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ABSTRACT

This thesis focuses on the improvement of density based on the controlling of particle
packing and the subsequent densification processes. First, the two-sphere model for
monosized powder to determine the lattice diffusion contribution in sintering is considered.
Based on Eadie’s model, two new solutions are developed and presented, an upper limit
solution with surface curvature at a maximum all along the neck and a more accurate solution
in which the form of the surface curvature at the neck can be varied as appropriate.
Producing bimodal powder distribution powder metallurgy (P/M) parts is next considered.
It is shown that this technique is capable of producing parts with excellent final densities and
mechanical properties. In order to explain the above experimental results, theoretical
research about bimodal powder is focused on particle packing. The first theoretical tool is
the coordination number of the particles and the second theoretical tool is the concept of
percolation. A bridge is established between packing density, microstructure and leading
eventually to macroscopic properties by using coordination number and percolation. A new
model (modified saturated model) for coordination number in bimodal packing is developed
and presented. It is concluded that the structures that arise in bimodal powder distributions
lie somewhere between the previously proposed random structure and the saturated
structure. The important role of the coarse particle network which can shield fine particles
from the compaction forces is emphasised. Some comments about parameters influencing

sintering and suggestions for future work are included.
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CHAPTER 1.

Introduction

1.1. Powder Metallurgy: Theory & Practice

Powder metallurgy is the science and the technique of producing articles from metallic
powders. Sometimes non-metals, metallic compounds or chemical additions in various
proportions are added into the metallic powders to get desired properties. Usually the
process consists of pressing the powder within dies followed by heating or sintering of the
powder compact, usually under controlled atmosphere, at a temperature below the melting
point of the metal or alloy. By this means a porous to dense product is obtained which has
the required shape and size and the mechanical properties necessary to fulfil the article’s
function. Where such a basic process does not produce the required characteristics, various

special processes or modifications may be introduced [Yamnton and Argyle, 1962].



Powder processing of metals is widely used for the manufacture of automotive components,
electronic packaging and in aerospace technology. From 1991 to 1995 the North American
powder metallurgy market grew at a average annual rate of 14.5% [White, 1996]. This
method has become increasingly popular not only because of its ability to impart a unique
combination of properties and microstructures, but also because of a significant reduction
in costs associated with the conversion of raw materials to finished products. Furthermore,
the key processing steps can be modified with relative ease to obtain properties that are

tailored to specific applications.

For powder metallurgy to realize its full potential and compete with wrought products, it
has to face the challenge of meeting more stringent quality demands, such as higher density,
better dimensional control, better and more uniform mechanical properties and lower cost.
Density is a predominant factor in the performance of powder metallurgy components.
Residual porosity is a common feature of the microstructures of sintered materials. Thus the
control of the final properties of sintered materials requires the control of final density.
Generally, as density is increased, almost all properties, including hardness, strength,
fatigue life, toughness, ductility, electrical conductivity, magnetic saturation, and corrosion
resistance, are improved [German, 1984; Hirschhorn, 1969]. This thesis will focus on

controlling the density of powder metallurgy products.

A generation of scientists has attempted to derive a unified and generalized picture of
powder metallurgy including densification on the basis of theoretical and experimental

investigation. Nevertheless, the understanding of the fundamental mechanisms is still a
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matter of controversy [Exner, 1990]. Basically, there still are two separate directions
(theory and practice) in powder metallurgy studies. Each of them has its merits and its
limitations. The experimental studies often give empirical equations and can be applied
directly in practice. These empirical relations often do not contribute to the understanding
of processes. The parameters in the equations sometimes lack reasonable physical
meanings. On the other hand, there is no doubt that many of the theoretical models opened
the way for a quantitative description of powder metallurgy processes and has led to a good
insight into the fundamental mechanisms and the effect of various parameters of influence
(e.g. particle size, temperature, efc.). However, the extrapolation of these results, especially
the application of equations derived for idealized models to actual powder compacts, has
not provided a significant insight into actual practical processes [Exner, 1990]. But both
theory and practice are of significance and necessary. Even though the bridge between
theory and practice studies in powder metallurgy is still under construction, further studies
in both areas would contribute to better understanding of powder metallurgy processes.

This is the reason that this thesis discusses both theory and practice.

The first part of this thesis (Chapter Two) is a theoretical contribution. It considers a two-
sphere model for monosized powder to determine the lattice diffusion contribution in
sintering. This analysis differs from previous ones in that the surface curvature is treated
in a more quantitative way. Thus a detailed understanding of the sintering process and the
associated shrinkage can be derived. The model also establishes with more rigour the

approximations used previously for the construction of sintering diagrams.



The second part of this thesis (Chapter Three to Six) addresses the effects of bimodal
powder distributions on powder packing, compaction and sintering. It includes both
experimental and theoretical studies. Bimodal powder distributions are distributions of
coarse and fine powders. The powder in the bimodal powder distributions are randomly
packed rather than orderly packed. The random packing is the real situation in powder
metallurgy processing. Analysis of the current state of model investigations in powder
metallurgy reveals that there is a distinct tendency for the properties of materials to be
described on the basis of models of random particle packings [Nikolenko and

Koval’chenko, 1984].

This research starts from a very simple idea: maximizing space-filled by varying sphere
sizes. If coarse or large powders randomly pack, there are lots of voids or empty space
among them. If the fine or small powders are added into coarse powders, the fine powder
will fill in the voids among the coarse powders, therefore increasing the packing density
[Furnas, 1931]. In powder metallurgy, the green density and final density of the products
are very important. It is well known that bimodal powder distributions improve the packing
density. Mixtures of coarse and fine powders are commonly used for processing ceramics
and powder injection molding [German, 1992a]. However, they are not often used in
traditional metal powder compaction and sintering since it is commonly considered that a
high compaction force could be applied to the powder to overcome poor packing, and that
only in cases of relatively low sintering temperatures or short sintering times is the sintered

density highest in bimodal powder distributions.



Using bimodal powder distributions, could the green density after compaction and the final
density after sintering be improved? If it does improve, how much does it improve? How
many percent of fine powders should be added to coarse powders to get the optimal green
density and final density? This experimental test program tries to answer these questions.
Very high sintered densities (97.7% relative density) and mechanical properties
(comparable to wrought products) were achieved using the conventional P/M processes of
single compaction and single sintering for bimodal powder distributions of precipitation
hardening stainless steel powders. The medians of the two sizes were in the size ratio of
about 5:1. A 2% increase of final density is achieved by adding only 25% fine powders and
the final density of the bimodal powders reached the same value as 100% fine powders.
Using bimodal powders has practical significance in reducing cost and achieving better

dimensional control (lower shrinkage) with a high final density.

The theoretical research about bimodal powder was focused on particle packing (or tap
density) because all the consolidation process, such as, compaction and sintering, start from
the particle packing. That greater effort should be expended on research in studies for
clarifying and quantifying the influence of contact geometry was singled out by Exner
[Exner, 1990]. In order to understand and model the packing in a random packing there
must be a means of characterising the packing and of evaluating hypotheses about the
packing. The first tool that will be used is the coordination number of the particles.

Coordination number increases with the fractional density and fairly detailed models have
been developed by a number of researchers. The second tool that will be used is the concept
of percolation or the interconnection of the different particle types as their density and

5



number are varied. The concept of percolation has been used by researchers like Holman
to successfully explain macroscopic behaviour changes in particle compaction [Holman,
1990,1991]. Using coordination number and percolation it will be shown that a bridge can
be established between packing density, microstructure and leading eventually to
macroscopic properties. The models for coordination number in bimodal packings will be
utilised to show that there is a significant discrepancy between the random space filling
models used in computer generated packings and the saturated model of German [German,
1992b]. Neither model satisfactorily agrees with experimental observations. Some attempt
will be made to resolve these discrepancies by modifying the saturated model so that the

experimental observations are explained.
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CHAPTER 2.

Lattice Diffusion From The Grain Boundary In The Sintering Of Metal

Powders — Contribution To The Theory Of Sintering”

2.1. Introduction

The ability to achieve dimensional tolerances in powder metallurgy parts arises directly
from the control of the sintering process and in particular shrinkage. Thus a detailed
understanding of the sintering process and the associated shrinkage is of considerable
importance. Sintering behaviour has been very capably summarised in the review papers
of Ashby [Ashby, 1974] and Swinkels and Ashby [Swinkels and Ashby, 1981]. The
morphological development is defined in three stages in the following way. The first stage

begins with the particles adhering

* A version of this chapter has been published as “Lattice Diffusion from the Grain
Boundary in the Sintering of Metal Powders,” R.L. Eadie and X.L. Chen, in International
Journal of Powder Metallurgy, Vol.32, No.3, pp.265-275, 1996.

to one another and there is growth in the size of the neck. It ends when the pores have
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become more or less cylindrical. The second stage consists of shrinkage of the cylindrical
pores and ends when these pores pinch off. The third stage consists of the rounding and
shrinkage of these isolated pores. Based on this topological description, the driving force
for sintering can be quantified by the relationship between the surface curvature and p, the
chemical potential (free energy) of the atoms. This solution was first presented by C.
Herring [Herring, 1951]. The relationship, assuming isotropy of the specific surface free

energy, v, is given as:

1 1

Pl:Ho"’Y(E'*'R—J)Q (2-1)
where i, is the chemical potential under a flat surface, R, and R;are the principal radii of
curvature of the surface and Q is the atomic volume. It is the surface curvature that provides
the driving force for sintering. Six atomic transport mechanisms responding to this driving
force can contribute to neck growth. These, as shown in Figure 2-1, are: 1. lattice and 2.
surface diffusion from the surface of the particles to the neck surface; 3. grain boundary and
4. lattice diffusion from the grain boundary between the two particles to the neck, S.
evaporation and condensation at the surface (where the vapour pressure of the solid is
appreciable); and 6. dislocation climb. Mechanisms 4 and 5 will contribute to both neck
growth and compact densification in all three stages and will be present as long as the grain
boundary remains attached to the pore. The six different atomistic transport phenomena can
occur simultaneously. But when the contribution of each mechanism is compared it is
found that it is often possible to describe the process quite accurately with one equation or
perhaps with two. Ashby showed the regions of applicability for the mechanisms using

sintering diagrams. These diagrams have homologous temperature (T(K)/Tp,) along the
9



vertical axis and a morphological parameter like the neck radius along the horizontal axis
[Ashby, 1974]. The sintering diagram shows regions where a mechanism is dominant in
neck growth, with equal contributions along the boundaries of each region. Grain boundary
diffusion, surface diffusion or lattice diffusion from the grain boundary are the mechanisms
that usually dominate sintering - with the lattice diffusion dominating at the highest
temperatures and largest neck sizes. Of course the diagrams depend for their accuracy and
usefulness on the accuracy of the models used for each of the processes. These concepts
and diagrams have been used since 1974, but there has been up to the present day no
definitive analysis to describe lattice diffusion from the grain boundary to the neck surface.

This issue will be addressed here.

2.2. Published Models for Lattice Diffusion from the Grain Boundary in Sintering
2.2.1. Nomenclature and Symbols

To describe these equations, it is necessary to define the geometry and transport constants
symbols (see Figure 2). The symbols used in this chapter are nearly the same as those used
by Ashby and co-workers [Ashby, 1974; Swinkels and Ashby, 1981]

a -- particle radius

C -- a constant equal to wy; / kT

Dg -- grain boundary diffusion coefficient

D, -- lattice diffusion coefficient

Ds -- surface diffusion coefficient

J; -- the flux of atoms to the neck per unit area per unit time

k -- Boltzmann's constant
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r - the radial direction for a cylindrical co-ordinate system perpendicular to the plane of the
grain boundary
V -- volume of atoms flowing per unit time into the neck region
x -- radius of the circle of contact of the particles
x -- the neck growth-rate
z -- the direction perpendicular to the grain boundary
O -- grain boundary thickness
s — surface free energy
@ -- the contained angle in radians at a point in the plane of the grain boundary and x + p
from the center of the grain boundary between lines drawn to the center of the grain
boundary and the center of the particle. The value gradually decreases from about 1.5
as sintering proceeds, the minimum value depends on packing, but is usually more than
0.5.
1; -- chemical potential of the i" species
p -- radius of curvature perpendicular to the grain boundary

Q -- the atomic volume

2.2.2. The Models

Several models for mechanism 5 (lattice diffusion from the grain boundary) are in the
literature and must be discussed:

2.2.2.1. The model used in Ashby's first paper on sintering maps [Ashby, 1974] was:

J,=8CDL(1+§) (2-2)
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This is based on the equation of D. Johnson [Johnson, 1969], but modified in the manner

of Wilson and Shewmon [ Wilson and Shewmon, 1966] to reflect the larger area over

which the lattice diffusion flows (x? versus ™xJg).

2.2.2.2. A model developed by D. Johnson [Johnson, 1969] based on his grain boundary

diffusion model:

+
J=16cD. = x" (2-3)

This model is flawed by the assumption made in its development that the shrinkage rate
(divergence of the flux) throughout the volume under consideration is a constant . This
means that the lattice is shrinking and acting as the source of matter arriving at the neck
surface. It has been shown experimentally that the atoms for the neck come from the grain
boundary since shrinkage stops when the grain boundary migrates from the neck [Alexander
and Balluffi, 1957]. The divergence of the flux is zero in the lattice, this being the
underlying assumption for the application of Laplace's equation, which is normally

associated with steady state diffusion.

2.2.2.3. An upper limit model developed by R. Eadie for the case [Eadie 1976] where [ is

constant at its maximum value all along the surface (solution is detailed in Appendix A):
J,=6CDL(1+§) 2-4)

Observe that the first model of Ashby is exactly one third larger than this. Hence it can be

concluded that Ashby's Equation (2-2) [Ashby, 1974] overestimates the sintering rate.
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2.2.2.4. The model used in the second paper on sintering maps [Swinkels and Ashby, 1981]:

X*Pgq (2-5)

Jr=I6CDL

This model was based on grain boundary diffusion model, but with the source term
modified by the ratio 20p/3p rather than mx*/mx8g. Its form is the same as (2-3) with the
additional term 6 which is not very different from unity. One should therefore consider the
comments that were applied to (2-3) i.e. that it is based on a non-zero divergence throughout

the volume.

2.2.3. Interaction Between Mechanisms

The different phenomena may also interact with each other. In particular Eadie ez al. have
treated the uniform shrinkage condition at the grain boundary by coupled boundary and
lattice fluxes [ Eadie, 1976; Eadie, ef al., 1974; Eadie and Weatherly, 1975; Eadie, er al.,
1978] since the shrinkage at the grain boundary must be uniform to maintain continuity.
This coupling becomes less important if one of the mechanisms is significantly smaller than

the other. The coupled and uncoupled solutions will be compared in this chapter.

2.3. New Model For Lattice Diffusion From The Grain Boundary

The sintering of pure metals in the absence of applied stress is considered in this model.
The initial stage of sintering for a row of spheres is considered for geometric preciseness.
This analysis differs from previous ones in that the surface curvature and its variation are
treated in a more quantitative way. This is significant since this curvature is the driving

force for the process. Thus the model can have considerable generality since the description
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of the driving force on the surface can be modified as appropriate. The predictions of this
new model will be compared with those of equations (2-3 to 2-5). The new equation will
also be examined to determine its effect on sintering diagrams. Although spheres in a row
are being considered, this geometry can often represent the more general situation of
powders in a compact because the gradients in chemical potential are concentrated near the
neck region. The row geometry can be approximated by a cylinder as shown in Figure 2-2.
The annular ring of grain boundary at the neck used to calculate the uniform shrinkage

condition is shown in Figure 2-3. The equation for lattice diffusion is :

=-D: .
J QkTV(u) (2-6)

Surface curvature is inserted in functional form, (i.e. the surface curvature was allowed to
vary along the surface of the neck). In principle the shrinkage solution can thus be made as
accurate as curvature profile can be measured. This also permits the form of the surface

curvature to be varied in a way that is appropriate for the different stages of sintering.

At steady state, div J = 0, as required by the conservation of matter and Laplace's equation

results:

Viurz)=0 2-7)

From symmetry the lower and the upper half of the cylinder are the same, only the upper
halfis treated. From cylindrical symmetry there is no angular variation around the cylinder.
In order to employ this equation it is necessary to assume a quasi steady-state ; i.e. that the

geometry is changing only slowly compared to the rate of atom migration to the neck. This
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is a good approximation for diffusion rates encountered in sintering. For the sake of
convenience [~y as used by Herring has been replaced by |, and it is assumed that the
concentration of vacancies is at equilibrium. It should be remembered that this is a
necessary condition and that if it does not apply the concentration and chemical potential
of vacancies must be considered explicitly. Solutions to (2-7) in cylindrical co-ordinates
are the products of hyperbolic functions and Bessel functions. The coefficients are
determined by the boundary conditions which apply. This solution is then used in
conjunction with the diffusion equation (2-6) to caiculate the flux to the neck and hence the
shrinkage rate. The boundary conditions may be summarised as follows. Since the flux
from the grain boundary must be uniform (to maintain continuity), the following equation
must hold :

Di@owoz) =K, z=20 (2-8)
A further condition is required to evaluate K. This is the condition for mechanical
equilibrium at the grain boundary:

Jurods = 2nxy Q (2-9)

At the mid-point of spheres, from symmetry:
dWwoz=0, r=a (2-10)

The chemical potential along the surface (r=x) can be appropriately expressed as:

L ) = F;exp(-FzZ)*'ﬂag- @-11)

where F; = - YQ/p and F, is of order 1/p. F; will be allowed to vary around this value.

Figure 4 shows [i(x, z) versus the dimensionless distance z/p measured from the grain
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boundary for three values of the constant F, . This constant determines how rapidly u decays

as z increases.

