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Abstract

Alarm systems are considered to be essential components of industrial

control systems, and are used to communicate the indication of alarm states to

operators, ensuring the safe and efficient operation of modern industrial plants.

Ideally, alarms should only appear when there are abnormal conditions that

require operator responses, and the alarm rate should be kept to a reasonable

number. But realistically, that’s not always the case, and operators are often

overloaded by nuisance alarms and alarm floods, distracting them from truly

critical alarms, and potentially causing accidents to occur.

A variety of methods to manage alarm systems and improve their perfor-

mance have been studied. Among them, state-based alarming is an advanced

technique to reduce nuisance alarms and alarm floods by suppressing alarms

associated with certain conditions or operating modes. To implement this

technique, the key is to find the associations between operating modes and

alarms. In practice, this is mainly done based on the experience of plant

operators and expert knowledge of process engineers, and thus is very time

consuming. Therefore, this thesis proposes a data driven method to discover

the association rules of mode-dependent alarms for both single and multiple

operating modes from the historical Alarm and Event (A&E) logs in an ef-

ficient way based on a data mining approach named FP-Growth (Frequent

Pattern-Growth). The effectiveness of the proposed method is demonstrated

by two industrial case studies.
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Chapter 1

Introduction

1.1 Background

According to the industrial standard from International Society of Au-

tomation (ISA) [1], “an alarm system is the collection of hardware and soft-

ware that detects an alarm state, communicates the indication of that state to

operators, and records changes in the alarm state.” Alarm systems are inte-

gral in ensuring the safe and efficient operations of modern industrial facilities

such as oil and gas plants, power and utility plants, pharmaceutical factories,

and process and manufacturing plants, and are commonly deployed in such

industries to monitor and inform operators of any abnormalities in operating

conditions such as process measurements, operating equipment among other

safety concerns.

In the past, alarm management was done on control panels, which are flat,

and often vertical areas loaded with indicators and instruments that operators

can use to monitor and control the plant. These control panels were wired to

sensors in the process lines and equipment. To alert the operators of abnormal

conditions, annunciator horns and lights of different colors (for example, green

as good, yellow as warning, and red as bad) were used as indications of alarms

in the system. Push buttons and/or switches were used to acknowledge and
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clear alarms. Due to the limitation of available board space on the control

panel and cost of installing sensors and its physical wiring, horns, lights and

switches, the amount of alarms and process indicators are often small, and

any changes to the control panel were both costly and resource intensive.

Through the development of modern technology, control systems continue

to advance and are eventually digitalized. In today’s age, industrial control

systems (ICS) like the distributed control systems (DCS) and supervisory

control and data acquisition (SCADA) systems are used in nearly every in-

dustrial sector and critical infrastructure. Configuration and deployment of

process indicators and alarms on such systems are very easy and relatively

inexpensive. As such, alarms were configured to monitor every aspect of in-

dustrial processes. As an example, many systems configured alarm parameters

whenever any process variable reaches beyond 20% and 80% of a normal op-

erating range. This often results in a dramatic increase of daily alarm count

at operator console station.

Recognizing this as a problem, many standards and guidelines including

ANSI/ISA-18.2 [1], EEMUA-191 [20], and IEC-62682 [21] were developed to

manage alarm systems across industries. According to such standards, the

acceptable average and peak alarm rates are up to 1 and 10 alarms per 10

minutes per operator, respectively. However, the observed alarm rates in

industries are much higher. In [20], it was discovered that the average and

peak alarm rates were 6 and 220 alarms per 10 minutes in oil and gas industry,

9 and 180 alarms per 10 minutes in petrochemical industry, and 8 and 350

alarms per 10 minutes in power industry. Such high alarm rates can overwhelm

operators, distracting them from truly critical alarms, and causing accidents

[2][3][4].

According to ANSI/ISA-18.2 [1], an alarm is defined as “an audible and/or
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visible means of indicating to the operator an equipment malfunction, process

deviation, or abnormal condition requiring a response.” Thus an alarm that

does not require any action by an operator becomes a nuisance alarm, and nui-

sance alarms are one of the major culprits of alarm overloading [22]. Alarms

that transitions between alarm and normal states repeatedly in a short period

of time are considered as chattering alarms [1]. They are the most encoun-

tered type of nuisance alarms, possibly accounting for 10-60% of alarm occur-

rences [12]. Other types of nuisance alarms include fleeting alarms, repeating

alarms, redundant alarms and correlated alarms. Identification of these nui-

sance alarms can help process engineers to devise strategies to reduce them,

therefore helping operators to focus on the truly important alarms.

Alarm floods are another major culprits of alarm overloading [22]. Alarm

floods happen when the alarm rate is too high to be effectively managed by

operators. This can be caused by many reasons including nuisance alarms and

propagation of alarms from abnormal conditions in one process unit down to

other units. An alarm flood begins when 10 or more alarms occur in 10 min-

utes, and ends when the alarm rate drops below 5 alarm in 10 minutes [1].

When an alarm flood occurs, operators are often overwhelmed, and may over-

look critical alarms, which can lead to economic losses, environment impact

and even loss of life, as seen in the Gulf of Mexico oil spill [23], Texas City

refinery explosion [24] and the Texaco Refinery explosion [25].

Alarm and Event (A&E) logs are databases containing historical informa-

tion about alarm messages and operator actions on the ICS. Table 1.1 shows

an example of an A&E log. Typically, an alarm and event log contains infor-

mation such as “Time” that the alarm or event occurred, “Tag Name” which

is an unique identifier of equipment and process variables, “Event Type” such

as operator action (mode) or alarm, “Condition” which shows the type of
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Table 1.1: An example of an A&E log.

Time Tag Name Event Type Condition State

10:05:16 Valve01 Mode N/A Close

10:06:51 FI01 Alarm PV LOW N/A

10:07:23 Valve01 Mode N/A Open

10:08:35 FI01 Alarm RTN N/A

10:09:05 TI01 Alarm PV HI N/A

10:15:18 PI01 Alarm PV HI N/A

alarms such as PV LOW (Process Variable) or RTN (Returned to Normal),

and “State” which indicates mode transition. Such information can be used

for offline analysis and improve the efficiency of alarm systems.

1.2 Literature Survey

This section details literature survey on approaches in classification and

reduction of nuisance alarms and alarm flooding, and state-based alarming

which can be used to handle both nuisance alarms and alarm floods, and is

the main technique used in this thesis.

1.2.1 Nuisance Alarms

Nuisance alarms are alarms that does not require operator action and are

therefore distracting operators from truly critical alarms, and are one of the

major culprits of alarm overloading. Many papers studied nuisance alarms

and proposed approaches to reduce them. Wang et al. [29] used deadbands to

reduce nuisance alarms. The paper used normalized alarm duration and nor-

malized alarm deviations as two metrics to determine if deadbands should be

used to remove nuisance alarms of analog signals. Then, it proposed a method
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to find the optimal deadband width, balancing between a nuisance-alarm du-

ration ratio (NADR) and a peudo-detection delay. Granger causality (GC)

analysis is another technique to reduce nuisance alarms by alarm propagation

pathway investigation and alarm source identification. He et al. [30] proposed

an improved design of GC models by using an attention-based long short-

term memory (ALSTM) method. Cai et al. [7] utilized an alarm clustering

method to provide insights towards removal of redundant alarms. Correlated

alarms can be very similar to each other and indicate the same abnormality

in industrial processes. Wang et al. [6] exploited a weighted fuzzy associa-

tion rule mining approach to discover correlated alarm sequences. Yang et

al. [8] developed a block matching similarity analysis method to detect alarm

correlations.

As discussed previously, chattering alarms are the most encountered type of

nuisance alarms; thus many studies are devoted to the prediction and removal

of chattering alarms. Studies have used machine learning to predict chattering

alarms [26, 27]. Using a modified approach based on run lengths distribution,

[26] divided historical alarm events into 2 categories according to the likelihood

of future alarm chattering. Then, they used the categorized alarms to train

a deep neural network, and evaluated the performance of the algorithm for

the ability to predict chattering alarms. Tamascelli et al. [27] developed a

method for dynamic chattering quantification, and used the results to train

three machine learning models: a linear model, a deep neural network model,

and a hybrid model of the previous two. The three models were then evaluated

and compared for their performance. Other studies have developed techniques

to remove chattering alarms [11, 28]. Sun et al. [28] proposed two rules in

designing window size of median filters in order to reduce chattering alarms.

