ] [ ]

(5.3)

(5.4)

'l" is the final experimental valus of T and in this particular case

Ty = 670.1 x 108 .

16



Byo = -0.0474
By = 0.2405
By = -0.3466
By3 = 0.1637
By4 = -0.0012
Bys = -0.0329

Figure 6.1 shows a plot of the work-hardening function H as a function
of J.

Recall that for simple tension
%I—- 1+H.

Therefore

T
c-[ w-.r+°’z+ ) (') a.[m(“" ) - 1.

(5.5)

The stress-strain relationship (5.5) 1s shown graphically in Figure
§.2 and compared to the experimental results.

5.2 Simple r
Consider a material that obeys the constitutive relation

o . "
- dig ¢ Wigy) Tyy -

nz
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For simple shear it follows that

dT . (ST
& H(;z:;z) (5.6)
‘s-nu(sz) (5.7)
AR
where
S T s 0
71.15!':'-'1" s -T 0 \
o o0
0c O
L c 00
000

ad J = 12052. The material derivative has been used to arrive at
equations (5.6) and (5.7). It follows from equation (5.6) and the
initia) condition that T = O when c = 0, that T = 0 always. Therefore
equation (5.7) becomes

Soren .

It follows from equation (5.4) that



1n9

S
1 S
c-[ %-as+-b— s+ ) (l%) Dk[eos(éﬁ) -1].
° 73 kel f
The relation between S and c 1is shown graphically in Figure 5.3.
5.3 Torsion of a Circular Bar

In the case of torsion of a circular bar equation (5.2) re-

duces to

%} T TIRY) (5.8)

where T = Sulzu and 0 is the angle of twist per unit length. Also
Js 1’2. Equation (5.8) can be integrated to yield

% T
92".. al + %2-0 kgl (Ff'-) Bk[cos(%:—r) -1].
Now since the moment is defined as

e [. 2nr? 5, dr

it follows that

1
2
L] v v
2 1 e |

Let To represent the shear stress when r = a. Then
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15§ 7T knT
.92‘... 'TO + Zb-'l'oz + kzl (-l%) q([cos(-;}) -1]. (5.10)

Also for some particular angle of twist (6a)
roL (2 b 13 Te knT
(D = (S)aT + 75'2 + L (g Bleosy) - 110,

From equation (5.9) it follows that

T

° 1 T 2
M, 26 [ crr, b2 f kaly - 1172
2 (o) !, far * A kzl L &[c“('f) )

s (5.11)
- [a+ b/‘;r - Lo s1n(|'|‘.'f'—7)] ar .

For each To. (ea) can be found from equation (5.10). Then the integral
in equation (5.11) is evaluated by Simpson's Rule with T0 divided into
10 equal segments. As T, varies from 0 to T, a corresponding (ea) and
M/2ua® can be found. Some of these values are listed in Table 5.2
and a plot of moment versus angle of twist is shown in Figure 5.4 and
compared with experimental torsion results.

5.4 Torsion of a Square Bar
The problem of torsion of a material that obeys the constitutive
oquation

o

| . 2
‘R‘l"u"' W'Ty4



where a2 = 2,2/k% was solved in Section 3.3.c and 3.3.d. In this
section the problem is solved for a square bar where

o \
. iy * MGy UTER

The solution proceeds as in Section 3.3.c up to equations (3.15) and

(3.16) except that - o 1s replaced by (H/2J). Equations (3.15) and
(3.16) become

1, H M3 M3
» .., ,‘!’23‘7%3)‘55"'&7137;315‘
2 g (1 +H)

and

o7 oT
2., 3 * 9y T23) S - 2 Tha Tos 3
|

mna-rfangs. Define

2 42,
+

121
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aT aT
g.:.z..-,‘u 3.y (5.12)
and
aT at
I . 5.1

Differentiating equation (5.12) with respect to x, yields

2 o o7
oCSRRAREE Lo RS b aRRl Aa Al ol n

(5.14)

Differentiating equation (5.13) with respect to x, ylelds

2 My,

S G ETR LGRS e

*2**

Upon eliminating ¢ from equations (5.14) and (5.18),

zn;—(—,i-) 2—"—“‘ y;g&}ga). %{;“3
(5.16)
)} o7 o7 ')}
FENLE R R

Now since
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equation (5.16) becomes

2 2 2
A2 28 =2 ¢ -2
a—x‘g (%) + m‘ (a-) + -a;[ (%)

(5.17)
b1 URES dt AR

B
s-ﬂ;*%’,{;

Fe=2

Since equation (5.17) 1s fdentical to equation (3.22) the rest of the
solution is the same as in Section 3 except that the coefficients A, B,
C, D and E depend on the work-hardening function H which is given by
equation (5.4). The results are given in Figure 5.5 and compared with
the experimental results.