Because the sum of two harmonic functions is also harmonic, a two-fold boundary value
problem such as this can be reduced to two separate and simpler boundary value problems.
This is the basis for the solution to this problem as outlined in Appendices B and C. In
Appendix B, the boundary condition (2-11) is replaced by p(x, z) = 0 and as a result (2-9)
becomes:

jud(r,O)ds = 2myQ -fp,,ds (2-12)
(where the A and B subscripts refer to the two simpler boundary value solutions covered in
Appendices B and C respectively). In Appendix B the other boundary conditions are
unchanged. In Appendix C the simplest homogeneous boundary condition compatible with

the problem is applied along the grain boundary:

2D, %‘: =0 (2-13)

This implies no net flux from the grain boundary and hence no shrinkage. From the solution
Ug(r, z) the value of [ug (r,0)ds can be found and consequently (2-12) can be solved for K.
Since no shrinkage occurs from [ its only effect is to redistribute the flux paths according

to the actual surface curvature values p(x, z).

The solution to these separate boundary value problems as given in the appendices are:
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)
Jo(2=)
w2 = 225l sinhX=Z ) - coth K22 )cosh(KoZ jix—x L (2.19)
L x X X XnJI(Xn)
2 1 s 2 2
Iug(r.())ds=21t Za"x T X o H4R FIF X2 2 X +n Fl.?t'*‘—ﬂ:.'Y—Qi
X XA2E-F3) a
X
(2-15)

where J, and J; denote Bessel functions of order zero and one respectively, x, is the n™
lowest zero of Jy, and o, and B, are defined via variation of parameters in Appendix C. K

can be evaluated from (1-12) as :

coth( X ,a)
2Tx - d
K = DL( YQ JJ’H'B S) z X3 (2-16)
4T x X,

The shrinkage rate is :
dL/dt = 2K/kT 2-17)

The flux of atoms is :
g, =-2nx K (2-18)

Q kT

2.4. Discussion

The present model differs from the upper limit of lattice diffusion in that this model treats
the surface curvature in a more quantitative way. In order to evaluate this model, numerical
comparison was made for the second stage of sintering of silver spheres in air to the upper

limit model, Johnson's Model and the model currently used in sintering maps by Swinkels
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and Ashby. The geometrical parameters [Berrin and Johnson, 1967; Nicholls and Mullins,
1963] used in the calculations are given in Table 2-1 and the other parameters used are: Dy,
= 4.4*10°exp(-1.854*10°/RT) (m?¥sec), Ds = 1.2*10° exp(-9.0¥10*/RT) (m%sec), Q
=1.71*¥10” m’, v, =0.4 J/m?and &g = 5.0¥10°m. In Table 2-1, the values for x/a and p/a
were calculated on the basis that only shrinkage mechanisms contribute to neck growth
[Eadie, Wilkinson and Weatherly, 1974] and the experimental values were those measured
by Eadie for silver [Eadie, 1976] after about 3% linear shrinkage of a random close packed
compact . Using equations (2-3) to (2-5) and equation (2-18), the results are obtained and
shown in Table 2-2. As predicted the upper limit is just that, an upper limit for all the
solutions. It is approached by the more detailed solution as the values of x and p increase
as would be expected. The maximum difference between the proposed model and that used

by Swinkels and Ashby is about 40% for the numerical data examined.

A comparison of the fractional shrinkage rates calculated using the coupled solution [Eadie,
et al., 1974; Eadie, 1974] and that calculated as the sum of the uncoupled grain boundary
[Johnson, 1969] and the present lattice diffusion models is given in Table 2-3 for 900 °C
and 950°C. Itis clear that in the region where lattice diffusion is most significant i.e. x/a
> 0.3 and homologous T > 0.8 the uncoupled solution is quite close to the coupled solution
(within 10%). This suggests that the new equations can be confidently used in the
construction of sintering maps. What remains to be done however is an experimental
evaluation of the surface curvature variation along the surface during the sintering process
to determine which value of F, is appropriate at each stage of sintering. Such an evaluation
would permit a more accurate application of the new solution to real sintering problems.
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This F, factor affects the shrinkage rate by about 50% as F, varies by a factor of 4.

Figure 2-5 shows the boundary between lattice and grain boundary regimes for the Swinkels
and Ashby model and the proposed model with F, = 1/p and F ,= 2/p. Above the field
boundaries the volume diffusion is the dominant mechanism. At the field boundaries J. =
Jg. Although the changes are not large the lattice diffusion is somewhat restored by the

more precise model with F, equal to 1/p.

2.5. Conclusions

A new method has been presented to determine the lattice diffusion contribution in
sintering. This analysis differs from previous ones in that the surface curvature was treated
in a more quantitative way. The present model modifies somewhat the approximation used
previously. The model also establishes with more rigour the approximations used

previously for the construction of sintering diagrams.
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2.7. Appendices

2.7.1. Appendix A — Upper Limit For Volume Diffusion

Problem:
o - A-1
D, —=k at z=0 [A-1]
oz

1 1
H(x,z)=7Q(—-—) [A-2]

x p
[u(r.0)ds = 2nxyQ [A-3]
ap.(r,a)=0 [A-4]

0z

Viu(r,z)=0 [A-5]

In order to employ the known zeros of Bessel functions the solution will be obtained with:

u(x,z)=0 [A-6]
The constant YQ (—1- - —1—) is then added to this solution. The equation [A-3] must be
x P

altered to:

fu,as +[ya - ya = 2nxve [A-7]
x P

The solution must be of the form:

w(r,z) = {C, cosh( k,z) + D, sinh( k,z) ¥/, (k,r)

from [A-6]

k,=X,/x
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and from [A-4]

C. =-D, coth( X2,
from [A-2]
X Xr
D,SZ2p g (2=
Z =D, (<)

Applying Fourier-Bessel analysis:

t X,r n X,r X,.r
[&rs o (=2ydr =3 1, [ 1] o (F20)T o (Z2")ar
0 X n 0 X
where ¢, = 2nD, X, Solving we get:
x
—T
D, X,J,(X,)
Hence

=

_ 2Kx (X2 X,a X,z X,r
w2 "gDLXSJAXn){Smh( ) °°th( x )mh( x )}J( x ]

-1
Employing [A-7] and with coth[ X,a )=1 and {2 L } =12

x X
=220 L1 [A-8]
x x p
-JO -
Now £ - —, J, =j2n?, j= D, on and K=a—u, S0
d mx® QkT oz oz

_ K2nx?

! QT

Hence dL/dt=2K/kT. From [A-8]
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and

dt

kTx

23

dL _6DL7§2(

1 1
—.+_
x p

|

[A-9]

[A-10]



2.7.2. Appendix B -

Solution To Laplace’s Equation For Boundary Value — Problem B

Problem:
Vip, =0 [B-1]
H(x,2)=0 [B-2]
wm,(r.a) _, B-3]
oz
D, agz" =k atz=0 [B-4]
Ju.ds =2rxyQ - [ ,ds [B-5]
Solution:

From separation of variables the solution is of the form:

u,(r,2)= {C, cosh(k,z)+ D, sinh (k,z)}/, (k,7) [B-6]

where C, and D, are coefficients to be determined from the boundary conditions and &, are

the separations constants.

From [B-2], p,(r,2)=0= {C, cosh(k,z)+ D, sinh(k,z)V/,(k,r) forallz.

Hence J,(k,x)=0,so

k,=X,/x [B-7]

el 22
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From [B-3], at any value of

a!h(" a)
= 0F Z



C, =-D, coth(ﬂ] [B-8]

x
Hence
ol , -X,a). . [X,z A2 Xr
=Z =D, 4—coth “— |sinh +cosh Jo
0z - x x x x
So from [B-4]
X X
DLZ—"D"JO( "’]=K (B-9]
- x x
put ¢, =D, D.X, and
X
ZthO[X"”]=K [B-10]
p x

x 2
R.H.S.:jKrJO(X"")dr=K . (x,)
0 x X

n

L.H.S. (from orthogonal property of Bessel functions) =

I e A
X X

n 0

Equating these and transposing:

2K
[ =—— -11
"X, (x,) (-]
and from [B-9]
2Kx [B-12]

D, =—
" DLX:JI(Xn)

Hence from [B-6], [B-7], [B-8] and [B-12]:

25



L) = ZDIGr > [smh(x,z )_coth(X,,a )Cosh(X,.Z H JO(X;j

[B-13]
K coth(X"a) X
x r
T l f K, ,O = J n
eoolvefork w D=5 2 ) ( x )
Now Idg:jandr
0
1
= -4 3
so Jra(r0ds = —ank* 3 —
D, X} tanh| ——
X
Substituting from [B-5]
D, 2mxyQ— | W ds) th(x a))
= D[ ) [ cothX ) s
4ntx " X

Substituting for K in [B-13] from [B-14] completes the solution once I Wgds is known.
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2.7.3. Appendix C -

Solution To Laplace’s Equation For Boundary Value — Problem B

Problem:

Vi, =0 [C-1]
2
Hg(x,z)=F exp(-F,z) +—ZQ— [C-2]
He(r,a) _ [C-3]
oz
%5 _0 at z=0 [C-4]
oz
Solution:

In order to use the same functions we used for p4 we transform to a function w(r, z) defined
by:
up(r,z)=w(r,z)+ f(2) [C-5]

X, r

X

Apply Fourier-Bessel analysis, multiply each side by r/,( )dr and integrate from 0

to x, where f(z)=F, exp(-F,z)+2rQ/a.

Using this definition and the above equations in order we obtain:

Viw=f"(2) [C-6]
w(r,z)=0 [C-7]
ow(r,z)/oz =0 [C-8]
atZ=0 ow/dz=~f'(z) [C-9]

By separation of variables:
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X,r
x

w(r,z) =Y m,(2)J,(—) [C-10]

Where m,(z) is a hyperbolic function to be determined.

From [C-8]:
m, (a)=0 [C-11]

From [C-9]:

anmn'(O)Jo(X;’h—f'(O) [C-12]
From [C-6]:

Zn‘,{mn"u)—%zmn (z)}JO(X;’) =—£*(0)

If

h, (z)=mn"(z>-§—mn(z) [C-13]
Then

> h, (D) == 72 [C-14]

Applying Fourier-Bessel analysis:

2

h, %J? (X,)=-£"2) j{, Ji(X,)
So
h,(z)==2f"(2)/ X,J\(X,) [C-15]
Applying Fourier-Bessel analysis to [C-12] we get:
m, (0) = h,(0) [C-16]
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where

h,(0)=-2f"(0)/ X ,J,(X,) [C-17]
Equation [C-13], [C-15], [C-16], [C-17] and [C-11] now define a problem in m,(z).
We can find a particular solution (m,,) to this problem by applying variation of parameters

to the homogeneous solution (/7,:). The homogeneous solution is:

X X
2%y + B, sinh(=2Z
p X

)

m,, (z) =a, cosh(

[m,;(2)h, (2)dz

So m"p (z) = Cnl (z)mnl (Z)'*‘C,,z (Z)mnl (Z) Wlth Cnl (Z) = - ” (m - z) and
r nl? " n2

similarly Cu(2). But w, (m,,,m,,,z)=X,/x so m,(z)=m,(z)+m,(z). Hence

] . coshEe)
m(z)=a, cosh()i" )+ B, sinh(j\::" )— = = Ih" (2) sinh(k;'z)dz

X,/x
inh(XE) ]
+S—Xn/—§— [LXE) cosh("::‘ )d=

[C-18]

We determine o, and B, from the boundary conditions [C-17] and [C-11] and substitute
back in [C-5] to determine w(7, z). Equation [C-18] is solved as follows:

h,(z) =—2F,F} exp(~F,2)/ X ,J,(X,)

r X _ h
, exp| (—~—F,)z| exp (—XL-FZ)Z
. ¢%-1 F;F, x x
| #,(z) sinh( Jdz = — e ——
x n l( n) __n_Fz n+F2
x x
g X _
. |exp (C2-F)z| expl(—=2~F,)z
X,z FJF x x
[ 7,(z) cosh( = m — f
X n l( n) II_F2 n +F2
x x




Hence by substituting in {C-18] and simplifying:

X 2F} F, exp(-F.
m, (2)=ct, cosh(22%)+ B, sinh(222)+—22 ‘e"ifz 22) [C-19]
x d
XnJl(Xn)( x’; —FZ.)
From [C-11] taking derivatives:
F, ~F.
] X, sinh(X"a)+[3,, X, cosh(X"a)= 2F; F, exp( : ,a) [C-20]
X X X X Xn‘ 2
X, J (X, X e —Fy)
From [C-16] and [C-17]
3
Ypg, =250 2HA [Cc-21]
x X, J,(X,) X, )
XnJI(Xn)( 2 -FZ)
x
Solving simultaneous equations [C-19] and [C-20]
2 3 -F, F3
o, = ik 2;"2"( 529 cosn(Ealye—rt b [c22]
2 . n x
X, Ji(X,)sinh(—=) | (—=—-F}) (——-F})
x x x
2 F}
B =l —] [c-23]
n l( n) ( n _F’Z)

2 2

X

From [C-10] and [C-19]

- - 2 _ X
wr,2) =3 o, cosh(Z2Z) + B, sinh(F2Z) + ZFZF‘C";( 52 U 2Ly (a4
n X b o 5 X
X, J, (X, )X x'; ~Fy)

with o, and B, defined by [C-22] and [C-23].

Having obtained w(r, z), Wa(r, z) is obtained from [C-5]. The final step is to determine
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Iu 5 (r,0)ds . This is done by substitution and integration:

o0 2 o0
| uB(r,O)ds~=21tza)"(x J (X )+anFFx?Y, Xlz
n=1 n n=l1 n
an( xz -FZZ)

This completes the solution when it is substituted into [B-14].
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Table 2-1.
(Silver spheres, 100 pm radius) [Nicolls and Mullins]

Geometric parameters used in calculations

Shrinkage % x/a p/a
1 0.198 0.0117
3 0.338 0.0415
3* 0.45 0.144
6 0.47 0.113

*Value measured by Eadie for Silver [Eadie, 1976]

Table 2-2. Fractional shrinkage rates (sec™') based on various models for lattice

diffusion from grain boundary

(Silver spheres, 100 pm radius, sintering in air)

‘S Eadie Ashby t Johnson Ashby Il This Model
% (Upper Limit) F,=2/p F,=1/p F,=1/2p
Temperature : 700°C
1 3.1E-9 4_1E-9 5.2E-10 71E-10 7.5E-10 1.0E-9 1.4E-9
3 5.4E-10 7.2E-10 1.8E-10 2.2E-10 2.1E-10 2.7E-10 3.5E-10
°3 1.7E-10 2.2E-10 1.2E-10 1.5€-10 8.7E-11 1.1E-10 1.2E-10
6 1.4E-10 1.9E-10 9E-11 9.4E-11 8.4E-11 1.0E-10 1.3E-10
Temperature : 900°C
1 1.3€-7 1.7€-7 2.1E-8 2.9E-8 3.1E-8 4.2E-8 5.7E-8
3 2.3E-8 3.0E-8 7.2E-9 8.7e-9 8.6E-9 1.1E-8 1.4E-8
*3 6.8E-9 9.0E-9 5.8E-9 6.0E-9 3.6E-9 4.4E-9 5.1E-9
6 5.9E-9 7.8E-9 3.7E-9 3.8E-9 3.5E-9 4.3E-9 5.3E-8
Temperature : 950°C
1 2.6E-7 3.5e-7 4.3E-8 5.8E-8 6.5E-8 8.8E-8 1.2E-7
3 4.7E-8 6.2E-8 1.5E-8 1.8E-8 1.8E-8 2.3E-8 3.0E-8
‘3 1.4E-8 1.9E-8 1.2E-8 1.2E-8 7.5E-9 9.1E-9 1.1E-8
6 1.2E-8 1.6E-8 7.7€-9 8.0E-9 7.3E-9 9.1E-9 1.1E-8
*S : Shrinkage

*3 : Calculation based on the measured geometric value [Eadie, 1976]
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Table 2-3. Fractional shrinkage rates (sec) caused by lattice diffusion and grain

boundary diffusion

(Silver spheres, 100 um radius, sintering in air)

S Coupled Model This Model
LA +
Johnson's g.b. Model
F,=2/p Fo=1/p F,=1/2p F,=2/p F=1/p F=1/2p
Temperature : 900°C
1 6.3E-8 7.3E-8 8.7E-8 5.4E-8 6.5E-8 8.0E-8
3 1.2E-8 1.4E-8 1.7€-8 1.1E-8 1.3E-8 1.6E-8
6 4.1E-9 5.0E-9 5.9e-9 4.0E-9 4.8E-9 5.8E-9
Temperature : 950°C
1 1.1E-7 1.3E-7 1.6E-7 9.7E-8 1.2E-7 1.2E-7
3 2.3E-8 2.8E-8 3.5E-8 2.1E-8 2.6E-8 3.3e-8
6 8.2E-9 1.0E-8 1.2E-8 8.0E-9 9.8E-9 1.2E-8
*S : Shrinkage
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Figure 2-1. The mechanisms of sintering.

34



GRAIN
BOUNDARIES

|
!
|
]
I

''''' G R(RADIUS OF
CURVATURE
AT NECK)

r

OUTLINE OF
™CYLINDER USED
IN CALCULATION

Figure 2-2. The row of spheres used in the calculation of the shrinkage rates.
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EXPLODED VIEW OF CROSS SECTION
OF RING SHOWING DIFFUSION
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Figure 2-3. Annular ring of grain boundary at the neck used to calculate the uniform
shrinkage condition.
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K(x,2) (In Units of F,)

Figure 2-4. 1 (x, 2) versus the distance z / p for three values of the constant F,
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CHAPTER 3.
Bimodal Powder Distributions In P/M

- Literature Survey

3.1. Improving Densities
-- Pracrical Significance of Using Bimodal Powder Distributions

For P/M to realize its full potential and compete with wrought products, it has to face the
challenge of meeting more stringent quality demands, such as higher density, better
dimensional control, better and more uniform mechanical properties and lower cost. Density
is a predominant factor in the performance of powder metallurgy components. Generally,
as density is increased almost all properties increase. Methods such as double press/double
sinter, copper infiltration and powder forging have been employed to provide higher densities
than traditional single press and sinter operations; however, their wide spread use is
constrained by cost and geometry considerations. As illustrated in Figure 3-1, increasing the

density of powder metallurgy components is typically accompanied by a significant increase
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in part cost [Rutz and Hanejko, 1995].