If alarm probability estimation is available, rule no. 1 is used to choose a
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window size in order to satisfy requirements on the false alarm rate (FAR)

and miss alarm rate (MAR). Rule no. 2 is used if only historical alarm data is

available. It uses duration distribution to satisfy the reduction percentage of

chattering alarms. Mannani et al. [11] proposed an alarm data preprocessing

technique to remove chattering alarms and reconstruct missing alarms. The

paper discussed techniques to remove chattering alarms using point-based data

and interval-based data, and the selection of removal time frame using a global

time frame and a variable-dependent time frame.

1.2.2 Alarm Floods

Alarm floods happen when the alarm rate is so high that operators can no

longer handle them effectively, distracting them from important alarms and

likely leading to incidents. Many papers studied alarm floods and proposed

techniques for reducing alarm floods and its severe effects on alarm systems.

Several studies proposed methods for alarm flood sequencing and root

cause analysis. Unlike other traditional statistical or model-based methods,

alarm flood sequence alignment (ASFA) provides fault inference from the per-

spective of alarm sequence similarity assessment. Guo et al. [31] proposed a

new ASFA method: the match-based accelerated alignment (MAA) to detect

perceptive alarm sequence alignments. To find the root cause of an alarm

flood, one approach is to find similar patterns in alarms triggered in different

alarm floods. Niyazmand et al. [32] used a modified PrefixSpan sequential

pattern recognition algorithm to find these alarm patterns in different alarm

floods. Luo et al. [5] applied the Bayesian networks to trace root causes of

alarms.

Alarm floods prediction is another area of study in alarm floods. By ex-

amining historical alarm flood sequences, the study in [33] made predictions
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of upcoming alarm events for a current alarm sequence. To calculate the

posterior probabilities for all candidates of predicted alarm events and their

confidence intervals, Bayesian estimators were used. Lai et al. [34] proposed

an online algorithm that could calculate similarity between an online alarm

sequence and a pattern database, therefore making early prediction of an in-

coming alarm flood. By using the proposed algorithm, state identification

can potentially be used in the applications of online alarm suppression and

predictive alarming.

Studies [35], [36], [10] and [9] proposed methods for classification and de-

tection of alarm floods. Lucke et al. [35] reviewed a number of alarm data

analysis methods to reduce the impact of alarm floods, and noticed that online

applications were developed in attempting to help operators during an alarm

flood, but these applications only considered the problem as sequence mining.

To classify ongoing alarm floods, the paper proposed a binary series approach

using historical data on alarm floods. Wang et al. [36] reviewed basic criteria

for alarm floods detection, and proposed a new criterion based on the number

of alarm variables newly appeared in an alarm state. Using the new criterion,

the paper then proposed an algorithm to detect both online occurrence of

alarm floods and offline detection of the presence of alarm floods in histori-

cal data. Shang et al. [10] proposed an exponentially attenuated component

analysis method for early classification of alarm floods. Hu et al. [9] proposed

an itemset mining method to detect frequent patterns in alarm floods after

identifying and extracting alarm floods from historical data based on alarm

rates.
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1.2.3 State-Based Alarming

The ANSI/ISA-18.2 standard [1] and the EEMUA-191 guideline [20] also

recommend state-based alarming as an enhanced and advanced alarm man-

agement technique to handle nuisance alarms or alarm floods associated with

certain operating states for equipment or processes. The idea is that some

alarms are only useful when operating equipment or processes are in a certain

state [13]. When the state is changed, these alarms are no longer indicating

the true abnormalities and are just reflections of the state change. Thus, by

configuring state-based alarming, such nuisance alarms are suppressed and

will not be presented to plant operators [39–41, 46].

State-based alarming is also known as dynamic alarming, logic-based alarm-

ing or condition-based alarming in the literature and in industry [40]. Using

a Bayesian estimation based dynamic alarm management (BEDAM) method,

dynamic alarm limits were obtained and used to control alarm floods dur-

ing chemical process transitions [39]. Advanced logic-based alarming strate-

gies were used to detect faults and monitor hybrid process systems [42]. A

condition-based multistage adaptative method was used to detect and reduce

false alarms in mechanical systems [43].

As state-based alarming is highly effective in reducing nuisance alarms and

alarm floods, it is being applied progressively more in practice [12, 13, 40],

and considered to be an important technique of the next generation industrial

process control systems [40]. Many industrial facilities have successfully used

state-based alarming techniques to improve their alarm systems, including

chemical plants [13], an oil sand extraction plant [38], a nuclear power plant

simulator [44], and an ethylene plant [45]. A dynamic alarm management

technique was used in [45] to reduce alarms during a 7-hours alarm flood
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from 1450 alarms to a manageable number for operators. Syncrude developed

mode-based solutions (MBS) and deployed it on the Honeywell DCS for their

oil sand extraction plant to effectively manage alarms. MBS kept unnecessary

alarms out of alarm summary page of the HMI based on certain operating

modes of equipment or processes, reducing stress on operators [38].

To implement the state-based alarming technique, it requires to find out

the associations between the operating modes and alarms. In practice, this is

usually done based on the experience of plant operators and expert knowledge

of process engineers, and thus is very time consuming [13, 37, 39]. In [15],

a completely automated data-driven method based on the Apriori algorithm

was proposed to detect the association rules of mode-dependent alarms from

Alarm and Event (A&E) logs that record all historical events of operating

modes and alarms. This method involves two cases, including the detection of

mode-dependent alarms for both single and multiple modes. Additionally, a

separate step was used to detect frequent patterns of multiple operating modes

first. Thus, the computational efficiency is much compromised due to the

separated steps. Additionally, the Apriori algorithm is also computationally

inefficient especially for large datasets or long sequences.

1.3 Thesis Contributions

As discussed above, the computational efficiency of the method in [15] is

comprised due to the separated steps and the inefficiency of Apriori algorithm

for large datasets. Therefore, the question is how to improve the efficiency

for the detection of mode-dependent alarms from the historical A&E logs.

Motivated by this problem, this thesis proposes a new detection method based

on a data mining approach named FP-Growth (Frequent Pattern-Growth).

The major contributions of this thesis are summarized below:
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1. Proposed an efficient data-driven method to discover the association

rules of mode-dependent alarms using historical A&E logs.

2. The proposed method is capable of detecting associations rules of mode-

dependent alarms for both single and multiple modes together in one

algorithm.

3. Demonstrated the superior performance of the proposed method with

two industrial case studies in comparison with a previous study on mode-

dependent alarms [15].

1.4 Thesis Organization

The remaining of this thesis is organized as follows.

Chapter 2 provides an introduction on state-based alarming and associa-

tion rule mining. Apriori, FP-Growth, and other popular algorithms in asso-

ciation rule mining will be discussed and compared.

Chapter 3 introduces the mathematical definitions and formulates the

problem of mode dependent alarms detection.

Chapter 4 presents the systematic method for the detection of mode-

dependent alarms. There are three major steps:

1. The original A&E data is reorganized in a transactional format through

data preprocessing and segmentation.

2. The association rules are obtained using the FP-Growth algorithm and

the likelihood ratio.

3. Spurious and redundant rules are determined and excluded through

post-filtering.

10



Chapter 5 demonstrates the effectiveness and practicability of the proposed

method using A&E data from two large scale process facilities.

Chapter 6 presents the concluding remarks and potential direction of future

work.
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Chapter 2

Preliminaries

This chapter introduces the concept of mode dependent alarms, and asso-

ciation rule mining and the different algorithms in this branch of data mining.

2.1 Mode Dependent Alarms

This section introduces the concept of state-based alarming and its usage

in practice, and the two parts of mode dependent alarms, namely, operating

modes and its consequential alarms.

2.1.1 State-Based Alarming in Practice

As discussed in Chapter 1, state-based alarming is an advanced alarm man-

agement technique recommended by the ANSI/ISA-18.2 standard [1] to reduce

nuisance alarms and alarm floods associated with certain operating states for

equipment or processes. In industrial process plants, these equipment and

processes have multiple operating states or operating modes, but most alarms

are only useful when they are in a certain state. Alarms that occur when the

state is changed are just reflections of the state change, they do not indicate

true abnormalities, thus making them nuisance alarms. When too many of

these nuisance alarms are presented at the same time, alarm floods can also

occur, both of which will distract the operators from the true state of the

12



Figure 2.1: An example of state-based alarming: association between a valve
and a flow indicator.

plant, and potentially cause huge incidents. By using state-based alarming

to find these potential nuisance alarms, and suppress them based on certain

operating states, such disasters can be avoided.

