

Visual Similarity Analysis of Web Pages based on Gestalt Theory

by

Zhen Xu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Software Engineering & Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Zhen Xu, 2017

ii

ABSTRACT

With the rapid development of internet technology, web page has evolved from a

traditional rich-text information source to a multi-functional tool, which can serve images,

audios and videos, act as the GUI (Graphical User Interface) components of distributed

applications, and so on. Similarity evaluation of the modern web pages becomes more

essential yet difficult. On one hand, while many search engine rely on keyword search,

texts play less important roles in web pages. On the other hand, there exists a variety of

browsers and platforms that support HMTL/CSS/JavaScript in different levels, causing a

web page is displayed differently among browsers.

To address these issues, we propose four research topics. The first topic is to

identify semantic blocks on web pages. We propose a model for merging web page content

into semantic blocks based on human perception. To achieve this goal, we construct a layer

tree to remove hierarchical inconsistencies between visual layout and DOM tree of web

pages; we translate the Gestalt Laws of grouping to computer compatible rules can train a

classifier to combine the laws to a unified rule to detect semantic blocks. The second topic

is to estimate visual similarity of web pages. Existing approaches use DOM (Document

Object Model) trees or images, but they either only focus on the structure of web pages or

ignore inner connections among web page features. Therefore, we provide the block tree

to combine both structural and visual information of web pages. Using this block tree

structure, we propose a visual similarity measurement. The purpose of the third topic is to

improve the visual similarity measurement and use it to detect visual differences in web

pages when they are rendered in different browsers. The extended subtree model that maps

iii

sub trees instead of each single node is introduced for the precision improvement. The forth

topic utilize the improved visual similarity measurement to create an automated testing

framework for cross-browser visual incompatibility detection. An automated testing tool

is also designed.

Major contribution of this thesis is two-folds. On the one hand, it enriches

theoretical analysis in the detection of semantic content, visual similarity, and cross-

browser differences for web pages. On the other hand, it also provides an insight for testing

cross-browser incompatibilities in practice.

iv

To my wife, my daughter, and my parents!

v

Acknowledgments

More than four years have passed since I came to Canada to pursuit my PhD degree. A

lot of things have happened during this time period, and I cherish every moment of it, no

matter they are happy or sad. I have millions to say to my family, teachers, and friends.

First of all, I would like to give my sincere thanks to my dear supervisor James Miller.

He has always supported me, guided me, and gave me confidence during my study. He is

such an excellent teacher that I can always find my direction under his supervision no

matter what difficulties I met in the process of researching. He is such a responsible teacher

that he always responses to my email quickly and he always put his students’ benefits in

the first place. Many times, even during weekends or holidays, he still can give me

feedback very quickly. Without his push, I could not have made the progress I have

achieved now. He is such an amiable teacher that he can always find a way to cheer me up

when I did not make any progress at all. I would say he is the best teacher I have met and

I owe him a lot.

Second, I want to give my thanks to my wife, Wenjing Wang, who has always supported

me no matter what happens. She always stands on my side and encourages me. Especially

when I encountered some difficulties in my research and felt frustrated, she never gave me

up and she never imposed stresses on me. Instead, she enlightened me with gentle words

and cooked me delicious food. I feel very lucky to have such a wonderful wife.

At last, I also feel grateful of my parents: my father Xinghua Xu and my mother Yuling

Yan. Although they are back in China, they still care about me so much. Without their love

and raise, I cannot grow up so healthy and strong. Additionally, I would like to thank my

friends as well. Thanks for their help in my life. Without them, my life could not have been

so fulfilling and colorful. Allow me name them here: Yanan Xie, Zhengrong Cheng, Jikai

Liu, Xihui Liang, and many others. Thanks so much, buddies!

vi

Table of Contents

CHAPTER 1 Introduction .. 1

1 Motivation and Goals ... 2

2 Main Contributions and Thesis Outline ... 3

CHAPTER 2 Identifying Semantic Blocks in Web Pages Using Gestalt Laws of Grouping .. 5

Abstract .. 5

1 Introduction .. 6

2 Related Work .. 8

3 Gestalt Layer Merging Model ... 12

3.1 Layer Tree Constructor .. 12

3.2 Gestalt Laws Translator ... 15

3.3 Web Page Blocks Identifier .. 17

4 Implementation .. 18

4.1 Buildup of the Layer Tree .. 18

4.2 Translation of the Gestalt Laws ... 20

4.3 Identification of Web Page Blocks ... 28

5 Experiments .. 30

5.1 Comparison Test .. 31

5.2 Efficiency Test .. 33

6 Conclusions ... 40

Acknowledgement ... 41

References .. 42

CHAPTER 3 Estimating Similarity of Rich Internet Pages Using Visual Information 45

Abstract .. 45

1 Introduction .. 45

2 Related Work .. 48

3 The Block Tree ... 50

3.1 Construction of Blocks by Gestalt Laws of Grouping .. 51

3.2 Construction of the Block Tree .. 56

3.3 Hausdorff Distance and Normalised Hausdorff Distance .. 57

3.4 Colour Translation and Colour Difference ... 59

3.5 Image Similarity Comparison .. 60

vii

4 Visual Similarity between Two Web Pages .. 61

4.1 Block Tree Edit Distance .. 61

4.2 Case Study .. 63

5 Experiments .. 69

5.1 Test Set ... 70

5.2 Experimental Methodology .. 71

5.3 Experimental Results .. 74

6 Conclusion ... 77

Acknowledgement ... 79

References .. 79

CHAPTER 4 Cross-Browser Differences Detection based on an Empirical Measurement for

Web Page Visual Similarity .. 82

Abstract .. 82

1 Introduction .. 82

2 Translating Algorithm of the Gestalt Laws of Grouping ... 84

2.1 Motivations and Goals .. 84

2.2 Translating the Gestalt Law of Simplicity .. 85

2.3 Translating the Gestalt Law of Closure .. 85

2.4 Translating the Gestalt Law of Proximity ... 86

2.5 Translating the Gestalt Law of Similarity ... 91

2.6 Translating the Gestalt Law of Continuity ... 97

2.7 Translating the Gestalt Law of Common Fate ... 98

3 The Empirical Visual Similarity Measurement ... 100

3.1 The Extended Subtree ... 101

3.2 The Validity Experiment .. 104

4 Detection of Cross-Browser Differences... 107

4.1 Experimental Setups ... 108

4.2 Experimental Results .. 109

4.3 Case Studies ... 113

5 Related Work .. 119

6 Conclusion and Future Work .. 123

Acknowledgment ... 124

References .. 124

viii

CHAPTER 5 An Automated Testing Framework for Cross-Browser Visual Incompatibility

Detection ... 127

Abstract .. 127

1 Introduction .. 127

2 Related Work .. 129

3 Automated Testing Framework .. 132

3.1 Automated Page-Level Detection of VIs .. 133

3.2 Automated System-Level Testing for VI Detections .. 138

4 Automated Testing Tool .. 142

4.1 Browser and Platform Registration ... 142

4.2 Template Based Test Case Organization ... 143

4.3 Version Based Automation ... 145

4.4 Case Study .. 146

5 Conclusions ... 148

Acknowledgment ... 149

References .. 149

CHAPTER 6 Conclusions ... 151

1 Summary of Thesis ... 151

2 Publications ... 152

Bibliography... 154

ix

List of Tables

Table 2.1 Variables used by the naive Bayes classifier .. 29

Table 2.2 Numbers of TPs, FPs and FNs .. 33

Table 2.3 κ of two raters’ evaluations .. 37

Table 2.4 κ interpretation .. 38

Table 2.5 Average precision, recall and F-1 score of both algorithms ... 38

Table 3.1 Tree Sizes of the Three Web Pages .. 66

Table 3.2 κ of Each Two Raters’ Evaluations .. 73

Table 3.3 B-TED Value Details .. 75

Table 3.4 Experimental Results .. 77

Table 4.1 Proximity Candidate Comparison Results .. 90

Table 4.2 Color Comparison Results .. 93

Table 4.3 Image Comparison Results ... 97

Table 4.4 Results of Mann–Whitney U Test and Cliff’s Delta Effect Size Estimation 105

Table 4.5 Comparison of Human Perceptions and Calculation Results (Original Web Pages) . 111

Table 4.6 Comparison of Human Perceptions and Calculation Results (Ad-Free Web Pages) . 112

Table 4.7 Case Study of Google.ca ... 113

Table 4.8 Case Study of W3schools’ JSON Home Page .. 114

Table 5.1 EST Similarity Values of the Cross-Comparisons ... 147

x

List of Figures

Figure 2.1 Working Procedure of GLM Model .. 18

Figure 2.2 Paradox between Perceptual Proximity and Hausdorff Distance 23

Figure 2.3 Area definition and relevant length ... 25

Figure 2.4 Comparison of Identification Results .. 32

Figure 2.5 Disagreement in GLM Blocks Identification Results ... 36

Figure 2.6 Evaluations of GLM and VIPS on the Test Set .. 40

Figure 3.1 Home Page of “Google.ca” ... 52

Figure 3.2 Home Page of “Twitter.com” .. 53

Figure 3.3 Gestalt Laws of Proximity, Similarity and Continuity .. 54

Figure 3.4 Home Page of “Ubuntu.com”.. 56

Figure 3.5 HD Inconsistency .. 58

Figure 3.6 NHD Dimensions .. 59

Figure 3.7 The Calculation Model .. 62

Figure 3.8 Case Study: The Home Page of ECE .. 64

Figure 3.9 Case Study: The Home Page of ECE (marked) .. 65

Figure 3.10 Part of the Block Tree ... 65

Figure 3.11 Case Study: The Home Page of UA .. 67

Figure 3.12 Case Study: The Home Page of FGSR .. 68

Figure 3.13 The Distribution of Randomly Selected Web Pages per Web Site 71

Figure 3.14 The Distribution of Block Tree Size ... 71

Figure 3.15 Experimental Methodology ... 74

Figure 3.16 B-TED Distributions of Subset 1 .. 75

Figure 4.1 Contradictions between Calculation Distances and Perceptual Distances 88

Figure 4.2 The Distribution of Proximity Candidate Comparison Results 90

Figure 4.3 Distributions of Color Comparison Results .. 93

Figure 4.4 Distributions of Image Comparison Results ... 97

Figure 4.5 Home Page of Amazon ... 98

Figure 4.6 Translation of Gestalt Laws of Grouping .. 99

Figure 4.7 Example of the Visual Incompatibility Detection and Similarity Estimation 102

Figure 4.8 EST Similarity of All 15 Rounds .. 105

Figure 4.9 Performance of the Empirical Measurement on Different Thresholds 107

Figure 4.10 Distribution of Test Cases ... 109

Figure 4.11 Distributions of the Experimental Results for Original Web Pages 110

Figure 4.12 Distributions of the Experimental Results for Ad-Free Web Pages 112

Figure 4.13 Screenshots of Google.ca in the Four Browser Scenarios 115

Figure 4.14 Screenshots of W3schools’ JSON Home Page in the Four Browser Scenarios 116

Figure 4.15 Screenshots of Amazon.ca in the Four Browser Scenarios 118

Figure 4.16 Screenshots of FedEx.com in the Four Browser Scenarios 119

Figure 5.1 The Three Tools for Cross-IE Incompatibility Detection ... 131

Figure 5.2 Detection Reports of Browsera and CrossBrowserTesting 132

Figure 5.3 The Example of UAlberta’s Home Page ... 136

xi

Figure 5.4 The Automated Testing Framework ... 141

Figure 5.5 Sequence Diagram of the Automated Testing Tool .. 143

Figure 5.6 Initialization Dialogs of the Automated Testing Tool... 143

Figure 5.7 Extracting Templates from Django Projects ... 144

Figure 5.8 Schedule Builder of the Automated Testing Tool ... 146

1

CHAPTER 1 Introduction

Internet has brought many benefits and opportunities to our modern life, one of which

is the development and usage of web pages. Web pages have changed our way of life in a

variety of ways. Nowadays web pages are thriving and have invaded into every way of life,

including banking, trading, shopping, education, and etc. Web pages become so important

and prevalent that we can barely live without them. For example, online banking allows us

to shop by browsing commercial web pages and later make a payment; major universities

and colleges offer educational resources through their own web pages for students

wherever they are as long as they have access to internet; e-commerce has changed the way

of traditional marketing and brings about more convenience both to merchants and

customers.

While we enjoy the convenience web pages have brought to our daily life, we should

see that there are issues associated with them as well. For instance, many web pages are

embedded with abundant irrelevant information, such as pop-up ads and extraneous images,

which interrupts our reading efficiency and prevents us from acquiring the real information

we are seeking. The similarity of web pages is also an issue. Some web pages are designed

so similar that ordinary people can hardly see the differences between them. Malicious

designers will mimic the design of major web sites deliberately so that they can trick users

for illegal gains.

Since the technique behind web pages is complex, the usage of web pages is a double-

edged sword. We can benefit from it if they are used properly or we can also suffer from

2

them otherwise. In this thesis, we will look at web pages from the aspects of semantic

content, similarity, and cross-browser issues.

1 Motivation and Goals

After reading relevant papers in the literature, we find that four issues are imminent

and important in the area of web pages, these can be as summarized in the follows.

Firstly, web pages are inundated with vast of irrelevant information such as ads and

extraneous images. The irrelevant information not only makes web pages more

complicated, but also affects the efficiency and effectiveness of our knowledge acquisition.

Secondly, web pages have become increasingly important as we growing rely on

them. As such, a number of illegal web pages have immerged by mimicking the real ones.

Since ordinary users cannot tell the differences between the real web pages and the fake

ones in many cases, it is necessary for web page designers and researchers to find a way to

reduce the influence of web page misusage.

Thirdly, with the advent of various web browsers and platforms, web pages designed

for a specified carrier cannot work well in another, which leads to cross-browser issues for

web pages. How to detect these issues correctly and effectively becomes important and

necessary for us to trust on web pages.

In order to tackle the above-mentioned issues, we seek to achieve the following goals

in this thesis.

3

Regarding the first issue, we will find approaches to identify semantic content in web

pages. By doing so, we attempt to provide a method for retrieving information from web

pages effectively and efficiently.

Regarding the second, issue, our goal is to propose a method for estimating similarity

of web pages. As a matter of fact, there are a number of methods available at present for

estimating web page similarity. However, current methods are not feasible with regard to

modern rich-format web pages.

Regarding the last issue, the purpose is to investigate cross-browser issues and

develop an approach to detect differences existing in various web browsers and platforms.

It is noted that we mainly focus on visual differences of web pages in this regard. Based

on the proposed approach, we will further develop an automated testing framework for

detecting cross-browser incompatibilities.

2 Main Contributions and Thesis Outline

The major contributions of this thesis are summarized as follows:

 Investigated and interpreted the Gestalt laws of grouping into computer compatible

rules for web page content segmentation.

 Provided a semantic block tree model to represent web pages visual information.

 Proposed a numeric measurement for web page visual similarity evaluation.

 Improved the interpretation of Gestalt laws of grouping by a series of empirical

experiments.

 Improved the visual similarity measurement by using the extended subtree model

to replace the tree edit distance.

4

 Utilized the visual similarity measurement to evaluate cross-browser similarity of

web pages.

 Designed an automated testing framework to detect cross-browser visual

incompatibilities.

This thesis adopts the paper-based format and organized as follows. In Chapter 2, we

present our first journal paper as it is published. This paper provides an approach to identify

semantic blocks in web pages using the Gestalt laws of grouping. Chapter 3 presents our

second journal paper as it is published. This paper offers a way to estimate similarity of

rich web pages using visual information. In Chapter 4, we present our third journal paper

as it is in review. This paper deals with detection of cross-browser differences for web page

visual similarity. Chapter 5 shows our fourth journal paper as it is submitted. It describes

an automated testing framework for detecting cross-browser differences. The last chapter

summarizes and concludes the thesis as a whole.

5

CHAPTER 2 Identifying Semantic Blocks in Web

Pages Using Gestalt Laws of Grouping1

Abstract

Semantic block identification is an approach to retrieve information from web

pages and applications. As website design evolves, however, traditional methodologies

cannot perform well any more. This chapter proposes a new model to merge web page

content into semantic blocks by simulating human perception. A “layer tree” is constructed

to remove hierarchical inconsistencies between the DOM tree representation and the visual

layout of the web page. Subsequently, the Gestalt laws of grouping are interpreted as the

rules for semantic block detection. During interpretation, the normalized Hausdorff

distance, the CIE-Lab color difference, the normalized compression distance, and the series

of visual information are proposed to operationalize these Gestalt laws. Finally, a classifier

is trained to combine each operationalized law into a unified rule for identifying semantic

blocks from the web page. Experiments are conducted to compare the efficiency of the

model to a state-of-art algorithm, the VIPS. The comparison results of the first experiment

show that the Gestalt layer merging (GLM) model generates more “true positives” and less

“false negatives” than VIPS (VIsion-based Page Segmentation). The next experiment upon

a large-scale test set produces an average precision of 90.53% and recall rate of 90.85%,

which is approximately 25% better than that of VIPS.

1 Xu, Zhen, and James Miller. "Identifying semantic blocks in Web pages using Gestalt laws of grouping."
World Wide Web 19.5 (2016): 957-978.

6

Keywords: DOM Tree; Gestalt Law of Grouping; Normalized Hausdorff Distance; CIE-

Lab; Normalized Compression Distance.

1 Introduction

Modern web pages are much more complicated in both content and layout than ever

before. Many pages include vast amounts of “irrelevant” information, such as pop-up ads,

game animations, and extraneous images. Due to this, content identification is becoming

more and more difficult. Nevertheless, it is the basis for further work, i.e., content

extraction, data mining, anti-phishing, etc.; hence, it is important that a solution to this

problem is found. The number of applications derived from semantic block identification

in web pages, has climbed in recent years. To be specific, major applications include:

 Content extraction: with extensive information available on current rich-format

web pages, removing “irrelevant” information and extracting target information

quickly and exactly is a vital task.

 Data mining: it aims to investigate data patterns from the large amount of data

carried by target web pages. Web page semantic block identification divides web

pages into distinct blocks by their semantics, and this process will boost data mining

mechanisms and thus improve their accuracy.

 Anti-phishing: current web pages carry both good and bad information, for example,

a variety of fake web pages has emerged, trying to obtain illegal benefits from the

public. Under this situation, anti-phishing becomes an important topic and assumes

the heavy responsibility of distinguishing fake web pages. Through analyzing

7

contextual semantics, blocks with fake content can be detected and distinguished

from genuine content.

 UI design: Despite technology improvements in web design, web pages becomes

increasingly complex at the same time. An excellent web page should be one that

serves the needs and demands of its target customers, rather than feed them with

abundant irrelevant information. Thus, semantic block identification provides a

potential guideline to enhance UI design of web pages and web sites.

 Web search: to search target information fast and accurately, the semantic meaning

of the web page blocks is as important as its content and layout. That is, semantic

block identification provides another insight into web search, on top of web page

layout and pure text content.

Traditional methodologies on block identification work well on textual web pages,

however, they cannot efficiently process rich-format modern web pages. It is obvious that

people can recognize related web page content fast and correctly even before reading it,

regardless of the complexity of the web pages. According to Gestalt psychology, this is

because that humans group objects based on a series of laws – the Gestalt laws of grouping

(Palmer 1990; Sternberg 2003; Koffka 1995).

Therefore, this chapter proposes the “Gestalt Layer Merging” (GLM) model to

solve the problem of the traditional methodologies. The GLM model simulates human

perception by utilizing the Gestalt laws of grouping and three tasks are mainly involved in

this model:

 It extracts the web page content from the DOM tree and constructs a “layer tree”.

This layer tree has an identical hierarchy with the visual layout of the web page.

8

 It interprets the Gestalt laws of grouping. The Gestalt laws are translated into

comparable measurements to evaluate and merge the layer tree nodes into semantic

blocks.

 It combines different Gestalt laws into a unified rule for identification. The

combination obtained by a classifier specifies how the web page content is merged,

and how the final semantic blocks are displayed.

The organization of this chapter is as follows: Sect. 2 discusses an overview of

related work on web page block identification; Sect. 3 describes the GLM model’s outline;

Sect. 4 gives details on the implementation of the model; Sect. 5 runs experiments to merge

and identify web page blocks and evaluates the result by precision and recall; and finally,

Sect. 6 draws conclusions from the experimental result.

2 Related Work

Web pages of ten years ago were not as rich in layout as that of today – they

contained mostly plain text and text hyperlinks, while images, video, and audio streams

were not very common. In addition, because many of the web pages focused on publishing

(textual) articles, their layouts were usually very simple. Thus, the web pages can be

identified by text extraction simply and directly. Besides, using tabular tags such as

“<TABLE>”, “<TR>” and “<TD>” to hold content was once very popular in web page

design. Therefore, many researches extracted content blocks by such tabular clues. For

example, Lin and Ho (2002) analyzed such web pages to extracted informative content

blocks. Because modern web pages usually do not apply tabular skeleton, this method is

not suitable any more.

9

Some other researchers have chosen to directly analyze the source HTML files.

Gupta et al. (2003) applied two sets of filters to retrieve text. Their first filter set was a text

filter that removed images, links, scripts and styles, and the second filter set contained four

components, namely, an advertisement remover, a link list remover, an empty table

remover, and a removed link retainer. By applying the two sets of filters, all images and

stream media were removed from the web page. Although performed well on textual web

pages, it can retrieve very limited information from rich format web pages. Reis et al. (2004)

proposed the RTDM, a restricted top-down mapping algorithm based on the “tree edit

distance”. This methodology solved the structure-based page classification problem; and

can extract news articles from web pages automatically. However, it focused only on the

textual content while paid no attention on the layout, therefore had limitations on

processing modern web pages. Kohlschütter and Nejdl (2008) proposed a densitometric

approach, the “block fusion” algorithm, by which they merged (fused) text into blocks

according to the density of the paragraphs. The number of “tokens” an “lines” are used to

determine the density of the paragraphs. The disadvantage of the “block fusion” algorithm

lies on its assumption that the maximum width of a line is 80 – this only applies to

traditional monospaced terminals, but not to the varies of modern displaying devices. Kang

et al. (2010) investigated the HTML tag repeat patterns. Based on the repetition patterns,

their REPS algorithm splits the web page content (tags) into blocks. By applying proper

value to the threshold of the “normalized importance weight”, their algorithm worked well

on block identification. However, many modern web pages, especially home pages of

modern websites, are designed very simple in layout, containing very few of such repetition

10

patterns. The REPS cannot identify blocks on such web pages as well as it did in traditional

textual pages.

Evolution of browsers enables web pages to become richer in both content and

layout. Due to the power of CSS and JavaScript, the source HTML files are no longer

sufficient to represent what we see from the web page. Therefore, researchers have

considered visual clues. Cai, et al. (2003a; 2003b; Yu, et al. 2003; Song, et al., 2004)

proposed the VIPS algorithm in their research. The VIPS algorithm utilizes all the visual

clues that CSS supported, considers each DOM element as a rectangular block (for

separator identification), and segments web pages by iteratively detecting separators

among these visual blocks. This work has been highly influential, and still represents the

state-of-art in this area. However, although the visual clues of the web page layout were

taken into consideration by the VIPS algorithm, the researchers still segmented pages in a

“manual” way – they studied the rendering style of web pages and concluded limited

segmenting rules, leading to an incompleteness of analyzing the visual clues. Meanwhile,

the VIPS algorithm was proposed and evaluated on the traditional web pages with tabular

skeleton, but performed less efficient on modern web pages. Chen et al. (2003) proposed a

methodology similar to VIPS. They first evaluate the position of each DOM element to

decide if it is a header, a footer, or a sidebar; and then detect the separators among such

blocks. Based on these visual clues, they segment web pages into semantic blocks.

Visual based web page block identification is also useful for displaying web pages

on small screen devices. Hattori et al. (2007) propose the “content distance” of HTML tags

and derived a layout-based segmentation algorithm for visual block identification. The

“content distance” is calculated based on the node depth of the DOM tree, which is a novel

11

metric in this area. However, the implementation of this distance only parses the source

HTML files, leading to missing important features such as dynamically loaded content or

CSS properties. The layout-based segmentation algorithm pre-splits a page according to

the “cell” size, which is divided by tabular skeleton or “<DIV>” wrappers, and the splitting

procedure relies heavily on the parameter of “maximum cell size”. However, the

determination of such an important parameter is not solved in the chapter, making the

algorithm un-implementable by third parties. Baluja (2006) propose a machine learning

framework to identify blocks and recast web pages to fit cell phone screens. In the

methodology, they calculated the entropy and the “information gain” based on the area of

each DOM element, extract its spatial coordinates as features, and build a decision tree to

split the web page into blocks. Specifically, the algorithm splits each web page into 9 grids,

each mapped to a button in the number pad. By pressing a number, the user interacted with

the corresponding grid (for example, zoom in/out). Although it seems to perform well, this

algorithm can only identify a fixed number of blocks with a predefined spatial pattern, this

makes it completely unsuitable for general purpose utilization! In addition, in many cases,

it splits complete semantic blocks into different grids incorrectly because it evaluates the

“information gain” of each vertical and horizontal line while ignores the actual boundaries

of DOM elements. Therefore, this algorithm has a very limited application in the research

area of web page semantic block identification. Besides, as the hardware evolves, small

screen devices that need to display web pages draw much less popularity, leading to the

demand of recasting web pages shrink. Instead, more mature solutions for recasting web

pages (such as Bootstrap2) have been widely employed.

2 http://getbootstrap.com/

http://getbootstrap.com/

12

Some other researchers investigated the semantic block identification problem in

other ways. Chakrabarti et al. (2008) formulated the problem in a combinatorial

optimization framework. They constructed a weighted graph from the DOM tree of a web

page, used the energy-minimizing cuts to perform machine learning of the weights, and

finally split web page content into blocks by the learnt weights. Cao et al. (2010)

transformed each page into an image of RGB colors, and then applied an edge detecting

algorithm (Canny, et al. 1986) to “shrink” the image into several “dividing zones”, which

were the actual web page blocks. Their experiment demonstrated this image processing

algorithm worked well on textual web pages.

3 Gestalt Layer Merging Model

The Gestalt layer merging (GLM) model aims to identify web page blocks by

simulating human perception with the Gestalt laws of grouping. Three components are

included in the model, namely, the layer tree constructor, the Gestalt laws translator, and

the web page block identifier.

3.1 Layer Tree Constructor

The DOM tree is a fast and precise representation of a web page; however, it cannot

be directly used as the input in this model. People read only visible content from the web

pages, so the invisible DOM elements are useless, i.e., they are simply noise to this model.

Meanwhile, the visual hierarchy of a web page sometimes differs from the corresponding

DOM hierarchy, causing perception errors to this model. Such noise and errors must be

eliminated before analyzing.

13

Definition: Given a web page 𝑊𝑃, the layer tree 𝐿𝑇 of 𝑊𝑃 is a finite set where

each element 𝑛 (that is, layer tree node) of 𝐿𝑇 is a layer representing a visible element 𝑒

from DOM tree 𝐷𝑇 of 𝑊𝑃 (𝐿𝑇 = {𝑛 | 𝑛 ← 𝑒, 𝑒 ∈ 𝐷𝑇}) and all elements follow the visual

hierarchy of 𝑊𝑃.

The layer tree constructor takes the DOM tree of a web page as a prototype to build

up its layer tree. The construction includes removing the invisible DOM elements and

fixing the hierarchy. An invisible DOM element is either an element with area of 0

(including the borders and shadows), an element without any actual content (text, image,

background, etc.), or an element that is completely covered by its visible child elements.

The visual hierarchy refers to the geometrical distribution and overlapping relationships of

the DOM elements. The layer tree and layer tree nodes have the following properties:

Property 1: A layer tree node always represents a visible DOM element.

The DOM tree of a web page contains not only the content information, but also

structural and other information. While the former information can be seen by people, the

latter is often ignored, so it is not required in this model. For example, some “DIV”

elements contain no direct content and only act as “wrappers” – holding other elements.

Such elements will not be extracted into layer tree nodes.

Property 2: A layer tree node always represents a complete DOM element.

This follows the Gestalt laws of prägnanz. A DOM element may contain many

kinds of sub content, for example, it may have both foreground text and a background

image. Although, visually speaking, such a DOM element can be further split, we do not

14

extract each of the sub content into a separate layer node. Instead, only one layer node is

extracted representing the complete DOM element.

Property 3: A layer tree node is always a complete rectangle.

This follows the Gestalt laws of closure. In a web page, it is common that some

layers overlap others, so that the parts of the lower layers that covered by the upper layers

cannot be seen. For example, an input box may overlap its parental layer’s background

image. In fact, people still perceive such rectangles as complete. Therefore, it is reasonable

to consider layer tree nodes as complete rectangles.

Property 4: The root node of a layer tree always represents the “BODY” element.