With unimodal size distributions, higher density can be achieved by using finer powders but
this has detrimental effects on dimensional control. The inherent advantage of powder
metallurgy is that the finished shape can be made almost directly and hence dimensional
control during sintering is a significant concern during component fabrication. The less the
sintering shrinkage, the better the dimensional control. There are other disadvantages to
using fine powders, including : higher powder costs, lower green strength, higher fabricating

and handling costs, and increased risk of oxidation.

The purpose of this part of the thesis is to develop a better understanding of the structure
in bimodal packings, which is fundamental to the density of the packing and to coordination
number, but also affects the subsequent operations of compaction and sintering. The model
will be focused on the coarse /fine size ratio around 5 :1 and for volume fractions of coarse
particle > 50%. This situation has not been studied and has yielded industrially important

results. The relevant literature for this problem will be reviewed.

3.2. Particle Packing in Bimodal Powder Distributions

An understanding of particle packing characteristics is important in many diverse fields of
technology, such as, solid state fuel packing for rockets and missiles in aeronautics; water
seepage and drying of soils in agriculture; cellular structure of plants and animals in biology;
powder synthesis and agglomeration in ceramics and flow characteristics through packed
particles for polymer orientation in chemical engineering [German, 1989a]. In powder
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metallurgy, a major concern is the influence of the particle packing characteristics on the
consolidation process and subsequent sintering behaviour. Packing density and coordination
number are the two most important parameters used to represent the characteristics of
particle packing. For monosized spheres, depending on the packing type (ordered, random
loose, or random dense) the fractional packing density can range up to a maximum value of
0.7405. This density limit is rarely observed with powders. Rather, random structures are
more common with fractional densities between approximately 0.60 and 0.64. The random
loose packing roughly corresponds to the apparent density while the random dense packing
roughly corresponds to the tap density. The accepted fractional density for the random dense
packing and random loose packing of monosized spheres are 0.637 and 0.6, respectively
[German, 198%9a]. For bimodal powder distributions, an ideal distribution with infinitely
different particle sizes, with a distribution of approximately 70% large and 30% small
particles will give a fractional tap density approaching 0.86. The greater the size difference,
the closer the packing density of the distribution will approach this limiting value [Fedors and

Lanel, 1979].

The packing density of bimodal powder distributions was first analyzed theoretically by
Furnas [Furnas, 1931], who derived a relation between the specific volume of a distribution
and its weight fraction using simple space-filling concepts. Based on Furnas's model,
bimodal powder distributions improve the packing density. Distributions of powders with
different sizes give improved packing densities over that available from either powder by

itself. Figure 3-2 [German, 1992a] schematically illustrates the variation in packing density
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f with composition X (measured by the percentage of large particles, assuming here that both
powders are of the same alloy) for a bimodal distribution. The packing density improves in
the terminal region rich in small particles, because the addition of large particles substitutes
dense regions for porous clusters of small particles. Alternatively, for regions rich in large
particles, the density improves because the small particles are able to fill the interstices
between the large particles. The packing density peaks at X*, which corresponds to a dense

packing of large particles with small particles in all of the interstices.

A significant concept about bimodal packings proposed by Furnas [Frunas,1931] is that
saturated structures should develop which maximize the density of the packings. The tacit
assumption here is that these packings are the most thermodynamically stable because they
occupy the least volume (minimum potential energy relative to the gravitational field). For
an ideal distribution consisting of infinitely different particle sizes, it is possible to accurately
predict the packing density (actually apparent densities) versus composition for bimodal
powder distributions if certain characteristics are known [German, 1992a]. German and

Bulger expressed Furnas's model in the following way [German and Bulger 1992].

As shown in Figure 3-3 [German and Bulger 1992], the packing behaviour is linear with
composition when viewed in terms of the nondimensional specific volume (normalised by the
theoretical value corresponding to 100% density), which is the inverse of the fractional
density f. The composition is measured in terms of the large particle content X. For 100%
of the small powder (X= 0%), the specific volume Vs is given as the inverse of the small
particle fractional packing density fs :
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Ve =1/f 3-1)
Likewise, for 100% of the large powder (X= 100%) the specific volume V. is given as:

vV, =1/f (3-2)
where fi is the large particle fractional packing density. With no interaction between the
powders, the distribution specific volume would vary with composition as the rule of
distributions V.

V.=V, -X(V,- V) (3-3)

However, as noted above, large-small powder distributions exhibit behaviour that improves
the packing density. As a consequence, for the composition rich in large particles:

V=XV, JorX > X* (3-4)
and for the compositions rich in small particles :

V=Vs-X(Vs-1) forX < X* 3-5)

For an ideal distribution, maximum packing occurs at X*, giving a specific volume of

V=V, /(Vs+ V,-1) (3-6)
where

X<=V/(Vo+ V-1 (3-7)
In the real situation, mixed powders have less than the ideal packing due to interference
between the large and small particles. One of the factors which affects the packing density
is the particle size ratio [Gray, 1968]. The relative improvement of packing density depends
on the particle size ratio of the large and small particles. Within a limited range, the greater

the size ratio, the higher the maximum packing density. This is true up to a limiting size ratio
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of approximately 20:1, but requires at least a 20% difference in particle sizes to occur
[Ridgway and Tarbuck, 1968]. Another factor that impacts on packing is the homogeneity
of mixed powders [Onoda and Messing, 1978; Messing and Onoda, 1978]. There are many
factors, such as particle shape and mixing technique, which influence the overall homogeneity
of bimodal powder distributions. Since the actual packing density may be less than the ideal
value, to account for such behaviour a correction is needed. A simple homogeneity
parameter H is introduced in German’s work [German and Bulger, 1992]. Figure 3-4
indicates the specific volume versus composition for bimodal powder distributions with less

than ideal homogeneity and a finite difference in particle sizes [German and Bulger 1992].

Because it is so important, coordination number has been widely discussed and investigated
by many workers. For randomly packed monosized spheres, approximately six contacts per
sphere represents the stable assembly [Suzuki, ez al., 1981; German, 1989a]. For a system
of particles with a continuous distribution, typically, the mean coordination number for the
distribution is near six [German, 1989b]. However, the distribution in coordination number
varies with the spread in the particle size distribution. The large particles have a greater
number of contacts than the small particles [Ouchiyama and Tanaka, 1980]. For bimodal
powders mixed from two monosized powders, the result of computer simulations is that the
overall average coordination number remains nearly constant at 6.0 for all particle size ratios

[Suzuki and Oshima, 1983; German, 1989c].

For a system of particles with a continuous distribution, the large particles have a greater
number of contacts than the small particles, as indicated in the following equation
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[Ouchiyama and Tanaka, 1980; German, 1989b}:

N D-D,
===y 3-8
N ( 2D / (3-8)

where D is the particle diameter and D is the average diameter of the powders, N is the

coordination number for the powder which has diameter of D and N is the average

coordination number.

In most of the coordination number studies, however, the authors have concentrated mainly
on the limiting case of monosized spherical particles and there are few reports concerning
particle size distribution. There has been an attempt to understand the effect of bimodal
particles on the nature of the packing through modelling of co-ordination number by Suzuki

and Oshima [Suzuki and Oshima, 1983].

Considering a two component distribution comprising coarse and fine particles, four cases
of contacts could be considered. They are [Nair ez al., 1986; Suzuki and Oshima, 1983]:
a. Coarse particles contact with a reference coarse particle;

b. Fine particles contact with a reference coarse particle;

c. Coarse particles contact with a reference fine particle;

d. Fine particles contact with a reference fine particle.

If Ny is defined as the coordination number of a coarse particle when there is only a single
coarse powder added into fine powders, it can be calculated from the following equation
[Suzuki and Oshima, 1983]:
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2a(Pe+ )

Dy
Ni2= (3"9)
1+&-[DC(DC+2)]IQ
Dy Dy Dy

where D is the average diameter of the coarse powder and D ¢ is the average diameter of the
fine powders. The constant o is 0.4221 based on o = 0.067N [Suzuki and Oshima, 1983],
where N, is the coordination number for the monosized spherical particles in random close

packing.

There are two cases described in a and b above by which particles can contact with a
reference coarse particle. If Ny, is defined as the coordination number of the coarse particle
when a coarse particle is in the pure coarse powder bed, the coordination number N.
(average contact number of coarse powders in coarse-fine powder distribution) can be
expressed by the summation of the products of Ny.; and (1-S,) and of N ;; and S, (the
surface area fraction for fine powders in the powder distribution). [fit is assumed that no
agglomeration of fine particles occurs, the coordination number N. is then [Suzuki and
Oshima, 1983]:

N, = §N,, + (I-S)N,, (3-10)

where S; can be calculated from the following equation [Suzuki and Oshima, 1983]:

S,
D.
Sp+(D_f) (]'Sp)

Sa= (3'11)

Sp is the particle number fraction for fine particles in the powder distribution. In Equation

(3-10), a mixing ratio measured in the ratio of the surface areas is used in place of the
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number fraction. This is because the number fraction of the contact particles on the reference

particle is related to the surface area shielded by the individual contact particle.

In equation (3-10), the product of Ny and (1-S,) represents the average coarse-coarse
contact number in the powder distribution (N.<) and the product of N;.; and S , represents

the average coarse-fine contact number of the coarse particles in the powder distribution

(Nc-f ) -

Applying similar considerations to cases c and d, the coordination number of fine particles
N¢ in the powder distribution can be determined from [Suzuki and Oshima, 1983]:

Ny = S,N,, + (I-5.)N,, (3-12)
where N, is the coordination number of the fine particles when a fine particle is in a pure
fine particle bed, N..; is the coordination number of a fine particle when there is only a single
fine powder particle added into coarse powders, and S, is defined through equation (3-11)
as before. N,.; can be calculated from equation (3-9) by changing N.; to Ny, D. to D¢, and

D¢ to D¢ :

20022+ )

D
Noy = e (3-13)
- Dy Dy, D 2
1+ S _J_'( J _,_2) 172
D. [Dc D. ]

From [Suzuki and Oshima, 1983; Suzuki and Oshima, 1985], the average coordination
number N in bimodal powder distributions is calculated by:

N = XS,N, (3-14)
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where S; in equation (3-14) is the particle number fraction of particle j size range, and can
be obtained from the particle size distribution functions. This was verified with computer

simulations [Suzuki and Oshima, 1985].

Based on equations (3-9) to (3-14), the co-ordination numbers or four types of contact
numbers for bimodal particle distributions can be estimated from the fraction of coarse (or
fine) particles and the coarse / fine particle size ratio. The limitation of Suzuki and Oshima’s

model is that the model works when the coarse/fine particle size ratio is less than 3:1.

Zok et al. have developed a model for the particle packing in the bimodal system in which
the large to fine particle size ratio is larger than 10 and the Qolume percent of the coarse
particle is less than 70% [Zok, er al. 1991]. In Zok’s model, the discrepancy between the
idealised densities (Furnas’ model) and the measured packing densities is due in part to the
disruption in powder packing at the coarse particle surface, as shown schematically in Figure
3-5. Itis convenient to idealise the problem by a periodic array of spherical particles situated
against a flat surface (Figure 3-5b). The author neglected both the curvature of the coarse
particles and the disruption in powder packing at distances greater than one monolayer from
the coarse particle surface. In this model, the reduction of packing density is attributed to
the spherical caps of fine powder which would otherwise be present at the surface in the
absence of the coarse particles (Figure 3-5b). The disruption in packing is similar to that
which occurs at the container walls and is consequently referred to as the “wall effect.” The
additional void volume, v, per unit volume of powder distribution associated with the wall
effect is [Zok, et. al. 1991]:
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v, = N, V, N, (3-15)
where N; is the number of such sites per coarse particle, V; is the void volume associated
with one site, and N; is the number of coarse particles per unit volume of powder
distributions. In the model, the assumption that the curvature of the coarse particle does not
influence the packing density limits the use of the model to coarse particle / fine particle size

ratio larger than 10.

An additional void volume is created when coarse particles contact one another. The way in
which fine particles fit into the void space created by touching coarse particles is thus a major
concern to packing efficiency [Zok, et al. 1991]. The void volume at a contact is in the form
of a pendular ring, as shown schematically in Figure 3-6 [Zok, ef al. 1991]. Since fine
particles can not be packed into the ring, the associated void volume v. is referred to as an
“excluded volume.” It has a magnitude [Zok, et al. 1991]:

v. = N. VN, (3-16)
where N, is the number of contact points per coarse particle, V. is the excluded volume per
contact point, and N; is the number of coarse particles per unit volume of powder
distributions. Thus, v, is additional void volume per unit volume of powder distributions.

It should be noted that N. is equal to one half of the average coarse-coarse coordination
number, since each contact point is associated with two coarse spheres. Because of the
method used in the calculation, the model is expected to be valid only in the regime where
the volume fraction of coarse particles < 74%, i.e., where coarse particles are added to fine

particles.
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The combined effects of coarse particle surfaces and coarse particle contacts on packing
density can be described by [Zok, ef al. 1991]:

p.=pf-v.-v, (3-17)
where p . is the relative packing density of the powder distributions and p . is the relative
packing density of the powder distributions according to ideal distribution structure (Furnas

or German’s model).

3.3. Percolation

In addition to coordination number, a further tool is needed to build the bridge between the
macro properties and microstructure. Percolation theory could be used for this purpose.
Percolation theory describes a phenomena whereby a property of a system as a function of
a continuously varying parameter diverges, vanishes or just begins to manifest itself at one
sharply defined point. This point (transition) is characterized by a percolation threshold at
which a three-dimensional continuous network of bonds is just formed throughout the
particulate system [Stauffer, 1985]. The percolation probability P is defined either as the
fraction of sites in a network occupied (site percolation) or the fraction of bonds formed
between sites which are all regarded as filled (bond percolation). As an introductory
example of a percolation process and the qualitative event called the percolation threshold,
consider the experiment illustrated in Figure 3-7 [ Zallen, 1985]. A communication network,
represented by a very large square-lattice network of interconnections, is attacked by a
crazed saboteur who, armed with wire cutters, proceeds to cut the connecting links at

random. His aim is to break contact between two well-separated but well-connected
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communication centers or command posts, represented by the heavy bars which, in Figure
3-7, form the left and right boundaries of the network. Question: What fraction of the links
(or bonds) must be cut in order to isolate the command posts from each other? This
question, which can be given a definite answer by percolation theory, illustrates the central
issue at the heart of the percolation model: the existence of a sharp transition at which the
long-range connectivity of the system disappears ( or, going the other way, appears). This
basic transition, which occurs abruptly as the composition of the system - or some
generalized density - is varied, constitutes the percolation threshold. At the percolation
threshold, significant properties may change qualitatively in an off / on manner. In the
context of the present example, certainly the question of whether the joint command posts

can communicate is a yes - or - no matter of some importance.

For the bimodal powder distributions, at a critical threshold of connections, the cluster
becomes infinite or percolates the system. In this case, the networks considered are those
of the large particles and those of the fine particles and the probabilities are considered
relative to the percentage of coarse powder which is represented by X (per cent of mass of
large particles). Above the threshold X., the infinite coarse network percolates the structure.
Below the threshold X, the infinite fine network percolates the structure. Between X. and
X, the infinite coarse and fine networks coexist. The threshold X . is important because
a network of large particles with its large contact area and rigid framework might dominate

the compaction or sintering behavior of the distribution.

Percolation theory is a useful approach to elucidate the compaction behaviour of the
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powders. During the compaction, the transitions from one state to another are signified by
percolation thresholds which include particulate bond percolation threshold, rigidity
threshold and pore percolation threshold. Holman has developed this theory in his studies

on pharmaceutical powders {[Holman,1991].

Holman and Leuenberger first used percolation theory in the compaction of powders
[Holman and Leuenberger 1990]. The approach was based on percolation theory and the
principles of mechanics and has been used to elucidate the relationship between the
normalised solid fraction (fraction of solid) D of compacts and the compressive pressure p
during compaction. The series of linear regions comprising the D = f{In p) relationship has
been shown to be a manifestation of the different stages, namely, powder --> flexible
compact --> rigid compact --> continuum solid body. The transitions from one state to
another are signified by percolation thresholds which occur in crossover regions. Near the
percolation thresholds, there is a deviation in the D = f (In p) relationship. Thus, different

relationships exist between D and In p in the different regions.

More importantly percolation theory offers a method to directly link the compaction
phenomena to the microstructure of the compacts. Figure 3-8 [Holman, 1990] illustrates,
in a simplified way, the clusters of particles held together by bonds formed through
application of uniaxial pressure on powders in a rigid die. When pressure is below the
particulate bond percolation threshold D¢s, where Dcs is identified as the point at which a
continuous interparticle network of bonds spanning the system is formed , a large number
of the particles do not transmit forces and do not feel the applied stress. As illustrated in
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Figure 3-8(a), these columns of particles transmitting forces are not connected and are
separated by several particles. It can therefore be said that the powder system at this stage
of consolidation consists of isolated clusters of bonded particles. The heterogeneity in the
transmission of forces in the powder bed has been attributed to different geometric properties
(size or shape) of the particles. For example, in a powder system exhibiting a bimodal size
distribution of particles, the stresses are preferentially transmitted through the larger
particles. In the region D < Dcs, D increases linearly with a unit increase in In p , reflecting
an increase in the number of contact points and the area of each. Near the particulate bond
percolation threshold Dcs , a cluster spanning the whole structure in all three dimensions
begins to form. As illustrated in Figure 3-8(b), the continuous network of interparticulate
bonds comprising the infinite cluster is just formed above the threshold D¢s. Above Des,
although D increases linearly with a linear increase in In p, the slope is different from that at
D - values below D¢s. This is because the underlying structures which confer on the

particulate body the ability to resist deformation are different on either side of Dcs.

There is no published paper that focuses on elucidating the compaction and sintering
behaviour of binary metal distribution based on percolation theory. An effort will be made
to connect the percolation threshold phenomenon with the microstructural geometry of

pressed bimodal powder distributions.