5.5 An Elastic-Plastic Constitutive Equation for a Work-Hardening
Material
From the classical theory of plasticity, the flow rule for
a work-hardening material with a regular yield surface is



where f is the plastic potential. If
f= f(ll‘)

where

.l
Hg® 75 Sk 0

of \2
&y - sl i1, s

-

during plastic flow. It follows that

2 .
s, %y ° 211, g(,ﬁ:) 11,

S

o(;ﬂ’—)z 1, fﬁ,‘;-l :

Equation (5.18) them becomes

124

(5.18)



4
ke k2
Pl 2o ¥

or in dimensionless form

P, = Tk).d:!. T
13 2y 1)

where TU s su/zu and J = ;—Tu'l’n. The total deviatoric strain in-
crement “1.1 is then given by

Teadhs

dtu - dTU A A T“ . (5.19)

In the dynamically correct form, equation (5.19) becomes

Tb?‘"ia T—%‘;& Tys

for the elastic-plastic range and

o1
e diy

in the elastic rangs.

Consider a material that begins to yleld immediately upon
initial loading. (Cosmercially pure aluminum is an exasple). Then
the constitutive equation



OT#. dl - Tuﬁ‘ T
13 ) 13

applies for the complete range of loading. Now since

e p
Teotke * Tedke * Tkedke »
Tet
‘l’u{‘ = (H) T, = - W0
m - ‘ _<. " i o Y

Equation (5.20) becomss

o1
TN N
‘D!'l' dyy + Higy) Ty

where (-H) 1s the ratio of plastic work to the total work done.
Equation (5.21) for the elastic-plastic flow of a work-

126

(5.20)

(5.21)

hardening material 1s identical to equation (5.2) for a hypoelastic

body .
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TABLE 5.1
) lopes of Tensile 1
T(x10') %

0 1.000 (*)
4.88 1.081
83.76 1.075

125.6 1.12Y
167.5 1.178
209.4 1.620
281.3 2.728
293.2 5.641
335.0 14.42
376.9 28.74
418.8 42.55
460.7 82.99
$02.6 §7.23
844.4 62.86
$86.3 %N

628.2 9°.23
670.1 1141

(*) ﬁ wes set equal to 1.000 at the origin
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TABLE 5.2

Results for Torsion of Circular Bar

1.(x10"%)  ea(x10" M (x10*3
0(" ) a(x10"7) m(l )

0 0 0
17.41 0.03563 0.02746
34.82 0.07220 0.05493
52.23 0.1087 0.08225
69.64 0.1455 0.1097
87.05 0.1834 0.1377

104.5 0.2222 0.1658
121.9 0.2612 0.1935
139.3 0.3005 0.2213
156.7 0.3421 0.2503
174.1 0.3896 0.2819
191.5 0.4473 0.3169
208.9 0.5204 0.3554
226.3 0.6158 0.3975
243.7 0.7460 0.4441
261.1 0.9378 0.4967
278.5 1.238 0.5532
296.0 1.708 0.6053
Nni.4 2.401 0.6459
330.8 3.3 0.6766

348.2 4.52) 0.7046
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CHAPTER VI
CONCLUSION

6.1 Estimation of Errors

6.1.1 Errors in Numerical Procedure

For both the elastic-perfectly plastic and the work-hardening
body, the equation

3 23 2,9 )
9 ] r}
A P——O ax:%:#c 3(.5%) @-#E%'PF'O“J)
1

was solved for (%*) at each angle of twist per unit length in the
torsion problem. A new stress function was calculated each time by

applying the formula
v(0+0) = y(0-0) + 280(3H) (6.2)

at each point in the square cross-section. A corresponding moment
was then found by integrating the stress function over the cross-
section by using Simpson's Rule.

An estimste of the truncation error introduced when replacing
equation (6.1) by a finite difference approximstion is obtained by
changing the mesh size. In Chapter 111 and Chapter V a mesh size of
1/10 1s used. The problem was also solved with a mesh size of 1/6.
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It was found that a local truncation error of 0.2% is present in the
calculated value of the rate of increase of the stress function at the
center of the cross-section. After 800 increments in angle of twist
per unit length this truncation error had accumulated to a value of
0.7%. These truncation errors are at least 1000 times as large as

the error involved in using Simpson's Rule to find moments from the
stress function.

The truncation errors in the stress function, as described
above, caused a local error in the moment of 0.13%. After 800 incre-
ments in angle of twist the error became 0.3%.

