
University of Alberta

How to integrate object-oriented methodology with QFD-style matrices

By

Yunbo Zhou

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta

Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95890-6
Our file Notre reference
ISBN: 0-612-95890-6

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1.0 Introduction ...1

2.0 UML AND RUP... 2

2.1UML(Unified Modeling Language)..2

2.1.1 Modeling elements and to o ls ...3

2.1.2 Analysis, Design and Implementation..5

2.2 RUP (Rational Unified Process)... 6

3.0 Some useful techniques and methods...10

3.1 QFD (Quality Deployment Function)...10

3.1.1 Voice of the Customer...13

3.1.2 Determining the Product Features... 15

3.1.3 The House of Quality..17

3.1.4 QFD Phases.. 18

3.1.5 QFD Process...20

4.0 Why apply QFD to software...23

4.1 Software QFD... 23

4.2 Benefits of QFD.. 25

4.3 Applying QFD in an UML framework.. 25

5.0 New structure m ethod... 31

6.0 The limitation of UML and R U P ... 33

6.1 The limitation of U M L .. 33

6.1. 1UML can’t really communicate with customers.. 33

6.1.2 UML can’t effectively direct designers to program...................................... 33

6.1.3 UML can’t describe the software system completely.................................... 33

6.2 The limitation of R U P ... 34

6.3 Solution.. 34

7 .0 New Process and language...36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1New process..36

7.1.1 The Business Modeling W orkflow..36

7.1.1.1 Context m odel... 37

7.1.2 Requirement workflow... 39

8.0 Extended example.. 53

8.1 QFD-style matrix.. 54

8.2 Requirement workflow.. 61

8.2.1 Cost benefit analysis...61

8.2.2 UORE (usage oriented requirement engineering).. 79

8.3 Business modeling workflow..109

8.3.1 Context m odel...109

8.3.2 High-level requirement model (use case model)...109

8.3.3 Domain model (class diagram)..112

8.3.4 Business process model (activity diagram).. 114

9.0 Conclusion... 117

BIBLIOGRAPHY...118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 4.1 Users X Actor R o le ...26

Table 4.2 Actor Role X Use C ase .. 26

Table 4.3 User Demanded Quality X Use Case..27

Table 4.4 Use Cases X Objects...27

Table 4.5 Use Case X Data Attributes...28

Table 4.6 Objects X Data Attributes..28

Table 4.7 Objects X Objects... 28

Table 4.8 Object x Classes.. 29

Table 4.9 Use Cases X IEEE Quality Factors...30

Table 7.1 Failure Mode Analyses.. 46

Table 7.2 Object Definitions... 50

Table 7.3 Objects with Attributes..50

Table 7.4 Activity Diagram... 51

Table 8.1 User X Actor R oles... 55

Table 8.2 Actor Role X Use C ase .. 56

Table 8.3 User Demanded Quality X Use Case.. 57

Table 8.4 Use Cases X Data Attributes..58

Table 8.5 Classes X Data Attributes.. 58

Table 8.6 Classes X Classes.. 59

Table 8.7 Classes x Superclasses...59

Table 8.8 Use Cases X IEEE Quality Factors...60

Table 8.9 Contextual inquiry... 62

Table 8.10 System Cost M atrix... 69

Table 8.11 personnel costs..71

Table 8.12 Indirect Costs.. 72

Table 8.13 Depreciation..73

Table 8.14 Activity Cost Matrix.. 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8.15 total cost of features..74

Table 8.16 Quantify Benefits.. 75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 2.1 RUP M odule.. 07

Figure 3.1 QFD within T Q M ...11

Figure 3.2: The Competitive Advantage..12

Figure 3.3 the Four Phases o f Q F D ... 18

Figure 4.1 House of Quality.. 24

Figure 5.1 Need-opportunity M atrix.. 32

Figure 7.1 Context Diagram.. 37

Figure 7.2 Visions and Scope Statement for ‘Order from Catalog’38

Figure 7.3 Use Case D iagram ...39

Figure 7.4 Cost Benefit C hart...41

Figure 7.5 Use Case Diagram: order from catalog.. 43

Figure 7.6 Use Case Description of ‘Register Buyer’..45

Figure 7.7 Activity diagram of Register Buyer...45

Figure 8.1 Affinity diagramming... 76

Figure 8.2 Cost Benefit C hart...78

Figure 8.3: Use case description.. 81

Figure 8.4: Use case description...82

Figure 8.5: Use Case: Control elevator Specification..85

Figure 8.6: Use Case: Request elevator Specification...85

Figure 8.7: Use case: call for help specification..86

Figure 8.8: Use Case: Fix Elevator specification... 87

Figure 8.9: Use Case: Activate Elevator specification...88

Figure 8.10: Use Case: Clean Elevator specification..89

Figure 8.11: Use Case: Open/Close door specification.. 90

Figure 8.12: Use Case: Go up/down specification.. 91

Figure 8.13: Use Case: Stop elevator specification... 92

Figure 8.14: Abstract Usage Scenario: Control elevator... 94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8.15: Abstract Usage Scenario: Request elevator.. 94

Figure 8.16: Abstract Usage Scenario: Call for h e lp ...94

Figure 8.17: Abstract Usage Scenario: Fix elevator..95

Figure 8.18: Abstract Usage Scenario: Activate elevator... 95

Figure 8.19: Abstract Usage Scenario: Clean elevator..96

Figure 8.20: Abstract Usage Scenario: Open/Close door... 97

Figure 8.21: Abstract Usage Scenario: Go up/down..98

Figure 8.22: Abstract Usage Scenario: Stop elevator..98

Figure 8.23: The usage view for “passenger” ..100

Figure 8.24: The usage view for “Operator” ..101

Figure 8.25: The usage view for “Technician” ..102

Figure 8.26: The usage view for “Cleaner”.. 103

Figure 8.27: The usage view for “Motor” .. 104

Figure 8.28: The usage view for “Door” .. 105

Figure 8.29 New use case diagram..106

Figure 8.30 New Class diagram..108

Figure 8.31 Context Diagram.. 109

Figure 8.32: New User Case Diagram of Elevator System... 110

Figure 8.33: New Class Diagram of Elevator System ... 113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.0 Introduction
Software engineering theory and practice are essential for understanding the
construction of good software and for evaluating the risk and opportunities that
software present in our everyday lives. In fact, most organizations might have
difficulties in implementing many software projects. They always face problems in
the development of software for example, over-budget, overdue, and low quality. All
the problems affect the development of the software project without doubt.

RUP, as a software design process, has been used in a wide variety of projects and
organizations. It unifies the entire software development team and optimizes the
productivity of team members by bringing them the experience of industry leaders
and the lessons learned from thousands of projects. It provides detailed and practical
guidance through all phases of the software development life cycle.

Therefore, this method can be used to produce a predictable schedule, budget, and
high-quality software by adopting the industry-standard Unified Modeling Language
(UML) and other industry best practices.

The UML is the standard language for specifying, visualizing, constructing, and
documenting all the artifacts of a software system. UML can be used with all
processes throughout the development life cycle and across different implementation
technologies to deal with its static structures and dynamic behaviors.

However, these two methods mentioned above still have some limitations when
applied in software development domain even though they have been the general-
purpose standard techniques. So, in this thesis, we try to employ QFD (Quality
Function Deployment) and other effective methods to enhance RUP and UML so that
we can implement high quality software and avoid failures of software project.

In this thesis, we mainly apply our new techniques in the initial phase of software
development, i.e., customer requirement analysis.

The rest of this thesis is organized as follows: Section 2 introduces Unified Modeling
Language (UML) and Rational Unified Process (RUP). Section 3 explains the
techniques and methods that will be adopted in the thesis. Section 4 illustrates the
reasons to apply QFD in software and its benefit. Section 5 describes the new
structure method. Section 6 points out the limitations of UML and RUP, and
illustrates how to solve the problems in UML and RUP. Section 7 implements a new
process and description. Section 8 uses these two methods mentioned above in a case
study (an elevator system) to illustrate the approach. Section 9 concludes the thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.0 UML AND RUP
Some customers may complain that their software does not meet their requirements,
even though software designers have tried their best and spent much time in
completing the project. On the other hand, the designers may think that they have
understood the requirements of the customers, and the problem is that the customers
didn’t express their needs very clearly and they always change their mind. To sum up,
all the problems are derived from different standpoints between the designers and
customers.

So what on earth is the problem? It is because most of the design is not customer
oriented but program oriented so that it causes the gulf between the customers and
designers. However, there is one language that can solve this problem, i.e., UML
(Unified Modeling Language).

2.1UML(Unified Modeling Language)
The Unified Modeling Language (UML) is a standard language for writing software
blueprints. Three prominent object-oriented programming professionals, Gray
Booch, Ivar Jacobsen, and James Rumbaugh are the principal authors of UML.

Back in the late 80s, there were many different methodologies. And each
methodology had its own notations. The problem was that if different people were
using different notations, somewhere along the line somebody had to do a translation.
A lot of times, one symbol meant one thing in one notation, and something totally
different in another notation. (Terry 1999)

In 1991, everybody started coming out with books. Grady Booch came out with his
first edition. Ivar Jacobson came out with his, and Jim Rumbaugh came out with his
OMT methodology. Each book had its strengths as well as its weaknesses. OMT was
really strong in analysis, but weaker in design. The Booch methodology was stronger
in design and weaker in analysis. And Ivar Jacobson's Objectory was really good with
user experience, which neither Booch nor OMT really took into consideration back
then.

Then, in 1993, a funny thing happened. Grady came out with the second edition of his
first book; it still had the good design, but some of the good analysis stuff from OMT
had started creeping into his methodology. And actors and use cases from Ivar were in
there as well. And Jim was writing a series of articles for the Journal of Object
Oriented Programming that people referred to as OMT 2, which still had the good
analysis work, plus some of Grady's good designs, and all of a sudden actors and use
cases were added into OMT 2. That was the beginning of the informal unification of
methodology. And it came as something of a relief, because it really had been a
method war.

In 1995, Rumbaugh and then Jacobsen joined booch at Rational, and started
developing an enhanced integrated version of their earlier work. It started being called
the “Unified Method”. It was submitted to the OMG. Within the OMG, a working
party was formed to define a standard OOA&D modeling approach. The scope was

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

restricted to a set of models and modeling tools (including their semantics and
syntax). The first drafts were produced in 1996 and a submission on model semantics
& syntax put to the OMG in September 1997(Graham 1991).

UML (Unified Modeling Language) is a modeling language using text and graphical
notations for documenting specification, analysis, design and implementation of an
OOSD (Object-Oriented System Development) Process. One early indication that
UML is well suited for this task is that many of the concepts in UML previously
existed in object-oriented programming. One part of object-oriented programming is
object-oriented analysis. Object-oriented analysis is a method of analysis that
examines requirements from the perspective of the classes and objects found in the
vocabulary o f the problem domain (Rumbaugh 1999). An object is something you
can do things to (Rumbaugh 1999). A class is a set of objects that share a common
structure and a common behavior (Rumbaugh 1999). The significance of object-
oriented analysis is to build objects that directly represent things in the physical
world. Other techniques try to capture information and translate that information into
some kind of container that is well suited for constructing software but may not exist
outside of the software. Object-oriented analysis equates a real entity to a
corresponding software entity as closely as possible. UML can be used with all
processes throughout the development life cycle and across different implementation
technologies to deal with its static structures and dynamic behaviors. (Amatya 1999)
Success has far exceeded this goal because:

• Political:UML developed by a consortium led by three leaders in
OOA/OOD; wide acceptance among software professionals; respect and
confidence by the majority of software industry.

• Marketing: Submitting UML specification to a standardization process
within Object Management Group (OMG). OMG has over 900 member
organizations; UML is perceived as an open and widely supported standard.

• Technical: Concentrated on a standard modeling language, not a standard
modeling method; provides common notation.

2.1.1 Modeling elements and tools
UML establishes a collection of graphical symbols as well as semantics to support
and define these symbols. This collection can be broken down into three kinds of
building blocks: things, relationships, and diagrams. Things are the abstractions that
are first-class citizens in a model; relationships bind these things together; diagrams
group interesting collections of things. There are nine different kinds of diagrams in
UML: class, object, use case, sequence, collaboration, state chart, activity,
component, and deployment (Booch 1999).

2.1.1.1Modelling Elements

UML provides various basic elements for building models; basic elements may be
grouped into composite elements. Relational elements deal with various kinds of
relationships between the model elements. Other elements are there to describe object
states and interactions. Annotations are provided for clarifying the meaning.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Rumbaugh 1999)

• Basic elements
• Composite elements
• Relationships between elements
• States and Interactions
• Annotations

Modeling Mechanisms: Specifications are saved in files to document responsibilities
and capabilities of the model elements. Adornments make symbols mean specific
things.

• Adornments
• Specifications
• Modeling Rules

Notation Extending Mechanisms: In order to cover every possible situation UML
provides notation-extending mechanisms. One such mechanism is stereotyping which
specializes in the general notation to specific application areas. Standard stereotypes
and icons are provided, though domain specific stereotypes and icons may be
introduced as and when required. Notation extension uses tagged values to add more
information. Constraints are used to show restrictions that apply. (Berner 2000)

• Stereotypes
• Tagged Values
• Constraints

2.1.1.2Modeling tools

Class Diagram
UML class diagrams are the mainstays of object-oriented analysis and design. UML
class diagrams show the classes of the system, their interrelationships (including
inheritance, aggregation, and association), and the operations and attributes of the
classes. Class diagrams are used for a wide variety of purposes, including both
conceptual/domain modeling and detailed design modeling (Booch 1999).

Package Diagram
Package diagrams provide a mechanism for dividing and grouping model elements
(e.g., classes, use cases). In UML, a package is represented as a folder:

• In effect, a package provides a namespace such that two different
elements in two different packages can have the same name.

• Packages may be nested within other packages.
• Dependencies between two packages reflect dependencies between any

two classes in the packages. For example, if a class in Package A uses the
services of a class in Package B, Package A is dependent on Package B.
An important design consideration is the minimization of dependencies

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between packages

Use Case Diagram
A use case is a typical way a stakeholder might want to use the system. It is high-level
function the system must support. This name reflects a historical bias towards
thinking o f analysis as asking: What functions must this software support? I.e. how
will people want to use it? Some stakeholders don’t directly interact with the system;
one that does is called an “ actor”.
A use-case diagram shows actors (external objects) that interact with the system and
the system functions that they ‘interact with’. It is easy to ask various stakeholders
what the system should do and document their responses on a use-case diagram.

Object interaction diagrams
Object interaction diagrams (OIDs) model the behavior of use cases by describing the
way groups of objects interact to complete the task. There are two types o f OID
(Fontoura):

• Collaboration diagrams can be used to show how objects in a system
interact over multiple use cases. Collaboration diagrams are helpful
during the exploratory phases of a development process (i.e., trying to
search for objects and their relationships). Since there is no explicit
representation of time in Collaboration Diagrams, the messages are
numbered to denote the sending order.

• A Sequence diagram is typically used to show object interactions in a
single use case and it is easier to see the order in which activities occur.
The emphasis of sequence diagrams is on the order of message
invocation. The vertical axis of a sequence diagram represents time
whereas the horizontal axis represents objects.

Activity Diagrams
Activity diagrams show behavior with control structure. Activity diagrams can be
used to show behaviors over many use cases, model business workflow, or describe
complicated methods.

• Activities in a diagram may or may not correspond to methods.
• Specific notation found in this type of diagram includes guards, which

are logical expressions that evaluate to true or false.
• A synchronization bar indicates that the outbound trigger occurs only

after all inbound triggers have occurred.
• Swimlanes (using a swimming pool analogy) allow you to vertically

partition an activity diagram so that the activities in each lane represent
the responsibilities of a particular class or department.

2.1.2 Analysis, Design and Implementation
Analysis: Requirements
UML support for Analysis to be discussed include:

• Use cases and actors are used in use-case diagrams to visualize, capture
and describe functional requirements at the requirements analysis phase

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the software development life cycle. Use case diagrams provide
means to communicate with domain experts to refine the conceptual
model of the system being designed. They provide “snapshots” of
different aspects of the system required.

• Domain analysis using static domain class diagrams, as well as state
transition diagrams, sequence diagrams and activity diagrams and
parallel processes capture static and dynamic behaviors of the system
and its constraints.

Design: Package, Class, and Relationships
UML support for design to be discussed include (Monarchi 1992):

• Use of package diagrams for architectural design and reuse.
• Detailed design using class diagrams, class stereotyping, class

packaging and documenting.
• Class structure design using attributes, operations, and inheritance.
• Relationships: Class diagram association, aggregation, multiplicity,

package diagram relationships.

Design (Dynamic): Sequence, Collaboration, State, and Activity.
Dynamic modeling of object interactions using:

• Sequence Diagrams: Show object interactions by time sequence.
• Collaboration Diagrams: Show object interactions by context.
• State Diagrams: Show object states and events that cause transitions

between them.
• Activity Diagrams: Show flow of activities due to operations and

object interactions.

Implementation: Components, Codes, and Deployment
UML notation for implementation to be illustrated will include:

• Component Diagrams: Show dependencies among various types of
codes: source, binary, executable, interfaces, linking, execution, etc.

• Deployment Diagrams: Show components distribution among
processor nodes, repositories, networks, and communications between
them.

• Java and UML: Existing tools for domain modeling, Specification
modeling and code generation will be looked into.

2.2 RUP (Rational Unified Process)
Software process is the aggregation of stage, technology, practice and related products
used in the software development and maintenance. Effective software process can
promote the efficient software development, improve the software quality and reduce
the cost and risk.

RUP is one unified process developed by Rational Company with continuous
conceptual and practice development. RUP emphasizes that software development is
an iterative model and separates the process of software development into four phases

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Inception, Elaboration, Construction, and Transition) and nine distinct core
workflows. Each phase ends with one major milestone; evaluation will be work in the
end of phase to make sure if the goal of the phase is finished. If yes, it will forward to
the next phase (Pollice).

According to the traditional waterfall model, Software development can be divided
into the following steps: Business Requirement Analysis, System analysis, system
design, implementation, test, deployment, supporting, and change management. The
traditional waterfall model assumes that the previous processes have been completed
before the new one starts. This model has lots of problems although it seems a
reasonable and high, efficient solution. The problem is that the method ignores the
implicated software development process is affected by lots of reasons. So you will
always face difficulties in each phase. It means if you adopt that model, it is very
possible to waste the time, money and energy requiring redo it.

Therefore, RUP adopt interactive model to implement software design. Given the
time it takes to develop large sophisticated software systems it not possible to define
the problem and build the solution in a single step. Requirements will often change
throughout a projects development, due to architectural constraints, the customer’s
needs or a greater understanding of the original problem.

Iteration allows greater understanding of a project through successive refinements and
addresses a projects highest risk items at every stage of its lifecycle. Ideally each
iteration ends up with an executable release - this helps reduce a projects risk profile,
allows greater customer feedback and help developers stay focused. Figure 2.1
describes the steps to implement the process.

Requirements

Business
Modeling

Analysis&Design

/
Planning / Config & Change * Implementation

Management

Environment

\ Test
Planning

\ ,
Evaluation

Deploymente n .^

Figure 2.1 RUP Module
7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition, RUP is driven by use cases. A Use case is an important concept in the
RUP methodology and used to separate complicated and large systems into small
units (use cases) in the system analysis and system design phases, and then develop
each use case. In fact, Use Cases and Scenarios are examples of artifacts prescribed
by the process and have been found to be very effective at both capturing functional
requirements and providing coherent threads throughout the development and
deployment of the system. In the process of business requirement analysis of RUP,
customers describe use cases; in the system design, designers analyze the use case; in
the development process, programmers implement the use case; in the test process,
tester tests the use case.

Finally, RUP emphasis software development focuses on the architectural design.
Architectural design is one important part of the system design. In the architectural
design, an architect must design the whole framework and design the public module
for example, auditing, log, exception handling, and security. Also, an architect must
provide a solution to system extensibility, security maintainability, scalability,
reusability and performance.
Component Based Architecture creates a system that is easily extensible, promotes
software reuse and intuitively understandable. A component often relates to a class or
sets of classes object in Object Oriented Programming.

RUP also defines 4 modules, Use Case Model, Analysis Model, Design Model and
Implementation Model. Use Case model consists of Use Case Diagram and Use Case
document. In fact, the Use case module is the basis of the other 3 modules; the
Analysis model is result of the system analysis, also known as the conceptual model.
The Analysis model includes class diagrams, sequence diagrams and activity
diagrams. The Design module is the result of architecture design and system design.
A Programmer can do the coding after implementing the design module. The Design
module mainly consists of class diagrams, sequence diagrams and state chart
diagrams(Pollice).

It seems that the analysis and design modules have some in common, but they do
have some difference. The Analysis module doesn’t focus on the solution to the
problem but on the boundary of the problem, it doesn’t involve in the technique and
the platform. In the contrast, the design module should put forward the entire solution
to problem. Certainly, the design module is based on the analysis module and each
class in the analysis module can map into the design module directly, but these kinds
of mapping are not one to one.

The last module is the implementation module. Implementation consists of
component diagrams. Programmers can create skeleton source code from this module.

It implements the software lifecycle in iterations. Software designs are more and more
complicated; in addition, people think software should process high quality and
stability. These requirements are more pressure to software designers.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

They make the designers develop software quickly and at the same time to ensure the
quality o f the software. Therefore, it is unbelievable that there is not one definitive
and repeated process in use in software development. It also is impossible to direct
each phase of the development process. Therefore, some modeling languages like
UML are very necessary to software development. Moreover, abstracting your
programming from its code and representing it using graphical building blocks is an
effective way to get an overall picture of a solution. It can also allow less technically
competent individuals who may have a better understanding of the problem to have a
greater input. UML simplifies the process of software design and provides a blueprint
for the system design. Since the diagrams show both general and detailed
information, they demonstrate that UML is capable of displaying various kinds of
information. Flexible, easy to comprehend, and easy to build are traits that make
UML diagrams a superior choice for business process modeling (Booch 1998).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

3.0 Some useful techniques and methods
In the section, we will introduce some new methods and techniques. Most of these
methods will be used in the following sections.