3.4. Compaction of Bimodal Powder Distributions
The changes during compaction are complicated. Usually, there are three stages in the
compaction procedure. The first is packing during which there is a rapid decrease in porosity
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with increasing pressure. The particles are brought closer together without undergoing
deformation since individual particle movement, rearrangement and bridge collapse occurs
before interparticle deformation becomes appreciable. The second stage is plastic
compression attributed to deformation of the powders or fracture. The third stage pertains

to elastic compression under very high pressures.

One of the most important aspects of compaction is the equation of compaction which
describes the relationship between green density and the applied external pressure. Ge
mentioned that from an analysis of the various compaction equations, it could be shown that
most of the equations were derived from the differential equation [Ge, 1991] :

dD/dp = K, x D °/p* (3-18)

where p is compaction pressure, D is relative density and K,, a and b are constants.

According to Shapiro, the general compaction equation can be expressed by the following
equation [Shapiro 1994; Shapiro 1993; Shapiro 1992] :

P = P, exp {-kp - bp *°} (3-19)
where P and P, are apparent porosity and porosity at zero external pressure respectively, k

and b are constants.

But there are no clear meanings related to material properties or compaction conditions for
all the constants in these equations. There are several variables influencing the properties of
powder metallurgy parts. Among them, particle size has a strong effect on the interparticle

friction, packing density, green strength, the pore size, shrinkage (or densification) during
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sintering and sintered density. As mentioned in section 3.1, the effect of particle size
distribution on the consolidation processes, such as compaction and sintering, is an area of
surprisingly little research and understanding. There are just some qualitative analysis and
a few experimental equations. The finer particle sizes are more difficult to press, since large
pores collapse under lower pressures than fine pores and there is higher interparticle friction

for compacting finer powders.

Among the few researchers who have studied the influence of powder size distribution on
compaction, Zheng et al. described in detail the experimental compaction of bimodal powder
distributions [Zheng, et al., 1995; Zheng and Reed, 1990]. In the pressing of powders, the
packing efficiency is a function of forming pressure. Generally, the compact density versus
the log of pressure curves are approximately linear over certain pressure ranges. Thereis a
change of slope for some curves which have the same nominal composition. This change is
attributed to a difference of the particle-size distribution or the shape of the particles in the
powder. Zheng and Reed defined the slope of the density curve versus log of pressure as the
compaction efficiency [Zheng, ¢f al., 1995; Zheng and Reed, 1990]. The compact densities
for blends of the coarse (mean particle size: 111 pm) and fine (mean particle size: 0.64 um)
powders at different forming pressures are plotted in Figure 3-9. It is seen that the density-
log of pressure curves for all of the blends are approximately linear. It is also seen from
Figure 3-9 that not only the compact densities but also the compaction efficiencies are
different for different compositions. The highest compaction efficiency is achieved around

25% fine + 75% coarse powder distribution composition. [Zheng, er al., 1995].
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Using networks (percolation theory) as a tool has been a successful method in composite
materials studies. Lange ef al. [Lange et al., 1991] have studied the plastic consolidation
of metal powders containing different volume fractions of spherical, non-deformable
inclusions. Their results show that the connective network of inclusions supports an
increasing fraction of the applied pressure as the volume fraction of inclusions exceeds =~ 0.2.
In effect, they argue that since the applied pressure is not totally supported by the
deformable metal matrix powder, a higher applied pressure must be exerted on the composite

powder to obtain the same matrix density obtained without inclusions. [Lange er a/., 1991].

Research concerning the connectivity of spherical inclusions has received considerable
attention with regard to the percolation threshold. At the percolation threshold, a critical
volume fraction (relative to all space, ¢,) exists to form an infinite connective cluster of
inclusions that completely spans the volume of the container. For identical spheres, o,
ranges between 0.146 (diamond lattice) to 0.167 (body centered cubic lattice) [Zallen, 1983]
for periodic particle packing, and from about 0.16 for dense random packing [Fitzpatrick,
et al., 1974] to 0.183 for a computer simulated random packing [Powell, 1979]. Oger et al.
[Oger et al., 1986] have also numerically determined ¢, , when the matrix particles have a
different size relative to the inclusions. Once ¢; (the volume fraction of inclusions relative
to the total volume) is greater than ¢, ( the percolation threshold), P. (the fraction of
inclusions within an infinite connective cluster) has the functional form [Zallen, 1983]:
P.=A(¢-6) (3-20)

where A is a dimensionless constant and B = 0.4. P. =0 when ¢; < ¢, , and quickly

P
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increases as ¢; exceeds ¢, .

For the deformation processing of composites, the value of the percolation threshold is not
as important as the value of ¢; where the network formed by the inclusion cluster can begin
to support a portion of the applied pressure. Figure 3-10 [Bouvard and Lange, 1991]
illustrates five touching inclusions within three different clusters, where the number of
inclusions touching any other inclusion, Z; , increases from 2 to 4. When ¢; = ¢, , where
the infinite network just starts to span the volume, Z;; is expected to have an average value
of 2. For this case, the inclusions within the cluster do not form a supporting, three-
dimensional network, and the path for transmitting force would be very tenuous. On the
other hand, when Z; = 3, every inclusion within the percolating cluster is part of a three
dimensional network with some capability of supporting load and transmitting force as shown
in two-dimensions in Figure 3-10. When Z; = 4, the apparent “strength” of the network
increases by both the increased density of supporting paths, and the formation of some
triangular and tetrahedral supports between 3 and 4 touching inclusions, which increase their
number density as Z;; becomes greater than 4. Thus, a relation between ¢, , P . and Z; > 4
appears to be of great interest for correlating the effect of inclusions on the deformation
processing of composite systems. In the compaction of bimodal powder distributions, it is

reasonable to choose Z;; =4 as the percolation threshold.

Bouvard and Lange used computer simulations to get the following results [Bouvard and

Lange, 1991]. Figure 3-11a illustrates the results expressed as a fraction of inclusions (P.)
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in the percolative clusters vs the volume fraction of inclusions relative to total solids f;
(function of the volume fraction of inclusions, f;, relative to the total volume of matrix
particles and inclusions ( f; + f, = 1)), for0.33 <R <3 (sizeratioR =r_/r;). Since
the relative packing density is also determined for these systems, P. can be plotted as a
function of ¢; as shown in Figure 3-11b (If the relative density of the binary distribution, p,
is known, then ¢; can be related to f; with the relation: ¢ ; = f, p). It appears that the
percolation threshold (f, or ¢,) depends on R as also observed by Malliaris and Turner
[Malliaris and Tumner, 1971] and Oger et al.[Oger et al., 1986]. ¢, ranges between 0.081 for
R=3 to 0.223 for R=0.5. These data also show that small particles percolate more easily than
larger ones in mixed random packing. When R=0.33 significant scattering is observed around
the percolation threshold (¢, = 0.219 + 0.01). This larger scatter is probably caused by the
large radius of the inclusion relative to the cube edge (0.066), and thus relatively few
inclusions at the percolation threshold. A similar effect was found by Powell [Powell, 1979].
For inclusion volume fractions greater than the threshold value (f; > f, or ¢; > ¢,), P.
dramatically increases until all inclusions are part of the same cluster ( P. = 1) [Bouvard and

Lange, 1991].

In a more interesting way of representing the data, P. is plotted as a function of inclusion
connectivity expressed as Z; (the average coordination number for inclusions touching one
another as determined through numerical simulation). As shown in Figure 3-12 [Bouvard
and Lange, 1991}, a plot of P. vs Z; reduces all data to one single curve independent of size

ratio (R). The percolation threshold corresponds to Z;; = 2 , and Z;; = 4 characterises the

58



complete connectivity of all inclusions (P==1). These data show that the fraction of
inclusions within a percolating cluster is simply a function of the inclusion-inclusion
coordination number. Since Z; is proportional to f; or ¢, , it seems reasonable to use a
functional form similar to Equation (3-20) around the percolation threshold, to describe P,
as a function of Z;;. The following relation is proposed [Bouvard and Lange, 1991]:

4-Zn

2.5 0.4
5 /) (3-21)

Pc=(1-(

which satisfactorily describes the results in the whole range of volume fraction, as shown by
the solid line in Figure 3-12. The scatter around the percolation threshold is probably due
to the suddenness of the percolation process, which is difficult to catch with precision using

numerically simulated samples of limited size.

Among the shortcomings of this approach, that may limit its practical application, are the

restricted range in size ratio used in this study due to computing capability ( 0.33 <R <3).

It is worth mentioning Arzt’s model [Arzt, 1982] about the influence of an increasing particle
coordination on the compaction process even though this model is only used for monosized
powder. It is believed that this model can be used in more complicated particle size
distribution situations if the compaction is homogeneous. Most theories of the densification
behaviour of powders subjected to high temperature (as in sintering) and/or pressure (as in
hot and cold compaction) deduce the shrinkage from the linear densification between two
spherical particles in a regular packing. This approach neglects the peculiarities arising from

the fact that the particle structure is never regular and changes continually during

59



densification. As the average particle distance decreases, the particles are squeezed together
and form new contact areas. During this process the coordination number increases steadily.
This implies that in pressing operations the forces acting on the individual particle contacts
decrease continuously as a fraction of the external load, because the external pressure is
shared among an increasing number of contacts. The geometry of the particle packing may

therefore influence the densification; but to what extent remains to be seen [Arzt, 1982].

In a packing without rearrangement, densification can be brought about only by centre-to -
centre approach of particles. During shrinkage new particle pairs will be brought close
enough to form additional contacts. A study of the geometrical changes during cold
compaction of a spherical powder [Fischmeister, ef a/., 1978] has shown this to be a
continuous process: the coordination number increases steadily as densification proceeds.
A regular lattice-type packing cannot account for this behaviour. A continuous increase in
coordination can be modelled by assuming a ‘random’ particle structure with a continuous
distribution of centre-to-centre distances. Whether a particular sphere of the packing is likely
to form a new contact at a certain stage of densification depends upon the distribution of
particles in its immediate vicinity. The arrangement of near-neighbours of a representative
reference sphere can be characterised by the distribution of centre distances (‘radial density
function’, RDF), or by its integral, the cumulative radial distribution function, G(r). G(r)
represents the number of particle centres within a fictitious sphere of radius r around the

reference sphere [Arzt, 1982].
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During densification each particle changes its shape by forming contact areas with its
neighbours. The sphere packing has been converted into a space-filling stack of irregular
polyhedra. If it is assumed that the densification has been homogeneous, then these
polyhedra are identical in shape with the Voronoi polyhedra of the original packing (Figure
3-13) [Arzt, 1982]. The Voronoi polyhedron of a particle in a packing is the set of all points
in space which are closer to its centre than to any other particle centre. The boundaries of
this polyhedron are obtained by placing perpendicular bisecting planes on all centre-to-centre
connections. The bisection is of the distance between particle surfaces of course. The faces
of the Voronoi polyhedra contain all the contact areas and potential contacts. Densification
can be visualised as the shrinkage of these polyhedra; the deformation of the particles can be

regarded as being imposed by the walls of the shrinking cells.

Using the concepts of radial density function and Voronoi polyhedra, Arzt modelled the

particle geometry during compaction based on the initial particle packing. Simple equations

can be deduced to relate the fractional density D to the mean coordination number (obtained
for Z; = 7.3 and D, =0.64)[Arzt, 1982]:

Z=2,+9.5(D-D,) forD < 0.85 (3-22)

Z =2, +2+9.5(D-0.85)+881(D-0.85)° forD > 0.85 (3-23)

where Z and Z, are the coordination number at the compacted relative density D and initial

relative density D, respectively.

3.5. Sintering of Bimodal Powder Distributions
The sintered density for a bimodal distribution is less predictable and requires
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experimentation [German, 1992a]. Most of the studies on the effects of bimodal mixing on
sintering were focussed on ceramic systems without large particle deformation before
sintering. Most recently, German has studied the prediction of sintered density for both
ceramic and metal bimodal powder distributions in powder injection molding [German,
1992a]. As sketched in Figure 3-14, the shrinkage of the small particles is constrained by
the full density large particle. This results in stresses that can reduce the shrinkage and open

cracks in the matrix.

Based on Onoda and German [Onoda and Messing, 1987; German, 1992a], sintered density
prediction could be explained by an idealised model as in Figure 3-15. H is a homogeneity
parameter. At the composition consisting of pure small particles, the volume change during
sintering is AVj, and at the composition consisting of pure large particles, the volume change
during sintering is AV,. These two terminal values can be measured for any bimodal powder

system.

During sintering, compositions above X* (the composition at the packing density peak) will
be constrained by the rigid skeleton of large particles (Fig. 3-4). Alternatively, at the end of
sintering, there will be a new composition X, that is constricted in densification by the large

particles (Fig. 3-5). Typically, X, > X*, but they are usually close together.

As shown in Figure 3-15, when H=1 (perfect mixing), the change in specific value on

sintering will consist of two straight line segments connecting the behaviour of the pure small



and pure large powders with a change in slope at the transition composition X, At
compositions over the transition composition, X > X, , the change in specific volume for the
distribution AV is just AV, :

AV=4V, X>X (3-24)
The sintering of the small particles located in the voids between the large particles will not
alter the bulk volume change. On the other hand, at compositions rich in small particles
( X <Xt), the sintering volume change will decrease as large particles are added, since the
regions occupied by large particles are already dense. Accordingly, the volume change on
sintering will be linearly dependent on the small particle content :

AV = AV, - (X/X, )(AVs-4V,) X < X, (3-25)
where AV and AV, are the changes in specific volume for the small and large powders,
respectively. If a powder is separated into regions of large and small particles with a
homogeneity of zero (H=0), then the change in specific volume will follow the rule of

distributions.

German’s model is an idealised model. There is no connection between the macro-properties

and the microstructure of the powder system or the physical characteristics of the powders.

There is no theoretical model in the literature for sintering of bimodal powder distribution.
The influence of an increasing particle coordination on the sintering of monosized powder
was discussed by Arzt [Arzt, 1982; Arzt ef al., 1983] and the relationship between

coordination number and fractional density during sintering was given as equation (3-26)
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[Arzt, 1982]:

-DO -(D-DO

5 D Sre] (3-26)

D
Z=2,~C[ 3

where C is a constant, Z and Z, are the coordination number when sintered density is D and
initial density is Do respectively. This model may be useful in the study of bimodal powder
sintering when the coarse powder network dominates the sintering of the powder

distribution.

As a summary of the literature survey, the effect of particle size distribution on P/M
processes is an area of surprisingly little research and understanding [Ting and Lin, 1994;
Patterson, er al.,1987]. Studying the effects of bimodal powder distributions with size

distributions on P/M processes has both theoretical and practical significance.
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Figure 3-1. The relative cost and density ranges for various P/M processes.
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Figure 3-2. Schematic illustration of the packing density variation with composition for

a bimodal powder distribution. [German, 1992]
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Figure 3-3. The specific volume versus composition for bimodal
powder distributions with perfect homogeneity and infinitely particle size ratio.
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Figure 34. The specific volume versus composition for bimodal powder distributions with

less than ideal homogeneity and a finite particle size ratio. [German and Bulger, 1992]
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Figure 3-5. Schematic diagram showing the disruption in powder packing around isolated
coarse particles. (b) Idealisation of the powder packing at the coarse particle surface. The

shaded spherical caps represent the reduction in packing density due to the presence of the

coarse particle. [Zok, et al., 1991]
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Figure 3-6. Schematic diagram showing the disruption in particle packing at a coarse-coarse
particle contact point. Note the presence of the “excluded volume” into which fine particles

cannot be packed. [Zok, et al., 1991]
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Figure 3-7. The randomly cut network as an example of percolation

[Zallen, 1985]
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Figure 3-8. Simplified illustrations of clusters of particles held together by bonds formed
through application of uniaxial pressure on powders in a rigid die. The arrow indicates the
direction of force application. (a), Column of bonded particles oriented in the direction of
force application. The columns are separated from each other by several particles. Each
column is a finite cluster; (b), a percolating (infinite) cluster of bonded particles just above
the percolation threshold of the solid particles Dcs traversing the system in all directions.
[Holman, 1991]
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Figure 3-9. Compact density versus log (pressure) of blends of the coarse and fine

alumnus, X¢is the volume fraction of the fines.[Zheng, et al.,1995]
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Figure 3-10. Correlation between coordination and pressure transmission in a percolating

cluster. Transmission paths are figured with line segments. [Bouvard and Lange,1991]

73



Al

o
o
1

Ad

o Q
- (<))
[ EPEE SN

ok

Fraction of Inclusions within
a Connective Cluster, P
o
N
1

O O m e Xx
=
f
o
[
@

A

0 0.2 0.4 0.6 0.8
Volume Fraction of Inclusions
(relative to solid volume), fi

D
g

C

o
o
[

o
¢}
al

R=1
R=0.5
R=0.33 ||
R=2 s
R=3 ||

b
L)
i

Fraction of Inclusions within
a Connective Cluster, P
O O m e X

— —

v —
0 0.1 0.2 03 04 0.5
Volume Fraction of Inclusions

(b) (relative to total volume), ¢,

Y

Figure 3-11. Fraction of inclusions in a percolating cluster vs volume fraction of inclusions
relative to solid volume (a) or relative to total volume (b), where R is the size ratio.

[Bouvard and Lange,1991]

79



U UL S S L S S S S B S S S S S

1 8
1 2
£ i »
_: o < b
= . 0.8 - -
5% 08 |
2% |
-9"2 - -
gU 0'6 . X R=1 |
"CJ [+8] p b
£z ] ¢ R=05 ||
- & 0.4 ~
2 é < a R=0.33 1
c O 1 !
£V 5 O R=2 i
S s 027 |
(o ] O R=3 '
0 ~——— T —~———
0 1 2 3 4 5

Inclusion-Inclusion Coordination Number, zii

Figure 3-12. Correlation between the percolation parameter and the coordination number

for inclusions touching one another. [Bouvard and Lange,1991]

80



Figure 3-13. Two-dimensional schematic of the division of the powder bed into Voronoi
cells. The non-contacting neighbours sharing a cell wall will form contacts as densification
proceeds. [Arzt, 1982]
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Figure 3-14. Sketches of the densification behaviour. [German, 1992a])
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Figure 3-15. The change in specific volume during sintering as a function of the bimodal

~ powder composition. [German, 1992a]
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CHAPTER 4.
Improving P/M Parts By Bimodal Powder Distributions --

Experimental Test"

The purpose of this part of the work was to try to achieve comparable properties to wrought
materials using standard P/M techniques (i.e. cold die pressing & sintering as opposed to HIP
or powder forging) and to find the optimal coarse-fine powder composition to maximize
green density and final density. Two important results were achieved in this experimental test.

