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ABSTRACT 

With the rapid development of internet technology, web page has evolved from a 

traditional rich-text information source to a multi-functional tool, which can serve images, 

audios and videos, act as the GUI (Graphical User Interface) components of distributed 

applications, and so on. Similarity evaluation of the modern web pages becomes more 

essential yet difficult. On one hand, while many search engine rely on keyword search, 

texts play less important roles in web pages. On the other hand, there exists a variety of 

browsers and platforms that support HMTL/CSS/JavaScript in different levels, causing a 

web page is displayed differently among browsers. 

To address these issues, we propose four research topics. The first topic is to 

identify semantic blocks on web pages. We propose a model for merging web page content 

into semantic blocks based on human perception. To achieve this goal, we construct a layer 

tree to remove hierarchical inconsistencies between visual layout and DOM tree of web 

pages; we translate the Gestalt Laws of grouping to computer compatible rules can train a 

classifier to combine the laws to a unified rule to detect semantic blocks. The second topic 

is to estimate visual similarity of web pages. Existing approaches use DOM (Document 

Object Model) trees or images, but they either only focus on the structure of web pages or 

ignore inner connections among web page features. Therefore, we provide the block tree 

to combine both structural and visual information of web pages. Using this block tree 

structure, we propose a visual similarity measurement. The purpose of the third topic is to 

improve the visual similarity measurement and use it to detect visual differences in web 

pages when they are rendered in different browsers. The extended subtree model that maps 
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sub trees instead of each single node is introduced for the precision improvement. The forth 

topic utilize the improved visual similarity measurement to create an automated testing 

framework for cross-browser visual incompatibility detection. An automated testing tool 

is also designed. 

Major contribution of this thesis is two-folds. On the one hand, it enriches 

theoretical analysis in the detection of semantic content, visual similarity, and cross-

browser differences for web pages. On the other hand, it also provides an insight for testing 

cross-browser incompatibilities in practice. 
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CHAPTER 1  Introduction 

Internet has brought many benefits and opportunities to our modern life, one of which 

is the development and usage of web pages. Web pages have changed our way of life in a 

variety of ways. Nowadays web pages are thriving and have invaded into every way of life, 

including banking, trading, shopping, education, and etc. Web pages become so important 

and prevalent that we can barely live without them. For example, online banking allows us 

to shop by browsing commercial web pages and later make a payment; major universities 

and colleges offer educational resources through their own web pages for students 

wherever they are as long as they have access to internet; e-commerce has changed the way 

of traditional marketing and brings about more convenience both to merchants and 

customers. 

While we enjoy the convenience web pages have brought to our daily life, we should 

see that there are issues associated with them as well. For instance, many web pages are 

embedded with abundant irrelevant information, such as pop-up ads and extraneous images, 

which interrupts our reading efficiency and prevents us from acquiring the real information 

we are seeking. The similarity of web pages is also an issue. Some web pages are designed 

so similar that ordinary people can hardly see the differences between them. Malicious 

designers will mimic the design of major web sites deliberately so that they can trick users 

for illegal gains. 

Since the technique behind web pages is complex, the usage of web pages is a double-

edged sword. We can benefit from it if they are used properly or we can also suffer from 
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them otherwise. In this thesis, we will look at web pages from the aspects of semantic 

content, similarity, and cross-browser issues. 

1 Motivation and Goals 

After reading relevant papers in the literature, we find that four issues are imminent 

and important in the area of web pages, these can be as summarized in the follows. 

Firstly, web pages are inundated with vast of irrelevant information such as ads and 

extraneous images. The irrelevant information not only makes web pages more 

complicated, but also affects the efficiency and effectiveness of our knowledge acquisition. 

Secondly, web pages have become increasingly important as we growing rely on 

them. As such, a number of illegal web pages have immerged by mimicking the real ones. 

Since ordinary users cannot tell the differences between the real web pages and the fake 

ones in many cases, it is necessary for web page designers and researchers to find a way to 

reduce the influence of web page misusage. 

Thirdly, with the advent of various web browsers and platforms, web pages designed 

for a specified carrier cannot work well in another, which leads to cross-browser issues for 

web pages. How to detect these issues correctly and effectively becomes important and 

necessary for us to trust on web pages. 

In order to tackle the above-mentioned issues, we seek to achieve the following goals 

in this thesis. 
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Regarding the first issue, we will find approaches to identify semantic content in web 

pages. By doing so, we attempt to provide a method for retrieving information from web 

pages effectively and efficiently. 

Regarding the second, issue, our goal is to propose a method for estimating similarity 

of web pages. As a matter of fact, there are a number of methods available at present for 

estimating web page similarity. However, current methods are not feasible with regard to 

modern rich-format web pages. 

Regarding the last issue, the purpose is to investigate cross-browser issues and 

develop an approach to detect differences existing in various web browsers and platforms. 

It is noted that we mainly focus on visual differences of web pages in this regard. Based 

on the proposed approach, we will further develop an automated testing framework for 

detecting cross-browser incompatibilities. 

2 Main Contributions and Thesis Outline 

The major contributions of this thesis are summarized as follows: 

 Investigated and interpreted the Gestalt laws of grouping into computer compatible 

rules for web page content segmentation. 

 Provided a semantic block tree model to represent web pages visual information. 

 Proposed a numeric measurement for web page visual similarity evaluation. 

 Improved the interpretation of Gestalt laws of grouping by a series of empirical 

experiments. 

 Improved the visual similarity measurement by using the extended subtree model 

to replace the tree edit distance. 
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 Utilized the visual similarity measurement to evaluate cross-browser similarity of 

web pages. 

 Designed an automated testing framework to detect cross-browser visual 

incompatibilities. 

This thesis adopts the paper-based format and organized as follows. In Chapter 2, we 

present our first journal paper as it is published. This paper provides an approach to identify 

semantic blocks in web pages using the Gestalt laws of grouping. Chapter 3 presents our 

second journal paper as it is published. This paper offers a way to estimate similarity of 

rich web pages using visual information. In Chapter 4, we present our third journal paper 

as it is in review. This paper deals with detection of cross-browser differences for web page 

visual similarity. Chapter 5 shows our fourth journal paper as it is submitted. It describes 

an automated testing framework for detecting cross-browser differences. The last chapter 

summarizes and concludes the thesis as a whole. 
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CHAPTER 2  Identifying Semantic Blocks in Web 

Pages Using Gestalt Laws of Grouping1 

Abstract 

Semantic block identification is an approach to retrieve information from web 

pages and applications. As website design evolves, however, traditional methodologies 

cannot perform well any more. This chapter proposes a new model to merge web page 

content into semantic blocks by simulating human perception. A “layer tree” is constructed 

to remove hierarchical inconsistencies between the DOM tree representation and the visual 

layout of the web page. Subsequently, the Gestalt laws of grouping are interpreted as the 

rules for semantic block detection. During interpretation, the normalized Hausdorff 

distance, the CIE-Lab color difference, the normalized compression distance, and the series 

of visual information are proposed to operationalize these Gestalt laws. Finally, a classifier 

is trained to combine each operationalized law into a unified rule for identifying semantic 

blocks from the web page. Experiments are conducted to compare the efficiency of the 

model to a state-of-art algorithm, the VIPS. The comparison results of the first experiment 

show that the Gestalt layer merging (GLM) model generates more “true positives” and less 

“false negatives” than VIPS (VIsion-based Page Segmentation). The next experiment upon 

a large-scale test set produces an average precision of 90.53% and recall rate of 90.85%, 

which is approximately 25% better than that of VIPS. 

                                                           
1 Xu, Zhen, and James Miller. "Identifying semantic blocks in Web pages using Gestalt laws of grouping." 
World Wide Web 19.5 (2016): 957-978. 
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Keywords: DOM Tree; Gestalt Law of Grouping; Normalized Hausdorff Distance; CIE-

Lab; Normalized Compression Distance. 

1 Introduction 

Modern web pages are much more complicated in both content and layout than ever 

before. Many pages include vast amounts of “irrelevant” information, such as pop-up ads, 

game animations, and extraneous images. Due to this, content identification is becoming 

more and more difficult. Nevertheless, it is the basis for further work, i.e., content 

extraction, data mining, anti-phishing, etc.; hence, it is important that a solution to this 

problem is found. The number of applications derived from semantic block identification 

in web pages, has climbed in recent years. To be specific, major applications include: 

 Content extraction: with extensive information available on current rich-format 

web pages, removing “irrelevant” information and extracting target information 

quickly and exactly is a vital task. 

 Data mining: it aims to investigate data patterns from the large amount of data 

carried by target web pages. Web page semantic block identification divides web 

pages into distinct blocks by their semantics, and this process will boost data mining 

mechanisms and thus improve their accuracy. 

 Anti-phishing: current web pages carry both good and bad information, for example, 

a variety of fake web pages has emerged, trying to obtain illegal benefits from the 

public. Under this situation, anti-phishing becomes an important topic and assumes 

the heavy responsibility of distinguishing fake web pages. Through analyzing 
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contextual semantics, blocks with fake content can be detected and distinguished 

from genuine content. 

 UI design: Despite technology improvements in web design, web pages becomes 

increasingly complex at the same time. An excellent web page should be one that 

serves the needs and demands of its target customers, rather than feed them with 

abundant irrelevant information. Thus, semantic block identification provides a 

potential guideline to enhance UI design of web pages and web sites. 

 Web search: to search target information fast and accurately, the semantic meaning 

of the web page blocks is as important as its content and layout. That is, semantic 

block identification provides another insight into web search, on top of web page 

layout and pure text content. 

Traditional methodologies on block identification work well on textual web pages, 

however, they cannot efficiently process rich-format modern web pages. It is obvious that 

people can recognize related web page content fast and correctly even before reading it, 

regardless of the complexity of the web pages. According to Gestalt psychology, this is 

because that humans group objects based on a series of laws – the Gestalt laws of grouping 

(Palmer 1990; Sternberg 2003; Koffka 1995). 

Therefore, this chapter proposes the “Gestalt Layer Merging” (GLM) model to 

solve the problem of the traditional methodologies. The GLM model simulates human 

perception by utilizing the Gestalt laws of grouping and three tasks are mainly involved in 

this model: 

 It extracts the web page content from the DOM tree and constructs a “layer tree”. 

This layer tree has an identical hierarchy with the visual layout of the web page. 
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 It interprets the Gestalt laws of grouping. The Gestalt laws are translated into 

comparable measurements to evaluate and merge the layer tree nodes into semantic 

blocks. 

 It combines different Gestalt laws into a unified rule for identification. The 

combination obtained by a classifier specifies how the web page content is merged, 

and how the final semantic blocks are displayed. 

The organization of this chapter is as follows: Sect. 2 discusses an overview of 

related work on web page block identification; Sect. 3 describes the GLM model’s outline; 

Sect. 4 gives details on the implementation of the model; Sect. 5 runs experiments to merge 

and identify web page blocks and evaluates the result by precision and recall; and finally, 

Sect. 6 draws conclusions from the experimental result. 

2 Related Work 

Web pages of ten years ago were not as rich in layout as that of today – they 

contained mostly plain text and text hyperlinks, while images, video, and audio streams 

were not very common. In addition, because many of the web pages focused on publishing 

(textual) articles, their layouts were usually very simple. Thus, the web pages can be 

identified by text extraction simply and directly. Besides, using tabular tags such as 

“<TABLE>”, “<TR>” and “<TD>” to hold content was once very popular in web page 

design. Therefore, many researches extracted content blocks by such tabular clues. For 

example, Lin and Ho (2002) analyzed such web pages to extracted informative content 

blocks. Because modern web pages usually do not apply tabular skeleton, this method is 

not suitable any more. 
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Some other researchers have chosen to directly analyze the source HTML files. 

Gupta et al. (2003) applied two sets of filters to retrieve text. Their first filter set was a text 

filter that removed images, links, scripts and styles, and the second filter set contained four 

components, namely, an advertisement remover, a link list remover, an empty table 

remover, and a removed link retainer. By applying the two sets of filters, all images and 

stream media were removed from the web page. Although performed well on textual web 

pages, it can retrieve very limited information from rich format web pages. Reis et al. (2004) 

proposed the RTDM, a restricted top-down mapping algorithm based on the “tree edit 

distance”. This methodology solved the structure-based page classification problem; and 

can extract news articles from web pages automatically. However, it focused only on the 

textual content while paid no attention on the layout, therefore had limitations on 

processing modern web pages. Kohlschütter and Nejdl (2008) proposed a densitometric 

approach, the “block fusion” algorithm, by which they merged (fused) text into blocks 

according to the density of the paragraphs. The number of “tokens” an “lines” are used to 

determine the density of the paragraphs. The disadvantage of the “block fusion” algorithm 

lies on its assumption that the maximum width of a line is 80 – this only applies to 

traditional monospaced terminals, but not to the varies of modern displaying devices. Kang 

et al. (2010) investigated the HTML tag repeat patterns. Based on the repetition patterns, 

their REPS algorithm splits the web page content (tags) into blocks. By applying proper 

value to the threshold of the “normalized importance weight”, their algorithm worked well 

on block identification. However, many modern web pages, especially home pages of 

modern websites, are designed very simple in layout, containing very few of such repetition 
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patterns. The REPS cannot identify blocks on such web pages as well as it did in traditional 

textual pages. 

Evolution of browsers enables web pages to become richer in both content and 

layout. Due to the power of CSS and JavaScript, the source HTML files are no longer 

sufficient to represent what we see from the web page. Therefore, researchers have 

considered visual clues. Cai, et al. (2003a; 2003b; Yu, et al. 2003; Song, et al., 2004) 

proposed the VIPS algorithm in their research. The VIPS algorithm utilizes all the visual 

clues that CSS supported, considers each DOM element as a rectangular block (for 

separator identification), and segments web pages by iteratively detecting separators 

among these visual blocks. This work has been highly influential, and still represents the 

state-of-art in this area. However, although the visual clues of the web page layout were 

taken into consideration by the VIPS algorithm, the researchers still segmented pages in a 

“manual” way – they studied the rendering style of web pages and concluded limited 

segmenting rules, leading to an incompleteness of analyzing the visual clues. Meanwhile, 

the VIPS algorithm was proposed and evaluated on the traditional web pages with tabular 

skeleton, but performed less efficient on modern web pages. Chen et al. (2003) proposed a 

methodology similar to VIPS. They first evaluate the position of each DOM element to 

decide if it is a header, a footer, or a sidebar; and then detect the separators among such 

blocks. Based on these visual clues, they segment web pages into semantic blocks. 