3.1 QFD (Quality Deployment Function)
Quality Function Deployment (QFD) originated in Japan in 1966 and came to North
America in the 1980s. Quality Function Deployment is a design tool of Total Quality
Management (TQM) that was originally used to bring new products to market faster
(Figure 3.1). QFD is not a quality tool itself, but rather a visual planning tool that
helps to improve quality. When used to focus on the customer's needs early in the
design, the team responsible for the development and the introduction of the product
finds that fewer changes are required during the development and after introduction
o f the product. A bonus to this is that the product is of higher quality in terms o f being
the right product. When QFD is correctly utilized it creates a closed loop that lowers
costs, and increases quality, timeliness, productivity, profitability, and market share.
(Lamia PP 15213-3890)

permission of the copyright owner. Further reproduction prohibited without permission.

10

Q FD
Within
TQM

Focus on The
Voice of the
Customer

Customer

Hoshin Planning

When the
Customer
Wants it

Quality Function
Deployment

What the
Customer

Wants—

Statistical
Process Control

At a Price
the

Customer
Can Afford

Custom er
Features

First
Product

to Market

Timeliness

Quality

Best
Product

to Market

Best
Product
Price to
Market

Increased
Market
Share

Increased
Profitability

Figure 3.1 QFD within TQM

Quality Function Deployment (QFD) is used to understand the needs of the customer
and then assistant in translating them into a set of design and manufacturing

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requirements. The most common use of QFD is to define product requirements. By
using QFD a business is motivated to focus on its customers, and to translate
customer requirements into internal product specifications. With good initial
requirements, the customer obtains a higher quality product in a shorter time. QFD
plays an important role in Software Engineering because it gives a systematic and
quantifiable approach to determining what is of value to the customers.

According to Alcao (1990), the definition of QFD reflects two purposes, and together
these two purposes create 'Quality function deployment in the broad sense'.

• Quality deployment: focus on the product, deployment of customer needs and
requirements together with other important areas of the product, e.g.
technology,

• Quality function deployment in the narrow sense: focus on the processes,
deployment of quality activities in the functional organization.

QFD's primary goal is the overcoming of three major problems:

• Disregard for the voice of the customer

• Loss o f information

• And different individuals and functions working to different requirements

QFD is used to make the transition from reactive to preventative manufacturing
quality control. By clearly defining the objectives needed to achieve customer-defined
quality, QFD helps to build quality into the product. This minimizes the impact of
variability as the product is being developed. The costs are higher in the beginning of
product development, but are greatly reduced after the product is released. Traditional
approaches to development spend less at the beginning of development, but costs can
be high after release as the product that has to be fixed or improved due to poor
quality (Figure 3.2). When used properly QFD helps companies design more
competitive products, in less time at lower cost and with higher quality.

Using QFD

Traditional A p p ro a c h
W ithout QFD

Time
Process ProductionDesign Details

Figure 3.2: The Competitive Advantage
12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By using Quality Function Deployment a knowledge base is built that can be used in
similar projects. We can see from the QFD documentation why decisions were made.
The initial time spent on the QFD process may have been long, but work on a similar
project can be shortened by reviewing past documentation. The QFD documentation
also provides traceability from the product back to the customers needs.

The QFD documentation acts as glue for all the various product development stages.
It ties design and process stages together and the documentation can be checked at
any stage to see if the initial requirements are being met. This helps to control
Murphy's Law by keeping things from going wrong as a product makes its way
through a complex series of design and production activities. (Boushi)

For software development, Quality Function Deployment can greatly reduce the cost
of a project by helping to insure that the correct initial requirements are used. QFD
helps the organization to get the correct requirements before development starts and
this reduces redesign, re-coding, and other related costs later in the project.

3.1.1 Voice of the Customer
Defining the voice of the customer is the most important and the most time-
consuming step in Quality Function Deployment. Without a clear understanding of
the voice of the customer, QFD can become a futile exercise (Eureka 1994).

The initial step in defining the House of Quality is to determine the Customer
Requirements, their relative weightings, and to also determine Customer Evaluations
of competitors. It allows a development team to understand what the Customers
perceive as their most important needs and where they think competitors have
strengths and weaknesses in regards to these needs. This is essentially defining the
"what" of the system.

The voice of the customer is characterized by customer requirements defined by
interviews, brainstorming, feedback mechanisms, and market research. Not all
customer requirements are verbalized or easily voice of the customer can be diverse.
It can be a consumer, a supplier, or even multiple customer voices within an
organization. A key point of QFD is that the customers using their own terms to
define quality. Traditionally software and systems have been defined in terms that
mean little to the users or customers. With QFD the software and systems must be
defined in terms that are meaningful to the customers.

Three essential types of information can be derived from looking at the User Voice in
the House of Quality. The first of these is a list of Customer Requirements that is the
first step in the process. The defined requirements can then be ranked according to
customer’s perception of their importance. Any scale can be used for this rating as
long as it used consistently. Typically a rating scale of 0 to 5 (from No Importance to
Very Important) is used in QFD processes. This allows the development team to
concentrate on the requirements that the customers value the most, thereby increasing
the value of the system to those who will be using it. As with any form of subjective

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

evaluation, it is important to verify that the results reflect what is actually needed by
the customers. Large samples help to weed out discrepancies but there may be
common views that would result in an inaccurate picture of what is really important.
Customers may perceive that particular issues are important but on using a system or
thinking further realize that their initial views were not correct. It will always be
difficult to get a definitive answer as to what is important but QFD allows the
evaluation of customer perceptions and gives structure to decision making(Boushi).

The final result from determining the User Voice is an evaluation of competitors’
strengths and weaknesses for each of the defined requirements. Gathering the
information for this can be difficult, and for internal projects possibly irrelevant, but if
done it allows an evaluation of the proposed system against competitors strengths and
weaknesses. If a requirement is rated as important and competitors are weak in that
area there may be an opportunity to gain advantage by stressing solutions to that
requirements. Conversely areas where competitors are strong for important
requirements may require additional effort so as to not be perceived as having a
weakness.

3.1.1.1 Analyzing the Customer Voice

The outputs listed above are the usual products of the initial phase of developing a
House of Quality. A wide variety of additional information can be included or derived
during this stage. The House of Quality is very flexible and can be extended in any
way that the users of it see fit.

Affinity Analysis can be done on the requirements to see which requirements are
related. This can help in determining structural and functional boundaries for a
system. Target quality goals for the next release of the system can be included and
compared to current ratings and competitors’ ratings. This in turn helps determine
improvement factors for particular requirements; how much work needs to be done to
reach the quality goals? The overall importance of each requirement can then be
determined by multiplying the importance to the customer with an improvement
factor. This helps in determining which requirements should be concentrated on; an
important requirement with a middling improvement factor may be of more
importance than a low importance requirement with a high improvement rating. Sales
Points, which are an indication of areas that the company feels are important (whether
or not they are rated as important by the customers), can also be included to give
another way of evaluating the importance of each requirement (Kulik 1998).

3.1.1.2 Evaluating the customer voice

The matrix approach used by the House of Quality can also be used for information
other than the normal requirements and features. User types can be analyzed against
requirements, business needs against requirements, business needs against features,
user types against business needs, etc. Again, the House of Quality is flexible, limited
only by the uses that can be developed.

As the saying goes, ‘Garbage In, Garbage Out". The value of the information derived
in evaluating the Customer Voice is dependent on the quality of the information that

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is used to populate the House of Quality. If insufficient or poor data gathering is done
the value of the information will be limited. This is especially true of the importance
rating o f the requirements and the competitor ratings. This type of information can be
difficult to obtain and must be validated before being used. If development decisions
are made based on incomplete or invalid information, the decisions made are unlikely
to be valid.

The "semantic quality" of the requirements is also extremely important. This refers to
all requirements being correct and relevant to the model. Completeness is also a
factor in semantic quality and indicates that all-important statements about the
domain have been included. (Completeness in abstract interpretation is an ideal and
rare situation where, for a given abstract domain A, no additional loss of precision is
introduced by approximating the meaning of programs by evaluating their semantics
in A. Therefore, complete abstract domains can be rightfully considered as optimal).
Evaluating each requirement and determining whether or not there are any problems
with the specific requirement can determine correctness. Correctness can be achieved
using normal analysis techniques. Completeness is much more difficult to ascertain in
that most domains are fairly large and involve many requirements. There is typically
no way to ensure that all of the requirements have been specified (although formal
methods might allow a mathematical proof). However this is not unlike normal
methods of determining the requirements for a system; any business needs that are not
encompassed by specified requirements will need to be incorporated at a later point in
the process. The more complete the original requirements the more complete and
correct and the design and development will be (Roberto).

"Pragmatic Quality" is another factor in the validity of the House of Quality. For a
requirement to have pragmatic quality it must be comprehensible to the audience for
the work being done. While any requirement may be understandable to those involved
in defining and evaluating; it must be understood to people not involved in the
process. If a manager has a different understanding of what a requirement means than
the analyst no common understanding has been developed and there will be areas of
the system that do not meet expectations. Pragmatic quality is improved by improving
semantic quality but differences in experience and in nomenclature must be taken into
account when evaluating each requirement.

Analyzing the Customer Voice using the House of Quality provides a great deal of
information and direction in developing the required system. These include an
understanding of which customer requirements are the most important, strengths and
weaknesses of both our own and competitors products, areas where we should focus
our efforts, areas that require the most work to come up to the standards we have set,
and what must be done to meet the customers expectations.

3.1.2 Determining the Product Features
After developing an understanding o f the customer voice the next step is to
understand the supplier voice. This is the "how" of the system. In this stage design
measures or product features that can be used to address the defined customer
requirements are developed. After appropriate product features are defined they are
evaluated to determine how well each feature addresses each requirement.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Defining the appropriate features requires an evaluation of the customer requirements.
The defined requirements are each looked at in turn and features that will address the
requirements are defined. The evaluation will depend on the knowledge of the
requirements gained in the first step of the process and on existing knowledge of the
domain as well as an ongoing assessment as the process is carried out. In situations
where an existing system is being upgraded or redeveloped there will be an existing
list of features that can be used and modified as appropriate.

There are three essential types of information that are developed when looking at the
Developer Voice in the House of Quality. The first of these is a list of Product
Features that address the customer requirements. These are the start o f determining
what a system will include to satisfy the customer(s). Each of these features is then
evaluated and rated according to how well they address each customer’s requirement.
Each product feature may address a single customer requirement or they may address
several. The final types of information are Target Values for each Customer
Requirement. These are determined by evaluating each customer requirement and the
competitor ratings. A target value is set according to the level desired for each
requirement. For example, if a requirement was rated as a 5 in importance but each
competitor was rated as a 3 it might be appropriate to set a target value of 4; this
would beat the competitors and also address the relative importance of the
requirement without trying to meet the requirement perfectly (Kulik 1998).

3.1.2.1 Analyzing the Voice of the Designer

This phase of developing the House of Quality could be used to evaluate anything
that could be related to the customer requirements. Examples of this would be to try
and rate the relative cost of each requirement, to rate the importance of each
requirement to each of the departments of a company that would be affected by
requirements, or to rate the change that would be required for each department if the
requirement were implemented.

As with the customer requirements, semantic and pragmatic qualities are an important
consideration in evaluating the product features as defined in the House of Quality.
The features must be defined in a way that is understandable to anyone who might
need to use the House of Quality for further work. If there is any misunderstanding of
what the features mean there are likely to be problems in later stages as the features
are implemented.

An additional consideration at this point is the scale used for valuing the relationship
between the requirements and the features. The standard QFD scale uses a 0 or Null
to indicate no relationship, a 1 to indicate a weak relationship, a 3 to indicate a
reasonable relationship, and a 9 to indicate a strong relationship. This is used to stress
the importance of the features that strongly address a particular requirement. A
feature that has a strong relationship with a high importance requirement, will be
measured as having a value of 45 (Strong Relationship - 9 with a high importance - 5
requirement) while a feature that has only a reasonable relationship with the same
requirement will have a value of 15 (3 * 5). What this means is that a feature that had
a reasonable relationship with 3 requirements would be valued the same as a feature

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which had a strong relationship with only one requirement. An alternative
relationship scale of 1, 2, and 3 would have relative weightings o f 15 (for a strong
relationship) and 10 (for a reasonable relationship) and would be skewed less in favor
of the strong relationships. Either scale (or any other selected) is valid but participants
and anyone reading the House of Quality needs to be aware of the effects of the scale
chosen. Non-numeric scales can also be used and provide a visual picture of how well
features match with requirements. However each symbol represents a numeric value
in the scale and must still be used as a number in performing further evaluations of
the House of Quality (Boushi).

Analyzing the Designer Voice provides information that can be further evaluated to
provide numeric valuations of the House of Quality. Valuing the relationships
between the features and the requirements provides a numeric representation of the
overall importance of each feature. If a feature has a number of strong relationships
listed with it, it is likely to be a valuable feature. The target values give some
indication of where work will be required to meet the end goals of the project.

3.1.3 The House of Quality
The final stage o f developing a House of Quality is to evaluate the matrix developed
and the valuations given to a variety of components in the matrix. Completing this
stage provides a great deal of information that can be used in further developing the
system and in setting targets for the end product.

The first product of evaluating the House of Quality is a numeric evaluation of the
relative value o f each feature defined in the House of Quality. The relationship value
(typically 1, 3, or 9) for each defined relationship is multiplied by the importance
factor for each requirement. This gives weighting to the value of the feature for
meeting the overall importance of the requirements in the system. This weighting
indicates which individual features will contribute most to meeting the overall
importance goals of the customer. These values can also be represented as a Pareto
chart to show visually which features are most important. An Overall Importance
rating can also be derived at this stage to give an indication of which customer
requirements will require the most attention in the design and development stages.
This is simply the product of the importance rating of the requirement and the target
rating for the requirement. Important requirements which need to have a high target
level will be highlighted by this number and provide guidance as to which
requirements are the top priorities during construction.

3.1.3.1 Analyze the House of Quality

Additional evaluation or work could be done to the House of Quality after
development of the matrices. This is highly dependent on the type o f matrix used and
is limited only by the amount of information and creative approaches utilized. The
initial House of Quality could be used as input to a variety of other Houses of
Qualities if desired. One obvious approach would be to get to a more detailed
statement for each feature and how it meets the requirements. It is done by making
each feature a requirement and developing detailed features to address the higher
level features. Another approach would be to do a detailed analysis of each of the
features against the features in competitors’ products.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Customer evaluations and importance rankings are not always objective. For this
reason they must be validated as well. Customers may feel that something is
important but if asked to reevaluate it -they would come up with different answers.
The ratings o f competitors’ products must be checked as well. Good marketing can
lead to people having views that are not always correct. All of the results are based on
input and evaluation but must be validated .The House of Quality is a tool, not a
definitive answer to defining requirements and features (Kulik 1998).

3.1.4 QFD Phases

PHASE
1

Product
Planning

PHASE
2

Parts
Deploymen

t

PHASE
3

Process
Planning

PHASE
4

Production
s Planning

Figure 3.3 the Four Phases of QFD
Four phases are often used to deploy the voice of the customer from product
development through manufacturing quality control. For each phase the How's of the
proceeding phase are passed along as the what's (requirements) for the next phase.
For example the How's carried over from the Product Planning Phase become the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

What's for the Parts Deployment Phase and the design specifications are then
converted into the individual part details. QFD starts with customer requirements and
then translates them into technical requirements, part characteristics, manufacturing
operations, and production requirements as the process moves through each of the
four phases.

Phase I: Product Planning

This is the most common phase used in Quality Function Deployment and it is very
popular in the U.S. Most activities are centered on the House of Quality. Phase I is the
most important phase in defining customer wants in relation to product parameters.

Phase II: Parts Deployment

Phase II is associated with product engineering functions. The design parameters are
transferred into part characteristics and target values for fit, function and appearance.
It is at this phase that part characteristics are identified that is critical to the execution
of the measures from the previous phase. Currently about half the applications in the
U.S. using QFD have progressed to this phase.

Phase III: Process Planning

Phase III involves floor level process engineers, production supervisors, and line
operators, and represents the transition from design to manufacturing operations. The
target values from the previous phase are deployed into process parameters for
manufacturing and assembly. This is when process capability levels are developed
and activities established for continuous improvement.

Phase IV: Production Planning

This is the final stage in the linkage between the voices of the customer in Phase I
through subsequent phases. In this phase the target values from process planning are
transferred into production standards. This phase takes advantage of the knowledge of
those individuals that build the product on the factory floor. In phase IV all
employees of the company and their activities interact to achieve customer
expectations(Boushi).

Quality Function Deployment can be used in any of the phases but generally it is
more effective when used in an early phase. QFD can enhance an organization's
existing design process, but it does not replace that process. It can be integrated into a
sequential, concurrent, or a unique design process. The approach is flexible enough
that the design team can decide when to start and stop the QFD process. The best
place to use QFD would be to focus on the high-risk details of product development,
and those product aspects that the normal system of development cannot assure such
as problem areas and innovations.

3.1.5 QFD Process
There are nine distinct steps that need to be completed to in the "House of Quality".
Each step will fill in one crucial area in the "House of Quality". While some QFD

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implementers may have more (or less) than nine steps, all of these steps must be
completed to complete the House of Quality (Boushi).

The steps are:

1. Customer / Non-customer Requirements

2. Prioritization / Importance Rating

3. Technical Design Specifications

4. Relationship matrix

5. Competitor's Product Analysis / Rating

6. Target rating / Improvement Factor

7. Overall Customer Importance

8. Design Requirement Importance

9. Trade-offs and Synergies

Step 1: Customer / Non-customer requirements

In this step, you go out and get all the requirements from the customer. These
requirements can be solicited through various means. Non-customer requirements are
also necessary at this point too. These can be the requirements of management or
marketing. Each requirement is what the customer wants. The requirements may be
vague such as "Easy to use". Although vague requirements are okay, they should be
clarified further to more specific requirements. Kusiak (1993) suggests that no more
than 20-30 categories be specified. This is the most important step of the process
because it identifies the "Voice of the Customer".

Step 2: Prioritization / Importance Rating

For each requirement listed, determine the customer's importance rating. The
customer assigns a value between 1 and 5 for each requirement. The importance
rating is typically done through a "forced choice" (ITI-OH 1995) where the customer
must determine the relative value of one requirement against the others. This
prioritization can be done through various techniques, one of which is the Analytic
Hierarchy Process (ITI-OH 1995).

Step 3: Technical Design Specifications
The designer analyzes each requirement and come up with a measurable technical
specification for each requirement. There may be more than one specification for a
requirement; but not less. Some requirements can be covered through many
specifications. It is important that the specifications meet the requirements in some
way. Becker and Associates referred to this as the "Voice of the Engineer" (Becker
1998).

Step 4: Relationship Matrix
20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For each requirement and technical design specification relationship strength is
evaluated. If the technical specification has a strong relationship to the requirements a
value of nine is given. If the strength is moderate; If the relationship is weak but not
nonexistent a one is given. The strength of the relationship indicates how well the
technical specification fulfills the customer requirement. Any blank areas upon
completion indicates a problem in fulfilling customer / non-customer requirements.

Step 5: Competitor's Product Analysis / Rating

This step involves rating the competitions' products. The customer does the
evaluation and judging of the different aspects of the competitors' products compared
against the customer requirements that were used in the first step. This evaluation will
help in the setting of your own products' target values that is used in the next step.

Step 6: Target Rating / Improvement Factor

Comparing the customer's evaluation of your competitor's' products and the rating of
importance given by the customer should assist in the selecting of target values of
customer evaluated requirements. If the requirement is not rated very high and the
competition scores low in this field, you know that it does not need too much
attention. This may bring out some interesting evaluation scores. Perhaps the
customer rates speed as very important and then assigns a competitor's product as
very fast even though it is, in reality, slower than the others. Here, the customer
perceives the product to be fast. This could be a warning sign to better determine the
customer's requirements.

Step 7: Overall Customer Importance

This number is the (multiplication) product of the Target Rating / Improvement
Factor (from Step 6) and the Prioritization / Importance Rating (from step 2). This
calculation is done for the entire Customer / Non-customer requirements. The
resultant values will provide an order as to the overall customer importance rating.
For the less important requirements, the (multiplication) product will be lower than
that of a more important requirement. Because the Target Rating / Improvement
Factor is also part of the (multiplication) product, a greater distinction will be given to
requirements that have a higher target rating or improvement factor.

Step 8: Design Requirement Importance

The importance of any one technical specification can now be determined by
multiplying the customer's importance rating by the relationship strength value and
summing up each of these products in their column. This summation gives the
absolute importance rating that can be normalized or given as a percentage of the
total.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 9: Trade-offs and Synergies
For each Technical Design Specification, there might be synergistic benefits realized
by another Technical Design Specification or there might be trade offs. It is important
to analyze each Technical Design Specification to determine if the implementation of
one specification will hinder another specification. This is quite useful when one
particular specification may be difficult to implement. In this case, identify
synergistic specifications and concentrate on them. This is also useful when the trade­
offs are identified. If a particularly important customer requirement is focused on and
it has trade-offs against other important customer requirements, careful attention will
have to be paid to avoid problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

4.0 Why apply QFD to software
In the manufacturing field, QFD is used to focus on the quality aspects of projects. It
could also be used in a software engineering environment. The success of any
software organization stems from customer satisfaction, and customer satisfaction
comes from receiving a quality software product. Thus, concentrating on quality pulls
the organization ahead of the intense competition, and ultimately brings success.