The increment in angle of twist per unit length was then
doubled for the case of the mesh size equal to 1/10. This made no
significant change in any of the results. The cémuur program
printed out results to eight significant figures and after one thousand
increments in angle no change could be noticed in the eighth digit of
the stress function or the moment.

Roundoff errors were minimized by using double precision
accuracy when making the computer calculations. A computer library
subroutine (DGELB), which is designed specifically for inverting
matrices with a banded structure, was used to solve the 55 equations
at each angle of twist per unit length. The solution of these equations
was carried out with a precision of 10°'° [24].

In addition to the above, there are errors in the calculated
soments due to errors in the work-hardening function M.

H is found from the slope of the stress-strain data from the
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tension test as described in Chapter V. From equations (5.3) and
(5.4)

S cqhre1e g-a-lzlskm(%'-:i). (6.3)
Consider
PR LR RN (YA T T s (s
1 ] kel e
and

(a'r) . ‘ “ 1+ .z[b/, J - m(""’")] (6.5)

mn0<o]<l and oz>l. Therefore

(ﬁ)‘ <$H< (5%)z (6.6)

where % are the calculated values from equation (6.3). It follows
then that

Hy2H2H, (6.7)

where the equalities in equations (6.6) and (6.7) apply only when
J = 0. During loading, for a positive angle of twist, ‘13 <0,
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di350.12330mdd53101nth¢quadnntx]30.x2_>_0. There-

fore, since
oT . H, T..d
13, o493 . M Tl
(56, e T,
and
Ma3  dy3 Hy Tyydyy

it follows that M, > M . Also since

o d' H
( 3)2 . q_ z ( u"u, Ty
it follows that M, < W , where N is the moment and M, and M, are the
moments calculated when H] and "2 are substituted respectively for H.
Equations (6.4) and (6.5) are imposing an error on de/dT - 1

for all J and yet the functions "l and uz are still bounded by the
inequalities

05_“‘ .“25.“ .
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If the function de/dT - 1 can be determined from the experimental
tension data to within the imposed error at all points then H.| and
"2 are certainly upper and lower estimates respectively for the
moment .

It was found that H] and "2 for the problem of torsion
of a square bar varied only about 2.5% from the previously calcu-
lated moments M when a 20% error in de/dT - 1 was imposed by letting
¢, = 0.80 and e, = 1.20.

During the experimental tension tests, assume that the
strains ¢ were obtained with an accuracy of + 3%. The slope of the
T vs ¢ data was obtained at each data point by a computer library
subroutine which used a fourth order Lagrange interpolation formula.
An estimate of the maximum errors in the calculated slopes de/dT [25]
is given below.

4 5
truncation error in %‘r (71) . -‘%P— -:—T§ (c‘)
& €(Ty2:T4ap)
e
roundoff error in %‘r . %TﬁT
where LR is the error in the ordinate ¢ and AT is the equally spaced

intervals in stresses T.
Since the slope ‘ﬁ is given by
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15
$eerenT- ] Bk sin(%’f'—’-)

the truncation error is given by

Therefore since 1"r = 164 ,

N 15

- - 4 kaT
o W kzl k~ Bk Siﬂ(ff—) (6.8)

. " %x R%a_lo:‘ < (6.9)
where ¢; and ¢, are the maximum truncation and roundoff errors. Table
6.1 1ists the slopes dc/dT and the corresponding orrors. calculated at
each point from equations (6.8) and (6.9). It appears that the error
in (de/dT - 1) may be approximately 100% when dc/dT is small. However
as the slope increases, & 20% error may be assumed for the purpose of
establishing bounds on the error in moment. The upper and lower esti-
mates, N| and llz. were calculated assuming 100% error in dc/d7 - | when
3 <3 x10°8 and 2 208 ervor when J > 3 x 10°%. The factors ¢, and ¢,

*It may be noted that the fifth derivative in equation (6.8) is the
fifth derivative of a best-fit curve through the calculated slopes.
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in equations (6.4) and (6.5) take the following values;

0.10 (<3x10%
.‘ b

-8
0.80 (3 >3 x108

L
2.00 (0 <3 x 108
-8
| 120 (9 >3 x107%)

The corresponding curves for H, and H, are shown in Figure 6.1. Table
6.2 shows the percentage errors in the moments as calculated by the
equation

("1'")
(upper/lower) bound = —g—x 100 (i=1,2)

for a square bar at various angles of twist. It can be seen that the
maximum difference between the calculated moments M and the moments "
and "2 is approximately 6% and occurs at a relatively small angle of
twist. The difference then tends to decrease towards approximately
2.5% as the angle of twist per unit length increases. It appears
that the large possible error in H for smell J has little effect at
larger angles of twist.