Visual based web page block identification is also useful for displaying web pages 

on small screen devices. Hattori et al. (2007) propose the “content distance” of HTML tags 

and derived a layout-based segmentation algorithm for visual block identification. The 

“content distance” is calculated based on the node depth of the DOM tree, which is a novel 
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metric in this area. However, the implementation of this distance only parses the source 

HTML files, leading to missing important features such as dynamically loaded content or 

CSS properties. The layout-based segmentation algorithm pre-splits a page according to 

the “cell” size, which is divided by tabular skeleton or “<DIV>” wrappers, and the splitting 

procedure relies heavily on the parameter of “maximum cell size”. However, the 

determination of such an important parameter is not solved in the chapter, making the 

algorithm un-implementable by third parties. Baluja (2006) propose a machine learning 

framework to identify blocks and recast web pages to fit cell phone screens. In the 

methodology, they calculated the entropy and the “information gain” based on the area of 

each DOM element, extract its spatial coordinates as features, and build a decision tree to 

split the web page into blocks. Specifically, the algorithm splits each web page into 9 grids, 

each mapped to a button in the number pad. By pressing a number, the user interacted with 

the corresponding grid (for example, zoom in/out). Although it seems to perform well, this 

algorithm can only identify a fixed number of blocks with a predefined spatial pattern, this 

makes it completely unsuitable for general purpose utilization! In addition, in many cases, 

it splits complete semantic blocks into different grids incorrectly because it evaluates the 

“information gain” of each vertical and horizontal line while ignores the actual boundaries 

of DOM elements. Therefore, this algorithm has a very limited application in the research 

area of web page semantic block identification. Besides, as the hardware evolves, small 

screen devices that need to display web pages draw much less popularity, leading to the 

demand of recasting web pages shrink. Instead, more mature solutions for recasting web 

pages (such as Bootstrap2) have been widely employed. 

                                                           
2 http://getbootstrap.com/ 

http://getbootstrap.com/


12 

Some other researchers investigated the semantic block identification problem in 

other ways. Chakrabarti et al. (2008) formulated the problem in a combinatorial 

optimization framework. They constructed a weighted graph from the DOM tree of a web 

page, used the energy-minimizing cuts to perform machine learning of the weights, and 

finally split web page content into blocks by the learnt weights. Cao et al. (2010) 

transformed each page into an image of RGB colors, and then applied an edge detecting 

algorithm (Canny, et al. 1986) to “shrink” the image into several “dividing zones”, which 

were the actual web page blocks. Their experiment demonstrated this image processing 

algorithm worked well on textual web pages. 

3 Gestalt Layer Merging Model 

The Gestalt layer merging (GLM) model aims to identify web page blocks by 

simulating human perception with the Gestalt laws of grouping. Three components are 

included in the model, namely, the layer tree constructor, the Gestalt laws translator, and 

the web page block identifier. 

3.1 Layer Tree Constructor 

The DOM tree is a fast and precise representation of a web page; however, it cannot 

be directly used as the input in this model. People read only visible content from the web 

pages, so the invisible DOM elements are useless, i.e., they are simply noise to this model. 

Meanwhile, the visual hierarchy of a web page sometimes differs from the corresponding 

DOM hierarchy, causing perception errors to this model. Such noise and errors must be 

eliminated before analyzing. 
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Definition: Given a web page 𝑊𝑃, the layer tree 𝐿𝑇 of 𝑊𝑃 is a finite set where 

each element 𝑛 (that is, layer tree node) of 𝐿𝑇 is a layer representing a visible element 𝑒 

from DOM tree 𝐷𝑇 of 𝑊𝑃 (𝐿𝑇 = {𝑛 | 𝑛 ← 𝑒, 𝑒 ∈ 𝐷𝑇}) and all elements follow the visual 

hierarchy of 𝑊𝑃. 

The layer tree constructor takes the DOM tree of a web page as a prototype to build 

up its layer tree. The construction includes removing the invisible DOM elements and 

fixing the hierarchy. An invisible DOM element is either an element with area of 0 

(including the borders and shadows), an element without any actual content (text, image, 

background, etc.), or an element that is completely covered by its visible child elements. 

The visual hierarchy refers to the geometrical distribution and overlapping relationships of 

the DOM elements. The layer tree and layer tree nodes have the following properties: 

Property 1: A layer tree node always represents a visible DOM element. 

The DOM tree of a web page contains not only the content information, but also 

structural and other information. While the former information can be seen by people, the 

latter is often ignored, so it is not required in this model. For example, some “DIV” 

elements contain no direct content and only act as “wrappers” – holding other elements. 

Such elements will not be extracted into layer tree nodes. 

Property 2: A layer tree node always represents a complete DOM element. 

This follows the Gestalt laws of prägnanz. A DOM element may contain many 

kinds of sub content, for example, it may have both foreground text and a background 

image. Although, visually speaking, such a DOM element can be further split, we do not 
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extract each of the sub content into a separate layer node. Instead, only one layer node is 

extracted representing the complete DOM element. 

Property 3: A layer tree node is always a complete rectangle. 

This follows the Gestalt laws of closure. In a web page, it is common that some 

layers overlap others, so that the parts of the lower layers that covered by the upper layers 

cannot be seen. For example, an input box may overlap its parental layer’s background 

image. In fact, people still perceive such rectangles as complete. Therefore, it is reasonable 

to consider layer tree nodes as complete rectangles. 

Property 4: The root node of a layer tree always represents the “BODY” element. 

Visible content of a web page locates under the “BODY” subtree. However, the 

“BODY” element sometimes is empty, which means it is invisible. In such a case, the 

browser will still draw the web page on a white background. This browser behavior enables 

the “BODY” to become a visible DOM element. Consequently, it is correct to be selected 

as the root of the layer tree. 

Property 5: A layer tree node is always located inside its parent layer (if it has a 

parent layer). 

The layer tree is designed to represent a web page. It must follow the visual 

hierarchy of the page. In the DOM tree, child elements are located inside their parent 

elements by default; however, some CSS rules can manipulate locations, such as 

“position”, “float”, “z-index”, etc. These rules sometimes cause the DOM 

hierarchy to be misaligned against the visual hierarchy. Therefore, in layer tree 

construction, such an inconsistency must be eliminated. 
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3.2 Gestalt Laws Translator 

This translator interprets the Gestalt laws of grouping into machine compatible 

rules. The Gestalt laws explain the mechanisms of how humans perceive and understand 

things. When processing web pages (layer trees), two Gestalt laws are used to build up the 

layer tree, and other four Gestalt laws are expanded into six rules to identify web page 

blocks. 

3.2.1 The Gestalt Law of Prägnanz 

The Gestalt law of prägnanz is also referred to as Gestalt law of simplicity. Humans 

tend to perceive objects into the simplest organizations. This is the overarching Gestalt law 

of grouping. Based on this law, we take the assumption that every layer node in the layer 

tree represents a complete DOM element and such a layer node should not be split any 

further in the GLM model. 

3.2.2 The Gestalt Law of Closure 

Humans tend to perceive incomplete shapes as complete. While building up a layer 

tree, we interpret this law to be that each node of the layer tree represents a complete 

rectangle, no matter how it is actually displayed. 

3.2.3 The Gestalt Law of Proximity 

Humans tend to perceive objects that are close to others as a single group, while 

those objects that are far from each other are placed into separate groups. This law groups 

elements based on their distances. 
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Browser behavior tells us that web page layers are placed adjacently to each other 

by default. So if we use the edge distance of layers as proximity, the value will be 0 for 

many cases. In another case, if there are two big layers and another two small layers each 

having the same edge distance, the gaps between the pairs of layers will not be visually the 

same. To solve this issue, we utilize a variant of the Hausdorff distance (Chaudhuri and 

Rosenfeld 1999; Sim, et al. 1999; Zhao et al. 2005) between layers as a working definition 

of proximity. This is because it takes the sizes of the two objects into consideration. 

3.2.4 The Gestalt Law of Similarity 

Humans tend to perceive similar objects as a single group. The similarity of two 

objects is determined by their appearances. 

As a layer node is always a rectangle, the appearance includes its size, background, 

and foreground. Consequently, this law is expanded into three laws, accordingly. The first 

expanded law compares the size, which consists of both its width and height; the second 

expanded law compares background content, which consists of the background color and 

image; and the third expanded law compares the foreground content, which are the textual 

styles. 

3.2.5 The Gestalt Law of Continuity 

Humans tend to perceive objects that are aligned together as a single group. This 

law evaluates the positions of layers. 

The browser aligns content by top and left by default. Therefore, if some layers are 

right or bottom aligned, they may be deliberately placed together by the designer of the 
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web page. Hence, such continuity provides a strong clue that these layers are semantically 

related. 

3.2.6 The Gestalt Law of Common Fate 

Humans tend to perceive objects that share the same motion trend as a single group. 

Most of the layers in a web page do not move at all. Some layers may contain 

animations or videos, but the layers themselves do not move. Thus, it is not possible to 

directly evaluate the motion trend. However, this law can evaluate the “static” trend of the 

layers. 

3.2.7 The Gestalt Law of Symmetry 

Humans tend to perceive symmetric objects together as a single group, even if they 

are far from each other. As most web pages are not designed to have symmetric layers, we 

do not utilize this law. 

3.3 Web Page Blocks Identifier 

A classifier combines the rules from the Gestalt law translator to identify web page 

blocks. Taking the layer tree of a web page as the input, the identifier evaluates each layer 

and makes a decision whether the layers can be put into the same group. While only siblings 

can be grouped, layers having different parents will be automatically put into different 

groups. Such merged groups represent the final blocks. They will be collected and the web 

page will be updated. 

The GLM model’s working procedure is illustrated in Figure 2.1. 
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Figure 2.1 Working Procedure of GLM Model 

4 Implementation 

4.1 Buildup of the Layer Tree 

Although the layer tree is similar to a subset of the DOM tree, building it is not just 

removing redundant nodes and information. Layer tree nodes must keep both content text 

and layout information, while the layer tree must keep the correct hierarchy of these nodes. 

Since CSS is able to float DOM elements to any place of the page, the DOM hierarchy is, 

for many cases, not identical to the rendered (visual) hierarchy. Thus, it is necessary to 

reconstruct the layer tree. 

4.1.1 Create Layer Tree Nodes 

The most important node of a tree is the root. For the layer tree, the root node is 

created from the “BODY” element. If a web page’s “BODY” is invisible, it is set to a white 

background. Next, for each layer tree node, we create it as follows: 

1) Acquire the corresponding DOM element. 
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2) Check if the DOM element is visible. Mark it as invisible and skip it if it meets any 

of these conditions: the HTML tag is invisible; either the element's height or width 

equals to 0; some of its CSS properties specify that it is not to be rendered; or it is 

completely transparent and empty. 

3) If the DOM element is visible, calculate its geometric attributes representing the 

size. As mentioned previously, we consider every layer as a rectangle according to 

Gestalt law of closure. Therefore, the layer tree node’s geometric attributes include 

the coordinates of its left top vertex as well as its height and width. 

4) Identify the layout information of the layer tree node from the CSS styles. Every 

clue related to the layout can be interpreted from the CSS styles of the DOM 

element, so this step is actually retrieving useful CSS properties such as text styles, 

background styles, etc. 

5) Different from DOM elements having more than one text node, the layer tree nodes 

contain only one text component, and this component is part of the node rather than 

its child nodes. So this step is to merge and trim all the DOM element’s text nodes 

into one single property of the layer node. 

6) Give the layer tree node a name. The name of a layer tree node is not necessary for 

applying Gestalt laws of grouping. It is only used for identifying the node. We 

simply use the XPath of the DOM element as the name. 

4.1.2 Build Layer Tree with Nodes 

The hierarchy of a layer tree is constructed from the DOM tree of the web page. As 

sometimes CSS styles replace the original layout and dis-render some DOM elements, the 

layer stacking hierarchy is not always identical with the DOM hierarchy. In addition, 
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invisible elements existing in the DOM tree shall be removed when building up the layer 

tree. Thus, a modification is necessary. 

To construct the layer tree, we manipulate nodes as follows: 

1) Take the “BODY” layer node as the root node. 

2) From the root node on, for every layer tree node, append all child (layer tree) nodes 

according to their corresponding DOM hierarchy. 

3) If any node is completely located inside any of its sibling nodes, then move the 

node downward so that it becomes a child node of that sibling. Sibling nodes that 

geometrically overlap each other are acceptable in the layer tree model. They are 

still considered as sibling nodes. 

4) If a DOM element is invisible or empty, then there is no corresponding layer tree 

node. However, its child DOM elements may have corresponding layer tree nodes. 

In this condition, these child layer tree nodes shall become children of the layer tree 

node which is related to this DOM element’s first visible parent element. 

Creating layer tree nodes from DOM elements is done simultaneously with building 

up the layer tree. This procedure starts from adding the root node to the layer tree, and then 

executes recursively until all visible DOM elements are extracted and added to the layer 

tree. 

4.2 Translation of the Gestalt Laws 

As mentioned above, the Gestalt law of similarity is expanded into three laws, 

namely, background similarity, text similarity, and size similarity. Among all the six laws: 
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 The Gestalt law of proximity is translated as to compare the distance between two 

layers. The distance in the GLM model is defined as the normalized Hausdorff 

distance between layers. Sect. 4.2.1 discusses details about the calculation. 

 Background similarity is evaluated by both background color and image. Color 

comparison is conducted in CIE-Lab color space instead of RGB color space, and 

image comparison is done by calculating the normalized compression distance. 

They are discussed in Sect. 4.2.2 and Sect. 4.2.3. 

 Text similarity is evaluated by comparing a set of text and paragraph related CSS 

properties. Similarly, with background color, the text colors are compared under 

CIE-Lab space; the other CSS styles are directly compared by their corresponding 

values. 

 Size similarity is represented by both the width and height of the layers. 

 The Gestalt law of continuity is interpreted to compare the left, top, right and 

bottom coordinates of layers. If any of the four edges between two layers share the 

same value, then they are continuous. 

 The “Static trend” from the Gestalt law of common fate is represented by the 

“position” CSS property. By default, the positions are the same for semantically 

related layers. If any of a group of layers has a different “position”, then it is 

designed to be separated from the others. Therefore, it belongs to a different block 

with others. 
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4.2.1 Normalized Hausdorff Distance 

As mentioned previously, a normalized Hausdorff distance between two layers is 

used as the proximity. For the two layers 𝐿1 and 𝐿2, the Hausdorff distance (HD) between 

them is calculated as follows: 

1) For any point 𝑙1 in 𝐿1 and 𝑙2 in 𝐿2, the distance between them is the length of the 

line segment: 

‖𝑙1 − 𝑙2‖ = √(𝑥𝑙1
−  𝑥𝑙2

)2 +  (𝑦𝑙1
−  𝑦𝑙2

)2 ; 

2) For any point 𝑙1 in 𝐿1, the distance between it and 𝐿2 is the infimum of distances 

between 𝑙1 and all points in 𝐿2: 

𝑑(𝑙1, 𝐿2) = inf
𝑙2∈𝐿2

‖𝑙1 − 𝑙2‖ ; 

3) Hausdorff distance from 𝐿1 to 𝐿2 (ℎ𝑑1,2) is the supremum of distances between 𝐿2 

and all points in 𝐿1: 

ℎ𝑑1,2 = sup
𝑙1∈𝐿1

𝑑(𝑙1, 𝐿2) ; 

4) Hausdorff distance between 𝐿1  and 𝐿2  is the maximum value between the 

Hausdorff distance from 𝐿1  to 𝐿2  and the Hausdorff distance from 𝐿2  to 𝐿1 , as 

shown in (2-1): 

 𝐻𝐷(𝐿1, 𝐿2) = max{ℎ𝑑1,2, ℎ𝑑2,1}  .  (2-1) 

However, it is not sufficient to directly use HD as the proximity. This is because of 

a perceptual inconsistency: if there is a pair of large layers close to each other and another 
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pair of small layers far from each other, the proximities of the two pairs are perceptually 

different (far vs. close), while the HD may have the same values. For example, as shown 

in Figure 2.2, 𝐿1 and 𝐿2 are both 50×50 while adjacent to each other; 𝐿3 and 𝐿4 are 10×10 

while having an edge distance of 40. In this case the perceptual proximities of the two 

groups they are not the same, however, the NDs of the two pairs are both 50. 