A potential industrial example of where the state-based alarm can be used

is presented in Figure 2.1. In this example, an operator closed a valve from

the HMI screen in the control room, which fully shut off the physical valve in

the field through DCS. A flow indicator directly downstream of the valve was

configured to monitor the flow rate of the line. In order to warn operators

of its abnormal condition, several alarm parameters were configured on the

flow indicator, such as PV (process variable) high or PV low, which will alarm

whenever the flow rate either raises above a pre-defined high alarm limit or

drops below a pre-defined low alarm limit. In this case, after the operator

closed the valve, a flow PV low alarm was triggered and annunciated on the

HMI. However the PV low alarm was the direct consequence of closing the

valve upstream. It is expected, therefore did not indicate a true abnormality,

just a reflection of the state change. The alarm is useless as no action was

13



Figure 2.2: An example of multiple occurrences of an operating mode.

Figure 2.3: An example of multiple occurrences of a consequential alarm.

required and is considered a nuisance alarm. Such alarms can be configured by

process control engineers to be suppressed when certain states or conditions

are met.

Figure 2.2 shows graph of multiple occurrences of the valve being closed

by operators t
(e)
m1 and Figure 2.3 shows graph of multiple occurrences of the

flow PV low alarm t
(e)
a1 . It can be seen that each occurrence of the flow PV low

alarm t
(e)
a1 always follows the valve being closed by operators t

(e)
m1 very closely.

Hence, based on the concept of state-based alarming, t
(e)
a1 is an consequential
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alarm of the state change t
(e)
m1 , making it a nuisance alarms. Such alarms

should be configured to be suppressed whenever operators close the valve,

and re-enabled when the valve is opened again.

2.1.2 Operating Modes and Consequential Alarms

State-based alarming reduces nuisance alarms and alarm floods by sup-

pressing consequential alarms when processes and operating equipment are in

a certain state. Processes such as different chemicals being fed into the plant,

startup and shutdown of an unit or an entire plant, and change of process

to produce different products can be very difficult to determine, and require

a combination of process data and expertise process knowledge from plant

personnel such as seasoned operators, process engineers and process control

engineers. Instead of looking at these complicated processes, the focus of this

thesis is on the states of operating equipment, also called operating modes of

equipment. These state changes are often done by operators, and as such, are

recorded as Alarm and Event (A&E) logs in real time in control systems like

DCS or SCADA. The recorded data can easily be exported into Excel tables

out of A&E logs. Hence, it can be used in data-driven methods to determine

mode dependent alarms without any additional work by plant personnel or

plant knowledge.

Table 2.1 shows the most commonly and typically used operating equip-

ment in industrial plants and the various possible operating modes they can

be in. Some equipment only has two possible states, like open and close for

valves, but others can have multiple states, such as auto, manual, cascade, SP

(Setpoint) change and OP (Output) change for controllers. For controllers,

there can be digital state changes like auto/manual/cascade and analog state

changes like SP and OP changes. Typically for digital changes, under one
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Table 2.1: Commonly used equipment and their operating modes.

Equipment Operating modes

Blower Start / Stop / Standby

Controller Auto / Manual / Cascade / SP change / OP change

Fan Start / Stop / Standby

Motor Start / Stop / Standby / Forward / Reverse

Pump Start / Stop / Standby

Valve Open / Close

state or operating mode of an equipment, everything works normally, and any

alarm that may annunciate during that time indicates a true abnormality and

requires attention from operators. While under other states, an alarm can

become a consequential alarm of the state change, and is therefore a nuisance

alarm. According to Syncrude’s definitions, operating states of equipment

can also be determined by “a defined process variable that reaches a specific

limit” [38]. Such state changes are analog changes. Similarly, when analog

changes are within limits, any alarms annunciated indicate true abnormalities,

but when these changes reach and surpass a specific limit, alarms annunciated

become consequential alarms of the analog change.

Determination of these consequential alarms of state changes can then

be used to configure them in such a way to suppress these nuisance alarms

whenever the state changes, therefore reducing potential alarm floods and

disasters. In industries, the determination of mode dependent alarms are

typically done using process knowledge of plant personnel like operators and

engineers. However, this detection method has proven to take a lot of time

and resources, and sometimes even then, potential mode dependent alarms are

missed. This thesis follows the study in [15], and continue to use data driven
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methods to automate the detection process. The results can then be used by

plant process control engineers to configure and suppress these consequential

alarms associated with changes of certain operating modes.

2.2 Association Rule Mining

Association rule mining is one of the major branches of data mining. It is

a rule-based machine learning method used to mine interesting connections,

co-occurrences, or associations between items in a large database. Discovered

associations can be used by organizations to make important decisions and

increase overall profit. When association rule mining was first introduced in

[47], it was originally used in market basket analysis. “Beer and diaper” is

a famous tale often told to illustrate data mining concepts. The idea is that

supermarkets discovered through data that customers who buy diapers also

buy beer at the same time, and it was presumed that husbands sent out to buy

diapers by their wives also purchase beer as they no longer get as much time

drinking at pubs. It is dubious how much of the story is true, however it did

become a popular example of how through association rule mining, everyday

data can be used to find unexpected associations. Association rule mining

has since expanded its use to many application areas including bioinformatics,

telecommunication networks, website navigation examination, market and risk

management and intrusion detection [48] [49].

An example of its original use in market basket analysis is shown in Ta-

ble 2.2, and used to introduce some definitions and concepts of association

rule mining as defined in [47]. Some definitions are presented first:

1. Let I = {i1, i2, · · · , in} be a set of n binary attributes called items.

2. Let D = {t1, t2, · · · , tm} be a set of transactions called the database.
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Table 2.2: An example database of market-basket transactions.

Transaction ID Items

1 Bread, Beer, Diaper, Egg

2 Diaper, Beer, Milk

3 Beer, Milk, Diaper, Bread

4 Bread, Milk

5 Bread, Milk, Diaper

Table 2.3: An example database of market-basket transactions in binary vector
form.

Transaction ID Beer Bread Diaper Egg Milk

1 1 1 1 1 0

2 1 0 1 0 1

3 1 1 1 0 1

4 0 1 0 0 1

5 0 1 1 0 1

3. Each transaction t in database D has an unique transaction ID and

contains a subsets of the items i in I.

4. Each t is represented as a binary vector, where t[k] = 1 if t includes the

item ik, and t[k] = 0 if t doesn’t.

5. An association rule is defined as an implication of the form X ⇒ Y ,

where X ⊆ I is a set of some items in I, and Y ⊆ I is a set of some

items in I, also known as itemsets.

6. An itemset that contains k items is called k-itemset.

From the example, the set of items is I = {beer, bread, diaper, egg,milk}.

Table 2.3 shows the database in its binary vector form, where, the value 1
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means the appearance of the item i in the corresponding transaction t, and

value 0 means the absence of i in t.

Next, some important concepts of association rule mining are discussed.

The support of an itemset is the frequency of appearance of the itemset in

the database D. The support of itemset X in database D is defined as the

proportion of transaction t in D which contains X, and is calculated as:

s(X) =
|t ∈ T ;X ⊆ t|

|T |
(2.1)

| · | indicates the size of a set or vector.