One was that the fine-coarse blend powders enhanced the green densities. Another was that

very high final densities was achieved. The best results were obtained when the 17-4PH

*A version of this chapter has been published as “Improving P/M Parts Made with
Conventional Processing by Bimodal Powder Mixtures,” X.L. Chen, R.L. Eadie, D.S. Ghosh,
and G. Roemer, in Advances in Powder Metallurgy & Particulate Materials - 1996, Compiled
by T.M. Cadle and K.S. Narasimhan, Metal Powder Industries Federation, Princeton, New
Jersey,Vol. 1, pp. 3-3 - 3-26, 1996.
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fine-coarse blend powders were compacted under a pressure of 700 MPa. The standard

procedure conditions were:

Materials: 75% 17-4PH coarse powders + 25% 17-4PH fine powders (by mass)
Compaction:  die press at 700 MPa (single acting press, lubricant was lithium stearate)
Sintering: heating rate at 10 K/min,
room temperature —> 800°C hold for 1 hour —> 1300°C hold for 2 hours
furnace atmosphere was Ar + 10%H,
Heat treatment: double ageing at 620°C for total of 8 hours (for precipitation hardening)

The properties of the 17-4PH samples treated following the above procedures were :

Green Density: 6350 + 10 kg/m’
Linear Shrinkage during sintering: 5.50 £0.01%
Hardness (HRC): 29 - 35 (before heat treatment), 29 + | (after heat treatment)

Final Relative Density: 97.7 £0.1%

UTS (MPa): 886 - 900
YS (MPa): 738 - 755
Elongation (gauge length is 50mm) : 63%-82%

All the test data shown in this Chapter are the average value taken from more than three
points except the data for pure fine powder and 25% coarse + 75% fine powder which are

based on two points.
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4.1. Testing Materials

4.1.1. Chemical Composition

Two sizes of 17-4PH stainless steel powders (coarse and fine) were chosen for the
experimental investigation. They have the same chemical composition which is shown in

Table 4-1.

4.1.2. Size Distribution

The coarse and the fine powder size distribution were investigated using screen analysis and
centrifugal sedimentation analysis, respectively. The results were close to the manufacturer’s
reports. The powder size distributions for coarse and fine powders are shown in Figure 4-1
and Figure 4-2 (Figure 4-1 : 100% coarse; Figure 4-2 : 100% fine). The mean particle sizes
were 64.4 pum for coarse powders and 12.8 um for fine powders based on mass. Based on
population, the mean particle size were 39.5 pm for coarse powders and 7.3 pum for fine

powders. The coarse/fine powder size ratio is around 5 : 1 (based on mass).

Analyzing the pure coarse and pure fine powders, it was found that they were approximately
log-normal distributions. The log-normal distribution is described in terms of the mean

particle size D and the geometric standard deviation & as follows:

-1 &-x) .
27 o exp [ 357 ] (4-1)

where P(x) is the probability of finding a particle with size x = In(D) where D is the particle

P(x)

diameter in um. The mean particle size is given as x = ln(B). The distribution spread

parameter, G , is defined as:
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o =In(Ds Dso) (4-2)
where D is the particle diameter and the subscripts indicate the percentage points in the
cumulative particle size distribution (on the cumulative particle size distribution, 84 mass %
corresponds to one standard deviation from the mean at 50 mass %). Thus, o is the measure
of the distribution width expressed in terms of the logarithm of the size at one standard
deviation divided by the size at the mean. This is the logarithm of the size ratio giving one
geometric standard deviation. Only two parameters are needed to describe a log-normal

distribution, the mean size and the deviation.

The probability functions for coarse powder is :

_(x-4.165)"/

Px)= —— ex 4-3
/ 2r )" x0.44 P/ 2x(0.44)° 4-3)
and the probability functions for fine powder is:
I (x-2.545)
Px)= _ e Bt bl A 4-4
& (2r )'*x0.521 xp [ 2x(0.521 ) / (@-4)

Based on the coarse and fine powder distribution functions, the size distribution of the
bimodal systems for different coarse-fine mass fractions were calculated and several
examples are shown as Figure 4-3: 90% coarse + 10% fine; Figure 4-4 : 75% coarse +
25% fine; Figure 4-5 : 60% coarse + 40% fine; Figure 4-6 : 45% coarse + 55% fine). The
majority component in the distribution changes from coarse to fine powder from Figure 4-3

to Figure 4-6.

4.1.3. Particle Shape

The coarse powder and the fine powder were produced by water atomisation and gas
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atomisation respectively. Figure 4-7 shows micrographs of the coarse and the fine powders.
The coarse powder's shape is somewhat irregular but is mostly equiaxed. The shape of the
fine powders is spherical. The shape of the coarse particles will be modelled using equivalent
sized spherical powder -- the closest approximation which is tractable. This approximation
will have errors — especially prior to compaction. After compaction and sintering, the
expected difference between the actual powder and the nearest size spherical approximation

would be small.

4.1.4. Particle Cross-Section and Grain Structure

Powders were mounted and polished. Both unetched and etched cross sections were
examined. Figure 4-8 and Figure 4-9 show the cross-section and grain structure of the
powders. Itis observed that there are no internal pores in the fine powders and there are
very few internal pores in the coarse powders. The grain size (around 2-3pum) is the same
in both fine and coarse powders. The reason may be that coarse powders were made by
water-atomisation and fine powders were made by gas-atomisation. The grain size tends to
be small in the large particles because of the higher cooling rate even though the diameter

is larger.

4.1.5. Flow Rate, Apparent Density and Tap Density

Flow rates of powders were measured according to standard MPIF 03. Apparent density
were measured according to standard MPIFSP 04 (free-flowing bimodal powder
distributions) or standard MPIF 28 (non-free-flowing bimodal powder distributions). Tap

densities were measured according to MPIF 46. [Metal Powder Industries Federation, 1991]
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The flow rates for the different distributions are listed in Table 4-2. In this experimental
test, the pure coarse powder was studied first then different amounts of fine powder were
added into pure coarse powder. Apparent and tap density versus coarse-fine composition
is shown in Figure 4-10. The experimental errors are +0.02g/cm’ for apparent density and
+0.014 g/cm’ for tap density. The mass per cent of fine powder will be used for the x axis
in this and the following chapters. It is observed that the highest value of apparent and tap
density is at 40% fine. The peak is not sharp. From 30% to 55% fine, the apparent and tap
density only changed a little. Apparent density is related to loose random packing and tap
density expresses the close random packing. They also have a direct correlation to the

coordination number.

4.2. Testing Procedure (Powder Compacts)

The preparation procedure followed that for conventional P/M processes. Different
compositions of coarse and fine powders were weighed and then mixed by ball milling for
2 hrs. The lubricant - lithium stearate (0.6% by mass) was added to the powders before
milling. Plastic bottles with a radius of 2.5 cm and 3.5 mm radius iron balls were used in
mixing. The mixing time was 1 hour. After ball mixing, the size distribution of the coarse
powder was measured by sieving and it had remained the same. Each sample was weighed
out and compacted with a single acting die press machine. Samples were pressed at 700
MPa. The powders were pressed into tensile test samples corresponding to MPIF Standard
10. After pressing, the green densities of the samples were measured according to MPIF
Standard 42 [Metal Powder Industries Federation, 1991]. Then, the samples were sintered

under the same conditions at 1300 °C with one exception which was sintered at 1250 °C. The

89



following standard procedure was used for sintering: The heating rate was kept at 10 K/min;
the samples were heated to 800 °C and were held at that temperature for 1 hour to burn off
the binder; then the samples were heated to 1300 °C and held 2 hours for sintering. The
furnace atmosphere was Ar + 10%H,. After sintering, some samples were tested as-sintered,
while, others were given heat-treatments according to NACE Standard TMO0175-90. Finally,

the linear shrinkages, final densities, hardness, UTS, YS, and elongation were measured.

For some of the samples, the porosity was measured.

4.3. Compaction of Bimodal Powder Distributions

4.3.1. Green Compact's Characteristics

The green compacts were easily broken by hand. Fresh fracture surfaces of the green
compacts for different distributions were examined using the SEM. The bonding in pressed
samples and mixing of coarse and fine particles can be directly observed in Figure 4-11
(360X). Even though the powder particles were pressed, the individual particles can be
clearly observed. There were different amounts of deformation for the particles. Most

particles had flat polygonal shapes.

In Fig. 4-11a and 4-11e (100% coarse and 100% fine powders), there are a large number
of bridges between particles. The networks are pure coarse and pure fine particle networks
respectively. In Fig. 4-11b (75% coarse powders), there is a coarse particle network and
the fine particles fit in the spaces between the coarse particle sites. It is apparent that some
areas have concave surfaces where large particles have been pulled out during fracture. In

these areas, the fine particles seem to be clustered together. In Fig. 4-11d (25% coarse
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powders), coarse particles mix in the fine particle matrix. In Fig. 4-11lc (50% coarse
powders), a fine particle network exists but the coarse particle network just disappears.
Note that more local plastic deformation (flat polygonal surfaces) is observed in Fig. 4-11b

(75% coarse +25% fine powders) which corresponds to the highest green density.

4.3.2. Green Density
The relationship between coarse-fine powder composition and green density is shown in
Figure 4-12. The experimental error is + 0.01g/cm® (0.1%). As shown in Figure 4-12, the

green density has a maxima at about 20% fine composition.

Comparing German's results [German and Bulger, 1992] (Figure 3-4) and the current
experimental result, it is observed that they are quite similar (maximum density and minimum
specific volume have the same meaning). The coarse to fine size ratio was around 10:1 in
German's study. Coarse to fine size ratio of 5:1 was used in these tests. Considering the
interstitial site size, it is believed that there is only a small difference expected when the
coarse/fine radius ratio changes from 10:1 to 5:1. These experimental results showed that
the distributions had higher densities, but the peak was not sharp (Fig. 4-12). One of the
reasons may be that the size ratio is not large enough. Another reason may be that both
coarse and fine powders have size distributions. It's worth mentioning that German studied
the packing density in a powder injection molding system. In this system binder which
should have flowability was used to improve the homogeneity of the distributions and
prevent fine powder aggregation. In the kind of system which is being studied, the
homogeneity of distributions are achieved by applying ball milling and then external pressure
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which caused powder rearrangement and plastic deformation.

4.4. Sintering of Bimodal Powder Distributions

4.4.1. Sintered Density for Bimodal Powder Distributions

The samples were sintered at 1300 °C and the sintering test results are shown in Figure 4-13
(final density versus wt % fine powder) and Figure 4-14 (specific volume change versus wt
% fine powder). The experimental errors are around +0.1%. The highest final density
(97.7% relative density) was achieved with approximately 30% fine powder mass fraction
(Figure 4-13). In Figure 4-14, specific volume change of bimodal distributions stayed
approximately constant ( it agrees with German’s prediction [German, 1992]) when the fine
mass fraction changes from 0% to 30%. On the other hand, at mass fractions rich in fine
particles, the specific volume change decreases as coarse particles are added, since the
regions occupied by coarse particles are already dense. The shrinkage during sintering
increases with an increasing amount of fine powder. This corresponds to higher powder

surface areas - hence higher driving force for the sintering process.

It is found that there are some conflicts between these experimental results and German's
model [German and Bulger,1992]. The model indicates that the highest final densities are
obtained by using fine powder. The highest final densities were obtained by using mixed
coarse-fine powders. Even though the shrinkage of fine powder-rich distribution is larger
than that of coarse-rich powder distribution, their final densities are very similar. The higher
green density compensates for lower shrinkage. With respect to final density, any coarse-fine
composition between 10% and 55% fine composition could be chosen to satisfy the need.
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But from the view of practise and economy, mixed powder (about 30% fine composition)
is preferred. When the fine composition is above 35%, there are often laminations in the
samples and the pressed samples are easily broken (lower green strength). If the coarse
powder composition is lower, then a binder is needed. The fine powders are more expensive
and harder to handle (they tend to oxidise). ~Also, the shrinkage during sintering is higher

which reduces dimensional control when the amount of fine powder is higher.

4.4.2. Grain Structure of the Sintered Samples

Pore and grain size, shape and distribution are important factors in sintering, especially in the
later sintering stage, to control final density. The SEM and optical microscope were used
to observe them. The sintered samples were first cut with a rotary diamond or silicon carbide
saw then mounted and polished. The etched samples were prepared for examination of grain
structure and unetched samples were prepared for examination of pore structure. It is
observed that the grain sizes are the same (around 30um) but pore sizes are different in
different distributions (Figure 4-15 and 4-16). Sintering conditions control the grain size.

Pore size is influenced by particle size.

Figure 4-16 shows the pore structures of sintered samples for different coarse-fine mass
fractions. In Figure 4-16, all the samples contain 0.56 mass % lubricant and were sintered
at the same condition (1300 °C for 2 hours). For the pore size distribution, there is an
obvious difference between sintered samples of pure coarse powders and those in the rest
of the samples. For the coarse powders, the pore sizes are highly variable, the pore

distribution is not uniform and the average pore size is larger in the sintered 100% coarse

93



powder. For more than 25% by mass fine powders, the pore structures are similar (Figures
4-16b to 4-16e). The pore size distribution is more uniform. One of the interesting
phenomena of sintering bimodal distributions is that the pore structure difference between
bimodal distributions and 100% fine powders is small. This is also one of the important
factors which produce very high final density with only a small amount of fine powder
(25%). The porosity measured by SEM image analysis were shown in Table 4-3. The
results agree with the results measured by the MPIF standard 42 method. The 75%-25%
sample has the highest final density. Since SEM image analysis uses an area about 500 um?
(very small) to calculate porosity and the pore distribution usually is not uniform, the results

are only approximate.

4.4.3. Influence of Temperature

Since sintering is a thermally-activated process, the temperature is a more effective factor
than any other variable. The results from sintering at 1250 °C are shown in Figure 4-17.
The experimental error is + 0.01 g/cm®. Compared with Figure 4-13 (sintering at 1300 °C),
it is clear that final densities are lower for the entire range of samples sintered at lower
temperature. When the density difference caused by different powder distributions is less
than 0.1 g/cm’, the difference in density caused by temperature difference (only 50 °C)
reached 0.2 g/cm”. The lower temperature does not simply favour the sintering for coarse
particle-rich distributions. Firstly, there is no shift for the maximum density composition
when sintering temperature decreases. Secondly, with a decrease of temperature, the
difference between the coarse-rich end and maximum value changes from 0.06 g/cm® to 0.09
g/cm ® | while the difference between the fine-rich end and maximum value changes from
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0.06 g/cm’ to 0.04 g/cm’.

4.5. Mechanical Properties

Both high green density and high final density were achieved by using bimodal powder
distributions. The average results (75% coarse + 25% fine powders) of the properties for
17-4PH samples treated according to the above procedures (pressed at 700 MPa, sintered
at 1300 °C) and the data of 17-4PH wrought products (both samples are heat-treated at same

condition - H1150) are given below:

P/M sample (this result) Wrought products
UTS 131 ksi (900 MPa) 135 ksi (930 MPa)
YS 106 ksi (730 MPa) 105 ksi (725 MPa)
Hardness 30 HRC 28-36HRC
Elongation 7.4% 16%

The mechanical properties of high density bimodal powder metailurgy products are close to
those of wrought products. The lower elongation value is expected because there is 2%

porosity in the P/M compacts.

Tensile tests and hardness tests were done for different coarse-fine composition powder
distributions. The UTS and hardness data are shown in Tables 4-4. The mechanical
properties of the mixed powder system are very good, even for the samples which were
sintered at 1250°C. For most samples, the relation between the final density and mechanical
properties obeys the common rule -- the higher the density, the higher the mechanical
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properties, One exception is that the UTS and hardness reach the highest value when the
coarse-fine composition are around 60%-40%. This phenomenon may be explained by
Figure 4-16. Although the 60%-40% samples are not the most dense, it has the smallest
pore size , round shape and most uniform pore distribution. At a given porosity, smooth,
small and uniformly distributed pores give the greatest strength since the effective solid

fraction volume is largest.