 
Figure 2.2 Paradox between Perceptual Proximity and Hausdorff Distance 

Such inconsistency is caused by the sizes of the two layers. To eliminate it, we 

introduce a modification of the original Hausdorff distance as the proximity – the 

normalized Hausdorff distance (NHD). It is calculated by adding a normalizing factor – 

relevant length (Re) – to (2-1), as shown in (2-2): 

 𝑁𝐻𝐷(𝐿1, 𝐿2) = max {
ℎ𝑑1,2

𝑅𝑒𝐿1

,
ℎ𝑑2,1

𝑅𝑒𝐿2

} , (2-2) 

where, 𝐿1, 𝐿2 are the two layers; sup and inf retrieve the supremum and infimum of a set 

of values; ‖𝑙1 − 𝑙2‖  is the norm (distance) between 𝑙1  and 𝑙2 ; and 𝑅𝑒𝐿1
, 𝑅𝑒𝐿2

 are the 

relevant lengths, respectively. 

Re can be either the height, width, or both (the diagonal) of the layer, depending on 

the related location of the two layers. Note that 𝑅𝑒𝐿1
 and 𝑅𝑒𝐿2

 in (2-2) may be different. 

(a) (b) 
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For example (Figure 2.3d), 𝑅𝑒𝐿1
 is the diagonal length of 𝐿1 while 𝑅𝑒𝐿2

 is the height of 

𝐿2. As shown in Figure 2.3, having analyzed all possible distributions of two layers, we 

conclude the NHD calculation as follows: 

1) 𝐿1 is completely inside or outside of 𝐿2. We do not deal with this condition and 

simply set 𝑁𝐻𝐷 to 0 (although ℎ𝑑2,1 ≠ 0 in Figure 2.3a). This only happens when 

calculating proximity between a parent and a child layer: 

𝑁𝐻𝐷(𝐿1, 𝐿2) = 0 . 

2) 𝐿1  is completely in the north/south area (between left and right edges) of 𝐿2 

(Figure 2.3b). In this condition, 𝑅𝑒𝐿1
 is the height of 𝐿1, and ℎ𝑑1,2 equals to the 

vertical distance between top edges (North) or bottom edges (South) of the two 

layers: 

𝑅𝑒𝐿1
= ℎ𝑒𝑖𝑔ℎ𝑡𝐿1

 ; 

ℎ𝑑1,2 = 𝑑𝑖𝑠𝑡v = {
|𝑡𝑜𝑝𝐿1

− 𝑡𝑜𝑝𝐿2
|, 𝑐𝑦

1 < 𝑐𝑦
2

 |𝑏𝑜𝑡𝑡𝑜𝑚𝐿1
− 𝑏𝑜𝑡𝑡𝑜𝑚𝐿2

|, 𝑐𝑦
1 > 𝑐𝑦

2
  , 

Where, 𝑐𝑦
1 and 𝑐𝑦

2 are the y coordinates of the two layers’ centroids, 𝑐𝑦
1 ≠ 𝑐𝑦

2. 
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Figure 2.3 Area definition and relevant length 

3) 𝐿1  is completely in the west/east area (between top and bottom edges) of 𝐿2 

(Figure 2.3c). Similarly, 𝑅𝑒𝐿1
 is the width of 𝐿1, and ℎ𝑑1,2 is the horizontal edge 

distance between their left edges (west) or right edges (east): 

𝑅𝑒𝐿1
= 𝑤𝑖𝑑𝑡ℎ𝐿1

 ; 

ℎ𝑑1,2 = 𝑑𝑖𝑠𝑡h = {
|𝑙𝑒𝑓𝑡𝐿1

− 𝑙𝑒𝑓𝑡𝐿2
|, 𝑐𝑥

1 < 𝑐𝑥
2

 |𝑟𝑖𝑔ℎ𝑡𝐿1
− 𝑟𝑖𝑔ℎ𝑡𝐿2

|, 𝑐𝑥
1 > 𝑐𝑥

2
  , 

(a) Inside (b) North/South 

(c) West/East (d) Corner Region(s) 
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Where, 𝑐𝑥
1 and 𝑐𝑥

2 are the x coordinates of the two layers’ centroids, 𝑐𝑥
1 ≠ 𝑐𝑥

2. 

4) 𝐿1  covers one or two corner areas of 𝐿2  (Figure 2.3d). As none of the two 

rectangular layers completely locates inside of the other, 𝐿1 can only cover one 

corner area or at most two adjacent corner areas of 𝐿2. In this condition, both the 

height and the width of 𝐿1 are the relevant lengths, so 𝑅𝑒𝐿1
 is the diagonal length 

of 𝐿1; and ℎ𝑑1,2 is the distance between the furthest vertices: 

𝑅𝑒𝐿1
= 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝐿1

= √𝑤𝑖𝑑𝑡ℎ𝐿1

2 +  ℎ𝑒𝑖𝑔ℎ𝑡𝐿1

2
 ; 

ℎ𝑑1,2 = √𝑑𝑖𝑠𝑡v
2 +  𝑑𝑖𝑠𝑡h

2
 . 

Having the 𝑁𝐻𝐷 calculated, we can merge the layers according to Gestalt law of 

proximity. If a series of sibling layers share the same proximity, then they belong to one 

single group; however, if any pair of two layers has a different proximity than other pairs, 

they shall be put into a different group. 

4.2.2 Comparing Two Colors 

While most web pages use RGB color space, CIE-Lab color space is used in this 

chapter because it is designed to approximate human vision, and it provides standards to 

evaluate color differences. 

When retrieving a CSS color, most browsers will return a RGB value or 

“transparent”. The first step to compare colors is to fix the transparent color. In fact, if a 

layer has a transparent background color with no background image, the under layer’s 

content will show. Thus “transparent” is not this layer’s actual displaying background color 
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– it is its parent layer’s background color. If all layers under the layer (that is, all the parent 

layers of it) are transparent and none of these parent layers contains any background image, 

then all the parent layers and the child layer will have a white background color. Having 

determined this, we can assign all layers with a non-transparent background color properly. 

The non-transparent RGB colors are then converted into CIE-Lab through (2-3) and 

(2-4) (Connolly and Fleiss 1997; Johnson and Fairchild 2003): 

 (
𝑋
𝑌
𝑍

) = (
0.4303 0.3416 0.1784
0.2219 0.7068 0.0713
0.0202 0.1296 0.9393

) (
𝑅
𝐺
𝐵

) , (2-3) 

where, 𝑅, 𝐺, 𝐵 are the red, green and blue channel of the RGB color; and 𝑋, 𝑌 𝑍 are the X, 

Y, Z channel of the color in XYZ color space. 

 

𝐿∗ = 116 𝑓(𝑌 / 𝑌0) − 16                  

𝑎∗ = 500 [𝑓(𝑋 / 𝑋0)  −  𝑓(𝑌 / 𝑌0)]

𝑏∗ = 500 [𝑓(𝑌 / 𝑌0)  −  𝑓(𝑍 / 𝑍0)]
 , (2-4) 

where, 𝐿∗, 𝑎∗, 𝑏∗ are the L*, a* and b* channel of the color; 𝑋0, 𝑌0, 𝑍0 are the tristimulus 

values of CIE-Lab standard illuminant 𝐷50; and 𝑓(𝑞) is calculated as: 

𝑓(𝑞) = {
√𝑞3                              𝑞 > 0.008856

7.787 𝑞 + 0.1379  𝑞 ≤ 0.008856
 . 

The CIE-Lab color difference is used to determine whether two colors can be 

considered as the same or not. Specifically, the color difference ∆𝐸00
12  under the 

CIEDE2000 standard (Luo, et al. 2001; Sharma et al. 2005) is calculated, as shown in (2-

5): 

 ∆𝐸00
12 = √(

∆𝐿′

𝑘𝐿𝑆𝐿
)

2

+ (
∆𝐶′

𝑘𝐶𝑆𝐶
)

2

+ (
∆𝐻′

𝑘𝐻𝑆𝐻
)

2

+ 𝑅𝑇 (
∆𝐶′

𝑘𝐶𝑆𝐶
) (

∆𝐻′

𝑘𝐻𝑆𝐻
) . (2-5) 
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During comparison, if ∆𝐸00
12 is greater than 3.30 (Liu, et al. 2012), then the two 

colors are considered as different. 

4.2.3 Comparing Two Images 

Background images are provided by CSS as URLs. However, it is not correct to 

simply compare the URLs because images with different URLs may still be the same. A 

correct way to compare images is to compare their content.  We first retrieved images from 

URLs; and then convert them from RGB color space into CIE-Lab color space. To compare 

similarity of the two images (CIE-Lab color pixels), we calculate the normalized 

compression distance (NCD) as shown in (2-6) (Li, et al. 2004; Cilibrasi 2007): 

 𝑁𝐶𝐷(𝑥, 𝑦) =
𝐶(𝑥𝑦) − 𝑚𝑖𝑛{𝐶(𝑥),𝐶(𝑦)}

𝑚𝑎𝑥{𝐶(𝑥),𝐶(𝑦)}
 , (2-6) 

where, 𝑥, 𝑦 are the pixel representation of the two images; 𝑥𝑦 is the concatenation of 𝑥 and 

𝑦; and 𝐶(𝑞) calculates the length of the compressed data 𝑞. 

We select LZMA as the compression algorithm. Having obtained 𝑁𝐶𝐷(𝑥, 𝑦), if it 

is smaller than 0.25 (Roshanbin and Miller 2011), then the two images 𝑥 and 𝑦 can be 

considered to contain the same content. 

4.3 Identification of Web Page Blocks 

Each of the six translated laws can provide a result that determines whether two 

layers should be merged together of not. The (final) result must combine the six sets of 

results together. However, it is not easy to analyze them after the application of the laws. 

An alternative solution is to combine the six laws together before the identification. 
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4.3.1 Combination of the Gestalt Laws 

There exist no obvious rules on combining the Gestalt laws. Therefore, we choose 

the naive Bayes classifier (McCallum and Nigam 1998) to explore the hidden connection 

between them. In this classifier, the category variable 𝐶 of the classifier is set as “0” and 

“1”, representing “not merge” and “merge”, respectively, while the feature vector consists 

of six variables, each representing the corresponding Gestalt law, as shown in Table 2.1. 

Table 2.1 Variables used by the naive Bayes classifier 

Variables 
Values 

0 1 

𝑭 

𝐹1 Gestalt law of proximity 

do not merge 

the layers 
merge the layers 

𝐹2 Gestalt law of similarity (background) 

𝐹3 Gestalt law of similarity (text style) 

𝐹4 Gestalt law of similarity (layer size) 

𝐹5 Gestalt law of continuity 

𝐹6 Gestalt law of common fate 

𝐶 all the above Gestalt laws 

To train the classifier, we do not build the training set with concrete web pages. 

This is because the training set shall contain all possible conditions of 𝑭, such actual web 

pages are very rare. For example, it is hard to find a web page in the condition that all the 

layers follow and only follow the Gestalt law of proximity (𝑭 = (𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6) =

(1,0,0,0,0,0)). Due to this, we deliberately designed the sample pages to construct the 

training set, which has covered all values of 𝑭. The training set consists of 64 cases (26 =

64). The training set is manually classified, and then fed to the classifier. 

4.3.2 Collection of the Identification Results 

The trained classifier reads the layer tree of a web page, evaluates the (sibling) 

layers by the six laws to create the corresponding feature vector 𝑭, and finally categorizes 

the layers as “merge them” or “not merge them”. The final identification results consist of 
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a series of groups, where each group represents a semantic block. Layers in each block can 

be identified from the web page by its node name. 

The blocks are stored into database. As we separate layers with different parents 

automatically into different groups, each semantic block will only contain sibling layers. 

Sometimes, a semantic block holds all sibling layers of a parent layer. In this condition, it 

is reasonable to replace all the child layers with the parent layer in the block. 

As mentioned before, the advantage of Mozilla Firefox extension is that it is able 

to modify the web page in real-time. Therefore, in this implementation, having obtained 

the merging results, we update them to the original web page immediately. The updates are 

displayed by marking the corresponding DOM elements with a special background. For 

each semantic block, a different color (except black and white) is assigned, and each layer 

in this block is marked with this color as background. Meanwhile, border shadows are also 

added to make it clearer. 

5 Experiments 

We develop a Mozilla Firefox extension to implement the GLM model. This is 

because:  

 Mozilla Firefox provides APIs for manipulating DOM elements without any extra 

effort such as parsing HTML code, JavaScript functions or CSS properties, making 

it possible to build up the layer tree easily and fast; 

 The DOM tree provided in Mozilla Firefox is the one used for rendering the original 

web page, thus it is the most accurate data source of a web page we can find; and  
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 Any modification of the DOM tree is applied immediately, and shown (in real-time) 

to the users. 

Experiment results of the GLM are compared with Cai’s VIPS algorithm (Reis, et 

al. 2004), which is state-of-art and normally considered the most accurate web page 

segmentation algorithm. Algorithms by Hattori et al. (2007) and Baluja (2006) were also 

considered, but these algorithms are not implementable for this problem space. Details of 

the problems with these algorithms can be found in Sect. 2 . 

5.1 Comparison Test 

This test examines the identification results of the two algorithms on two test cases: 

the home pages of University of Alberta and IEEE standards association. For each of the 

two web pages, the two algorithms identify a series of blocks. However, some of the blocks 

are incorrect – they are the “false positive” results (FP); the correct blocks that any 

algorithms misses are the “false negative” results (FN); the correctly identified blocks are 

the “true positive” results (TP). The original pages and the result pages of are shown in 

Figure 2.4. Note that the screenshots of VIPS results are modified to illustrate results more 

clearly, because Cai’s software cannot display all identified blocks in a single page. 



32 

 
Figure 2.4 Comparison of Identification Results 

From the figure, observations can be found that the both GLM and VIPS have 

successfully identified correlated semantic blocks. For example, the middle navigation bar 

holding 7 icons (each element in the block is marked with yellow background) in Figure 

2.4b, the big image block (marked with light red) in Figure 2.4c, the “news” block at the 

left bottom (marked with light green background) in Figure 2.4e, and the footer block 

(marked with purple) in Figure 2.4f, etc. 

(a) Original page (b) GLM identification 

1 

(c) VIPS identification 

1 

(d) Original page 2 (e) GLM identification 

2 

(f) VIPS identification 

2 
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According to the observation, the GLM algorithm has performed better than VIPS 

on the two test cases. VIPS has identified very limited number of blocks, and misses a lot: 

for the UA home page, it only finds 28 blocks in total; while GLM finds 47 blocks; and for 

the IEEE home page, the total numbers of blocks found by the two algorithms are 15 and 

41, respectively. This is because VIPS only identifies big blocks while it misses small ones. 

For example, as shown in Figure 2.4c, VIPS has identified the middle block (marked with 

light green border), but inside of this block, it fails to mark none of the three sub blocks – 

the left side image, the middle text block, and the right side buttons group. As a comparison 

in Figure 2.4b, GLM has identified both big block (marked with light blue background) 

and two of the three sub blocks, missing only the left side image. Furthermore, even when 

VIPS finds big blocks, many big blocks are still missed. For example, the “news” block 

(left part of the lower yellow block) in Figure 2.4c, the video block in in Figure 2.4f, etc. 

This drawback contributes to a high value of VIPS “false negatives”, namely, 26 in IEEE 

home page, and 14 in UA home page. The statistics are summarized in Table 2.2. 