The itemset X = {beer, diaper} has a support of s({beer, diaper}) = 3/5 =

0.6, which means that X occurred in 60% of all transactions. An itemset

whose support is larger than or equal to a minimum support threshold Smin

is a frequent itemset. The support of the association rule X ⇒ Y where

X = {bread, diaper} and Y = {beer} = 2/5 = 0.4. Confidence is a measure

of how often items in Y appear in transactions that contain X. The confidence

of an association rule X ⇒ Y , with respect to a set of transactions in database

D is calculated as:

c(X ⇒ Y ) =
s(X ∪ Y )

s(X)
(2.2)

The confidence of the association rule X ⇒ Y where X = {bread, diaper}

and Y = {beer} is:

c(X ⇒ Y ) =
s({bread, diaper, beer}
s({beer, diaper})

=
0.4

0.6
=

2

3
= 0.67 (2.3)

Both the support and confidence are important rule evaluation metrics of

association rule mining. The support shows the coverage of the rule and the

confidence shows the accuracy of the rule.
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2.2.1 Apriori Algorithm

The Apriori algorithm is one of the most well-known algorithms as well

as the most original association rule mining algorithm proposed in [47]. This

algorithm was also used in previous study [15] to detect mode dependent

alarms. The Apriori algorithm uses a two-step approach: candidate itemset

generation and test for frequency. First, it generates candidate itemsets of

length k from candidate itemsets of length k−1. Then, it tests these candidate

itemsets against the entire database to find their supports. If they are bigger

than the minimum support Smin or frequency threshold Fth (as discussed later

in Chapter 3), they are moved onto the next level, where another item is added

to the candidate itemset. The concept is if an itemset is frequent, subsets of

this itemset must also be frequent. If an itemset is infrequent, supersets

of this itemset must also be infrequent. For example, assume there are 3

items in a transaction, Dl = (el,1, el,2, el,3), if candidate itemset Cn = (el,1)

is not frequent, then Cn+1 = (el,1, el,2) cannot be frequent, and subsequently

Cn+2 = (el,1, el,2, el,3) cannot be frequent; thus this branch of items is pruned

from the database. If Cn+3 = (el,2) is frequent, then Cn+4 = (el,2, el,3) is the

next level of candidate itemset and is tested for frequency and so on. After

all potential association rules are found, they are tested for confidence values,

and only rules with confidence values higher than the minimum confidence

Cmin are considered as final association rules.

However when dealing with larger dataset, this method is very time-costly

to generate candidate itemsets. It also repeatedly scans the entire database

to count support for every candidate itemset, adding to the time and memory

burden.
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Table 2.4: An example of a transactional database.

Transactions Events

D1 ek1, ek2, ek3

D2 ek2, ek3, ek4

D3 ek1, ek3

D4 ek1, ek2

D5 ek2, ek3

2.2.2 FP-Growth Algorithm

In this thesis, instead of the Apriori algorithm, the FP-Growth (Frequent

Pattern Growth) algorithm was used to detect mode dependent alarms. The

FP-Growth algorithm is a newer, more efficient method of mining patterns. It

was proposed by Han in his paper [16], where it was compared with Apriori [14]

and TreeProjection [17] (a new proposed method at the time), and proved to

have a better performance. In later works, it was also proved that FP-Growth

outperforms Apriori and ECLAT (another popular method) [18][19]. In one

of the comparison papers [19], it was found that FP-Growth and ECLAT are

the fastest algorithms in frequent itemset mining (also called association rule

mining) at the time of the publication of the paper. Finding better ways to

filter both frequent itemsets and association rules or to produce less in the first

place is considered an ongoing challenge [19]. Filtering can effectively reduce

data set and make the algorithm run faster and use less memory. Many filters

are set within the new method for this purpose, and will be discussed later in

Chapter 4.

In comparison to Apriori, FP-Growth discovers association rules without

the expensive candidate itemset generation step or repeatedly scanning the

entire database. Instead, it uses a two-step approach (Algorithms 1 and 2).
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Figure 2.4: An example of a frequent pattern tree.

Algorithm 1 is first used to generate a compact data structure called FP-

tree (frequent pattern tree) using A&E log E organized in a transactional

database format Ẽ =< D1, D2, · · · , DL > and minimum threshold Fth. Then,

association rules φ : M ⇒ A are mined directly from the more compact FP-

tree. The FP-tree is an extended prefix-tree structure that stores quantitative,

key information of association rules in a database. Additionally, this step

only uses 2 scans of the database, as opposed to the many scans Apriori uses.

Algorithm 2 is then applied to mine frequent patterns directly from the more

compact FP-tree. A divide and conquer search technique is used instead of

the bottom-up generation technique of the Apriori method. The algorithm

first divides the FP-tree into smaller trees called conditional FP-trees, each

with a set of frequent items, then looks for short patterns recursively and

concatenating them in long frequent patterns. As a simple example, using

a set of transactions as shown in Table 2.4 and a Fth = 2, the FP-tree (as

shown in Figure 2.4) is constructed, with each node containing an event ek

and its frequency ρ. From the FP-tree, association rules φ1 = (ek1, ek2) and

φ2 = (ek2, ek3) are obtained.
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To better understand FP-Growth, algorithmic outlines of Algorithms 1

and 2 are summarized and provided in Section 4.2, more details regarding the

algorithms can be found in [16].
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Chapter 3

Problem Description

This chapter introduces the mathematical definitions used in this thesis

and formulates the problem of mode dependent alarms detection.

3.1 Mathematical Definitions

The objective of this thesis is to discover the association rules of mode-

dependent alarms for both single and multiple operating modes based on the

historical A&E log that contains events for both alarms and operating modes.

To better present the method, a series of basic notations are given as follows:

1. An unique operating mode is denoted as mi

2. The set of all unique modes in an alarm system is then denoted as

M = {mi : i = 1, 2, · · · , |M|}, where | · | indicates the size of a set or

vector.

3. An unique alarm is denoted as aj

4. The set of all unique alarms in an alarm system is then denoted as

A = {aj : j = 1, 2, · · · , |A|}.

5. The kth timed event of a mode or alarm ek ∈M∪A at the time instant

tk is denoted as (ek, tk)
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6. An A&E log consists of timed events over a certain time period T and

is represented as E = {(ek, tk) : ek ∈ M ∪ A, tk ∈ T, k = 1, 2, · · · , N},

where N is the number of events in E

7. The sub-databases of all mode events are denoted as E(M) = {(mi, tk) :

mi ∈M, tk ∈ T, k = 1, 2, · · · , N}

8. The sub-databases of all alarm events are denoted as E(A) = {(aj, tk) :

aj ∈ A, tk ∈ T, k = 1, 2, · · · , N}

9. E = E(M) ∪ E(A)

10. Given all events for an unique mode e = mi or alarm e = aj, a corre-

sponding time vector is obtained as t(e) = [t
(e)
1 , t

(e)
2 , · · · , t(e)|t(e)|]

T , where

t
(e)
l1
< t

(e)
l2

for l1 < l2. The time vectors for mi ∈M and aj ∈ A are t(mi)

and t(aj), respectively.

11. An association rule of mode-dependent alarms is denoted as φ : M ⇒ A,

where M ⊆M represents a set of operating modes and A ⊆ A denotes

a set of alarms. The symbol ⇒ indicates that the alarms in A are

consequential alarms of operating modes in M . It should be noted that

either M or A should contain at least one element, i.e., M 6= ∅ and

A 6= ∅.

3.2 Problem Formulation

The problem is formulated as: given an A&E log E on M and A, the

objective is to detect all possible association rules φ : M ⇒ A, such that

1. the alarms in A must happen after the occurrence of the last operating

mode in M, i.e., t
(mi)

|t(mi)| < t
(aj)
l2

for ∀aj ∈ A, and
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2. the time difference between the first operating mode in M and the last

alarm inAmust be within a certain time windowW , i.e.,
(
t
(aj)

|t(aj)|
− t(mi)

1

)
∈

(0,W ], and

3. the association rule is frequent, i.e., the frequency of the rule σ(M ⇒ A)

is no less than the required minimum threshold Fth.

The first and second conditions guarantees that the alarms in an associa-

tion rule always happen after the operating modes and all events e = mi ∪ aj

happen within a pre-determined time window W . Otherwise, if an alarm hap-

pens before a mode or the delay is too large, it is very likely not a consequential

alarm of this mode. The third condition calculates how many times a set of

modes M is followed by a set of alarms A and makes sure that the rule is

frequent in the historical database. If a rule is rarely seen, it cannot be an

interesting association rule and thus should be excluded.
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Chapter 4

Methodology

This chapter presents a systematic method for the detection of association

rules of mode-dependent alarms. The main steps include preprocessing and

segmentation of A&E data, detection of association rules, as well as determi-

nation and removal of spurious and redundant rules.

4.1 Preprocessing and Segmentation of A&E

Data

The raw A&E data E is essentially a long sequence of timed events. In

this thesis, the FP-Growth algorithm [16] is applied to discover the association

rules for both single mode and multiple modes of mode-dependent alarms from

the A&E data. The algorithm requires the data organized in a transactional

database format, i.e., the data consists of a number of transactions and each

transaction is comprised by a series of items. Thus, the A&E data needs to

be broken into transactions before inputting it into the FP-Growth algorithm

for the association rule mining.