Visible content of a web page locates under the “BODY” subtree. However, the

“BODY” element sometimes is empty, which means it is invisible. In such a case, the

browser will still draw the web page on a white background. This browser behavior enables

the “BODY” to become a visible DOM element. Consequently, it is correct to be selected

as the root of the layer tree.

Property 5: A layer tree node is always located inside its parent layer (if it has a

parent layer).

The layer tree is designed to represent a web page. It must follow the visual

hierarchy of the page. In the DOM tree, child elements are located inside their parent

elements by default; however, some CSS rules can manipulate locations, such as

“position”, “float”, “z-index”, etc. These rules sometimes cause the DOM

hierarchy to be misaligned against the visual hierarchy. Therefore, in layer tree

construction, such an inconsistency must be eliminated.

15

3.2 Gestalt Laws Translator

This translator interprets the Gestalt laws of grouping into machine compatible

rules. The Gestalt laws explain the mechanisms of how humans perceive and understand

things. When processing web pages (layer trees), two Gestalt laws are used to build up the

layer tree, and other four Gestalt laws are expanded into six rules to identify web page

blocks.

3.2.1 The Gestalt Law of Prägnanz

The Gestalt law of prägnanz is also referred to as Gestalt law of simplicity. Humans

tend to perceive objects into the simplest organizations. This is the overarching Gestalt law

of grouping. Based on this law, we take the assumption that every layer node in the layer

tree represents a complete DOM element and such a layer node should not be split any

further in the GLM model.

3.2.2 The Gestalt Law of Closure

Humans tend to perceive incomplete shapes as complete. While building up a layer

tree, we interpret this law to be that each node of the layer tree represents a complete

rectangle, no matter how it is actually displayed.

3.2.3 The Gestalt Law of Proximity

Humans tend to perceive objects that are close to others as a single group, while

those objects that are far from each other are placed into separate groups. This law groups

elements based on their distances.

16

Browser behavior tells us that web page layers are placed adjacently to each other

by default. So if we use the edge distance of layers as proximity, the value will be 0 for

many cases. In another case, if there are two big layers and another two small layers each

having the same edge distance, the gaps between the pairs of layers will not be visually the

same. To solve this issue, we utilize a variant of the Hausdorff distance (Chaudhuri and

Rosenfeld 1999; Sim, et al. 1999; Zhao et al. 2005) between layers as a working definition

of proximity. This is because it takes the sizes of the two objects into consideration.

3.2.4 The Gestalt Law of Similarity

Humans tend to perceive similar objects as a single group. The similarity of two

objects is determined by their appearances.

As a layer node is always a rectangle, the appearance includes its size, background,

and foreground. Consequently, this law is expanded into three laws, accordingly. The first

expanded law compares the size, which consists of both its width and height; the second

expanded law compares background content, which consists of the background color and

image; and the third expanded law compares the foreground content, which are the textual

styles.

3.2.5 The Gestalt Law of Continuity

Humans tend to perceive objects that are aligned together as a single group. This

law evaluates the positions of layers.

The browser aligns content by top and left by default. Therefore, if some layers are

right or bottom aligned, they may be deliberately placed together by the designer of the

17

web page. Hence, such continuity provides a strong clue that these layers are semantically

related.

3.2.6 The Gestalt Law of Common Fate

Humans tend to perceive objects that share the same motion trend as a single group.

Most of the layers in a web page do not move at all. Some layers may contain

animations or videos, but the layers themselves do not move. Thus, it is not possible to

directly evaluate the motion trend. However, this law can evaluate the “static” trend of the

layers.

3.2.7 The Gestalt Law of Symmetry

Humans tend to perceive symmetric objects together as a single group, even if they

are far from each other. As most web pages are not designed to have symmetric layers, we

do not utilize this law.

3.3 Web Page Blocks Identifier

A classifier combines the rules from the Gestalt law translator to identify web page

blocks. Taking the layer tree of a web page as the input, the identifier evaluates each layer

and makes a decision whether the layers can be put into the same group. While only siblings

can be grouped, layers having different parents will be automatically put into different

groups. Such merged groups represent the final blocks. They will be collected and the web

page will be updated.

The GLM model’s working procedure is illustrated in Figure 2.1.

18

Figure 2.1 Working Procedure of GLM Model

4 Implementation

4.1 Buildup of the Layer Tree

Although the layer tree is similar to a subset of the DOM tree, building it is not just

removing redundant nodes and information. Layer tree nodes must keep both content text

and layout information, while the layer tree must keep the correct hierarchy of these nodes.

Since CSS is able to float DOM elements to any place of the page, the DOM hierarchy is,

for many cases, not identical to the rendered (visual) hierarchy. Thus, it is necessary to

reconstruct the layer tree.

4.1.1 Create Layer Tree Nodes

The most important node of a tree is the root. For the layer tree, the root node is

created from the “BODY” element. If a web page’s “BODY” is invisible, it is set to a white

background. Next, for each layer tree node, we create it as follows:

1) Acquire the corresponding DOM element.

19

2) Check if the DOM element is visible. Mark it as invisible and skip it if it meets any

of these conditions: the HTML tag is invisible; either the element's height or width

equals to 0; some of its CSS properties specify that it is not to be rendered; or it is

completely transparent and empty.

3) If the DOM element is visible, calculate its geometric attributes representing the

size. As mentioned previously, we consider every layer as a rectangle according to

Gestalt law of closure. Therefore, the layer tree node’s geometric attributes include

the coordinates of its left top vertex as well as its height and width.

4) Identify the layout information of the layer tree node from the CSS styles. Every

clue related to the layout can be interpreted from the CSS styles of the DOM

element, so this step is actually retrieving useful CSS properties such as text styles,

background styles, etc.

5) Different from DOM elements having more than one text node, the layer tree nodes

contain only one text component, and this component is part of the node rather than

its child nodes. So this step is to merge and trim all the DOM element’s text nodes

into one single property of the layer node.

6) Give the layer tree node a name. The name of a layer tree node is not necessary for

applying Gestalt laws of grouping. It is only used for identifying the node. We

simply use the XPath of the DOM element as the name.

4.1.2 Build Layer Tree with Nodes

The hierarchy of a layer tree is constructed from the DOM tree of the web page. As

sometimes CSS styles replace the original layout and dis-render some DOM elements, the

layer stacking hierarchy is not always identical with the DOM hierarchy. In addition,

20

invisible elements existing in the DOM tree shall be removed when building up the layer

tree. Thus, a modification is necessary.

To construct the layer tree, we manipulate nodes as follows:

1) Take the “BODY” layer node as the root node.

2) From the root node on, for every layer tree node, append all child (layer tree) nodes

according to their corresponding DOM hierarchy.

3) If any node is completely located inside any of its sibling nodes, then move the

node downward so that it becomes a child node of that sibling. Sibling nodes that

geometrically overlap each other are acceptable in the layer tree model. They are

still considered as sibling nodes.

4) If a DOM element is invisible or empty, then there is no corresponding layer tree

node. However, its child DOM elements may have corresponding layer tree nodes.

In this condition, these child layer tree nodes shall become children of the layer tree

node which is related to this DOM element’s first visible parent element.

Creating layer tree nodes from DOM elements is done simultaneously with building

up the layer tree. This procedure starts from adding the root node to the layer tree, and then

executes recursively until all visible DOM elements are extracted and added to the layer

tree.

4.2 Translation of the Gestalt Laws

As mentioned above, the Gestalt law of similarity is expanded into three laws,

namely, background similarity, text similarity, and size similarity. Among all the six laws:

21

 The Gestalt law of proximity is translated as to compare the distance between two

layers. The distance in the GLM model is defined as the normalized Hausdorff

distance between layers. Sect. 4.2.1 discusses details about the calculation.

 Background similarity is evaluated by both background color and image. Color

comparison is conducted in CIE-Lab color space instead of RGB color space, and

image comparison is done by calculating the normalized compression distance.

They are discussed in Sect. 4.2.2 and Sect. 4.2.3.

 Text similarity is evaluated by comparing a set of text and paragraph related CSS

properties. Similarly, with background color, the text colors are compared under

CIE-Lab space; the other CSS styles are directly compared by their corresponding

values.

 Size similarity is represented by both the width and height of the layers.

 The Gestalt law of continuity is interpreted to compare the left, top, right and

bottom coordinates of layers. If any of the four edges between two layers share the

same value, then they are continuous.

 The “Static trend” from the Gestalt law of common fate is represented by the

“position” CSS property. By default, the positions are the same for semantically

related layers. If any of a group of layers has a different “position”, then it is

designed to be separated from the others. Therefore, it belongs to a different block

with others.

22

4.2.1 Normalized Hausdorff Distance

As mentioned previously, a normalized Hausdorff distance between two layers is

used as the proximity. For the two layers 𝐿1 and 𝐿2, the Hausdorff distance (HD) between

them is calculated as follows:

1) For any point 𝑙1 in 𝐿1 and 𝑙2 in 𝐿2, the distance between them is the length of the

line segment:

‖𝑙1 − 𝑙2‖ = √(𝑥𝑙1
− 𝑥𝑙2

)2 + (𝑦𝑙1
− 𝑦𝑙2

)2 ;

2) For any point 𝑙1 in 𝐿1, the distance between it and 𝐿2 is the infimum of distances

between 𝑙1 and all points in 𝐿2:

𝑑(𝑙1, 𝐿2) = inf
𝑙2∈𝐿2

‖𝑙1 − 𝑙2‖ ;

3) Hausdorff distance from 𝐿1 to 𝐿2 (ℎ𝑑1,2) is the supremum of distances between 𝐿2

and all points in 𝐿1:

ℎ𝑑1,2 = sup
𝑙1∈𝐿1

𝑑(𝑙1, 𝐿2) ;

4) Hausdorff distance between 𝐿1 and 𝐿2 is the maximum value between the

Hausdorff distance from 𝐿1 to 𝐿2 and the Hausdorff distance from 𝐿2 to 𝐿1 , as

shown in (2-1):

 𝐻𝐷(𝐿1, 𝐿2) = max{ℎ𝑑1,2, ℎ𝑑2,1} . (2-1)

However, it is not sufficient to directly use HD as the proximity. This is because of

a perceptual inconsistency: if there is a pair of large layers close to each other and another

23

pair of small layers far from each other, the proximities of the two pairs are perceptually

different (far vs. close), while the HD may have the same values. For example, as shown

in Figure 2.2, 𝐿1 and 𝐿2 are both 50×50 while adjacent to each other; 𝐿3 and 𝐿4 are 10×10

while having an edge distance of 40. In this case the perceptual proximities of the two

groups they are not the same, however, the NDs of the two pairs are both 50.

Figure 2.2 Paradox between Perceptual Proximity and Hausdorff Distance

Such inconsistency is caused by the sizes of the two layers. To eliminate it, we

introduce a modification of the original Hausdorff distance as the proximity – the

normalized Hausdorff distance (NHD). It is calculated by adding a normalizing factor –

relevant length (Re) – to (2-1), as shown in (2-2):

 𝑁𝐻𝐷(𝐿1, 𝐿2) = max {
ℎ𝑑1,2

𝑅𝑒𝐿1

,
ℎ𝑑2,1

𝑅𝑒𝐿2

} , (2-2)

where, 𝐿1, 𝐿2 are the two layers; sup and inf retrieve the supremum and infimum of a set

of values; ‖𝑙1 − 𝑙2‖ is the norm (distance) between 𝑙1 and 𝑙2 ; and 𝑅𝑒𝐿1
, 𝑅𝑒𝐿2

 are the

relevant lengths, respectively.

Re can be either the height, width, or both (the diagonal) of the layer, depending on

the related location of the two layers. Note that 𝑅𝑒𝐿1
 and 𝑅𝑒𝐿2

 in (2-2) may be different.

(a) (b)

24

For example (Figure 2.3d), 𝑅𝑒𝐿1
 is the diagonal length of 𝐿1 while 𝑅𝑒𝐿2

 is the height of

𝐿2. As shown in Figure 2.3, having analyzed all possible distributions of two layers, we

conclude the NHD calculation as follows:

1) 𝐿1 is completely inside or outside of 𝐿2. We do not deal with this condition and

simply set 𝑁𝐻𝐷 to 0 (although ℎ𝑑2,1 ≠ 0 in Figure 2.3a). This only happens when

calculating proximity between a parent and a child layer:

𝑁𝐻𝐷(𝐿1, 𝐿2) = 0 .

2) 𝐿1 is completely in the north/south area (between left and right edges) of 𝐿2

(Figure 2.3b). In this condition, 𝑅𝑒𝐿1
 is the height of 𝐿1, and ℎ𝑑1,2 equals to the

vertical distance between top edges (North) or bottom edges (South) of the two

layers:

𝑅𝑒𝐿1
= ℎ𝑒𝑖𝑔ℎ𝑡𝐿1

 ;

ℎ𝑑1,2 = 𝑑𝑖𝑠𝑡v = {
|𝑡𝑜𝑝𝐿1

− 𝑡𝑜𝑝𝐿2
|, 𝑐𝑦

1 < 𝑐𝑦
2

 |𝑏𝑜𝑡𝑡𝑜𝑚𝐿1
− 𝑏𝑜𝑡𝑡𝑜𝑚𝐿2

|, 𝑐𝑦
1 > 𝑐𝑦

2
 ,

Where, 𝑐𝑦
1 and 𝑐𝑦

2 are the y coordinates of the two layers’ centroids, 𝑐𝑦
1 ≠ 𝑐𝑦

2.

25

Figure 2.3 Area definition and relevant length

3) 𝐿1 is completely in the west/east area (between top and bottom edges) of 𝐿2

(Figure 2.3c). Similarly, 𝑅𝑒𝐿1
 is the width of 𝐿1, and ℎ𝑑1,2 is the horizontal edge

distance between their left edges (west) or right edges (east):

𝑅𝑒𝐿1
= 𝑤𝑖𝑑𝑡ℎ𝐿1

 ;

ℎ𝑑1,2 = 𝑑𝑖𝑠𝑡h = {
|𝑙𝑒𝑓𝑡𝐿1

− 𝑙𝑒𝑓𝑡𝐿2
|, 𝑐𝑥

1 < 𝑐𝑥
2

 |𝑟𝑖𝑔ℎ𝑡𝐿1
− 𝑟𝑖𝑔ℎ𝑡𝐿2

|, 𝑐𝑥
1 > 𝑐𝑥

2
 ,

(a) Inside (b) North/South

(c) West/East (d) Corner Region(s)

26

Where, 𝑐𝑥
1 and 𝑐𝑥

2 are the x coordinates of the two layers’ centroids, 𝑐𝑥
1 ≠ 𝑐𝑥

2.

4) 𝐿1 covers one or two corner areas of 𝐿2 (Figure 2.3d). As none of the two

rectangular layers completely locates inside of the other, 𝐿1 can only cover one

corner area or at most two adjacent corner areas of 𝐿2. In this condition, both the

height and the width of 𝐿1 are the relevant lengths, so 𝑅𝑒𝐿1
 is the diagonal length

of 𝐿1; and ℎ𝑑1,2 is the distance between the furthest vertices:

𝑅𝑒𝐿1
= 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝐿1

= √𝑤𝑖𝑑𝑡ℎ𝐿1

2 + ℎ𝑒𝑖𝑔ℎ𝑡𝐿1

2
 ;

ℎ𝑑1,2 = √𝑑𝑖𝑠𝑡v
2 + 𝑑𝑖𝑠𝑡h

2
 .

Having the 𝑁𝐻𝐷 calculated, we can merge the layers according to Gestalt law of

proximity. If a series of sibling layers share the same proximity, then they belong to one

single group; however, if any pair of two layers has a different proximity than other pairs,

they shall be put into a different group.

4.2.2 Comparing Two Colors

While most web pages use RGB color space, CIE-Lab color space is used in this

chapter because it is designed to approximate human vision, and it provides standards to

evaluate color differences.

When retrieving a CSS color, most browsers will return a RGB value or

“transparent”. The first step to compare colors is to fix the transparent color. In fact, if a

layer has a transparent background color with no background image, the under layer’s

content will show. Thus “transparent” is not this layer’s actual displaying background color

27

– it is its parent layer’s background color. If all layers under the layer (that is, all the parent

layers of it) are transparent and none of these parent layers contains any background image,

then all the parent layers and the child layer will have a white background color. Having

determined this, we can assign all layers with a non-transparent background color properly.

The non-transparent RGB colors are then converted into CIE-Lab through (2-3) and

(2-4) (Connolly and Fleiss 1997; Johnson and Fairchild 2003):

 (
𝑋
𝑌
𝑍

) = (
0.4303 0.3416 0.1784
0.2219 0.7068 0.0713
0.0202 0.1296 0.9393

) (
𝑅
𝐺
𝐵

) , (2-3)

where, 𝑅, 𝐺, 𝐵 are the red, green and blue channel of the RGB color; and 𝑋, 𝑌 𝑍 are the X,

Y, Z channel of the color in XYZ color space.

𝐿∗ = 116 𝑓(𝑌 / 𝑌0) − 16

𝑎∗ = 500 [𝑓(𝑋 / 𝑋0) − 𝑓(𝑌 / 𝑌0)]

𝑏∗ = 500 [𝑓(𝑌 / 𝑌0) − 𝑓(𝑍 / 𝑍0)]
 , (2-4)

where, 𝐿∗, 𝑎∗, 𝑏∗ are the L*, a* and b* channel of the color; 𝑋0, 𝑌0, 𝑍0 are the tristimulus

values of CIE-Lab standard illuminant 𝐷50; and 𝑓(𝑞) is calculated as:

𝑓(𝑞) = {
√𝑞3 𝑞 > 0.008856

7.787 𝑞 + 0.1379 𝑞 ≤ 0.008856
 .

The CIE-Lab color difference is used to determine whether two colors can be

considered as the same or not. Specifically, the color difference ∆𝐸00
12 under the

CIEDE2000 standard (Luo, et al. 2001; Sharma et al. 2005) is calculated, as shown in (2-

5):

 ∆𝐸00
12 = √(

∆𝐿′

𝑘𝐿𝑆𝐿
)

2

+ (
∆𝐶′

𝑘𝐶𝑆𝐶
)

2

+ (
∆𝐻′

𝑘𝐻𝑆𝐻
)

2

+ 𝑅𝑇 (
∆𝐶′

𝑘𝐶𝑆𝐶
) (

∆𝐻′

𝑘𝐻𝑆𝐻
) . (2-5)

28

During comparison, if ∆𝐸00
12 is greater than 3.30 (Liu, et al. 2012), then the two

colors are considered as different.

4.2.3 Comparing Two Images

Background images are provided by CSS as URLs. However, it is not correct to

simply compare the URLs because images with different URLs may still be the same. A

correct way to compare images is to compare their content. We first retrieved images from

URLs; and then convert them from RGB color space into CIE-Lab color space. To compare

similarity of the two images (CIE-Lab color pixels), we calculate the normalized

compression distance (NCD) as shown in (2-6) (Li, et al. 2004; Cilibrasi 2007):

 𝑁𝐶𝐷(𝑥, 𝑦) =
𝐶(𝑥𝑦) − 𝑚𝑖𝑛{𝐶(𝑥),𝐶(𝑦)}

𝑚𝑎𝑥{𝐶(𝑥),𝐶(𝑦)}
 , (2-6)

where, 𝑥, 𝑦 are the pixel representation of the two images; 𝑥𝑦 is the concatenation of 𝑥 and

𝑦; and 𝐶(𝑞) calculates the length of the compressed data 𝑞.

We select LZMA as the compression algorithm. Having obtained 𝑁𝐶𝐷(𝑥, 𝑦), if it

is smaller than 0.25 (Roshanbin and Miller 2011), then the two images 𝑥 and 𝑦 can be

considered to contain the same content.

4.3 Identification of Web Page Blocks

Each of the six translated laws can provide a result that determines whether two

layers should be merged together of not. The (final) result must combine the six sets of

results together. However, it is not easy to analyze them after the application of the laws.

An alternative solution is to combine the six laws together before the identification.

29

4.3.1 Combination of the Gestalt Laws

There exist no obvious rules on combining the Gestalt laws. Therefore, we choose

the naive Bayes classifier (McCallum and Nigam 1998) to explore the hidden connection

between them. In this classifier, the category variable 𝐶 of the classifier is set as “0” and

“1”, representing “not merge” and “merge”, respectively, while the feature vector consists

of six variables, each representing the corresponding Gestalt law, as shown in Table 2.1.

Table 2.1 Variables used by the naive Bayes classifier

Variables
Values

0 1

𝑭

𝐹1 Gestalt law of proximity

do not merge

the layers
merge the layers

𝐹2 Gestalt law of similarity (background)

𝐹3 Gestalt law of similarity (text style)

𝐹4 Gestalt law of similarity (layer size)

𝐹5 Gestalt law of continuity

𝐹6 Gestalt law of common fate

𝐶 all the above Gestalt laws

To train the classifier, we do not build the training set with concrete web pages.

This is because the training set shall contain all possible conditions of 𝑭, such actual web

pages are very rare. For example, it is hard to find a web page in the condition that all the

layers follow and only follow the Gestalt law of proximity (𝑭 = (𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6) =

(1,0,0,0,0,0)). Due to this, we deliberately designed the sample pages to construct the

training set, which has covered all values of 𝑭. The training set consists of 64 cases (26 =

64). The training set is manually classified, and then fed to the classifier.

4.3.2 Collection of the Identification Results

The trained classifier reads the layer tree of a web page, evaluates the (sibling)

layers by the six laws to create the corresponding feature vector 𝑭, and finally categorizes

the layers as “merge them” or “not merge them”. The final identification results consist of

30

a series of groups, where each group represents a semantic block. Layers in each block can

be identified from the web page by its node name.

The blocks are stored into database. As we separate layers with different parents

automatically into different groups, each semantic block will only contain sibling layers.

Sometimes, a semantic block holds all sibling layers of a parent layer. In this condition, it

is reasonable to replace all the child layers with the parent layer in the block.

As mentioned before, the advantage of Mozilla Firefox extension is that it is able

to modify the web page in real-time. Therefore, in this implementation, having obtained

the merging results, we update them to the original web page immediately. The updates are

displayed by marking the corresponding DOM elements with a special background. For

each semantic block, a different color (except black and white) is assigned, and each layer

in this block is marked with this color as background. Meanwhile, border shadows are also

added to make it clearer.

5 Experiments

We develop a Mozilla Firefox extension to implement the GLM model. This is

because:

 Mozilla Firefox provides APIs for manipulating DOM elements without any extra

effort such as parsing HTML code, JavaScript functions or CSS properties, making

it possible to build up the layer tree easily and fast;

 The DOM tree provided in Mozilla Firefox is the one used for rendering the original

web page, thus it is the most accurate data source of a web page we can find; and

31

 Any modification of the DOM tree is applied immediately, and shown (in real-time)

to the users.

Experiment results of the GLM are compared with Cai’s VIPS algorithm (Reis, et

al. 2004), which is state-of-art and normally considered the most accurate web page

segmentation algorithm. Algorithms by Hattori et al. (2007) and Baluja (2006) were also

considered, but these algorithms are not implementable for this problem space. Details of

the problems with these algorithms can be found in Sect. 2 .

5.1 Comparison Test

This test examines the identification results of the two algorithms on two test cases:

the home pages of University of Alberta and IEEE standards association. For each of the

two web pages, the two algorithms identify a series of blocks. However, some of the blocks

are incorrect – they are the “false positive” results (FP); the correct blocks that any

algorithms misses are the “false negative” results (FN); the correctly identified blocks are

the “true positive” results (TP). The original pages and the result pages of are shown in

Figure 2.4. Note that the screenshots of VIPS results are modified to illustrate results more

clearly, because Cai’s software cannot display all identified blocks in a single page.

32

Figure 2.4 Comparison of Identification Results

From the figure, observations can be found that the both GLM and VIPS have

successfully identified correlated semantic blocks. For example, the middle navigation bar

holding 7 icons (each element in the block is marked with yellow background) in Figure

2.4b, the big image block (marked with light red) in Figure 2.4c, the “news” block at the

left bottom (marked with light green background) in Figure 2.4e, and the footer block

(marked with purple) in Figure 2.4f, etc.

(a) Original page (b) GLM identification

1

(c) VIPS identification

1

(d) Original page 2 (e) GLM identification

2

(f) VIPS identification

2

33

According to the observation, the GLM algorithm has performed better than VIPS

on the two test cases. VIPS has identified very limited number of blocks, and misses a lot:

for the UA home page, it only finds 28 blocks in total; while GLM finds 47 blocks; and for

the IEEE home page, the total numbers of blocks found by the two algorithms are 15 and

41, respectively. This is because VIPS only identifies big blocks while it misses small ones.

For example, as shown in Figure 2.4c, VIPS has identified the middle block (marked with

light green border), but inside of this block, it fails to mark none of the three sub blocks –

the left side image, the middle text block, and the right side buttons group. As a comparison

in Figure 2.4b, GLM has identified both big block (marked with light blue background)

and two of the three sub blocks, missing only the left side image. Furthermore, even when

VIPS finds big blocks, many big blocks are still missed. For example, the “news” block

(left part of the lower yellow block) in Figure 2.4c, the video block in in Figure 2.4f, etc.

This drawback contributes to a high value of VIPS “false negatives”, namely, 26 in IEEE

home page, and 14 in UA home page. The statistics are summarized in Table 2.2.

Table 2.2 Numbers of TPs, FPs and FNs

Test

case

GLM VIPS

TP FP FN TP FP FN

IEEE 38 3 3 10 5 26

UA 41 6 2 18 10 14

5.2 Efficiency Test

The second group of experiments evaluates the efficiency of the GLM and compare

it with the VIPS through a large test set. Cai’s VIPS software only provides manual

operation for block identification and cannot displays all blocks together in the web page,

34

therefore is not feasible for mass evaluation. To solve this problem, we chose this

implementation3.

The test set covers the homepages of the world’s 500 top websites as defined from

statistics produced by Alexa4 . Before running the tests, we filter out “inappropriate”

samples of websites such as duplicate sites (for example, “google.com”, “google.ca”, etc.),

temporarily unavailable sites and sites that contain inappropriate content. The final test set

consists of 381 websites.

5.2.1 Evaluation Metrics

The algorithm is evaluated by measuring its precision, recall and F-1 scores. Having

acquired the numbers of TPs, FPs, and FNs for each web page, the three metrics can be

calculated by (2-7):

𝑃𝑖 =
𝐵𝐴 ∩ 𝐵𝑖

𝐵𝐴
 =

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑅𝑖 =
𝐵𝐴 ∩ 𝐵𝑖

𝐵𝑖
 =

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝐹𝑖 =
2 𝑃𝑖 𝑅𝑖

𝑃𝑖 + 𝑅𝑖

 , (2-7)

where, 𝑃𝑖 , 𝑅𝑖 , 𝐹𝑖 are precision, recall and F-1 score of the 𝑖 th web page,

respectively; 𝐵𝐴 is the number of blocks identified by the algorithm; 𝐵𝑖 is the number of

blocks that the 𝑖th web page contains; and 𝑇𝑃𝑖, 𝐹𝑃𝑖, 𝐹𝑁𝑖 are the number of “true positives”,

“false positives” and “false negatives”, respectively.

As no computer system or software can count the correct 𝑇𝑃𝑖 , 𝐹𝑃𝑖 , 𝐹𝑁𝑖

automatically, we rely upon human judgement. In this chapter, we recruit five volunteers

3 https://github.com/tpopela/vips_java
4 http://www.alexa.com/topsites. The top sites were retrieved on April 4, 2014.

https://github.com/tpopela/vips_java
http://www.alexa.com/topsites

35

to evaluate all the 381 samples. The volunteers all utilize the Internet every day, so it is

believed that they have sufficient experience to identify web page blocks correctly. They

are required to judge the correctness of each result calculated by the algorithm. That is, to

find the 𝑇𝑃𝑖, 𝐹𝑃𝑖 and 𝐹𝑁𝑖 from both the screenshots of GLM and VIPS for each web page.

5.2.2 Inter Rater Reliability

The five volunteers evaluate each web page sample and count the 𝑇𝑃𝑖, 𝐹𝑃𝑖 and 𝐹𝑁𝑖

independently. Before using their evaluations for the calculation of precision, recall and F-

1 scores, a verification of inter-rater reliability (Gwet 2010) showing the agreement level

among the five raters is needed. If they disagree with each other, then it will be meaningless

to rely on their rates. During the verification, we calculate Cohen’s Kappa (Jacob 1960) to

verify it, as shown in (2-8):

 𝜅 =
𝑃𝑟(𝑎) + 𝑃𝑟(𝑒)

1 − 𝑃𝑟(𝑎)
 , (2-8)

where, 𝑃𝑟(𝑎) and 𝑃𝑟(𝑒) are the observed and expected percentage of agreement,

respectively.