Table 2.2 Numbers of TPs, FPs and FNs 

Test 

case 

GLM VIPS 

TP FP FN TP FP FN 

IEEE 38 3 3 10 5 26 

UA 41 6 2 18 10 14 

5.2 Efficiency Test 

The second group of experiments evaluates the efficiency of the GLM and compare 

it with the VIPS through a large test set. Cai’s VIPS software only provides manual 

operation for block identification and cannot displays all blocks together in the web page, 
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therefore is not feasible for mass evaluation. To solve this problem, we chose this 

implementation3. 

The test set covers the homepages of the world’s 500 top websites as defined from 

statistics produced by Alexa4 . Before running the tests, we filter out “inappropriate” 

samples of websites such as duplicate sites (for example, “google.com”, “google.ca”, etc.), 

temporarily unavailable sites and sites that contain inappropriate content. The final test set 

consists of 381 websites. 

5.2.1 Evaluation Metrics 

The algorithm is evaluated by measuring its precision, recall and F-1 scores. Having 

acquired the numbers of TPs, FPs, and FNs for each web page, the three metrics can be 

calculated by (2-7): 

 

𝑃𝑖  =  
𝐵𝐴 ∩ 𝐵𝑖

𝐵𝐴
 =  

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑅𝑖  =  
𝐵𝐴 ∩ 𝐵𝑖

𝐵𝑖
 =  

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝐹𝑖  =  
2 𝑃𝑖 𝑅𝑖

𝑃𝑖 + 𝑅𝑖
                        

 , (2-7) 

where, 𝑃𝑖 , 𝑅𝑖 , 𝐹𝑖  are precision, recall and F-1 score of the 𝑖 th web page, 

respectively; 𝐵𝐴 is the number of  blocks identified by the algorithm; 𝐵𝑖 is the number of 

blocks that the 𝑖th web page contains; and 𝑇𝑃𝑖, 𝐹𝑃𝑖, 𝐹𝑁𝑖 are the number of “true positives”, 

“false positives” and “false negatives”, respectively. 

As no computer system or software can count the correct 𝑇𝑃𝑖 , 𝐹𝑃𝑖 , 𝐹𝑁𝑖 

automatically, we rely upon human judgement. In this chapter, we recruit five volunteers 

                                                           
3 https://github.com/tpopela/vips_java 
4 http://www.alexa.com/topsites. The top sites were retrieved on April 4, 2014. 

https://github.com/tpopela/vips_java
http://www.alexa.com/topsites
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to evaluate all the 381 samples. The volunteers all utilize the Internet every day, so it is 

believed that they have sufficient experience to identify web page blocks correctly. They 

are required to judge the correctness of each result calculated by the algorithm. That is, to 

find the 𝑇𝑃𝑖, 𝐹𝑃𝑖 and 𝐹𝑁𝑖 from both the screenshots of GLM and VIPS for each web page. 

5.2.2 Inter Rater Reliability 

The five volunteers evaluate each web page sample and count the 𝑇𝑃𝑖, 𝐹𝑃𝑖 and 𝐹𝑁𝑖 

independently. Before using their evaluations for the calculation of precision, recall and F-

1 scores, a verification of inter-rater reliability (Gwet 2010) showing the agreement level 

among the five raters is needed. If they disagree with each other, then it will be meaningless 

to rely on their rates. During the verification, we calculate Cohen’s Kappa (Jacob 1960) to 

verify it, as shown in (2-8): 

 𝜅 =  
𝑃𝑟(𝑎) + 𝑃𝑟(𝑒)

1 − 𝑃𝑟(𝑎)
 , (2-8) 

where, 𝑃𝑟(𝑎)  and 𝑃𝑟(𝑒)  are the observed and expected percentage of agreement, 

respectively. 

Mean 𝜅 values of all samples between each two raters’ 𝑇𝑃, 𝐹𝑃 and 𝐹𝑁 are listed 

in Table 2.3. The reason that 𝜅 values of GLM’s 𝑇𝑃 are lower lies in the fact that 𝑇𝑃 

blocks are the major parts of each web page. Of all the test cases, the average 𝑇𝑃 is 36.89 

while average 𝐹𝑃 and 𝐹𝑁 are 3.35 and 3.03, respectively. Raters’ disagreement level on 

the larger group is higher than that on the smaller groups: 

1) The identification results contain blocks with different granularities. One rater 

considered small blocks as TP bocks while another rater considered them as FP 
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blocks. Such an example from Figure 2.4b is the green button inside the text 

rectangle floating upon the big image (See the yellow ellipse in Figure 2.5) – three 

of the raters believed the buttons should not be separated from the text, while the 

other two raters identified them as one block. Although almost every sample 

contained blocks where one was inside of another, less than 10% of them caused 

granularity issues in the five volunteers’ ratings. However, this was the major 

source of deviations. 

 
 

Figure 2.5 Disagreement in GLM Blocks Identification Results 

2) There are “hidden” blocks. This is actually because the background colors and 

shadow borders of these blocks are overlapped by their upper blocks, hence the 

view of these blocks was obscured. An example from Figure 2.4b is the block 

holding the three buttons at the right side of the middle area (red ellipse in Figure 

2.5) – the buttons were identified as a block and marked (actually their parent layer 

was marked) with background color and shadow borders, however it was very 
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difficult to view due to its obscuration. Such human errors are less than 5% among 

the five volunteers’ ratings, but contribute to the second largest category of 

deviations. 

Results in Table 2.3 provide strong evidence that even human “experts” are less 

than perfect when undertaking this task, and hence it is clearly a demanding task for an 

automated system. 

Table 2.3 𝜅 of two raters’ evaluations 

Raters GLM VIPS 

A B 𝑻𝑷 𝑭𝑷 𝑭𝑵 Overall 𝑻𝑷 𝑭𝑷 𝑭𝑵 Overall 

1 2 0.5746 0.9136 0.9475 0.6270 0.7137 0.7934 0.8977 0.7689 

1 3 0.5106 0.9167 0.9320 0.5715 0.7384 0.7630 0.9045 0.7710 

1 4 0.5319 0.9136 0.9320 0.5895 0.7662 0.7731 0.8807 0.7850 

1 5 0.5000 0.9044 0.9351 0.5618 0.7416 0.7832 0.8943 0.7785 

2 3 0.5267 0.9229 0.9475 0.5868 0.6708 0.7596 0.8840 0.7335 

2 4 0.5534 0.9198 0.9413 0.6089 0.6770 0.7494 0.8841 0.7329 

2 5 0.5028 0.9044 0.9444 0.5648 0.6523 0.7527 0.8670 0.7194 

3 4 0.5374 0.9259 0.9567 0.5968 0.6771 0.7358 0.8705 0.7260 

3 5 0.5161 0.9013 0.9413 0.5757 0.6801 0.7596 0.8841 0.7381 

4 5 0.5373 0.9136 0.9444 0.5949 0.6925 0.7630 0.9011 0.7479 

Table 2.4 shows the interpretations of the 𝜅 value (Landis and Koch 1997). From 

the table, the GLM’s overall 𝜅 values between every two raters’ rates are all in a moderate 

level (𝜅 > 0.5) while VIPS’ overall 𝜅 values all in a substantial level (𝜅 > 0.7). Such 

agreement is equivalent to many works reporting inter-rate reliability statistics on complex 

visual and medical classification problems (Pereira, et al. 2009; Hauzeur, et al. 1999; 

Unwin 1998; Tewarie, et al. 2012; Albrecht, et al. 2012) and hence it is considered 

sufficient for the task. Therefore, we can infer that the five raters all agreed with each other. 
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Table 2.4 𝜅 interpretation 

𝜿 Strength of agreement 

0.00 ~ 0.20 Slight 

0.21 ~ 0.40 Fair 

0.41 ~ 0.60 Moderate 

0.61 ~ 0.80 Substantial 

0.81 ~ 1.00 Almost perfect 

5.2.3 Evaluation Results 

By testing the precisions, recalls and F-1 scores of the two algorithms on the 381 

web page samples, we conclude that GLM is more accurate than VIPS. Each of the five 

volunteers’ rates as well as an average of these rates are evaluated. The evaluation results 

are shown in Table 2.5. 

Table 2.5 Average precision, recall and F-1 score of both algorithms 

Volunteers 
GLM VIPS 

Precision Recall F-1 Score Precision Recall F-1 Score 

1 90.55% 90.87% 90.40% 65.79% 67.98% 63.80% 

2 90.55% 90.88% 90.40% 65.87% 68.01% 63.87% 

3 90.48% 90.79% 90.30% 65.80% 67.93% 63.79% 

4 90.49% 90.84% 90.34% 65.69% 68.01% 63.76% 

5 90.50% 90.86% 90.36% 65.77% 67.93% 63.79% 

Average 90.53% 90.85% 90.37% 65.79% 67.98% 63.81% 

As can be seen from Table 2.5, each volunteer produces results which are very 

similar to each other (errors within 1% and standard deviations within 0.001), providing a 

high degree of confidence that the results are independent of the volunteers and their 

performance. It clearly shows that GLM outperforms VIPS in every situation – the average 

GLM precision of the test samples is 90.53%, which is 24.74% better than VIPS. 

Meanwhile, GLM provides a high recall rate of 90.85% and a high F-1 score of 90.37% – 

22.87% and 26.56% higher than VIPS, respectively. 

Figure 2.6 shows the box plots of all the results, where “P” denotes precision, “R” 

denotes recall, and “F” denotes F-1 score. Visually we can conclude that the GLM 
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distributions, for each of the three evaluation metrics, are clearly superior to its VIPS 

equivalent. In addition, if we look at the plots more closely: 

1) Although both algorithms can identify samples with highest average precision 

(Figure 2.6e) as 100%, GLM’s lowest precision is 56.45% (volunteer 2) and lowest 

average precision is 58.72% (both for “www.reddit.com”) while VIPS’ lowest 

average precision is 0% (18 samples). VIPS’ lowest non-zero precision is 1.14% 

(volunteer 5) and lowest non-zero average precision is 1.21% (“www.y8.com”). 

2) The median of GLM’s average precision, recall and F-1 score are 92.13%, 91.49% 

and 91.09% (Figure 2.6f), respectively, meaning that more than half of the results 

are over 91%. On contrary, VIPS provides the average precision, recall and F-1 

score with medians of 74.68%, 74.19% and 72.08%, respectively. 

3) The first quartile of GLM’s average precision is 86.36% while the third quartile is 

95.63%, meaning GLM can guarantee that more than half of its results have average 

precision within the range between 87% and 95%. The first and third quartiles of 

VIPS’ precision are 42.86% and 100%, which is a much wider range. This shows 

that although VIPS can provide some better samples, it also provides many poorer 

samples than GLM. 

From the data, we can find that the GLM algorithm works better than VIPS in 

general. The reason lies on the fact that the GLM model interprets most of the Gestalt laws 

of grouping to simulate a human’s mechanism of perception, while VIPS relies mainly on 

visual of web pages to identify blocks. As modern web pages evolve, layouts are no longer 

as simple as ten years ago and the visual separators are much less obvious.  
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Figure 2.6 Evaluations of GLM and VIPS on the Test Set 

6 Conclusions 

This chapter proposes a web page semantic block identification algorithm utilizing 

the Gestalt laws of grouping, and applies two experiments to evaluate its efficiency. The 

GLM model consists of three components: the layer tree builder, the Gestalt law translator, 

and the web page blocks identifier. The layer tree builder produces input data to the Gestalt 

(a) Volunteer 1 (b) Volunteer 2 

(c) Volunteer 3 (d) Volunteer 4 

(e) Volunteer 5 (f) Average 



41 

laws translator. It extracts visible DOM elements into layer nodes and builds the layer tree 

from DOM tree of the web page by fixing the hierarchical inconsistency. The Gestalt laws 

translator, the core component of the GLM model, interprets four of the major Gestalt laws 

of grouping. The web page blocks identifier combines each interpreted law into a unified 

law, applies it to the layer tree to obtain the semantic blocks, and finally feedbacks the 

blocks to both the original web page and the local database. 

Two groups of experiments are conducted to evaluate the efficiency of the model 

by comparing with the VIPS algorithm. The first group runs two test cases to compare the 

two algorithms’ identification results. The outcomes show that the GLM model generates 

more “true positives” and less “false negatives” than VIPS, which means that the VIPS 

does not perform well on modern rich format web pages. The second group tests home 

pages of the world’s top 500 websites. Five volunteers are recruited to evaluate the 

identification results manually. Three metrics have been calculated by collecting their 

evaluations, namely, precision, recall and F-1 score. The testing results clearly 

demonstrates that the GLM model is superior to VIPS: 

 GLM has higher precision, recall and F-1 score than VIPS; 

 Medians of the GLM precisions and recalls are both higher than those of VIPS; and 

 GLM provides steadier and higher distributions of precisions and recalls than VIPS. 
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CHAPTER 3  Estimating Similarity of Rich 

Internet Pages Using Visual Information5 

Abstract 

Traditional text-based web page similarity measures fail to handle rich-

information-embedded modern web pages. Current approaches regard web pages as either 

DOM trees or images. However, the former only focuses on the web page structure, while 

the latter ignores the inner connections among different web page features. Therefore, they 

are not suitable for modern web pages. Hence, the idea of a block tree is introduced, which 

contains both structural and visual information of web pages. A visual similarity 

measurement is proposed as the edit distance between two block trees. Finally, an 

experiment is undertaken, by cross-comparing 500 web pages, illustrating that the model 

appears to be highly accurate, empirically demonstrating that the measurement is highly 

promising. 

Keywords: Block Tree; Gestalt Laws of Grouping; Normalised Compression Distance; 

Tree Edit Distance; Web Page Classification. 

1 Introduction 

Recent years have witnessed a rapid development of the Internet, which brings 

about huge changes in people’s daily life through the interaction with web sites. As a matter 

                                                           
5 Xu, Zhen, and James Miller. “Estimating Similarity of Rich Internet Pages Using Visual Information”. 
Accepted by International Journal of Web Engineering and Technology on May 2017. 
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of fact, web pages have become an important tool and indispensable part of our life. For 

example, people read web pages to obtain the news or information they are interested in, 

get service through online systems from service providers (such as banking and socialising), 

or conduct e-business. Therefore, similarity analysis of web pages is essential and has a 

widespread automation application. First, it can serve as a preliminary task such as in an 

anti-phishing process, i.e., through detecting similar web pages, the search scope of 

potential phishing sites can be decreased to some extent. Second, it can perform version 

control and evolution of web pages. Web pages evolve very fast, and the similarity analysis 

provides a method to detect changes and adopt relevant control policies if necessary. Third, 

it can be used for software testing. For robust software, the page should be able to response 

correctly and display relevant information upon a user’s input. We can detect whether the 

software functions correctly by comparing the actual page and the target page. 

Due to its importance, web page similarity analysis has drawn the attention of many 

researchers. However, there are still some issues, which mainly result from the fact that 

modern web pages, with much more abundant information such as images and streaming 

media, present additional challenges to web page classification (Wei, et al. 2014). Hence, 

traditional approaches that rely heavily on textual content cannot handle modern web pages. 