Customers want value from their software. They want the product to help them solve
problems and seize opportunities. It is also important to understand that customer
actually have three types o f requirements. These are normal, expected, and exciting
requirements (Zultner 1993). Normal requirements are those that can be gathered by
simply asking the customer. Expected requirements are requirements that are not
mentioned but are expected. An on-line-help system is an example of this. Exciting
requirements are requirements that are unexpected, but highly satisfying when they
are delivered. These are the product features that really impress customers, or are
made possible by new technology that the customers are not aware of.

To put quality into a software product, a software engineer has to understand what is
meant by "software quality". There are two views of software quality — the
traditional view and the more modern view (Zultner 1993). The traditional view
focuses on the minimization of defects. This is accomplished through existing
software engineering approaches such as code inspections, reviews, walk thoughts,
and testing. With this view, the software engineer understands the causes of defects,
and strives to detect and correct them. The modern view of software quality aims at
maximizing the value of the software. The software engineer understands the needs of
the customer and designs value into the system. The difference between the two views
is very important. With the traditional view, the best one can do is to have no defects
in the system. However, even if a product has no defects, it is not necessarily o f value
to a customer. Therefore, the traditional view of software quality is insufficient.
Furthermore, over 50% of software development errors occur in the requirements
analysis phase (Eriksson 1998). These "defects" cannot be caught by the traditional
view.

The software engineer needs to maximize the value in software products. This is
accomplished by determining what is of value to the customers. These areas become
the priorities of the project, and the team's best efforts are concentrated there. The
task of determining what is of value to customers is not easy, and should be done with
an approach that is systematic and quantifiable. This is where QFD plays an
important role. QFD can be used to accomplish several things. It can be used to
evaluate the impact of product features on customer value, and be used for
considering trade-offs of product features in the design. It can also be used to set a
development strategy or direction. For instance, one can use QFD to determine
whether a software package should aim for technical excellence, or have improved
ease of use. Finally, the House of Quality in QFD can be used to analyze competitive
products as well.

4.1 Software QFD
Software QFD is an adaptation of QFD from its manufacturing roots. It also
originated from Japan. SQFD is a front-end requirement solicitation technique that

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be attached to any software development lifecycle process (Haag 1996). For
example, a project team can use SQFD to gather requirements, and then proceed to
develop the system using either the waterfall or incremental lifecycle process. SQFD
has been used successfully by many large organizations, such as Digital, AT&T,
Hewlett Packard, IBM, and Texas Instruments.

Technical
Product

Specifications

Customer
Requirements

Correlation
Matrix

Technical
Product

Specification
Priorities

Cost
Difficulty Index

Schedule Feasibility

Customer
Requirement

Priorities

Product Assessment
Competitor Assessment

Sales Index
Improvement Index

Figure 4.1 House of Quality

Proponents of SQFD say that this technique results in numerous benefits. SQFD
results in fewer design changes, and less error are passed from one development
phase to the next. Less maintenance is required because of this. At the same time,
better communication occurs between departments since QFD teams are cross­
functional, involving customers, engineers, sales, management, and so on.

4.2 Benefits of QFD
The QFD process provides a great deal of help in obtaining objective, measurable

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information that can be used for understanding the product to be developed and how
it will meet the customers needs for the product. There is guidance in how to carry out
the initial information gathering process and what types of information to gather.
QFD allows for a systematic evaluation of customer requirements for a product and
features that will meet these requirements. There is a quantification of most of the
information processed and this allows for an objective justification for decisions made
as a result of that process.

The information gathered can help in resolving design tradeoffs and in setting quality
goals and measures for development. If two critical features conflict, the conflict will
need to be resolved in the design; this information is not known ahead of time and
discovered much further along the process when resolving it would be much more
difficult (Boushi).

QFD provides a way of tracing requirements from initial definition to completion.
Because all steps are recorded and measured it is possible to revisit all decisions and
filter changes to the appropriate parts of the project. This is often lost in conventional
development processes as decision points are not clearly recorded and the reasoning
behind the decisions are easily lost. QFD forces a focus on the customer needs. Any
project, whether commercial or in-house, needs to meet the customer needs to be
successful. By identifying and quantifying the customer requirements up front QFD
ensures that the real requirements are not ignored and tractability helps ensure that
they are still visible at the tail end of the project.

QFD can be an aid in shortening development time as it focuses on the essential needs
for the product and the essential features to meet those needs. Once the initial costs
for QFD are past the process can reduce costs. Trained personnel with appropriate
tools can work quickly towards a good solution to a problem. The better, the initial
solution the lower, the overall costs will be. QFD leads to a final system that meets
the customer needs well and contains features that meet these needs. Features that do
not contribute can be identified and excluded early on. In a commercial situation, the
better, the solution meets the customer needs the more successful it will be in the
market place.

4.3 Applying QFD in an UML framework
Basically, the requirement model is the beginning point of the objective methodology
that forms the base of UML processes. After that, the remaining models of design and
implementation and the final testing will be created based on the existing requirement
model. So in the requirement model, actor and use cases become crucial because
actors represent the functional roles that users can play, and use cases are
comprehensive sequences of actions the actors perform with the system to accomplish
and complete the task.

As described above, the concept of actor and use case is similar to the types of
customer and the notion of “function” in QFD terminology. Therefore, the
quantifiable differences between them would be an excellent extension base to 0 0
analysis. That would provide valuable guidance to designers and project managers on
where to allocate their most critical resources, and how to make implementation

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

choices that optimize the satisfaction derived by users of the finished system.

Based on these ideas, we can find that QFD matrices are an effective aid for 0 0
analysis and might provide some useful information. On the other hand, all the
matrices are easy to use and more descriptive.

In the following section, we will discuss some matrices derived from QFD and further
explain the notation “A><B”, where A represents the data type in the left column of the
matrix, and B shows the data type in the top row of the matrix(Lamia).

Users X Actor Role
A ctor role

Individual U sers Patron Librarian Volunteer

Jan • •

Pat • •

Prioritization o f role 5 3 1

Table 4.1 Users X Actor Role

This Table 4.1 describes the different roles that play in different time. The bottom
row: prioritization of role is optional that shows the relative importance of the role.
Normally, they are decided by the judgment o f the analysis team.
This information is easy to be captured by interviewing with customer in the initial
stage o f software design.

Actor Role X Use Case
U se Case

A ctor roles Search for book Find book on sh e lf C heck out book R ole wt

Librarian • I • i • s
3

Patron

• I • i
5

Function Wt. 54 18 72

Table 4.2 Actor Role X Use Case

We show some operations that the actor role joins in this table. We also indicate the
importance of each use case by using the same rating method as matrix: Users X

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Actor role i.e. ™ =9 and ®=3.
In this matrix, the notation “I” means the initiator of the use case and “S” means the
actor role will service in that use case. In this example, the role of the librarian in
service to the patron during the use case: check out book.

User Demanded Quality X Use Case
U se Case

D em anded O ualitv Search for book C heck out book

M ust be fast •
M ust be m istake p roof •

Table 4.3 User Demanded Quality X Use Case

This Table 4.3 describes the demanded quality for each use case. Actually, it is an
important matrix because this information of demanded quality is very helpful for
designers to implement the software design.

Use Cases X Objects
O bject

U se Case Patron B ook Terminal Librarian

Search for book

• • •
C heck out book

•
• •

Table 4.4 Use Cases X Objects

This Table 4.4 shows each object that participates in the use case of the library
system. We recommend using the specific name of an object in place of the vague
name in that matrix because exact definition will enhance the quality of the software
design.
We also can create some new notations to represent whether the object is created,
removed, modified, or provided information to the use case such as “C”-created, “R”-
removed, “M”-modified, “S”-provide.

Use Case X Data Attributes
Data Attribute

User Case Title Author Subject Call number Library card number

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Search for book • • • •

C heck out book • •
Table 4.5 Use Case X Data Attributes

This Table 4.5 shows all the data that will be used in carrying out various use cases.
We don’t describe the information of the objects in the matrix because we want to
simplify the analysis process. By combining the “Use cases X Data attributes” with
“Use case X Objects”, we have captured much more information to be used in the
software design.

Objects X Dai a Attributes
Data Attribute

O biect-class N am e Address Library card number E m ployee ID

Patron-class

• • •
Librarian-class

• • •

Table 4.6 Objects X Data Attributes

This Table 4.6 shows all the data that will be used in the objects. So the matrix will be
very useful to construct an abstract superclass type because some objects might share
common data attribute.

Objects X Objects, Showing Entity Relationships
O bject

O bject Patron B ook S h elf Floor

Patron O.n

B o o k 0..1 1 1

S h e lf O.n 1

F loor O.n l.n

Table 4.7 Objects X Objects

This Table 4.7 describes the association relationship between pairs of entities in the
library system that can be used in defining the associations among objects.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition, the matrix also can add some processing rules of the library system, such
as no one can borrow one popular book for more than one day.
Object x Classes

Class

O bject Person H old ing

Patron •
Librarian •
B o o k •
Periodical •

Table 4.8 Object x Classes

This Table 4.8 shows relationship between leaf-node object classes and superclasses.
One advantage of this matrix is that it can clearly identify all superclasses that
contribute to object instances and helps find potentially conflicting attribute or
method definitions.

Use Cases X IEEE Quality Factors

IEEE Q uality Factors

U se Case E fficien cy Integrity R eliab ility Survivability U sability Correctness

Search for book • • • •
C heck out book • •

IEEE O ualitv Factors

U se Case M aintainab
ility

Verifiabi
lity

Expandability F lexib ility Interoperab
ility

Portabili

ty

R eusability

Search for book •
29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C heck out book • •

Table 4.9 Use Cases X IEEE Quality Factors

This Table 4.9 shows some quality factors that could be considered when carrying out
a use case. That matrix will be helpful for designers and engineers to check whether a
good quality product has been developed or not.
On the other hand, some quality factors in that matrix could be adopted in the cost
benefit method (in the later chapter) to analyze the function of the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.0 New structure method
In this section, we will discuss a new structure method that might provide some useful
information to aid in the OOA.

The method we will introduce can prioritize customer and user requirements, analyze
tradeoffs in a way that both increases return on R&D investment and increases
customer’s user satisfactions. The core of the method is the “need-opportunity”
matrix. It is organized into four quadrants to aid in analysis and prioritization of
features-44 nice to have”, 44 add value”, “must do”, and “defer” (Kulik 1998).

1. Features and characteristics in the “Add Value “quadrant define the
direction of the project, offer the greatest potential return on investment
and will be the focus of implementation planning and effort.

2. Features and functions in the” Must Do “quadrant should be included as
part of the scope of the product or system to be implemented and can be
good candidates for cost reduction. In other words, it should be a
minimum necessary to meet customer requirements in some cases;
lower-priority “Must Do” features can help an organization understand
evolving customer needs. In additional, the “Must Do” Features and
characteristics may enter this quadrant from the “Add Value” or “Defer”
quadrants, or “Defer” quadrant.

3. A limited number of features and characteristics in the “Nice to Have”
quadrant can be selected based on available resources and forecast
trends in customer or user needs. It can evolve to “Add Value” and
further offer a competitive advantage.

4. Features and characteristics in the “Defer” quadrant should be
eliminated from the plan wherever possible. These features may move
to the “Must Do” or “Nice to Have” quadrants.

We will explain how to use this method with a case study. In the figure, each
character represents a customer’s need and the circle closes to the character indicates
the relative importance of the needs.

A. Each elevator has a set of m buttons, one for each floor.

B. This button illuminates when presses and causes the elevator to visit
the corresponding floor.

C. The illumination is canceled when the elevator visits the corresponding
floor.

D. Each elevator has a button for emergency

E. Each elevator has a telephone.

F. Each floor, except the first floor and top floor has two buttons, one to
request an up-elevator and one to request a down-elevator. These
buttons illuminate when pressed. The illumination is canceled when an
elevator visits the floor and then moves in the desired direction.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G. When an elevator has no requests, it remains at its current floor with
its doors closed.

H. Each elevator has a mirror
I. Each elevator has a picture frame.

N ice To Have
H #

I •

Add Value

E •

G #

Defer M ust do
A •

D •
B •

C •
F»

Figure 5.1 Need-opportunity Matrix
This method mainly uses the need-opportunity matrix, the core of the method, to
prioritize the customer’s requirements and analyze the tradeoff on investment. In the
matrix, we also can add arrows to the circles to represent expected evolution of
requirements. On the other hands, the need opportunity matrix can provide another
useful function in analyzing the return on R&D Investment. The potential return on
R&D investment is represented in the Needs-Opportunity matrix through the size of
the circle for each feature and function. As shown in the below figures, larger circles
signify greater potential return on investment, and smaller circles represent less
potential.
Based on the two functions provide a by the need-opportunity matrix, program or
project managers can use this method to promote 0 0 A. In this matrix, larger circles
signify greater potential return on investment, and smaller circles represent less
potential.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.0 The limitation of UML and RUP
6.1 The limitation of UML
UML models are different from many people’s understanding because UML adopts
lots o f distinct conceptions, glossaries and diagrams in order to describe the
complicated external world in detail. Furthermore, UML lacks one refined core and
good boundary and its definitions are not exact and sometimes misleading. Also, its
language structure and semantics still have some weaknesses. Therefore, both
customers and designers can’t understand it completely.

6.1.1UM L can’t really communicate with customers

It is difficult for the customers to use UML to communicate with the designers
because its style to describe the system is far beyond the customers’ understanding.
Customers are always confused when they read the paper filled with lots of glossary
and symbol of software.

(1) UML lacks techniques for requirement modeling.

UML takes off the function models of structure method so that it may be identical to
object-oriented methodology. So UML can’t be used to find out customer’s needs in
detail and further affect the communication between customers and developers.

(2) UML lack techniques for domain modeling.

One goal of domain modeling is to make customers realize the system’s business
modeling; however, UML models are like a sealed book for customers. Therefore,
customers can’t give some suggestions to the business model.

(3) UML is short in describing the system performance.

UML only describes “ how to do”, but it doesn’t talk about “ how is it” . The former
means logic flow and the latter is performance indicator. In fact, the performance
indicator is nonfunctional properties (NFP), such as safety, availability, reliability and
temporal correctness. It is very important in reality when people are concerned about
the goal and direction of the software development.

6.1.2 UML can’t effectively direct designers to program

It is really difficult to get an UML-like design into a state that it can be handed over
to programmers because UML doesn’t support elaborate analysis design. The truth is
that the UML-like design looks very good on paper yet be seriously flawed when you
use it to implement software^ So programmers spend considerable time translating the
model into code.

6.1.3 UML can’t describe the software system completely

Use case diagram:

Use case diagrams merely model the high-level functionality as one or more actors
perceive it, it doesn’t give more details about that. So how to integrate use case

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

diagram with other UML diagrams becomes an important problem.

Sequence diagram and Activity diagram:

Both sequence diagrams and activity diagrams are not able to model past states of
objects and evolutionary patterns. Also, they are not equivalent with each other in
formalness and content. On the other hand, there is no constraint imposing the nature
of the role nor the consistency amongst the roles defined (e.g. all objects, all
organizational units, etc.) So this deficiency restricts the application of the concept of
responsibility to activity diagrams.
Sequence diagrams lack a representation for conditional activity.

State diagram:

Events don’t correlate with external actors, class and package in state diagrams.
Moreover, it is hard to correlate state diagrams with sequence diagrams.
6.2 The limitation of RUP
RUP still has some problems even though it is a good process method.
(1). RUP is only a development process; it doesn’t cover all the content of software
development. For example, it doesn’t have methods to support software execution.
(2). RUP doesn’t have development structure for multiple subjects. Therefore it
reduces the impossibility of reusability implemented in software development.
(3). We can use other software processes for example Open and OOSP to aid in RUP.
(4). Use Case Driven Analysis, employed by RUP to implement process design, still
has some disadvantages. The main disadvantage of UCDA is the lack of synthesis.
The Use Case Model that we get from UCDA is just a loose collection of uses cases.

6.3 Solution
As mentioned above, UML and RUP still have many limitations. Some of these
limitations might affect the quality of software design; even cause the failure of the
project. Therefore, in this section, we try to employ some new techniques or methods
to solve these kinds of problems.

6.3.1 Problem 1: UML can’t be used completely to communicate with customers
because it lacks the techniques to model requirement, domain and software.

Solution 1: QFD is a very effective tool in the initial stage o f the software
development because it really understands the needs of the customer and then
translates them into internal product specifications. In additional, QFD plays an
important role in Software Engineering because it gives a systematic and quantifiable
approach to determine what is valuable to the customers. Finally, these techniques can
strengthen the communication with customers and promote software quality.
Therefore, we can adopt the information provided by these matrices to improve the
UML notation and promote software quality.

6.3.2 Problem 2: Use Case Driven Analysis, employed by RUP to implement process
34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design, still has some disadvantages. The main disadvantage of UCDA is the lack of
synthesis.

Solution 2: The Use Case Model that we get from UCDA is just a loose collection of
uses cases. What we really would like to get from requirements analysis is a model
that captures the functional requirements and system usage, without any design
aspects. So we try to use Usage Oriented Requirements Engineering (UORE),
extension to UCDA, to enhance the Rational Unified Process (RUP).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 .0 New Process and language
The Unified Modeling Language (UML) is a powerful notation for building software
blueprints. The diagrams capture business process information. Since the diagrams
show both general and detailed information, they demonstrate that UML is capable of
displaying various kinds of information. Flexible, easy to comprehend, and easy to
build are traits that make UML diagrams an excellent choice for business process
modeling.
A methodology for applying UML modeling techniques within the 0 0 standards
development process is needed. Since UML is ‘only’ a modeling language, our
system has selected the Rational Unified Process as candidate process to start with.
The Rational Unified Process (RUP) is a software design methodology created by the
Rational Software Corporation.lt describes how to effectively deploy software using
commercially proven techniques.
In this section, In order to apply the new useful methods mentioned in the previous
section, we follow the Rational Unified Process to experience the whole process of
building software. Business modeling and requirements (two flows) are thought as
more important at the first stage (inception) of the RUP and will be discuss in turn to
explain how to implement a new process. Therefore, we will start our new process
description with them.
7.1New process
7.1.1The Business Modeling Workflow
The Unified Modeling Language (UML) is a powerful notation for building and
expressing software model. Moreover, UML diagrams are an excellent choice for
business process modeling because they are capable of displaying various kinds of
information and can be applied to various phase of the business system lifecycle,
from the requirement to implementation. Customers also can capture information by
UML diagram from both static and dynamic view. Each UML diagram represents
different functions and describes different metadata of the business system.

A business process model is a set of components that shows a set of activities. The
purpose o f creating a business process model is to better understand, analyze and
improve a business process. However, we still need to find others tools or methods to
aid in the UML diagrams to model business systems. We will try to use QFD-style
matrices derive from QFD to support the description of business modeling.
The purposes of the business modeling are the modeling of the business context and
the scope of system. Common modeling activities include the development of (Craig
1999):

• A context model (often a data flow diagram) showing how system fits into its
overall environment

• A high-level business requirements model (often an essential use case model)

• A domain model (often a class diagram) depicting major business classes or
entities

• A business process model (often activity diagram) depicting a high-level

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overview of the business process to be supported by your system. This
diagram is one level of detail greater than context diagram

7.1.1.1 Context model
A context diagram is a top-level data flow diagram. It only contains one process node
that generalizes the function of the entire system and its relationship to external
entities.
Here, we take a banking system as an example to explain what is the context diagram
in the business modeling. In the next chapter, we will use our own system (elevator
system) to examine a case study in order to represent how to apply the new process
and language.

Customer Receivable
Payment

Customer ------------- X
Cash

Receipts
Process,

Deposit

Info

)----------- >
Credit
Manger

Figure 7.1 Context Diagram

Context document

The figure 7.1 is a context diagram of cash receipts. This context diagram defines the
scope of a business model and identifies relationships among customer, bank and
credit manager. This representation takes the form of a domain picture aiming to give
an overall understanding of the domain. It focuses on describing stakeholders and
their relationships and identifies stakeholders concerns. It typically covers key value-
chains and information flows.

7.1.1.2 Use case model

The purpose of business modeling is to understand the structure and dynamics of the
operations within a domain. It helps to ensure that all users, standards developers and
software providers have a common understanding of the domain. In addition business

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modeling is used to derive the high level requirements needed to support the
subsequent detailed analysis and eventual solution. The business modeling workflow
starts with a high level definition of the vision and scope of the domain to be
considered (see Fig. 7.2). Furthermore, important terms used in the business should
be covered in a glossary (e.g. the BuyerlD: Seller assigned identification by which the
seller uniquely recognizes a buyer). The vision and scope statement should allow
derivation of the business actors (roles of the organizations involved in the considered
business transactions) and the use cases (main business transactions under
consideration). Since the scope of the system is the inter-organizational
communication between involved organizations, the use cases focus on
communicating processes between the actors and not on the internal operations
performed by each actor (see Fig. 7.3) (David 1998).

Having found all use cases, the next step is to detail each use case. This covers a
description of main activities performed in a use case and a high level description of
information being exchanged. For example: To request a registration the buyer sends
a registration request including his name and address, contact information and credit
card information. This information could be used to design a first object model for
each use case.