Very high sintered densities (97.7% relative density) and mechanical properties (comparable
to wrought products) were achieved by using the conventional P/M processes of single
compaction and single sintering in bimodal distributions of precipitation hardening stainless
steel powders. Both coarse and fine powders had log-normal size distributions. The medians
of the two sizes were in the ratio of about 5:1. A 2% increase of final density is achieved by
adding only 25% fine powders and the final density of the bimodal powders reached the same
value as 100% fine powders. This offers a more effective way to get high performance P/M
products. Using bimodal powders has practical significance in reducing cost and achieving
better dimensional control (lower shrinkage) with a high final density. Among the influences,
it is concluded that sintering temperature is the most powerful influence, the next most

important is the coarse-fine composition.
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Table 4-1. Compositions of the 17-4 PH Powders
Cr% | Ni Mo | Mn | Graphite | Si S Cu C Iron
% % % % * % % % %
16.3 | 4.11 | 0.01 | 0.17 0 046 | 0.01 | 3.86 | 0.026 | rest

* Graphite % -- Added to Powders
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Table 4-2. Flow rates of bimodal powder distributions

Coarse-Fine composition Flow Rate

(%--%) (S/50g)
100--0 32
90--10 41
85--15 46
80--20 no flow
75--25 no flow
70--30 no flow
65--35 no flow
60--40 no flow
55--45 no flow
50--50 no flow
45--55 no flow
0--100 no flow

0--100 (+binder) no flow
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Table 4-3. Porosities for different coarse-fine composition

17-4 PH coarse-fine powder distributions

Coarse-fine Porosity % Porosity %
composition (SEM image analysis) (MPIF standard 42)
(% — %)
90 -- 10 5.03 3.58
75--25 2.8 23
60 -- 40 2.87 2.6
45--55 3.22 3.7
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Table 4-4. The coarse-fine composition vs. UTS and hardness

Coarse-fine composition Hardness* UTS* Hardness* UTS**
%-% HRC MPa * MPa
HRC

90% - 10% 29 843.1 30.5 888.9
85% - 15% 29.5 863.3 31
80% - 20% 30 865.6 32 905.1
75% - 25% 32 893.4 33 907.2
70% - 30% 32.5 896.3 32.5 917.8
65% - 35% 31.5 889.6 32 930.2
60% - 40% 31.75 912.3 33.5 922.2
55% - 45% 31.75 904.4 33 934.9
50% - 50% 32 93].3%** 33.5 915.2
45% - 55% 30.5 913.1 333 929.5

* The samples were sintered at 1250 °C. Their final densities are about 95% relative
density.
** The samples were sintered at 1300 °C. Their final densities are about 98% relative
density.
*** This data is seem not reasonable since it is higher than the UTS of the same coarse -
fine composition sample sintered at higher temperature and gave a much higher

final density.
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Figure 4-7. SEM micrograph of coarse 4-7 (2) and fine 4-7 (b) powders
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Figure 4-8. Optical micrograph of cross-section of the powders
4-8 (a) : coarse powders; 4-8 (b): fine powders.
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4-9 (a)

4-9 (b)

Figure 4-9. Optical micrograph of etched cross-section of the powders.

4-9 (a) : coarse powders; 4-9 (b): fine powders.
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Figure 4-15. Grain Structures for Sintered Samples (1300 °C 2 hrs) 720X

(a) : 75% coarse - 25% fine ; (b): pure coarse powders
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Figure 4-16. Pore structures of sintered samples for different coarse-fine mass fractions.
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CHAPTERSS.

Packing Models In Random Close Packed Bimodal Powder Distributions

As introduced in Chapter Three, the advantages of bimodal systems were first proposed by
Furnas [Furnas, 1931] and subsequently applied to ceramics and refractoriness. More
recently these ideas have found application in powder metallurgy as well [German, 1992a;
German, 1992b]. The objective of the work presented in this chapter was to develop a better

understanding of the structure in bimodal packing.

In order to set up the model, the fundamental factors which influence the packing behaviour

and some ideas about networks which are embodied in the percolation concept were
considered. The coordination number of the particles was used as a fundamental parameter
to evaluate the different structures and compare them to experiment. The powder system

which was studied experimentally (see Chapter Four) was a bimodal system with a
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coarse/fine powder size ratio of around S : 1. Both coarse and fine powders had
approximately log-normal distributions. A percolation model based on the saturated structure
proposed by German [German, 1992b] was developed and calculated results for co-
ordination number based on this model were compared with Suzuki and Oshima’s model
[Suzuki and Oshima, 1983] for coordination number based on random structures. These
models disagree with one another and the experimental results lie somewhere in between.
Maodifications to the saturated model are proposed to bring the theory and experiment into
agreement. It is concluded that the structures that arise in bimodal distributions are best

described by this new model.

S.1. Background For Packing Models

S.1.1. Packing Behaviour in Bimodal Powder Distributions

What sort of increase to the tap density can be achieved by mixing size fractions of powders?
Considerable theoretical and experimental work has been done in this area. One of the early
mathematical treatments of this was by Furnas [Furnas, 1931]. German has recently
summarised this literature [German, 1992b]. As noted in Chapter Three, German defines
what he calls a saturated structure in which all the interstitial spaces in a packing of larger
particles are occupied to the maximum extent possible by smaller size particles. The density
increases achieved in this saturated structure depend on the ratio of the two particle sizes,
the initial density of the large particle packing and the degree of homogeneity obtained in the
bimodal packing. The more difficult concept is the question of inhomogeneity - whether the
two particle sizes have been mixed together to achieve uniformity to the maximum extent

possible. German [German, 1992b] treats this following Onoda and Messing [Onoda and
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Messing, 1978] with the introduction of a parameter “the distribution homogeneity index
which can vary from 0 to 1, with | representing “perfect” mixing. According to the theory
of saturated structures it is predicted that for random dense packing and very large ratios of
large to small particle radii a theoretical density of 87% can be achieved. In practice this is
not observed. The density increases with the ratio of large to small particle radii with
experimental results [McGeary, 1961] showing an increase from 64% theoretical density at
a ratio of 1 (random close packing of equal spheres) to about 80% theoretical density at a
ratio of 8, with rather smaller asymptotic increases in density for higher size ratios to a
maximum of about 84% which is essentially achieved at a size ratio of 15. These results are

shown graphically in Figure 5-1.

S.1.2. Networks and Percolation

An additional factor which has proven to be significant to the behaviour of packings of two
components is the question of whether the components are interconnected with one another
or not. Ifthe particles are interconnected they form a network. When a network is formed
then the component is said to percolate the structure [Stauffer, 1985]. Holman [Holman and
Leuenberger, 1990; Holman, 1991] has shown that a range of properties of two component
distributions such as tap densities, compaction behaviour and hardness show different
behaviour in the regions where the different components percolate the structure. One of his
graphs of tap density versus composition is shown in Figure 5-2. The [V/V] indicates the
solid volume fraction of AVI in AVI/LACT bimodal powder distributions. The percolation

threshold for two mono- particle size was at volumes of 31% and 66 %.
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Details of this experimental study were given in Chapter Four, but the percolation result will
be reported here. In this experimental study of stainless steel powders the different
components have the same composition, but different sizes. The tap density for the two
component distributions is shown in Figure 5-3. The packings show percolation thresholds
at around 30% by volume of the finer particle. This indicates that in the tapped packing
there were just particle networks of coarse particles at compositions from 0% to around 30%

of fine particles by volume or mass.

5.1.3. Suzuki and Oshima’s Model for Coordination Number

As mentioned in Chapter Three, this coordination number model has proven useful for
considering bimodal packing. It considers a two component distribution comprising coarse
and fine particles. Since this model has already been introduced in Chapter Three, only the

equations according to Suzuki and Oshima’s model are listed [Suzuki and Oshima, 1983]:

_ Dy | (5-1)
N~
1+&-[_D_£(&+2)]"3
Dy Dy Dy

N: = SN2+ (1-Sz)Np (5-2)

T (53)

D.,
Sp+(Df) (I“Sp)
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Ny = SN2z + (1-54)N>; (5-4)

2a(%+1)
N = < (5-5)
Dy Dy, Dy 12
I+—=-[—(—+2
D. [Dc(Dc <
N=J3SyN, (5-6)

The constant o is 0.402 based on a = 0.067N , where N is 6 the coordination number for
particles in packing of normally distributed dense (tapped) packing including random dense
packing. A sample calculation for 75% coarse +25% fine powder is shown in Appendix

Five.

5.1.4. The Experimental Packing and Calculated Coordination Numbers

The powder system which was studied experimentally was a bimodal system. Both coarse
and fine powders had approximately log-normal distributions which are shown in Figure 4-1
and Figure 4-2. The distributions of coordination number N in the coarse and the fine
powder in pure form at their uncompacted densities based on the model of Ouchiyama and

Tanaka [Ouchiyama and Tanaka, 1980] are shown in Figure 5-4 and Figure 5-5.

The coordination numbers for the bimodal distributions were calculated using Equations (5-

1) to (5-6). The calculated results are shown as follows: Ny in Figure 5-6, N in Figure 5-

7a, Ner in Figure 5-8, N, in Figure 5-9 and total coordination number, N, in Figure 5-10a.
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These co-ordination numbers are required to understand the percolation thresholds in the

compacts.

5.1.5. Contacts, Saturated Structures and Percolation Thresholds.

According to Bouvard and Lange [Bouvard and Lange, 1991], a coordination number of 4
or more characterises the complete connectivity of all the particles and a coordination
number of 2 corresponds to the onset of percolation (threshold). According to German’s
concept of a saturated structure, small particles going into the interstitial spaces between the
coarse powder and not influencing the coarse packing can be visualised. So, the percolation
threshold would have direct relation to the saturated structure in this case and would occur

when the pores were full.

In fact according to the ideal saturated structure, the coarse pores can be filled with fine
particles to the extent of the tap density of the fine powder before the coarse powder is
affected. There are different shapes of three-dimensional voids in a coarse particle network,
such as: tetrahedron, octahedron, cube, etc. The void of the tetrahedron is the smallest one
among them. Ifthe coarse / fine particle size ratio is approximately larger than 4.5:1, the fine
particles can fill in the tetrahedron voids as well as other three-dimensional types of voids.

In Figure 5-11, schematic figures are drawn to indicate that the fine particles which are in
the void of the coarse particles do not influence the packing and the coarse-coarse contact
numbers of the coarse particles. The pure coarse particle packing is shown in Figure 5-11a.

In Figure 5-11b, one fine particle is in the void of the coarse particle while there are three

fine particles in the void of the coarse particles in Figure 5-11c. The packing of the coarse
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particles are the same in Figure S5-11a, 11b and 11c. So the coarse particle packing does not
change with addition of fine particles to the coarse particles as long as the fine particles are

in the voids of the coarse particles.

Based on Figure 5-7a, the coarse infinite network starts to lose complete connectivity at
around 10% fine particles (CN < 4) and is completely disconnected at 30% fine particles
(CN < 2). The observed percolation threshold from Fig 5-3 is 30% fine powder. There
would appear to be a substantial disagreement between the coordination number calculated
from computer generated random packing (Suzuki and Oshima’s model) and the

experiments.

How can this be explained? Because the coarse/fine particle size ratio is larger than S in this
bimodal systems, the particle number fraction of the fine particle in the powder distributions
(S,) increased rapidly as the mass of the fine particle increased. So, the surface area fraction
of the fine particles (S,) in Equation (5-2) increases and the calculated coarse-coarse contact
number decreases quickly with increase of the mass of the fine particles. But the fact that
the fine particles which are in the voids of the coarse particles do not decrease the coarse-
coarse contact numbers is not considered in Equation (5-3), so in Figure 5-7a, the coarse-
coarse contact numbers calculated by using Equation (5-3) are smaller than the actual case.
Considering the fact that fine particles which are in the voids of the coarse particles do not
influence the coarse-coarse contacts, it is necessary to modify the factor (1-S;)Ny, in
Equation (5-3) by using S,’ to replace S, :

Nee = (1-S2)N ., (5-7)

125



where S, represents the surface area fraction for the fine particle in the powder distribution
which influences the coarse-coarse contact. This S,’ is explained and calculated for a new

proposed model in the next section.

5.2. New Models for Bimodal Particle Packing
§.2.1. Saturated Model
5.2.1.1. Saturation point
German defined the saturation point (X = X*) as the point at which all the coarse particles
were in point contact with one another and all of the interstitial voids were filled to be extent
possible with fine particles [German, 1992b]. This is an idealised concept which maximises
density. If f. and f; were the relative tap density of 100% coarse powder and 100% fine
powder, p.and prwere the theoretical densities of the coarse powder and the fine powder
(general case where the fine and coarse powders may be different alloys), the amount of void
space of coarse powder would be equal to (1- f.) and the saturation point X* would be given
as follows [German, 1989]:

X*=fep/[fep:+ (I-f)fs pr] (5-8)
In this study, f. was0.525, f,was 0.513 and p.wasequalto p¢. So the density factors
cancelled. The saturation point X* calculated from Equation (5-8) was about 70% coarse
powder. As mentioned in Chapter Four, X was used for mass % of fine powder. In this

study system, the saturation point is X* = 30% fine powder.

5.2.1.2. Percolation of Microstructure (idealised or simplified concepts)
5.2.1.2.1. In the region 0% < X < Xy
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As calculated above, the saturation point was X* = 30%. At this point, the fine particles
were all in the interstices of the coarse particle network [German, 1989]. When the mass
fraction of fine powder (X) increased above 30%, the coarse particle network would be
dilated by adding more fine particles into the coarse powders. In the region 0% < X <30%,
finite clusters of the fine particles were dispersed in the infinite network of the coarse
particles. So, the threshold X was the same point as the saturation point (X = X* = 30%).
Because the fine particles which were in the voids of the coarse powders would not
influence the network of the coarse particles, the coarse-coarse contact numbers would
remain the same as the coordination number of the pure coarse powder. The above
consideration of the microstructure was an idealised concept -- assuming that all the fine
powders were in the interstices of the coarse powder network. It is unrealistic from an

entropy point of view.

5.2.1.2.2. Intheregion X, < X <X,

In the region Xy < X <X., infinite networks of both coarse and fine particles would coexist.
At the point X =30%, the relative mass (the mass of the fine particles (M ) / the mass of the
coarse particles (M.)) of the fine powder was 0.4286 and the fine particles were all in the
interstices of the coarse particle network. When the relative mass of the fine powder is more
than 0.4286, the coarse particle network would be dilated and the coarse-coarse contact
numbers could not remain the same as the coordination number of the pure coarse powder.
Because the infinite coarse network still existed in region of X < X <X ., some of the fine
powders which filled in the space between the coarse powders would not influence the

coarse-coarse contact number. But the rest of the fine powders would dilate the coarse
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powder network and influence the coarse-coarse contact number.

5.2.1.2.3. Intheregion 0% <X <X

At the point X= X., the infinite network of the coarse particles would just disappear if the
value of X increased and only the pure infinite network of the fine particles would remain in
the powder distribution. In the region 0% < X < X, finite clusters of coarse particles would

be dispersed in an infinite network of fine particles.

5.2.1.3. Calculation
For calculation purposes, the total mass of the powders was assumed as 1 g. This could be
thought of as a calculation cell. The calculation of the coarse-coarse contact number (Ne)

was based on considerations of packing microstructure.

5.2.1.3.1. In the region 0% < X < 30%

With the addition of fine powders into the coarse powders, the total mass of the powder in
the calculation cell was constant at 1g but the mass of the coarse powder changed from 1g
to 0.7g. Because the fine powders were all in the voids of the coarse powders and did not
influence the coarse particle network, the coarse-coarse contact number remained constant
at 6, the average coordination number of the pure coarse powder.

5.2.1.3.2. In the region 30% <X <45%

In this region, the fine particles were divided into two parts: the fine particles which did not
influence the coarse-coarse contact (part 1) and the fine particles which influenced the

coarse-coarse contact (part 2). The stable stage for any system is when the total potential
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energy of the system reached the lowest point. In the powder distributions, if the infinite
coarse network existed, the fine particles tend to fill all the voids of coarse powders without
dilating the coarse network in order to lower the total potential energy of the system relative
to gravitation forces. The relative mass of the fine powders in part 1 (the mass of the fine
particle in part 1 (Mg,) / the mass of the coarse particle (M.)) was 0.4286 and all of the
interstitial voids were filled with fine particles at X=30%. Assuming that the void volume
(which could be filled without affecting the coarse network) per unit mass of the coarse
powder was constant, the relative mass of the fine powders in part 1 (Mg1/M.) remained the
same as 0.4286 because the infinite coarse network still existed in the region of X¢ < X < X..
The fine powder mass in part 1 (M) and in part 2 (M ¢;) could be calculated from the
following mass relationship:

My, = M. (30/ 70) (5-9)

Mz = I - M. - Mg (5-10)
The S,” and N (coarse-coarse contact number) could be calculated by Equations (5-2), (5-

7), (5-9) and (5-10).

The calculated N, was about 2 at the point X =45%. If the coarse-coarse contact number
was below 2, the infinite coarse powder network could not exist [Bouvard and Lange,

1991]. So, the value of X¢ was chosen as 45%.

5.2.1.3.3. In the region 45% <X <100%
There was no infinite coarse powder network in this region. The calculation of the

coordination numbers was based on Suzuki and Oshima’s model.
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The results of the coarse-coarse contact numbers (N.) were shown in Figure 5-7b. The
average coordination numbers N were also calculated and shown in Figure 5-10b. Compared
with Suzuki and Oshima’s model (Figure 5-10a), the values of N were very similar. The
values of N... were obviously different because of the microstructure factor from the fine
particles which were in the voids of the coarse particles. The fact that those fine particles did
not influence the packing and the coarse-coarse contact numbers was considered in the

saturated model.

But the saturated model presented a problem since at the point X =30%, the experimental
results and calculated values for tap density were different. If all the fine particles were in
the interstices of coarse particles without influencing the coarse network, the relative tap
density of the powder distribution would be 0.753 according to the saturated model. The
experimental relative tap density however was 0.644. In Figure 5-12, the volume of powder
distributions obtained from the experimental test and the volume of powder distributions
calculated from saturated model are shown. The lower value in the experimental relative tap
density indicated that the coarse powder network was dilated. The coarse-coarse contact
numbers in the region of 0% < X < 30% must be decreasing instead of remaining constant
with the addition of the fine powders. As suggested by entropy considerations, the saturated
model needed to be modified since there were differences between the experimental results

and calculated values.

5.2.2. Modified Saturated Model — The Perturbation of the Ideal Saturation Concept

5.2.2.1. The perturbation of the saturated microstructure
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The difference in relative tap density (or volume of the powder distributions) between the
experimental results and the saturated model was caused by the perturbation (dilation) of the
coarse network. There are several reasons, such as friction, geometric limitation, irregular
shape of powders, which cause the perturbation of the coarse network. In the saturated
structure, 0.4286 relative mass of fine particle (mass of the fine particles/mass of the coarse
particles) could be added to coarse powders without dilating the coarse network. In the
non-ideal structure, the fine powders dilated the coarse powder network and influenced the
coarse-coarse contact number even though the relative mass of the fine powder was less than
0.4286. The coarse-coarse contact number would then decrease with the addition of fine
powders in this region. In the region 30% < X < 45%, the infinite coarse network still
existed. With the addition of fine powders, the coarse network was continuously dilated or
perturbed. The differences between these two regions were as follows. In the region 0 <X
< 30%, there was only an infinite coarse particle network and most of the fine particle did
not dilate the coarse particle network and did not influence the coarse-coarse contact
number. In the region of 30% < X <45%, there was both an infinite coarse particle and an
infinite fine particle network in the powder distribution and the per cent of fine particles
which belonged to part 2 (fine particle in part 2 (Mg ) / total fine particle mass(M¢ )) was

increasing with the addition of fine particles.