From the observation of human behaviours, we found that no matter how complicated web 

pages are, people always have the ability of recognising and correlating content at a first 

glance. The theory behind it is that humans can read the visual information directly, rather 

than through the understanding of the textual content. Users do not examine web page 

details, but rather the layout and design of the page to create a single impression. This is 

analogous to the idea of “super signals” (Dörner 1996), a theory to account for human 
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decision making under time constraints and massive numbers of stimuli. Dörner argues 

that humans collapse a number of features into a single composite impression. This 

thinking pattern presents us with an interesting question: if the computer can think, can 

they detect similarity more precisely? The answer is obvious, but the next question is how 

can we achieve this goal? The Gestalt laws of grouping summarise the characteristics of 

people’s thinking patterns. We believe that the laws can be a potential way to introduce 

human-based analysis into the study of visual similarity. Therefore, in this chapter, we will 

investigate web page similarity from the visual perspective by using Gestalt laws of 

grouping. Our major contributions in this chapter are: 

 We develop a data structure to represent web pages based on the Gestalt laws of 

grouping. 

 We propose a model to evaluate the similarity of rich web pages according to a tree 

edit distance. 

The rest of this chapter is organised as follows: in Section 2, we review the related 

work, and provide background on currently used classification methods; section 3 

introduces the concept of the block tree, and puts forward an approach to interpret and 

apply the Gestalt laws of grouping; in Section 4, we come up with a visual similarity 

measurement and a classification model which exploits this measurement; section 5 

prepares the test sets, outlines the experimental methodology, performs the experiment on 

aforementioned test sets, and analyse the outcomes; to finish, we summarise and conclude 

this chapter’s contributions in Section 6. 
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2 Related Work 

In general, two major orientations are widely applied including treating web pages 

as images or trees, to explore web page visual similarity. 

In the first category, a web page is abstracted as an image before computing their 

similarities. Recently, many scholars have focused their study on image similarity (Chechik, 

et al. 2010; Rohlfing 2012). A feature-based image similarity measurement approach uses 

image phase congruency measurements to compute the similarities between two images 

(Liu and Laganière 2007). Kwitt et al. (2008) present an image similarity model by using 

Kullback-Leibler divergences between complex wavelet sub band statistics for texture 

retrieval. Sampat et al. (2009) put forward an image similarity method called the complex 

wavelet structural similarity. The theory behind it is that consistent phase changes in the 

local wavelet coefficients may arise owing to certain image distortions. Image similarity 

techniques are popular and have made some progress in web page similarity, for example, 

Saar et al. (2015) proposed a classification model for cross-browser testing based on image 

similarity. However, we found that a specified web page is an object embedded with a 

variety of elements and these elements can interact (such as overlap or partly overlap) with 

each other. Image similarity cannot reveal this interaction among elements. It is, therefore, 

a different problem from pure image similarity assessment. 

In the other category, a web page is regarded as tree structured data, and thus web 

page similarity is studied through investigating tree similarity. With respect to tree 

structured data, a handful of tree distance functions are applied, such as tree edit distance 

(Shahbazi and Miller et al. 2014), multisets distance (Müller-Molina et al. 2009), entropy 
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distance (Connor, et al. 2011), and path distance (Buttler 2004). The tree edit distance is 

defined as the minimum cost of operations for transferring one tree to another (Cording 

and Lyngby 2011). Tree edit distances can be further divided into different sub-categories 

in terms of distinct mapping constraints including top-down, bottom-up, isolated subtree, 

etc. (Zhai and Liu 2006). Müller-Molina et al. (2009) propose a tree distance function with 

multisets, which are sets that allow repetitive elements. Based on multiset operations, they 

define a similarity measure for multisets. They achieve this by converting a tree into two 

multisets, with one multiset including complete subtrees and another consisting of all the 

nodes without children. Connor et al. (2011) develop a bounded distance measurement for 

comparing tree structure based on Shannon’s entropy equations. Buttler (2004) analyses 

the drawbacks of tree edit distance similarity, tag similarity, and Fourier transform 

similarity. Then he proposes path similarity to measure the similarity of the document tree 

between two distinct documents. Although the above achievements on tree similarity are 

significant, the theory cannot be used directly on web page similarity research. The main 

reason is that the theme of tree similarity has always been structural similarity. However, 

our focus is on content similarity, in spite the obvious connection between structural and 

content similarity. 

Web page classification is an important topic relevant to web page similarity 

analysis. Hernández et al. (2014) explore a classification method based on URLs and 

develop an algorithm to produce URL-based web page classifiers that are used to perform 

enterprise web page classification. Onan (2015) combine various classifiers to enhance 

existing classification models by investigating different feature selection algorithms, 

ensemble approaches, and classification methods. Lee et al. (2015) introduced a simplified 
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swarm optimization (SSO) algorithm for the purpose of obtaining the best weights for each 

feature in their data training process such that they can use the best weights in classifying 

the new web pages. 

3 The Block Tree 

Two major ways to represent a web page for visual similarity evaluation are the 

screen shot image and the DOM tree. The former holds all visible details, but fails to 

preserve the hierarchical clues. Although the later contains both visible and invisible details, 

the invisible details have no contribution to visual similarity. This chapter combines the 

advantages of the above two methods and proposes a new web page representation method, 

which is referred to as the block tree. It extracts only visible DOM elements and merges 

these elements into separate groups according to their semantic meanings. 

Definition 1 (Block Tree): Given a web page 𝑊𝑃, the block tree 𝐵𝑇 of 𝑊𝑃 is a 

finite set of nodes, where each node 𝑛 (that is, the block) indicates a group of semantically 

related visible elements 𝐸 from the DOM tree 𝐷𝑇 of 𝑊𝑃 (𝐵𝑇 = {𝑛|𝑛 ← 𝐸, 𝐸 ⊂ 𝐷𝑇}) and 

all the blocks follow the visual hierarchy of 𝑊𝑃. 

To construct blocks, we merge separate render objects into semantically related 

groups based on the Gestalt laws of grouping (Koffka 1955). 

Definition 2 (Render Object): Given a web page 𝑊𝑃, the render object maps to 

a visible DOM element 𝑒 of the DOM tree 𝐷𝑇 of 𝑊𝑃. The object contains all visible CSS 

properties of 𝑒 as the visual features and serves as the merging candidates to build the 

blocks of the block tree 𝐵𝑇. 
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According to the above definitions, only the visible DOM elements are considered 

and the invisible DOM elements are ignored during the construction of the blocks. The 

visual features of a render object refer to its geometric properties (left, top, width, and 

height) and all visible CSS properties. Note that invisible CSS properties, such as 

“margin” or “padding”, are not included. This is because they do not include any visual 

information of the web page. In addition, the semantic meaning of the text is not included, 

owing to their weak effect on the web page visual similarity. For example, two pieces of 

text with the same meaning but written in different languages will be recognised as 

different text by way of comparing textual strings, but will be regarded as the same text if 

using the semantic meaning as the criteria. 

3.1 Construction of Blocks by Gestalt Laws of Grouping 

The Gestalt laws of grouping explain a human’s mechanism for perception. To 

construct each block for the block tree, these laws need to be translated into computer 

compatible rules (Stevenson 2012; Xu and Miller 2015). 

 The Gestalt law of simplicity indicates that humans tend to organise objects into 

the simplest representation. In a web page, the simplest representation of content 

are the DOM elements. Taking “google.ca” as an example, Figure 3.1 shows its 

home page. In the figure, the middle image above the search box contains multiple 

elements (i.e., the text “GOOGLE” is the title and the three columns are the texts, 

images, and animations, respectively). However, when we read the whole web page, 

we treat it as one entire image rather than several separated ones. As such, to 
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interpret this law, we consider the render object which maps to the DOM element 

as the smallest unit, and it cannot be further split. 

 

Figure 3.1 Home Page of “Google.ca” 

 The Gestalt law of closure states that humans tend to perceive incomplete shapes 

as complete ones. Because child DOM elements overlap their parent elements, 

many of the render objects are not completely shown in the final web page. For 

example, in Figure 3.2 (the home page of “twitter.com”), the upper right part of 

the background image is covered by two log-in boxes, but they are not regarded as 

two holes. Instead, our minds still believe the background image is complete. That 

is, the render object remains as a complete rectangle. Herein, we construct all render 

objects as complete rectangles rather than irregular shapes according to this law. 
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Figure 3.2 Home Page of “Twitter.com” 

 The Gestalt law of proximity illustrates that humans tend to group close objects 

together while separate distant objects apart. Based on this law, we merge render 

objects into different blocks by distance. In a series of render objects, if any pair of 

siblings have a larger distance than others, they should be put into separate groups. 

For example, as shown in Figure 3.3a, the top two objects are grouped together, 

the third and the fourth objects from the top are put into a second group, and the 

bottom object belongs to a third group. The dimensions of the render objects, 

compared with the gap, are commonly significant in web pages, so it cannot be 

ignored in calculating the proximity. The Hausdorff distance (HD) (Huttenlocher 

1993; Dubuisson and Jain 1994; Chaudhuri and Rosenfeld 1999) takes the 

dimensions into consideration, but it is not precise enough. Therefore, the 

normalised Hausdorff distance (NHD), a variant of HD, is proposed. The details 

are discussed in Section 3.3. 
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Figure 3.3 Gestalt Laws of Proximity, Similarity and Continuity 

 The Gestalt law of similarity describes that humans perceive similar objects as a 

single group. Similarity among render objects includes background similarity, 

foreground similarity (text similarity) and size similarity. Meanwhile, it is 

evaluated by the visual features. Note that shape similarity is not considered 

because all the render objects are complete rectangles. In a series of render objects, 

if anyone has a different similarity value, then it belongs to a different group from 

the others. As shown in Figure 3.3b, the five objects are grouped into three groups 

in terms of styles. Specifically, the top two objects are in one group, the next two 

objects are included in a second group, and the bottom one belongs to a third group. 

In colour and image similarity comparison, it is not correct to simply compare the 

CSS value string. Instead, we compare the actual colour and image difference. The 

details are discussed in Section 3.4 and 3.5. 

 The Gestalt law of continuity indicates that humans tend to group together objects 

that are aligned. This law is straightforward during the translation: if any render 

(a) Proximity (b) Similarity (c) Continuity 
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object is not aligned with its siblings, then it belongs to a different group. So 

according to Figure 3.3c, the five objects are split into three groups, namely the top 

two, the next two, and the bottom one. 

 The Gestalt law of common fate argues that humans are prone to include the objects 

with the same motion trend in the same group. However, once a web page is fully 

loaded, the major factor that causes web page motion is the “scrolling behaviour”. 

As such, we only consider the scrolling behaviour as the motion trend. When the 

user scrolls the page, all the content will scroll accordingly. If any render object 

does not scroll in the same way with its siblings, then it belongs to a different group. 

For example, the lower banner marked by the black ellipse in Figure 3.4(the home 

page of “ubuntu.com”) always hangs at the bottom even when the use scrolls the 

page, so its scrolling behaviour is not consistent with others. This kind of behaviour 

can be verified by the CSS property “position”. 

 The Gestalt law of symmetry illustrates humans’ tendency of perceiving symmetric 

objects as a single group, even when they are far from each other. This law rarely 

appears in web pages; hence we will omit it from the discussion in the chapter. 

 The Gestalt law of past experience indicates that humans tend to interpret objects 

according to the past experience. This law requires a higher level of cognations 

which does not belong to the field of web page analysis, so we will omit this law 

as well. 

Among all the above six Gestalt laws, the first two shows us how to extract render 

objects from the DOM tree, and the remaining four regulates the way of merging the 
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extracted render objects into groups (that is, the blocks in the block tree) by the visual 

features. 

 

Figure 3.4 Home Page of “Ubuntu.com” 

3.2 Construction of the Block Tree 

The block tree takes the previously merged blocks as tree nodes, and follows the 

DOM tree’s hierarchy to organise these nodes. At the beginning, the first visible DOM 

element is the “BODY”, so the root node of the block tree will be a block that holds it. 

Although sometimes a BODY is invisible, the page will still be drawn by the browser on a 

white background, leaving the transparent BODY visible. Next, we follow the bottom up 

rule. From the root block onwards, all the direct child render objects of a block are 

evaluated by the Gestalt laws and split into one or more groups. Each of the laws are then 

applied to create a block. These blocks will maintain their hierarchy in the DOM tree. 
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However, if a DOM element is invisible but its direct children are visible, then the parent 

of the children’s corresponding blocks will all point to the parent block of the invisible 

DOM element. 

3.3 Hausdorff Distance and Normalised Hausdorff Distance 

The HD between two render objects 𝑅1 and 𝑅2 can be calculated by (3-1) and (3-

2) following the two steps. 

1) Hausdorff distance from 𝑅1 to 𝑅2 refers to the maximum value of all distances from 

any point 𝑟1 in 𝑅1 to its nearest point in 𝑅2: 

 ℎ𝑑(𝑅1, 𝑅2) = sup
𝑟1∈𝑅1

inf
𝑟2∈𝑅2

‖𝑟1 − 𝑟2‖ , (3-1) 

where, 𝑅1 and 𝑅2 are the two render objects; 𝑟1 and 𝑟2 refer to any points in 𝑅1 and 

𝑅2 , respectively; sup and inf calculate the maximum and minimum value of a 

given set, respectively; and ‖𝑟1 − 𝑟2‖ calculates the Euclidian distance between 𝑟1 

and 𝑟2. 

2) Hausdorff distance between 𝑅1 and 𝑅2 refers to the maximum value of all distances 

from any point in a render object to its nearest point in the other render object: 

 𝐻𝐷(𝑅1, 𝑅2) = max{ℎ𝑑(𝑅1, 𝑅2), ℎ𝑑(𝑅2, 𝑅1)} . (3-2) 

As shown in Figure 3.5, 𝑅1 and 𝑅2 are two squares both of the size 50×50 and 

share a same vertical side; 𝑅3 and 𝑅4 are another two squares both of the sized 10×10, and 

their bottom sides are in the same line while the horizontal distance between their closest 

vertical sides are 40. According to (1), ℎ𝑑(𝑅1, 𝑅2) equals to 50, which is the distance 
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between 𝑎1 and its nearest point in 𝑅2 (that is, 𝑎2). Similarly, ℎ𝑑(𝑅2, 𝑅1), ℎ𝑑(𝑅3, 𝑅4) and 

ℎ𝑑(𝑅4, 𝑅3) equals to the distance between 𝑑2 and 𝑑1, 𝑎3 and 𝑎4, 𝑑4 and 𝑑3, respectively. 

Therefore, according to (2), both 𝐻𝐷(𝑅1, 𝑅2) and 𝐻𝐷(𝑅3, 𝑅4) are 50. 

 

Figure 3.5 HD Inconsistency 

In the above example, it seems that the first pair of squares looks closer to each 

other than the second pair. However, their HDs are the same. Therefore, using HD as the 

proximity measurement will cause contradictions and inaccuracies. In fact, this paradox is 

caused by the dimensions of the render objects. Hence, it can be eliminated by normalising 

the value of HD. By doing this, we obtain the normalised HD, which is denoted by NHD. 

When a render object is located inside of another render objects, its NHD is 0; otherwise it 

is the maximum of the normalised ℎ𝑑, as shown in (3-3): 

 𝑁𝐻𝐷(𝑅1, 𝑅2) = max {
ℎ𝑑(𝑅1,𝑅2)

𝑑𝑅1

,
ℎ𝑑(𝑅2,𝑅1)

𝑑𝑅2

} , (3-3) 

where, 𝑑𝑅1
 is the dimension of render object 𝑅1, and 𝑑𝑅2

is the dimension of render object 

𝑅2. 