The corresponding errors in moments for the circular bar
behaved in the same manner. A table for the circular bar similar to
Table 6.2 1s not included because when H changes, the angles of twist
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as well as the moments change and the moments could not be compared
at any specific angle of twist.
6.1.2 Experimental Errors

An estimate of the errors for the tension test 1s given in
Section 6.1.1.

The following discussion on errors for the experimental
torsion problem applies to both the circular and square cross-section.

The non-dimensional moment is given by H/2ua3. The moment M
can be obtained from the expression M = 179 V to within 1% of the true
moment where V is the voltage reading in m.v. and M is moment in units
of in.-1b. Since “a" is measured to within + 0.001", a3 1s within 1%
of the true value. Also it is assumed that . is correct to within 1%.
The fact that the initial slope in Figure 4.9 compares so well with the
classical elastic theory for torsion of a circular bar indicates that
ye=3.76 x 106 psi is a reasonable value to use. Therefore the ex-
pression N/Zua3 may have a maximum error of 3%. However, the most
probable error is approximately 1.7%.

Originally, neither of the experimental curves for moment
versus angle of twist went through the origin. This can be seen in
Tables 4.8 and 4.9 where a constant was added to the 6a values. This
may partially be due to a smal) moment induced in the specimens when
the upper jaws of the torsion machine were tightened prior to the experi-
ments. It may also be caused by one of the spider mechanisms having a
different amount of slack than the other.
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Section 4.1.5 compares the angle of twist measured by the
spider apparatus to the angle of twist measured by strain gauges.
Figure 4.14 shows that if a constant is added to the angles of twist
determined by the spider apparatus, the two different methods give
almost identical results.

From the above discussion and the close agreement of the
calibration data with the calibration curves as shown in Chapter IV
the author makes the assumption that the angles of twist (6a) are
accurate to within 3%.

6.2 Discussion of Errors

It appears that the numerical calculations of the theoretical
moments for the square cross-section could be improved by decreasing
the mesh size. However, the numerical technique seems quite adequate
unti) the error in H can be reduced for the case of the work-hardening
solid.

The theoretical and experimental torsion results compare
quite favorably. The theoretical moment curves for both the square
and circular cross-sections deviate from the experimental results in
the same manner and at approximately the same angle. The angle at
which the greatest deviation occurs is approximately the same angle
at which an error in H would cause the greatest error in moment, as
seen in Table 6.2.

The calculations shown in Chapter 111 for the torsion problem

of an elastic-perfectly plastic material would not involve errors due
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to an estimated work-hardening function.

Error estimates in this chapter are concerned only with the
torsion problem because this is the only problem to which results could
be compared. An error analysis on the numerical methods used for the

other minor problems in this thesis can be done using similar reasoning.

6.3 Discussion of Results

In Section 6.1.1 it was shown that if Hy < H for all J, the
momen t "2 calculated by using "2 in the hypoelastic constitutive
equation would be a lower estimate for M. The same reasoning can be
applied to the elastic-perfectly plastic results shown in Chapter III.
It follows then that hypoelastic theory gives an underestimate for the
torque of the classical elastic-perfectly plastic solution for the
torsion problem. This is also true for the simple shear and the simple
extension problem.

In Chapter 111 the simple shear problem was solved with the
assumption that the material obeyed the constitutive equation

Mg . 2.,
-ﬂ-l- djy - of WT,, (6.10)

2, 52,2 Vet 4l
where o 2°/k" and M Tudu.
Truesdell [13] solved the same problem but interpreted the
results differently than did the author of this thesis. The constitutive
equation used by Truesdell [13] is identical to equation (6.10) except

that the constant cz is replaced by l/Kz. Therefore
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From the results of Section 3.2 and the comments made at the end of
that section it is clear that if the dynamically correct form of the
stress rate is used the solution of the problem will consist of a
shearing stress S and a tensile stress T. The ratio T/k approaches

k/u asymptotically from below while S/k rises above A - l(z/u2 and

then approaches A - kzlu2 asymptotically from above. The point at
which S reaches a maximum is defined as the hypoelastic yield point

by Truesdell [13] and the von Mises yield is obtained when T2 + S% = Kk°,
It is shown in Section 3.2 that the asymptotic values shown above are
valid for the hypoelastic theory and the classical elastic-plastic
theory if the von Mises yield criteria and the Jaumann stress rate is
used. However in the hypoelastic theory (T2+ Sz)lkz approaches unity
from below while in the classical elastic-plastic theory (T2+ Sz)/k2 s ]
once the yield point is reached. I[f the material or local stress rate
is used, both of the above theories predict that T = 0.