Mean 𝜅 values of all samples between each two raters’ 𝑇𝑃, 𝐹𝑃 and 𝐹𝑁 are listed

in Table 2.3. The reason that 𝜅 values of GLM’s 𝑇𝑃 are lower lies in the fact that 𝑇𝑃

blocks are the major parts of each web page. Of all the test cases, the average 𝑇𝑃 is 36.89

while average 𝐹𝑃 and 𝐹𝑁 are 3.35 and 3.03, respectively. Raters’ disagreement level on

the larger group is higher than that on the smaller groups:

1) The identification results contain blocks with different granularities. One rater

considered small blocks as TP bocks while another rater considered them as FP

36

blocks. Such an example from Figure 2.4b is the green button inside the text

rectangle floating upon the big image (See the yellow ellipse in Figure 2.5) – three

of the raters believed the buttons should not be separated from the text, while the

other two raters identified them as one block. Although almost every sample

contained blocks where one was inside of another, less than 10% of them caused

granularity issues in the five volunteers’ ratings. However, this was the major

source of deviations.

Figure 2.5 Disagreement in GLM Blocks Identification Results

2) There are “hidden” blocks. This is actually because the background colors and

shadow borders of these blocks are overlapped by their upper blocks, hence the

view of these blocks was obscured. An example from Figure 2.4b is the block

holding the three buttons at the right side of the middle area (red ellipse in Figure

2.5) – the buttons were identified as a block and marked (actually their parent layer

was marked) with background color and shadow borders, however it was very

37

difficult to view due to its obscuration. Such human errors are less than 5% among

the five volunteers’ ratings, but contribute to the second largest category of

deviations.

Results in Table 2.3 provide strong evidence that even human “experts” are less

than perfect when undertaking this task, and hence it is clearly a demanding task for an

automated system.

Table 2.3 𝜅 of two raters’ evaluations

Raters GLM VIPS

A B 𝑻𝑷 𝑭𝑷 𝑭𝑵 Overall 𝑻𝑷 𝑭𝑷 𝑭𝑵 Overall

1 2 0.5746 0.9136 0.9475 0.6270 0.7137 0.7934 0.8977 0.7689

1 3 0.5106 0.9167 0.9320 0.5715 0.7384 0.7630 0.9045 0.7710

1 4 0.5319 0.9136 0.9320 0.5895 0.7662 0.7731 0.8807 0.7850

1 5 0.5000 0.9044 0.9351 0.5618 0.7416 0.7832 0.8943 0.7785

2 3 0.5267 0.9229 0.9475 0.5868 0.6708 0.7596 0.8840 0.7335

2 4 0.5534 0.9198 0.9413 0.6089 0.6770 0.7494 0.8841 0.7329

2 5 0.5028 0.9044 0.9444 0.5648 0.6523 0.7527 0.8670 0.7194

3 4 0.5374 0.9259 0.9567 0.5968 0.6771 0.7358 0.8705 0.7260

3 5 0.5161 0.9013 0.9413 0.5757 0.6801 0.7596 0.8841 0.7381

4 5 0.5373 0.9136 0.9444 0.5949 0.6925 0.7630 0.9011 0.7479

Table 2.4 shows the interpretations of the 𝜅 value (Landis and Koch 1997). From

the table, the GLM’s overall 𝜅 values between every two raters’ rates are all in a moderate

level (𝜅 > 0.5) while VIPS’ overall 𝜅 values all in a substantial level (𝜅 > 0.7). Such

agreement is equivalent to many works reporting inter-rate reliability statistics on complex

visual and medical classification problems (Pereira, et al. 2009; Hauzeur, et al. 1999;

Unwin 1998; Tewarie, et al. 2012; Albrecht, et al. 2012) and hence it is considered

sufficient for the task. Therefore, we can infer that the five raters all agreed with each other.

38

Table 2.4 𝜅 interpretation

𝜿 Strength of agreement

0.00 ~ 0.20 Slight

0.21 ~ 0.40 Fair

0.41 ~ 0.60 Moderate

0.61 ~ 0.80 Substantial

0.81 ~ 1.00 Almost perfect

5.2.3 Evaluation Results

By testing the precisions, recalls and F-1 scores of the two algorithms on the 381

web page samples, we conclude that GLM is more accurate than VIPS. Each of the five

volunteers’ rates as well as an average of these rates are evaluated. The evaluation results

are shown in Table 2.5.

Table 2.5 Average precision, recall and F-1 score of both algorithms

Volunteers
GLM VIPS

Precision Recall F-1 Score Precision Recall F-1 Score

1 90.55% 90.87% 90.40% 65.79% 67.98% 63.80%

2 90.55% 90.88% 90.40% 65.87% 68.01% 63.87%

3 90.48% 90.79% 90.30% 65.80% 67.93% 63.79%

4 90.49% 90.84% 90.34% 65.69% 68.01% 63.76%

5 90.50% 90.86% 90.36% 65.77% 67.93% 63.79%

Average 90.53% 90.85% 90.37% 65.79% 67.98% 63.81%

As can be seen from Table 2.5, each volunteer produces results which are very

similar to each other (errors within 1% and standard deviations within 0.001), providing a

high degree of confidence that the results are independent of the volunteers and their

performance. It clearly shows that GLM outperforms VIPS in every situation – the average

GLM precision of the test samples is 90.53%, which is 24.74% better than VIPS.

Meanwhile, GLM provides a high recall rate of 90.85% and a high F-1 score of 90.37% –

22.87% and 26.56% higher than VIPS, respectively.

Figure 2.6 shows the box plots of all the results, where “P” denotes precision, “R”

denotes recall, and “F” denotes F-1 score. Visually we can conclude that the GLM

39

distributions, for each of the three evaluation metrics, are clearly superior to its VIPS

equivalent. In addition, if we look at the plots more closely:

1) Although both algorithms can identify samples with highest average precision

(Figure 2.6e) as 100%, GLM’s lowest precision is 56.45% (volunteer 2) and lowest

average precision is 58.72% (both for “www.reddit.com”) while VIPS’ lowest

average precision is 0% (18 samples). VIPS’ lowest non-zero precision is 1.14%

(volunteer 5) and lowest non-zero average precision is 1.21% (“www.y8.com”).

2) The median of GLM’s average precision, recall and F-1 score are 92.13%, 91.49%

and 91.09% (Figure 2.6f), respectively, meaning that more than half of the results

are over 91%. On contrary, VIPS provides the average precision, recall and F-1

score with medians of 74.68%, 74.19% and 72.08%, respectively.

3) The first quartile of GLM’s average precision is 86.36% while the third quartile is

95.63%, meaning GLM can guarantee that more than half of its results have average

precision within the range between 87% and 95%. The first and third quartiles of

VIPS’ precision are 42.86% and 100%, which is a much wider range. This shows

that although VIPS can provide some better samples, it also provides many poorer

samples than GLM.

From the data, we can find that the GLM algorithm works better than VIPS in

general. The reason lies on the fact that the GLM model interprets most of the Gestalt laws

of grouping to simulate a human’s mechanism of perception, while VIPS relies mainly on

visual of web pages to identify blocks. As modern web pages evolve, layouts are no longer

as simple as ten years ago and the visual separators are much less obvious.

40

Figure 2.6 Evaluations of GLM and VIPS on the Test Set

6 Conclusions

This chapter proposes a web page semantic block identification algorithm utilizing

the Gestalt laws of grouping, and applies two experiments to evaluate its efficiency. The

GLM model consists of three components: the layer tree builder, the Gestalt law translator,

and the web page blocks identifier. The layer tree builder produces input data to the Gestalt

(a) Volunteer 1 (b) Volunteer 2

(c) Volunteer 3 (d) Volunteer 4

(e) Volunteer 5 (f) Average

41

laws translator. It extracts visible DOM elements into layer nodes and builds the layer tree

from DOM tree of the web page by fixing the hierarchical inconsistency. The Gestalt laws

translator, the core component of the GLM model, interprets four of the major Gestalt laws

of grouping. The web page blocks identifier combines each interpreted law into a unified

law, applies it to the layer tree to obtain the semantic blocks, and finally feedbacks the

blocks to both the original web page and the local database.

Two groups of experiments are conducted to evaluate the efficiency of the model

by comparing with the VIPS algorithm. The first group runs two test cases to compare the

two algorithms’ identification results. The outcomes show that the GLM model generates

more “true positives” and less “false negatives” than VIPS, which means that the VIPS

does not perform well on modern rich format web pages. The second group tests home

pages of the world’s top 500 websites. Five volunteers are recruited to evaluate the

identification results manually. Three metrics have been calculated by collecting their

evaluations, namely, precision, recall and F-1 score. The testing results clearly

demonstrates that the GLM model is superior to VIPS:

 GLM has higher precision, recall and F-1 score than VIPS;

 Medians of the GLM precisions and recalls are both higher than those of VIPS; and

 GLM provides steadier and higher distributions of precisions and recalls than VIPS.

Acknowledgement

The authors give thanks to China Scholarship Council (CSC) for their financial

support.

42

References

Albrecht, P., M üller, A.-K., Ringelstein, M., Finis, D., Geerling, G., Cohn, E., Aktas, O.,

Hartung, H.-P., Hefter, H., Methner, A., 2013. Retinal neurodegeneration in wilsons disease

revealed by spectral domain optical coherence tomography. In: Neurology. Vol. 80. Lippincott

Williams & Wilkins 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA.

Baluja, S., 2006. Browsing on small screens: recasting web-page segmentation into an

efficient machine learning framework. In: Proceedings of the 15th international conference on

World Wide Web. ACM, pp. 33–42.

Cai, D., Yu, S., Wen, J.-R., Ma, W.-Y., 2003a. Extracting content structure for web pages

based on visual representation. In: Asia-Pacific Web Conference. Springer, pp. 406–417.

Cai, D., Yu, S., Wen, J.-R., Ma, W.-Y., 2003b. Vips: a vision-based page segmentation

algorithm.

Canny, J., 1986. A computational approach to edge detection. IEEE Transactions on pattern

analysis and machine intelligence (6), 679–698.

Cao, J., Mao, B., Luo, J., 2010. A segmentation method for web page analysis using

shrinking and dividing. International Journal of Parallel, Emergent and Distributed Systems 25 (2),

93–104.

Chakrabarti, D., Kumar, R., Punera, K., 2008. A graph-theoretic approach to webpage

segmentation. In: Proceedings of the 17th international conference on World Wide Web. ACM, pp.

377–386.

Chaudhuri, B. B., Rosenfeld, A., 1999. A modified hausdorff distance between fuzzy sets.

Information Sciences 118 (1), 159–171.

Cilibrasi, R. L., et al., 2007. Statistical inference through data compression.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and

psychological measurement 20 (1), 37–46.

Connolly, C., Fleiss, T., 1997. A study of efficiency and accuracy in the transformation

from rgb to cielab color space. IEEE Transactions on Image Processing 6 (7), 1046–1048.

Gupta, S., Kaiser, G., Neistadt, D., Grimm, P., 2003. Dom-based content extraction of html

documents. In: Proceedings of the 12th international conference on World Wide Web. ACM, pp.

207–214.

Gwet, K. L., 2014. Handbook of inter-rater reliability: The definitive guide to measuring

the extent of agreement among raters. Advanced Analytics, LLC.

43

Hattori, G., Hoashi, K., Matsumoto, K., Sugaya, F., 2007. Robust web page segmentation

for mobile terminal using content-distances and page layout information. In: Proceedings of the

16th international conference on World Wide Web. ACM, pp. 361–370.

Hauzeur, J., Mathy, L., De Maertelaer, V., 1999. Comparison between clinical evaluation

and ultrasonography in detecting hydrarthrosis of the knee. The Journal of rheumatology 26 (12),

2681–2683.

Johnson, G. M., Fairchild, M. D., 2003. A top down description of s-cielab and ciede2000.

Color Research & Application 28 (6), 425–435.

Kang, J., Yang, J., Choi, J., 2010. Repetition-based web page segmentation by detecting

tag patterns for small-screen devices. IEEE Transactions on Consumer Electronics 56 (2).

Koffka, K., 2013. Principles of Gestalt psychology. Vol. 44. Routledge.

Kohlsch ütter, C., Nejdl, W., 2008. A densitometric approach to web page segmentation.

In: Proceedings of the 17th ACM conference on Information and knowledge management. ACM,

pp. 1173–1182.

Landis, J. R., Koch, G. G., 1977. The measurement of observer agreement for categorical

data. biometrics, 159–174.

Li, M., Chen, X., Li, X., Ma, B., Vit ányi, P. M., 2004. The similarity metric. IEEE

transactions on Information Theory 50 (12), 3250–3264.

Lin, S.-H., Ho, J.-M., 2002. Discovering informative content blocks from web documents.

In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery

and data mining. ACM, pp. 588–593.

Liu, H. X., Wu, B., Liu, Y., Huang, M., Xu, Y. F., 2013. A discussion on printing color

diffierence tolerance by ciede2000 color diffierence formula. In: Applied Mechanics and Materials.

Vol. 262. Trans Tech Publ, pp. 96–99.

Luo, M. R., Cui, G., Rigg, B., 2001. The development of the cie 2000 colour-diffierence

formula: Ciede2000. Color Research & Application 26 (5), 340–350.

McCallum, A., Nigam, K., et al., 1998. A comparison of event models for naive bayes text

classification. In: AAAI-98 workshop on learning for text categorization. Vol. 752. Madison, WI,

pp. 41–48.

Palmer, S. E., 1990. Modern theories of gestalt perception. Mind & Language 5 (4), 289–

323.

Pereira, A. C., Eggertsson, H., Martinez-Mier, E. A., Mialhe, F. L., Eckert, G. J., Zero, D.

T., 2009. Validity of caries detection on occlusal surfaces and treatment decisions based on results

from multiple caries-detection methods. European journal of oral sciences 117 (1), 51–57.

44

Reis, D. d. C., Golgher, P. B., Silva, A. S., Laender, A., 2004. Automatic web news

extraction using tree edit distance. In: Proceedings of the 13th international conference on World

Wide Web. ACM, pp. 502–511.

Roshanbin, N., Miller, J., 2011. Finding homoglyphs-a step towards detecting unicode-

based visual spoofing attacks. Web Information System Engineering–WISE 2011, 1–14.

Sharma, G., Wu, W., Dalal, E. N., 2005. The ciede2000 color-diffierence formula:

Implementation notes, supplementary test data, and mathematical observations. Color Research &

Application 30 (1), 21–30.

Sim, D.-G., Kwon, O.-K., Park, R.-H., 1999. Object matching algorithms using robust

hausdorff distance measures. IEEE Transactions on image processing 8 (3), 425–429.

Song, R., Liu, H.,Wen, J.-R., Ma,W.-Y., 2004. Learning block importance models for web

pages. In: Proceedings of the 13th international conference on World Wide Web. ACM, pp. 203–

211.

Sternberg, R. J., Sternberg, K., 2016. Cognitive psychology. Nelson Education.

Tewarie, P., Balk, L., Costello, F., Green, A., Martin, R., Schippling, S., Petzold, A., 2012.

The oscar-ib consensus criteria for retinal oct quality assessment. PloS one 7 (4), e34823.

Unwin, N., Alberti, K., Bhopal, R., Harland, J., Watson, W., White, M., 1998. Comparison

of the current who and new ada criteria for the diagnosis of diabetes mellitus in three ethnic groups

in the uk. Diabetic medicine 15 (7), 554–557.

Yu, S., Cai, D., Wen, J.-R., Ma, W.-Y., 2003. Improving pseudo-relevance feedback in

web information retrieval using web page segmentation. In: Proceedings of the 12th international

conference on World Wide Web. ACM, pp. 11–18.

Zhao, C., Shi, W., Deng, Y., 2005. A new hausdorff distance for image matching. Pattern

Recognition Letters 26 (5), 581–586.

45

CHAPTER 3 Estimating Similarity of Rich

Internet Pages Using Visual Information5

Abstract

Traditional text-based web page similarity measures fail to handle rich-

information-embedded modern web pages. Current approaches regard web pages as either

DOM trees or images. However, the former only focuses on the web page structure, while

the latter ignores the inner connections among different web page features. Therefore, they

are not suitable for modern web pages. Hence, the idea of a block tree is introduced, which

contains both structural and visual information of web pages. A visual similarity

measurement is proposed as the edit distance between two block trees. Finally, an

experiment is undertaken, by cross-comparing 500 web pages, illustrating that the model

appears to be highly accurate, empirically demonstrating that the measurement is highly

promising.

Keywords: Block Tree; Gestalt Laws of Grouping; Normalised Compression Distance;

Tree Edit Distance; Web Page Classification.

1 Introduction

Recent years have witnessed a rapid development of the Internet, which brings

about huge changes in people’s daily life through the interaction with web sites. As a matter

5 Xu, Zhen, and James Miller. “Estimating Similarity of Rich Internet Pages Using Visual Information”.
Accepted by International Journal of Web Engineering and Technology on May 2017.

46

of fact, web pages have become an important tool and indispensable part of our life. For

example, people read web pages to obtain the news or information they are interested in,

get service through online systems from service providers (such as banking and socialising),

or conduct e-business. Therefore, similarity analysis of web pages is essential and has a

widespread automation application. First, it can serve as a preliminary task such as in an

anti-phishing process, i.e., through detecting similar web pages, the search scope of

potential phishing sites can be decreased to some extent. Second, it can perform version

control and evolution of web pages. Web pages evolve very fast, and the similarity analysis

provides a method to detect changes and adopt relevant control policies if necessary. Third,

it can be used for software testing. For robust software, the page should be able to response

correctly and display relevant information upon a user’s input. We can detect whether the

software functions correctly by comparing the actual page and the target page.

Due to its importance, web page similarity analysis has drawn the attention of many

researchers. However, there are still some issues, which mainly result from the fact that

modern web pages, with much more abundant information such as images and streaming

media, present additional challenges to web page classification (Wei, et al. 2014). Hence,

traditional approaches that rely heavily on textual content cannot handle modern web pages.

From the observation of human behaviours, we found that no matter how complicated web

pages are, people always have the ability of recognising and correlating content at a first

glance. The theory behind it is that humans can read the visual information directly, rather

than through the understanding of the textual content. Users do not examine web page

details, but rather the layout and design of the page to create a single impression. This is

analogous to the idea of “super signals” (Dörner 1996), a theory to account for human

47

decision making under time constraints and massive numbers of stimuli. Dörner argues

that humans collapse a number of features into a single composite impression. This

thinking pattern presents us with an interesting question: if the computer can think, can

they detect similarity more precisely? The answer is obvious, but the next question is how

can we achieve this goal? The Gestalt laws of grouping summarise the characteristics of

people’s thinking patterns. We believe that the laws can be a potential way to introduce

human-based analysis into the study of visual similarity. Therefore, in this chapter, we will

investigate web page similarity from the visual perspective by using Gestalt laws of

grouping. Our major contributions in this chapter are:

 We develop a data structure to represent web pages based on the Gestalt laws of

grouping.

 We propose a model to evaluate the similarity of rich web pages according to a tree

edit distance.

The rest of this chapter is organised as follows: in Section 2, we review the related

work, and provide background on currently used classification methods; section 3

introduces the concept of the block tree, and puts forward an approach to interpret and

apply the Gestalt laws of grouping; in Section 4, we come up with a visual similarity

measurement and a classification model which exploits this measurement; section 5

prepares the test sets, outlines the experimental methodology, performs the experiment on

aforementioned test sets, and analyse the outcomes; to finish, we summarise and conclude

this chapter’s contributions in Section 6.

48

2 Related Work

In general, two major orientations are widely applied including treating web pages

as images or trees, to explore web page visual similarity.

In the first category, a web page is abstracted as an image before computing their

similarities. Recently, many scholars have focused their study on image similarity (Chechik,

et al. 2010; Rohlfing 2012). A feature-based image similarity measurement approach uses

image phase congruency measurements to compute the similarities between two images

(Liu and Laganière 2007). Kwitt et al. (2008) present an image similarity model by using

Kullback-Leibler divergences between complex wavelet sub band statistics for texture

retrieval. Sampat et al. (2009) put forward an image similarity method called the complex

wavelet structural similarity. The theory behind it is that consistent phase changes in the

local wavelet coefficients may arise owing to certain image distortions. Image similarity

techniques are popular and have made some progress in web page similarity, for example,

Saar et al. (2015) proposed a classification model for cross-browser testing based on image

similarity. However, we found that a specified web page is an object embedded with a

variety of elements and these elements can interact (such as overlap or partly overlap) with

each other. Image similarity cannot reveal this interaction among elements. It is, therefore,

a different problem from pure image similarity assessment.

In the other category, a web page is regarded as tree structured data, and thus web

page similarity is studied through investigating tree similarity. With respect to tree

structured data, a handful of tree distance functions are applied, such as tree edit distance

(Shahbazi and Miller et al. 2014), multisets distance (Müller-Molina et al. 2009), entropy

49

distance (Connor, et al. 2011), and path distance (Buttler 2004). The tree edit distance is

defined as the minimum cost of operations for transferring one tree to another (Cording

and Lyngby 2011). Tree edit distances can be further divided into different sub-categories

in terms of distinct mapping constraints including top-down, bottom-up, isolated subtree,

etc. (Zhai and Liu 2006). Müller-Molina et al. (2009) propose a tree distance function with

multisets, which are sets that allow repetitive elements. Based on multiset operations, they

define a similarity measure for multisets. They achieve this by converting a tree into two

multisets, with one multiset including complete subtrees and another consisting of all the

nodes without children. Connor et al. (2011) develop a bounded distance measurement for

comparing tree structure based on Shannon’s entropy equations. Buttler (2004) analyses

the drawbacks of tree edit distance similarity, tag similarity, and Fourier transform

similarity. Then he proposes path similarity to measure the similarity of the document tree

between two distinct documents. Although the above achievements on tree similarity are

significant, the theory cannot be used directly on web page similarity research. The main

reason is that the theme of tree similarity has always been structural similarity. However,

our focus is on content similarity, in spite the obvious connection between structural and

content similarity.

Web page classification is an important topic relevant to web page similarity

analysis. Hernández et al. (2014) explore a classification method based on URLs and

develop an algorithm to produce URL-based web page classifiers that are used to perform

enterprise web page classification. Onan (2015) combine various classifiers to enhance

existing classification models by investigating different feature selection algorithms,

ensemble approaches, and classification methods. Lee et al. (2015) introduced a simplified

50

swarm optimization (SSO) algorithm for the purpose of obtaining the best weights for each

feature in their data training process such that they can use the best weights in classifying

the new web pages.

3 The Block Tree

Two major ways to represent a web page for visual similarity evaluation are the

screen shot image and the DOM tree. The former holds all visible details, but fails to

preserve the hierarchical clues. Although the later contains both visible and invisible details,

the invisible details have no contribution to visual similarity. This chapter combines the

advantages of the above two methods and proposes a new web page representation method,

which is referred to as the block tree. It extracts only visible DOM elements and merges

these elements into separate groups according to their semantic meanings.

Definition 1 (Block Tree): Given a web page 𝑊𝑃, the block tree 𝐵𝑇 of 𝑊𝑃 is a

finite set of nodes, where each node 𝑛 (that is, the block) indicates a group of semantically

related visible elements 𝐸 from the DOM tree 𝐷𝑇 of 𝑊𝑃 (𝐵𝑇 = {𝑛|𝑛 ← 𝐸, 𝐸 ⊂ 𝐷𝑇}) and

all the blocks follow the visual hierarchy of 𝑊𝑃.

To construct blocks, we merge separate render objects into semantically related

groups based on the Gestalt laws of grouping (Koffka 1955).

Definition 2 (Render Object): Given a web page 𝑊𝑃, the render object maps to

a visible DOM element 𝑒 of the DOM tree 𝐷𝑇 of 𝑊𝑃. The object contains all visible CSS

properties of 𝑒 as the visual features and serves as the merging candidates to build the

blocks of the block tree 𝐵𝑇.

51

According to the above definitions, only the visible DOM elements are considered

and the invisible DOM elements are ignored during the construction of the blocks. The

visual features of a render object refer to its geometric properties (left, top, width, and

height) and all visible CSS properties. Note that invisible CSS properties, such as

“margin” or “padding”, are not included. This is because they do not include any visual

information of the web page. In addition, the semantic meaning of the text is not included,

owing to their weak effect on the web page visual similarity. For example, two pieces of

text with the same meaning but written in different languages will be recognised as

different text by way of comparing textual strings, but will be regarded as the same text if

using the semantic meaning as the criteria.

3.1 Construction of Blocks by Gestalt Laws of Grouping

The Gestalt laws of grouping explain a human’s mechanism for perception. To

construct each block for the block tree, these laws need to be translated into computer

compatible rules (Stevenson 2012; Xu and Miller 2015).

 The Gestalt law of simplicity indicates that humans tend to organise objects into

the simplest representation. In a web page, the simplest representation of content

are the DOM elements. Taking “google.ca” as an example, Figure 3.1 shows its

home page. In the figure, the middle image above the search box contains multiple

elements (i.e., the text “GOOGLE” is the title and the three columns are the texts,

images, and animations, respectively). However, when we read the whole web page,

we treat it as one entire image rather than several separated ones. As such, to

52

interpret this law, we consider the render object which maps to the DOM element

as the smallest unit, and it cannot be further split.

Figure 3.1 Home Page of “Google.ca”

 The Gestalt law of closure states that humans tend to perceive incomplete shapes

as complete ones. Because child DOM elements overlap their parent elements,

many of the render objects are not completely shown in the final web page. For

example, in Figure 3.2 (the home page of “twitter.com”), the upper right part of

the background image is covered by two log-in boxes, but they are not regarded as

two holes. Instead, our minds still believe the background image is complete. That

is, the render object remains as a complete rectangle. Herein, we construct all render

objects as complete rectangles rather than irregular shapes according to this law.

53

Figure 3.2 Home Page of “Twitter.com”

 The Gestalt law of proximity illustrates that humans tend to group close objects

together while separate distant objects apart. Based on this law, we merge render

objects into different blocks by distance. In a series of render objects, if any pair of

siblings have a larger distance than others, they should be put into separate groups.

For example, as shown in Figure 3.3a, the top two objects are grouped together,

the third and the fourth objects from the top are put into a second group, and the

bottom object belongs to a third group. The dimensions of the render objects,

compared with the gap, are commonly significant in web pages, so it cannot be

ignored in calculating the proximity. The Hausdorff distance (HD) (Huttenlocher

1993; Dubuisson and Jain 1994; Chaudhuri and Rosenfeld 1999) takes the

dimensions into consideration, but it is not precise enough. Therefore, the

normalised Hausdorff distance (NHD), a variant of HD, is proposed. The details

are discussed in Section 3.3.

54

Figure 3.3 Gestalt Laws of Proximity, Similarity and Continuity

 The Gestalt law of similarity describes that humans perceive similar objects as a

single group. Similarity among render objects includes background similarity,

foreground similarity (text similarity) and size similarity. Meanwhile, it is

evaluated by the visual features. Note that shape similarity is not considered

because all the render objects are complete rectangles. In a series of render objects,

if anyone has a different similarity value, then it belongs to a different group from

the others. As shown in Figure 3.3b, the five objects are grouped into three groups

in terms of styles. Specifically, the top two objects are in one group, the next two

objects are included in a second group, and the bottom one belongs to a third group.

In colour and image similarity comparison, it is not correct to simply compare the

CSS value string. Instead, we compare the actual colour and image difference. The

details are discussed in Section 3.4 and 3.5.

 The Gestalt law of continuity indicates that humans tend to group together objects

that are aligned. This law is straightforward during the translation: if any render

(a) Proximity (b) Similarity (c) Continuity

55

object is not aligned with its siblings, then it belongs to a different group. So

according to Figure 3.3c, the five objects are split into three groups, namely the top

two, the next two, and the bottom one.

 The Gestalt law of common fate argues that humans are prone to include the objects

with the same motion trend in the same group. However, once a web page is fully

loaded, the major factor that causes web page motion is the “scrolling behaviour”.

As such, we only consider the scrolling behaviour as the motion trend. When the

user scrolls the page, all the content will scroll accordingly. If any render object

does not scroll in the same way with its siblings, then it belongs to a different group.

For example, the lower banner marked by the black ellipse in Figure 3.4(the home

page of “ubuntu.com”) always hangs at the bottom even when the use scrolls the

page, so its scrolling behaviour is not consistent with others. This kind of behaviour

can be verified by the CSS property “position”.

 The Gestalt law of symmetry illustrates humans’ tendency of perceiving symmetric

objects as a single group, even when they are far from each other. This law rarely

appears in web pages; hence we will omit it from the discussion in the chapter.

 The Gestalt law of past experience indicates that humans tend to interpret objects

according to the past experience. This law requires a higher level of cognations

which does not belong to the field of web page analysis, so we will omit this law

as well.

Among all the above six Gestalt laws, the first two shows us how to extract render

objects from the DOM tree, and the remaining four regulates the way of merging the

56

extracted render objects into groups (that is, the blocks in the block tree) by the visual

features.