5.2.2.2. Relationship Between the Coordination Number and the Fractional Density
In order to calculate the mass per cent of fine particles which influence the coarse-coarse
contact, the relationship between the coordination number and the fractional density must

be hold.
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5.2.2.2.1. Monosize Spherical Powders

There were several models which linked the coordination number and the fractional density
in random packed monosize powders [German, 1989; Mason, 1968; Iwata and Homma,
1974; Wisdom, 1966; Visscher and Bolsterli, 1972; Jemot, et al., 1981]. These models do
not agree exactly with each other, although they show similar trends [German, 1989].
Substituting the experimental results of relative tap density of the pure coarse (0.525) and
the coordination number of the pure coarse (6) into the different models, these data fitted
Smith’s model very well. According to Smith ez al., the coordination number increased with
the fractionél density according to ([German, 1989; Aim and Goff , 1968; Smith ez al.,
1929]):

N =26.5-10.7'F (5-11)
where N was the average coordination number and F was the fractional density. In using this
kind of model, the coarse powder was considered as if it existed by itself in a range of
different densities. For high densities, this is like compaction and for low densities, it is like

powders in a fluidised bed.

5.2.2.2.2. Bimodal Powder Distributions
Bimodal powder distributions could be considered as an assembly of the coarse and the fine
micro regions which were homogeneously mixed [Nikolenko and Kovalchenko, 1985]. If
Equation (5-11) was extended, then the tap density of the coarse particle micro regions could
be calculated from the following equation:

N.e =26.5-10.7/F, (5-12)

where F. was the fractional density of the coarse powder and N .. was the average coarse-
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coarse contact number (100% coarse powders, N... = N).

As mentioned above, for system of particles with a continuous distribution, typically, the
mean coordination number for the distribution is near six [German, 1989]. Substituting the
fractional density of the pure coarse powder 0.52 (experimental data) into Equation (5-11),
the same coordination number of 6 was achieved. So, there was some justification for using
Equation (5-11) and the extended Equation (5-12) to calculate the coordination numbers in

random packed powder distributions in which fractional densities were around 0.52.

Mt at low values of X can be determined as follows. At the point X=10%, the fractional
density of coarse powder was 0.515. Because this value is close to the tap density of pure
coarse powders, Equation (5-12) could be used to calculate the coarse-coarse contact at this
point. N.. was calculated to be 5.72. The S,’ ( the surface area fraction for the fine particle
which influenced the coarse-coarse contact) could be calculated from : 5.72 = (1-S,’)*6 .
Rearranging Equation (5-3), the particle number fraction of the fine particle (S,’) which
influenced the coarse-coarse contact could be calculated by Equation (5-13):
Sy’ =[Sa'(De/Dy) ] / [Sa'(De/ Dy) * +1-S, "] (5-13)

The amount of the fine powder (Mg, ) which dilated the coarse powder network and
influenced the coarse-coarse contact could be calculated at 10% fine + 90% coarse powder
distribution from Equation (5-14):

Sp" =Mz /D) /[ (M. /D: ) + (M2 /D)) (5-14)
So, at 90% coarse + 10% fine powder distribution, the Mg, was 0.00814 g and Mg, was

(0.1-0.00814)g.
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5.2.2.3. Calculation of Coordination Number

5.2.2.3.1. In the region 0% <X <30%

By the definition of Mg, the extent of the perturbation of the coarse network was related to
the value of Mg,. It was reasonable to assume that the difference between the calculated
volume of powder distributions from the saturated model and the volume of powder
distributions from experimental test (V) would be proportional to Mg, . As calculated above,
the Mg, was 0.00814 g and the V was 0.004433 cm® at 90% coarse + 10% fine powder
distribution. According to the data of V from Figure 5-12 and proportional relationship
between M¢; and V, Mg, were calculated and shown in Figure 5-13. Mg, and My are also
shown in Figure 5-13. Based on the value of M ¢; , the S ;" ,S.’, and N .. could be

calculated from Equations (5-7) , (5-13) and (5-14).

5.2.2.3.2. In the region 30% < X < 45%

According to the results shown in Figure 5-7b, the infinite coarse network disappeared
rapidly after the mass fraction of fine powders was more than 30%. The infinite coarse
powder network totally disappeared at X = 45% ( corresponding to N.. = 2). In the
saturated model, Mg, was calculated from Equations (5-9) and (5-10). It was reasonable
to assume that the difference between the calculated volume of powder distributions from
the saturated model and the volume of powder distributions from experimental test (V) was
proportional to Mg, which was defined as difference between the value of Mg in an ideal
saturated structure and the value of M ¢; in the non-ideal structure (in modified model). M
r2 in the modified model ,as well as M¢; and M, were calculated and shown in Figure 5-13.

Based on the modified value of Mg, , the S ;° ,S.°, and N .. could be calculated from
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Equations (5-7),(5-13) and (5-14).

5.2.2.3.3. Inthe region X >45%

In the region X >45% , there was no infinite coarse powder network and the coarse-coarse
contact number was very low ( <2). The calculation of Suzuki and Oshima’s model gave
an estimate of the contact numbers which were not too different from an extrapolation of the

calculation based on this perturbed models.

The calculated results are shown in the Figure 5-7¢ ( N.. ) and Figure 5-10c (N).

5.3. Discussion

From Figure 5-7d, it was observed that Suzuki and Oshima’s model underestimated the
coarse-coarse contact number Nc. . From the calculation based on the saturated model, the
coarse infinite network started to lose complete connectivity at around X = 35% and
disappeared at X=45%. It was assumed in the saturated model that all the fine powder are
in the voids of the coarse powder if there is enough void space. It is correct from the
gravitational force point of the view. The gravitational force drives the fine powder to the
voids of the coarse powders. The free energy of distribution get lower when the fine
powders fill in the voids. But from the kinetic point of the view, the fine powder moving
into the voids of the coarse powders need to overcome the energy barrier and also there are
geometric limitations. Since the ideal saturated microstructure was used in this model, the
coarse-coarse contact numbers were overestimated. The packing structure can not be

perfect so the saturated model was modified. According to the modified saturated model,
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the coarse infinite network would start to lose complete connectivity at around X = 30%.
The percolation point would be at X= 10% based on Suzuki and Oshima’s model. From
these test results (Figure 5-3), it is found that the percolation point is in fact around X=30%.

So, the results of the modified saturated model were more reasonable than Suzuki and

Oshima’s model in the case of high powder size ratio ( Do/D¢ > 3).

From the experimental results it can be concluded that the reality lies between the saturated
structure and the random structure - “a modified saturated structure” or “a modified random

structure”.

These modifications are important because they modify the percolation thresholds and this
in turn influences subsequent operations like compaction and sintering. It is helpful to think
of the balance between the randomising forces like the mixing that goes on in the ball mill
during the processing of the mixed powder and the small potential energy gain that occurs

when the volume is minimised in a gravitational field.
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Figure 5-1. Fractional density versus particle size ratio in bimodal powder distributions

(the experimental results of McGeary) [McGeary, 1961]
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Figure 5-11 (a). The scheme of pure coarse particle packing
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Figure 5-11 (b). The scheme of coarse particle packing with one fine particle

in the void (size ratio 1:10)

155



Figure 5-11 (c). The scheme of coarse particle packing with three fine particle

in the void (size ratio 1:10)
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CHAPTER 6.

Discussion: The Influence Of Network Structure On The Compaction

Of Bimodal Powder Distributions

6.1. Discussion

In Chapter Five, close random packing in bimodal powder distributions was discussed
and a new model was developed to calculate the coarse-coarse contact number. This
model is expected to be useful if the coarse - fine particle size ratio is in the range 3 to
10. The network structure of the coarse powders in the close random packed bimodal
powder distributions can be determined based on the calculation of coarse-coarse contact
number. If the coarse-coarse contact number is larger than 4 (mass % of coarse powder
> 70), an infinite three dimensional coarse powder network exists in the bimodal powder
distribution. Because of the strength of this network, it is believed that its formation has
a significant effect on the compaction. Since the powder densification processes all start

from particle packing, the influence of network structure on the compaction of close
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random packed bimodal powder distributions will be discussed based on the concepts in

Chapter Five and the experimental results described in Chapter Four.

One of the most important aspects of compaction is described by the equation giving the
relationship between green density and the applied external pressure. According to
Shapiro, the general compaction equation can be expressed by the following equation
[Shapiro, 1994]:

In(efeg) = A-B Py (6-1)
where P, is the applied external pressure, € is the fractional porosity at Pex , €9 is the
apparent fractional porosity at zero external pressure and equal to (1-fractional apparent
density), B is a proportionality constant that reflects the fundamental material
deformation behavior and A accounts for rearrangement during compaction [German,

1994; German, 1984].

As discussed in Chapter Four, two sizes (coarse and fine) of 17-4PH stainless steel
powder were chosen for the experimental test. Different mass fractions of the coarse and
the fine powder were weighed. After mixing in the ball mill, the sample fractional
apparent densities (1- &) were measured according to MPIF 04. Equal samples were
weighed out and compacted with a single acting die press machine using a pressure of
689.5 MPa (P..). After pressing, the sample green densities (1- €) were measured
according to MPIF 42.

Using Ag/gp to represent the compactibility, the present experiment produced the

compactibility - mass fraction curve shown as Figure 6-1 , where € was chosen as
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relative tap density (€ =1- relative tap density) and Ae was calculated from relative tap
density and relative green density [Chen, et al. , 1996]. Ae¢/ g and €/gp changed with
coarse-fine powder mass fraction when the applied external pressure and the
pressurization conditions were constant. This meant that (g/g) varied with the
distribution and hence the constants in Equation (6-1) also varied with powder
distribution. The effective pressure was defined as the average load per unit solid cross-
section area. The effective pressure on the powder distributions also varied with powder
distribution composition at constant applied external pressure because density varied with

powder distribution composition.

At the beginning of a compaction, the powder has a density approximately equal to the
apparent density. Voids exist between the particles, and with vibration, a higher density
can be achieved which is the tap density. After compaction, the green density is
achieved. The apparent density, tap density and green density for different powder
distributions in these tests are shown in Figure 6-2. It is noted that the peaks are not
sharp mainly for three reasons: the coarse to fine size ratio is not infinitely large, there
is a broad size distribution in bimodal powder distribution instead of two monosize
mixture and the powder’s shape is not spherical. The densification starts from apparent
density and the first 5 to 10 percent decrease in porosity (increase in density) can be
attributed to rearrangement [German, 1994]. The density change by rearrangement is
dependent on the powder characteristics. Based on these tests, density changes during
vibration (the difference between the apparent density and tap density) are shown in

Figure 6-3. The fractional density changes by rearrangement during vibration are
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11.5%+2.5 percent increase across the whole range of coarse-fine powder composition.
It is reasonable for us to assume that the density change by rearrangement during
compaction is closely related to the difference between the apparent and tap density.

When the relative tap density ( € = 1- relative tap density) is used in Equation (6-1)
instead of apparent density, it can be assumed that A in Equation (6-1) is approximately

constant in coarse-fine powder distributions.

Compaction involves both particle repacking (rearrangement) and deformation
mechanisms. Rearrangement have been discussed (A in Equation (6-1)) above.

Deformation mechanisms (B in Equation (6-1)) are more complicated. There are many
factors which influence the deformation of powders distributions. Two important factors
influencing the deformation of powder are the internal friction between the powders and
the friction between the powder and the die wall. The intrinsic characteristics of a
powder affect the pressure-density relations in a compact. They include material
properties such as hardness, work (strain) hardening rate, density of powder distributions,
surface area, surface state, chemical bonding between particles, cheplical composition
of powders, oxygen content and crystallographic microstructure of powders [Strijbos, ez
al. 1977; Bocchini, e al. 1991; German, 1994 and Oldenburg, 1996]. Equally important
are the extrinsic factors associated with powder size, powder shape, the type and amount
of lubrication, the mode of compaction, the velocity of the press, and the roughness of
the die [Dangerfield, et al. 1977; Gethin, et al. 1994 and German, 1994]. Some of the
factors were constants in these tests. They are chemical composition of the powders,
microstructure of the powders, the type and amount of lubrication, the mode of
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compaction, the velocity of the press, and the roughness of the die. Other factors

changed with changes in coarse-fine composition.

The fundamental material properties which influence the deformation of the powder
compact are directly related to the properties of pure coarse and pure fine powder. Itis
reasonable to assume that the influence of the fundamental material properties on the
deformation of the powders are proportional to coarse-fine powder composition:

S mate. = C*W+ D*Wy (6-2)
where f e is defined as a materials property factor which is the total effect of
fundamental material behavior on deformation, C and D are the constants which
represent the material properties of pure coarse powder and pure fine powder
respectively, W, is the mass per cent coarse powder and Wy is the mass per cent fine
powder. Basically, the smaller particles are more difficult to press because of larger
interparticle friction and particle-wall friction. In Figure 6-1, the compactibility of the
100% pure coarse powder is higher than the compactibility of the 100% fine powder. If
the materials property factor (f mae. ) were the only factor which affected the
compactibility of a distribution of coarse-fine powder, the compactibility curve would
follow the straight dotted line in Figure 6-1. According to these experimental data
(Figure 6-1), the compactibility of powder distributions are below the dotted line. Other

factors also affect the deformation of the powder distributions.

The density is thought to be an important factor affecting the fundamental compaction
behavior of powder distributions in this situation. Its effect on the solid cross-section
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area resisting external pressure determines the effective pressure on powder distributions.

When Equation (6-1) is applied to the relationship between density and pressure during
the compaction of mono-size or narrowly distributed powder, there is a one-to-one
relationship between applied pressure and effective pressure. So it is reasonable to use
applied external pressure instead of using effective pressure in the compaction of mono-
size or narrowly distributed powder. As mentioned above, the effective pressure varies
with composition of coarse-fine powder distribution since the solid cross-section area
(density) varies with the composition. In order to study the relationship between density
and pressure during the compaction of the powder distribution, effective pressure needs
to be used in Equation (6-1). For the same external pressure, the effective pressure
decreases as the fractional density of powder distribution increases because the solid
cross-section area, which supports the load, increases. According to the test results, the
tap densities increase to a maximum value around 30% fine + 70% coarse powders and
then decrease more slowly with the addition of further fine powders to the powder
distributions (Figure 6-2). With the increase of the fine powder composition from 0%,
the compactibility would decrease to the lowest value at 30% fine powders then increase
with the addition of the fine powders until 100% fine powders. The above argument does
not match the test results shown in Figure 6-1, over the range of 30% ~ 55% fine powder,
the compactibility continues to decrease. There are two major factors (the solid cross-
sectional area and the material factor) that together account for the general shape of the
compactibility curve. The compactibility decreases due to increase of the fine powder
and the compactibility increases due to decrease of the density when the per cent of fine
powder increase from 30% to 55%. Combined the material factor and the density factor
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effect, the compactibility decreases slightly over the range of 30% ~ 55% fine powder.

Considering the effect of density factor and material factor, the calculated compactibility
versus coarse-fine composition curve is shown in Figure 6-4 (Calculation procedure is
in the appendix). Now the trends are similar between the calculated and experimental
curves. The difference between the experimental curve and the calculated curve is that
the compactibility data in the calculated curve is lower than those in the experimental

curve. This can be explained by the network structure factor.

Because the coarse-fine powder size ratio is larger than 5:1, the packing network
structure is believed to be another factor which influences the compactibility or value of
€/€y by changing the effective solid cross-section area. As discussed in Chapter Five,
there are fine powders which are in the voids of coarse powder network. There are not
part of the fine particle network and are screened by the coarse powder network and
thereby prevented from supporting the pressure, at least initially. During compaction,
the density of the powder distributions (discussed under density factor) as well as the
amount of fine powder which is in the voids of the coarse powder network and does not
support the pressure is changing. The network structure’s influence on compaction is
limited to the coarse powder network because the fine powder network does not screen
coarse powder and does not influence the effective solid cross-section area. The
influence of network structure in powder distributions will be discussed and calculated
under network structure factor (f ¢, ). Because both density factor (f 4en.) and network
structure factor (f o, ) influence the solid cross-section area, the factor f gen *f squ. *Pext

indicates the effective pressure on powder distribution. The network structure factor
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would be 1 if there were no network structure influence. Considering the network
structure factor, the effective solid cross-section area is smaller than solid cross-section
area so the effective pressure and compactibility are higher. This is the reason that the
compactibility curve which is calculated without considering the network structure factor

(f swru = 1) is lower than the experimental curve.

In summary, the difference between the compaction of mono-sized or narrowly
distributed powder and the compaction of coarse-fine powder distributions is that the
effective solid cross-section area (which influences the effective pressure) and materials
properties vary with coarse-fine composition while these factors are constants in mono-
sized powder. So the different compaction behaviors of the powder distributions is
caused by different packing density, network structure and different material factors. The
density factor (f 4en ), network structure factor (f ¢, ) and material factors (f nae.) can be
evaluated by modifying Equation (6-1). The “constant™ B in Equation (6-1) is replaced
by f mate. f den. f st

In(e/80) = A - fmate [ denS soru. Pex: (6-3)

where f gen. s Pexe is the effective pressure on powder distribution.