The vision and scope o f ‘Order from Catalog’ is described by five business
transactions depicting the process o f a Buyer executing a catalog order with a Seller.
“Request Catalog” is an optional business transaction. A Seller may offer to provide
to any potential Buyer an electronic version o f the current Seller’s catalog on
request.
“Register” depicts a first time Buyer initiating a relationship with a Seller by

providing required buyer information, confirmed by receiving a Seller’s Buyer ID
from the Seller. “Request Price” (provide a price quote to the Buyer fo r selected
product(s) on request) is an optional business transaction where the Seller may offer
a price quote to a Buyer after a valid Seller’s Buyer ID has been assigned. “Order
Product” depicts the process o f a Buyer ordering items from a catalog, having
previously established a relationship with the Seller by providing Buyer information
and receiving a Seller’s Buyer ID (refer to “Register ”). “Request Order Status ” is an
optional business transaction where the Seller provides order status information to
the Buyer on request.

Figure 7.2 Visions and Scope Statement for ‘Order from Catalog’

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Request Catalog

O Register

Request Price
Buyer

\

Order Product

Request Order Status

Seller

Figure 7.3 Use Case Diagram

7.1.2 Requirement workflow
In the beginning of requirement analysis in the system process, we will use one new
method (cost benefit analysis) to deal with the customers’ needs so that the designer
can concentrate on the more important parts in the subsequent phase.

7.1.2.1 Cost benefit analysis

The goal of this method is to classify and prioritize the user’ needs into different
categories based on some principles in order to provide some reference for the
process of system design. Moreover, we can use UML extension mechanism to
represent those kinds of classification information into any model in order to make
designers understand which one is more important in the following phase of the
system. This method consists of 5 activities.
(1) Gather domain knowledge.
It is well known that customer requirements are essential parts in the system design.
Here, we omit the process to gather and organize customers’ needs and won’t discuss
related methods for example affinity diagramming, contextual inquiry ... we will
assume that we have already collected all the customers’ needs.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2) Evaluate the product.
In this step, after gathering the domain knowledge of a system, we need to find some
experienced experts from different areas to evaluate the product from different
respective in order to enhance the product.

(3) Categorize the issues
We need to use some techniques to group the problems that we captured from
customers before we prioritize them. We use an affinity diagram to implement the
functions. The advantage of the method is to expand our focus and give us a high
level view of the problems area.

(4) Prioritize the categories
According to how important it is to fix them (from the users’ perspective) and how
difficult it is to fix them (from the developers’ perspective).
We prioritize the problems into 4 domain, they are “High-value”(contains very
important issues that require less effort to fix), “Strategic”(contains very important
issues that require more effort to fix), “Targeted”(contains less important issues that
require less effort to fix), and “Luxuries”(contains less important issues that require
more effort to fix).
The following figure is an example to prioritize the category. This example is an
evaluation that examines an affinity diagram(Kulik 1998).

We list some features below:
1. Facilitate Users’ Tasks
2. Support Users’ Mental Model
3. Convey Strong Sense of Place
4. Lay Out Information Logically
5. Provide Clear Cues and Instructions
6. Correct Errors
7. Provide Feedback
8. Provide Consistent Controls
9. Ensure Visual Design/Branding Are Appropriate
10. Provide Clear Languages

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

&
o
i t
b

luxuries

(6)
Correct
Errors

(Z)Provide
Feeback

Consistent
Controls

targeted

Appropriate
Visual Design

I 10 iv_y
Clear

language

Facilitate
Tasks

strategic

(2 j (3)
Support Mental Sense

of PlaceModel

(4)
Lay Out information

Logically

(5)
high value

Clear Cues &
Instructions

Impotance

Figure 7.4 Cost Benefit Chart

Actually, the categories in the strategic and targeted quadrants are more important.
The problems in the strategic quadrant may require structured rethinking, or
significant redesign of a product. For example, the problems in the “Facilitate Tasks”
category may require more research on what users’ tasks are and how those tasks
could be streamlined. In contrast to strategic issues, targeted issues may have
solutions that are easier to envision and implement. For example, if the problems in
the “Clear Language” category relate to the use of jargon and unfamiliar terminology,
the unfamiliar terminology should be replaced with more common words or phrases.
On the other hand, we recommend that clients address the categories in the luxury
category last, since they represent the lowest ROI (Return on Investment).

(5) Write the report, including recommendations for solving the problems.
The last activity is to generate recommendations for designers in the latter phase of
system after w e’ve categorized and prioritized the problems. It will help usability
professionals communicate more effectively with decision-makers about usability
problems and solutions.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.I.2.2. Use case model
The purpose of this discipline is to engineer the requirements for the project,
including the identification, modeling, and documentation of those requirements. The
main deliverable of this discipline is the Requirements Model, which encompasses
the captured requirements. This stage normally takes a use case representing part of
the business domain modeled in the business modeling workflow and refines the
output for the area selected for the requirements modeling project.

Capturing a common vocabulary in a glossary is of great importance in the
requirement workflow. Consider for example the term ‘delivery date’. It seems that
everyone might know what a delivery date is. But there is still chance for
misinterpretations: Is it an exact, earliest, latest delivery date? Thus, a semantically
complete definition must be stated in the glossary.

The next step of the requirement workflow is to find the actors and use cases (see
Fig. 7.4), according to the boundary definition in the vision and scope statement.
Users might be involved in the operation of the internal system, which is not
considered in the system in question. But input and output to the use cases is always
sent/received by the information systems themselves.

Consequently, the inter-organizational system has always to interface directly to the
organizations’ internal systems. To denote this fact, the use case model of the
requirements does not depict actors, but the interfaces to the organizations’ internal
systems supporting the transactions. Taking a closer look on Fig. 7.5 it is easy to
recognize that the definition of the use case ‘Register Buyer’ has been refined,
because the use case takes advantage of another use case namely ‘Verify Credit’. This
is due to the fact that a seller wants to verify whether a buyer is credit-worthy or not.
For this purpose, the seller contacts his bank to do this verification. Since this
verification does not belong to the core processes of an order from catalog it is
outside the defined system boundary (Madsen 2000).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(")
Buyer

Bank
Request Catalog

«u se »
\
/

Register «extemal»
Verify Credit

\

/ '

Request Price Seller

Order Product

Request Order Status
Figure 7.5 Use Case Diagram: order from catalog

Accordingly, the use case ‘Verify Credit’ must be defined in another system of
transactions. Therefore, the use case utilizes it and the interfaces for the bank are
stereotyped as ‘external’. Nevertheless, it is necessary to analyses the required inputs
and outputs from/to the external system. The main function of the requirement
workflow is to describe each use case in detail. We have developed a template for the
purpose o f a detailed use case description. Fig. 7.6 depicts the instantiated template
for the use case ‘Register Buyer’. The template has been designed to cover the
following facts: For each use case the involved interfaces (actors) have to be defined.
It must be clear which preconditions must be met before the use case can start and
what initiates the start of the use case. Accordingly, one or more events must be
specified which terminate the use case. The post conditions met by each of the end
states have to be clarified. Between the start event and the end event certain activities
have to be fulfilled within the use case. Note that a use case can cover more than one
scenario. This means that there might exist different paths through a use case
(sometimes leading to different end states).

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U se Case Name: Register Buyer

Summary: In order to do further business with the Seller (obtain price quotes
or order products), the Seller requires the Buyer to register and
obtain a Buyer ID. Therefore, the Buyer provides the personal an
credit information required for registration, and the Seller issue a
Buyer ID

Interfaces/Act
ors:

Buyer IS, Seller IS (internal) Bank (external)

Preconditions: None
Begins When Buyer initiates the Registration Process
Description: The Buyer initiates the registration process and documents the

following information:
Bill To details:

Buyer name
Bill to address (street, city, zip, country)
Contact name (first, middle initial, last)
Contact phone

Ship To details (if different from Bill To info):
Ship to address (street, city, zip, country)
Ship to contact name (first, middle initial, last)
Ship to contact phone

Credit card info:
Credit card number
Credit Cardholder Name
Credit Card Issuer Name
Credit Card Type
Credit Expiration Date
Encrypted signature

Respond-by date (date by which the Buyer wishes to receive the
Buyer ID)
The Buyer then sends this information to the Seller.
When the Seller receives the request, the Seller checks the
respond-by date. If the date has passed, the request is discarded.
If the Respond-by date has not passed, the Seller validates the
Buyer credit information (Uses Verify Credit Use Case). If the
credit information is not valid, the Seller sends the Buyer a
rejection notice containing the following information:

Rejection reason code
Rejection reason description

If the Buyers credit information is valid, the Seller creates a Buyer
ID for the Buyer. The Seller then sends a notice to the Buyer with
the Buyer ID

Ends when: The Buyer receives a response from Seller, or the respond-by date
is exceeded

Exceptions: None
Post Buyer has a Buyer ID, a rejection of the Registration Request, or

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conditions: the request has been discarded

Figure 7.6 Use Case Description of ‘Register Buyer’

Buyer IS Seller IS

Receive
Registration

Request
Registration

/ Validate N
(Registration

Request

Failed I ok

Validate
Credit Data

yesFailed no

I Request
\ is Valicated

Register
Buyer

Send
Registration
Response

Recieve
Registration
Response, /

Figure 7.7 Activity diagram of Register Buyer

The use case description has to capture all possible scenarios through a use case. To
give a better understanding of the activities performed in a use case the textual
description within the use case template is accompanied by an activity diagram for
each use case. For each scenario, the activities are given in the order they are
regularly performed. It must be evident which conditions/decisions lead to different
scenarios. Furthermore, it must be clear which interfaces (actors) are involved in each
activity. This can be defined by using swimlanes in activity diagrams (see Fig. 7.7)

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Randy 1996).
Finally, each use case description must cover a description of the business objects that
are subject to the activities of the use case. The description in the use case template
must allow derivation of the business objects structure in a class diagram.

7.I.2.3. Initial risk analysis
FMEA (Failure Mode and Effects Analysis) is an easy to use and yet powerful pro­
active engineering quality method that helps us to identify and counter weak points in
the early conception phase of products and processes.
We will use the method (FMEA) to identify all types of risk including commercial
risk (failure to give the intended return on investment), business risk (impact on the
business of failure of the Product, either before or after deployment), program risk
(failure to deliver on time), development risk (Product development is more difficult
or costly than expected) and support risk (high cost of user support or maintenance
because of product fragility) related to the proposed product. In addition, risks
relating to staff implications (users, support staff, management) will also be
considered - including operating procedures, redundancy, retraining, morale, re­
deployment, new management structures, etc.

System
event

Priority
Wt Failure Modes Likelihood

Detection
Mechanisms

Counter
Measures

Search foi
book 54

Title misspelled by
user

Medium (or other
metric) Spell check words

Suggest
corrections to
user

Check out
book 72 Bar code misread Low Check digit Request rescan
Find book
on the shelf 18

Book is not
available Low Check record Find again

Table 7.1 Failure Mode Analyses

This matrix is derived from QFD called Failure Mode and Effects Analysis (FMEA)
table. It is a really valuable tool for RUP. It improves the quality, reliability, and
safety of processes, increases customer satisfaction and reduces product development
timing and cost / support integrated product development.

In addition, FMEA is a much more robust approach to understanding and dealing
with failure modes of the system. It also is more appropriate as a reliability
enhancement tool.

Finally, we take three use cases as examples to illustrate how to implement FMEA
method in this table. We not only describe the failure models that might occur in the
library system but also give the solution to that problem. In other words, when
possible failures are identified, the details to solve this problem are entered in the
FMEA table and dealt with accordingly.

7.I.2.4. UORE (usage oriented requirement engineering)

RUP is based on the use case driven. The use case driven analysis advantage is to
help to cope with the complexity of the requirements analysis processes. By

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

identifying and then independently analyzing different use cases we may focus on
one, narrow aspect of the system usage at a time. But it still has some disadvantages.
The lack o f synthesis is probably the main drawback of UCDA. What we really
would like to get from requirements analysis is a model that captures the functional
requirements and system usage without any design aspects.
In general, UCDA (use case driven analysis) does not fully address the following
issue:
• Use cases are not independent. They may overlap, occur simultaneously, or
influence each other.
• Use cases occur under specific conditions. They have invocation and termination
contexts.
• The level of abstraction of use cases and their length are matters of arbitrary choice.
• The use cases can, in practice, guarantee only partial coverage of all possible system
usage scenarios.
So we will integrate some new techniques and further evolve the use case driven
analysis so that we can overcome these kinds of limitations. We will extend the use
case driven analysis with synthesis phase; moreover, use cases are formalized and
integrated into a synthesized usage model. The synthesized usage model captures
functional requirements and system usage in a more formal way than user case driven
analysis. The Synthesized usage model is intended to be a part of requirement
specification, and a reference model for validation and verification.

The process of UORE (usage oriented requirement engineering) consists of two
phases, analysis and synthesis. The analysis phase has an informal requirement
description as input, and produces the use case model containing description of actors
and use cases. This model, in turn, is used as input to the synthesis phase that
formalizes the use cases, integrates them, and creates the synthesized usage model.

7.I.2.4. lAnalysis phase

The analysis phase o f UORE consists o f two interrelated activities (Addison 2002):

1. Identification of use cases and actors.

2. Unification of terminology.

Use case model

(1) Use case specification

In UORE an actor represents a user that belongs to a set of users with common
behavior and goals. Unlike objectory, it treats the use case as classes. We regard them
just as examples of system usage. On the other hands, each use case describes the
system behavior, as seen by one actor only. This single-actor-view approach makes
the use case concept simpler. This provides a clear criterion for the construction uses
case descriptions and the reduction of associated complexity. In UORE, the
description of each use case contains a list of conditions defining a context in which
the specific flow of events of the use case can occur.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Here, we already get the use cases, actors from the use case model. Hence, we are
going to formalize the use cases, integrate them, and create a synthesized usage model
in the synthesis phase.
The synthesis phase consists of three activities:
1. Formalization o f use cases
2. Integration of use cases
3. Verification
The formalization activity aims at producing a formal use case specification (UCS)
for each use case identified in the analysis phase. The product of this activity is a
collection of UCS’s, represented in the formal, graphic language of message sequence
charts. Each UCS expresses the temporal ordering of user stimuli, system responses,
and atomic operations.
The formalization activity has the following steps:
1. Identification of abstract interface objects.
2. Identification of atomic operations.
3. Creation of one UCS for every use case.
The integration activity aims at merging different use case specifications and
producing a synthesized usage model. The SUM consists of a collection of Usage
views, one for each actor. The integration activity consists of the following three
steps:
1. Identification of user and system actions
2. Creation o f abstract usage scenarios.
3. Integration of abstract usage scenarios.
The purpose of the verification activity is to obtain a consistent and complete SUM.
There are two verification steps related to the formalization activity and integration
activity respectively:
1. Verification of UCS
2. Verification of SUM
The UORE method solves the problems in the use case driven analysis and provides a
more useful way to aid in the software process design. Certainly, it will go though the
whole process and enhance the quality of the software(Addison 2002):.

7.2New language
UML is a general purpose modeling language, its notation is very powerful to express
software system model. UML diagram maybe the most important part in the UML. It
can model software system from static and dynamic viewpoint, and consists of lots of
different diagrams. Although UML diagrams are very popular notations for software
system modeling, it still has some limitations. In this section, we will use some useful
additional methods to evolve the language.
Our example will be built around the principal UML diagrams to show how to
enhance the diagram’s functions in modeling software systems.

Use case diagram

Use case diagram is a very important diagram in UML and RUP development.
However, a use case diagram still has some limitations as mentioned above; therefore,

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we will try to integrate QFD-style matrices with use case diagrams in order to solve
these problems.
(1) “User X Actor “ matrix points out relative importance of the role by value, so we

can add that information in use case diagrams to indicate the importance o f each
role. Therefore, we adopt “Tagged value” (one of UML extension mechanisms) to
insert that information into a use case diagram. The benefit of this improvement is
to add more details about the role in the use case diagram so that those use case
diagrams can represent more information and are easy to understand.

(2) “Actor X Use Case” matrix describes the function weight of each use case. We
also adopt the same method in (1) to represent information in the use case
diagram.

(3) “User Demand Quality X Use Case” matrix depicts the user demanded quality for
each use case. Customer requirements are extremely important in the beginning
stage of software design. Normally, customers will bring forward lots of
requirements, but not all of them are valuable. So we use a need-opportunity
matrix to prioritize user demands, then combine the more valuable customer
requirements with the “User Demand Quality X Use Case “ matrix, and finally we
represent this information in use case diagram by the “constraint” extension
mechanism.

(4) We can use the UML extension constraint to represent the information derived
from the KANO method described in section 5. What we want to do is to make
designers understand the use case easier, and increase the amount o f details.

Actually, there are no main limitations in the use case diagram. The only problem is
how to map use case diagram into other diagrams because the use case diagram is a
high-level description.

We can try to use flow charts to solve these problems because a flow chart has
powerful ability to represent. Flow charts tend to provide a different aspect to a
process or a task. Flow charts provide an excellent form of documentation for a
process, and quite often are useful when examining how various steps in a process
work together.

Class diagram and object diagram

Class and object diagrams are directly capable of representing business entities as
objects. Objects are logically manipulated during business processes. The shared
attributes and operations of objects are defined in classes. A class is a description of a
set of objects sharing the same attributes, operations, relationships and semantics.
Class diagrams can also represent different types of relationships amongst classes.

Given the static nature of classes/objects, these diagrams seem to be adequate for
defining business entities; however classes can be stereotyped in order to enhance
class modeling for business organizations.

The information derived from QFD-style matrix is shown below:

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(l)“Use Cases X Actor Role” matrix describes the relative importance of each role
and also can be represented in class diagram by the “tagged value” extension
mechanism.

(2)“Object X Classes” matrixes show the relationship between the objects and
superclasses, so all the objects can be represented as a new class by the stereotype
extension mechanism. Furthermore, the “Object X Data Attribute” matrix can provide
attributes of each class, so we can add them into class diagram. “Object X Object”
matrix will describe the relationship among object and can be shown in the class
diagram.

Object Diagram

Object diagrams are also closely linked to class diagrams. Just as an object is an
instance of a class, an object diagram could be viewed as an instance of a class
diagram. Object diagrams describe the static structure of a system at a particular time
and they are used to test the accuracy of class diagrams.

Object name : Class
Named object

: Class
Unnamed object

Object name : Class::Package
Named object with path name

Table 7.2 Object Definitions

Object names
each object is represented by a rectangle that contains the name of the object and its
class underlined and separated by a colon.

Object. Name : Class
Attribute type = 'Value'
Attribute type = 'Value1
Attribute type = 'Value'
Attribute type = 'Value'

Object with attributes
Table 7.3 Objects with Attributes

Object attributes
object attributes are list in a separate compartment with classes. However, unlike
classes, object attributes must have values assigned to them.

The information can be captured from QFD-style matrix shown below:

(l)”Object X Data Attribute” matrix, “Object X Object” matrix and “ Object X Class”

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matrix show the common data attributes, association relationships between objects
and relationships between the object and superclass. This kind of information can be
combined with an object diagram.

(2) “Object X Data Attribute” matrix and “ Object X Class” matrix also prioritize the
importance of the object, so we can add these details into an object diagram by tagged
value.
Interaction diagram
An interaction diagram is a diagram that shows an interaction, consisting of a set of
objects and their relationships, including messages that may be dispatched among
them. Activity diagrams show the flow from activity to activity while interaction
diagrams emphasize the flow from object to object. There are several ways to capture
detailed business process information that provide more information in order to
supplement use cases. Two of the possibilities within UML are sequence diagrams
and activity diagrams.

Activity diagram
An activity diagram illustrates the dynamic nature of a system by modeling the flow
of control from activity to activity. An activity represents an operation on some class
in the system that results in a change in the state of the system. Typically, activity
diagrams are used to model workflow or business processes and internal operation.
Because an activity diagram is a restricted form of state chart diagram, it uses some of
the same modeling conventions(Booch 1998).

We use the following method to improve upon the activity diagram:

(1) The disadvantage of traditional activity diagrams is that they do not make explicit
which objects execute which activities, and the way that the messaging works
between them. The method that we adopt to solve this problem is swimlanes.
Swimlanes can group related activities into one column, and then we put the object
name on the top of each column to indicate which objects execute which activities.
The following diagram shows this method.

S w im lane 2S w irn lane 1

Activity

O bject : Class

Activity

Table 7.4 Activity Diagram

(2) There is no constraint imposed on the nature of the role nor the consistency
amongst the roles defined (e.g. all objects, all organizational units, etc.) So this
deficiency restricts the application of the concept of responsibility to activity

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

diagrams.” User X Actor Role” matrix and “Actor Role X Use Case” matrix can put
supply information to set constraints on the objects in the activity diagram, we can
use the constraint extension mechanism to represent this information. Moreover, the “
Object X Class” matrix shows the relationship between object and superclass; we also
can add this detail into activity diagrams. Additionally, to some degrees, “ Actor Role
X Use Case “ matrix shows the order of the use case, so we can add this information
into activity diagrams by tagged value extension mechanism in order to model the
past state of the object and other units.

Sequence diagrams: captures time-related behavior; and can help optimize message
traffic through out the system.
Sequence diagrams are a kind of interaction diagram that emphasizes the time
ordering of messages. A message is a specification of a communication between
objects that conveys information with the expectation that activity will ensue.

Sequence diagram still have some limitations, we use the following techniques to
solve them:
(1) It is difficult to describe all the scenarios of a use case in one sequence diagram.
Again, we use swimlanes to improve this diagram.

State diagram
A state chart diagram shows the behavior of classes in response to external stimuli.
This diagram models the dynamic flow of control from state to state within a system.

The matrix we can use to suppose the state diagram is shown below:
(1) In the ’’Actor Role X Use Case ” matrix, it shows the functions and operations in
which each actor role participates. Each use case represents a coherent, useful
function that the system performs for a user playing one (or more) of the actor roles.
Referring to the limitation of state diagram, which its events don’t correlate with
external actors, classes and package; we can use constraint extension mechanism to
represent the actors in state diagram(Booch 1998).