According to the objective described in Chapter 3, all alarms A of a de-

tected association rule must follow the last operating mode in M , and the

time difference between the first operating mode in t
(mi)
1 and the last alarm
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t
(aj)

|t(aj)|
must be within a certain time window W . Otherwise, the occurrences

of these alarms A are regarded to be irrelevant with the switching of the set of

operating modes M if their time difference is beyond (0,W ], and are therefore

not considered as consequential alarms associated with this set of operating

modes M .

Here, the A&E log E = {(ek, tk) : ek ∈ M ∪ A, tk ∈ T, k = 1, 2, · · · , N}

is assumed to be chronologically ordered, i.e., tk1 ≤ tk2 for 1 ≤ k1 ≤ k2 ≤ N .

If the time gap of two adjacent events ek and ek+1 is more than a pre-defined

time window W , i.e., tk+1− tk > W , the relation between ek and ek+1 is not of

interest, and thus the A&E log E can be divided at the position between tk and

tk+1 such that ek and ek+1 are included in two separated transactions. Then,

the A&E log E is reorganized in a transactional database format as Ẽ =<

D1, D2, · · · , DL >, where L is the number of transactions; each transaction is

represented by

Dl = (el,1, el,2, · · · , el,|Dl|),

such that tl+1,1 − tl,|Dl| > W,
(4.1)

where tl+1,1 and tl,|Dl| are time stamps of el+1,1 in Dl+1 and el,|Dl| in Dl,

respectively. In other words, the time gap between the first element of Dl+1

and the last element of Dl should be larger than W .

An example is presented in Table 4.1 to demonstrate how an A&E log

is divided. Based on the time stamps t(e) in the second column, the time

differences between adjacent event occurrences are calculated and presented

in the fourth column. The time window is set to W = 600s. Then, it is found

that the 6th event has a large time gap of 605s with the 5th event, and thus the

data is divided at the instant between the 5th and 6th events. Analogously,

the second breaking point is found at the instance between the 8th and 9th
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Table 4.1: An example of dividing an A&E log.

No. Time stamp (s) Event Time gap (s) Break

1 0 mode 2 0

2 10 alarm 2 10

3 30 mode 1 20

4 40 alarm 1 10

5 50 mode 3 10

6 655 mode 1 605 yes

7 680 alarm 1 25

8 720 alarm 3 40

9 1380 mode 1 660 yes

10 1420 alarm 1 40

Table 4.2: Example of a transactional database converted from the A&E log.

Transactions Events

1 mode 2, alarm 2, mode 1, alarm 1, mode 3

2 mode 1, alarm 1, alarm 3

3 mode 1, alarm 1

events, as the two events has a time gap of 660s in between them. Finally,

the A&E data is reorganized in a transactional database format as shown in

Table 4.2.

However, in real industrial data, there usually exist chattering alarms,

which may lead to the difficulty in data segmentation. A chattering alarm

is referred to as an alarm repeatedly transiting between the alarm and non-

alarm states within a short time period [1]. Since the time gap between two

adjacent occurrences of a chattering alarm is small, all chattering instants will

be included in one transaction, which may lead to a large transaction depend-
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ing on how long the alarm is in a chattering situation. If there exist a large

number of chattering alarms, breaking the A&E log E into short transactions

could be difficult. Thus, the chattering alarms should be reduced from E.

Two typical techniques recommended in ANSI/ISA-18.2 [1] are off-delay

and on-delay timers, which can be directly applied to the alarm data. In

addition, a window filter can also be used to reduce chattering alarms; the

method is formulated as follows: For an alarm a, its time vector is t(a) =

[t
(a)
1 , t

(a)
2 , · · · , t(a)|t(a)|]

T . A binary index vector B(a) = [b
(a)
1 , b

(a)
2 , · · · , b(a)|t(a)|]

T is

obtained with each element given by

b
(a)
k =

 1, if t
(a)
k − t

(a)
k−1 < ω,

0, otherwise,
(4.2)

where k = 2, 3, · · · , |t(a)|; b(a)1 = 0; ω is a pre-defined window size. Accordingly,

the timed event (e, t) with e = a, t = t
(a)
k , b

(a)
k = 1 is removed from the A&E log

E. Since some operating modes are set to change automatically, it is possible

that some mode events are repeating within a short period. Thus, the window

filter technique can also be used to reduce such repeating events for operating

modes.

Before the reconstructing of the A&E data E into transactional A&E data

Ẽ, modes and alarms with a frequency less than the required minimum thresh-

old Fth are also pruned:

1. If there exists an unique mode mi with a frequency less than Fth, i.e.,

σ(mi) < Fth, the mode mi should be pruned from the A&E log E =

{(ek, tk) : ek ∈M∪A, tk ∈ T, k = 1, 2, · · · , N}

2. If there exists an unique alarm aj with a frequency less than Fth, i.e.,

σ(aj) < Fth, the alarm aj should be pruned from the the A&E log

E = {(ek, tk) : ek ∈M∪A, tk ∈ T, k = 1, 2, · · · , N}
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Considering that if an event e that is either an unique mode e = mi

or unique alarm e = aj has a frequency less than Fth, any association rule

φ : M ⇒ A containing such an event would also have a frequency less than

Fth, and such a rule would not be of interest since it is rarely seen in the

historical database.

Further, in the reconstructed transactional A&E data Ẽ =< D1, D2, · · · , DL >,

there may exist some transactions which do not meet the needs for the min-

ing of mode-dependent alarms, i.e., only the scenarios that the modes are

followed by alarms are of interest. Thus, the transactional A&E data Ẽ is

further processed by excluding and refining some undesirable transactions in

the following scenarios:

1. If there exist alarm events before the first mode event in Dl, i.e., el,k ∈

A, k = 1, 2, · · · , k̃ and el,k̃+1 ∈ M, where 1 ≤ k̃ ≤ |Dl| − 1, the transac-

tion Dl should be updated by Dl = (el,k̃+1, el,k̃+2, · · · , el,|Dl|).

2. If there exist mode events after the last alarm event in Dl, i.e., el,k ∈

M, k = k̃, k̃ + 1, · · · , |Dl| and el,k̃−1 ∈ A, where 2 ≤ k̃ ≤ |Dl|, the

transaction Dl should be updated by Dl = (el,1, el,2, · · · , el,k̃−1).

3. If all events in a transactionDl are mode events (el,k ∈M, k = 1, 2, · · · , |Dl|)

or alarm events (el,k ∈ A, k = 1, 2, · · · , |Dl|, the transaction Dl should

be excluded from the transactional A&E data Ẽ.

As a result, any undesired and useless transactions or events are excluded,

and a more refined transactional A&E dataset Ẽ is obtained for the mining of

association rules in the next section.
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4.2 Mining Association Rules Using FP-Growth

This section describes mining association rules from the preprocessed trans-

actional A&E data Ẽ. In [15], a classical data mining algorithm named Apri-

ori was adopted to find frequent patterns that represented the concurrences of

multiple operating modes and alarms. As discussed in Chapter 2, the Apriori

algorithm detects frequent itemsets in a join-and-prune manner [14]. How-

ever, it needs to generate a large number of candidates and repeatedly scan

the database, making the computation inefficient. Different from the method

in [15], this thesis generates association rules for both single and multiple op-

erating modes simultaneously, and does not need to mine frequent mode pat-

terns in an individual step. Since both mode and alarm events are involved,

there may exist long patterns, which may pose challenges to the computation.

Therefore, a more efficient data mining method named FP-Growth (Frequent

Pattern Growth) is proposed and applied in this thesis. This method de-

tects frequent patterns without generating the expensive candidate itemsets

or repeatedly scanning the entire database, and thus is more computation-

ally efficient [16]. Then, based on the detected patterns, association rules

are formed. According to [19], filtering association rules is considered as an

ongoing challenge. In this thesis, a post-processing step is proposed to filter

out undesirable association rules so as to output the rules of mode-dependent

alarms of interest.