Figure 3.4 Home Page of “Ubuntu.com”

3.2 Construction of the Block Tree

The block tree takes the previously merged blocks as tree nodes, and follows the

DOM tree’s hierarchy to organise these nodes. At the beginning, the first visible DOM

element is the “BODY”, so the root node of the block tree will be a block that holds it.

Although sometimes a BODY is invisible, the page will still be drawn by the browser on a

white background, leaving the transparent BODY visible. Next, we follow the bottom up

rule. From the root block onwards, all the direct child render objects of a block are

evaluated by the Gestalt laws and split into one or more groups. Each of the laws are then

applied to create a block. These blocks will maintain their hierarchy in the DOM tree.

57

However, if a DOM element is invisible but its direct children are visible, then the parent

of the children’s corresponding blocks will all point to the parent block of the invisible

DOM element.

3.3 Hausdorff Distance and Normalised Hausdorff Distance

The HD between two render objects 𝑅1 and 𝑅2 can be calculated by (3-1) and (3-

2) following the two steps.

1) Hausdorff distance from 𝑅1 to 𝑅2 refers to the maximum value of all distances from

any point 𝑟1 in 𝑅1 to its nearest point in 𝑅2:

 ℎ𝑑(𝑅1, 𝑅2) = sup
𝑟1∈𝑅1

inf
𝑟2∈𝑅2

‖𝑟1 − 𝑟2‖ , (3-1)

where, 𝑅1 and 𝑅2 are the two render objects; 𝑟1 and 𝑟2 refer to any points in 𝑅1 and

𝑅2 , respectively; sup and inf calculate the maximum and minimum value of a

given set, respectively; and ‖𝑟1 − 𝑟2‖ calculates the Euclidian distance between 𝑟1

and 𝑟2.

2) Hausdorff distance between 𝑅1 and 𝑅2 refers to the maximum value of all distances

from any point in a render object to its nearest point in the other render object:

 𝐻𝐷(𝑅1, 𝑅2) = max{ℎ𝑑(𝑅1, 𝑅2), ℎ𝑑(𝑅2, 𝑅1)} . (3-2)

As shown in Figure 3.5, 𝑅1 and 𝑅2 are two squares both of the size 50×50 and

share a same vertical side; 𝑅3 and 𝑅4 are another two squares both of the sized 10×10, and

their bottom sides are in the same line while the horizontal distance between their closest

vertical sides are 40. According to (1), ℎ𝑑(𝑅1, 𝑅2) equals to 50, which is the distance

58

between 𝑎1 and its nearest point in 𝑅2 (that is, 𝑎2). Similarly, ℎ𝑑(𝑅2, 𝑅1), ℎ𝑑(𝑅3, 𝑅4) and

ℎ𝑑(𝑅4, 𝑅3) equals to the distance between 𝑑2 and 𝑑1, 𝑎3 and 𝑎4, 𝑑4 and 𝑑3, respectively.

Therefore, according to (2), both 𝐻𝐷(𝑅1, 𝑅2) and 𝐻𝐷(𝑅3, 𝑅4) are 50.

Figure 3.5 HD Inconsistency

In the above example, it seems that the first pair of squares looks closer to each

other than the second pair. However, their HDs are the same. Therefore, using HD as the

proximity measurement will cause contradictions and inaccuracies. In fact, this paradox is

caused by the dimensions of the render objects. Hence, it can be eliminated by normalising

the value of HD. By doing this, we obtain the normalised HD, which is denoted by NHD.

When a render object is located inside of another render objects, its NHD is 0; otherwise it

is the maximum of the normalised ℎ𝑑, as shown in (3-3):

 𝑁𝐻𝐷(𝑅1, 𝑅2) = max {
ℎ𝑑(𝑅1,𝑅2)

𝑑𝑅1

,
ℎ𝑑(𝑅2,𝑅1)

𝑑𝑅2

} , (3-3)

where, 𝑑𝑅1
 is the dimension of render object 𝑅1, and 𝑑𝑅2

is the dimension of render object

𝑅2.

The dimension varies according to the relative position of the two render objects.

An example is illustrated in Figure 3.6. To determine 𝑑𝑅0
 , we split the surrounding region

59

of 𝑅0 by the dashed lines. 𝑅1 is inside of 𝑅0, while 𝑅2, 𝑅3 and 𝑅4 cover the north, west,

and corner regions of 𝑅0, respectively. In this circumstance, 𝑁𝐻𝐷(𝑅0, 𝑅1) is equal to 0;

when calculating the values of ℎ𝑑(𝑅0, 𝑅2), ℎ𝑑(𝑅0, 𝑅3), and ℎ𝑑(𝑅0, 𝑅4), 𝑑𝑅0
 represents the

height, width, and diagonal of 𝑅0, respectively.

Figure 3.6 NHD Dimensions

3.4 Colour Translation and Colour Difference

In spite of RGB colour space being adopted by most web pages, it is difficult to

define a universally acceptable RGB colour difference. On the other hand, the CIE-Lab

colour space has provided a standard colour difference solution – the ∆𝐸00 (Luo et al. 2001;

Sharma, et al. 2005), as shown in (3-4):

 ∆𝐸00 = √(
∆𝐿∗

𝑘𝐿𝑆𝐿
)

2

+ (
∆𝐶∗

𝑘𝐶𝑆𝐶
)

2

+ (
∆𝐻∗

𝑘𝐻𝑆𝐻
)

2

+ 𝑅𝑇 (
∆𝐶∗

𝑘𝐶𝑆𝐶
) (

∆𝐻∗

𝑘𝐻𝑆𝐻
) , (3-4)

where, ∆𝐿∗, ∆𝐶∗ and ∆𝐻∗ are the lightness, chroma and hue differences, respectively; 𝑆𝐿,

𝑆𝐶 and 𝑆𝐻 are the weighting functions of the lightness, chroma and hue components,

respectively; 𝑘𝐿 , 𝑘𝐶 and 𝑘𝐻 are the parametric factors; and 𝑅𝑇 is the interactive term

between the hue and chroma differences.

60

Colours can be converted from RGB space to CIE-Lab space. Once the conversion

is completed, a threshold for distinguishing the two colours is necessary. Liu et al. have

studied the concept of what constitutes two different colours via extensive experimentation;

they have concluded that a threshold can be set to 3.30 (2013) to distinguish between two

colour samples. Therefore, we use their value to identify our colour similarity.

3.5 Image Similarity Comparison

The browser parses the HTML and CSS before applying them in a web page, but it

draws and displays images directly without parsing the content. This leaves the extracting

of images’ visual features from the page impossible. Hence, to compare image similarity,

we take the raw (CIE-Lab) images as the direct input. A measurement for evaluating the

similarity/difference of arbitrary objects is the normalised information distance (NID)

(Bennett, et al., 1998). However, it is not computable (Terwijn, et al. 2011) because an

“ideal” compressor (i.e., the compressor which provides the same result as the single object

when compressing two identical objects) does not exist.

A potential replacement of NID is the normalised compression distance (NCD),

where the compressor must be lossless. The NCD is calculated by (3-5) (Li, etc. 2004):

 𝑁𝐶𝐷(𝑋, 𝑌) =
𝐶(𝑋𝑌) − min{𝐶(𝑋),𝐶(𝑌)}

max{𝐶(𝑋),𝐶(𝑌)}
 , (3-5)

where, 𝑋 and 𝑌 are the two images; 𝑋𝑌 is the concatenation of 𝑋 and 𝑌 ; and 𝐶(𝑞)

calculates the length of the lossless compression of 𝑞.

The value of NCD is 0.0 if two images are identical, and 1.0 if they are completely

different. Similar with ∆𝐸00 in representing colour difference, a proper threshold is

61

necessary to decide the image similarity. Roshabin and Miller (2011) have undertaken

studies on the empirical threshold, and we adopt their findings in this chapter: the

compression should be implemented by a LZMA compressor, and a threshold of 0.25

provides an adequate decision point.

4 Visual Similarity between Two Web Pages

After web pages being represented by the block trees, the similarity of a pair of web

pages can be determined by the similarity of their block trees. This similarity can be

determined by the tree edit distance (TED) (Tai, K. C. 1979) because the block trees are

labelled and ordered. The order of the block tree nodes follows the appearance of them,

which is essentially follow the appearance of the render objects, and the label of a block is

its visual feature set.

4.1 Block Tree Edit Distance

Let 𝑇 be a block tree, |𝑇| be the size (that is, number of nodes), 𝑡𝑖 be the ith node

in the post-order traversal, and 𝑇𝑝 and 𝑇𝑞 be two different block trees, respectively. TED

of 𝑇𝑝 and 𝑇𝑞 is then defined as the minimum cost of edit operations when shifting from

𝑇𝑝 to 𝑇𝑞. In this chapter, we assume costs of all the edit operations are the same and take

the value of 1. In this case, the TED reflects the number of edit operations.

The edit operations include insertion, deletion, and relabel. When transferring 𝑇𝑝

to 𝑇𝑞, if a node 𝑡𝑖
𝑝

 in 𝑇𝑝 has no corresponding node 𝑡𝑗
𝑞
 in 𝑇𝑞, then the edit operation is

deletion. If 𝑡𝑗
𝑞
 has no corresponding node 𝑡𝑖

𝑝
, then it is insertion. If a pair of corresponding

nodes 𝑡𝑖
𝑝

 and 𝑡𝑗
𝑞

 exist but their labels are different, then it is a relabel operation. The

62

mapping of the corresponding nodes, denoted by 𝑚(𝑡𝑖
𝑝

, 𝑡𝑗
𝑞

), is not arbitrary. Rather, it

should follow a series of rules (Shahbazi and Miller 2014). Considering two mappings

𝑚(𝑡𝑖1

𝑝 , 𝑡𝑗1

𝑞) and 𝑚(𝑡𝑖2

𝑝 , 𝑡𝑗2

𝑞), the rules include:

 the one-to-one rule – a node of the first tree can only map to one node of the second

tree: 𝑗1 = 𝑗2 ⇔ 𝑖1 = 𝑖2;

 the horizontal-order-preserving rule – 𝑡𝑗1

𝑞
 locates before 𝑡𝑗2

𝑞
 ⇔ 𝑡𝑖1

𝑝
 locates before 𝑡𝑖2

𝑝
.

 the vertical-order-preserving rule – 𝑡𝑗1

𝑞
 is an ancestor of 𝑡𝑗2

𝑞
 ⇔ 𝑡𝑖1

𝑝
 is an ancestor of

𝑡𝑖2

𝑝
.

By default, TED calculates the structural similarity of two trees. However, what we

concern about is the visual similarity induced by the visual features. Hence, in the block

tree, we encode the visual features into the labels, and consequently, during the block tree

edit distance (B-TED) calculation, the relabel operation will compare the blocks “visually”.

For instance, when mapping one block in a block tree to another block in a second block

tree, if the first block has different visual features with the second block, then it is relabelled

after mapping with a relabel operation; it remains the same otherwise. The model of block

tree construction and visual similarity calculation is illustrated by Figure 3.7.

Figure 3.7 The Calculation Model

63

4.2 Case Study

This section investigates the block tree and visual similarity model through a series

of test cases. The first test case is the home page of the electrical and computer engineering

department from the university of Alberta (ECE, http://www.ece.engineering.ualberta.ca/).

The original page, shown in Figure 3.8, includes various blocks, such as the left navigation

menu, the big image under the department banner, the three columns of “news and events”,

and the footer. Figure 3.9 illustrates the page after merging. Different background colours

and boarder shadows are utilized to indicate different blocks. For example, if two render

objects are marked with the same colour, they belong to the same block.

Two conclusions can be made from Figure 3.8 and Figure 3.9. Fist, most of the

render objects are merged into blocks. For example, the background of the menu items (i.e.,

the objects framed with the white-edged rectangle) above the department banner are

marked with green, and that of all the footer content is marked with light pink. Second,

some render objects are not identified correctly, such as the left navigation menu (i.e., the

object framed with the red-edged round rectangle). It is obvious that the menu should go

to the same block, but they are marked in different colours. This is because each menu item

is a link (an “A” DOM element) under a list item (a “LI” DOM element) according to the

hierarchy, under which each A has the same size and position with its parent “LI”.

Therefore, each “LI” and “A” are marked with the background colour, resulting in invisible

LI block from the final screenshot image. In fact, content in the right of the three columns

(the right red rounded rectangle) are in the same case, but the margins (i.e., the uncovered

background by the three columns) eliminate this display issue by showing the content

covered by the paragraphs. In fact, this problem happens whenever the foreground text and

64

the background colours/images are displayed in different DOM elements and is a limitation

of the current model.

Figure 3.8 Case Study: The Home Page of ECE

The block tree of the above web page is partly shown in Figure 3.10. Each line in

the figure indicates a single block, where the full visual features are saved for visual

similarity evaluation. Different indentions reflect the hierarchy.

65

Figure 3.9 Case Study: The Home Page of ECE (marked)

[BODY]: left=0,top=0, # visual features are partly shown

 |- [FORM]: left=0,top=0, #...

 | |- [DIV,FOOTER]: left=0,top=0, #...

 | | |- [HEADER,SECTION]: left=0,top=0, #...

 | | | |- [DIV,DIV]: left=0,top=0, #...

 | | | | |- [DIV]: left=157,top=0, #...

 | | | | | |- [A]: left=157,top=10, #...

 | | | | | | |- [SPAN]: left=-99833,top=9, #...

 | | | | | |- [NAV,DIV]: left=336,top=35, #...

 | | | | | | |- [DIV]: left=336,top=34, #...

 | | | | | | | |- [UL]: left=336,top=34, #...

... ...

Figure 3.10 Part of the Block Tree

66

Another two web pages are analysed to evaluate the visual similarity, including the

home pages of the University of Alberta (UA, http://ualberta.ca/), and that of the faculty of

graduate studies and research (FGSR, https://uofa.ualberta.ca/graduate-studies), as shown

in Figure 3.11 and Figure 3.12, respectively.

Among the three web pages, the last two pages are more similar with each other in

both theme (such as the colours, fonts, and image styles) and layout settings. More

specifically, they both have function menus and green banner images at the top; navigation

menu below the green banner, and green footer at the bottom; the central pages are mixed

with images and paragraphs; the news and events sections have three columns, where the

left columns are the wildest and the right columns are the narrowest. In comparison, the

first page owns a blue theme, a navigation menu locating at the left, and a central page with

image and texts separated. Table 3.1 shows the sizes of the “BODY” sub DOM tree, the

visual tree (that is, the DOM tree of visible elements) and the block.

Table 3.1 Tree Sizes of the Three Web Pages

Web Page DOM Tree Visual Tree Block Tree

1 235 157 88

2 420 278 128

3 831 233 114

67

Figure 3.11 Case Study: The Home Page of UA

68

Figure 3.12 Case Study: The Home Page of FGSR

69

From the table, although the second two pages are similar, the size difference

between their DOM trees is larger than that between the first two DOM trees. Also, the

size difference between the second two pages’ visual trees is smaller than that between the

rest pairs. These two facts prove again that only the visible content of a web page

contributes to the visual similarity. Hence, the DOM tree is not suitable for visual similarity

evaluation, owing to abundant invisible elements it contains. In addition, the block tree size

difference between the last two pages is smaller than that between the first and the second

as well as that between the first and the third, which indicates the block tree reflects visual

similarity.

Calculated by the three block trees, B-TEDs are: 121 between web page 1 and 2,

128 between page 1 and 3, and 108 between page 2 and 3. None of these values is 0, which

represents that the three block trees are different from each other. Due to the smallest B-

TED being witnessed, page 2 and 3 are most similar. Meanwhile, B-TED between page 1

and 2 is smaller than that between page 1 and 3, indicating that page 2 is more similar with

page 1 compared to page 3.

5 Experiments

The experiments are designed to evaluate whether B-TED is an effective

measurement for web page visual similarity analysis. First, a set of web pages are crawled

as the test cases and split into subsets randomly. Then the aforementioned model is applied

to all pairs of test cases within each subset to calculate the B-TEDs. The values of B-TEDs

indicate the similarity between web pages; and the pre-classified results are exploited to

obtain the values of precision, recall, and accuracy rates.

70

5.1 Test Set

The test cases are generated from the global top sites of Alexa

(http://www.alexa.com/, these top sites and links were retrieved on March 27, 2015). With

the home pages of the world’s top 500 websites as the initial pool, we crawl all direct links

to generate a final test case pool, which includes 78298 links. All these links are unique in

terms of the identifying URL, and are currently active. Different URLs, however, may have

similar content. For example, the pages of “Gmail” and “Blogger” are almost the same

except one word, because both of the two links are redirected to the login page of a Google

account. Asian websites tend to contain lots of links in a single page (sometimes even more

than 1000 links, such as “163.com”), leading to a high probability of domain sharing among

Asian web pages in the test pool. Many western websites’ home pages, on the other hand,

are very concise and contain fewer links.

Cross-comparing each pair of all the test cases requires approximately 6.13 billion

comparisons, resulting in infeasible experiment. Therefore, we choose 500 test cases from

the pool randomly. Figure 3.13 describes the distribution of the 500 test cases, with the x-

axis representing the web sites and the y-axis illustrating the number of selected pages for

each web site. As shown in the figure, these test cases cover 109 web sites, and some of

them contain more web pages than others, with an average of 4.59 pages per web site. For

instance, the 88th web site (“bitauto.com”) includes the most pages, which is 66; and 47

web sites only possess one page each.

71

Figure 3.13 The Distribution of Randomly Selected Web Pages per Web Site

Figure 3.14 illustrates the sizes of all the block trees (i.e., the number of nodes per

block tree). Among them, the largest block tree has 1237 nodes, and the smallest contains

only 4 nodes. The mean size of all the block trees is 346.38.

Figure 3.14 The Distribution of Block Tree Size

5.2 Experimental Methodology

It is infeasible to cross-compare the visual similarity between web pages manually,

this is because there will be (500
2

) = 142750 pairs of pages. Therefore, in the experiment,

we build a web classification model to identify the visual similarity automatically. This

classification model runs a naive Bayes classifier (McCallum and Nigam 1998) and follows

72

a 10-fold cross-validation (Refaeilzadeh et al. 2009) routine. Specifically, in the

experimental preparation, the test set is first divided into 10 subsets randomly and equally.

The next step is to prepare the feature set for the classifier. For each subset, there are (50
2

)

= 1225 pairs of web pages, so the feature vector contains 1225 records, each of which

includes the block trees of the two web pages as well as the B-TED values between them.

Also, we set the category variable as a Boolean with “YES” denoting similar and “NO”

representing different.

The category variable is determined manually. In each subset, all the web pages are

read by five people and then split into several groups, where visually similar pages are put

in the same group, while different pages are placed into different groups. The split

decisions are made purely by the comprehensive understanding of the five people, so we

can use it to evaluate how well the algorithm simulates human perception. For example,

the home pages of “google.ca” and “google.fr” are similar so they are put in the same group;

and conversely, the home page of “google.ca” is visually different from that of

“yahoo.com”, so they are sorted into different groups. During manual classification, it is

not reasonable to make the five people identify web page similarity following rules,

because any given rule will affect people’s way of thinking, leading to the inaccurate

judgement and thus disrupting the manual classification. After pre-classification, if two

web pages are in the same group, then the corresponding category of this feature record

will be “YES”; and vice versa. Inter rater reliability of the five people are evaluated by

Cohen’s Kappa, where the results are shown in Table 3.2. According to the table and Table

2.4, 𝜅 of each two of the five raters are all within the “substantial” range (and higher) for

all the 10 subsets, indicating the five people all agree with each other.

73

Table 3.2 𝜅 of Each Two Raters’ Evaluations

Raters Subsets

A B 1 2 3 4 5 6 7 8 9 10

1 2 0.6938 0.7628 0.7736 0.7720 0.7092 0.8147 0.7963 0.7792 0.7369 0.7620

1 3 0.8034 0.7460 0.8099 0.7386 0.7501 0.7127 0.7797 0.7763 0.7690 0.7764

1 4 0.7202 0.7679 0.8091 0.7172 0.8083 0.7070 0.7806 0.7675 0.8028 0.7113

1 5 0.7523 0.8067 0.7784 0.8043 0.8075 0.7954 0.7702 0.7454 0.7648 0.7785

2 3 0.7692 0.8139 0.8075 0.7561 0.7737 0.8099 0.7797 0.7766 0.7723 0.8099

2 4 0.7460 0.7188 0.7990 0.6973 0.7741 0.7675 0.7927 0.6959 0.7684 0.7794

2 5 0.8138 0.7160 0.6974 0.8155 0.7669 0.7999 0.7187 0.7706 0.7943 0.7742

3 4 0.8059 0.8083 0.8116 0.7708 0.7785 0.7266 0.7728 0.7684 0.8052 0.7444

3 5 0.7714 0.7775 0.7074 0.7556 0.8115 0.6987 0.7657 0.8067 0.7999 0.7468

4 5 0.7613 0.8067 0.7000 0.8115 0.7396 0.7999 0.8139 0.7710 0.8025 0.8099

10 rounds are involved in the cross-validation process of the experiment. In each

round, nine subsets are selected as the training sets, and the last subset serves as the

validation set. The naive Bayes classifier is first trained by all the feature records and the

corresponding categories from the training set. Then it reads the feature vector of the

validation set and makes the prediction of a category vector. Finally, efficiency is obtained

by comparing the prediction result with the pre-classification result. The experimental

methodology is illustrated in Figure 3.15.

74

Figure 3.15 Experimental Methodology

5.3 Experimental Results

The B-TED distribution of the 1225 records in subset 1 is displayed in Figure 3.16.

Two findings can be concluded from this figure. First, B-TED can be used as a visual

similarity measurement, owing to the fact its different values towards with similar pages

and different pages. To be specific, B-TED values between similar web pages (the “YES”

category) are smaller than that between different web pages (the “NO” category). Second,

the threshold to determine web page similarity does not exist, because there is no clear gap

between the two categories Distributions of the remaining nine subsets are similar, which

reveals the above findings as well.

75

Figure 3.16 B-TED Distributions of Subset 1

Table 3.3 depicts more details about the B-TED values. The maximum B-TED of

each subset ranges from 1037 to 1542, and the minimum value is between 24 and 112.

With respect to the mean values, the “YES” cases have values from 662.90 to 811.89, and

the “NO” test cases take the values from 309.35 to 357.09. The latter is approximately 300

smaller than the former, indicating that although the obvious threshold does not exist, the

visual similarity can still be identified by the B-TED.

Table 3.3 B-TED Value Details

Subset Maximum Minimum
Mean of “YES”

cases

Mean of “NO”

cases

1 1490 54 764.24 355.03

2 1233 42 758.12 309.35

3 1292 32 736.67 352.26

4 1174 78 731.92 312.45

5 1373 68 811.89 333.61

6 1037 112 690.02 348.86

7 1093 27 662.90 343.56

8 1085 24 666.78 317.45

9 1052 80 663.64 357.09

10 1542 82 799.02 346.90

76

To evaluate the model’s performance, the precision, recall, and accuracy of the

classification are collected by (3-6).

𝑃𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑅𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝐴𝑖 =
𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖

 , (3-6)

where, 𝑖 denotes the subset number; 𝑃𝑖, 𝑅𝑖, and 𝐴𝑖 are the precision, recall, and accuracy

of the classification, respectively; 𝑇𝑃𝑖 , 𝑇𝑁𝑖 , 𝐹𝑃𝑖 , and 𝐹𝑁𝑖 are the numbers of “true

positive”, “true negative”, “false positive”, and “false negative” classifications,

respectively:

 if two web pages are similar and correctly identified by the classifier, then they are

referred to as true positive (TP);

 if two web pages are different and correctly identified, then they are referred to as

true negative (TN);

 if two web pages are different but incorrectly identified as similar, then they are

referred to as false positive (FP);

 if two web pages are similar but incorrectly identified as different, then they are

referred to as false negative (FN).

From the experimental results shown in Table 3.4, it can be seen that round 6

demonstrates the best performance with precision of 94.72% and accuracy of 98.29%.

Conversely, the first trial demonstrates the poorest performance with a precision of 74.38%,

and an accuracy of 87.27%. This is caused by the high FP rate of the corresponding

predictions. This problem also appears in round 10. There are more TPs and TNs than FPs

77

and FNs in each of the 10 rounds. Also, the overall accuracy is 94.43%, which proves that

B-TED is an effective measurement for visual similarity. Meanwhile, FPs are non-zero,

showing that some pairs of different pages are incorrectly identified as similar. Conversely,

FNs are all zero, which reveals that there are no pairs of similar pages identified as different.

The probably reason for this is that people tend to focus on the overall sketch when looking

for similarity, and pay attention to details when searching for differences. Therefore, if two

pages are similar, the probability that they are identified as different is very low; conversely,

if they are different, there is possibility that they are judged as similar.

Table 3.4 Experimental Results

Round TP TN FP FN
Precisio

n
Recall

Accurac

y

1 453 616 156 0 74.38% 100.00% 87.27%

2 619 528 78 0 88.81% 100.00% 93.63%

3 592 554 79 0 88.23% 100.00% 93.55%

4 682 505 38 0 94.72% 100.00% 96.90%

5 732 432 61 0 92.31% 100.00% 95.02%

6 786 418 21 0 97.40% 100.00% 98.29%

7 810 390 25 0 97.01% 100.00% 97.96%

8 659 530 36 0 94.82% 100.00% 97.06%

9 734 460 31 0 95.95% 100.00% 97.47%

10 593 475 157 0 79.07% 100.00% 87.18%

Average 666.00 490.80 68.20 0 90.27% 100.00% 94.43%

6 Conclusion

Modern web pages are embedded with abundant information, such as images and

streaming media. Hence, traditional text-based similarity evaluation methods are

problematic; however, similarity based on visual information is a promising orientation for

modern web pages.

In this chapter, a novel approach to this problem is proposed. The “block tree”

model is introduced to represent a web page visually. This is done by retrieving visual

information from the web page and interpreting the Gestalt laws of grouping to merge

78

related content. A normalised Hausdorff distance is introduced to evaluate proximities; the

CIE-Lab colour space and its colour difference are used to find the colour similarities; and

the normalised compression distance is used to calculate image similarities. A page

similarity classification model is then built based on the block tree edit distance (B-TED).

When calculating B-TED, we label each block tree node with all its visual features, and

compare the corresponding nodes by them.

An experiment is preformed utilizing a test set built from randomly crawling

popular web sites. To evaluate the correctness of B-TED as a measurement for visual

similarity, a 10-fold cross-validation is conducted. The overall precision, recall, and

accuracy in the experiment are 90.27%, 100%, and 94.43%, respectively. This implies that

B-TED is a promising measurement for web page similarity evaluation, and provides

satisfactory identification results.

In spite of the contributions, limitation still exists for the proposed methodology.

That is, the hierarchy of the block tree does not precisely reflect the visual layout when

foreground text and background colours/images are separated. In the future work, a proper

solution for this limitation will be the first task.

To the best of our knowledge, this is the first time that the Gestalt laws of grouping

have been used to investigate web page similarity. Therefore, no similar study exists in the

literature. In the future, we plan to investigate and validity our interpretation of these laws

via experiments which explored the effectiveness of each law independently.

79

Acknowledgement

The authors would like to thank China Scholarship Council (CSC) and Natural

Sciences and Engineering Research Council of Canada (NSERC) for their financial support.

References

Bennett, C. H., G ács, P., Li, M., Vit ányi, P. M., Zurek, W. H., 1998. Information distance.

IEEE Transactions on information theory 44 (4), 1407–1423.

Buttler, D., 2004. A short survey of document structure similarity algorithms. Tech. rep.,

Lawrence Livermore National Laboratory (LLNL), Livermore, CA.

Chaudhuri, B. B., Rosenfeld, A., 1999. A modified hausdorff distance between fuzzy sets.

Information Sciences 118 (1), 159–171.

Chechik, G., Sharma, V., Shalit, U., Bengio, S., 2010. Large scale online learning of image

similarity through ranking. Journal of Machine Learning Research 11 (Mar), 1109–1135.

Connor, R., Simeoni, F., Iakovos, M., Moss, R., 2011. A bounded distance metric for

comparing tree structure. Information Systems 36 (4), 748–764.

Cording, P. H., Lyngby, K., 2011. Algorithms for web scraping. PDF] Available:

http://www2. imm. dtu. dk/pubdb/views/publicationdetails. php.

Dorner, D., 1996. The logic of failure: Recognizing and avoiding error in complex

situations. Basic Books.

Dubuisson, M.-P., Jain, A. K., 1994. A modified hausdorff distance for object matching.

In: Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image Processing.,

Proceedings of the 12th IAPR International Conference on. Vol. 1. IEEE, pp. 566–568.

Hern ández, I., Rivero, C. R., Ruiz, D., Corchuelo, R., 2014. Cala: An unsupervised url-

based web page classification system. Knowledge-Based Systems 57, 168–180.