The dimension varies according to the relative position of the two render objects. 

An example is illustrated in Figure 3.6. To determine 𝑑𝑅0
 , we split the surrounding region 
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of 𝑅0 by the dashed lines. 𝑅1 is inside of 𝑅0, while 𝑅2, 𝑅3 and 𝑅4 cover the north, west, 

and corner regions of 𝑅0, respectively. In this circumstance, 𝑁𝐻𝐷(𝑅0, 𝑅1) is equal to 0; 

when calculating the values of ℎ𝑑(𝑅0, 𝑅2), ℎ𝑑(𝑅0, 𝑅3), and ℎ𝑑(𝑅0, 𝑅4), 𝑑𝑅0
 represents the 

height, width, and diagonal of 𝑅0, respectively. 

 

Figure 3.6 NHD Dimensions 

3.4 Colour Translation and Colour Difference 

In spite of RGB colour space being adopted by most web pages, it is difficult to 

define a universally acceptable RGB colour difference. On the other hand, the CIE-Lab 

colour space has provided a standard colour difference solution – the ∆𝐸00 (Luo et al. 2001; 

Sharma, et al. 2005), as shown in (3-4): 

 ∆𝐸00 = √(
∆𝐿∗

𝑘𝐿𝑆𝐿
)

2

+ (
∆𝐶∗

𝑘𝐶𝑆𝐶
)

2

+ (
∆𝐻∗

𝑘𝐻𝑆𝐻
)

2

+ 𝑅𝑇 (
∆𝐶∗

𝑘𝐶𝑆𝐶
) (

∆𝐻∗

𝑘𝐻𝑆𝐻
) , (3-4) 

where, ∆𝐿∗, ∆𝐶∗ and ∆𝐻∗ are the lightness, chroma and hue differences, respectively; 𝑆𝐿, 

𝑆𝐶  and 𝑆𝐻  are the weighting functions of the lightness, chroma and hue components, 

respectively; 𝑘𝐿 , 𝑘𝐶  and 𝑘𝐻  are the parametric factors; and 𝑅𝑇  is the interactive term 

between the hue and chroma differences. 
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Colours can be converted from RGB space to CIE-Lab space. Once the conversion 

is completed, a threshold for distinguishing the two colours is necessary. Liu et al. have 

studied the concept of what constitutes two different colours via extensive experimentation; 

they have concluded that a threshold can be set to 3.30 (2013) to distinguish between two 

colour samples. Therefore, we use their value to identify our colour similarity. 

3.5 Image Similarity Comparison 

The browser parses the HTML and CSS before applying them in a web page, but it 

draws and displays images directly without parsing the content. This leaves the extracting 

of images’ visual features from the page impossible. Hence, to compare image similarity, 

we take the raw (CIE-Lab) images as the direct input. A measurement for evaluating the 

similarity/difference of arbitrary objects is the normalised information distance (NID) 

(Bennett, et al., 1998). However, it is not computable (Terwijn, et al. 2011) because an 

“ideal” compressor (i.e., the compressor which provides the same result as the single object 

when compressing two identical objects) does not exist. 

A potential replacement of NID is the normalised compression distance (NCD), 

where the compressor must be lossless. The NCD is calculated by (3-5) (Li, etc. 2004): 

 𝑁𝐶𝐷(𝑋, 𝑌)  =  
𝐶(𝑋𝑌) − min{𝐶(𝑋),𝐶(𝑌)}

max{𝐶(𝑋),𝐶(𝑌)}
 , (3-5) 

where, 𝑋  and 𝑌  are the two images; 𝑋𝑌  is the concatenation of 𝑋  and 𝑌 ; and 𝐶(𝑞) 

calculates the length of the lossless compression of 𝑞. 

The value of NCD is 0.0 if two images are identical, and 1.0 if they are completely 

different. Similar with ∆𝐸00  in representing colour difference, a proper threshold is 
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necessary to decide the image similarity. Roshabin and Miller (2011) have undertaken 

studies on the empirical threshold, and we adopt their findings in this chapter: the 

compression should be implemented by a LZMA compressor, and a threshold of 0.25 

provides an adequate decision point. 

4 Visual Similarity between Two Web Pages 

After web pages being represented by the block trees, the similarity of a pair of web 

pages can be determined by the similarity of their block trees. This similarity can be 

determined by the tree edit distance (TED) (Tai, K. C. 1979) because the block trees are 

labelled and ordered. The order of the block tree nodes follows the appearance of them, 

which is essentially follow the appearance of the render objects, and the label of a block is 

its visual feature set. 

4.1 Block Tree Edit Distance 

Let 𝑇 be a block tree, |𝑇| be the size (that is, number of nodes), 𝑡𝑖 be the ith node 

in the post-order traversal, and 𝑇𝑝 and 𝑇𝑞 be two different block trees, respectively. TED 

of 𝑇𝑝 and 𝑇𝑞 is then defined as the minimum cost of edit operations when shifting from 

𝑇𝑝 to 𝑇𝑞. In this chapter, we assume costs of all the edit operations are the same and take 

the value of 1. In this case, the TED reflects the number of edit operations. 

The edit operations include insertion, deletion, and relabel. When transferring 𝑇𝑝 

to 𝑇𝑞, if a node 𝑡𝑖
𝑝

 in 𝑇𝑝 has no corresponding node 𝑡𝑗
𝑞
 in 𝑇𝑞, then the edit operation is 

deletion. If 𝑡𝑗
𝑞
 has no corresponding node 𝑡𝑖

𝑝
, then it is insertion. If a pair of corresponding 

nodes 𝑡𝑖
𝑝

 and 𝑡𝑗
𝑞

 exist but their labels are different, then it is a relabel operation. The 
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mapping of the corresponding nodes, denoted by 𝑚(𝑡𝑖
𝑝

, 𝑡𝑗
𝑞

), is not arbitrary. Rather, it 

should follow a series of rules (Shahbazi and Miller 2014). Considering two mappings 

𝑚(𝑡𝑖1

𝑝 , 𝑡𝑗1

𝑞 ) and 𝑚(𝑡𝑖2

𝑝 , 𝑡𝑗2

𝑞 ), the rules include: 

 the one-to-one rule – a node of the first tree can only map to one node of the second 

tree: 𝑗1 = 𝑗2 ⇔ 𝑖1 = 𝑖2; 

 the horizontal-order-preserving rule – 𝑡𝑗1

𝑞
 locates before 𝑡𝑗2

𝑞
 ⇔ 𝑡𝑖1

𝑝
 locates before 𝑡𝑖2

𝑝
. 

 the vertical-order-preserving rule – 𝑡𝑗1

𝑞
 is an ancestor of 𝑡𝑗2

𝑞
 ⇔ 𝑡𝑖1

𝑝
 is an ancestor of 

𝑡𝑖2

𝑝
. 

By default, TED calculates the structural similarity of two trees. However, what we 

concern about is the visual similarity induced by the visual features. Hence, in the block 

tree, we encode the visual features into the labels, and consequently, during the block tree 

edit distance (B-TED) calculation, the relabel operation will compare the blocks “visually”. 

For instance, when mapping one block in a block tree to another block in a second block 

tree, if the first block has different visual features with the second block, then it is relabelled 

after mapping with a relabel operation; it remains the same otherwise. The model of block 

tree construction and visual similarity calculation is illustrated by Figure 3.7. 

 

Figure 3.7 The Calculation Model 
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4.2 Case Study 

This section investigates the block tree and visual similarity model through a series 

of test cases. The first test case is the home page of the electrical and computer engineering 

department from the university of Alberta (ECE, http://www.ece.engineering.ualberta.ca/). 

The original page, shown in Figure 3.8, includes various blocks, such as the left navigation 

menu, the big image under the department banner, the three columns of “news and events”, 

and the footer. Figure 3.9 illustrates the page after merging. Different background colours 

and boarder shadows are utilized to indicate different blocks. For example, if two render 

objects are marked with the same colour, they belong to the same block. 

Two conclusions can be made from Figure 3.8 and Figure 3.9. Fist, most of the 

render objects are merged into blocks. For example, the background of the menu items (i.e., 

the objects framed with the white-edged rectangle) above the department banner are 

marked with green, and that of all the footer content is marked with light pink. Second, 

some render objects are not identified correctly, such as the left navigation menu (i.e., the 

object framed with the red-edged round rectangle). It is obvious that the menu should go 

to the same block, but they are marked in different colours. This is because each menu item 

is a link (an “A” DOM element) under a list item (a “LI” DOM element) according to the 

hierarchy, under which each A has the same size and position with its parent “LI”. 

Therefore, each “LI” and “A” are marked with the background colour, resulting in invisible 

LI block from the final screenshot image. In fact, content in the right of the three columns 

(the right red rounded rectangle) are in the same case, but the margins (i.e., the uncovered 

background by the three columns) eliminate this display issue by showing the content 

covered by the paragraphs. In fact, this problem happens whenever the foreground text and 
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the background colours/images are displayed in different DOM elements and is a limitation 

of the current model. 

 

Figure 3.8 Case Study: The Home Page of ECE 

The block tree of the above web page is partly shown in Figure 3.10. Each line in 

the figure indicates a single block, where the full visual features are saved for visual 

similarity evaluation. Different indentions reflect the hierarchy. 
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Figure 3.9 Case Study: The Home Page of ECE (marked) 

[BODY]: left=0,top=0,  # visual features are partly shown 

 |- [FORM]: left=0,top=0, #... 

 |   |- [DIV,FOOTER]: left=0,top=0, #... 

 |   |   |- [HEADER,SECTION]: left=0,top=0, #... 

 |   |   |   |- [DIV,DIV]: left=0,top=0, #... 

 |   |   |   |   |- [DIV]: left=157,top=0, #... 

 |   |   |   |   |   |- [A]: left=157,top=10, #... 

 |   |   |   |   |   |   |- [SPAN]: left=-99833,top=9, #... 

 |   |   |   |   |   |- [NAV,DIV]: left=336,top=35, #... 

 |   |   |   |   |   |   |- [DIV]: left=336,top=34, #... 

 |   |   |   |   |   |   |   |- [UL]: left=336,top=34, #... 

# ... ... 

Figure 3.10 Part of the Block Tree 
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Another two web pages are analysed to evaluate the visual similarity, including the 

home pages of the University of Alberta (UA, http://ualberta.ca/), and that of the faculty of 

graduate studies and research (FGSR, https://uofa.ualberta.ca/graduate-studies), as shown 

in Figure 3.11 and Figure 3.12, respectively. 

Among the three web pages, the last two pages are more similar with each other in 

both theme (such as the colours, fonts, and image styles) and layout settings. More 

specifically, they both have function menus and green banner images at the top; navigation 

menu below the green banner, and green footer at the bottom; the central pages are mixed 

with images and paragraphs; the news and events sections have three columns, where the 

left columns are the wildest and the right columns are the narrowest. In comparison, the 

first page owns a blue theme, a navigation menu locating at the left, and a central page with 

image and texts separated. Table 3.1 shows the sizes of the “BODY” sub DOM tree, the 

visual tree (that is, the DOM tree of visible elements) and the block. 

Table 3.1 Tree Sizes of the Three Web Pages 

Web Page DOM Tree Visual Tree Block Tree 

1 235 157 88 

2 420 278 128 

3 831 233 114 
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Figure 3.11 Case Study: The Home Page of UA 
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Figure 3.12 Case Study: The Home Page of FGSR 
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From the table, although the second two pages are similar, the size difference 

between their DOM trees is larger than that between the first two DOM trees. Also, the 

size difference between the second two pages’ visual trees is smaller than that between the 

rest pairs. These two facts prove again that only the visible content of a web page 

contributes to the visual similarity. Hence, the DOM tree is not suitable for visual similarity 

evaluation, owing to abundant invisible elements it contains. In addition, the block tree size 

difference between the last two pages is smaller than that between the first and the second 

as well as that between the first and the third, which indicates the block tree reflects visual 

similarity. 

Calculated by the three block trees, B-TEDs are: 121 between web page 1 and 2, 

128 between page 1 and 3, and 108 between page 2 and 3. None of these values is 0, which 

represents that the three block trees are different from each other. Due to the smallest B-

TED being witnessed, page 2 and 3 are most similar. Meanwhile, B-TED between page 1 

and 2 is smaller than that between page 1 and 3, indicating that page 2 is more similar with 

page 1 compared to page 3. 

5 Experiments 

The experiments are designed to evaluate whether B-TED is an effective 

measurement for web page visual similarity analysis. First, a set of web pages are crawled 

as the test cases and split into subsets randomly. Then the aforementioned model is applied 

to all pairs of test cases within each subset to calculate the B-TEDs. The values of B-TEDs 

indicate the similarity between web pages; and the pre-classified results are exploited to 

obtain the values of precision, recall, and accuracy rates. 
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5.1 Test Set 

The test cases are generated from the global top sites of Alexa 

(http://www.alexa.com/, these top sites and links were retrieved on March 27, 2015). With 

the home pages of the world’s top 500 websites as the initial pool, we crawl all direct links 

to generate a final test case pool, which includes 78298 links. All these links are unique in 

terms of the identifying URL, and are currently active. Different URLs, however, may have 

similar content. For example, the pages of “Gmail” and “Blogger” are almost the same 

except one word, because both of the two links are redirected to the login page of a Google 

account. Asian websites tend to contain lots of links in a single page (sometimes even more 

than 1000 links, such as “163.com”), leading to a high probability of domain sharing among 

Asian web pages in the test pool. Many western websites’ home pages, on the other hand, 

are very concise and contain fewer links. 

Cross-comparing each pair of all the test cases requires approximately 6.13 billion 

comparisons, resulting in infeasible experiment. Therefore, we choose 500 test cases from 

the pool randomly. Figure 3.13 describes the distribution of the 500 test cases, with the x-

axis representing the web sites and the y-axis illustrating the number of selected pages for 

each web site. As shown in the figure, these test cases cover 109 web sites, and some of 

them contain more web pages than others, with an average of 4.59 pages per web site. For 

instance, the 88th web site (“bitauto.com”) includes the most pages, which is 66; and 47 

web sites only possess one page each. 
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Figure 3.13 The Distribution of Randomly Selected Web Pages per Web Site 

Figure 3.14 illustrates the sizes of all the block trees (i.e., the number of nodes per 

block tree). Among them, the largest block tree has 1237 nodes, and the smallest contains 

only 4 nodes. The mean size of all the block trees is 346.38. 

 

Figure 3.14 The Distribution of Block Tree Size 

5.2 Experimental Methodology 

It is infeasible to cross-compare the visual similarity between web pages manually, 

this is because there will be (500
2

) = 142750 pairs of pages. Therefore, in the experiment, 

we build a web classification model to identify the visual similarity automatically. This 

classification model runs a naive Bayes classifier (McCallum and Nigam 1998) and follows 
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a 10-fold cross-validation (Refaeilzadeh et al. 2009) routine. Specifically, in the 

experimental preparation, the test set is first divided into 10 subsets randomly and equally. 

The next step is to prepare the feature set for the classifier. For each subset, there are (50
2

) 

= 1225 pairs of web pages, so the feature vector contains 1225 records, each of which 

includes the block trees of the two web pages as well as the B-TED values between them. 

Also, we set the category variable as a Boolean with “YES” denoting similar and “NO” 

representing different. 