To apply the FP-Growth algorithm, Algorithm 1 is used to construct a

compact data structure called FP-tree (frequent pattern tree) based on the

sorted frequent-item list, which is collected and preprocessed from the transac-

tional A&E data Ẽ as described above. Then, Algorithm 2 is used to mine the

association rules φ : M ⇒ A directly from the FP-tree, which is an extended
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prefix-tree structure that stores the quantitative key information of associa-

tion rules. The inputs of the FP-Growth are the transactional A&E data Ẽ

and the support threshold Fth, and the output is the collection of frequent

itemsets with supports no less than Fth. The support σ(S) of an itemset S is

calculated as

σ(S) =
∣∣∣{Dl : S ⊆ Dl, Dl ∈ Ẽ

}∣∣∣ . (4.3)

The detailed procedures of the FP-Growth algorithm can be found in [16].

Algorithm 1 FP-tree Construction

Input: A transaction database DB and a minimum support threshold, ε.
Output: FP-tree.
Method: The FP-tree is constructed as follows:
1. Scan DB once to collect F , the set of frequent items, and the support of
each F . Sort F in descending order of support as the list of frequent items,
L.
2. Create T , the root of an FP-tree, labelled as “null”.
for each transaction, Trans in DB do

3. Select F in Trans and sort them according to the order of L. Let
[p|P ] be the sorted frequent-item list in Trans, where p is the first
element and P is the remaining list. Call insert tree([p|P ], T ).
4. The insert tree([p|P ], T ) function is presented as the following:
if T has a child N |N .item-name = p.item-name then

increment N ’s count by 1;
else

create a new node N , with its count initialized to 1, its parent link
to be linked to T , and its node-link to be linked

end if
end for

Following the hypothesis test for the conditional probability in [15], the

association rules can be determined by calculating a logarithmic likelihood

ratio Λ, which is asymptotically χ2 distributed with one degree of freedom.

Given two frequent itemsets S1 and S2 such that σ(S1) ≥ Fth, σ(S2) ≥ Fth

and S1∩S2 6= ∅, the logarithmic likelihood ratio Λ for a candidate association

33



Algorithm 2 FP-Growth - Pattern Mining.

Input: FP-tree constructed in Algorithm 1, and a minimum support thresh-
old, ε.
Output: The complete set of frequent patterns.
Method: call FP-Growth(FP-tree, null).
Procedure FP-Growth(Tree, α){
if Tree contains only one path, P then

for each combination, β of the nodes in P do
Generate pattern β

⋃
α with support=min support of nodes in β

end for
else

for each αi in the header of Tree do
1. Generate pattern B=ai U a with support=support of ai
2. Construct the conditional pattern base of B and then the
conditional FP-tree of B, denoted as TreeB
3. If TreeB !=0, then call FP-Growth(TreeB, B)

end for
end if}

rule S1 ⇒ S2 is

Λ ≈ −2
[
σ(S1) log σ(S1)+σ(S1∪S2)

2σ(S1)

+σ(S1 ∪ S2) log σ(S1)+σ(S1∪S2)
2σ(S1∪S2)

]
,

(4.4)

where σ(S1 ∪ S2) denotes the number of transactions containing both S1

and S2. If Λ ≤ Λth, S1 ⇒ S2 is determined to be an association rule, where

Λth indicates the χ2 value at a certain significance level.

At a significance level of 0.05, or confidence level of 95%, the χ2 value is

about 3.841. Using Λth = 3.841 as an example, if Λ > 3.841, S1 ⇒ S2 is

rejected as an association rule at a signficance level of 0.05, thus concluding

S1 ; S2. And if the reverse is true, i.e., Λ ≤ 3.841, S1 ⇒ S2 is accepted as an

association rule with a confidence level of 95%. It should be noted that the

smaller the value of Λ, the higher the confidence level, making the association

rule of S1 ⇒ S2 more significant.
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4.3 Determination and Removal of Spurious

and Redundant Rules

Using the FP-Growth algorithm, a complete set of association rules φ :

S1 ⇒ S2 are detected. However, not all rules are of interest. Thus, it is

necessary to determine and filter out spurious and redundant rules, and reserve

the rules that represent the mode-dependent alarms. The following filtering

steps are involved:

1. An association rule φ : S1 ⇒ S2 should be pruned if S1 ⊆ A (i.e., S1

contains only alarms) or S2 ⊆ M (i.e., S2 contains only modes), since

it conflicts with the objective to detect mode-dependent alarms, i.e.,

S1 ⊆M and S2 ⊆ A.

2. An association rule φ : S1 ⇒ S2 should be updated by φ : M1 ⇒ S2 if

S1 = M1 ∪A1, M1 = {mi ∈M : i = 1, 2, · · · , |M1|}, A1 = {aj ∈ A : j =

1, 2, · · · , |A1|}.

3. An association rule φ : S1 ⇒ S2 should be updated by φ : S1 ⇒ A2 if

S2 = M2 ∪A2, M2 = {mi ∈M : i = 1, 2, · · · , |M2|}, A2 = {aj ∈ A : j =

1, 2, · · · , |A2|}.

4. An association rule φ : S1 ⇒ S2 should be pruned if either S1 or S2 is

an empty set, i.e., S1 ∪ S2 = ∅

5. An association rule φ : S1 ⇒ S2 such that S1 ⊆ M and S2 ⊆ A is

pruned if S2 containing 2 or more alarms, i.e., |S2| ≥ 2. In this case, a

subset of this rule with φ : S1 ⇒ S ′2 where S ′2 ⊆ S2 and S ′2 containing

only a single alarm, i.e., |S2| = 1 already exist, and the larger rule is

redundant.
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6. Given an association rule φ : S1 ⇒ S2 such that S1 ⊆ M and S2 ⊆ A,

recalculate the support σ(S1 ∪ S2) by counting how many transactions

have the property that S1 is followed by S2 within the time window W .

If it is detected that σ(S1 ∪ S2) < Fth using W , the rule φ : S1 ⇒ S2

is pruned. Due to the method for reorganization of A&E log E into

transactional format Ẽ =< D1, D2, · · · , DL >, each transaction’s time

period could be bigger than W , i.e., tl,|Dl| − tl,1 > W , thus the time

period of association rules computed from Ẽ could also be bigger than

W , i.e., tS2,|S2| − tS1,1 > W . Hence, in order to ensure the association

rule φ : S1 ⇒ S2 is frequent within W as according to the problem

formulated in Chapter 3, support was recalculated with W .

7. If association rules φ : S1 ⇒ S2 and φ′ : S ′1 ⇒ S ′2 have the same

set of modes, i.e., S1 = S ′1, then the rules are combined into one rule

φ : S1 ⇒ S2 ∩ S ′2, each aj with its own respective frequency.

Eventually, the spurious and redundant association rules are excluded from

the list, and the remaining results are the rules of mode-dependent alarms

that meet the requirements in the objective in Chapter 3.

4.4 Time Window

In the method of multiple mode detection used in the previous study in

[15], frequent patterns of modes only φ : S1 ⇒ S2, S1 ⊆ M, S2 ⊆ M are

first found using Apriori algorithm using the user-defined time window Wth

and frequency threshold Fth. Then, using the last timestamp of the modes

t
(mi)

|t(mi)| within the frequent mode-mode pattern, and alarm data A, associations

between multiple modes and their consequential alarms φ : S1 ⇒ S2, S1 ⊆M,

S2 ⊆ A are found. Instead of this approach of detection which first identify

36



frequent patterns of multiple modes, then find associations of identified fre-

quent multiple modes pattern with alarms, the proposed method in this thesis

achieved the same tasks in one step.

In the proposed method, all mode M and alarm data A are inputted

into the FP-Growth algorithm together and a total time window W is used,

rather than using the same time window Wth twice. In the previous study, the

maximum time between the first and last modes is Wth, the maximum time

between last mode and the last alarm is also Wth. In the new method, there is

only one user-defined time window W as the maximum allowed time between

the first mode and the last alarm.

Different industrial plants and their respective processes may have varying

residence time. Process knowledge is typically required to learn the residence

time of various processes flowing through multiple units depending on product

phases (such as steam, liquid or solid). Thus, a time window spanning from

first mode to last alarm can reduce errors and avoid missing useful association

of modes and alarms due to lack of process knowledge, and can potentially

cover more and different variety of association rules.

Two examples are presented in Figure 4.1 and Figure 4.2 for comparison.

Suppose that Wth in the previous method [15] is set at 5 min, and W in the

new method is set at 10 min. If mode 1 is at 9:00 am, mode 2 is at 9:02 am,

and alarm 1 is at 9:07 am, then both methods will identify the association

between mode 1, mode 2 and alarm 1 as a multiple mode association rule, as

shown in Figure 4.1. However, if mode 1 is at 9:00 am, mode 2 is at time

9:06 am, and alarm 1 is at 9:09 am, then the new method will identify mode

1, mode 2 and alarm 1 as a multiple mode association rule, but the previous

method will not, as the time between the 2 modes are longer than Wth in the

previous method, as shown in Figure 4.2.
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Figure 4.1: Time window example 1.