7.3 Summary
In this section we propose a new process based on the Rational Unified Process, UML
and other techniques. The requirements of modeling using RUP and UML contribute
to a consistent design of common business objects in the following way. The business
workflow helps in understanding the focused business domain. The requirement
workflow describes the specifics of the business domain. The vision and scope
statement of the requirement workflow together with a use case diagram and
supplementary use case definitions allow the exact identification of the boundaries of
a transaction.
Consequently, the adapted Rational Unified Process and UML provide meaningful
concepts for modeling transactions.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.0 Extended example
Now that we have had some understanding about new methods mentioned above, we
are going to show how these methods can be applied in enhancing UML and RUP in a
hypothetical example (it is just one way directional to apply new methods into UML
and RUP).
Elevator Problem
This case study assumes an existence of an elevator company that is designing a new
elevator product. The following description summarizes the market for this new
product (Dannis):
The elevator system designed in our project is an “ideal” elevator in which some of the
technical corners are cut. Our elevator has the basic function that all elevator systems
have, such as moving up and down, opening and closing doors, and of course, picking up
passengers. The elevator system shall provide vertical transportation, for personnel
needs, between two or more floors of a multi-floor office and or residential building.
The elevator system shall be able to support transportation for at least 10 and no more
than 20 stories. The elevator shall be able to provide transportation for 10 to 20
people per floor. This elevator system shall provide vertical transportation in a rapid,
safe, reliable, and cost-effective manner. There are car call buttons in the car
corresponding to each floor. For every floor except for the top floor and the lobby, there
are two hall call buttons for the passengers to call for going up and down. There is only
one down hall call button at the top floor and one up hall call button in the lobby. When
the car stops at a floor, the doors are opened and the car lantern indicating the current
direction of the car is illuminated so that the passengers know the current moving
direction of the car. The car moves fast between floors, but it should be able to slow down
early enough to stop at a desired floor. In order to certificate system safety, an emergency
brake will be triggered and the car will be forced to stop under any unsafe conditions.

Elevator System Operational Concept
(1) Vision
The new elevator system is directed at the major market niche of standard 10 to 20
story office buildings. This product is not to address the low end and high ends of the
10 to 20-story office building market, but the center of this market. Marketing
estimates are that 100,000 of these buildings are being constructed each year. Each
such building will require six to twenty elevator cars and associated control systems
and maintenance/operations support. This market is envisioned to be very price
competitive but requiring that basic threshold of performance and cost is met.

(2) Mission Requirement
The mission requirement for this new product is to capture 20% of the market of new
building starts. Since our Company is not currently one of the major market leaders,
this mission requirement will primarily have to be achieved by providing superior
operational performance at less operational cost than the products of the major
vendors. Our performance and cost goals are to have 20% better performance on a
weighted performance index at 80% of the operational cost compared to the current
products of the major vendors.

(3) Operational Phase Scenarios

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Passenger (including mobility, visually and hearing challenged) request an service,
receive feedback that their request was accepted, receive input that the elevator car is
approaching and when an entry opportunity is available, enter elevator car, request a
floor, receive feedback that their request was accepted, receive feedback the door is
closing, receive feedback about what floor at which the elevator is stopping, receive
feedback that an exit opportunity is available, and exit the elevator with no physical
impediments.

B A passenger enters the elevator car, as described in 1, but finds an emergency
situation before an exit opportunity is presented, and notifies the police or health
authorities using that communication equipment that is part of the elevator. Elevator
maintenance personnel create an exit opportunity.

C Passengers are receiving transportation in the elevator system when a fire breaks
out in the building; the building alarm system sends a signal to elevator system to stop
the elevator cars at the nearest floor, provide exit opportunity, and sound a fire alarm.
Passengers leave elevator cars. Elevator cars are reactivated by special access
available to maintenance personnel.

D Passengers are entering (exiting) an elevator car when doors start to shut;
passengers can stop doors from shutting and continue to enter (exit).

E The elevator car stops functioning and sends a signal for service. Passengers in the
elevator car push an emergency alarm that notifies building personnel to come and
help them. Elevator maintenance personnel create an exit opportunity.

F Too many passengers enter an elevator car and the weight of passengers in the
elevator car exceeds a preset safety limit; the elevator car signals a capacity problem
and provides a prolonged exit opportunity until some passengers exit the car.

G Maintain a comfortable environment in the elevator by sensing the temperature in
the elevator car that is based upon heat loss/gain of the passengers and the building
and then supplying the necessary heat loss/gain to keep the passengers comfortable.

H A maintenance person needs to repair an individual car; the maintenance person
places the elevator system in “partial maintenance” mode so that the other cars can
continue to pick up passengers while the car(s) in question is (are) being diagnosed,
repaired, and tested. After completion the maintenance person places the elevator
system in “full operation” mode (Dannis).

I Electric power is transferred to the elevator from the building.
8.1 QFD-style matrix
We will adopt QFD-style matrices to analyze the elevator system and further capture
more useful information so that we can use them in the subsequent UML diagrams.

Users X Actor Role

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Individual users Passenger Elevator Operator Cleaner Technician

Jan •
Pat • •
David • •

Calvin • •
Prioritization of role 3 9 1 1

Table 8.1 User X Actor Roles

Table 8.1 lists the different roles and the correlation strength between Actor Role and
Individual Users. The circle in the matrix indicates the correlation strength between

Actor Role and Individual Users. ® is higher than • . The bottom row shows the
relative importance of the roles. In this example, the Elevator Controller role has the
highest priority, followed by the Cleaner, Technician and Passenger. In this thesis, we
use the 9/3/1-rating scheme for both customer requirements and their relation to
metrics.
In the top row of this table, we list the actor roles that carry out the use cases of the
elevator system. However, the actor roles still need to be further validated. I.e. when
people go through this table, they want to know the specific person shown in the
elevator system so that they can understand the table concretely. In addition, the actor
roles in the table also indicate the usage of use case and how many different people
shown in the elevator system.

In fact, the “Prioritization of role” in the last row of the matrix is optional; it really
depends on what the analysis team needs and what kinds of methods they want to
adopt.

Table 8.1 not only adopts the quantitative analysis to indicate the Prioritization of
actor roles but also uses the circles to illustrate the association among the actor roles.
In this matrix, some individual users have more than one-actor roles. Therefore, we
can find that some actor roles are a subclass of other actor roles. In this case, cleaner,
elevator controller and technician are the subclass of passenger.

Table 8.1 is easy to assemble by interviewing individuals and recording the actions
performed in their daily activities. The circle and numbers in the matrix can allow
designers to more exactly and concretely understand the importance of the actor roles
and further ensure how to allocate the workload within the project. The matrix can be
incrementally developed because it is too difficult for people to categorize all their
activities extemporaneously.

Actor Role X Use Case
Use Case

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Actor Roles Control Elevator Request
Elevator

Call for Help Fix Elevator Activate
Elevator

Clean
Elevator

Operator • I • S • I
Passenger • I • I
Cleaner • I • I
Technician • I • I
Door • I

M otor • I
Function WT. 85 27 108 9 81 9

Actor R oles O pen/C lose Door Stop
Elevator

Go up/down ... R ole wt.

Operator • I • I

H
H• 9

Passenger •s 3

Cleaner 1

Technician 1

D oor •S 1

Motor •s •s 1

Function
WT.

90 90 90

Table 8.2 Actor Role X Use Case

In the Table 8.2, we show the function that each actor role performs and depicts the
reliance between the actor roles and the use cases. In addition, we calculate the

function weights for each use case. Using the standard encoding of • = 1 and ® =9
for the correlation symbols, and the role weights derived from the Users x Actor Role
table, we arrive at the function weights by multiplying the correlation strength and
summing the columns. Furthermore, the value shown in the bottom row of the table is
good to test resource allocation, for example, the use case “ fix elevator “ and “clean
elevator” will get less and limited test resource because of their low score. Also, there
are some others symbols for example “I” and “S” in the matrix. In fact, these symbols
mean that some use cases are initiated by one actor role, but allow the participation of
other roles in the processes of execution. For example, the role of Door initiates the
use case control elevator, and then provides a service to the Elevator Operator during

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Open/Close Door.

A use case is a specific way o f using the system to accomplish an identifiable task.
This matrix lists the main use case of the system and points out what takes place
between the system and actors. In additional, it shows what actor roles are the
initiators of the user case and what actor roles will get service from the use case.
Therefore, we can know the association amongst the use cases described in this
matrix.

User Demanded Quality X Use Case
Use Case

Demanded Ouaiitv
Control
Elevator

Clean
Elevator

Fix
Elevator

Open/close
elevator

Go
up/down

Must be fast •
Must be proficient •
Can’t make mistake •
Keep a appropriate speed • •

Table 8.3 User Demanded Quality X Use Case

In the Table 8.3, we show the user-demanded quality characteristics corresponding to
the some use cases that the system performs. All the demand quality attributes shown
in the matrix are important information for UML diagrams. In Chapter 8 case study,
we will try to integrate this kind of information with the cost benefit chart and the use
case diagram.
In fact, OOA lacks this kind of information, so this information will be complimented
for OOA. In additional, this matrix is very useful for designers when they consider
the market service and competitive advantages.

Use Cases X Data Attributes
Data Attributes

User Case Floor Speed Weight State Direction
Control elevator

• • • • •

Request elevator
•

O pen/close door
•

Go up/down
• • • •

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stop elevator
• • • •

Table 8.4 Use Cases X Data Attributes

The above table shows different data attributes used in various use cases, for example
floor, speed; the state of data attributes -for example, emergency-stop state, door state
and request-floor state.
Finally, we will have all the information needed to construct the process model by
combining this matrix with the Use Case x Classes and Classes x Data Attribute
matrices. Therefore, that information can be used in UML diagrams to describe the
use case or class attributes.

Classes X Data Attributes
Data Attributes

Classes Name Weight
Work
category

Employee
ID Shape Color Sex Height Usage

Passenger • • • • • •
Technician • • • • • •

Cleaner • • • • • •
Operator • • • • • •

Carcallbutton • • •
Hallcallbutton • • •

Carpositionindicato
r • • •

CarDirectionlndicat
or • • •

Table 8.5 Classes X Data Attributes

The Table 8.5 describes different classes and data attributes for each class. We can
easily get the superclass by explicitly identifying classes that share data attribute
definitions.
This matrix might provide some details to the system description and will be valuable
producing a class diagram.

Classes X Classes, Showing Entity Relationships
Classes

Classes Button Indicator Door Motor
Button 1

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Floor 0.2 0.2 1
Door
Light O.n O.n

Table 8.6 Classes X Classes

The Table 8.6 shows the association relationship between pairs of entities in the
system e.g. "A Button is associated with zero to many Floor", or "A Floor is
associated with exactly one Door." This is an important relationship used in defining
the set associations among classes. We can represent this kind of information among
classes into UML diagrams for example (sequence diagram, collaboration diagram and
classes Diagram). The UML extension mechanism is the best way to describe this
information.

Classes x Superclasses
Superclass

C lasses Button Indicate • ••

CarCallButton

•

CarPositionlndicator

•

HalCallButton

•

CarDirectionlndicator

•

. . .

Table 8.7 Classes x Superclasses
This Table 8.7 shows the relationship between classes and superclass and provides
clear information to tell all (each) superclasses when multiple inheritance should be
considered.

Use Cases X IEEE Quality Factors

Quality Factors
U se C ase Efficiency Integrit

y

Reliabilit

y
Survivabilit

y
Usability Correctne

ss
Maintainabilit

y
Control
elevator • • • • •

Request
elevator • • •

Call for
help • • •

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fix
elevator • • •
Activate
elevator • •

Clean
elevator •

Open/Clo
se Door • •

Go
up/down • •

Stop
elevator •

Quality Factors
Use
Case

Verifiabil
ity

Expandab
ility

Flexibi 1 it

y
Interopera
bility

Portabilit

y
Reusabili

ty
Control
elevator •

Request
elevator •

Call for
help •

Fix
elevator
Activat

e
elevator

• •

Clean
elevator •

Open/C
lose
Door

• •

Go
up/dow
n

• •

Table 8.8 Use Cases X IEEE Quality Factors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Table 8.8 represents the use cases and their related quality factors. In fact, this
matrix can be used to map the functions of the system to a set of quality factors.

The quality factors of a system are not essential parts to rate the system’s quality.
They are only necessary condition to reach the goal. However, the general and
standard quality factors will be very helpful for designers and engineers to implement
the system and enhance the software quality. The information derived from the table
about quality factors is really useful. We can adopt tag values and constraints methods
(UML extension mechanisms) to represent them in UML diagrams(Lamia).

8.2 Requirement workflow
Customers’ needs are the most important parts in the beginning stage of the software
system design. However, the designers need to evaluate all of the needs provided by
the customers so that they can make sure what is the priority in the whole process. In
the following section, we try to define one method to classify and prioritize the
customers’ need.

8.2.1 Cost benefit analysis

8.2.1.1 Gather domain knowledge

First o f all, we will use a technique such as contextual inquiry to document the
business goals and interviews with users, and then we will employ a technique such
as personas to organize the information.

In fact, this step has the greatest variability in duration. If we have only limited access
to our customers and domain knowledge, it may take us a few hours. Otherwise, it
may consume a few weeks.

Contextual inquiry

Contextual inquiry (Beyer 1998) is best used in the early stages of development, since
a lot o f the derived information is subjective—how people feel about their jobs, etc. In
addition, Contextual inquiry is a hybrid between face-to-face interviews and
observations in which the customer and the researcher are equal partners in
investigating and understanding the usage of a product.

In our example, using contextual inquiry, we need to visit some companies and see
how their elevator system works. We need to take in not only physical arrangements
such as the location of the elevator system, or the structure of the motor inside, but
also an operation mechanism, such as how to process customer requests or the level
of an emergency. All of this will help to define a context for their activities and
implement the design of the elevator system. Furthermore, We also need to ask
questions to the users and listen to their gripes about their existing product; the
customers consist of passengers, technician, cleaners, and elevator operators. In fact,
they are the end-users of the elevator system. We can ask them what would make their
jobs easier; what design changes would help them because they are partners in the

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design process.

Contextual inquiry

Location People Culture Value

© © © ©
• Inside/outside • Who else What are the • What values are
• Problems uses the working methods? important to the
• Safety issues product? • What styles of users?
• • Who has communication • What does the
Environment(te an important prevail? customer like,
mp, humidity) relationship • What is the dislike, hate, love,
• Period of time- with the operation mechanism tolerate, desire etc?
usage, frequency user? to process request? • What represents
of use success and failure?

Table 8.9 Contextual inquiry

Results
The following results are the notes that we took during the interviews with the end-
users:
Passengers: they are the people who reach a destination by elevator.
Maybe they are the student who goes upstairs or downstairs by elevator, the resident
who are in or out by elevator or the white-collar worker who access their work by the
elevator.
Passengers’ words:

1. I think placing a mirror in the elevator would make passengers feel
more comfortable.

2. I always feel dizzy when I take elevator, so maybe the speed of the
elevator is too fast.

3. The work efficiency of the technician and cleaner is very low.

Elevator operator: they are the people who operate the elevator
They utilize the operation panel, keys and telephones to implement their work.
Their work environment is limited to the room of elevator.
Operators’ word:

1. The operation panel of the elevator should consist of an emergency
button and telephone for emergency calls.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cleaner: The cleaner’s job is to clean the elevator
They use the duster cloth, vacuum and detergent to finish the job

Technician: They are the people who fix the elevator’s problems
They utilize the meter, screwdrivers and forceps to complete the work.

So what we captured from the notes is shown below:
The elevator has an Up arrow button and a Down arrow button placed, depending on
the floor. On pressing the button it turns on. A display is provided for the potential
passenger and the passenger to identify the moving direction and the current floor.
When the elevator car is moving in the opposite direction of the request and has no
passenger getting off at the requested floor but has few passengers going ahead, will
not come to a halt during that direction. It is equipped with sensors and smoke
detectors for the passenger’s safety. If the total weight on the elevator car exceeds the
maximum capacity, it displays a request message asking a passenger to step out. A
board is placed inside the elevator showing “Maximum capacity 10 passengers (or)
20001bs”. The elevator halts at each floor for which the floor button is turned on as it
passes through. When passengers experience a emergency, they can press the
emergencies button or use the telephone to call for help. There are some room that
can be used to install mirror or a picture frame in order to alleviate passengers’ mood.
The elevator should keep at an appropriate speed to avoid making the passenger
uncomfortable as it goes up/down.

In conclusion, the main difference between the contextual inquiry and the traditional
interview is that the inquiry demands a partnership between customer and the product
development team. The product developers bring special product knowledge, and the
customers bring special knowledge about their activity or specific needs. Both can be
viewed as experts and the inquiry is a joint search for information.

Personas

In software development, a thorough understanding of end-user’s needs is paramount.
Throughout the design phase of software development, a wide variety of design
decisions must be made. Each of these decisions considers options that could either
advance or hinder the ease of use of the end product. So User Personas are defined to
illustrate aspects of different types of people that will be involved with the software.
This section o f the document identifies and describes the various User Personas that
will be considered during the design stages of the product.

The way you communicate the personas and present your deliverables is key to
ensuring consistency of vision. Without that consistency, you’ll spend far too much
time arguing with your colleagues about who your users are rather than how to meet
their needs (Alan).

Creating personas

1. Develop a list of personas

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our persona investigation for the elevator system began by gathering the knowledge
of the elevator system. We spent several weeks visiting the companies and
interviewing the users, figuring out the operation mechanism and features of the
elevator. The information reaped some useful demographic findings about our target
user group and helped define the interview sample for building personas.

At last, we were good to go— our market research review was completed and our
persona interviews were lined up and scheduled. All in all, the persona interviewing
process took about 3 weeks to complete. Interviews ran 1-2 hours each, and most
were rich with details. Based on the subject interviews' goals, we created three
personas for the project: Bob, Robert, and Annie.

The goal is to create between three and twelve personas for a project, with one to
three of these selected as the primary persona(s). The primary persona is the
individual whose needs drive the design.

The personas will describe the profile of various individuals involved with and
affected by the product, not just the person sitting at the computer using the software
constantly. Each persona is a fictional character; this is very important. Even though it
would be easy to just take a picture of the client and users for the personas, in practice
this approach is not effective. Real people may share characteristics, but each has
unique quirks. By taking a composite of characteristics, the persona becomes a more
useful tool (Alan).

2. Define the personas

The Persona Chart for Bob (Primary Persona)
Gender: male
Age: 35
Occupation: Controller
Home life: Divorced, no children.
Education: BS in power
LIFESTYLE
Activities: Goes out to dinner twice a week, four times a month for a nice dinner and
a bottle of wine with a girlfriend. Fishes at local lakes, canoes, hikes, tries to take his
kids on a different outing each weekend "to keep our time together special."
Ultimate goal: To discover new things to do with girlfriend. To be a good, caring
father in an increasingly crazy and busy world.
Email: blade@hotmail.com
Quote: "I'm an explorer. I'm the kind of guy who wants to know every road in the
county and where it might take me."

Robert
Gender: Male
Age: 27
Education: BS electronic Engineering from Texas Tech

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:blade@hotmail.com

Occupation: Design Engineer 1,4 to 5 years
LIFESTYLE
Activity: Spends _ time in the office, _ time in the field, Spends 3 hrs/day avg. on the
computer
Skill: Relatively familiar with computers; Level of Occupational Experience:
moderate
Level of Computer Experience: moderate; Software Run-time Tolerance: low
Software Reliability Expectations: high
Ultimate Goals:
1. Make boss happy.
2. Leave work at 5 every day.
3. Low failure rates.

Annie
Gender: Female
Age: 42
Education: high school
Occupation: cleaner
LIFESTYLE
Activity: Spends 2/3 time in the office, 1/3 time in the field, Spends 2-hrs/day avg. on
the computer
Ultimate Goals:
1. Delegate as much work as possible
2. Leave work before dark
3. Get promoted to Senior Management level

In this product, Bob has been the primary persona who has many more chances to
interact with the system. All the activities of Bob will affect the performance of the
elevator. Compared to Bob, other personas have less effect on the product.

Now we have a better idea of how to document your personas. In fact, It is simply an
important step on the way to designing and building better products. Also, what is
described above is a cookie-cutter approach towards documenting your personas.
Each project will have different documentation requirements to make different points,
but the underlying principles stay the same. As a designer, it is up to you to determine
how much persona detail is sufficient and how to set up the personas and their
presentation so that you pre-empt confusion and questions. You also need to provide a
quick way to familiarize newcomers to the persona set, and find ways for your
colleagues and clients to keep focused on the personas throughout the project (Alan).

8.2.1.2 Evaluate the product

For the elevator system, we would adopt a heuristic evaluation that can allow
specialists to use a list of heuristics (Nielsen 1994), or guidelines, to evaluate products
in the design process. Certainly, any other techniques could be used in this step such
as usability testing, interviews, walkthroughs, and surveys.

We will assemble some evaluators that include members from different groups (at

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

least one member from Engineering and Design Groups) to do this evaluation. In fact,
members from other different groups enhances the quality o f the evaluation as each
person approaches the product with a different perspective and finds problems related
to his or her discipline.

These are ten general principles for user interface design. They are called "heuristics"
because they are more in the nature of rules of thumb than specific usability
guidelines.

Visibility of system status
The system should always keep users informed about what is going on, through
appropriate feedback within reasonable time.
No, the visibility of this system is not good enough to inform users what is going on
next.
For example, passengers don’t know what happen in the next, how long they will
wait, and what the elevator system processes after they press the hallpositionbutton to
request. So the elevator system will be better if they install the direction indicator,
position indicator and time indicator in each floor.