The category variable is determined manually. In each subset, all the web pages are 

read by five people and then split into several groups, where visually similar pages are put 

in the same group, while different pages are placed into different groups. The split 

decisions are made purely by the comprehensive understanding of the five people, so we 

can use it to evaluate how well the algorithm simulates human perception. For example, 

the home pages of “google.ca” and “google.fr” are similar so they are put in the same group; 

and conversely, the home page of “google.ca” is visually different from that of 

“yahoo.com”, so they are sorted into different groups. During manual classification, it is 

not reasonable to make the five people identify web page similarity following rules, 

because any given rule will affect people’s way of thinking, leading to the inaccurate 

judgement and thus disrupting the manual classification. After pre-classification, if two 

web pages are in the same group, then the corresponding category of this feature record 

will be “YES”; and vice versa. Inter rater reliability of the five people are evaluated by 

Cohen’s Kappa, where the results are shown in Table 3.2. According to the table and Table 

2.4, 𝜅 of each two of the five raters are all within the “substantial” range (and higher) for 

all the 10 subsets, indicating the five people all agree with each other. 



73 

Table 3.2 𝜅 of Each Two Raters’ Evaluations 

Raters Subsets 

A B 1 2 3 4 5 6 7 8 9 10 

1 2 0.6938 0.7628 0.7736 0.7720 0.7092 0.8147 0.7963 0.7792 0.7369 0.7620 

1 3 0.8034 0.7460 0.8099 0.7386 0.7501 0.7127 0.7797 0.7763 0.7690 0.7764 

1 4 0.7202 0.7679 0.8091 0.7172 0.8083 0.7070 0.7806 0.7675 0.8028 0.7113 

1 5 0.7523 0.8067 0.7784 0.8043 0.8075 0.7954 0.7702 0.7454 0.7648 0.7785 

2 3 0.7692 0.8139 0.8075 0.7561 0.7737 0.8099 0.7797 0.7766 0.7723 0.8099 

2 4 0.7460 0.7188 0.7990 0.6973 0.7741 0.7675 0.7927 0.6959 0.7684 0.7794 

2 5 0.8138 0.7160 0.6974 0.8155 0.7669 0.7999 0.7187 0.7706 0.7943 0.7742 

3 4 0.8059 0.8083 0.8116 0.7708 0.7785 0.7266 0.7728 0.7684 0.8052 0.7444 

3 5 0.7714 0.7775 0.7074 0.7556 0.8115 0.6987 0.7657 0.8067 0.7999 0.7468 

4 5 0.7613 0.8067 0.7000 0.8115 0.7396 0.7999 0.8139 0.7710 0.8025 0.8099 

10 rounds are involved in the cross-validation process of the experiment. In each 

round, nine subsets are selected as the training sets, and the last subset serves as the 

validation set. The naive Bayes classifier is first trained by all the feature records and the 

corresponding categories from the training set. Then it reads the feature vector of the 

validation set and makes the prediction of a category vector. Finally, efficiency is obtained 

by comparing the prediction result with the pre-classification result. The experimental 

methodology is illustrated in Figure 3.15. 
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Figure 3.15 Experimental Methodology 

5.3 Experimental Results 

The B-TED distribution of the 1225 records in subset 1 is displayed in Figure 3.16. 

Two findings can be concluded from this figure. First, B-TED can be used as a visual 

similarity measurement, owing to the fact its different values towards with similar pages 

and different pages. To be specific, B-TED values between similar web pages (the “YES” 

category) are smaller than that between different web pages (the “NO” category). Second, 

the threshold to determine web page similarity does not exist, because there is no clear gap 

between the two categories Distributions of the remaining nine subsets are similar, which 

reveals the above findings as well. 
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Figure 3.16 B-TED Distributions of Subset 1 

Table 3.3 depicts more details about the B-TED values. The maximum B-TED of 

each subset ranges from 1037 to 1542, and the minimum value is between 24 and 112. 

With respect to the mean values, the “YES” cases have values from 662.90 to 811.89, and 

the “NO” test cases take the values from 309.35 to 357.09. The latter is approximately 300 

smaller than the former, indicating that although the obvious threshold does not exist, the 

visual similarity can still be identified by the B-TED. 

Table 3.3 B-TED Value Details 

Subset Maximum Minimum 
Mean of “YES” 

cases 

Mean of “NO” 

cases 

1 1490 54 764.24 355.03 

2 1233 42 758.12 309.35 

3 1292 32 736.67 352.26 

4 1174 78 731.92 312.45 

5 1373 68 811.89 333.61 

6 1037 112 690.02 348.86 

7 1093 27 662.90 343.56 

8 1085 24 666.78 317.45 

9 1052 80 663.64 357.09 

10 1542 82 799.02 346.90 
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To evaluate the model’s performance, the precision, recall, and accuracy of the 

classification are collected by (3-6). 

 

𝑃𝑖  =   
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
               

𝑅𝑖  =   
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
               

𝐴𝑖  =  
𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
 

 , (3-6) 

where, 𝑖 denotes the subset number; 𝑃𝑖, 𝑅𝑖, and 𝐴𝑖 are the precision, recall, and accuracy 

of the classification, respectively; 𝑇𝑃𝑖 , 𝑇𝑁𝑖 , 𝐹𝑃𝑖 , and 𝐹𝑁𝑖  are the numbers of “true 

positive”, “true negative”, “false positive”, and “false negative” classifications, 

respectively: 

 if two web pages are similar and correctly identified by the classifier, then they are 

referred to as true positive (TP); 

 if two web pages are different and correctly identified, then they are referred to as 

true negative (TN); 

 if two web pages are different but incorrectly identified as similar, then they are 

referred to as false positive (FP); 

 if two web pages are similar but incorrectly identified as different, then they are 

referred to as false negative (FN). 

From the experimental results shown in Table 3.4, it can be seen that round 6 

demonstrates the best performance with precision of 94.72% and accuracy of 98.29%. 

Conversely, the first trial demonstrates the poorest performance with a precision of 74.38%, 

and an accuracy of 87.27%. This is caused by the high FP rate of the corresponding 

predictions. This problem also appears in round 10. There are more TPs and TNs than FPs 
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and FNs in each of the 10 rounds. Also, the overall accuracy is 94.43%, which proves that 

B-TED is an effective measurement for visual similarity. Meanwhile, FPs are non-zero, 

showing that some pairs of different pages are incorrectly identified as similar. Conversely, 

FNs are all zero, which reveals that there are no pairs of similar pages identified as different. 

The probably reason for this is that people tend to focus on the overall sketch when looking 

for similarity, and pay attention to details when searching for differences. Therefore, if two 

pages are similar, the probability that they are identified as different is very low; conversely, 

if they are different, there is possibility that they are judged as similar. 

Table 3.4 Experimental Results 

Round TP TN FP FN 
Precisio

n 
Recall 

Accurac

y 

1 453 616 156 0 74.38% 100.00% 87.27% 

2 619 528 78 0 88.81% 100.00% 93.63% 

3 592 554 79 0 88.23% 100.00% 93.55% 

4 682 505 38 0 94.72% 100.00% 96.90% 

5 732 432 61 0 92.31% 100.00% 95.02% 

6 786 418 21 0 97.40% 100.00% 98.29% 

7 810 390 25 0 97.01% 100.00% 97.96% 

8 659 530 36 0 94.82% 100.00% 97.06% 

9 734 460 31 0 95.95% 100.00% 97.47% 

10 593 475 157 0 79.07% 100.00% 87.18% 

Average 666.00 490.80 68.20 0 90.27% 100.00% 94.43% 

6 Conclusion 

Modern web pages are embedded with abundant information, such as images and 

streaming media. Hence, traditional text-based similarity evaluation methods are 

problematic; however, similarity based on visual information is a promising orientation for 

modern web pages. 

In this chapter, a novel approach to this problem is proposed. The “block tree” 

model is introduced to represent a web page visually. This is done by retrieving visual 

information from the web page and interpreting the Gestalt laws of grouping to merge 
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related content. A normalised Hausdorff distance is introduced to evaluate proximities; the 

CIE-Lab colour space and its colour difference are used to find the colour similarities; and 

the normalised compression distance is used to calculate image similarities. A page 

similarity classification model is then built based on the block tree edit distance (B-TED). 

When calculating B-TED, we label each block tree node with all its visual features, and 

compare the corresponding nodes by them. 

An experiment is preformed utilizing a test set built from randomly crawling 

popular web sites. To evaluate the correctness of B-TED as a measurement for visual 

similarity, a 10-fold cross-validation is conducted. The overall precision, recall, and 

accuracy in the experiment are 90.27%, 100%, and 94.43%, respectively. This implies that 

B-TED is a promising measurement for web page similarity evaluation, and provides 

satisfactory identification results. 

In spite of the contributions, limitation still exists for the proposed methodology. 

That is, the hierarchy of the block tree does not precisely reflect the visual layout when 

foreground text and background colours/images are separated. In the future work, a proper 

solution for this limitation will be the first task. 

To the best of our knowledge, this is the first time that the Gestalt laws of grouping 

have been used to investigate web page similarity. Therefore, no similar study exists in the 

literature. In the future, we plan to investigate and validity our interpretation of these laws 

via experiments which explored the effectiveness of each law independently. 
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CHAPTER 4  Cross-Browser Differences 

Detection based on an Empirical Measurement for 

Web Page Visual Similarity6 

Abstract 

This chapter aims to develop a method to detect visual differences introduced into 

web pages when they are rendered in different browsers. To achieve this goal, we propose 

an empirical visual similarity measurement by mimicking human mechanisms of 

perception. The Gestalt laws of grouping are translated into a computer compatible rule 

set. A block tree is then parsed by the rules for similarity calculation. During the translation 

of the Gestalt laws, experiments are performed to obtain measurements for proximity, color 

similarity, and image similarity. After a validation experiment, the empirical measurement 

is employed to detect cross-browser differences. Experiments and case studies on the 

world’s most popular web pages provide positive results for this methodology. 

Keywords: Block Tree; Extended Subtree; Gestalt Laws of Grouping; Web Page Visual 

Similarity; Cross-Browser Differences Detection. 

1 Introduction 

Web applications, with web browsers as their carriers, have become an 

indispensable part of our life today. While we enjoy the convenience that different web 

                                                           
6 Xu, Zhen, and James Miller. “Cross-Browser Differences Detection based on an Empirical Measurement 
for Web Page Visual Similarity”. ACM Transactions on Internet Technology (in review). 
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browsers bring to us, we also face the problems that web pages are rendered differently 

across different web browsers. Cross-browser visualization issues, therefore, become 

prevalent, which affects user experience. In addition, they also cause maintenance issues 

for web designers. 

Cross-browser issues refer to cross-browser incompatibilities, which are 

differences in a web page’s appearances (i.e., visual features) or behaviors, or both, when 

it is displayed on different browsers (Choudhary, et al. 2013). This chapter will focus on 

the appearances of web pages. The first step (details can be found at Xu and Miller, 2015b) 

is to remove the invisible elements and CSS attributes of the web page from its DOM tree. 

The remaining visible elements are then grouped into different blocks by the Gestalt laws 

of grouping to finally construct “the block tree”. The Gestalt laws of grouping are originally 

used in psychology to account for people’s tendency of perceiving various objects as 

organized together (Wolfe et al. 2009; Banerjee 1994). In the second step, we propose an 

empirical visual similarity measurement to detect how similar (or different) a specified web 

page is, when it is rendered in two different browsers. The major contributions of this 

chapter include: 

1) it provides a numerical mechanism to translate the Gestalt laws of grouping into a 

set of computer-compatible rules; 

2) it presents a novel data structure to represent web page visual information; 

3) it develops an empirical measurement to evaluate web page visual similarity; and 

4) it applies the empirical measurement to detect cross-browser differences. 

The remainder of this chapter is organized as follows: Section 2 investigates the 

empirical translation of the Gestalt laws of grouping; Section 3 introduces an empirical 
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measurement for evaluating the visual similarity between web pages; Section 4 conducts 

experiments on detecting cross-browser differences. Section 5 reviews recent work; and 

Section 6 draws conclusions from the presented work. 

2 Translating Algorithm of the Gestalt Laws of 

Grouping 

2.1 Motivations and Goals 

The Gestalt laws of Grouping illustrate how people perceive objects. In this section, 

we attempt to translate these laws into a format that a computer can process within the 

domain of web pages. It should be noted that this task is significantly different from, and 

easier than, parallel efforts to translate these laws for general image processing applications. 

Analyzing the screenshot image of a web page will contain significant noise components, 

whereas using the DOM tree is effectively noise free. This is because the DOM tree stores 

actual content (such as text or videos) while screenshot image stores color values of each 

pixel. Also, the DOM tree includes the hierarchical information, thus relationships among 

different content components is preserved. It is argued that utilizing the actual content 

components and their relationships is essential to producing an accurate solution. 

The original Gestalt laws of grouping include eight items (each item represents a 

single law), i.e., the Gestalt laws of (a) simplicity, (b) closure, (c) proximity, (d) similarity, 

(e) continuity, (f) common fate, (g) symmetry, and (h) past experience (Stevenson 2012; 

Koffka 2013). In the context of web page similarity, the Gestalt laws of symmetry and the 

Gestalt laws of past experience are not employed. This is because the former considers 

symmetric elements that are in widely scattered locations (which are very rare in web 
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pages), and the latter refers to higher level of human perceptions (i.e., it requires knowledge 

that is beyond the scope of web page analysis). Hence, we focus here on the remaining six 

laws. 

2.2 Translating the Gestalt Law of Simplicity 

The Gestalt law of simplicity states that people tend to break down content into the 

simplest units when reading a web page. Although a web page can be split as small as a 

single pixel, we will not follow this method. This is because when we read the page, we 

focus on useful information such as a single image or a piece of text instead of pixels. The 

useful information corresponds to the DOM elements of a web page. 

Taking the home page of the IEEE (https://www.ieee.org/index.html) as an 

example, the logo contains three parts: the diamond figure, the big bold “IEEE”, and the 

phrase under them. Despite having different types and styles, they are considered as a 

single group rather than three unrelated items; this simplifies the process of reading and 

understanding. Based on this observation, we define DOM elements as the smallest units 

that cannot be further split during the process of web page analysis. 

2.3 Translating the Gestalt Law of Closure 

The Gestalt law of closure indicates that upper elements of a web page will cover 

lower elements, however, humans are prone to regard the lower elements as complete 

rectangles even if they are partially covered. Our brain fills the hole that is blocked by the 

upper elements. Use the home page of Facebook (https://www.facebook.com/) as the 

example, the login boxes cover the right part of the top ribbon, which makes the latter 

incomplete. Even though, we still perceive the ribbon as complete. According to this 
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observation, we treat each element as a full rectangle during the process of web page 

analysis. This also makes the representation much easier and thus is consistent with the 

Gestalt law of simplicity and human visual systems. 

2.4 Translating the Gestalt Law of Proximity 

The Gestalt law of proximity argues that we tend to put close elements of a web 

page into the same group and assign distant elements into different groups. Considering 

the home page of Facebook again, we perceive the two login boxes as related (regarded as 

a group), the five boxes regarding signup are related (regarded as a second group), and the 

three boxes under the “Birthday” are also related (regarded as a third group). However, any 

two elements in different groups are not related according to their distance relationships. 

(The words proximity and distance are used interchangeable in this chapter.) For a series 

of sibling elements, we calculate the proximity between every two adjacent elements. Then 

we group the adjacent elements together if their proximities are the same and split them 

into different groups otherwise. In order to find an appropriate mechanism to calculate the 

proximity of elements, we will investigate and compare available proximity calculation 

candidates documented in the literature. 