Huttenlocher, D. P., Klanderman, G. A., Rucklidge, W. J., 1993. Comparing images using

the hausdorff distance. IEEE Transactions on pattern analysis and machine intelligence 15 (9), 850–

863.

Koffka, K., 2013. Principles of Gestalt psychology. Vol. 44. Routledge.

Kwitt, R., Uhl, A., 2008. Image similarity measurement by kullback-leibler divergences

between complex wavelet subband statistics for texture retrieval. In: Image Processing, 2008. ICIP

2008. 15th IEEE International Conference on. IEEE, pp. 933–936.

80

Lee, J.-H., Yeh,W.-C., Chuang, M.-C., 2015.Web page classification based on a simplified

swarm optimization. Applied Mathematics and Computation 270, 13–24.

Li, M., Chen, X., Li, X., Ma, B., Vit ányi, P. M., 2004. The similarity metric. IEEE

transactions on Information Theory 50 (12), 3250–3264.

Liu, H. X.,Wu, B., Liu, Y., Huang, M., Xu, Y. F., 2013. A discussion on printing color

difference tolerance by ciede2000 color difference formula. In: Applied Mechanics and Materials.

Vol. 262. Trans Tech Publ, pp. 96–99.

Liu, Z., Lagani`ere, R., 2007. Phase congruence measurement for image similarity

assessment. Pattern Recognition Letters 28 (1), 166–172.

Luo, M. R., Cui, G., Rigg, B., 2001. The development of the cie 2000 colour-difference

formula: Ciede2000. Color Research & Application 26 (5), 340–350.

McCallum, A., Nigam, K., et al., 1998. A comparison of event models for naive bayes text

classification. In: AAAI-98 workshop on learning for text categorization. Vol. 752. Madison, WI,

pp. 41–48.

M üller-Molina, A. J., Hirata, K., Shinohara, T., 2008. A tree distance function based on

multi-sets. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, pp.

87–98.

Onan, A., 2016. Classifier and feature set ensembles for web page classification. Journal

of Information Science 42 (2), 150–165.

Refaeilzadeh, P., Tang, L., Liu, H., 2009. Cross-validation. In: Encyclopedia of database

systems. Springer, pp. 532–538.

Rohlfing, T., 2012. Image similarity and tissue overlaps as surrogates for image registration

accuracy: widely used but unreliable. IEEE transactions on medical imaging 31 (2), 153–163.

Roshanbin, N., Miller, J., 2011. Finding homoglyphs-a step towards detecting unicode-

based visual spoofing attacks. Web Information System Engineering–WISE 2011, 1–14.

Saar, T., Dumas, M., Kaljuve, M., Semenenko, N., 2016. Browserbite: cross-browser

testing via image processing.

Software: Practice and Experience 46 (11), 1459–1477.

Sampat, M. P., Wang, Z., Gupta, S., Bovik, A. C., Markey, M. K., 2009. Complex wavelet

structural similarity: A new image similarity index. IEEE transactions on image processing 18 (11),

2385–2401.

Shahbazi, A., Miller, J., 2014. Extended subtree: a new similarity function for tree

structured data. IEEE Transactions on knowledge and Data Engineering 26 (4), 864–877.

81

Sharma, G., Wu, W., Dalal, E. N., 2005. The ciede2000 color-difference formula:

Implementation notes, supplementary test data, and mathematical observations. Color Research &

Application 30 (1), 21–30.

Stevenson, H., 2012. Emergence: The gestalt approach to change. Unleashing Executive

and Orzanizational Potential. Retrieved 7.

Tai, K.-C., 1979. The tree-to-tree correction problem. Journal of the ACM (JACM) 26 (3),

422–433.

Terwijn, S. A., Torenvliet, L., Vit ányi, P. M., 2011. Nonapproximability of the normalized

information distance. Journal of Computer and System Sciences 77 (4), 738–742.

Wei, Y., Wang, B., Liu, Y., Lv, F., 2014. Research on webpage similarity computing

technology based on visual blocks. In: Chinese National Conference on Social Media Processing.

Springer, pp. 187–197.

Xu, Z., Miller, J., 2016. Identifying semantic blocks in web pages using gestalt laws of

grouping. World Wide Web. 19 (5), 957–978.

Zhai, Y., Liu, B., 2006. Structured data extraction from the web based on partial tree

alignment. IEEE Transactions on Knowledge and Data Engineering 18 (12), 1614–1628. 12

82

CHAPTER 4 Cross-Browser Differences

Detection based on an Empirical Measurement for

Web Page Visual Similarity6

Abstract

This chapter aims to develop a method to detect visual differences introduced into

web pages when they are rendered in different browsers. To achieve this goal, we propose

an empirical visual similarity measurement by mimicking human mechanisms of

perception. The Gestalt laws of grouping are translated into a computer compatible rule

set. A block tree is then parsed by the rules for similarity calculation. During the translation

of the Gestalt laws, experiments are performed to obtain measurements for proximity, color

similarity, and image similarity. After a validation experiment, the empirical measurement

is employed to detect cross-browser differences. Experiments and case studies on the

world’s most popular web pages provide positive results for this methodology.

Keywords: Block Tree; Extended Subtree; Gestalt Laws of Grouping; Web Page Visual

Similarity; Cross-Browser Differences Detection.

1 Introduction

Web applications, with web browsers as their carriers, have become an

indispensable part of our life today. While we enjoy the convenience that different web

6 Xu, Zhen, and James Miller. “Cross-Browser Differences Detection based on an Empirical Measurement
for Web Page Visual Similarity”. ACM Transactions on Internet Technology (in review).

83

browsers bring to us, we also face the problems that web pages are rendered differently

across different web browsers. Cross-browser visualization issues, therefore, become

prevalent, which affects user experience. In addition, they also cause maintenance issues

for web designers.

Cross-browser issues refer to cross-browser incompatibilities, which are

differences in a web page’s appearances (i.e., visual features) or behaviors, or both, when

it is displayed on different browsers (Choudhary, et al. 2013). This chapter will focus on

the appearances of web pages. The first step (details can be found at Xu and Miller, 2015b)

is to remove the invisible elements and CSS attributes of the web page from its DOM tree.

The remaining visible elements are then grouped into different blocks by the Gestalt laws

of grouping to finally construct “the block tree”. The Gestalt laws of grouping are originally

used in psychology to account for people’s tendency of perceiving various objects as

organized together (Wolfe et al. 2009; Banerjee 1994). In the second step, we propose an

empirical visual similarity measurement to detect how similar (or different) a specified web

page is, when it is rendered in two different browsers. The major contributions of this

chapter include:

1) it provides a numerical mechanism to translate the Gestalt laws of grouping into a

set of computer-compatible rules;

2) it presents a novel data structure to represent web page visual information;

3) it develops an empirical measurement to evaluate web page visual similarity; and

4) it applies the empirical measurement to detect cross-browser differences.

The remainder of this chapter is organized as follows: Section 2 investigates the

empirical translation of the Gestalt laws of grouping; Section 3 introduces an empirical

84

measurement for evaluating the visual similarity between web pages; Section 4 conducts

experiments on detecting cross-browser differences. Section 5 reviews recent work; and

Section 6 draws conclusions from the presented work.

2 Translating Algorithm of the Gestalt Laws of

Grouping

2.1 Motivations and Goals

The Gestalt laws of Grouping illustrate how people perceive objects. In this section,

we attempt to translate these laws into a format that a computer can process within the

domain of web pages. It should be noted that this task is significantly different from, and

easier than, parallel efforts to translate these laws for general image processing applications.

Analyzing the screenshot image of a web page will contain significant noise components,

whereas using the DOM tree is effectively noise free. This is because the DOM tree stores

actual content (such as text or videos) while screenshot image stores color values of each

pixel. Also, the DOM tree includes the hierarchical information, thus relationships among

different content components is preserved. It is argued that utilizing the actual content

components and their relationships is essential to producing an accurate solution.

The original Gestalt laws of grouping include eight items (each item represents a

single law), i.e., the Gestalt laws of (a) simplicity, (b) closure, (c) proximity, (d) similarity,

(e) continuity, (f) common fate, (g) symmetry, and (h) past experience (Stevenson 2012;

Koffka 2013). In the context of web page similarity, the Gestalt laws of symmetry and the

Gestalt laws of past experience are not employed. This is because the former considers

symmetric elements that are in widely scattered locations (which are very rare in web

85

pages), and the latter refers to higher level of human perceptions (i.e., it requires knowledge

that is beyond the scope of web page analysis). Hence, we focus here on the remaining six

laws.

2.2 Translating the Gestalt Law of Simplicity

The Gestalt law of simplicity states that people tend to break down content into the

simplest units when reading a web page. Although a web page can be split as small as a

single pixel, we will not follow this method. This is because when we read the page, we

focus on useful information such as a single image or a piece of text instead of pixels. The

useful information corresponds to the DOM elements of a web page.

Taking the home page of the IEEE (https://www.ieee.org/index.html) as an

example, the logo contains three parts: the diamond figure, the big bold “IEEE”, and the

phrase under them. Despite having different types and styles, they are considered as a

single group rather than three unrelated items; this simplifies the process of reading and

understanding. Based on this observation, we define DOM elements as the smallest units

that cannot be further split during the process of web page analysis.

2.3 Translating the Gestalt Law of Closure

The Gestalt law of closure indicates that upper elements of a web page will cover

lower elements, however, humans are prone to regard the lower elements as complete

rectangles even if they are partially covered. Our brain fills the hole that is blocked by the

upper elements. Use the home page of Facebook (https://www.facebook.com/) as the

example, the login boxes cover the right part of the top ribbon, which makes the latter

incomplete. Even though, we still perceive the ribbon as complete. According to this

86

observation, we treat each element as a full rectangle during the process of web page

analysis. This also makes the representation much easier and thus is consistent with the

Gestalt law of simplicity and human visual systems.

2.4 Translating the Gestalt Law of Proximity

The Gestalt law of proximity argues that we tend to put close elements of a web

page into the same group and assign distant elements into different groups. Considering

the home page of Facebook again, we perceive the two login boxes as related (regarded as

a group), the five boxes regarding signup are related (regarded as a second group), and the

three boxes under the “Birthday” are also related (regarded as a third group). However, any

two elements in different groups are not related according to their distance relationships.

(The words proximity and distance are used interchangeable in this chapter.) For a series

of sibling elements, we calculate the proximity between every two adjacent elements. Then

we group the adjacent elements together if their proximities are the same and split them

into different groups otherwise. In order to find an appropriate mechanism to calculate the

proximity of elements, we will investigate and compare available proximity calculation

candidates documented in the literature.

2.4.1 Proximity Candidates

Two intuitive measurements for the proximity of rectangular objects are the

centroid distance (CD) and the gap distance (GD). CD is the Euclidean distance between

the centroids of the two rectangles; and GD denotes the distinct orthogonal distance

between the four sides of them.

 𝐶𝐷(𝑁1, 𝑁2) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 , (4-1)

87

 𝐺𝐷(𝑁1, 𝑁2) = max{𝑆𝐺𝑁1,2
h × 𝑑𝑖𝑠𝑡1,2

h , 𝑆𝐺𝑁1,2
v × 𝑑𝑖𝑠𝑡1,2

v } , (4-2)

where 𝑁1 and 𝑁2 are the two rectangles; (𝑥1 , 𝑦1), and (𝑥2 , 𝑦2) are the respective

coordinates of the centroids of 𝑁1 and 𝑁2 ; 𝑑𝑖𝑠𝑡1,2
v and 𝑑𝑖𝑠𝑡1,2

h represent the distance

between the closest vertical and horizontal sides of 𝑁1 and 𝑁2, respectively; and 𝑆𝐺𝑁1,2
v

and 𝑆𝐺𝑁1,2
h represent the corresponding signs. The parameters of GD are calculated

through:

 𝑆𝐺𝑁1,2
h = {

1, |𝑥1 − 𝑥2| > (𝑤𝑖𝑑𝑡ℎ1 + 𝑤𝑖𝑑𝑡ℎ2) 2⁄

−1, otherwise
 ;

 𝑆𝐺𝑁1,2
v = {

1, |𝑦1 − 𝑦2| > (ℎ𝑒𝑖𝑔ℎ𝑡1 + ℎ𝑒𝑖𝑔ℎ𝑡2) 2⁄

−1, otherwise
 ;

 𝑑𝑖𝑠𝑡1,2
h = min{|𝑙𝑒𝑓𝑡1 − 𝑙𝑒𝑓𝑡2|, |𝑙𝑒𝑓𝑡1 − 𝑟𝑖𝑔ℎ𝑡2|, |𝑟𝑖𝑔ℎ𝑡1 − 𝑙𝑒𝑓𝑡2|, |𝑟𝑖𝑔ℎ𝑡1 − 𝑟𝑖𝑔ℎ𝑡2|} ;

 𝑑𝑖𝑠𝑡1,2
v = min{|𝑡𝑜𝑝1 − 𝑡𝑜𝑝2|, |𝑡𝑜𝑝1 − 𝑏𝑜𝑡𝑡𝑜𝑚2|, |𝑏𝑜𝑡𝑡𝑜𝑚1 − 𝑡𝑜𝑝2|, |𝑏𝑜𝑡𝑡𝑜𝑚1 −

𝑏𝑜𝑡𝑡𝑜𝑚2|} .

However, these two distance measurements may lead to an inconsistent situation.

For example, as shown in Figure 4.1a, the left two large rectangles are close to each other,

and the right two small ones are more distant in the perceptual perspective. However, the

calculated CDs of the two pairs are actually the same. Similar problem happens for GD, as

shown in Figure 4.1b.

This issue is owing to the dimensions of the two nodes being ignored. Therefore,

an appropriate measurement should take size (i.e. width and height of the rectangle) into

account. The Hausdorff distance (HD) satisfies this requirement (Huttenlocher et al. 1993).

It denotes the maximum value of all distances from any point in one node to its nearest

point in the other node, as shown in (4-3):

88

 𝐻𝐷(𝑁1, 𝑁2) = max{ℎ𝑑1,2, ℎ𝑑2,1} = max { sup
𝑛1∈𝑁1

inf
𝑛2∈𝑁2

‖𝑛1 − 𝑛2‖ , sup
𝑛2∈𝑁2

inf
𝑛1∈𝑁1

‖𝑛2 − 𝑛1‖} ,(4-3)

where 𝐻𝐷(𝑁1, 𝑁2) is the HD between 𝑁1 and 𝑁2 ; ℎ𝑑1,2 is the HD from 𝑁1 to 𝑁2 ;

‖𝑛1 − 𝑛2‖ calculates the Euclidean distance between two points 𝑛1 and 𝑛2; sup and inf

calculate the maximum and minimum value of a given set, respectively.

Figure 4.1 Contradictions between Calculation Distances and Perceptual Distances

As shown in Figure 4.1c, although HD reflects size of rectangles, it fails to

eliminate the inconsistency issues of CD and GD, Therefore, we choose the fourth

candidate, which is the normalized version of HD – the relative Hausdorff distance (RHD).

It is calculated by (4-4):

 𝑅𝐻𝐷(𝑁1, 𝑁2) = max {
ℎ𝑑1,2

𝑟𝑑1
,

ℎ𝑑2,1

𝑟𝑑2
} , (4-4)

where 𝑟𝑑1 and 𝑟𝑑2 are the relative dimensions that act as normalizing factors. The detail

of calculation can be found at (Xu and Miller 2015a).

2.4.2 Experiment and Discussion

The experiment focuses on proximity’s influence on people’s visual perception, so

we minimize other influencing factors (such as similarity and continuity) by controlling

these parameters. Specifically, we create eight rectangles, the sizes and content of which

(b) Gap Distance (a) Centroid Distance (c) Hausdorff

Distance

89

are randomly generated but kept the same. Meanwhile, the rectangles are evenly distributed

and kept close to each other, so that the edge distances between adjacent rectangles are

smaller than their dimensions. Consequently, all of them can be considered as one group.

Second, the edge distance between the fourth and the fifth elements increases continuously

while those of the remaining adjacent elements remain unchanged. Five volunteers were

requested to observe the changing scenario, and to record when the eight rectangles were

split into two groups, specifically between the fourth and the fifth rectangles, based on their

perception. The values of the four proximity candidates are calculated and logged.

Each volunteer repeated the above test 100 times. The difference between the

increased and the original values of a good proximity measurement should reflect the

threshold of the volunteer’s visual perception, i.e., it needs to be constant during the 100

tests. The differences of the four proximity candidates (∆𝐶𝐷, ∆𝐺𝐷, ∆𝐻𝐷 and ∆𝑅𝐻𝐷) are

illustrated in Figure 4.2. In the experiment, ∆𝐶𝐷, ∆𝐺𝐷 and ∆𝐻𝐷 are exactly the same

according to their formulas, because all the rectangles are exactly the same in dimension

and left-aligned. Therefore, in Figure 4.2, their corresponding curves coincide.

Table 4.1 shows the details of the comparison results. In the table, ∆𝐶𝐷, ∆𝐺𝐷,

∆𝐻𝐷, and ∆𝑅𝐻𝐷 are denoted as 1, 2, 3, and 4, respectively. The variances of ∆𝐶𝐷, ∆𝐺𝐷

and ∆𝐻𝐷 from all the 100 tests are all above 0.06, while the variances of ∆𝑅𝐻𝐷 are all

bellow 0.002. Consequently, we conclude that RHD provides the best performance as a

proximity estimation.

90

Figure 4.2 The Distribution of Proximity Candidate Comparison Results

As is stated above, the translation of the Gestalt law of proximity aims to group

elements together if their distances with adjacent elements are exactly the same. However,

the experimental results show that the mean of all the RHD values from the five volunteers

is approximately 0.05. Therefore, during the translation, we define “same” as ∆𝑅𝐻𝐷 <

0.05, i.e., if the value of ∆𝑅𝐻𝐷 is less than 0.05, we regard the two proximities as the same.

Table 4.1 Proximity Candidate Comparison Results

Volunteer
1 2 3 4 5

1, 2, 3 4 1, 2, 3 4 1, 2, 3 4 1, 2, 3 4 1, 2, 3 4

Maximum 6 0.0806 7 0.0986 6 0.0789 8 0.1012 8 0.1012

Minimum 2 0.0253 2 0.0290 2 0.0322 2 0.0298 2 0.0322

Mean 3.54 0.0541 3.81 0.0568 3.61 0.0562 3.62 0.0552 3.47 0.0524

Variance 0.6884 0.0001 1.3739 0.0002 0.8379 0.0001 1.1556 0.0002 0.9291 0.0001

91

2.5 Translating the Gestalt Law of Similarity

Different elements in a web page are displayed in various styles; however, the

Gestalt law of similarity reveals that we tend to perceive similar elements as related. This

law compares elements by all their visual features such as background colors/images,

textual styles and paragraph styles, which are represented by a series of CSS properties.

Generally, most CSS properties can be compared directly by their values. For example,

two textual elements with “font-style” both being “italic” are considered as

similar and as different from a third textual element with the same CSS property being

“normal”. When a CSS property contains colors or images (e.g. “background”,

“border-color”, “list-style-image”), it is not accurate for them to be compared

in this way. This is because the value of a color can be either the RGB value (e.g.

“rgb(255, 255, 255)” or “#FFFFFF”) or the color name (e.g. “white”). Both of

them can refer to the same color; however, the string values are not the same. For accuracy,

we compare the actual colors and images directly.

2.5.1 Empirical Comparison of Colors.

Most web pages describe colors utilizing the RGB space, so the direct way for

comparing two colors is by comparing their color difference under the RGB color space.

Riemersma (2008) exploits the weighted Euclidean distance as the color difference for the

RGB color space.

 ∆𝐶(𝐶1, 𝐶2) = √(2 +
�̅�

256
) (𝑟1 − 𝑟2)2 + 4(𝑔1 − 𝑔2)2 + (2 +

255−�̅�

256
) (𝑏1 − 𝑏2)2 ,(4-5)

92

where 𝐶1 and 𝐶2 are the two colors; 𝑟, 𝑔 and 𝑏 are the values of a color’s red,

green and blue channels, respectively; and �̅� = (𝑟1 + 𝑟2) 2⁄ is the mean value of

the red channels.

An alternative color space is CIELAB, which has a wider gamut that covers all

RGB colors. Meanwhile, compared with the RGB color model designed for display devices,

the CIELAB model is designed to mimic human vision. Color differences in this space, the

∆𝐸00
12, are calculated by (4-6) (Luo et al. 2001). The parameter list is omitted in this chapter

for brevity, but can be found in (Luo et al. 2001).

 ∆𝐸00
12 = √(

∆𝐿′

𝑘𝐿𝑆𝐿
)

2

+ (
∆𝐶′

𝑘𝐶𝑆𝐶
)

2

+ (
∆𝐻′

𝑘𝐻𝑆𝐻
)

2

+ 𝑅𝑇 (
∆𝐶′

𝑘𝐶𝑆𝐶
) (

∆𝐻′

𝑘𝐻𝑆𝐻
) . (4-6)

Due to the respective merits of the two color spaces, we design experiments to test which

color space has a better color difference measurement in terms of distinguishing colors for

human perception when utilized in web pages. The empirical threshold for the better color

difference is determined by the experiments. The experiment consists of 50 rounds of tests

with each round including two groups of comparison. In each group, 100 pairs of random

colors are generated. The first group lists the 100 pairs by ∆𝐶, and the second group lists

them by ∆𝐸00
12. We record both: (a) the first pair of colors that is distinguishable (by a

human test subject) in each group; and, (b) the corresponding color difference.

The experiment is repeated five times, and the results are shown in Table 4.2 and Figure

4.3. As can be seen in this table that the values of ∆𝐸00
12 vary from 4.03 to 5.35 with a

variance being smaller than 0.1; and the values of ∆𝐶 fluctuate from 22.44 to 61.24 with a

variance being at least 63.90. The variance of ∆𝐸00
12 is smaller than 0.1 while that of ∆𝐶 is

larger than 60, meaning that the former is more stable. Therefore, ∆𝐸00
12 is more

93

distinguishable than ∆𝐶 for our human volunteers, and thus we select ∆𝐸00
12 as the color

difference metric and set its mean value as the threshold, which is 4.65.

Table 4.2 Color Comparison Results

Repetition
1 2 3 4 5

∆𝐸00
12 ∆𝐶 ∆𝐸00

12 ∆𝐶 ∆𝐸00
12 ∆𝐶 ∆𝐸00

12 ∆𝐶 ∆𝐸00
12 ∆𝐶

Maximum 5.06 57.70 5.15 61.24 5.15 57.48 5.35 57.50 5.05 56.05

Minimum 4.06 23.31 4.04 25.05 4.03 22.44 4.05 24.09 4.16 24.60

Mean 4.56 41.80 4.62 43.82 4.65 39.66 4.73 36.68 4.69 39.49

Variance 0.07 72.44 0.09 75.37 0.08 63.90 0.05 81.70 0.06 94.09

Figure 4.3 Distributions of Color Comparison Results

2.5.2 Empirical Comparison of Images

An image from a web page can be represented in several different ways: (a) a

general file object that is a series of binaries; (b) a mathematical sample that is a series of

numeric values; and (c) a general image that is a series of pixels.

94

When the image is treated as a file object, the similarity between two images can

be estimated by the normalized compression distance (NCD), (Li et al. 2004),

 𝑁𝐶𝐷(𝐼1, 𝐼2) =
𝐶(𝐼1𝐼2)−min {𝐶(𝐼1),𝐶(𝐼2)}

max {𝐶(𝐼1),𝐶(𝐼2)}
 , (4-7)

where, 𝐼1 and 𝐼2 are the two images, with are each represented as an array of pixel colors;

𝐼1𝐼2 is the concatenation of 𝐼1 and 𝐼2; and 𝐶(𝑥) calculates the compressed length of 𝑥. If

the two images are the same, then their NCD is 0.0; and if they are completely different,

the value is 1.0. Due to the performance of the current generation of compressors, errors

are inevitable when calculating NCD. That is, NCD is sensitive to the selection of the

compressor. The higher the performance of a compressor, the more accurate the result.

Therefore, we adopt the LZMA algorithm as recommended in several previous papers

(Chen et al. 2010; Claude et al. 2010). (Specifically, we utilized LZMA2, which is superior

to LZMA when compressing already compressed data such as JPEG).

If we treat an image as a mathematical sample, then the similarity can be calculated

mathematically as the mean square error (MSE) (Hore and Ziou 2010).

 𝑀𝑆𝐸(𝐼1, 𝐼2) =
1

𝑁
∑ (𝑖𝑥

1 − 𝑖𝑥
2)2𝑁

𝑥=1 , (4-8)

where 𝑁 equals to the size of 𝐼1 and 𝐼2 (that is, 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡); 𝑖𝑥
1 and 𝑖𝑥

2 refer to the

color values of pixels in 𝐼1 and 𝐼2, respectively.

To deal with a general image, the structural similarity index (SSIM) can be applied,

which is designed for digital image comparison in order to imitate human perception

95

(Koffka 2013). The value of SSIM for two identical images is 1.0, and for two completely

different images is -1.0. SSIM is calculated via (4-9),

 𝑆𝑆𝐼𝑀(𝐼1, 𝐼2) =
(2𝜇1𝜇2+𝑐)(2𝜎1,2+𝑑)

(𝜇1
2+𝜇2

2+𝑐)(𝜎1
2+𝜎2

2+𝑑)
 , (4-9)

where 𝜇1 and 𝜇2 are the mean of 𝐼1 and 𝐼2, respectively; 𝜎1
2 and 𝜎2

2 are the variances of

𝐼1 and 𝐼2, respectively; and, 𝑐 and 𝑑 are two variables to stabilize the division with the

denominator.

This experiment evaluates the aforementioned three measurements and aims at

finding the best one for image similarity. We choose the McGill calibrated color image

database (Olmos and Kingdom 2004) as the test pool to conduct a 10-round-comparison.

This database provides over 1500 images. These images are colorful natural and manmade

scenes – stored in tif format and 72 dpi resolution – such as animals, foliage, fruits, and

land water, which cover almost all the themes we see in web pages. During each round, 10

pairs of similar images (i.e., 20 images) are randomly selected from the test pool to build

up the test set. 20 images can make (20
2

) = 190 pairs of images (i.e., 190 comparisons).

Among them, the preselected 10 pairs of similar images are marked as the first 10 pairs,

and the remaining 180 pairs are randomly marked as the 11 to 190 pairs (i.e., last 180 pairs).

All the 190 pairs of images are evaluated by the three measurements respectively.

In Figure 4.4, two groups of box plots are drawn for each round, where group 1

shows the first 10 pairs and group 2 shows the remaining 180 pairs. All of the 10 rounds

(each sub-figure represents a round) reveal similar result patterns. Qualitatively, the MSE

values of group 1 in any round are not distinguishable from group 2, so it cannot be a useful

96

measurement. Regarding the NCD results, although the values of the first 10 pairs are

generally smaller than that of the last 180 pairs, they are too close to be distinguished, i.e.

approximately 0.02 between the minimum and the maximum. Therefore, it is difficult to

determine a threshold to divide the two groups apart. With respect to SSIM, there is a clear

separation (i.e., the horizontal dashed line as shown) in each sub-figure to allow an accurate

division between the two groups. As a result, among the three methods, only SSIM is

capable of distinguishing between similar pages and dissimilar pages, and the empirical

threshold is set to the overall mean value, which is 0.48.

Quantitatively, the minimal, maximal, and mean values of MSE, NCD, and SSIM

are illustrated in Table 4.3. For MSE and NCD, the value range (i.e., the values between

the minimum and the maximum) of the first 10 pairs crosses with that of the last 180 pairs.

In contrast, there is no common part between the value ranges of SSIM’s first 10 pairs and

the last 180 pairs. This, again, proves that only SSIM among the three is able to distinguish

the similar and the dissimilar of image pairs. Therefore, we select SSIM as the

measurement to calculate web page similarity. Furthermore, for SSIM, the smallest value

of the first 10 pairs is 0.5050, and the largest value of the last 180 pairs is 0.4504; therefore,

we pick their overall mean (i.e., 0.4755) as the threshold to distinguish between similar and

dissimilar images.

97

Figure 4.4 Distributions of Image Comparison Results

Table 4.3 Image Comparison Results

MSE NCD SSIM

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

Minimum 36.8994 86.7609 0.9722 0.9894 0.5050 0.0476

Maximum 311.8292 421.2648 0.9999 0.9999 0.8397 0.4504

Mean 162.4931 206.7298 0.9927 0.9989 0.5920 0.2105

2.6 Translating the Gestalt Law of Continuity

The Gestalt law of continuity expresses that people tend to judge the elements on a

web page as related in a situation where they are aligned, and as dissimilar when they are

not aligned. In other words, this law refers to the geometrical alignment. By default, the

browser places elements in a justified manner. If certain elements are not justified with

98

others, it indicates that they are not related. In this case, the designers have separated them

deliberately.