Match between system and the real world
The system should speak the users' language, with words, phrases and concepts
familiar to the user, rather than system-oriented terms. Follow real-world
conventions, making information appear in a natural and logical order.

Yes. These buttons illuminate when pressed and cause the elevator to visit the
corresponding floor. In addition, the door will retrieve automatically when it senses
that people enter.

User control and freedom
Users often choose system functions by mistake and will need a clearly marked
"emergency exit" to leave the unwanted state without having to go through an
extended dialogue. Supports undo and redo.

Yes, the system provides service for supporting undo. For example, these buttons
illuminate when pressed, and then the illumination will be cancel if pressed again.

Consistency and standards
Users should not have to wonder whether different words, situations, or actions mean
the same thing. Follow platform conventions.
No. The elevator has a set of buttons, one for each floor. Furthermore, there are some
notations beside the button to explain the usage of the button.
Error prevention
Even better than good error messages is a careful design that prevents a problem from
occurring in the first place.
Yes. If the total weight on the elevator car exceeds the maximum capacity, it displays
a request message asking a passenger to step out
Recognition rather than recall
Make objects, actions, and options visible. The user should not have to remember
information from one part of the dialogue to another. Instructions for use of the
system should be visible or easily retrievable whenever appropriate.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Yes. The elevator is relatively simple system so that the customer uses the system
easily.

Flexibility and efficiency of use
Accelerators — unseen by the novice user — may often speed up the interaction for the
expert user such that the system can cater to both inexperienced and experienced
users. Allow users to tailor frequent actions.
No. The elevator doesn’t provide that service to speed up the interaction.
Aesthetic and minimalist design
Dialogues should not contain information that is irrelevant or rarely needed. Every
extra unit of information in a dialogue competes with the relevant units of information
and diminishes their relative visibility.
Yes. We will install mirror and picture frame inside the elevator.

Help users recognize, diagnose, and recover from errors
Error messages should be expressed in plain language (no codes), precisely indicate
the problem, and constructively suggest a solution.
Yes. The elevator informs the user by different rings if errors occur.

Help and documentation
Even though it is better if the system can be used without documentation, it may be
necessary to provide help and documentation. Any such information should be easy to
search, focused on the user's task, list concrete steps to be carried out, and not be too
large.
Yes. There are emergency buttons and telephone used to call for help in the elevator
system.

8.2.1.2.1 Estimate system requirements
T h e m iss io n requ irem en t for our e lev a to r sy stem is to capture 20% o f the m arket o f n ew
b u ild in g starts. Furtherm ore, our p erform an ce and c o s t g o a ls are to h ave 20% better
p erform an ce o n a w e ig h ted p erform an ce in d ex at 80% o f the op eration a l c o s t com p ared
to the current p rod ucts o f th e m ajor ven d ors. T hus, w e w ill accu rately es tim a te the
fea tu res o f our n e w e lev a to r sy stem in th e fo llo w in g sectio n s .

A. Each elevator has a set of m buttons, one for each floor. Each floor, except the first
floor and top floor has two buttons, one to request an up-elevator and one to request a
down-elevator.

B. These buttons illuminate when pressed and cause the elevator to visit the
corresponding floor. The illumination is canceled when an elevator visits the floor.

C. The door will retrieve automatically when it senses that people enter.

D. The elevator has the button for emergency

E. Each elevator has a telephone.

F. When an elevator has no requests, it remains at its current floor with its doors
closed

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G. Each elevator has a mirror

H. Each elevator has a picture frame.

I. The operator must be proficient in controlling elevator
J. The elevator goes up/down at an appropriate speed.
K. The elevator has the direction indicators, position indicators and time indicators in
each floor.
L. These buttons illuminate when pressed, and then the illumination will be cancelled
if pressed again
M. There are some notations beside the button to explain the usage of the button.
N. If the total weight on the elevator car exceeds the maximum capacity, it displays a
request message asking a passenger to step out.
O. The elevator informs the user by different rings if errors occur.

(1) Collect cost data
Cost data must be collected for estimating the features of the new elevator system.
Three sources o f data are historical organization experience, current system costs and
market research. This is one of the most difficult steps in a CBA (cost benefit
analysis), but also on of the most important.

a. Historical Organization Data
Historical data of the former elevator system may be used to estimate the
purchase prices of software and services relate to some features of the new
elevator system. The numbers will probably need to be adjusted to account for
differing quantities and qualities for the proposed system. In our company, we
have the past 10 years historical data that can be reference to support estimating
features of our current elevator system.

b. Current System Costs
Our company will take 3 years to implement the new elevator system, hence the
hardware and software for the features design will be account for the current
system cost of our new system.

c. Market Research
Market research also is an important factor used to estimate the cost of the feature
of our system. Our company just captures 10% of the market in the last year
because we are not the market leaders. However, we try to capture 20% of the
market in 3 years by integrating some new features with the new elevator system.
We will provide a realistic price for our elevator system based on the market
resea rch .

(2) Estimate costs
Many factors must be considered during the process of estimating the costs of
features design associated with our elevator system. The following factors will be
addressed: Activities and Resources, Personnel Costs, Indirect Costs, Depreciation,
and Annual Costs.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a. Activities and Resources
Identify and estimate the costs associated with the initiation, design, development,
operation, and maintenance of features. Our approach is to identify the activities
performed and estimate the cost of the resources associated with each feature. The
activities identified below should be addressed.

• Features Definition
• Work Process Evaluation
• Cost Benefit Analysis
• Features Implementation

• Design
• Development
• Operation
• Maintenance

• Features Performance Evaluation
A sample list of activities and the required resources (cost elements) is provided
)elow.
ACTIVITY TASK COST ELEM ENTS

Features Initiation Features Definition A nalysts, Managers,
Processors, Customers

Work Process Evaluation A nalysts, Managers,
Processors, Customers

Processing Requirements
Definition

Analysts, Managers,
Processors, Customers

Prepare Cost Benefit Analysis Analysts, M anagers,
Processors, Customers

Features D esign D evelop features Design Analysts, Managers,
Processors

Approve features Design Analysts, Managers,
Processors

Features Developm ent D evelop and Test Programs and
Procedures

Analysts, Managers,
Processors, Programmers,
Computers, Software

D evelop Transition Plan A nalysts, Managers,
Processors,

Implement N ew System &
Procedures

Analysts, Managers,
Processors, Programmers,
Computers, Software

Features Operation Operate N ew System Analysts, Managers,
Processors, Programmers,
Computers, Software

Features M aintenance Correct Errors & Make Changes to
the System

A nalysts, Managers,
Processors, Programmers,
Computers, Software

Features Evaluation Evaluate System Performance
Compared to Expectations

Analysts, Managers,
Processors, Customers

Table 8.10 System Cost Matrix

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b. Personnel Costs

There are 20 personnel in our company. Their job is to complete the main process of
features design. The reference data used to estimate personnel costs is from the
former elevator evaluation.

(1) The total personnel cost for full or part-time employee is 290,340, broken down as
follows:

(a) The total personnel cost for full or part-time permanent employee 160,890.

(b) The cost factor to be used for employee insurance and health benefits based
on actual cost are 10,480.

(c) The cost factor to be used for employee miscellaneous fringe benefits
(workmen's compensation, bonuses and awards, and unemployment programs) is
93,650.

(2) The total personnel cost for intermittent or temporary employees is 25,320.

full or part-time
em ployee

intermittent or temporary
em ployees

Personnel costs

A 10,874 1,138 12,012

B 13,384 1,273 14,657

C 12,877 1,333 14,210

D 11,432 1,088 12,520

E 27,393 2,734 30,127

F 26,938 2,683 29,621

G 22,394 1,034 23,428

H 20,388 1,188 21,576

I 18,384 1,634 20,018

J 17,449 1,476 18,925

K 28,283 2,864 31,147

L 21,999 1,544 23,543

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M 16,394 1,393 17,787

N 15,757 1,255 17,012

0 26,394 2,683 29,077

Total 290,340 25,320 315,660

Table 8.11 personnel costs
c. Indirect Costs
Direct costs, such as direct labor and direct material, are costs incurred in a process
that is "hands on," that directly produces the output. Indirect costs (often referred to as
overhead costs) are incurred in a support role (all costs that are not direct). Typical
overhead items in our new elevator system are indirect labor, indirect material, and
fixed costs such as rent, advertising, taxes, and utilities. Overhead is often expressed
as a percentage of direct labor. In our elevator system, the indirect costs are 58,068.

Indirect Costs

A 3,283

B 3,455

C 3,755

D 3,133

E 5,539

F 5,344

G 3,133

H 3,344

I 3,211

J 3,699

K 5,699

L 3,199

M 3,699

N 2,087

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 5,488

Total 58,068

Table 8.12 Indirect Costs

d. Depreciation
Depreciation is defined as lowering the estimated value of a capital asset (usually
only those items valued at $+5,000 or more). Depreciation is also defined as the
method used to spread the cost of tangible capital assets over an asset's useful life (the
number of years it functions as designed). It is computed by comparing the original
cost (or value) with the estimated value when it can no longer perform the function(s)
for which it was designed, its residual or salvage value.

Depreciation

A 349

B 391

C 344

D 324

E 560

F 540

G 329

H 349

I 339

J 379

K 579

L 329

M 359

N 319

0 510

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6,000Total

Table 8.13 Depreciation
Table 8.13, Tangible Asset Depreciation, illustrates straight-line depreciation of a
$11,000 asset (hardware, software and office supply), with a useful life of 3 years,
and a residual or salvage value of $5,000.

e. Activity Costs
All cost elements must be identified and estimated for each year of the system. This is
necessary for planning and budget considerations. Table 5, Activity Cost Matrix,
illustrates the cost estimates for features for the elevator system.

Initiation Design Developm
ent

Operation mainten
ance

evoluti
on

Cost

A 3,483 5948 47033 10,874 4,887 5,837 78,062

B 3,455 5784 46744 10,384 4,777 5,787 76,931

C 3,555 5988 45776 10,877 4,662 5,982 76,840

D 3,133 5388 46558 10,432 4,776 5,666 75,953

E 5,239 9103 71664 20,393 6,838 7,838 121,07
5

F 5,344 9073 72659 20,638 6,836 7,766 122,31
6

G 3,533 5894 45593 10,394 4,677 5,377 75,468

H 3,544 6539 47885 10,388 4,772 4,922 78,050

I 3,611 5936 46852 10,384 4,562 5,442 76,787

J 3,560 5734 47331 10,409 4,772 4,822 76,628

K 5,279 9009 71659 21,283 6,873 7,963 122,06
6

L 3,699 5564 47343 10,999 4,856 4,886 77,347

M 3,690 5700 46325 10,394 4,983 4,743 75,835

N 3,587 5165 46249 10,757 4,856 4,986 75,600

O 5,288 9175 70329 21,394 6,873 7,983 121,04
2

Total 60,000 100,000 800,000 200,000 80,000 90,000 6,100,
000

Table 8.14 Activity Cost Matrix

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Personnel costs Indirect
costs

Depreciatio
n

Activity
costs

Total costs Costs of the
major vendor

871,020* 58,068 6,000 610,000 1,545,088 1,931,360

Table 8.15 total cost of features
In the table 8.15, we estimate total cost of features of our elevator system. We finally
can reduce 386,272 for the operation cost and that is 80% of the operation cost of the
major vendor.
* It is the personnel cost for 3 years i.e. 290,340 * 3=871,020.

(3). ESTIMATE BENEFITS

Identifying and estimating the value of benefits will probably be the most difficult
task in the CBA process. Six specific activities are addressed in this section.

a. Define Benefits
Benefits are the services, capabilities, and qualities of each system, and can be viewed
as the return from an investment. Some benefits for elevator systems are:

Accuracy - our elevator system provide better accuracy by reducing the number of
data entry errors or eliminate some data entry that would, in turn, result in fewer data
entry errors.

Availability - we will spend 3 years in developing and implementing the system.
Efficiency - our elevator system provide faster or more accurate information
processing.
Maintainability - the maintenance costs of our system is less than others.
Reliability - our system can provide greater hardware or software reliability.

b. Identify Benefits
In fact, benefits are from both the company and its customers. Normally, the benefits
to the customers will be much less than the benefits for the company that is
developing the system.

Some benefits for our company include flexibility, system strategy, risk management
and control, organizational changes, and staffing impacts. In our elevator system
design, we won’t allow personnel to perform jobs with little or no extra training and
try to implement the system on schedule.

Possible benefits to customers include improvements to the current services and the
addition of new services. The current services include 7 x 24 service, telephone
inquiry and online technician for solving the problem. On the other hands, our
company will provide some new services to help customers to understand our

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elevator product in depth. For example, our company has created a website to
introduce our elevator product; hence customers can capture all the information for
example operation mechanism, structure, and function of the elevator system by the
website.

c. Estimate Intangible Benefits
We will use a subjective, qualitative rating system to estimate the intangible benefits.
The entire rates are done by a group of specialist familiar with the current elevator
system. Having five people do the evaluation would be ideal, and three evaluators
should be a bare minimum. The numerical values assigned to the ratings then will be
summed and averaged to obtain a score for each benefit. Table 6, Quantify Benefits,
shows the scores for benefits A - O from four reviewers using a scale o f 1 to 5.

Benefit R eview er
1
Score

Reviewer
2
Score

Reviewer
3
Score

Reviewer
4
Score

R eviewer
Average
Score

A 5 4 4 3 4.00

B 4 5 3 4 4.00

C 5 5 5 4 4.75

D 4 3 5 5 4.25

E 5 3 4 5 4.25

F 3 4 5 5 4.25

G 5 4 5 5 4.75

H 5 5 5 4 4.75

I 5 3 4 4 4.00

J 4 5 4 3 4.00

K 4 5 5 5 4.75

L 4 3 5 5 4.25

M 4 4 nJ 3 3.50

N 3 3 5 3 3.50

0 4 4 3 3 3.50

4.27

Table 8.16 Quantify Benefits
Finally, we got average score 4.27 from the rating system. Compared to the score
3.56 of the major vendor, we have 20% better performance than they do.

8.2.1.3 Categorize the Problems

We will use affinity diagramming to classify the problems into manageable categories
because of the number o f problems identified in the evaluation can be very large. This
technique provides us with a chance to see patterns in the problems— which problems
tend to group together and which seem related. These patterns, in turn, give us a more

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

integrated view of the problem space. Instead of focusing narrowly on each individual
problem, we can expand our focus and get a high-level view of all the problem areas.

P roblem s of the e levato r
system

A set of
buttons

E m ergen cy
button

T e le p h o n e in
the e levato r

M irror in the
e levato r

P icture fram e
in the

e levato r

Direction
.position and

tim e indicator

Buttons
illum inate

w hen
pressed

D oor retrieve
autom atically

S tay in the
floor w ithout

request

G o up/down
at an fixed

speed

Illum ination

cancel w hen
press again

O perators
■►are good a t + ■

controlling

Notation

beside the
button

T h e e levato r
ring w hen
outw eight

D ifferent

Figure 8.1 Affinity diagramming

In the following part, we list some categories related to the elevator system.

A. Each elevator has a set of m buttons, one for each floor. Each floor, except the
first floor and top floor has two buttons, one to request and up-elevator and one to
request a down-elevator.

B. These buttons illuminate when pressed and cause the elevator to visit the
76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

corresponding floor. The illumination is canceled when an elevator visits the
floor.

C. The door will retrieve automatically when it senses that people enter.

D. The elevator has the button for emergency

E. Each elevator has a telephone.

F. When an elevator has no requests, it remains at its current floor with its doors
closed

G. Each elevator has a mirror

H. Each elevator has a picture frame.

I. The operator must be proficient in controlling elevator
J. The elevator goes up/down at an appropriate speed.
K. The elevator has the direction indicators, position indicators and time
indicators in each floor.
L. These buttons illuminate when pressed, and then the illumination will be
cancelled if pressed again
M. There are some notations beside the button to explain the usage o f the button.
N. If the total weight on the elevator car exceeds the maximum capacity, it
displays a request message asking a passenger to step out.
0 . The elevator informs the user by different rings if errors occur.

8.2.1.4 Prioritize the Categories

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A

(9)
Luxuries

3o
i t
b

CA) (I)

T) Targeted N

(B) (M)

Strategic

High value ' D

L

Importance

Cost benefit chart

Figure 8.2 Cost Benefit Chart

We put the customer’s needs into different quadrants based on the importance and
difficult associated with them. According to this chart, the emphases should be in
“high value” quadrants and strategic. The needs in the “targeted” quadrants are the
basic requirements that we need to meet; however, the ones in the “high value”
quadrants will add more value features into the design. On the other hand, the needs
in the “strategic” quadrants should be considered carefully if designers want to
implement it.
Feature C, H, G, L and D can add more value into our elevator system for example,
Feature L (These buttons illuminate when pressed, and then the illumination will be
cancel if pressed again) provide a mechanism to allow customers to change the
request that they make by mistake.
Feature A, B, I , J, M and N are the most basic requirements that must be
implemented in our system for example, the elevator can’t work very well if there is
no feature B (These buttons illuminate when pressed and cause the elevator to visit
the corresponding floor. The illumination is canceled when an elevator visits the
floor) in the elevator system.
O is the feature that doesn’t have to be implemented because they are too difficult to
implement and bring less return from the investment.
Feature E, F and K are optional features that really depends on the designer and
market.
This method helps professionals to make a decision correctly and communicate more
efficiently. In the final step, we want to use the UML extension mechanisms: tag

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value, constraint and stereotype to represent these kinds of information within a UML
diagram.

We use the constraint extension mechanism of UML to insert two customers’ need
derived from the above method into the new use case diagram to increase the
understandability of the elevator system.

8.2.2 UORE (usage oriented requirement engineering)
When we deal with a complex system, too rapid formalization of requirements may
have negative consequences. So it is better to implement a task that encourages a
complete understanding of what the customer and the end users require from the
system and how they intend to use it in practice(Regnell).
Use Case Driven Analysis (UCDA), as a key contribution of the objectory method, is
helpful for designers in this respect. However, UCDA still have some disadvantages
for example the lack of synthesis. Therefore, we will try to employ usage oriented
requirement engineering, an improvement to UCDA, to achieve an improved
requirements engineering process. In our case study, we will discuss the method based
on the elevator system.

8.2.2.1 Analysis phase

The analysis phase of UORE consists of two interrelated activities: identification of
use cases and actors and unification of the terminology. Moreover, these two activities
can be performed interactively.

In fact, the analysis of UORE resembles the objectory version of UCDA. However,
there are still some aspects that make the method different (James 1999):

•Changed semantics of actors and use cases

•Identification of use case contexts

•Strict application of the single-actor view

•Explicit unification of terminology

•Structured description of uses cases.

In UORE, use cases describe the system’s behavior seen by only one actor - this
single-actor-view approach makes the use case concept simpler.
The following Figure 8.3 shows such use case descriptions. It describes two use cases
by passengers in details.

There are nine use cases based on the previously described requirement
documentation of the elevator system in our system:

. *Control elevator: These scenarios include lots of details, for example open/close
door, button operation....
•Request elevator: This scenario mainly makes a request from passenger after
passengers select the floor button.
•Call for help: Passengers will use phone or emergence button to call for help

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

when problems exist.
•Fix elevator: The technician will fix the problems of elevator.
•Activate elevator: The technician will restart elevator system when it is down.
•Clear elevator: The cleaner will clean the elevator regularly.
•Open/Close the Doors: The elevator should be able to open and close the doors
for the passengers to get in and out of the car. The functional areas o f this use
case should also enable the passengers to make door reversals when the doors are
closing and the passenger wants to get in (or out of) the car.
•Go up/down: The elevator will often go up / down to load passengers.
•Move/Stop the Car: The main function of an elevator, detailed action will
include the changing of driving speed, how to make the decision to stop, and
driving directions of the car.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

Actors:
E levator op e ra to r : Operate the E levator panel to con tro l e levator .
Passenger: r id e the e le v a to r to sp e c i f i c floor.
Technician: f i x the e l e v a t o r ’ s problem
Cleaner: keep the e le v a to r clean.
Motor: c o n tro l e le v a to r physical movement.
Door: load people.

1. Control e levator, normal case
Actor:” Elevator operator “
1 . IC Invocation Conditions:
1. IC .1 the ope ra to r has s t a r t e d the e levator.
l.FC Flow Conditions:
1. FC. 1 the e le v a to r Is In good condition
1 . FE Flow of Events:
1. FE.1 The ope ra to r rece ive the request from
passenger.
1. FE. 2 The ope ra to r p ress the button.
1. FE. 3 The e le v a to r go and stop In the f lo o r
t h a t passengers a re In.
l.FE. 4 The door open and passengers en te r In.
1. FE. 5 The door close.
l.FE. 6 The ope ra to r p ress the button.
1. FE.7 The e le v a to r go and stop In the f lo o r
t h a t passengers request.
l.FE. 8 The door open and passengers get out.
l.FE. 9 The door close.
l.TC Termination condit ions:
1.TC.1 The ope ra to r wait fo r request from

passengers.

3. C all f o r help, normal case
A ctor: " Passenger"
3 . IC Invocation Conditions:
3 . IC .1 The e le v a to r I s ready to process
request.
3. FC Flow Conditions:
3 . FC. 1 The communication In s t ru c t io n of
e le v a to r work well.
3. FC. 2 The e le v a to r got some problems.
3 . FE Flow of Events:
3. FE. 1 The e le v a to r got some problems.
3 . FE. 2 The Passenger p ress the emergency button
or make a phone c a l l to c a l l fo r help.

3 . TC Termination conditions:
3. TC. 1 The Passenger got response.