Figure 4.2: Time window example 2.

In summary, the proposed method in this thesis uses only one step to detect

association rules of both single and multiple modes whereas the method in [15]

requires two steps for multiple mode detection. In the previous method, the

same time window Wth is used twice, first as the maximum time between the

first and last modes, then as the maximum time between the last mode and

the last alarm. However, in the proposed method, a total time window W

of maximum time between the first mode and the last alarm is used to find

association rules of mode dependent alarms instead. This new approach can
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reduce errors due to lack of process knowledge in residence time of various

processes, covering more and a variety of association rules, as shown in the

examples provided.
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Chapter 5

Industrial Case Study

This chapter presents two industrial case studies to demonstrate the ef-

fectiveness of the proposed method of mode-dependent alarm detection from

A&E logs.

5.1 Case Study I

The historical A&E data records were extracted from a large-scale process

facility with over six consecutive months of data. The data set included 237

unique modes and 426 unique alarms. The total numbers of mode and alarm

events were 17,389 and 288,716, respectively. The alarm rate during the six

months period for the plant is calculated to be 11.1 alarms/10min, which is

above the 1 alarm/10 min benchmark from ISA [1].

To apply the proposed method, there are two key user-defined parameters,

namely, the support threshold Fth and the time window W , which may affect

the number of generated rules and their quality. Either a small Fth or a

large W may lead to more association rules, but among them, some could be

spurious rules. By contrast, a large Fth may produce less but frequent rules,

and a small W may results in less but more significant association rules. Thus,

to investigate how the two parameters affect the results, multiple simulations
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Figure 5.1: Numbers of association rules based on different W and Fth values.

were conducted with different combinations of W and Fth. The chi-squared

value χ2 of 3.841 was used; it corresponds to a significance level of 0.05 or a

confidence level of 95%.

Figure 5.1 and Figure 5.2 show the number of detected association rules

and the mean χ2 value of the rules for each pair of W and Fth. As shown

in Figure 5.1, the number of rules grows with the increasing of either W or

the decreasing of Fth. In Figure 5.2, it can be seen that the mean χ2 value

mostly rises with the increasing of W ; a smaller mean χ2 value implies that

the detected rules are more significant. The conclusion is coincidence with

that in [15]. In practice, the two parameters must be carefully set, so as to

balance the number and the quality of the detected association rules.

In the following study, the results with Fth = 5 and W = 20 are pre-
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Figure 5.2: Mean χ2 values based on different W and Fth values.

sented. For comparison, simulations were also conducted using the method

in [15]. Table 5.1 presents the computation time of the proposed method

and the method in [15]. It is obvious that the proposed method has a better

computational efficiency. It is noteworthy that the detection of association

rules for multiple modes accounts for the majority of the consumed compu-

tation time in [15]. Table 5.2 gives the number of detected association rules

using the proposed method and the method in [15]. It can be seen that the

method in [15] detected more rules for single modes but failed in identifying

rules of multiple modes from the given A&E data. By contrast, the proposed

method detected much more association rules of mode-dependent alarms, but

the number of rules for single modes was less than that using the method in

[15]. This is because some rules for single modes were contained in rules for
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Table 5.1: Computation time of the proposed method and the method in [15].

The method in [15] The proposed method

Time 35006 s 1391 s

Table 5.2: Number of detected association rules in Case Study I using the
proposed method and the method in [15].

The method in [15] The proposed method

1 Mode 10 5

2 Modes 0 19

3 Modes 0 24

4 Modes 0 2

5 Modes 0 2

Total Modes 10 52

multiple modes and thus were pruned.

To better understand the results, examples and discussions of both case

studies will be presented together in Section 5.3.

5.2 Case Study II

Alarm and event (A&E) data for another large scale process facility was

used to further analyze mined associations and verify the effectiveness and

feasibility of the proposed method. The extracted A&E data from this facility

includes 275 unique modes and 495 unique alarms. The total numbers of

mode and alarm events were 8,939 and 21,009, respectively. The alarm rate

is calculated to be 4.9 alarms/10min, which is above the 1 alarm/10 min

benchmark from ISA[1].

To determine the two user-defined parameters, the support threshold Fth

and the time window W , Case Study II followed the method used in Case
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Table 5.3: Number of detected association rules in Case Study II using the
proposed method and the method in [15].

The method in [15] The proposed method

1 Mode 3 9

2 Modes 0 35

3 Modes 0 26

4 Modes 0 9

Total Modes 3 79

Study I, and conducted multiple simulations with different combination of Fth

and W , with a Chi-squared value χ2 of 3.841. Through these simulations, it

was found Fth = 5 and W = 10 are best fitted for the dataset in Case Study

II; thus these values are used in the following study.

For comparison, simulations were conducted using the proposed method

and the method in [15]. Table 5.3 shows the number of association rules de-

tected using the proposed method and the method in [15]. It can be seen that

the proposed method detected significantly more rules in both single and mul-

tiple modes, whereas the method in [15] failed to identify any multiple modes

rules. Upon further investigation, it was found that all 3 single mode rules

found using the method in [15] were also found using the proposed method.

To better understand the results, examples and discussion are presented

in Section 5.3.

5.3 Discussions

Several technical documents were provided from the plants in both case

studies, including: screenshots of HMI (Human Machine Interface) graphics

as operator interface, process overview document which describes the main
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process streams, major equipment and the process steps with PFDs (Process

Flow Diagrams), and P&IDs (Pipeline and Instrumentation Diagram) (pro-

vided for the plant in Case Study I only). By careful studying the process flows

in these documents, and thorough examination on finding locations of equip-

ment and/or controllers from which operator changes (mode changes) and

their associated alarms were detected by our method, all of the results were

checked and verified. Based on extent of relative distance of mode changes

and resulting alarms, these rules were placed into 5 categories, used to sum-

marize the different types of associations between modes changes and their

consequential alarms, and the potential impact these results could bring to

the control and alarm systems. The 5 categories are as follows:

• Category 0: modes and/or alarms could not be found in documents

provided (only for Case Study II as P&IDs were not provided).

• Category 1: modes and alarms are in the same simple or complex control

loop (for example: PID control loop as simple loop, and cascade control

or override control as complex control loop).

• Category 2: mode changes caused alarms downstream or recovered stream

in the same process stream (pipeline).

• Category 3: mode changes caused alarms in an adjacent process stream

going into or coming out of the same vessel, or within the same unit.

– In this case, alarms can be both upstream or downstream of the

mode change.

– As an example for alarms at downstream of the mode change: when

an operator increased flow set point for a flow controller valve sit-
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uated on an outlet stream of a vessel, it caused the vessel level low

alarm.

– As an example for alarm at upstream of the mode change: when

an operator increased flow set point for a flow controller valve on

a process stream feeding into a vessel caused a level high alarm of

the vessel.

• Category 4: mode changes caused alarms in a downstream unit, or a

upstream unit due to returned stream (100% returned like steam supply)

or recovered stream (partially returned).

It should be noted that by a mode change, it can be either a digital change

such as “open” and “close”, or an analog change such as change of SP (set-

point) or OP (output) of a controller, as discussed in Chapter 2. In the results

of the two case studies, a majority of the modes are controllers, which means

mode change can be change of state between “auto”, “manual” and “cascade”,

or it can be SP or OP change. In this thesis, it is not specifically determined

what particular type of change it was. However judging from the results and

documents, it is most likely a majority of the mode changes for controllers

were SP or OP changes.

The number of associations found in each category for Case Study I and

Case Study II are presented in Table 5.4 and Table 5.5, respectively. It is

noteworthy that the total number of associations is different from the total

number of association rules, as each association is considered between 1 mode

and 1 alarm, so a 2 modes mode-dependent alarm has 2 associations in its

rule.

To further understand the categories, a few examples from both case stud-

ies are presented and discussed.
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Table 5.4: Number of detected associations in each category in Case Study I.

Category Number of Associations Percentage

0 0 0%

1 14 16%

2 13 15%

3 27 32%

4 31 36%

Total 85 100%

Table 5.5: Number of detected associations in each category in Case Study II.