Truesdell [13] compares the results of the hypoelastic theory
in which the Jaumann stress rate is used to that of the classical
elastic-plastic theory in which the material rate of stress is used.
These comparisons lead to various incorrect deductions.

As is mentioned above, a normal stress T appears in Truesdell's
solution because the Jaumann stress rate is used rather than the ma-
terial derivative.
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It can be shown that the hypoclas.tic yleld always occurs at
a smaller strain than does the von Mises yield as predicted by elastic-
plastic theory. Truesdell deduces then that since the hypoelastic
yield is a maximm for shearing stress S, it is impossible for the
shear stress to increase continuously to the von Mises yield as ob-
served by T.Y. Thomas [22]. Although this statement is true, it is
trivial because S is merely a measure of shear on a particular plane.
From the Mohr circle shown in Figure 6.2 it is clear that the normal
stress T induces a further shear at each point in the body.

Shearing
Stress

——lT-—

e ()

T Normal Stress

—frk—

Fig. 6.2 Mohr Circle for the Simple Shear Problem
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The Mohr circle in Figure 6.2 1s for a typical element in the body as
shown in Figure 6.3.

24

11

Fig. 6.3 Typical Element in a Iody_buring Simple Shear

The mximum shoar stress t 1s found from the relationship
1’2 s Tz + Sz

ond 1t was shown in Section 3.2 that t approaches k asymptotically
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from below.

Simple shear consists of pure shear with a rotation. If the
problem of pure shear was solved, no normal stress T would appear since
the Jaumann stress rate would reduce to the material rate of stress.
The resulting shear stress for a shearing angle of ¢/2 would be identical
to the maximum shear t for the simple shear problem at a shear angle
of ¢. Therefore the normal stress T arises in the simple shear problem
due to a rotation through the angle ¢/2.

For most metals E: 103. Therefore K 1s very small and for
the problems solved in Chapter III, the stresses get very large be-
fore the rotations become significant. One is then justified in using
the material derivative in place of the dynamically correct stress rate.

Truesdell [13] also concludes that “"since for very small K,
the shear stress at hypoelastic yield is substantially the same as the
shear stress at the von Mises yield, the shear stress as a function of
shear strain will rise quickly to a value approximately K/v/2, overshoot
to a slightly larger value, and then level off again". Regardless of
whether Truesdell is considering the shear stress S or the maximum
shear stress t, this conclusion is erroneous for any permissible
value of K. Section 3.2 of this thesis shows that t approaches k from
below. Therefore t/2u approaches k/2u or K//2 asymptotically from
below.

Chapters IV and V consider the experimental msasurement and
the theoretical prediction respectively of problems involving a work-
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hardening material. The results compare favorably and it is felt that
the method described in Chapter V may be used quite confidently to
predict the relation between leuas and 6a for a work-hardening ma-
terial with a square cross-section. Since angles of twist are ex-
tremely difficult to measure for a square bar, it would be a simple
matter to perform a tension test on the material and feed the resulting
stress strain data into a computer program which would predict the
performance of the same material under torsion. This technique, of
course, is not restricted to the torsion problem. Torsion of a square
bar was chosen as an example since experimental results are sometimes
difficult to obtain. The results for simple shear, showmm in Figure
5.4, would hopefully compare quite favorably with experimental results.
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TABLE 6.1
Estimption of Meximum Errors in Slopes

% Truncation Round Off
Ervor Error
1.000 0.000 0.000
1.081 0.00894 0.0460
1.07% -0.0150 0.0940
1.2 0.0292 0.143
1.178 -0.0130 0.196
1.620 -0.00221 0.288
.78 0.187 0.354
5.641 -0.160 0.533
14.42 «0.37% 0.942
28.74 0.38) 1.9
42.85 -0.313 3.53
62.99 0.662 8.69
87.23 -0.0968 8.24
62.86 -0.638 10.9
%.N 0.616 14.0
”.23 -0.548 17.8
4.1 0.000 2.4



TABLE 6.2

Estimption of Maximum Errors in Moments

6 (H]-H) ("2'")
“1003) e el 100 —g—x 100
0.000 0.0 0.0
0.164 3.9 -4.0
0.329 6.0 -5.8
0.493 5.4 -5.%
0.687 4.6 -4.7
0.822 4.0 -4.0
0.986 3.7 -3.6
1.18 3.4 -3.3
1.9 33 -3.1
1.48 3.2 -2.9

‘o“ 30‘ 'zo.
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