As shown in the example of Amazon’s home page (Figure 4.5), the paragraphs in

the blue rectangle (“Get to Know Us”, “Careers”, “About Amazon”, etc.) are left aligned,

indicating they are related content. In general, to evaluate continuity, we compare the left,

top, right, and bottom coordinates of two elements. If any of the four coordinates of two

elements are the same, we conclude that they are related; and that they are dissimilar

otherwise.

Figure 4.5 Home Page of Amazon

2.7 Translating the Gestalt Law of Common Fate

The Gestalt law of common fate describes that during the process of web page

loading, elements in a web page can have different motion trends, and people’s tendency

is to regard elements with the same motion trend as related. When the page is loaded, most

99

web page content does not move during the load operation. However, if the reader scrolls

up and down the page, all nodes will move by default. In some situations, there are elements

that do not move with scrolling pages, under this situation, we believe these elements have

different motion trends and as such that we treat them as dissimilar. This motion trend is

controlled by the CSS property “position”, therefore translation of this law will compare

the corresponding values of DOM elements for merging determination.

Taking the home page of Amazon in Figure 4.5 again as the example, when the page

is scrolled, the search bar (marked by the red rectangle) is always hanging at the top, but

other content moves accordingly. Under this circumstance, we tend to think of the search

bar and the other content as dissimilar.

With the DOM tree of a web page as the raw input, the translated Gestalt laws

constructs the block tree by removing all invisible elements and merging semantically

related elements into blocks, as shown in Figure 4.6. This data structure, the block tree that

contains all visual information of a web page, is used for visual similarity evaluation and

cross-browser difference detection. Efficiency of the block tree is discussed in (Xu and

Miller, 2015a), where it is utilized as part of a web page segmentation algorithm

empirically shown to outperform VIPS.

Figure 4.6 Translation of Gestalt Laws of Grouping

100

3 The Empirical Visual Similarity Measurement

The similarity between two block trees can be decided by the tree edit distance

(TED) (Pawlik and Augsten 2015). To calculate TED, the first step is to determine their

mapping relationship. If we post-order traverse all the nodes of a tree, then the mapping

relationship between nodes of two trees is restricted to the following three rules:

1) one-to-one rule: any node in one tree can map to one and only one node in the other

tree;

2) horizontal-order preserving rule: the (post-order-traversal) order of two sibling

nodes in one tree is always the same with the order of the mapped nodes in the other

tree;

3) vertical-order preserving rule: if two nodes are parent and child in one tree, then

their mapped nodes in the other tree must still be parent and child.

Note that a node in one tree may not be mapped to any node in the other tree. After

obtaining the mapping relationship, one of the following three types of edit operations is

determined. (1) if a node from the first tree does not map to any node in the second tree, it

is removed when the first tree is transformed to the second tree. (2) if a node from the

second tree does not map to any node in the first tree, it is added. (3) if a node from the

first tree maps to a node in the second tree, but the two mapped nodes have different content,

then the node in the first tree is relabeled. If the two mapped nodes have the same content,

then there is no edit operation during the transformational process. The value of TED

between the two trees refers to the number of edit operations required to transform one tree

to the other.

101

3.1 The Extended Subtree

The edit distance of the corresponding two block trees denotes the visual similarity

between two web pages. However, directly using TED as the visual similarity measurement

is not sufficient. First, it calculates the absolute distance between two trees, which is unable

to precisely reveal the similarity of two trees. Consider the situation of two comparisons

where one compares two 1000-node trees and the other compares two 10-node trees. If the

TED values under the two comparisons are both 10, the proportions of changed nodes are

1% and 100%, respectively. It is obvious that the smaller the proportion, the more similar

the two trees. Second, when we read web pages, we do not read only the detail of a single

block. Instead, we read the sub tree of each block. This is because in a web page, all the

descendants of a block (if exist) are placed above the block, thus the visible part of that

block is actually the sub tree. Therefore, a TED measurement, which maps single nodes

instead of sub trees, is not precise.

To solve these problems, we employ the extended subtree similarity (EST)

(Shahbazi and Miller 2014) to reflect the visual similarity between two block trees. This

model normalizes the TED, with similarity ranging from 0.0 to 1.0, regardless of the sizes

of the two trees. Particularly, 1.0 and 0.0 denote if two trees are identical or completely

different, respectively. Furthermore, the EST model maps sub trees instead of tree nodes,

which can be achieved by the new mapping rules (Shahbazi and Miller 2014):

1) sub tree mapping: EST maps both sub trees and single nodes;

2) one-time mapping: once two sub trees are mapped, the common sub trees of them

are not allowed to be mapped again;

102

3) sub tree weight assignment: the weight of a map equals to the mean value of the

two mapped sub trees’ weights, and a sub tree’s weight equals to the number of

nodes it has.

The EST similarity of two block trees X and Y is calculated by (4-10):

 𝑆∗(𝑋, 𝑌) =
√∑ 𝛽𝑘×𝑊(𝑚𝑘)𝛼

𝑚𝑘∈𝑀
𝛼

𝑚𝑎𝑥(|𝑋|,|𝑌|)
 , (4-10)

where, |𝑋| and |𝑌| represents the numbers of nodes in 𝑋 and 𝑌; 𝑊(𝑚𝑘) is the weight of a

mapping 𝑚𝑘; 𝛼 is a coefficient that adjusts the relation among mappings according to their

sub tree sizes; and 𝛽𝑘 is a geometrical parameter reflecting the importance of 𝑚𝑘 with

respect to the position of 𝑘 in 𝑋 and 𝑌. 𝛽𝑘 = 1 when the node 𝑥𝑘 and 𝑦𝑘 have the same

depth in 𝑋 and 𝑌, otherwise 𝛽𝑘 = 𝛽0, which equals to a constant within the range of (0,1).

Figure 4.7 shows an example of the method, with the visual incompatibility detection

and similarity estimation between the two trees X and Y being conducted as follows.

Figure 4.7 Example of the Visual Incompatibility Detection and Similarity Estimation

1) All the nodes from the two trees need to be attached with numbers. This numbering

scheme is done by post-order traversal. Therefore, the nodes b, c, a in Tree X are

denoted as 𝑥1, 𝑥2 and 𝑥3, and nodes d, b, c, a in Tree Y are denoted as 𝑦1, 𝑦2, 𝑦3

and 𝑦4, respectively.

103

2) All possible mapping relationship need to be located before further analysis. As

mentioned above, the mapping scheme considers subtrees instead of nodes, and

therefore, the final mapping results include 𝑚1 = {𝑥1} ↔ {𝑦2} (subtree of b,

marked by the blue rectangle), 𝑚2 = {𝑥2} ↔ {𝑦3} (subtree of c, marked by the

green rectangle), and 𝑚3 = {𝑥2, 𝑥3} ↔ {𝑦3, 𝑦4} (subtree of a-c, marked by the

yellow rectangle).

3) The mapping results are saved in two matrices 𝑀𝑥 and 𝑀𝑦, where each cell of the

matrices records the mapping relationship between the corresponding nodes. For

example, the subtree of a-c has the root node a, which is the 3rd node in X and the

4th node in Y. Hence, the grid in the 3rd row and 4th column of 𝑀𝑥 stores {𝑥2, 𝑥3},

and the grid in 4th row and 3rd column of 𝑀𝑦 stores {𝑦3, 𝑦4}. If the corresponding

nodes does not map, then the grid is an empty set.

4) Now the complement set of nodes from the mapping results indicates the visual

incompatibilities. In this case, the node d in Y – the corresponding content only

appears in the web page instance Y but not in X.

5) According to the one-time mapping rule, common subtrees are to be avoided in

order to construct the largest subtree mapping. Of all the mapped subtrees, 𝑥1 only

belongs to 𝑚1. Therefore, the first element of 𝐿𝑆𝑥 stores this mapping relationship,

denoted as (1
2
). 𝑦1 does not belong to any mapping relationship, so the first element

of 𝐿𝑆𝑦 stores an empty set. Both 𝑥2 and 𝑥3 in X (also 𝑦3 and 𝑦4 in Y) belong to 𝑚3,

and herein, the 2nd and 3rd elements of 𝐿𝑆𝑥 (and the 3rd and 4th elements of 𝐿𝑆𝑦)

store this mapping relationship.

104

6) Weights of each node in X and Y are assigned by comparing 𝑀𝑥 with 𝐿𝑆𝑥, and 𝑀𝑦

with 𝐿𝑆𝑦. 𝐿𝑆𝑥 has 1 of (1
2
), 0 of (2

3
), and 2 of (3

4
). As such, the weight matrix 𝑊𝑥

has the weights of {𝑥1}, {𝑥2} and {𝑥2, 𝑥3} as 1, 0 and 2, respectively. Similarly, the

weight matrix 𝑊𝑦 has the weights of {𝑦2}, {𝑦3} and {𝑦3, 𝑦4} as 1, 0 and 2, too.

7) 𝛽1 = 1 as the depth of node b in X and Y are not the same. However, the depth of

node a in X and Y are the same, and accordingly, we can get 𝛽3 = 𝛽0. 𝛼 and 𝛽0 are

set to 1.6 and 0.5 respectively following the recommendations in (Shahbazi and

Miller 2014), hence, the similarity between X and Y equals to 0.55.

3.2 The Validity Experiment

This experiment is to evaluate the validity of the empirical measurement. It is

repeated for 15 rounds. During the initialization of each round, 100 different web pages are

randomly retrieved from Alexa’s statistics of worldwide top sites

(http://www.alexa.com/topsites, the web pages were crawled on January 14, 2016) and

manually classified by human volunteers according to their visual appearance. Cross-

comparing each pair of the web pages produces (100
2

) = 4950 EST records. As shown in

Figure 4.8, these records are displayed in two boxplots, where the first plot illustrates EST

values between two similar pages and the second plot denotes those between two different

pages.

105

Figure 4.8 EST Similarity of All 15 Rounds

According to the boxplots, group 1 in each round demonstrates larger values than

group 2. The Mann–Whitney U test and the Cliff’s Delta effect size estimation are

conducted to quantitatively analyze the EST records. Both of the two tests are conducted

with a confidence level of 0.95. According to the results in Table 4.4, all the p-values are

smaller than 0.05, and all the delta estimate values are categorized as “large” (Romano et

al. 2006). This concludes that the EST similarities between similar web page pairs are

higher than those between different pairs, indicating this measurement is able to identify

web page visual similarity.

Table 4.4 Results of Mann–Whitney U Test and Cliff’s Delta Effect Size Estimation

Experiment 1 2 3 4 5

p-value 1.64E-28 3.26E-26 7.09E-19 2.28E-24 3.88E-24

Delta Estimate 0.9276 0.8368 0.8817 0.8531 0.8007

Experiment 6 7 8 9 10

p-value 4.76E-26 1.18E-18 1.53E-17 1.64E-23 1.19E-32

Delta Estimate 0.8664 0.8515 0.8730 0.8737 0.8712

Experiment 11 12 13 14 15

p-value 2.70E-19 2.99E-17 4.25E-13 1.11E-24 2.22E-17

Delta Estimate 0.8132 0.7942 0.9619 0.9070 0.8824

We categorize the EST records, of the 15 rounds, into the following four categories:

 true positive (TP): two similar pages are identified as similar correctly;

 true negative (TN): two different pages are identified as different correctly;

106

 false positive (FP): the situation where two different pages are identified as similar

incorrectly; and

 false negative (FN): two similar pages are identified as different incorrectly.

Five metrics based on the above four categories are investigated to find out the

optimal threshold, namely: precision (positive predictive value, PPV), negative predictive

value (NPV); recall (true positive rate, TPR), true negative rate (TNR), and accuracy

(Olson and Delen 2008). To be specific, PPV represents the ratio of similar page pairs

being correctly identified over all similar page pairs; while NPV reflects the proportion of

different page pairs being identified as different. Similarly, TPR denotes the ratio of similar

page pairs being correctly identified over all page pairs identified as similar; while TNR

refers to the fraction of different page pairs over all the identified different page pairs.

Accuracy is the ratio of correct identification to all identifications.

Figure 4.9 shows how the metrics vary according to the shift of the threshold. From

the left side figure, we can find that with the increase of the threshold, 0.40 is a turning

point of TP, FP, FN, and TN. Prior to this turning point, FP decreases significantly and TN

increases quickly; while after this point, TP has a sharp decrease and FP has a dramatic

increase. A similar pattern can be seen from the right side figure, too. This indicates that

0.40 is a best point for a threshold.

107

Figure 4.9 Performance of the Empirical Measurement on Different Thresholds

4 Detection of Cross-Browser Differences

The differences are detected by a series of experiments, where the EST similarity

value of each web page pair is calculated by comparing the corresponding block trees. A

static web page contains the same content for every loading, so the potential cross-browser

differences refer only to rendering style differences. However, due to many modern pages

having dynamic content, they change during every refreshing. Therefore, this dynamic

content should also be part of the detection targets.

In fact, there are two types of dynamic content: page-related content (for example,

weather status in a weather report page, or breaking news items in a newspaper page) and

advertisements. Although the first type is determined by the server side and cannot be

controlled by browsers, the second type is able to be filtered. Consequently, the

experiments are designed to proceed twice, where the first time is to evaluate the original

version of the web pages, and the second time is to test the ad-free version. During the

advertisement filtering in the second experiment, we employ “Adblock Plus” and

108

maximize its filter by enabling all its supported languages. We do not add any customized

filters.

4.1 Experimental Setups

The test sets of the two experiments use the same URL pool, which contains 1000

different records retrieved from Alexa’s top web sites (crawled on August 20th, 2016).

These web pages covered 360 different web sites, and the average number of pages per site

is 2.78. “bitauto.com” contains 31 pages in the pool, which is the largest number. 191 of

the 360 sites contribute only one page. The distribution is shown in Figure 4.10.

The first step of each experiment is the data retrieval. Two of the most popular

browsers, Google Chrome and Mozilla Firefox, are selected for cross-browser difference

detection, and they are further tested on both Linux and Windows platforms. Therefore,

there are four scenarios in each experiment, Chrome in Linux (CL), Chrome in Windows

(CW), Firefox in Linux (FL), and Firefox in Windows (FW). During the retrieval of each

scenario, we compose extensions compatible for the two browsers to parse the 1000 web

pages into a set of block trees. Specially, we set the browser’s inner window size to

1024×768 to eliminate potential side effects to the difference detection. Additionally,

Adblock Plus is enabled in the second experiment to filter any possible advertisements

from the original web pages. The four scenarios finally collect four sets of block trees for

each experiment.

109

Figure 4.10 Distribution of Test Cases

The second step is tree comparison. We cross-compare the corresponding block

trees of a web page by fixing either the browser or the platform. That is, by fixing the

browser, we will compare results in different platforms (i.e., CL vs. CW and FL vs. FW);

and by fixing the platform, we compare results in different browsers (i.e., CL vs. FL and

CW vs. FW).

Finally, we select the WebCompare algorithm (Alpuente and Romero 2009) as the

benchmark to test the performance of the proposed algorithm. This is because the

WebCompare algorithm (1) provides a compatible output; and, (2) can be considered as

the current state of the art. Many other algorithms were also considered as one of the

comparisons, but are finally removed from the experiments; the rationale for this decision

is discussed in Section 5.

4.2 Experimental Results

Figure 4.11 shows the distribution of EST and WebCompare similarity values for

each comparison scenario. Each bar in the histograms indicates the number of records that

is greater than or equal to the corresponding value as indicated in the x-axis, and each curve

shows the accumulate number of records that are less than the next value. For example, the

highest bar in the first chart shows that there are 450 EST values equal to “1.0”, and the

110

corresponding dot (the second dot from the right side) of the curve is 550 – the summation

of the two numbers is exactly 1000.

Figure 4.11 Distributions of the Experimental Results for Original Web Pages

According to the figure, the distribution of the four scenarios reveals the following

patterns: (a) All of the EST similarity values are greater than or equal to 0.75, and most of

them are greater than or equal to 0.9, indicating that the web pages are renderer similarly

by the two browsers on the two platforms. (b) Less than 60% of all the 1000 EST values

are 1.0, meaning that the cross-browser visual differences exist in the test cases and are

detected by the measurement. (c) The same-browser-comparisons generally produce higher

similarity estimates than same-platform-comparisons. And, (d) the EST similarity shows

higher values than the WebCompare similarity: most of the WebCompare values are

between 0.5 to 0.9, with the lowest value of 0.1095 and only one value of 1.0. That is

WebCompare only believes that in one situation is a web page rendered identically across

two browsers.

111

To figure out whether the two measurements are consistent with human perceptions,

we asked five volunteers to view the screenshot images of all the previous test cases and

then make further comparisons. They were required to mark “same” or “different” for each

pair of web pages. The identification results from all of the volunteers were identical. This

is because it is possible for a human to assert whether two screenshot images are identical

or not, but it is difficult for humans to assert numerically how much dissimilar they are

(this is exactly the reason why we need a numeric measurement to evaluate the similarity

of web pages). By comparing the previous (EST/WebCompare) values with the volunteers’

identifications, a confusion matrix can be built for the following scenarios: “both

EST/WebCompare value and the volunteer identification of the two pages are same”,

“EST/WebCompare value of two web pages shows different but the volunteer identifies as

same”, “both EST/WebCompare value and the volunteer identification of the two pages

are different”, and “EST/WebCompare value of the pages shows same but volunteer

identifies as different”. As shown in Table 4.5, the EST similarity can identify the web page

differences with the precision and accuracy over 90% and 70%, respectively. As the

comparison, WebCompare’s precision and accuracy are all below 50%. This is because the

WebCompare identifies very few identical comparisons, leading to the low TP rate.

Table 4.5 Comparison of Human Perceptions and Calculation Results (Original Web Pages)

 TP FP TN FN Precision Accuracy

EST

CL vs. CW 256 5 505 234 0.9808 0.7610

FL vs. FW 263 2 494 241 0.9925 0.7570

CL vs. FL 97 2 799 102 0.9798 0.8960

CW vs. FW 137 1 753 109 0.9928 0.8900

WebCompare

CL vs. CW 13 486 479 22 0.0261 0.4920

FL vs. FW 9 575 400 16 0.0154 0.4090

CL vs. FL 26 444 456 74 0.0553 0.4820

CW vs. FW 25 534 363 78 0.0447 0.3880

112

As mentioned in the previous subsection, two types of dynamic content affect the

results, and the advertisements can be controlled in the experiment. The distribution of the

Ad-free version of the 1000 web pages is illustrated in Figure 4.12. By comparison, Figure

4.11 and Figure 4.12 reveal similar patterns as discussed above. Furthermore, after removing

the advertisements, the EST similarity values become higher. For example, the number of

EST records with value 1.0 in Figure 4.11 is 450, but it increases to 490 in Figure 4.12. The

precisions and accuracies are listed in Table 4.6, which shows similar pattern with Table

4.5, indicating the efficiency evaluation using TP, FP, TN, FN is consistent and stable.

Figure 4.12 Distributions of the Experimental Results for Ad-Free Web Pages

Table 4.6 Comparison of Human Perceptions and Calculation Results (Ad-Free Web Pages)

 TP FP TN FN Precision Accuracy

EST

CL vs. CW 270 7 449 274 0.9747 0.7190

FL vs. FW 277 5 450 268 0.9823 0.7270

CL vs. FL 121 1 770 108 0.9918 0.8910

CW vs. FW 139 2 738 121 0.9858 0.8770

WebCompare

CL vs. CW 18 416 546 20 0.0415 0.5640

FL vs. FW 11 409 562 18 0.0262 0.5730

CL vs. FL 32 549 343 76 0.0551 0.3750

CW vs. FW 27 375 522 76 0.0672 0.5490

113

4.3 Case Studies

Figure 4.13 shows the home page of Google.ca in different browsers and platforms.

It is evident that the two pages in the same browser are rendered identically, but it shows

noticeable differences between the Chrome version and the Firefox version. Both Chrome

versions have a microphone icon at the right side of the search bar (i.e., the icon marked

by the blue rectangle); and both Firefox versions have an extra popup message window

(i.e., the top right block marked by the red rectangle). By parsing the sources of the four

pages, the results are illustrated in Table 4.7, where the “visual tree size” refers to the

number of visible elements in the original DOM tree. Quantitatively, the sizes of the three

types of trees are all the same for pages rendered by the same browsers, but the sizes

between Chrome version and Firefox version are different. The EST values of the first two

comparisons are both the highest possible values (i.e. 1.0000), and the values of the second

comparisons are both 0.8134, which is relatively low. Interpretations of these values are

consistent with Figure 4.13. As the comparison, however, the WebCompare similarity

approach provides lower results; in addition, the same-browser-comparisons fail to reflect

the identicalness.

Table 4.7 Case Study of Google.ca

 CL CW FL FW

DOM Tree 343 343 299 299

Visual Tree 30 30 34 34

Block Tree 14 14 16 16

 CL vs. CW FL vs. FW CL vs. FL CW vs. FW

EST 1.0000 1.0000 0.8134 0.8134

WebCompare 0.8167 0.8382 0.7188 0.7188

The next case, the home page of JSON tutorials from w3schools

(http://www.w3schools.com/json/default.asp), illustrates how the advertisements cause

114

cross-browser differences. In Figure 4.14, the screenshots of the original pages are

partially cropped and only the differences are the four pieces of advertisements marked in

red rectangles. Due to this dynamic content, the EST values of the four comparison

scenarios are 0.9368, 0.9343, 0.8988, and 0.8948, respectively; and after the removal of

the advertisements, all the EST values are 1.0000, as shown in Table 4.8. The

WebCompare results show slight increment after the advertisement filtering, however are

still lower than the EST.

Table 4.8 Case Study of W3schools’ JSON Home Page

 CL vs. CW FL vs. FW CL vs. FL CW vs. FW

EST (Original) 0.9368 0.9343 0.8988 0.8948

WebCompare (Original) 0.6877 0.6442 0.7470 0.5731

EST (Ad-Free) 1.0000 1.0000 1.0000 1.0000

WebCompare (Ad-Free) 0.6950 0.6467 0.7490 0.5772

115

Figure 4.13 Screenshots of Google.ca in the Four Browser Scenarios

(a) Chrome in Linux (b) Chrome in Windows

(c) Firefox in Linux (d) Firefox in Windows

116

Figure 4.14 Screenshots of W3schools’ JSON Home Page in the Four Browser Scenarios

The third case is the home page of Amazon.ca, which reveals the effects of the

page-related dynamic content. The top search bar, the big poster and the footer sections of

(b) Chrome in Windows

(c) Firefox in Linux (d) Firefox in Windows

(a) Chrome in Linux

117

the four versions are exactly the same, so they are cropped in Figure 4.15. However, the

rest of the pages are different. For simplicity, we name the different blocks with unique

numbers, where identical blocks have the same value. As shown in the figure, there are

totally 21 different blocks in the four pages. Through comparing each pair of pages, it is

concluded that the pages on the same platforms are most similar. That is, subfigure (a) and

(c) are the first similar pair, and subfigure (b) and (d) are the second similar pair. For

example, subfigure (a) has blocks 1 through 13, and subfigure (c) also has these blocks

except block 9. The EST similarity values reveal the same results as well. Specifically, the

EST values are 0.8765, 0.8734, 0.9788 and 0.9156, respectively. The WebCompare results

are 0.6494, 0.7016, 0.6153 and 0.8207, indicating that it is able to identify the differences.

However, it provides a lower similarity value than EST. In addition, the third scenario (CL

vs. FL) is considered as the most similar comparison, however, the corresponding

WebCompare value is smaller than the fourth one, which is viewed as an inconsistency.

The fourth case is the home page of FedEx.com, as shown in Figure 4.16Error!

Reference source not found.. The only visual difference of the four versions is the select

box in the middle: the two Windows versions have a solid white background while the two

Linux versions are gradient gray; besides, the Firefox version in Linux has a larger height

than the other three. The values of EST similarity further reflect the above observations.

More specifically, the value between CL and CW is 0.9003; the values between FL and

FW, CL and FL are both 0.8188; and the value between CW and FW is 1.0. In comparison,

the values of the WebCompare similarity are more than 30% lower than the EST similarity,

namely 0.5345, 0.5079, 0.1767 and 0.1095 for each comparison scenario, respectively.

118

Note that the two browsers in Windows render the web page identically, however

WebCompare shows only 10% of the similarity.

Figure 4.15 Screenshots of Amazon.ca in the Four Browser Scenarios

(b) Chrome in Windows (c) Firefox in Linux (d) Firefox in Windows (a) Chrome in Linux

119

Figure 4.16 Screenshots of FedEx.com in the Four Browser Scenarios

5 Related Work

The area of web page visual analysis is widely adopted by researchers. Michailidou

et al. (2008) investigated the user perception of visual complexity and aesthetic appearance

of web pages. They further proposed the definition of visual complexity for web pages by

empirical experiment using card sorting and triadic elicitation (Harper, et al. 2009). Eraslan

et al. (2016) performed Scanpath trend analysis by clustering users’ eye tracking scanpaths

according to visual elements of a web page. Wu et al. (2016) used the structural SVM and

a multitask fusion learning model to conduct multimodal web aesthetics assessment. These

(a) Chrome in Linux (b) Chrome in Windows

(c) Firefox in Linux (d) Firefox in Windows

120

researchers analyzed web page visual elements to determine whether the visualization a

web page is clear and easy to read. Similarly, in this chapter, we analyze the visual elements

of web pages. However, as stated in the introduction section, we focus on cross-browser

issues from the angle of web page visual similarity. Therefore, we will mainly investigate

the work in the literature related to web page visual similarity, and pay less attention on

behavioral incompatibilities. A number of papers have focussed on the detection of visual

cross-browser issues.

Fu et al. (2006) evaluated web page similarity by using the Earth Mover’s Distance

(EMD) metric. They treated different web pages as pure images, normalized them into

squares with the same size, downgraded the pixel colors with different granularities as the

signature, and finally determined similarity by the signatures. The size matrices in the

chapter included 100*100 and 10*10, which potentially downgraded the precision of the

screenshot images. In our research, we retrieve all visual features while keeping the web

pages in their original resolution, in order to prevent precision loss.

Saar et al. (2014) proposed another detection methodology purely base on image

processing, the Browserbite. The original web pages were first rendered in different

browsers and operating systems so that the precise screenshot images can be retrieved. The

images were then split into segments by pixel-level visual features such as discontinuity or

color changes. Pairwise comparisons were finally conducted among the segments for cross-

browser incompatibility detection. Treating web pages as images ultimately reflects how

people seeing and processing the pages, however it ignores all the structural information

and thus may introduce false identifications. For example, if a logo image of a web site has

both texts and figures, then image processing could split the two components apart. In our

121

research, we determined to preserve the structural information in order to improve the

accuracy of segmentation.

Mesbah and Prasad (2011) proposed an automated testing framework to detect

cross-browser incompatibilities in both visual and behavioral aspects. They defined and

limited the cross-browser compatibility issues in a novel aspect that both human users and

the client-side browsers can find, and conducted detections within this aspect.

Rao and Ali (2015) exploit the speed up robust features (SURF) detector, a

computer vison technique, to extract discriminative feature points of images, to compare

the similarity of suspicious and legitimate web pages. They first create a list of legitimate

web pages as the base pool, compare the suspicious web pages with the web pages in the

base pool, and then updated the base pool based upon the results of the comparison. When

comparing images, the similarity score is calculated for the screenshots of both the

suspicious and legitimate web pages by the SURF algorithm, and a threshold score is used

as a judging standard. This is an interesting method for computing web page similarity, but

the determination of a threshold score is difficult.

Takama and Mitsuhashi (2005) investigate web page visual features, and develop

a method to calculate visual similarity between the top pages of two web sites. In web page

layout processing, they divide each web page into several regions and labeled them as text,

image, or mixture. In the next procedure, they perform graph matching based upon a layout

processing procedure. Finally, visual similarity is calculated according to the graph

matching results. Their primary contribution is considering visual features when

comparing web page similarity and their proposed method works well for this purpose.

122

Unfortunately, they only focus on static images and do not take into account other

multimedia elements found in web pages.

Shi, et al. (2008) investigate text similarity computation and extended the concept

of similarity computation into multimedia elements. They put forward a multi-layer

semantic model by describing each multimedia type in a single layer according to its

characteristics and user demands. A limitation of this model is that it ignores the

relationship among different multi-media content and may lead to inaccuracies of similarity

computation. The image in terms of visual similarity analysis is difficult to handle.

Choudhary et al. (2010) investigated cross-browser issues by the WebDiff

algorithm. They further improved their research by combining the WebDiff with CrossT

to propose new algorithms, namely CrossCheck and X-Pert (2012, 2013). Detection of the

visual incompatibilities from these algorithms were all the same. They identified the

content by cropping the screenshot image with DOM coordinates, and then compared the

similarity based on the color histogram of the cropped sub-images. Screenshots reflect the

final representation of web pages; however, they will potentially raise false positive results.