Figure8.3: Use case description

2. Request E levator, normal case
A c to r :" Passenger "
2. IC Invocation Conditions:
2 . IC .1 The E levator Is ready to load The
Passenger.
2. FC Flow Conditions:
2 . FC. 1 The E levator I s In good condition.
2. FC. 2 The Passenger have pressed the button to
make a decision.
2. FE Flow of Events:
2 . FE. 1 The E levator Is In opera t ion
2. FE. 2 The Passenger p re ss the
h a l lp o s i t io n b u t to n to request
2. FE. 3 The E levator stop In the f lo o r th a t
passengers are In.
2. FE. 4 The Door open
2 . FE.5 The Passenger en te r and choose the f loo r
to process
2. FE. 6 The Door close and The E levator process
the request and reach the request f loor .
2 . FE. 7 The Door open and the Passenger get out
o f e lev a to r

2 . TC Termination condit ions:
2 .TC. 1 The E levator Is ready to process the
request

4. F ix e leva to r , normal case
A ctor: ” Technician "
4. IC Invocation Conditions:
4. IC. 1 The e lev a to r Is not In use.
4 . FC Flow Conditions:
4. FC. 1 The techn ic ian has f ig u red out what I s
problem.
4. FE Flow of Events:
4. FE. 1 The techn ic ian en te r e levator .
4. FE. 2 The techn ic ian solve the problem.
4. FE. 3 The techn ic ian r e s t a r t the e leva to r .
4 . TC Termination condit ions:
4. TC. 1 The e lev a to r Is In use.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Actors:
Elevator opera to r : Operate the E levator panel to con tro l e levator .
Passenger: r id e the e le v a to r to s p e c i f i c floor.
Technician: f i x the e l e v a t o r ’ s problem
Cleaner: keep the e le v a to r clean.
Motor: c o n tro l e le v a to r physical movement.
Door: load people.

5. A c tiv a te e lev a to r , normal case
A ctor: " Technician “
5 . IC Invocation Conditions:
5. IC. 1 The e le v a to r I s down
5 . FC Flow Conditions:
5. FC. 1 The tech n ic ian has solved the problem.
5 . FE Flow of Events:
5. FE. 1 The tech n ic ian open the door mamually.
5. FE. 2 The tech n ic ian ac t . iv ia te the e lev a to r by
key or o th e r too ls .
5. FE. 3 The technican c lose the door.

5 . TC Termination condit ions:
5. TC. 1 The e le v a to r Is In use.

6. Clean e leva to r , normal case
A ctor: ” Cleaner "
6 . IC Invocation Conditions:
6. IC. 1 The e lev a to r Is not In use.
6. FC Flow Conditions:
6 .FC.1 The cleaner c o lle c t enough to o ls to
clean the elevator.
6. FE Flow of Events:
6. FE. 1 The c leaner open the door.
6. FE. 2 The c leaner do the cleaning.
6. FE. 3 The c leaner c lose the door.

6. TC Termination conditions:
6. TC. 1 The e lev a to r Is In use.

7. Open/Close Door, normal case
A ctor: ” Door “
7 . IC Invocation Conditions:
7. IC. 1 The e le v a to r Is In operation.

7 . FC Flow Conditions:
7. FC. 1 The e le v a to r Is In good condition.
7 . FE Flow of Events:
7. FE. 1 The passenger make a request.
7. FE. 2 The e le v a to r s top a t the f lo o r
requested .
7.FE. 3 The door open.
7. FE. 4 The passenger en te r In.
7. FE. 5 the door close.
7 . TC Termination condit ions:
7. TC.1 The E levator I s ready to process the
request

8. Go up/down, normal case
A cto r:" Motor “
8. IC Invocation Conditions:
8. IC. 1 The e lev a to r Is In good condition.

8 . FC Flow Conditions:
8. FC. 1 The operato r Is on duty.
8. FE Flow of Events:
8. FE. 1 The passenger make a request .
8. FE.2 The operator process the request
8. FE. 3 The e le v a to r (motor) go up/down
8 . FE. 4 The e le v a to r stop a t the f lo o r request
and load the passengers
8 . TC Termination condit ions:
8. TC. IThe e lev a to r Is ready to process request.

9. S top e lev a to r , normal case
A cto r:" Motor “
9 . IC Invocation Conditions:
9 . IC .1 The e le v a to r Is In good condit ion.
9 . FC Flow C o n d i t io n s :
9. EC. 1 The ope ra to r I s on duty.
9 . FE Flow of Events:
9. FE. 1 The ope ra to r p re ss button or In se r t the key
to request a stop
9. FE. 2 the e le v a to r (motor) stop.

9 . TC Termination conditions:
9. TC. 1 The e le v a to r Is ready to process request.

Figure 8.4: Use case description
82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now we have gotten the actors and use case description, so we will begin the
synthesis phase in the following parts.

8.2.2.2 Synthesis phase

This method in the synthesis phase consists of 3 activities: formalization of use cases,
integration of use cases and verification (Regnell).
1 .formalization of use cases
The purpose of the formalization of use cases is to produce a formal use case
specification (UCS) that represents in a formal, graphic language, using message
sequence charts, for each use case identified in the analysis phase. After identifying
all abstract data and atomic operations, we transform the flow of events of every use
case into an UCS that models the relations between stimuli/responses/states and
atomic operations.
In the following diagram, we illustrate the notation of UCS for two use case
specifications: request elevator and call for help by our elevator system (See Figure
8.5 and Figure 8.6).
The left-most time axis of the following diagram shows the specified actor. The right­
most time axis represents the system. We have the different AIO’s (the entities that
form the nature of user-system communication) involved in this use case between the
actor and system. The AIO states are drawn as diamonds on the AIO time axis, and
the atomic operations are drawn as boxes on the system’s time axis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Control e levator - normal case

o

Operator Door
co n t ro l le r

Ready

Receive
Request

Passenger
In

Floorposit ionbut C1blevator
ton Indicator system

Ready

Request
P ro c e s s l

Request

Floor
P o s i t io n

Stop In the f loor
<-

<-
Door
Open

Press button

Door
Close

Passenger
out

Request
OK

Request
Process2

Request

Request

(F loor
I P o s i t io n

<-

Door
Open

Press Button

Door
Close

Request
OK

Request
Process3

Request
OK

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8.5: Use Case: Control elevator Specification
Request e leva to r - normal case

Elevator^
, panel

Passenger Hal lposi t ionbut t
on Indicator

Ready ^

Press button

Door Motor
con t r o l l er con to l le r

Ready ^

Elevator
system

ReadyReady

FequestLight
on

Request
P ro cess l

RequestEnter In
Door
Open

Press button quest
Door
Close

Request
P rocess2

Arrived
Ipera ti

on
Get out

Door
open

Close

Door
c lo se Ready to

process

Figure 8.6: Use Case: Request elevator Specification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Call for help: normal case

o

Passenger Elevator panel Communication system
Elevator

system

Ready Ready

Promote for problem

Response

Make phone
ca l lP ress

bu tton
Call

rward

Telephone

Got some
problems

C all p rocess

Figure 8.7: Use case: call for help specification

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fix e levator - normal case

o

Technician Hallposi t ionbut t
on Indicator

Door
co n t ro l le r

r Ready

Press button

(n

(Ready

oor
1 P o s i t io n

Technician
In

Request

Close

Door
Close

Elevator
system

Request
Process

Request
OK

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8.8: Use Case: Fix Elevator specification
A c tiv a te e le v a to r - normal case

o

Technician
Door

c on t ro l le r

Ready

Open door

Key
Reader

M teady

Elevator
system

Door
Open

Inser t key
Activate
elevator

Key In

E lev a to r
Request

Figure 8.9: Use Case: Activate Elevator specification

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Clean e levator - normal case

o

Cleaner
Door

co n t ro l le r
Hal lposi t ionbut

ton Indicator

Ready (Re a d y

Press button and request

<-

Door
Open

Cleaner In and
clean e levator

Door
c lose

In se r t key

V

Elevator
system

Request
Process

Figure 8.10: Use Case: Clean Elevator specification

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Open/Close Door - normal case

o

Door

Ready

Open door

<-

Passenger In

R e a d y)

Elevator
system

Request
Process

Request
ok

Close door

Figure 8.11: Use Case: Open/Close door specification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Go up/down - normal case

o

Motor Elevator
system

Go up/down

Request

<-

Load Passenger

Request
ok

Figure 8.12: Use Case: Go up/down specification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stop elevator - normal case

O

Motor Button

Ready

Key
Reader

Ready

Elevator
system

E le v a to r
Request

In, e r t

Key In

Stop

Stop

Figure 8.13: Use Case: Stop elevator specification

2. Integration o f use cases
These step aims at merging different use case specifications and producing a
Synthesized Usage Model. Firstly, we create abstract usage scenarios after identifying
the user and system actions. We accomplish this by transforming every UCS into an
Abstract Usage Scenario (AUS), drawn as a sequence of user actions (bubbles) and
system actions (boxes) interconnected with transitions (arrows) that represent the
resulting messages of each action.
The main purpose of creating AUS’s is to make the synthesis feasible.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8.14 describes the AUS for use case: control elevator by the elevator operator.
Figure 8.15 and 8.16 separately describe the AUS for use cases: request elevator and
call for help by passengers.
Figure 8.17 and 8.18 separately describe the AUS for use cases: fix elevator and
activate elevator by technician.
Figure 8.19 describes the AUS for use case: clean elevator by cleaner.
Figure 8.20 describes the AUS for use case: open/close door by door.
Figure 8.21 and 8.22 separately describe the AUS for use cases: go up/down and stop
elevator by motor.
So in the next step, we will synthesize the usage model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i Ready
\ /
T

P ress Button

Request

L ight on

Request ok

Passenger
E n ter In

P re ss Button)

Door c lo se

Request
process

Request ok

Reach f lo o r
r eq u es ted

Door Open

assenger get
out

Door Close

Ready to
p rocess

Ready
\ /

I
Request
Process

I
Receive
request

I
Press button

1
Request

i

equest
ok

Floor
position

Request
Process

I
Door open j

Passenger In

*

Stop In
the floor

{ Press button

I
(Door close

T
Request

Request
Process2

I
Door open 4

^ Stop In
Passenger out) the floor

Press button

Door close

Ready

E lev a to r got
problems

Promote

Passenger
Response

P ress bu tton

C all

Make phone
ca l 1

C all po rcess

Forward

Figure 8.14: Abstract Usage Scenario: Control elevator

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8.15: Abstract Usage Scenario: Request elevator
Figure 8.16: Abstract Usage Scenario: Call for help

Ready

P ress Button

Request
Process

Door open

Request

Request ok

T echnic ian In

Door c lo se

Ready

Open door

Door Open

I n s e r t key

Key In

A ctiv a te
e le v a to r

E leva to r
r e s t a r t

Figure 8.17: Abstract Usage Scenario: Fix elevator
Figure 8.18: Abstract Usage Scenario: Activate elevator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I Ready |

P ress
\

Dutton

Request
r

Request
Process

1
Request ok

r
/ ^
I Door open I
v /

Cleaner In i

Clean
e le v a to r

Door c lo se

Ready

Figure 8.19: Abstract Usage Scenario: Clean elevator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Request
Process

Request ok
r

i Open door I

Passenger In

Close door

Ready

Figure 8.20: Abstract Usage Scenario: Open/Close door

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Request

Go up/down

Request ok

/ Load
\ passenger

Request
Process

Request ok

r

I n s e r t key

Key In

P ress bu tton

Stop

Stop

Ready

-s.

Figure 8.21: Abstract Usage Scenario: Go up/down
Figure 8.22: Abstract Usage Scenario: Stop elevator

The Synthesized Usage Model (SUM) consists of one usage view per actor. A usage
view is synthesized from all Abstract Usage Scenarios produced for one specific
actor. A usage view is created by finding similar parts of Abstract Usage Scenarios
and merging them. The result is a directed graph with three types of nodes: user
actions, system actions, and labels. These nodes have the same meaning as in the
Abstract Usage Scenarios. Labels are used to maintain tractability between usage
views and AUS’s (James 1999).
So Figure 8.23 is the usage view for “Passenger”, it is synthesized from the two
Abstract Usage Scenarios produced for the specific actor: “Passenger” .
Figure 8.24 is the usage view for “Operator”.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8.25 is the usage view for “Technician”
Figure 8.26 is the usage view for “Cleaner”
Figure 8.27 is the usage view for “Motor”
Figure 8.28 is the usage view for “Door”
3. Verification

The final step of this method is to verify the activity in order to obtain a consistent
and complete SUM. Firstly, what we should is to check if the UCS is a correct
transformation of the informal use case description. Then, we must make sure that the
SUM completely covers every UCS(Regnell).
We just take two use cases o f the elevator system as an example to explain the use of
the UORE. The Synthesized Usage Model created by UORE could be used as a
reference model for the whole system development process. Therefore, the method
also can be used to an improvement to replace UCDA in the Rational Unified
Process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Request on
the queueReady

^1 P re ss Button

| P re ss Button)

L ight on

Request ok

Passenger
E n ter In

P re ss B utton i

Door c lo se Not work

P ress Button

Request ok
'' Make phone '
v c a l lReach f l o o r

r eq u es ted

Door Open

assenger get
out ,

Door Close

Ready to
process

Ready

E le v a to r got
some

problems

Request
Process

Call p rocess

Request
process

Figure 8.23: The usage view for “ passenger”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Request
Process Wrong bu tton

Request
ok

►(Ready
Receive
re q u e s t

Re-press
bu ttonP ress bu ttonAbort F loor

p o s i t io n
Request

Request
f a i l

Request ok

Request
Process * 1

1 Stdp In
v Door open the f lb p r

IT \
(P assen g e r I n , \

3
 ̂P re ss b u t to n)

I
Door c lo se)

Reques
t f a i l

Re-press
bu tton

Request

Request) -

Request
Process2

Request ok I

Request
In v a l id

Stop In
Door open)— the f l o o r

(Passenger out)

P re ss bu t to n

Door c lo se

Reques
t f a i l

3
Re-press

bu tton

W Re-Request

Figure 8.24: The usage view for “ Operator”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Elevator Is
not In

operation
Reques
t f a i lP re ss Button Open door

Request
Door Op'

I n s e r t keyRequest
Process

Key In

Request ok

/ A c t iv a te
v e l e v a to r

(Door open

E le v a to r
r e s t a r tTechn ic ian In

Fix problems

Door c lo se

Ready

Figure 8.25: The usage view for “ Technician”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I Ready j
y y

Elevator Is
not In

operation
Reques Open doorP re ss b u t to n

Request

Request
P rocess I n s e r t key

Key In
Request ok

Door open }

/ \
(C leaner In I
V y

Clean
e le v a to r

Door c lo se

Ready

Figure 8.26: The usage view for “ Cleaner”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Request
In v a l idI Ready Reques

bu t to n

Request
Process

Request

Request ok

(Go up/down ■m I n s e r t key

Key In

Load
passenger

P re ss bu t to n

Stop

Ready Stop

Figure 8.27: The usage view for “ Motor”

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Re-press
bu t to n

Request

Request

Request ok

Open door j

Passenger In

Close door

Ready

Figure 8.28: The usage view for “ Door’

8.2.2.3 UORE application

All the models (Use Case Description, Use Case Specification, Abstract Usage
Scenario, Synthesized Usage Model) produced by the method UORE (Usage oriented
requirement engineer) are necessary parts to implement this method. However, the
SUM (Synthesized Usage Model) is the most important output of this method because
it captures both function requirements and system usage aspects in a comprehensive

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

manner. It consists of one usage view per actor. A usage view is synthesized from all
Abstract Usage Scenarios produced for one specific actor. A usage view is created by
finding similar parts of abstract Usage Scenarios and merging them.
The UORE can be applied in the following aspects related to UML:

l.The main drawback of the UCDA (use case driven analysis) is the lack o f synthesis.
The Use Case Model that we get from UCDA is just a loose collection o f use cases.
However, the method UORE can solve this problem.
The two views complement each other nicely: use cases provide the informal map of
interactions between the system and actors, whereas UORE precisely describe a
particular atomic system action, called a system operation. So the UORE could be
supplied with the use case model. Furthermore, we can use UML’s Object Constraint
Language to apply this information from UORE to a UML class model. In our new
use case model, we can capture more information of use cases on usage views such as
use case may overlap, occur simultaneously and influence each other.

a. We add the SUM for each actor into UML directly so that SUM might be a
supply to use cases. Figures 23-28 are SUMs of actors and they can be a
supply to use cases.

b. Represent information into UML diagram by constraint.

E le v a to r

« i n c l u d e » /^ R e q u e s t E l e v a t o r ' ,/ S e l e c t F lo o r to \
i

\ P r o c e ss /
C o n tr o l E le v a to r

E le v a to r

O p era to r

{T C : th e e le v a t o r is

r e a d y to p r o c e ss

r e q u e s t }

{IC : th e e le v a t o r is

r e a d y to lo a d

p a s s e n g e r }

P a s s e n g e r{ E le v a t o r h a v e

e m e r g e n c y b u tto n }

{F C : th e e le v a to r is

in g o o d c o n d it io n }

F ix E le v a to r

« i n c l u d e » C a ll fo r
« u s e » A .

^C ontact T e c h n ic ia n to

\ H e lp
C le a n e r

T e c h n ic ia n
C le a n E le v a to r

A c t iv a t e E le v a to r \

Figure 8.29 New use case diagram

In the new use case diagram above, we represent the invocation conditions, flow
conditions and termination conditions of passengers into the diagram in order to
describe the use case in a concise way. The same conditions for other actors can also
be added into the appropriate diagram.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.Although use cases are perfect materials for creating test cases, the UCM resulting
from UCDA cannot be used for automatic generation of test cases. This limits its
applicability as a reference model for validation and verification. However, the
possibility of the automatic generation of test cases is one of the most important
properties of the SUM. So we can adopt UCM to implement this function. We won’t
analyze this application in this thesis because we are concentrating on the phase of
requirement analysis.

3.In UCDA, one physical use can appear as different actors in a single use case so that
it causes a lot of confusion. However, UORE adopts a one-actor-view method in order
to solve this problem. So in this thesis, all the UML diagrams and notations that we
have produced are based on the specifications and graphs of UORE.

4. A specific use case cannot occur in every situation. What we need for each use case
is a specification of the context in which it can be triggered and successfully
accomplished. This issue is not addressed by UCDA. UORE can provide this
information such as invocation and termination contexts so that we can integrate them
with UML diagrams.
The following diagram is a class diagram in which the invocation and termination
have been integrated. The “IC” in the diagram means invocation conditions; the ”TC”
means termination condition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

IC: the e levato r is
ready to load

passen ger or process
request

IC: the operator has”
started the e levato r;

TC : the op era to r w ait
for request

IC: the e levato r is in
use; TC : the elevator

is not in use

IC: the e levato r is not
in use or down; TC :

the e levato r is in use

Passenger Cleaner Technician Operator

Door MotorController «application»
Name,Weight,Employee ID

ControlControl

IC: the e levato r is i h

operation; TC : the
elevato r is ready to

process request

IC: the e levato r is in

good condition; TC :
the e levato r is ready
to process request

Control
Button «application» Indicator «application»

Shape, Color, UsageShape, Color, Usage

Control

CarCallButton HallCallButton CarPositionlndicator CarDirectionlndicator

Figure 8.30 New Class diagram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3 Business modeling workflow
8.3.1 Context model
The context diagram is a high level diagram used to describe the system functions and
relationships to external entities.

Request
Servide

Passenger

Feedback

Elevator Control Elevator

Send a Signal
 ^____
Maintenan

ce
Personel

Figure 8.31 Context Diagram

Context document
That diagram is a context diagram of an elevator system. It focuses on describing
passengers, elevator cars, maintenance personnel and their relationships. Meanwhile,
it represents an overall understanding of the domain.

8.3.2 High-level requirement model (use case model)
Use Case Diagram: According to the requirement document, Users X Actor Role and
Actor Role X Use Case Matrix mention above, we can extend the use case diagram of
elevator systems showed in Figure 8.32:

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S e r v ic e to o t h e r \

a c to r r o le s d u r in g

c a ll fo r h e lp

In itia te d b y

o p e r a to r , c le a n e r

a n d te c h n ic ia n

K { E le v a to r h a s [\

e m e r g e n c y b u tto n ;

m u s t b e p r o f ic ie n t;

Efficient} 1
— —

S e r v ic e to o t l i e L ,

a c to r r o le d u r in g

o p e n d o o r

C o n tr o l E le v a to r

f lo o r = T -m a x t lo o r , 8 5 } / Open/CI

E le v a to r

O p e ra to r

{ 9 }
Initiated
Passenger

B u tto n L ig h t U p

u tto n L ig h t T u rn

R e q u e s t E le v a to r

i ►
■ ■ B I1 IB 1

S e le c t H o o r

P r o c e ss

D o o r c a n b a ck

a u to m a t ic a l ly

C a ll fo r H e lp

{ 1 0 8 }
o n t a c tT e c h m c ia . .

H e lp { K e e p at

a p p ro p r ia ted

sp e e d }

-m

In itiated b
Passenger

-inc lude---''

F ix E le v a to r

{9 }

S e r v ic e to o th e

a c to r ro le d u r in g i
S to p e le v a to r{C a n 't m ak

m is ta k e ;R e lia b

; C o r r e c tn e s s }

Technician

* iA c t iv a te E le v a to r

{ 8 1 }

U p /D o w n

M u st b e rast

P o r ta b il ity

M o to r
'lean E le v a to r

{9 }
S lfJ fe

E le v a to r

C leaner

Figure 8.32: New User Case Diagram of Elevator System

Figure 8.32 user case diagram describes what the system does and how it interacts
with the user.