In the Appendix 6-A, the factors f mate , f den. and f gnare calculated. Based on the

experimental data, the following equation is obtained (Appendix 6-A):
In(e/ey)=1.815045-fru [3.66031*W +3.211357*Wy]/ (1/F1ap +1/Fgreen) (6-4)

Equation (6-4) indicates the relationship between the compactibility in powder

distributions and f o, as the distribution is varied. Substituting all the known parameters
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W, Wi, Fap, Fgreens €, and € ¢ into Equation (6-4) at different composition points, the
structure factor f,, at different points were calculated and are shown in Figure 6-5. The
higher value of the fi,, means that the value of In(¢/ € o) is smaller so the bimodal powder
distribution is compressed more easily. In this case, more fine powders in the voids of
coarse powder network are screened by coarse powders and prevented from supporting
the pressure. Figure 6-5 suggests that there is indeed a fraction of the fine powder which
does not support the pressure in the region of 0%< X <30% (i.e. wt % of fine powder <
30%). At the point of 70% coarse + 30% fine powder, the value of the f;, decreases
sharply. This indicates that the network structure of powder distribution changes at this
point with the gradual disappearance of the coarse network. In the region from 30% to
45% of fine powder, the values of the fy,, are very low. But there still is a small amount
of fine powder which does not support the pressure because there is still the remnants of
the infinite coarse network which can screen some fine powders from supporting the
pressure. Around the point of 50% fine + 50% coarse powders, the value of the fun,
drops to 1. This represents the disappearance of the infinite coarse network. The above
results approximately agree with the percolation theory as developed in Chapter 5 and the
results of the coordination number calculation in which the microstructure of powder
distribution is divided into three regions in the same way: 0% < X < 30% (pure infinite
coarse powder network), 30% < X < 45% (coexistence of infinite fine and infinite coarse

powder network) and 45 % < X < 100% ( pure infinite fine powder network).

Based on percolation theory, the finite network starts to form when the contact number

is two and the complete connectivity of an infinite network occurs when the contact
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number is four. When the coarse -fine powder distribution composition is at the point
of 30% fine + 70% coarse, the coarse-coarse contact number is four (calculated in
Chapter five). According to Figure 6-5, at the same point of 30% fine + 70% coarse
powder, the value of the f,, decreases sharply. The network structure factor influences
the effective pressure obviously when the percent mass of coarse powder is larger than
70% (coarse-coarse contact number is larger than 4). When there is only one contact,
particle can move freely around the contact point without restriction. There is restriction
along a line if there are two contacts and there is restriction in a plane if there are three
contacts. A particle becomes restricted in three dimension only if there are four or more
contacts. From Figure 6-5, it is noted that there are clear divisions among the three
coarse-fine composition regions that are indicated by the different value levels of fyy,.

This result reflects the fact that the network structure in bimodal powder distributions
changes with changes of the coarse-fine composition. This indicates that when a particle
becomes restricted in three dimension it must deform on compaction. It can be found
from Figure 6-5 that the values of f,, remain very low for all the coarse-fine
compositions (< 1.05). It indicates that the materials properties and density factor are the
major influences in the compaction of powder distributions and the network structure
factor is used to modify the solid cross-section area in order to more accurately describe

the relationship between the green density and the applied external pressure.

Based on Artz’s model [Artz, 1982] and the contact number in bimodal powder
distribution (random packing) calculated using the modified saturated model (Chapter
Five), the contact numbers of powder distribution after compaction were calculated. The
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calculated results are shown in Figure 6-6 (Coarse-Coarse Contact Number versus Mass
% of Fine Powder), Figure 6-7 (Fine-Fine Contact Number versus Mass % of Fine
Powder), Figure 6-8 (Coarse-Fine Contact Number versus Mass % of Fine Powder),

Figure 6-9 (Fine-Coarse Contact Number versus Mass % of Fine Powder), and Figure 6-

10 (Average coordination Number versus Mass % of Fine Powder).

In order to compare the changes of network microstructure during compaction, the
coordination number N before compaction is also shown in Figure 6-6. Comparing the
change of coordination number N, during compaction, itis found that after compaction
the N increases but the threshold of change of network does not change very much.

The X¢ is around 30% fine powder and X is around 45% fine powder. The above results

could be used as a starting point for any future sintering discussion.

Even though the pore structure is the more important factor in powder sintering especially
in intermediate and final stage of sintering, the particle-particle contact number is
believed to determine the densification rate in the initial stage of sintering. In powder
distributions, there are three different powder contacts, coarse-coarse particle contact,
coarse-fine (fine-coarse ) particle contact and fine-fine particle contact. The contribution
to the densification rate of the powder compact is different for each type of contact. The
reason for this is that the geometry configurations of different type of contacts are
different. According to these experimental results (Figure 4-14 in Chapter Four), specific
volume change of bimodal distributions stays approximately constant when the fine
powder mass fraction changes from 0% to 30%. On the other hand, at mass fractions rich
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in fine particles, the specific volume change decreases as coarse particles are added. The
shrinkage during sintering increases with an increasing amount of fine powder. The
possible influence of the coarse powder network structure on sintering is a topic left for

future work.
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6.3. Appendix
The general compaction equation can be expressed by the following equation [Shapiro,
1994]:
In(efep) = A-B Py [A-1]
The difference between the compaction of mono-sized or narrowly distributed powder
and the compaction of coarse-fine powder distributions is that the effective solid cross-
section area (which influences the effective pressure) and materials properties vary with
coarse-fine composition while these factors are constants in mono-sized powder.
Because of this and based on the discussion in this chapter, Equation [A-1] is modified
to:
In (e/ey) = A - fmate. [ den.f soru. Pext [A-2]
The fundamental material properties which influence the deformation of the powder
compact are directly related to properties of pure coarse and pure fine powder :
[ maie. = C*W+ D*Wy [A-3]
The density factor reflects the solid cross-section resisting external pressure and is
inversely proportional to the solid cross-section since the higher the solid cross-section,
the lower the effective pressure:
fden, o< 1/ Aeg [A-4]
Where A is the solid cross-section area (without the network structure effect which

will be explained later) for supporting the pressure.

In definition [A-4], A.s is proportional to the relative density F . so the equation can be

rewritten as:
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fden =E/ Frey [A-5]
where E is a constant. Since the F,y is changing during compaction, it is chosen as the
average value:

Sden. = 1/2%(E/ Frap +E/Fgreen) [A-6]
where F, is the tap density (relative density) and Fgeen is the green density (relative

density).

Combining Equations [A-2]; [A-3] and [A-6], Equation [A-7] is obtained -
In(e/eg)=A- f sru (G*W+ H*Wy)/ (1/Frap +1/Fgreen) [A-7]

where A , G (= 0.5ECP..) and J (=0.SEDP.,. ) are constants.

In Equation [A-7], the network structure factor can be discussed in terms of percolation
theory. Based on percolation theory, there are three possible different network structures
in coarse-fine powder distributions (pure coarse powder infinite network, coexistence of
coarse and fine powder infinite networks, pure fine powder infinite network) depending
on the composition of the distributions. The network structure and compaction behavior
change around the percolation thresholds. The value of the network structure factor is
related to the composition of the distributions and changes obviously around the
percolation points. In the compaction of coarse-fine powder distributions, the major
concern is a coarse powder network because the coarse powder network can screen fine
powders from supporting the load, but the fine powder network can not screen coarse

powders.
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At the point 25% coarse + 75% fine powder distribution, the numbers of coarse-coarse
contact both in close random packed and compacted conditions are lower than 1, so there
is not an infinite coarse particle network in the powder distributions according to
Chapter Five. SEM examination of a compacted 25% coarse + 75% fine powder
distribution sample also shows that the individual coarse particles are randomly
distributed in an infinite fine particle network. Even though there is infinite fine powder
network, the fine powder is not screened by coarse powders and prevented from
supporting the pressure. So, the structure factor (fyrn) is 1 at point of 25% coarse + 75%
fine powder distribution , as well as at 100% coarse powder and 100% fine powder. That
the structure factor is equal to 1 means that all the solid cross-section support the pressure
and there is a not screen effect. The experimental test data Fup, Fgreen ( €= 1- Fgreen and

€ 0= 1- F gp) at the above three points and f ¢, = | are substituted into Equation [A-7]:

-0.92676 = A - 0.749064G [A-8]
-0.61722 = A - 0.731817(0.25G+0.75H) [A-9]
-0.70799 = A - 0.785656H [A-10]

The above equation set is solved and the results of the coefficients are listed below:
A =1.815045, G =3.66031, H=3.211357
So, Equation [A-7] can be written as:
In(e/eg)=1.815045f;,. [3.66031 *W +3.211357*Wp]/ (1/Fiap +1/Fgreen)
[A-11]

Equation [A-11] describes the relationship between the compactibility and the coarse-fine
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composition in these bimodal powder distribution compaction tests.
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CHAPTER 7.

Summary And Conclusions

7.1. Experimental Results
Very high sintered densities (97.7% relative density) and excellent mechanical properties
(comparable to wrought products) were achieved by using the conventional P/M processes
of single compaction and single sintering. The powders were the bimddal distributions of
two size ranges of precipitation hardening stainless steel powders. Both coarse and fine
powders had log-normal size distributions. The medians of the two sizes were in the ratio
of about 5:1. A 2% increase of final density was achieved by adding only 25% fine powders
and the final density of the bimodal powders reached the same value as 100% fine powders.
This offers an effective way to get high performance P/M products. Using bimodal
powders has practical significance in reducing cost and achieving better dimensional control
(lower shrinkage) with a high final density.

As first shown by Furnas [Furnas, 1931], bimodal powder distributions improve the
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packing density because the fine powder will fill in the voids between the coarse powders.

The technique has been applied to ceramics and refractoriness. However, it is not often
used in traditional metal powder compaction and sintering. From these experimental tests,
it was found that by using bimodal powder distﬁ”butions, the final density could be improved
in cases of high sintering temperatures and long sintering times if the ratio of the medians

of the two sizes is larger than 5:1 and the fine powder accounts for about 25% of the total

weight.

7.2. Theoretical Models

7.2.1. Packing Models

The factor which has proven to be very significant to the behaviour of the packing of two
components is the question of whether the components are interconnected with one another
or not. If the particles are interconnected, they form a network. When a network is formed
then the component is said to percolate the structure [Stauffer, 1985]. Previous bimodal
particle models treated coarse and fine particle in the distribution packing as the same and
did not consider networks of large particles. The percolation concept was used in order to
get a better understanding of the packing of bimodal particle packing. According to the
saturated model of German [German, 1989], when coarse powders form an infinite coarse
powder network, the pores between the coarse powders can be filled with fine particles to
the extent of the tap density of the fine powder before the coarse powder is affected. The
fine powders which are in the voids of the coarse powder do not influence the packing of
the coarse powders. This concept was used to modify existing bimodal powder packing
models.
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A new model (modified saturated model) for coordination number in bimodal packing was
developed and presented based on the percolation points. It is concluded that the structures
that arise in the bimodal distributions lie somewhere between the random structure proposed
by Suzuki and Oshima [Suzuki and Oshima, 1985] and the ideal saturated structure
proposed by German [German, 1989]. Examining the Suzuki and Oshima model which is
a random model and comparing it to the experimental observations, it was found that Suzuki
and Oshima’s model underestimated the coarse-coarse contact number N... From the
calculation based on the ideal saturated model, the coarse infinite network started to lose
complete connectivity at around X = 35% and disappeared at X= 45%. It was assumed in
the ideal saturated model that all the fine powder were in the voids of the coarse powder if
there is enough void space. This would violate entropy considerations. Since the ideal
saturated microstructure was used in this model, the coarse-coarse contact numbers were
overestimated. The packing structure can not be perfect so the saturated model was
modified. According to the modified saturated model, the coarse infinite network started
to lose complete connectivity at around X = 30% and disappeared at X=45%. The resuits
of the modified saturated model were more reasonable than Suzuki and Oshima’s model in
the case of high powder size ratio ( D/D¢> 3) and gave better agreement with experimental
observations and predicted the percolation thresholds. From the experimental results it can
be concluded that reality lies between the ideal saturated structure and the random structure

- “a modified saturated structure” or “a modified random structure”.

The proposed model is useful if the coarse - fine particle size ratio is in the range 3 to 10.
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The microstructure (network) of the close random packed bimodal powder distributions
could be determined based on the calculation of coarse-coarse contact number. If the
coarse-coarse contact number is larger than 4, an infinite rigid coarse powder network exists
in the bimodal powder distribution. Since the powder densification processes all start from
particle packing, the influence of microstructure on the compaction and sintering of close
random packed bimodal powder distributions can be discussed based on this model. The
random packing and the important role of the fine particles, which fill in the voids of the
infinite coarse particle network, are emphasized. It describes the real packing situation in
powder metallurgy processing. Using coordination number and percolation it has been
shown that a bridge can be established between packing density, microstructure and leading

eventually to processing behaviour and macroscopic properties.

7.2.2. Compaction Models

One of the most important aspects of compaction is described by the equation giving the
relationship between the compactibility and the applied external pressure. According to
Shapiro, there is a linear relationship between the compactibility and external pressure in
monosized or narrowly distributed powder compaction [Shapiro, 1994]. In the compaction
of powder distributions, the constants in Shapiro’s model change over the range of
distributions, which suggests fundamental changes in compaction behaviour. The
modifications are proposed based on percolation concepts to explain this behavior. The
difference between the compaction of mono-sized or narrowly distributed powder and the
compaction of coarse-fine powder distributions is that the effective solid cross-section area
(which influences the effective pressure) and materials properties vary with coarse-fine
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composition while these factors are constants in certain mono-sized powders. Combining
the material factor and the density factor, the general shape of the calculated compactibility

versus coarse-fine composition curve is similar to the experimental curve.

In order to improve the model, the fundamental factors which influence the packing

behaviour in powder distributions and some ideas about networks which are embodied in
the percolation concept were considered. Because the coarse-fine powder size ratio is

larger than 5:1, the packing network structure would be another factor which influences the
compactibility by changing the “effective” solid cross-section area. There are fine powders
which are in the voids of coarse powder network. There are not part of the fine particle
network and are screened by the coarse powder network; thereby they are prevented from
supporting the pressure, at least initially. During compaction, the density of the powder
distributions (discussed under density factor) as well as the amount of fine powder which
is in the voids of the coarse powder network and does not support the pressure is changing.
The network structure’s influence on compaction is limited to the coarse powder network
because the fine powder network does not screen coarse powder and does not influence the
effective solid cross-section area. The influence of network structure in powder
distributions is accounted for with the network structure factor (f, ). Because both density
factor (f 4en.) and network structure factor (f ) influence the solid cross-section area, the
product f gen. *firy * P e describes the effective pressure on powder distributions. The
network structure factor has been used to modify the solid cross-section area to more
accurately depict the relationship between the compactibility and the applied external

pressure.
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According to this modified compaction model, the network factors were evaluated and it
was found that there are clear divisions among the three coarse-fine composition regions
that are indicated by different values of f,,. This result reflects the fact that the
microstructure in bimodal powder distributions changes with changes of the coarse-fine
composition. It supports the idea that there is a fraction of the fine powder which does not
support the pressure in the region of 0%< X < 30% (i.e. wt % of fine powder < 30%). At
the point of 70% coarse + 30% fine powder, the value of the f;r, decreases sharply. This
indicates that the network structure of powder distribution changes at this point with the
gradual disappearance of the coarse network. In the region of wt % of fine powder from
30% to 45%, the values of the fin, are very low since there is an infinite fine powder
network which supports the pressure. But there still is 2 small amount of fine powder which
does not support the pressure because there is still an infinite coarse network which can
screen some fine powders from supporting the pressure. Around the point of 50% fine +
50% coarse powders, the value of the f;, dropsto 1. This represents the disappearance of
the infinite coarse network. The above results agree with the percolation theory and the
results of the coordination calculation in which the microstructure of powder distribution
is divided into three regions in the same way: 0% < X < 30% (pure infinite coarse powder
network), 30% < X < 45% (coexistence of infinite fine and infinite coarse powder network)

and 45 % < X < 100% ( pure infinite fine powder network).

7.2.3. Sintering Models
It is the surface curvature that provides the driving force for sintering. Grain boundary
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diffusion, surface diffusion and lattice diffusion from the grain boundary are the
mechanisms that usually contribute to sintering - with the lattice diffusion dominating at the
highest temperatures and largest neck sizes. The sintering of powder size distributions is
more complicated since the geometry of the distribution is more complicated than that of
the monosized or narrowly distributed powders. To be able to properly account for the
geometry, the surface curvature factor in the sintering model needed to be in a more
accurate form. In the present experimental test situation -- high deformation before sintering
( high pressure and metal powders), high sintering temperature and near-full density, lattice

diffusion is the major focus.

A new method has been presented to determine the lattice diffusion contribution in
sintering. The two-sphere model for monosized powder to determine the lattice diffusion
contribution in sintering is considered. Based on Eadie and Weatherly’s model [Eadie and
Weatherly, 1975], two new solutions have been developed and presented, an upper limit
solution with surface curvature at a maximum all along the neck arid a more accurate
solution in which the form of the surface curvature at the neck can be varied as appropriate.
This analysis differs from previous ones in that the surface curvature is treated in a more
quantitative way. The model also establishes with more rigour the approximations used
previously for the construction of sintering diagrams. When interaction between the lattice
diffusion and grain boundary diffusion is considered, the solution is called the coupled
solution. The coupled solution is more accurate than the uncoupled solution but it can not
tell the relative contribution of the lattice diffusion and grain boundary diffusion. It is clear
that in the region where lattice diffusion is most significant i.e. x/a > 0.3 and homologous
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T > 0.8 the uncoupled solution is quite close to the coupled solution (within 10%). This
suggests that the new equations can be confidently used in the construction of sintering

maps.

7.3. Future Work

The packing and the compaction of bimodal powder distributions were studied in some
detail in this work. Some experimental tests on bimodal powder distribution sintering have
been done. The future work should be focused on theoretical studies of bimodal powder
distribution sintering. The newly developed two-sphere monosized powder sintering model
which treats the curvature in a more accurate way needs to be extended to powder
distributions. In order to study the sintering of the powder distribution, more experimental
tests need to be conducted. Among the necessary tests, shrinkage rate during the sintering
is one of the most important. More attention needs to be focused on the fine-fine network
in bimodal powder distribution packing in future work. The coarse-coarse network in the
packing and the compaction of bimodal powder distribution were studied because of the
important screening influence of the coarse-coarse network on the compaction of powder
distributions. In sintering of powder distributions, the influence of the fine-fine powder
network should be more important since the surface curvatures are higher. The coarse

network likely is also important because of its strength to resist sintering forces.
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