For example, when a web page defines its text style with a font family such as “serif”

instead of the concrete font, different browsers will interpret this with their own standards

(and actually this standard can also be customized by the user). The users are not concern

with the actual font at all, and many times they do not recognize such differences. In our

research, we avoid using the screenshots of web pages. On contrary, we evaluated all the

CSS values supported by different browsers, which consists of the comparison candidates

of cross-browser visualization incompatibilities.

123

Alpuente and Romero (2009) developed the theory that first extracted web page

content to different categories, namely “grp”, “row”, “col”, and “text”, and then merged

and compressed the DOM tree. The visual similarity was then determined by the

normalized version of the tree edit distance.

6 Conclusion and Future Work

Web applications have pervaded into almost every aspect of our daily life. However,

with the advent of various versions of web browsers, issues abound, i.e., different web

browsers cannot always render web pages and applications correctly. In order to detect

whether web pages and applications are rendered the same across different web browsers,

this chapter starts from the perspective of visual similarity, and develops a visual similarity

measurement to evaluate the visual similarity of a web page or application across different

web browsers.

We notice that the Gestalt laws of grouping are capable of revealing human’s

mechanisms of visual processing; hence, we introduce these laws into the study of web

page visual similarity by translating them into a computer compatible version. During this

process, the measurements of proximity, color similarity, and image similarity are obtained

through experimentation. To represent web pages correctly, we substitute the block tree

from the DOM tree by extracting visual features and combining visible elements through

the Gestalt laws of grouping (the code is available at

https://github.com/MarcoXZh/GestaltBlockTree). The block tree is then employed to

calculate web page visual similarity by the EST model. An experiment is conducted and a

case is studied to use this measurement to detect cross-browser differences among a test

set of 1000 web pages. The experimental data concludes positive results for this solution.

124

Acknowledgment

The authors thank China Scholarship Council (CSC) for financial supports.

References

María Alpuente and Daniel Romero. 2009. A visual technique for web pages comparison.

Electronic Notes in Theoretical Computer Science 235 (2009), 3–18.

Jyotish Chandra Banerjee. 1994. Encyclopaedic Dictionary of psychological terms. MD

Publications Pvt. Ltd., New Delhi.

Teh-Chung Chen, Scott Dick, and James Miller. 2010. Detecting visually similar web

pages: Application to phishing detection. ACM Transactions on Internet Technology (TOIT) 10, 2

(2010), 5.

Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. 2012. Crosscheck:

Combining crawling and differencing to better detect cross-browser incompatibilities in web

applications. In 2012 IEEE Fifth International Conference on Software Testing, Verification and

Validation. IEEE, 171–180.

Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. 2013. X-PERT: accurate

identification of cross-browser issues in web applications. In Proceedings of the 2013 International

Conference on Software Engineering. IEEE Press, 702–711.

Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. WEBDIFF:

Automated identification of cross-browser issues in web applications. In Software Maintenance

(ICSM), 2010 IEEE International Conference on. IEEE, 1–10.

Francisco Claude, Antonio Farina, Miguel A. Mart´ınez-Prieto, and Gonzalo Navarro.

2010. Compressed qgram indexing for highly repetitive biological sequences. In BioInformatics

and BioEngineering (BIBE), 2010 IEEE International Conference on. IEEE, 86–91.

Sukru Eraslan, Yeliz Yesilada, and Simon Harper. 2016. Scanpath Trend Analysis on Web

Pag-es: Clustering Eye Tracking Scanpaths. ACM Transactions on the Web (TWEB) 10, 4 (2016),

20.

Anthony Y Fu, Wenyin Liu, and Xiaotie Deng. 2006. Detecting phishing web pages with

visual similarity assessment based on earth mover’s distance (EMD). IEEE transactions on

dependable and secure computing 3, 4 (2006), 301–311.

125

Simon Harper, Eleni Michailidou, and Robert Stevens. 2009. Toward a definition of visual

complexity as an implicit measure of cognitive load. ACM Transactions on Applied Perception

(TAP) 6, 2 (2009), 10.

Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In Pattern

Recognition (ICPR), 2010 20th International Conference on. IEEE, 2366–2369.

Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Rucklidge. 1993.

Comparing images using the Hausdorff distance. Pattern Analysis and Machine Intelligence, IEEE

Transactions on 15, 9 (1993), 850–863.

Kurt Koffka. 2013. Principles of Gestalt psychology. Vol. 44. Routledge.

Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul Vit ányi. 2004. The similarity metric.

Information Theory, IEEE Transactions on 50, 12 (2004), 3250–3264.

M. Ronnier Luo, Guihua Cui, and B. Rigg. 2001. The development of the CIE 2000 colour-

difference formula: CIEDE2000. Color Research & Application 26, 5 (2001), 340–350.

Ali Mesbah and Mukul R. Prasad. 2011. Automated cross-browser compatibility testing.

In Proceedings of the 33rd International Conference on Software Engineering. ACM, 561–570.

Eleni Michailidou, Simon Harper, and Sean Bechhofer. 2008. Visual complexity and

aesthetic perception of web pages. In Proceedings of the 26th annual ACM international conference

on Design of communication. ACM, 215–224.

Adriana Olmos and Frederick A. A. Kingdom. 2004. A biologically inspired algorithm for

the recovery of shading and reflectance images. Perception 33, 12 (2004), 1463–1473.

Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient computation of the tree edit

distance. ACM Transactions on Database Systems (TODS) 40, 1 (2015), 3.

Routhu Srinivasa Rao and Syed Taqi Ali. 2015. A Computer Vision Technique to Detect

Phishing Attacks. In Communication Systems and Network Technologies (CSNT), 2015 Fifth

International Conference on. IEEE, 596–601.

Thiadmer Riemersma. 2008. Colour metric. (2008). Retrieved April 18, 2016 from

http://www.compuphase.com/cmetric.htm

Jeanine Romano, Jeffrey D. Kromrey, Jesse Coraggio, and Jeff Skowronek. 2006.

Appropriate statistics for ordinal level data: Should we really be using t-test and Cohen’s d for

evaluating group differences on the NSSE and other surveys. In annual meeting of the Florida

Association of Institutional Research. 1–33.

Tõnis Saar, Marlon Dumas, Marti Kaljuve, and Nataliia Semenenko. 2015. Browserbite:

cross-browser testing via image processing. Software: Practice and Experience (2015).

126

Ali Shahbazi and James Miller. 2014. Extended subtree: a new similarity function for tree

structured data. Knowledge and Data Engineering, IEEE Transactions on 26, 4 (2014), 864–877.

Peng Shi, Lianhong Ding, and Bingwu Liu. 2008. Similarity computation of Web pages.

In Knowledge Acquisition and Modeling Workshop, 2008. KAM Workshop 2008. IEEE

International Symposium on. IEEE, 777–780.

Herb Stevenson. 2012. Emergence: The Gestalt Approach to Change. (2012). Retrieved

April 18, 2016 from http://www.clevelandconsultinggroup.com/articles/emergence-gestalt-

approach-to-change.php

Yasufumi Takama and Noriaki Mitsuhashi. 2005. Visual similarity comparison for Web

page retrieval. In Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM International

Conference on. IEEE, 301–304.

Jeremy M. Wolfe, Keith R. Kluender, Dennis M. Levi, Linda M. Bartoshuk, Rachel S.

Herz, Roberta L. Klatzky, Susan J. Lederman, and Daniel M. Merfeld. 2009. Sensation and Per-

ception (2nd ed.). Sinauer Associates Inc., Massachusetts, MA.

Ou Wu, Haiqiang Zuo, Weiming Hu, and Bing Li. 2016. Multimodal Web Aesthetics

Assessment Based on Structural SVM and Multitask Fusion Learning. IEEE Transactions on

Multimedia 18, 6 (2016), 1062– 1076.

Zhen Xu and James Miller. 2015a. Identifying semantic blocks in Web pages using Gestalt

laws of grouping. World Wide Web (2015), 1–22.

Zhen Xu and James Miller. 2015b. A New Webpage Classification Model Based on Visual

In-formation Using Gestalt Laws of Grouping. In International Conference on Web Infor-mation

Systems Engineering. Springer, 225–232.

127

CHAPTER 5 An Automated Testing Framework

for Cross-Browser Visual Incompatibility

Detection7

Abstract

Due to the rapid evolution of web applications and computer techniques, visual

incompatibility of web pages has become a problem across different browsers and

platforms influencing the functionality of the web applications. At the present, researchers

have made progress to address such issues; in addition, many commercial tools have

emerged as well. However, drawbacks still exist in the existing work, where fully automate

testing at the system level is still not achieved. In this chapter, we attempt to propose a

framework to detect the cross browser visual incompatibilities automatically. Highlights

of the proposed framework include template based case organization, version based

automation, and similarity embedded incompatibilities identification.

Keywords: Automated testing; Visual incompatibility; Visual similarity.

1 Introduction

Web applications have become more and more popular nowadays. Compared with

traditional applications with a client-server architecture, they are cross-platform, fully-

functional, and easier to deploy (ready-to-use and no installation or configuration required).

Developers of web applications, work hard on the goal of providing a universally identical

user experience. However, due to the incompatibilities among browsers (and platforms),

7 Xu, Zhen, and James Miller. “An Automated Testing Framework for Cross-Browser Visual Incompatibility
Detection”. Submitted to International Journal of Web Engineering and Technology.

128

this goal is difficult to achieve. Visual differences of a web page rendered across browsers,

in some cases, are expected or acceptable (such as fonts of text). However, in many other

cases, they are incorrect and therefore may cause reading problems (such as missing or

incorrectly presented content). The latter inconsistencies are considered as the cross-

browser visual incompatibility (VI) in this chapter.

The test of a web application to identify such VIs can be conducted manually, by

reading and comparing each page through all the target browsers. This activity is highly

manual and thus cost-intensive, time-consuming, and in many cases error-prone. On the

one hand, a fully functional web application usually contains thousands of web pages,

which makes it impossible to test all of them manually. On the other hand, many of the

web pages are rendered from the same template, hence testing each of these pages is a

repetitive and unnecessary task. In this chapter, we propose an automated testing

framework to solve these problems. The highlights of the framework include:

 template based case organization – extract different web pages rendered by the

same source template as a single test case;

 version based automation – rerun the test case when changes of the source code are

detected; and

 incompatibility identification with similarity estimation – provide both the list of

visual. Incompatibilities and the quantitative similarity score for each pair of

browsers being compared.

The rest of the chapter is organized as follows. Section 2 discusses related work,

including the advantages and limitations of currently existing cross-browser testing tools.

Section 3 describes the automated testing framework. It covers VI detection algorithm and

129

the automation schemes. Section 4 concludes the current progress and presents the future

work.

2 Related Work

In this section, we will review existing research and tools regarding cross browser

testing of web applications and web pages. There are many testing tools related to this area

in the market. We will describe each in detail in this section by pointing out their pros and

cons.

The research papers in the literature, regarding this area, are limited. Mesbah and

Prasad (2011) propose an approach to automatically analyze web applications under

various browsers and present the observed discrepancies on a pairwise basis. The analysis

crawls the target web application first and then analyses the crawled results. Choudhary et

al. (2010) investigate cross browser issues and propose an approach to automatically detect

these issues based on differential testing. They implement their approach in the WebDiff

tool with acceptable number of false positives. Later, they propose a more comprehensive

tool, namely, CrossCheck, based on the WebDiff and the CrossT. The CrossCheck tool

(Choudhary, et al., 2012) combines the benefits of WebDiff and CrossT, and can provide

both visual difference detection and functional difference detection. Subsequently, they

present another tool called X-Pert (2013). The above tools divided the detection of VIs into

three aspects: structure XBI (cross-browser incompatibility) detection, text-content XBI

detection, and visual-content XBI detection. The structure XBI detection employs the

“alignment graph”, which records the hierarchical and geometrical information of each

DOM element (e.g., element 1 is above element 2 and they are left and right aligned). This

130

is a novel idea of XBI detection as it narrows down the numeric coordinates of elements

into a limited number of relations based on the relative position. The text-content XBI

detection compares the text of elements. The potential problem of comparing textual strings

is that in a multi-language web page scenario (e.g., the English and the French version of

Google’s home page), text is not the core content, and thus the pages are similar to

users/developers while the comparison results suggests dissimilar, leading to false positive

results. The visual-content XBI detection takes the screenshot images as the input – the

images of the leaf DOM elements only, to be precise – and compares the color histogram

using 𝜒2 distance. The limitation of it is that leaf elements represent only part, and in many

cases only a small part of the whole page; and using color distribution to determine image

similarity ignores the actual content, thus may also raise false positive results.

Figure 5.1 shows three tools that only support cross-IE incompatibility detections.

The Expression Web SuperPreview (2011) supports only versions of IE 6 and 7 (IE 11 is

in the list, but actually not supported). It provides functions such as side-by-side

comparison, window size customization, and DOM inspection. The side-by-side

comparison enables us to compare web pages with different browsers intuitively and

conveniently on a single screen. The window size customization allows us to change the

width and height of the view port to simulate different devices and screens. With the DOM

inspection function, we can investigate the web pages in a responsive way. This tool returns

error on many web pages (marked by the yellow circle in the figure); and when the page

preview is acquired, it is limited in the current view port. Content outside of the view port

will not be rendered (as shown in the blue circle). IETester (2017) can perform side-by-

side comparison, but lacks in window size customization. With the extension of DebugBar,

131

it can also perform DOM inspection. Although most versions of IE are claimed to be

supported, many return errors. IE NetRenderer (2017) can only draw web pages with the

target version of IE to generate screenshot image. Therefore, it provides no side-by-side

comparison or DOM Inspection. By investigating the tool, we also observe that it does not

support window customization.

Figure 5.1 The Three Tools for Cross-IE Incompatibility Detection

Browsershots (2005), Browsera (2017), BrowserBite (2017), BrowserStack (2017),

and CrossBrowserTesting (2017) are five tools that support multi-browser and multi-

platform detections. This meets the minimum request for VI detection. For the input, only

Browsera can take multiple URLs as the input, while all the other tools allow only one

(a) Expression Web SuperPreview (b) IE NetRenderer

(c) IETester

132

URL per test. Thus, for web application developers to conduct full-site tests, most tasks

will have to be performed manually. Also, Browsershots, BrowserStack and

CrossBrowserTesting provide configurations to customize window size. As for the

detection, Browsershots, BrowserBite and BrowserStack load a web page with all selected

browsers and then simply take all the screenshot images as the results, without doing any

VI detection. On the other hand, Browsera and CrossBrowserTesting provides both

screenshot images and detection reports, as shown in Figure 5.2.

Figure 5.2 Detection Reports of Browsera and CrossBrowserTesting

3 Automated Testing Framework

In our previous work (Xu and Miller, 2015), we developed a method to calculate

the quantitative visual similarity of two web pages. The present chapter extends this

method by adding an extra step to identify different elements between the two pages, and

uses the extended method as the core function of the automated testing framework to detect

VIs.

(a) Browsera

(b) CrossBrowserTesting

133

3.1 Automated Page-Level Detection of VIs

The page-level detection employs the above extended method as the core function

of the proposed testing framework. This method extracts block trees from the web page

rendered by two different browsers, and uses the two block trees to detect VIs.

3.1.1 Block Tree Extraction from Web Page

The DOM tree contains all the information from a web page, but only the visible

elements contribute to the visualization of the web page. Therefore, the first step of the

block tree extraction is to remove invisible DOM elements. The next step is to merge

semantically related elements into blocks. This is done by translating and applying the

Gestalt laws of grouping as follows.

 The Gestalt law of simplicity shows people’s tendency to recognize the simplest

representation of objects. To interpret this law, we take each DOM element as the

simplest representation of objects.

 The Gestalt law of closure indicates that people are inclined to construct complete

shapes from incomplete ones. A DOM element is often overlapped by its child

DOM elements, leaving the shape incomplete, but people are still able to recognize

it as a complete rectangle. As such, to interpret this law, we treat all DOM elements

as complete rectangular objects.

 The Gestalt law of proximity states that people have the tendency to group close

objects and separate distant ones. Therefore, to translate this law, we merge

elements into blocks based on this distance. In the web page scenario, we compare

the distances between each pair of adjacent sibling DOM elements, those with

134

smaller distances are “clustered” into a group, and those with larger distances are

separated into different groups.

 The Gestalt law of similarity illustrates that people are prone to regard similar

objects as a group. Here, similarity refers to the visual features related to

background, foreground, and size. If any of a list of sibling DOM elements is

different from others in the above three aspects, we put it into a different group.

 The Gestalt law of continuity describes people’s tendency to group aligned objects.

In other words, if any DOM element is not aligned with its siblings, it is put into a

different group.

 The Gestalt law of common fate reveals that people are inclined to put objects with

the same motion into the same group. To translate this law, we focus on the

scrolling behaviors when it comes to motion trends. Most DOM elements move

accordingly when the user scrolls a web page, but some other elements may stay

still, or move slower or faster. Such elements that do not move in the same way

with others are place into a different group.

 The Gestalt law of symmetry tells us that people tend to perceive symmetric objects

as a single group. Since this law is not common in web pages, we do not consider

it in the present chapter.

 The Gestalt law of past experience states that people are prone to rely on past

experience when interpreting objects. Again, we do not consider this law in the

present chapter, because it is beyond the scope of web page analysis.

Figure 5.3 shows an example of the block tree extracted from University of

Alberta’s home page. By applying the Gestalt laws of grouping, the semantically related

135

DOM elements are grouped into blocks. In Figure 5.3b, semantically related elements are

marked with the same background colors. For example, as shown in the yellow circle at

the lower left part, the news items are marked with the same background color. This is

because they refer to the same topic. As a comparison, the three boxes in the middle area

(marked in the black circle) contain image, text and buttons respectively, indicating that

they are semantically non-related, so they are marked with different colors. Figure 5.3c

shows partial of the block tree, where each line denotes a single block. From this figure,

we can find that a) the DOM hierarchy is well maintained in the block tree; b) the root

block consists of the “BODY” element from the DOM tree; and c) some blocks contain only

one DOM element while others merge a group of elements into one block.

136

Figure 5.3 The Example of UAlberta’s Home Page

3.1.2 VI Detection and Similarity Estimation

The two block trees retrieved from two browsers of a web page are compared to

detect VIs. During the comparison, a tree edit distance (TED) based mapping scheme, the

extended subtree model (Shahbazi and Miler, 2014), is employed. An overview of the

model is given below:

 Subtree mapping. Regular TED mapping schemes only map tree nodes. However,

in a web page scenario, content elements are stacked up so that lower elements are

(a) Original Page (b) Analyzed Page

[BODY]: left=0,top=0,right=1007,bottom=1588; ...
|- [FORM,DIV]: left=-1988,top=-1999,right=1007,bottom=1588; ...
| |- [HEADER,DIV,FOOTER]: left=0,top=0,right=1007,bottom=1588; ...
| | |- [DIV,DIV,DIV]: left=0,top=0,right=1007,bottom=196; ...
| | | |- [DIV]: left=50,top=10,right=956,bottom=50; ...
| | | | |- [NAV,DIV]: left=218,top=10,right=956,bottom=48; ...
| | | | | |- [UL]: left=276,top=10,right=798,bottom=41; ...
| | | | | | |- [LI]: left=276,top=20,right=798,bottom=34; ...
| | | | | | | |- [UL]: left=276,top=22,right=798,bottom=34; ...
| | | | | | | | |- [A,A,A,A,A,A,A]: left=276,top=22,right=802,bottom=34; ...
| | | | | |- [INPUT,BUTTON]: left=802,top=13,right=956,bottom=45; ...
| | | |- [DIV]: left=50,top=61,right=956,bottom=151; ...
| | | | |- [A,NAV]: left=50,top=87,right=957,bottom=151; ...
| | | | | |- [UL]: left=416,top=115,right=957,bottom=144; ...
| | | | | | |- [A,A,A,A]: left=436,top=119,right=957,bottom=134; ...
| | | |- [NAV]: left=51,top=155,right=956,bottom=195; ...
| | | | |- [UL]: left=51,top=155,right=956,bottom=195; ...
| | | | | |- [LI]: left=52,top=155,right=956,bottom=195; ...

(c) Partial of the Block Tree

137

always covered by upper elements. Hence, when we see the content of a block in

the web page, it is the content of a subtree that is rooted at the block. Consequently,

the subtree mapping scheme is more accurate approach.

 One-time mapping. If two subtrees are mapped, then they will have common

subtrees (if there are subtrees in them). However, to avoid duplications, we do not

map these common subtrees again.

 Subtree weight determination. A subtree mapping has a weight that is equal to the

mean value of the weights of the two subtrees. The weight of a subtree is equal to

the number of nodes that take this subtree as their largest subtree.

The mapping of two block trees reflects the visual compatibilities, i.e., are the two

corresponding blocks similar or not. Therefore, the detection of VIs is to locate blocks that

are not in the mapping results. In another word, blocks that are added, deleted or changed

from one tree to the other tree contain VIs. The quantitative similarity of the two block

trees, the extended sub tree (EST) value, is calculated by (5-1):

 𝑆∗(𝑋, 𝑌) =
√∑ 𝛽𝑘×𝑊(𝑚𝑘)𝛼

𝑚𝑘∈𝑀
𝛼

max(|𝑋|,|𝑌|)
 , (5-1)

where, 𝑋 and 𝑌 are the two trees; |𝑋| and |𝑌| are the sizes of the two trees, which equal to

the numbers of nodes in 𝑋 and 𝑌, respectively; 𝑀 is the mapping results; 𝑊(𝑚𝑘) is the

weight of the mapping 𝑚𝑘; 𝛼 is the coefficient to adjust the relation among mappings with

different subtree sizes; and 𝛽𝑘 is a geometrical parameter to reflect the importance of the

mapping 𝑚𝑘 with respect to the position of block 𝑘 in 𝑋 and 𝑌. 𝛽𝑘 = 1 when the node 𝑥𝑘

of 𝑋 and 𝑦𝑘 of 𝑌 in 𝑚𝑘 have the same depth, otherwise 𝛽𝑘 = 𝛽0, which is a constant in the

range of (0,1).

138

3.2 Automated System-Level Testing for VI Detections

System-level testing is designed to evaluate all the web pages in a web application.

The automated testing framework should be able to discover objective functions, trigger

actions, and report outcomes without human intervention. To achieve this goal, three

modules are proposed to construct the testing framework, namely the source parser, the

schedule builder and the result reporter.

3.2.1 Source Parser

The core task of this module is to discover the objective functions. In the web

application scenario, to detect VIs, the objective functions cover all the web pages because

all of these pages must (ideally) be bug-free. Development of modern web applications

relies on page templates. That is, utilizing one template dynamically generates similar web

pages. Consider Google’s search result page, when a user types in “online shopping”, the

search result page displays dozens of online shopping related links; and when the user types

in “health care”, the page displays another dozens of links, which are similar in the layout

with the previous page except the details. This is because the search result page utilizes a

template that shows different content according to the inputs. To test a web application, it

is useless and impractical to test all possible web pages. Instead, we only need to test one

case for each page template. Consequently, to conduct automated testing, the practical

objective functions should be narrowed down to include only unique page templates.

Consider a typical Django project as an example, each component app of a Django

project contains a source file named “urls.py”, where all the implemented URL entries are

recorded and linked to the corresponding view methods. The view methods are further

139

linked to the page templates that are used for displaying actual content. Therefore, in the

Django project testing practice, the objective functions map to all these URL entries. To

automatically test such projects, the source parser should be able to detect all possible URL

entries. Meanwhile, some of these entries contain parameters, and thus, the source parser

also needs to be able to detect these parameters and assign proper values to them. This may

require accessing data models and querying databases.

3.2.2 Schedule Builder

As the name indicates, the schedule builder manages the schedule of testing

automation. During the development of a web application, the source code keeps changing

constantly, and it is necessary to repeat the tests through out the whole development period.

A straightforward solution to automatically repeat the tests is to set up a schedule

based on the time. The second method we proposed to automatically run the tests is based

on the source code changes. Not all the objective functions change all the time, so we

should only re-test those that have changed and ignore those that have not changed. For

instance, the developer may focus on one app of the web application today and another app

tomorrow, so it is unnecessary to re-run tests on the second app. In this case, the schedule

builder should monitor each template, and automatically triggers the actions to re-run the

corresponding tests based on changes of the template’s source codes (for example, re-test

after a defined number of updates to the source code).

3.2.3 Result Reporter

The automatic testing framework runs without human intervention; therefore, once

the results are produced, it is possible for users to ignore their implications if the framework

140

does not notify the developer. This is acceptable if a test case passes, but when the result

fails, the result reporter module must notify the developer. Content of the notifications

include a true/false assertion (i.e., indicating whether the template page is rendered

identically in the target browsers), a quantitative value of the visual similarity (where 1.0

indicates identical and 0.0 indicates completely different), and a list of differences between

the rendered pages.

Priorities must be added to the notifications automatically, and the result reporter

must display the outputs accordingly. This is because automatic repetitions of the

scheduled tests will generate significant numbers of results, and only those failed results

(i.e., VIs that have been detected) require the developer’s attention. If the objective of a

test is to confirm the template is rendered identically by all browsers, then all the results of

“true”, “1.0”, or an empty list of differences are not important. In this case, the priority of

these results should be set to lowest. As the opposite, the lower the similarity value (or the

larger the difference list is), the higher the priority should be.

The difference list is easier to read if it is combined with the side-by-side display

for locating VIs. Therefore, presentation of VIs must be done by rendering the web page

in all the browsers simultaneously and highlighting the identified differences (for example,

highlight them by changing the background colors or by outlining the borders of the related

blocks).

Figure 5.4 shows the outline of the automated testing framework, where the green

and yellow rectangles indicate the data and components of the framework, respectively;

the green and yellow arrows denote the data and control flow, respectively; and the blue

arrows refer to the notification flow.

141

Figure 5.4 The Automated Testing Framework

 The framework accepts both templates of web applications and specific

URLs/HTML code as the input. Although the templates require extra processing by

the source parser, the specific URLs/HTML code can be directly input in the

schedule builder.

 The browser controller registers and manages the supported browsers.

 The schedule builder manages the automation schedule, either by time, or by

changes to the source code, or by both. According to the schedules, its

subcomponent, the action trigger, conducts the testing process, where the sources

are passed to the VI identifier for VI detection and similarity estimation.

142

 The result reporter collects all the test results, filters them by priorities, and notifies

web application developers selectively. By updating the web pages in the browsers

with the difference list, a side-by-side comparison provides fast location of VIs.

4 Automated Testing Tool

To conduction VI detection, the minimum request is that the automated testing tool

must support multiple browsers and/or multiple platforms. The implementation, hence, is

designed as a distributed system, where a central node communicates with and controls all

leaf nodes. The leaf nodes run specific OSes and browsers and therefore consist of the

testing farm, which renders the target web pages and collects the corresponding source data

(i.e., the block trees). The central node deploys the automated testing tool as well as the

target web application, and performs the testing automation. Figure 5.5 shows a sequence

diagram of the tool’s testing process.

4.1 Browser and Platform Registration

During the initialization of the automated testing tool, the supported browsers and

platforms are to be configured. The core thread of this distributed system that is located in

the central node will send queries to all branches for browser detection. The active leaf

nodes will respond to it with the configuration information, including the name and version

of both its own operating system and installed browsers. Hardware configurations of the

machine (either physical or virtual) could also be included if necessary, such as resolutions

of mobile devices. Figure 5.6 shows the two initialization dialogs of the tool, where the

browser registration illustrates examples of local browsers.

143

Figure 5.5 Sequence Diagram of the Automated Testing Tool

Figure 5.6 Initialization Dialogs of the Automated Testing Tool

4.2 Template Based Test Case Organization

The automated testing tool analyzes the source code that encode all the templates

such as the full list of RESTful URLs, and generates test cases for each such template entry.

(a) Browser Registration (b) Project Options

144

As mentioned in the previous section, this task is done by the source parser. If necessary,

the source parser will dig further information (for example dynamic content in the URLs,

such as the user ID “MarcoXZh” in “https://github.com/MarcoXZh/”) from sub apps and

the web application’s database. Note this step is project dependant – different web

applications require different strategies for code analysis.

Figure 5.7 shows example pseudocode of the source parser for Django project

analysis. This algorithm takes a Django project’s project name and root directory as inputs.