(1) “Users X Actor Role” and “Actor role X Use Case” illustrate relative
importance of the role by value, so we might use the value of the “Role wt”
extracted from “Users x Actor Role” and “Actor role X Use Case” in the use case
diagram to indicate the actor’s prioritization. We adopt “Tagged value” (one of
UML extension mechanisms) to insert that information into a use case diagram.
The benefit of this improvement is to add more details about the role in the use
case diagram. So, those use case diagrams can represent more information and
are easier to understand. Figure 8.32 describes in detail.

(2) We use the arrow to indicate the relationship among the actor roles shown on
11 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the left of the diagram.
(3) We employ constraints (a UML extension mechanism) to represent the
information derived from “Use Demanded Quality X Use Case” so that each use
case can be easier to understand.
(4) The system requirement extracted from cost-benefit analysis chart might be
used to explain the use case or actors in the diagram by a constrained method.
(5) Use Cases X Data Attributes illustrates the data attribute that is carried out
by different use cases. Here we can use this kind of information to describe the
use case by tagged value or constraints methods.
(6) IEEE quality factor extracted from “Use Case X IEEE Quality Factor” also
can be added into the use case diagram by constraints.
(7) “User Demand Quality X Use Case” matrix depicts the user demanded
quality for each use case. Customer requirements are extremely important in the
beginning stage of software design. Normally, customers will bring forward lots
of requirements, but not all of them are valuable. So we use a need-opportunity
matrix to prioritize user demands, and then combine the more valuable customer
requirements with the “User Demand Quality X Use Case “ matrix. Finally, we
represent this information in use case diagram by the “constraint” extension
mechanism.
(8) “Actor role X Use Case” matrix describes the function weight of each use
case. We also adopt the same method in (1) to represent information in the use
case diagram. In addition, we can represent the symbols, such as “I” and “S” of
the “Actor role X Use Case” into the use case diagram to indicate which use
cases are initiated by actor roles and which provide services to other use cases.
For example, the role of Door initiates the use case control elevator, and then
provides a service to the Elevator Operator during Open/Close Door.
(9) We represent some non-functional requirements categorized by cost benefit
analysis into use case diagram. We highlight the description by red to indicate it
is in the “ high value “ quadrants of this method and by blue to indicate it is in the
“ targeted” quadrants of the method. This representation approach is sub-optional
and it will be enhanced in future work.

So elevator basic scenarios that can be extracted from Use Case Diagram are:

o Elevator Operator control Elevator

o Passenger request elevator and call for help

o Technician fix Elevator and Activate Elevator

o Cleaners clean Elevator

o Open /Close Door

o Motor stop Elevator or make it go up/down

There are nine main use cases based on the requirement documentation of the elevator
system, as shown in Figure 8.32:

1 1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Elevator operator controls Elevator: Controller open/close Door.
• Request Elevator and call for help: Passengers push the Floor button, then

elevator receives hall calls from the passengers, turns on or turns off the light
of hall call buttons, updates the record of hall calls in system controlling parts;
If there are some emergency, passenger contact technician to help.

• Technicians fix Elevator and Activate Elevator: Technician will take action to
fix elevator when got call from passenger. After uncovering the system, they
will activate the elevator.

• Cleaners clean Elevator.
• Move/Stop the Car: The main function of an elevator, detailed action will

include the changing of driving speed, how to make the decision of stop, and
driving directions of the car.

• Open/Close the Doors: The elevator should be able to open and close the
doors for the passengers to get in and out of the car. The functional areas of
this use case should also enable the passengers to make door reversals when
the doors are closing and the passenger wants to get in the car.

Elevator operator is the role that humans play when interacting with the system. The
passenger interacts with the Elevator system by making car and hall calls. A
passenger also makes decisions whether to enter/leave the car or not by observing the
indication of moving direction and car position. Therefore the use case diagram
shows that the actor has relationships with three use cases of the system: control
Elevator, Open/ Close Door, Go up/down and Stop Elevator.
8.3.3 Domain model (class diagram)
Class diagrams show the static structure of each class, their internal structure, and
their relationships. From the use cases of the Elevator system and the requirements of
the system, we can derive a class diagram as shown in Figure 8.32.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Passenger
{3}

Cleaner

ID
Technician Operator

lb {9}

Door
* 1

Controller « a p p lic a t io n »
1 l

Motor

Control

■tame,Weight,Employee ID — !-------------- !—►

Control

Button « a p p lic a t io n » *
Shape, Color, Usage

Control
A ~Z\

Control

* Indicator « a p p lic a t io n »
Shape, Color, Usage

71 7T

CarCallButton HallCallButton CarPositionlndicator CarDirectionlndicator

Figure 8.33: New Class Diagram of Elevator System

(1) Based on the matrix: Object x Data Attributes, we add 3 new superclasses in
Figure 8.33 by the stereotype method. In the “Classes X Date Attributes” matrix,
we can find that Passenger, Cleaner, Technician and Operator classes share some
same attribute, but their work category is different. So we can create a new
superclass « c o n tro l le r» that can cover all these attributes of those four classes.
Moreover, we also can create another two new superclasses « b u t t o n » and
« in d ic a to r » that cover carcallbutton, hallcallbutton, carpositionindicator and
cardirectionindicator.
(2) For some classes, we create new-tagged values that are used to hold
participant names associated with this given class and keep these values in the
second compartment of some classes. In this way, related information is treated
as first-class members in the same way as attributes and operations of a class. We
can get that information from the matrix “Classes X Data attributes” and add it

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

into class diagram by the tagged value mechanism.
(3) In additional, we highlighted the class that we changed in order to indicate
that it is an application class.
(4) The “Use Cases X Actor Role” matrix describes the relative importance of
each role and also can be represented in the class diagram by the “tagged value”
extension mechanism.
(5) “Classes X Superclasses” matrices show the relationship between classes and
superclasses, so all the classes can be represented as a new class by the stereotype
extension mechanism. Furthermore, the “Classes X Data Attribute” matrix can
provide attributes for each class, so we can add them into the class diagram. The
“Classes X Classes” matrix will describe the relationship among classes and can
be shown in the class diagram.

• Elevator Controller: The main controller in the elevator system. Elevator
Operator communicates and controls all other objects in the system.

• Door: There are two doors in the system, the “god” class - the ElevatorControl -
commands the doors to open and close, according to the situation stated in the use
case.

• Motor: The car is being controlled to move up or down (at different speeds),
making stops at floors when necessary.

• Button: The ElevatorController class also controls the button class, which further
generalizes two subclasses CarCallButton and HallCallButton. The control object
communicates with the Button objects, retrieving information on whether the
button is pressed and controls the illumination of the Button lights.

• Indicator: There are two kinds of indicators in the system, the
CarPositionlndicator and the CarDirectionlndicator. The indicators are controlled
to show the information about the current position and moving direction of the
car.

8.3.4 Business process model (activity diagram)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Activity diagrams represent the business and operational workflow of a system. An
Activity diagram is a dynamic diagram that shows the activity and the event that
causes the object to be in the particular state. The following diagram describes the
activity of passenger.

Passenger
{3}

elevator

Press elevator
button

Getting into
elevator

Go out of
elevator

Elevator Controller
{9}

Press floor
button

Door Open

Press close
button

Reach Floor

Figure 8.34: New Activity Diagram of Elevator System
(1) The biggest disadvantage of traditional activity diagrams is that they do not
make explicit which classes execute with which. Therefore, the labelling o f each
activity with the responsible class will be useful for designers to understand the
overall process more exactly. According to the Use Case x class matrix, we make
modifications within Figure 8.34 and add a class to each activity.
(2) There is no constraint imposed on the nature of a role nor the consistency

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

amongst the roles defined (e.g. all objects, all organizational units, etc.) So this
deficiency restricts the application of the concept of responsibility to activity
diagrams.” User X Actor Role” matrix and “Actor Role X Use Case” matrix can
supply information to set constraints on the objects in the activity diagram, we
can use the constraint extension mechanism to represent this information.
Moreover, the “ class X Class” matrix shows the relationship between classes and
superclasses, which can also be added.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.0Conclusion
Even though UML and RUP are very popular methods that have been used in a wide
variety of projects and organizations, they still have some limitations. In this thesis,
the rational unified process is employed to integrate Quality Function Deployment,
Cost Benefit Analysis, and Usage oriented requirement engineering into UML in
order to improve the UML diagrams and notations, and further promote superior
designs in software system.
This thesis proposes a new software design process and notation. In the initial stage of
software design process, the QFD-style matrix is employed to capture, organize and
analyze customer non-functional requirements in order to represent them into UML
diagram and notations. Then, cost benefit analysis is applied to categorize the
customer needs into different levels of importance. Finally, the UORE is integrated
into this software design process to improve the UML diagram and enhance the
quality of system design. Although there are some others methods that can also be
used to overcome the limitations of UML and RUP, these three methods appear to be
the most effective tools for designers in requirement analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Alhir, Sinan Si .Understanding the Unified Modeling Language (UML)
O'Reilly and Associates, Inc., 1998

Amatya, Ananda. “Introduction to UML”, Department of Computer Science,
University o f Warwick, October 11, 1999.

Ambler, Scott W. Enhancing the Unified Process'.Software Process fo r the Post-2000
(P2K) World A Ronin International White Paper. Ronin International Inc. Copyright
1999-2000

Barrett, Randy. Chasins the BPR Tool Market Pase. Enterprise Reengineering,
March 1996. <www.dtic.mil/c3i/bprcd/5316.htm>

Benjamin Musial Timothy Jacobs. Application o f Focus + Context to UML.
Department of Electrical and Computer Engineering,Air Force Institute of
Technology,Dayton, Ohio, USA 45430

Berner, Stefan., Glinz ,Martin., and Joos ,Stefan. A Classification o f Stereotypes fo r
Object-Oriented Modeling Languages, University of Zurich (Germany): 2000.

Bergner,Klaus., Rausch, Andreas., Sihling Marc. Using UML for Modeling
a Distributed Java Application. T E C H N I S C H E U N I E R S I T T M N C H E N
1997

Better,GK Khalsa. Metadate Management through Better Metamodels,
Objectrad,Temecula,CA.

Booch, Grady. Object-Oriented Analysis and Design with Applications Second
Edition. Addison-Wesley. Santa Clara, CA. 1998.

Booch, Grady., Rumbaugh, James., and Jacobson ,Ivar .The Unified Modeling
Language User Guide, September, 1998

Boushi ,M. "Towards better object-oriented software with QFD,", Transaction of 6th
Symposium on QFD.

Buede, Dennis. Elevator System Case Study. Department of Systems Engineering and
Engineering Management. Jr.School o f Engineering, Stevens Institute o f Technology.
Hoboken,NJ.

Buede, Dennis SYSTEM DESCRIPTION DOCUMENT FOR Elevator Control
Prepared For: Up and Down Elevator Co. Sunday, March 24, 2002

Cesare ,Sergio de. Mark Lycett BUSINESS MODELLING WITH UML:
DISTILLING DIRECTIONS FOR FUTURE RESEARCH, Department of

1 1 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dtic.mil/c3i/bprcd/5316.htm

information Systems and Computing, Brunei University.

Chulani, Sunita., Santhanam ,P., Moore ,Darrell., Leszkowicz ,Bob., and Davidson,
Gary. Deriving A Software Quality View from Customer Satisfaction and Service
Date, 1992

Clarke, Siobhan Extending UML Metamodel fo r Design Composition.School of
Computer Applications,Dublin City University,Dublin 9,Republic of Ireland.

Cox, Karl and Phalp, Keith Thomas Use Case Authoring: Replicating the CREWS1
Guidelines Experiment. Empirical Software Engineering Research Group,School of
Design, Engineering and Computing, Bournemouth University,Talbot Campus, Fern
Barrow, Poole, Dorset, BH12 5BB

Davis, Guy.,Zannier, Carmen.,Geras, Adam. Quality Function Deployment QFD for
Software Requirements Management

Damelio, Robert. The Basics o f Processing Mapping. Quality Resources. New York,
1996.

Dean ,Edwin B. Parametric Cost Deployment. Multidisciplinary Design Optimization
Branch, NASA Langley Research Center. Hampton, VA 23681.

Dewalt ,Craig. “Business Process Modeling With UML”, Hopkins University, 7
December 1999.

Disegno, Analisis. Var Jacobsen Interview.
<http://www.analisis-disegno.com/uml/JacobsenInterview.html>, 1999.

Dong, Jing UML Extensions fo r Design Pattern Compositions. Department of
Computer Science, University of Texas at Dallas, Texas, USA

Drusinsky, Doron. How To Make Statecharts work fo r you

Diinser,Thomas., Deplazes, Romeo.,Meier, Markus. A New Elevator System And Its
Implementation .Center of Product Development, ETH Zurich, Switzerland

Engels,Gregor.,Heckel,Reiko.,and Sauer ,Stefan. UML - A Universal Modeling
Language?
University o f Paderborn, Dept, o f Computer Science, D 33095 Paderborn, Germany

Eshuis ,Hendrik. SEMANTICS AND VERIFICATION OF UML ACTIVITY
DIAGRAMS FOR WORKFLOW MODELLING, geborenop 17 September 1975

Evans, Andy S. Reasoning with UML Class Diagrams. Department of Computer
Science,University of York, Heslington York, UK

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.analisis-disegno.com/uml/JacobsenInterview.html

Fontoura, Marcus and Lucena, Carlos Extending UML to Improve the Representation
o f Design Patterns. Software Engineering Laboratory (LES)Computer Science
Department, Pontifical Catholic University of Rio de Janeiro Rua Marques de Sao
Vicente, 225, 22453-900 Rio de Janeiro, Brazil

Francois, Pinet and Ahmed, Lbath Semantics o f Stereotypes for Type Specification in

Freydenson ,Elan. Bringing Your Personas to Life in Real Life.
<http://www.boxesandarrows.com/archives/002343.php>.Marca, David A. and

Fuentes, Jose M., Quintana, Victor Errors in the UML Metamodel?
Research Department,dTinf S.L. Leganes- Madrid, Spain ,Juan Llorens, Gonzalo
G enova,Ruben Prieto-Diaz

Giacobazzi,Roberto. Completeness in abstract interpretation: A domain perspective.
Univ. di Pisa, Corso Italia 40, 56125 Pisa (Italy)

Gogolla, Martin. Using OCL for Defining Precise . Domain-Specific UML Stereotypes
.University o f Bremen, Computer Science Department.Postfach 330440, D-28334
Bremen, Germany.

Graham I. 1991. Object Oriented Methods. Reading, MA (USA): Addison-Wesley.

Grunske, Lars. Roland Neumann Quality Improvement by Integrating Non-Functional
Properties in Software Architecture Specification,

Harrington, James., Esseling ,Erik K. C., and Nimwegen ,Harm Van. McGraw-
Hill.Business Process Improvement Workbook, New York, 1997.

Huemer, Christian. Defining Electronic Data Interchange Transactions with UML.

Hucka, Michael., Doyle, John and Kitano, Hiroaki. SCHUCS: A UML-Based
Approach fo r Describing Data Representations Intended for XML Encoding. Systems
Biology Workbench Development Group,ERATO Kitano Systems Biology Project
Control and Dynamical Systems, California Institute of Technology, Pasadena, CA
11 December 2000

Jacobson, Ivar Applying UML in The Unified Process Rational Software

Jacobson, Ivar. Object-Oriented Software Engineering: A Use Case Driven Approach.
Reading, MA (USA): Addison-Wesley, 1992.

Jazayeri, Mehdi and Podnar, Ivana. A Business and Domain Model fo r Information
Commerce. Information Systems InstituteDistributed Systems Group May 24, 2000.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.boxesandarrows.com/archives/002343.php

Kande, Mohamed Mancona., Mazaher ,Shahrzade., Prnjat ,Ognjen., Sacks, Lionel.,
and Wittig, Marcus. 1 Applying UML to Design an Inter-Domain Service
Management Application. GMD-Fokus, Kaiserin-Augusta-Allee 31, D-10589 Berlin,
Germany

Kaufman, Morgan A UML Documentation fo r an Elevator System Distributed
Embedded Systems, Fall 2000

Koopman, Philip UML-Based Design Process(with an emphasis on course project
survival)Distributed Embedded Systems. September 11, 2002

Kulik ,P., MacDonald, D., "Bridging Gaps in Customer Requirements", 1998.

Lam ia,Walter M.. "Integrating QFD with OO software Design Methodologies,”
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213-
3890

Lauesen, Soren. Task Descriptions as Functional Requirements, IT-University of
Coperagen, 2003

Lions, Jean Marie., Simoneau, Didier. Pitette, Gilles. Moussa, Imed. Extending
OpenTool/UML Using Metamodeling:An Aspect Oriented Programming Case Study.
TNI-Valiosys, France,Technopole Brest-Iroise BP 70801

Madsen, Soren Langkilde. Use case modeling

Martin, Mark V . , Kmenta, Steven., Ishii, Kos QFD AND THE DESIGNER:LESSONS
FROM 200+ HOUSES OF QUALITY. Mechanical Engineering Design
Division,Stanford University, Stanford, CA 94305-4022 USA

McGowan ,Clement L.. IDEF0/SADT Business Process and Enterprise Modeling.
Eclectic Solutions Corporation San Diego CA. 1988.

McQuaid, Heather L., Bishop ,David. Communicating the Priority o f Problems
Discovered During a Product Evaluation. MAYA Design, Inc. USA

Monarchi, D.E. and Puhr, G.I. "A Research Typology fo r Object-Oriented Analysis
and Design," Communications o f the ACM 35, 9 (Sept 1992): 35-47.

Moraes ,Ian. Introduction to the Unified Modeling Language (UML), Glenayre
Electronics, September 1998

Naumenko, Andrey., Wegmann, Alain. A metamodel for the Unified Modeling
Language: critical analysis and solution. Systemic Modeling Laboratory,Swiss
Federal Institute of Technology - Lausanne.EPFL-IC-LAMS, CH-1015 Lausanne,
Switzerland

1 2 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pallinane, Madhavi V.,Uppalapati, Neelima.,Kesani, Niranjan.,Gottipati, Sampath
SIMULATION OF A N ELEVATOR SYSTEM. Computer Science,Mississippi State
University,07/31/2001

Paltor, Ivan Porres Digital Sound Recorder: A case study on designing embedded
systems using the UML notation.hbo Akademi University, Department of Computer
Science, Lemminkaisenkatu 14, FIN-20520 Turku, Finland

P ine t,Francois, and Lbath ,Ahmed. Semantics o f Stereotypes for Type Specification in
UML: Theory and Practice. Laboratory of Information System Engineering,
INS Ay on: France.

Pollice, Gary, Rational Software Using the Rational Unified Process fo r Small
Projects . Expanding Upon Extreme Programmiing

Quatrani, Terry. Introduction to the Unified Modeling Language, June 2003

Regnell ,Bjorn., Kimbler ,Kristofer., and Wesslen ,Anders. Improving the Use Case
Driven Approach to Requirements Engineering. Dept. Communication Systems, Lund
University, Sweden, 1995.

Reznik, Julia., Born, Marc.,Fokus, GMD UML Profile fo r DCL Rosenberg ,Doug .
Use Case Driven Object Modeling - A 99% Fat-Free Approach. ICONIX Software
Engineering, Inc.

Regnell, Bjorn., Kimbler ,Kristofer., Wesslen ,Anders. Improving the Use Case
Driven Approach to Requirements Engineering. Dept, of Communication Systems,
Lund University, Sweden

Rua Marques de Sao Vicente Extending UML to Improve the Representation o f
Design Patterns Marcus Fontoura and Carlos Lucena. Software Engineering
Laboratory (LES),Computer Science Department, Pontifical Catholic University of
Rio de Janeiro, Brazil

Rumbaugh ,James., Jacobsen, Ivar., and Booch, Grady. Addison-Wesley. The
Unified Modeling Language Reference Manual Reading, Massachusetts 1999.

Schleicher, Ansgar., Westfechtel, Bernhard. Beyond Stereotypin : Metamodeling
Approaches fo r the UML. Department of Computer Science III, Aachen University of
Technology,Ahornstr. 55, 52074 Aachen

Sendall, Shane and Strohmeier, Alfred Requirements Analysis withUse Cases
Theory (9 Lessons). Swiss Federal Institute of Technology in Lausanne Software
Engineering Lab

Shlaer, S. and Mellor, S.J. Object Lifecycles: Modeling the World in Slates.
Englewood Cliffs, NJ (USA): Yourdon Press, 1992.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Song, Il-Yeol Developing Sequence Diagrams in UML. College of Information
Science and Technology,Drexel UniversityPhiladelphia, PA 19104

Terrasse ,Marie-No"elle., Savonnet,Marinette., Becker ,George., and Leclercq, Eric.
A UML-based metamodeling architecturewith example frameworks .Laboratoire
LE2I, Universit'e de Bourgogne B.P. 47870, 21078 Dijon Cedex, France

Tyndale-Biscoe, Sandy.Sims, Oliver.,Wood, Bryan. ,Sluman, Chris. Business
Modelling fo r Component Systems with UML Open-IT Limited

Vasconcelo, Alexandre Marcos Lins de s. Extending the Rational Unified Process for
the Development o f Web Applications. September 2002.

Villiers, DJ de.Empulsys. Rational Home Page. Rational Software Corporation.
<http://www.rational.com> 23 June 2003.

Warmer, Jos., Objecten ,Klasse. The future o f UML

WesleyAddison. Literate Modeling Papers Page. Literate Modeling.
http://www.literatemodeling.com/papers.htm 2002.

Williams, Clay E. Software Testing and the UML Center for Software Engineering,
IBM T. J. Watson Research Center

Xie,Zhiwu., Liu, Kecheng. Improving Business Modelling with Organisational
Semiotics. Department of Computer Science .The University of Reading, UK

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.rational.com
http://www.literatemodeling.com/papers.htm