Category Number of Associations Percentage

0 15 14%

1 43 40%

2 26 24%

3 8 7%

4 15 14%

Total 107 100%

In Case Study I, it was detected that an alarm “Alarm 119” was a mode-

dependent alarm of two operating modes “Mode 4” and “Mode 34”, and such

association occurs in 15 transactions. “Alarm 119” is a PV (Process Variable)

low alarm of a pressure controller in a vessel, which means the pressure de-

tected at this controller is lower than a preset alarm limit. “Mode 4” is the

mode change of a pressure controller from an outlet stream of the same vessel

for “Alarm 119”, which places this association in Category 3. As “Mode 34” is

the mode change on the same pressure controller as “Alarm 119”, this associ-

ation is one of simple control loop: the PID (proportional–integral–derivative)

control in the controller itself, thus is placed in Category I.
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As a second example for Case Study I, “Alarm 140” was detected to be a

mode dependent alarm of “Mode 9” and “Mode 13”. Such association occurs

in 5 transactions in total. “Alarm 140” is a PV low alarm of a temperature

controller situated on the top outlet of a vessel while “Mode 13” is the mode

change of a flow controller on feeding stream line into the vessel. The temper-

ature controller cascades to control the flow controller which means that the

OP of the master temperature controller sets the SP of the slavery flow con-

troller in a cascade mode. Therefore, this association was placed in Category

1. On the other hand, “Mode 9” is a hand switch valve in an upstream unit

to “Alarm 140”, thus placing it in Category 4.

For example 3 in Case Study I, it was detected that “Alarm 124” was

a mode-dependent alarm of “Mode 13” and “Mode 33”, and they appear

together in 8 transactions. “Alarm 124” is a PV high alarm of a pressure

controller. “Mode 13” and “Mode 33” are the mode changes of two flow con-

trollers. The process stream “Mode 13” is on splits into two process streams

where one has the flow controller with “Mode 33”, and the other with “Alarm

124”. As “Alarm 124” is situated downstream of “Mode 13” within the same

process line/section, thus placing it in Category 2. When an operator de-

creases the feed flow towards the process stream that “Mode 33” is on, exces-

sive flow downstream, thus leads to “Alarm 124”. As such, this association is

placed in Category 3.

In Case Study II, it was detected that both alarms “Alarm 199” and

“Alarm 238” were mode-dependent alarms of four operating modes “Mode

9”, “Mode 16”, “Mode 42” and “Mode 43”, and they appear together in 5

transactions. Figure 5.3 shows a diagram of the relations of these modes and

alarms. “Alarm 199” is a flow low low differential alarm, which happens when

any 2 out of the 3 flow indicators on the second branch line has a flow dif-
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ference greater than a preset value. “Alarm 238” at the same location is a

flow low low alarm. As mentioned, there are 3 flow indicators, the alarm uses

a 2 out of 3 voting logic, which means if 2 out of the 3 flow indicators are

having an alarm, “Alarm 238” will also alarm. This type of logic is used to

ensure the accuracy of highly important control, commonly used in the SIS

(Safety Instrument System). “Mode 9” and “Mode 16” are flow controllers,

and “Mode 42” and “Mode 43” are hand switch valves. As outputs from the

flow controllers increase and the hand switch valves open, the flow on their

process streams also increases. This leads to an increased flow to unit 1 and

unit 2. To ensure chemicals are distributed to the 4 units equally, less chemi-

cals are pumped into line 1 and line 2, causing the two alarms. As they are all

located at the same part of process lines, these associations in this example

fall into Category 2.

The second example of Case Study II is an association rule between “Mode

9”, “Mode 16”, “Mode 42” and “Alarm 238”, which appears in 6 transactions.

It can be seen that this is a subset of the previous example, but it has a higher

frequency. Depending on how much adjustment on each mode is made, any

combination of these modes can lead to the same alarms. Thus, all association

rules that are supersets and subsets of these two rules are kept in the final

results to present to the plant engineers and operators, and they can determine

which set of rules are more useful to them.

Delving into evaluation of these rules in different categories, we project

that rules in Categories 3 and 4 could be more valuable because when the

mode changes and alarms are further apart from each other, they often be-

come harder to observe and associate. If proven useful by plant engineers

and operators, these rules can be used to develop smart alarm suppression

application or used for operation guidance and/or prediction. Different units
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Figure 5.3: Diagram of example 1 of Case Study I.

are generally operated on separate console stations and by different operators.

The rules in Category 4 where mode changes in one unit led to alarms in a

downstream unit can be used to develop automatic messages to warn oper-

ators in downstream unit that an alarm is coming when the upstream unit

operator makes mode changes.

In summary, the newly proposed FP-Growth model was developed and

applied to industry alarm data sets in order to detect significant associations

between operation mode changes and their consequential alarms. Two large

A&E data sets provided by industrial partners were used to test and verify

the effectiveness of the algorithm. The same two sets of data were also applied

on Apriori model from [15] for performance comparison with the FP-Growth

model. Results from both models indicated that the FP-Growth model pro-

posed in this thesis discovered many more associations (in both single and

mutiple modes) than using the Apriori algorithm where only single mode as-

sociations were detected. To evaluate and verify the accuracy and effectiveness

of the model, The detected rules (52 in Case Study I and 79 in Case Study II)
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were divided into 5 categories based on the relative space of modes and alarms

and features of their related control loops. On top of the discussed examples

as samples of each category in this section, all generated rules are examined

through provided documents. It has been proved that all rules detected in

Case Study I are 100% accurate with true meaningful relationships between

modes and alarms. Additionally, all rules detected as Categories 1 to 4 in

Case Study II are accurate with true meaningful relationships as indicated

by examples while rules in Category 0 cannot be found due to insufficient

documentation.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis proposed an efficient method to automatically discover associa-

tion rules of mode-dependent alarms from historical A&E logs. The proposed

method consists of three major steps. Initially, the preprocessing step reorga-

nizes the data into the required transactional format, and further refines the

transactions to meet the objective set in Chapter 3. Then, the mining step dis-

covers all association rules using the FP-Grwoth algorithm. The logarithmic

likelihood ratio was calculated and compared with the chi-squared value χ2 of

3.841 to determine association rules with confidence level 95%. Finally, the

post-processing step screens the results to discover mode-dependent alarms

that meet the requirements of the problem formulated. Compared to [15], the

proposed method combines the detection for both single and multiple modes,

therefore is more straightforward and has much better computational effi-

ciency. Furthermore, additional mode-dependent alarms were detected. This

was demonstrated by two industrial case studies. Using documents provided

by the plant engineers, results were examined and validated, and potential

opportunities to improve alarm management performance from these results

were discussed. Upon verification by plant engineers and operators, the de-
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tected results can be used to assist these industrial practitioners in developing

smart alarm suppression applications and/or using them to configure state

based alarming modules.

6.2 Future Work

Several possible future work based on the study in this thesis are summa-

rized as follows:

1. This thesis focuses on mining associations between operating modes and

their resulting alarms. However, the reverse associations can also be

found using the same or similar methods. The associations between

alarms annunciated and operators’ response and actions to an alarm

or a set of alarm can be a study of great interest. Such results can

be used to train new operators, whether it is set up as a guide, or

even a simulation course for new operators to complete as part of on-

boarding training. Furthermore, if detected associations are proved to

be significant, they can be included in online document such as AOA

(alarm objective analysis) which covers cause, consequence of an alarm,

and operation action. Such information can be very useful as a daily

operation support document. Eventually, it may also be possible to

replace operator actions that are proven to be repetitive by functions

and control logics on the control system, allowing operators to focus on

performing activities that require more human factors and cannot be

done by a computer.

2. Similarly, associations between a group of more than two alarms can also

be a study of interest. The results can be used to determine whether

they are potentially nuisance alarms like correlated alarms or redundant
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alarms, and suppress or remove as needed.

3. Similar to the study in this thesis, the same method can also be used to

determine if one alarm in a group of alarms is always the first, and the

rest are its consequential alarms. This can be used to potentially identify

the root cause of the issue that triggered this group of alarms. The

results can also be used to program first out alarming logics in the PLC

(Programmable Logic Controller), where the first alarm is determined

and the information sent to the DCS (Distributed Control System) to be

presented on the HMI (Human Machine Interface), and the consequential

alarms potentially suppressed based on operation needs.
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