It searches the “manage.py” script for configurations of installed apps and databases (Line

6 to 8), and then parses the templates as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

ALGORITHM ParseSource_Django:

 INPUT: project name: PN,

 root directory PN: RD

 OUTPUT: all template URLs: TS

 config_script = get_config_script(RD.mangage.py)

 apps = get_installed_apps(config_script)

 database = get_database(config_script)

 connect(database)

 TS = [EMPTY_LIST]

 FOR EACH app IN apps DO:

 FOR EACH url, view IN urlpatterns(app.urls.py) DO:

 IF contains_django_variables(url) THEN:

 variables = retrieve_variables(url)

 model = retrieve_model(view)

 sql_table = retrieve_sql_table(app.model)

 values = [EMPTY_LIST]

 FOR EACH var IN variables DO:

 value = query(sql_table, var)

 values.append(value)

 END FOR

 replace_all(url, variables, values)

 END IF

 TS.append(url)

 END FOR

 END FOR

 close(database)

 RETURN TS

END ALGORITHM

Figure 5.7 Extracting Templates from Django Projects

145

1) for each installed app, it checks its “urls.py” script to detect all supported URL

patterns and the corresponding views;

2) for each URL pattern, if it contains variables, then the source parser needs to assign

correct values by querying the view-model-table chain for all the variables (Line

13 to 23);

3) after assigning values to the variables, or if the pattern is a regular URL and

contains no variables, the URL pattern is added to the template list; and

4) the full template list includes all the URL patterns of all the installed apps. Due to

the templates list consisting of URL patterns only extracted from the “urls.py”

script, it will not store duplicated URL entries, and at the same time cover all the

supported URLs of the web application.

4.3 Version Based Automation

Once the templates are extracted from the web application’s source code, the core

thread sends signals to all the leaf nodes according to the predefined schedule for VI

detection. This tool contains both time-driven schedules (i.e., triggers actions after a fixed

time) and change-driven schedules (i.e., triggers actions after a fixed number of changes

being made in the target source codes). Once the predefined time has expired or the

predefined number of code changes has detected, a re-test is triggered. However, if the

target source code remains unchanged (i.e., no changes of source code found by the diff

process, or http response code of the target web page being 304), then the test will be

skipped. Figure 5.8 shows the scheduler builder of the tool, which combines the functions

of template extraction and schedule configuration. Note the three source entries at the right-

side list view are raw HTML code – a regular URL without variables and a variable-

146

included URL. The “`|$1|`”, “`|$2|`”, etc. are the variable names, and the

corresponding values are stored however not displayed. Testing frequency of the schedule

builder can be configured as either change-based or time-based or both. Collection of the

target test cases’ screenshots can be customized, too.

Figure 5.8 Schedule Builder of the Automated Testing Tool

4.4 Case Study

In this chapter, we evaluate the efficiency of the automated testing tool though the

case of University of Alberta’s home page. Comprehensive experiments and result

discussions can be found in (Xu and Miller, 2015). We run the tools to compare the page

in two popular browsers: Google Chrome version 57 and Mozilla Firefox version 52, and

on two platforms: Windows 10 and CentOS 7. By comparing the results of

CrossBrowserTesting and our VI detection, the following conclusions can be derived:

147

1) Both CrossBrowserTesting and our automated testing tool can locate VIs of web

pages among different browsers; and at the same time, both can make the correct

conclusion without raising false positives if two versions of a web page are identical.

2) Results of CrossBrowserTesting contains only VIs, lacking in intuitive conclusions

to determine how similar the two versions of a web page are. Thus, if a test result

contains ten small VIs and another test result contains one big VIs, it is difficult to

figure out the priority for developers to start debugging. As the comparison, our

tool calculates the EST similarity, which enables the priority judgement. Table 5.1

shows the EST values of the evaluation.

Table 5.1 EST Similarity Values of the Cross-Comparisons

Browser1 Windows-Chrome CentOS-Chrome Windows-Chrome Windows-Firefox

Browser 2 Windows-Firefox CentOS-Firefox CentOS-Chrome CentOS-Firefox

EST

Value
1.0000 1.0000 0.9603 0.9603

3) During the tree comparison, our EST model maps sub trees instead of nodes, thus

it can avoid potential duplications of VI detection. As previously shown in Figure

5.2b, CrossBrowserTesting identified four VIs caused by the X coordinates of the

elements. However, the second and the third VIs are child elements of the element

in the first VI. Due to the mismatch of the parent element’s X coordinate from the

two versions of the page, its child elements consequently mismatch, too, Therefore,

the second and the third VIs are actually a duplication of the first VI. Our EST

model, by absorbing comparisons of child elements and mapping subtrees, prevents

such hierarchical false positives from being detected.

148

5 Conclusions

Diversity of present web browsers and platforms have brought cross browser issues

to both web users and developers. To detect cross browser incompatibilities, many

commercial tools have been developed and relevant topics have gained attention among

researchers as well. In this chapter, we target the detection of VIs and attempt to propose a

testing framework to detect these incompatibilities automatically. Three advantages exist

in the automated testing framework. Firstly, the detection of VIs is based on source

templates. By doing so, we narrow down the scale of testing. Second, automation is

achieved by schedules based on both time and changes of the source code, which avoids

human intervention and at the same time this further reduces the test ranges. Finally, the

framework provides both a list of VIs (including a rendered presentation of these

differences) and a quantitative similarity value as the result. This makes it possible to notify

web application developers by priorities.

An automated testing tool is designed according to the framework. This tool allows

the registration of browsers on both local and remote machines, and utilizes all these

registered browsers to conduct VI detection. It extracts the templates depending on the type

of the target web application. A Django example is employed showing that this tool can

extract both plain URLs and URLs with variables, where the extraction of the latter is done

by querying information from the web application’s database. Version base automation of

the tool is achieved by both time-driven and change-driven schedules. A case study is

presented to illustrate the efficiency of the extended subtree model by comparing it with

the CrossBrowserTesting. Conclusions reveal that the quantitative values indicate how

similar the two browser versions of a web page are and serves as a reference to debug these

149

VIs; and the subtree mapping scheme has eliminated duplications of the VI detection

results.

Acknowledgment

The authors would like to thank China Scholarship Council (CSC) for the financial

support.

References

Expression Web SuperPreview, 2011. https://www.microsoft.com/en-

ca/download/details.aspx?id=2020 (accessed 17.03.04).

IETester, 2017. http://www.my-debugbar.com/wiki/IETester/HomePage (accessed

17.03.04).

IE NetRenderer, 2017. https://netrenderer.com/ (accessed 17.03.04).

Browsershots, 2005. http://browsershots.org/ (accessed 17.03.04).

Browsera, 2017. http://www.browsera.com/ (accessed 17.03.04).

BrowserBite, 2017. http://browserbite.com/ (accessed 17.03.04).

BrowserStack, 2017. https://www.browserstack.com/ (accessed 17.03.04).

CrossBrowserTesting, 2017. https://crossbrowsertesting.com/ (accessed 17.03.04).

Ali Mesbah and Mukul R. Prasad. 2011. Automated cross-browser compatibility testing.

In Proceedings of the 33rd International Conference on Software Engineering. ACM, 561–570.

Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. 2012. Crosscheck:

Combining crawling and differencing to better detect cross-browser incompatibilities in web

applications. In 2012 IEEE Fifth International Conference on Software Testing, Verification and

Validation. IEEE, 171–180.

Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. 2013. X-PERT: accurate

identification of cross-browser issues in web applications. In Proceedings of the 2013 International

Conference on Software Engineering. IEEE Press, 702–711.

Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. WEBDIFF:

Automated identification of cross-browser issues in web applications. In Software Maintenance

(ICSM), 2010 IEEE International Conference on. IEEE, 1–10.

150

Zhen Xu and James Miller. 2017. Estimating Similarity of Rich Internet Pages Using

Visual Information, International Journal of Web Engineering and Technology.

Ali Shahbazi and James Miller. 2014. Extended subtree: a new similarity function for tree

structured data. Knowledge and Data Engineering, IEEE Transactions on 26, 4 (2014), 864–877.

151

CHAPTER 6 Conclusions

1 Summary of Thesis

The purpose of this thesis is to investigate issues existing in the field of web pages, including

the detection of semantic content, visual similarity, and cross-browser incompatibilities. To address

these issues, we propose four research topics and present them in separate chapters that follow the

introduction chapter. In this section, we will describe the accomplishments within each topic in

both terms of their strengths and limitations.

In Chapter 2, we present our first journal paper, which develops an approach to identify

semantic blocks in web pages. Since traditional methods cannot work well for modern web pages,

we seek to introduce human perception into this topic. To remove the hierarchical inconsistencies

between the visual layout and the DOM tree of web pages, we propose the layer tree. Based on it,

we interpret the Gestalt Laws of grouping by novel measurements such as the normalized Hausdorff

distance, the CIE-Lab color difference, and the normalized compression distance. A classifier is

trained finally to operationalize the interpreted laws. Semantic blocks are extracted by applying the

translated Gestalt laws to the layer tree. For this topic, we have achieved what we proposed in the

introduction chapter. A limitation of the proposed technique is that it cannot work well with large

web pages.

In Chapter 3, we present our second journal paper, which provides a method to detect web

page similarity for modern rich-format web pages. Unlike existing approaches that adopt DOM

trees or images, the new method considers both structural and visual information of the web pages.

Based on the idea of the block tree, we propose a visual similarity measurement that use tree edit

distance to calculate visual similarity between web pages. As stated in the introduction section, we

have succeeded in presenting a way to detect web page similarity. One limitation of the proposed

152

method is that tree edit distance is not the perfect data structure to describe web pages, because its

mapping detection is based on nodes while web pages visualization is based on sub trees.

In Chapter 4, we present our third journal paper, which improves the visual similarity

measurement by conducting empirical experiments to determine the measurements for Gestalt laws

translation and replacing the tree edit distance with extended subtree model. By using this visual

similarity measurement, we conduct experiment to evaluate visual similarity of different web pages.

In this topic, we solved the limitation of the second topic described in the previous paragraph.

Specifically, we introduced extended sub tree concept to represent web pages in order to obtain a

more accurate comparison.

In Chapter 5, we present our fourth journal paper, which focuses on the development of an

automated testing framework to detect cross-browser visual incompatibilities between web pages.

An automated testing tool is designed according to the framework, by using the improved visual

similarity.

2 Publications

1) Papers:

 Campbell, Joshua Charles, Chenlei Zhang, Zhen Xu, Abram Hindle, James Miller,

Deficient documentation detection: a methodology to locate deficient project

documentation using topic analysis,” 10th Working Conference on Mining

Software Repositories, pp. 57-60, 2013.

 Xu, Zhen, and James Miller. A New Webpage Classification Model Based on

Visual Information Using Gestalt Laws of Grouping. International Conference on

Web Information Systems Engineering. Springer International Publishing, 2015.

2) Posters and Presentations:

153

 Zhen Xu, Fadwa Estuka, James Miller. Identifying Semantic Blocks in Web Pages

Using Gestalt Laws of Grouping. 25th Annual International Conference on

Computer Science and Software Engineering.

 Zhen Xu, James Miller, Syed Tauhid Zuhori. A New Web Page Classification

Model based on Visual Information using Gestalt Laws of Grouping. 25th Annual

International Conference on Computer Science and Software Engineering.

 Zhen Xu, James Miller. An Empirical Metric for Web Page Visual Similarity based

on the Gestalt Laws of Grouping. Consortium fro Software Engineering Research,

2016.

 Zhen Xu, James Miller. Cross-Browser Differences Detection based on an

Empirical Metric for Web Page Visual Similarity. 26th Annual International

Conference on Computer Science and Software Engineering.

154

Bibliography

Albrecht, P., M üller, A.-K., Ringelstein, M., Finis, D., Geerling, G., Cohn, E., Aktas, O.,

Hartung, H.-P., Hefter, H., Methner, A., 2013. Retinal neurodegeneration in wilsons disease

revealed by spectral domain optical coherence tomography. In: Neurology. Vol. 80. Lippincott

Williams & Wilkins 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA.

Adriana Olmos and Frederick A. A. Kingdom. 2004. A biologically inspired algorithm for

the recovery of shading and reflectance images. Perception 33, 12 (2004), 1463–1473.

Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In Pattern

Recognition (ICPR), 2010 20th International Conference on. IEEE, 2366–2369.

Ali Mesbah and Mukul R. Prasad. 2011. Automated cross-browser compatibility testing.

In Proceedings of the 33rd International Conference on Software Engineering. ACM, 561–570.

Ali Shahbazi and James Miller. 2014. Extended subtree: a new similarity function for tree

structured data. Knowledge and Data Engineering, IEEE Transactions on 26, 4 (2014), 864–877.

Anthony Y Fu, Wenyin Liu, and Xiaotie Deng. 2006. Detecting phishing web pages with

visual similarity assessment based on earth mover’s distance (EMD). IEEE transactions on

dependable and secure computing 3, 4 (2006), 301–311.

Baluja, S., 2006. Browsing on small screens: recasting web-page segmentation into an

efficient machine learning framework. In: Proceedings of the 15th international conference on

World Wide Web. ACM, pp. 33–42.

Bennett, C. H., G ács, P., Li, M., Vit ányi, P. M., Zurek, W. H., 1998. Information distance.

IEEE Transactions on information theory 44 (4), 1407–1423.

Browsera, 2017. http://www.browsera.com/ (accessed 17.03.04).

Buttler, D., 2004. A short survey of document structure similarity algorithms. Tech. rep.,

Lawrence Livermore National Laboratory (LLNL), Livermore, CA.

Cai, D., Yu, S., Wen, J.-R., Ma, W.-Y., 2003a. Extracting content structure for web pages

based on visual representation. In: Asia-Pacific Web Conference. Springer, pp. 406–417.

Cai, D., Yu, S., Wen, J.-R., Ma, W.-Y., 2003b. Vips: a vision-based page segmentation

algorithm.

Canny, J., 1986. A computational approach to edge detection. IEEE Transactions on pattern

analysis and machine intelligence (6), 679–698.

155

Cao, J., Mao, B., Luo, J., 2010. A segmentation method for web page analysis using

shrinking and dividing. International Journal of Parallel, Emergent and Distributed Systems 25 (2),

93–104.

Chakrabarti, D., Kumar, R., Punera, K., 2008. A graph-theoretic approach to webpage

segmentation. In: Proceedings of the 17th international conference on World Wide Web. ACM, pp.

377–386.

Chaudhuri, B. B., Rosenfeld, A., 1999. A modified hausdorff distance between fuzzy sets.

Information Sciences 118 (1), 159–171.

Chechik, G., Sharma, V., Shalit, U., Bengio, S., 2010. Large scale online learning of image

similarity through ranking. Journal of Machine Learning Research 11 (Mar), 1109–1135.

Cilibrasi, R. L., et al., 2007. Statistical inference through data compression.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and

psychological measurement 20 (1), 37–46.

Connolly, C., Fleiss, T., 1997. A study of efficiency and accuracy in the transformation

from rgb to cielab color space. IEEE Transactions on Image Processing 6 (7), 1046–1048.

Connor, R., Simeoni, F., Iakovos, M., Moss, R., 2011. A bounded distance metric for

comparing tree structure. Information Systems 36 (4), 748–764.

Cording, P. H., Lyngby, K., 2011. Algorithms for web scraping. PDF] Available:

http://www2. imm. dtu. dk/pubdb/views/publicationdetails. php.

CrossBrowserTesting, 2017. https://crossbrowsertesting.com/ (accessed 17.03.04).

Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Rucklidge. 1993.

Comparing images using the Hausdorff distance. Pattern Analysis and Machine Intelligence, IEEE

Transactions on 15, 9 (1993), 850–863.

Dorner, D., 1996. The logic of failure: Recognizing and avoiding error in complex

situations. Basic Books.

Dubuisson, M.-P., Jain, A. K., 1994. A modified hausdorff distance for object matching.

In: Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image Processing.,

Proceedings of the 12th IAPR International Conference on. Vol. 1. IEEE, pp. 566–568.

Eleni Michailidou, Simon Harper, and Sean Bechhofer. 2008. Visual complexity and

aesthetic perception of web pages. In Proceedings of the 26th annual ACM international conference

on Design of communication. ACM, 215–224.

Expression Web SuperPreview, 2011. https://www.microsoft.com/en-

ca/download/details.aspx?id=2020 (accessed 17.03.04).

156

Francisco Claude, Antonio Farina, Miguel A. Mart´ınez-Prieto, and Gonzalo Navarro.

2010. Compressed qgram indexing for highly repetitive biological sequences. In BioInformatics

and BioEngineering (BIBE), 2010 IEEE International Conference on. IEEE, 86–91.

Gupta, S., Kaiser, G., Neistadt, D., Grimm, P., 2003. Dom-based content extraction of html

documents. In: Proceedings of the 12th international conference on World Wide Web. ACM, pp.

207–214.

Gwet, K. L., 2014. Handbook of inter-rater reliability: The definitive guide to measuring

the extent of agreement among raters. Advanced Analytics, LLC.

Hattori, G., Hoashi, K., Matsumoto, K., Sugaya, F., 2007. Robust web page segmentation

for mobile terminal using content-distances and page layout information. In: Proceedings of the

16th international conference on World Wide Web. ACM, pp. 361–370.

Hauzeur, J., Mathy, L., De Maertelaer, V., 1999. Comparison between clinical evaluation

and ultrasonography in detecting hydrarthrosis of the knee. The Journal of rheumatology 26 (12),

2681–2683.

Herb Stevenson. 2012. Emergence: The Gestalt Approach to Change. (2012). Retrieved

April 18, 2016 from http://www.clevelandconsultinggroup.com/articles/emergence-gestalt-

approach-to-change.php

Hern ández, I., Rivero, C. R., Ruiz, D., Corchuelo, R., 2014. Cala: An unsupervised url-

based web page classification system. Knowledge-Based Systems 57, 168–180.

Huttenlocher, D. P., Klanderman, G. A., Rucklidge, W. J., 1993. Comparing images using

the hausdorff distance. IEEE Transactions on pattern analysis and machine intelligence 15 (9), 850–

863.

IE NetRenderer, 2017. https://netrenderer.com/ (accessed 17.03.04).

IETester, 2017. http://www.my-debugbar.com/wiki/IETester/HomePage (accessed

17.03.04).

Jeanine Romano, Jeffrey D. Kromrey, Jesse Coraggio, and Jeff Skowronek. 2006.

Appropriate statistics for ordinal level data: Should we really be using t-test and Cohen’s d for

evaluating group differences on the NSSE and other surveys. In annual meeting of the Florida

Association of Institutional Research. 1–33.

Jeremy M. Wolfe, Keith R. Kluender, Dennis M. Levi, Linda M. Bartoshuk, Rachel S.

Herz, Roberta L. Klatzky, Susan J. Lederman, and Daniel M. Merfeld. 2009. Sensation and Per-

ception (2nd ed.). Sinauer Associates Inc., Massachusetts, MA.

Johnson, G. M., Fairchild, M. D., 2003. A top down description of s-cielab and ciede2000.

Color Research & Application 28 (6), 425–435.

157

Jyotish Chandra Banerjee. 1994. Encyclopaedic Dictionary of psychological terms. MD

Publications Pvt. Ltd., New Delhi.

Kang, J., Yang, J., Choi, J., 2010. Repetition-based web page segmentation by detecting

tag patterns for small-screen devices. IEEE Transactions on Consumer Electronics 56 (2).

Koffka, K., 2013. Principles of Gestalt psychology. Vol. 44. Routledge.

Kohlsch ütter, C., Nejdl, W., 2008. A densitometric approach to web page segmentation.

In: Proceedings of the 17th ACM conference on Information and knowledge management. ACM,

pp. 1173–1182.

Kurt Koffka. 2013. Principles of Gestalt psychology. Vol. 44. Routledge.

Kwitt, R., Uhl, A., 2008. Image similarity measurement by kullback-leibler divergences

between complex wavelet subband statistics for texture retrieval. In: Image Processing, 2008. ICIP

2008. 15th IEEE International Conference on. IEEE, pp. 933–936.

Landis, J. R., Koch, G. G., 1977. The measurement of observer agreement for categorical

data. biometrics, 159–174.

Lee, J.-H., Yeh,W.-C., Chuang, M.-C., 2015.Web page classification based on a simplified

swarm optimization. Applied Mathematics and Computation 270, 13–24.

Li, M., Chen, X., Li, X., Ma, B., Vit ányi, P. M., 2004. The similarity metric. IEEE

transactions on Information Theory 50 (12), 3250–3264.

Lin, S.-H., Ho, J.-M., 2002. Discovering informative content blocks from web documents.

In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery

and data mining. ACM, pp. 588–593.

Liu, H. X.,Wu, B., Liu, Y., Huang, M., Xu, Y. F., 2013. A discussion on printing color

difference tolerance by ciede2000 color difference formula. In: Applied Mechanics and Materials.

Vol. 262. Trans Tech Publ, pp. 96–99.

Liu, Z., Lagani`ere, R., 2007. Phase congruence measurement for image similarity

assessment. Pattern Recognition Letters 28 (1), 166–172.

Luo, M. R., Cui, G., Rigg, B., 2001. The development of the cie 2000 colour-diffierence

formula: Ciede2000. Color Research & Application 26 (5), 340–350.

M. Ronnier Luo, Guihua Cui, and B. Rigg. 2001. The development of the CIE 2000 colour-

difference formula: CIEDE2000. Color Research & Application 26, 5 (2001), 340–350.

M üller-Molina, A. J., Hirata, K., Shinohara, T., 2008. A tree distance function based on

multi-sets. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, pp.

87–98.

158

María Alpuente and Daniel Romero. 2009. A visual technique for web pages comparison.

Electronic Notes in Theoretical Computer Science 235 (2009), 3–18.

Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient computation of the tree edit

distance. ACM Transactions on Database Systems (TODS) 40, 1 (2015), 3.

McCallum, A., Nigam, K., et al., 1998. A comparison of event models for naive bayes text

classification. In: AAAI-98 workshop on learning for text categorization. Vol. 752. Madison, WI,

pp. 41–48.

Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul Vit ányi. 2004. The similarity metric.

Information Theory, IEEE Transactions on 50, 12 (2004), 3250–3264.

Onan, A., 2016. Classifier and feature set ensembles for web page classification. Journal

of Information Science 42 (2), 150–165.

Ou Wu, Haiqiang Zuo, Weiming Hu, and Bing Li. 2016. Multimodal Web Aesthetics

Assessment Based on Structural SVM and Multitask Fusion Learning. IEEE Transactions on

Multimedia 18, 6 (2016), 1062– 1076.

Palmer, S. E., 1990. Modern theories of gestalt perception. Mind & Language 5 (4), 289–

323.

Peng Shi, Lianhong Ding, and Bingwu Liu. 2008. Similarity computation of Web pages.

In Knowledge Acquisition and Modeling Workshop, 2008. KAM Workshop 2008. IEEE

International Symposium on. IEEE, 777–780.

Pereira, A. C., Eggertsson, H., Martinez-Mier, E. A., Mialhe, F. L., Eckert, G. J., Zero, D.

T., 2009. Validity of caries detection on occlusal surfaces and treatment decisions based on results

from multiple caries-detection methods. European journal of oral sciences 117 (1), 51–57.

Refaeilzadeh, P., Tang, L., Liu, H., 2009. Cross-validation. In: Encyclopedia of database

systems. Springer, pp. 532–538.

Reis, D. d. C., Golgher, P. B., Silva, A. S., Laender, A., 2004. Automatic web news

extraction using tree edit distance. In: Proceedings of the 13th international conference on World

Wide Web. ACM, pp. 502–511.

Rohlfing, T., 2012. Image similarity and tissue overlaps as surrogates for image registration

accuracy: widely used but unreliable. IEEE transactions on medical imaging 31 (2), 153–163.

Roshanbin, N., Miller, J., 2011. Finding homoglyphs-a step towards detecting unicode-

based visual spoofing attacks. Web Information System Engineering–WISE 2011, 1–14.

Routhu Srinivasa Rao and Syed Taqi Ali. 2015. A Computer Vision Technique to Detect

Phishing Attacks. In Communication Systems and Network Technologies (CSNT), 2015 Fifth

International Conference on. IEEE, 596–601.

159

Saar, T., Dumas, M., Kaljuve, M., Semenenko, N., 2016. Browserbite: cross-browser

testing via image processing.

Sampat, M. P., Wang, Z., Gupta, S., Bovik, A. C., Markey, M. K., 2009. Complex wavelet

structural similarity: A new image similarity index. IEEE transactions on image processing 18 (11),

2385–2401.

Shahbazi, A., Miller, J., 2014. Extended subtree: a new similarity function for tree

structured data. IEEE Transactions on knowledge and Data Engineering 26 (4), 864–877.

Sharma, G., Wu, W., Dalal, E. N., 2005. The ciede2000 color-diffierence formula:

Implementation notes, supplementary test data, and mathematical observations. Color Research &

Application 30 (1), 21–30.

Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. WEBDIFF:

Automated identification of cross-browser issues in web applications. In Software Maintenance

(ICSM), 2010 IEEE International Conference on. IEEE, 1–10.

Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. 2012. Crosscheck:

Combining crawling and differencing to better detect cross-browser incompatibilities in web

applications. In 2012 IEEE Fifth International Conference on Software Testing, Verification and

Validation. IEEE, 171–180.

Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. 2013. X-PERT: accurate

identification of cross-browser issues in web applications. In Proceedings of the 2013 International

Conference on Software Engineering. IEEE Press, 702–711.

Sim, D.-G., Kwon, O.-K., Park, R.-H., 1999. Object matching algorithms using robust

hausdorff distance measures. IEEE Transactions on image processing 8 (3), 425–429.

Simon Harper, Eleni Michailidou, and Robert Stevens. 2009. Toward a definition of visual

complexity as an implicit measure of cognitive load. ACM Transactions on Applied Perception

(TAP) 6, 2 (2009), 10.

Software: Practice and Experience 46 (11), 1459–1477.

Song, R., Liu, H.,Wen, J.-R., Ma,W.-Y., 2004. Learning block importance models for web

pages. In: Proceedings of the 13th international conference on World Wide Web. ACM, pp. 203–

211.

Sternberg, R. J., Sternberg, K., 2016. Cognitive psychology. Nelson Education.

Stevenson, H., 2012. Emergence: The gestalt approach to change. Unleashing Executive

and Orzanizational Potential. Retrieved 7.

160

Sukru Eraslan, Yeliz Yesilada, and Simon Harper. 2016. Scanpath Trend Analysis on Web

Pag-es: Clustering Eye Tracking Scanpaths. ACM Transactions on the Web (TWEB) 10, 4 (2016),

20.

Tai, K.-C., 1979. The tree-to-tree correction problem. Journal of the ACM (JACM) 26 (3),

422–433.

Teh-Chung Chen, Scott Dick, and James Miller. 2010. Detecting visually similar web

pages: Application to phishing detection. ACM Transactions on Internet Technology (TOIT) 10, 2

(2010), 5.

Terwijn, S. A., Torenvliet, L., Vit ányi, P. M., 2011. Nonapproximability of the normalized

information distance. Journal of Computer and System Sciences 77 (4), 738–742.

Tewarie, P., Balk, L., Costello, F., Green, A., Martin, R., Schippling, S., Petzold, A., 2012.

The oscar-ib consensus criteria for retinal oct quality assessment. PloS one 7 (4), e34823.

Thiadmer Riemersma. 2008. Colour metric. (2008). Retrieved April 18, 2016 from

http://www.compuphase.com/cmetric.htm

Tõnis Saar, Marlon Dumas, Marti Kaljuve, and Nataliia Semenenko. 2015. Browserbite:

cross-browser testing via image processing. Software: Practice and Experience (2015).

Unwin, N., Alberti, K., Bhopal, R., Harland, J., Watson, W., White, M., 1998. Comparison

of the current who and new ada criteria for the diagnosis of diabetes mellitus in three ethnic groups

in the uk. Diabetic medicine 15 (7), 554–557.

Wei, Y., Wang, B., Liu, Y., Lv, F., 2014. Research on webpage similarity computing

technology based on visual blocks. In: Chinese National Conference on Social Media Processing.

Springer, pp. 187–197.

Xu, Z., Miller, J., 2016. Identifying semantic blocks in web pages using gestalt laws of

grouping. World Wide Web. 19 (5), 957–978.

Yasufumi Takama and Noriaki Mitsuhashi. 2005. Visual similarity comparison for Web

page retrieval. In Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM International

Conference on. IEEE, 301–304.

Yu, S., Cai, D., Wen, J.-R., Ma, W.-Y., 2003. Improving pseudo-relevance feedback in

web information retrieval using web page segmentation. In: Proceedings of the 12th international

conference on World Wide Web. ACM, pp. 11–18.

Zhai, Y., Liu, B., 2006. Structured data extraction from the web based on partial tree

alignment. IEEE Transactions on Knowledge and Data Engineering 18 (12), 1614–1628. 12

Zhao, C., Shi, W., Deng, Y., 2005. A new hausdorff distance for image matching. Pattern

Recognition Letters 26 (5), 581–586.

161

Zhen Xu and James Miller. 2015a. Identifying semantic blocks in Web pages using Gestalt

laws of grouping. World Wide Web (2015), 1–22.

Zhen Xu and James Miller. 2015b. A New Webpage Classification Model Based on Visual

In-formation Using Gestalt Laws of Grouping. In International Conference on Web Infor-mation

Systems Engineering. Springer, 225–232.

Zhen Xu and James Miller. 2017. Estimating Similarity of Rich Internet Pages Using

Visual Information, International Journal of Web Engineering and Technology.