2.4.1 Proximity Candidates  

Two intuitive measurements for the proximity of rectangular objects are the 

centroid distance (CD) and the gap distance (GD). CD is the Euclidean distance between 

the centroids of the two rectangles; and GD denotes the distinct orthogonal distance 

between the four sides of them. 

 𝐶𝐷(𝑁1, 𝑁2) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 , (4-1) 
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 𝐺𝐷(𝑁1, 𝑁2) = max{𝑆𝐺𝑁1,2
h × 𝑑𝑖𝑠𝑡1,2

h , 𝑆𝐺𝑁1,2
v × 𝑑𝑖𝑠𝑡1,2

v } , (4-2) 

where 𝑁1  and 𝑁2  are the two rectangles; ( 𝑥1 ,  𝑦1 ), and ( 𝑥2 , 𝑦2 ) are the respective 

coordinates of the centroids of 𝑁1  and 𝑁2 ; 𝑑𝑖𝑠𝑡1,2
v  and 𝑑𝑖𝑠𝑡1,2

h  represent the distance 

between the closest vertical and horizontal sides of 𝑁1 and 𝑁2, respectively; and 𝑆𝐺𝑁1,2
v  

and 𝑆𝐺𝑁1,2
h  represent the corresponding signs. The parameters of GD are calculated 

through: 

 𝑆𝐺𝑁1,2
h = {

1,     |𝑥1 − 𝑥2| > (𝑤𝑖𝑑𝑡ℎ1 + 𝑤𝑖𝑑𝑡ℎ2) 2⁄

−1, otherwise
 ; 

 𝑆𝐺𝑁1,2
v = {

1,     |𝑦1 − 𝑦2| > (ℎ𝑒𝑖𝑔ℎ𝑡1 + ℎ𝑒𝑖𝑔ℎ𝑡2) 2⁄

−1, otherwise
 ; 

 𝑑𝑖𝑠𝑡1,2
h = min{|𝑙𝑒𝑓𝑡1 − 𝑙𝑒𝑓𝑡2|, |𝑙𝑒𝑓𝑡1 − 𝑟𝑖𝑔ℎ𝑡2|, |𝑟𝑖𝑔ℎ𝑡1 − 𝑙𝑒𝑓𝑡2|, |𝑟𝑖𝑔ℎ𝑡1 − 𝑟𝑖𝑔ℎ𝑡2|} ; 

 𝑑𝑖𝑠𝑡1,2
v = min{|𝑡𝑜𝑝1 − 𝑡𝑜𝑝2|, |𝑡𝑜𝑝1 − 𝑏𝑜𝑡𝑡𝑜𝑚2|, |𝑏𝑜𝑡𝑡𝑜𝑚1 − 𝑡𝑜𝑝2|, |𝑏𝑜𝑡𝑡𝑜𝑚1 −

𝑏𝑜𝑡𝑡𝑜𝑚2|} . 

However, these two distance measurements may lead to an inconsistent situation. 

For example, as shown in Figure 4.1a, the left two large rectangles are close to each other, 

and the right two small ones are more distant in the perceptual perspective. However, the 

calculated CDs of the two pairs are actually the same. Similar problem happens for GD, as 

shown in Figure 4.1b. 

This issue is owing to the dimensions of the two nodes being ignored. Therefore, 

an appropriate measurement should take size (i.e. width and height of the rectangle) into 

account. The Hausdorff distance (HD) satisfies this requirement (Huttenlocher et al. 1993). 

It denotes the maximum value of all distances from any point in one node to its nearest 

point in the other node, as shown in (4-3): 
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 𝐻𝐷(𝑁1, 𝑁2) = max{ℎ𝑑1,2, ℎ𝑑2,1} = max { sup
𝑛1∈𝑁1

inf
𝑛2∈𝑁2

‖𝑛1 − 𝑛2‖ , sup
𝑛2∈𝑁2

inf
𝑛1∈𝑁1

‖𝑛2 − 𝑛1‖}  ,(4-3) 

where 𝐻𝐷(𝑁1, 𝑁2)  is the HD between 𝑁1  and 𝑁2 ; ℎ𝑑1,2  is the HD from 𝑁1  to 𝑁2 ; 

‖𝑛1 − 𝑛2‖ calculates the Euclidean distance between two points 𝑛1 and 𝑛2; sup and inf 

calculate the maximum and minimum value of a given set, respectively. 

  
Figure 4.1 Contradictions between Calculation Distances and Perceptual Distances 

As shown in Figure 4.1c, although HD reflects size of rectangles, it fails to 

eliminate the inconsistency issues of CD and GD, Therefore, we choose the fourth 

candidate, which is the normalized version of HD – the relative Hausdorff distance (RHD). 

It is calculated by (4-4): 

 𝑅𝐻𝐷(𝑁1, 𝑁2) = max {
ℎ𝑑1,2

𝑟𝑑1
,

ℎ𝑑2,1

𝑟𝑑2
} , (4-4) 

where 𝑟𝑑1 and 𝑟𝑑2 are the relative dimensions that act as normalizing factors. The detail 

of calculation can be found at (Xu and Miller 2015a). 

2.4.2 Experiment and Discussion 

The experiment focuses on proximity’s influence on people’s visual perception, so 

we minimize other influencing factors (such as similarity and continuity) by controlling 

these parameters. Specifically, we create eight rectangles, the sizes and content of which 

(b) Gap Distance (a) Centroid Distance (c) Hausdorff 

Distance 
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are randomly generated but kept the same. Meanwhile, the rectangles are evenly distributed 

and kept close to each other, so that the edge distances between adjacent rectangles are 

smaller than their dimensions. Consequently, all of them can be considered as one group. 

Second, the edge distance between the fourth and the fifth elements increases continuously 

while those of the remaining adjacent elements remain unchanged. Five volunteers were 

requested to observe the changing scenario, and to record when the eight rectangles were 

split into two groups, specifically between the fourth and the fifth rectangles, based on their 

perception. The values of the four proximity candidates are calculated and logged. 

Each volunteer repeated the above test 100 times. The difference between the 

increased and the original values of a good proximity measurement should reflect the 

threshold of the volunteer’s visual perception, i.e., it needs to be constant during the 100 

tests. The differences of the four proximity candidates (∆𝐶𝐷, ∆𝐺𝐷, ∆𝐻𝐷 and ∆𝑅𝐻𝐷) are 

illustrated in Figure 4.2. In the experiment, ∆𝐶𝐷, ∆𝐺𝐷 and ∆𝐻𝐷 are exactly the same 

according to their formulas, because all the rectangles are exactly the same in dimension 

and left-aligned. Therefore, in Figure 4.2, their corresponding curves coincide. 

Table 4.1 shows the details of the comparison results. In the table, ∆𝐶𝐷, ∆𝐺𝐷, 

∆𝐻𝐷, and ∆𝑅𝐻𝐷 are denoted as 1, 2, 3, and 4, respectively. The variances of ∆𝐶𝐷, ∆𝐺𝐷 

and ∆𝐻𝐷 from all the 100 tests are all above 0.06, while the variances of ∆𝑅𝐻𝐷 are all 

bellow 0.002. Consequently, we conclude that RHD provides the best performance as a 

proximity estimation. 
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Figure 4.2 The Distribution of Proximity Candidate Comparison Results 

As is stated above, the translation of the Gestalt law of proximity aims to group 

elements together if their distances with adjacent elements are exactly the same. However, 

the experimental results show that the mean of all the RHD values from the five volunteers 

is approximately 0.05. Therefore, during the translation, we define “same” as ∆𝑅𝐻𝐷 <

0.05, i.e., if the value of ∆𝑅𝐻𝐷 is less than 0.05, we regard the two proximities as the same. 

Table 4.1 Proximity Candidate Comparison Results 

Volunteer 
1 2 3 4 5 

1, 2, 3 4 1, 2, 3 4 1, 2, 3 4 1, 2, 3 4 1, 2, 3 4 

Maximum 6 0.0806 7 0.0986 6 0.0789 8 0.1012 8 0.1012 

Minimum 2 0.0253 2 0.0290 2 0.0322 2 0.0298 2 0.0322 

Mean 3.54 0.0541 3.81 0.0568 3.61 0.0562 3.62 0.0552 3.47 0.0524 

Variance 0.6884 0.0001 1.3739 0.0002 0.8379 0.0001 1.1556 0.0002 0.9291 0.0001 
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2.5 Translating the Gestalt Law of Similarity 

Different elements in a web page are displayed in various styles; however, the 

Gestalt law of similarity reveals that we tend to perceive similar elements as related. This 

law compares elements by all their visual features such as background colors/images, 

textual styles and paragraph styles, which are represented by a series of CSS properties. 

Generally, most CSS properties can be compared directly by their values. For example, 

two textual elements with “font-style” both being “italic” are considered as 

similar and as different from a third textual element with the same CSS property being 

“normal”. When a CSS property contains colors or images (e.g. “background”, 

“border-color”, “list-style-image”), it is not accurate for them to be compared 

in this way. This is because the value of a color can be either the RGB value (e.g. 

“rgb(255, 255, 255)” or “#FFFFFF”) or the color name (e.g. “white”). Both of 

them can refer to the same color; however, the string values are not the same. For accuracy, 

we compare the actual colors and images directly. 

2.5.1 Empirical Comparison of Colors.  

Most web pages describe colors utilizing the RGB space, so the direct way for 

comparing two colors is by comparing their color difference under the RGB color space. 

Riemersma (2008) exploits the weighted Euclidean distance as the color difference for the 

RGB color space. 

 ∆𝐶(𝐶1, 𝐶2) = √(2 +
�̅�

256
) (𝑟1 − 𝑟2)2 + 4(𝑔1 − 𝑔2)2 + (2 +

255−�̅�

256
) (𝑏1 − 𝑏2)2 ,(4-5) 
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where 𝐶1 and 𝐶2 are the two colors; 𝑟, 𝑔 and 𝑏 are the values of a color’s red, 

green and blue channels, respectively; and �̅� = (𝑟1 + 𝑟2) 2⁄  is the mean value of 

the red channels. 

An alternative color space is CIELAB, which has a wider gamut that covers all 

RGB colors. Meanwhile, compared with the RGB color model designed for display devices, 

the CIELAB model is designed to mimic human vision. Color differences in this space, the 

∆𝐸00
12, are calculated by (4-6) (Luo et al. 2001). The parameter list is omitted in this chapter 

for brevity, but can be found in (Luo et al. 2001). 

 ∆𝐸00
12 = √(

∆𝐿′

𝑘𝐿𝑆𝐿
)

2

+ (
∆𝐶′

𝑘𝐶𝑆𝐶
)

2

+ (
∆𝐻′

𝑘𝐻𝑆𝐻
)

2

+ 𝑅𝑇 (
∆𝐶′

𝑘𝐶𝑆𝐶
) (

∆𝐻′

𝑘𝐻𝑆𝐻
) . (4-6) 

Due to the respective merits of the two color spaces, we design experiments to test which 

color space has a better color difference measurement in terms of distinguishing colors for 

human perception when utilized in web pages. The empirical threshold for the better color 

difference is determined by the experiments. The experiment consists of 50 rounds of tests 

with each round including two groups of comparison. In each group, 100 pairs of random 

colors are generated. The first group lists the 100 pairs by ∆𝐶, and the second group lists 

them by ∆𝐸00
12. We record both: (a) the first pair of colors that is distinguishable (by a 

human test subject) in each group; and, (b) the corresponding color difference. 

The experiment is repeated five times, and the results are shown in Table 4.2 and Figure 

4.3. As can be seen in this table that the values of ∆𝐸00
12 vary from 4.03 to 5.35 with a 

variance being smaller than 0.1; and the values of ∆𝐶 fluctuate from 22.44 to 61.24 with a 

variance being at least 63.90. The variance of ∆𝐸00
12 is smaller than 0.1 while that of ∆𝐶 is 

larger than 60, meaning that the former is more stable. Therefore, ∆𝐸00
12  is more 
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distinguishable than ∆𝐶 for our human volunteers, and thus we select ∆𝐸00
12 as the color 

difference metric and set its mean value as the threshold, which is 4.65.  

Table 4.2 Color Comparison Results 

Repetition 
1 2 3 4 5 

∆𝐸00
12 ∆𝐶 ∆𝐸00

12 ∆𝐶 ∆𝐸00
12 ∆𝐶 ∆𝐸00

12 ∆𝐶 ∆𝐸00
12 ∆𝐶 

Maximum 5.06 57.70 5.15 61.24 5.15 57.48 5.35 57.50 5.05 56.05 

Minimum 4.06 23.31 4.04 25.05 4.03 22.44 4.05 24.09 4.16 24.60 

Mean 4.56 41.80 4.62 43.82 4.65 39.66 4.73 36.68 4.69 39.49 

Variance 0.07 72.44 0.09 75.37 0.08 63.90 0.05 81.70 0.06 94.09 

 

 
Figure 4.3 Distributions of Color Comparison Results 

2.5.2 Empirical Comparison of Images 

An image from a web page can be represented in several different ways: (a) a 

general file object that is a series of binaries; (b) a mathematical sample that is a series of 

numeric values; and (c) a general image that is a series of pixels. 
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When the image is treated as a file object, the similarity between two images can 

be estimated by the normalized compression distance (NCD), (Li et al. 2004),  

 𝑁𝐶𝐷(𝐼1, 𝐼2) =
𝐶(𝐼1𝐼2)−min {𝐶(𝐼1),𝐶(𝐼2)}

max {𝐶(𝐼1),𝐶(𝐼2)}
 , (4-7) 

where, 𝐼1 and 𝐼2 are the two images, with are each represented as an array of pixel colors; 

𝐼1𝐼2 is the concatenation of 𝐼1 and 𝐼2; and 𝐶(𝑥) calculates the compressed length of 𝑥. If 

the two images are the same, then their NCD is 0.0; and if they are completely different, 

the value is 1.0. Due to the performance of the current generation of compressors, errors 

are inevitable when calculating NCD. That is, NCD is sensitive to the selection of the 

compressor. The higher the performance of a compressor, the more accurate the result. 

Therefore, we adopt the LZMA algorithm as recommended in several previous papers 

(Chen et al. 2010; Claude et al. 2010). (Specifically, we utilized LZMA2, which is superior 

to LZMA when compressing already compressed data such as JPEG). 

If we treat an image as a mathematical sample, then the similarity can be calculated 

mathematically as the mean square error (MSE) (Hore and Ziou 2010). 

 𝑀𝑆𝐸(𝐼1, 𝐼2) =
1

𝑁
∑ (𝑖𝑥

1 − 𝑖𝑥
2)2𝑁

𝑥=1  , (4-8) 

where 𝑁 equals to the size of 𝐼1 and 𝐼2 (that is, 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡); 𝑖𝑥
1 and 𝑖𝑥

2 refer to the 

color values of pixels in 𝐼1 and 𝐼2, respectively. 

To deal with a general image, the structural similarity index (SSIM) can be applied, 

which is designed for digital image comparison in order to imitate human perception 
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(Koffka 2013). The value of SSIM for two identical images is 1.0, and for two completely 

different images is -1.0. SSIM is calculated via (4-9), 

 𝑆𝑆𝐼𝑀(𝐼1, 𝐼2) =
(2𝜇1𝜇2+𝑐)(2𝜎1,2+𝑑)

(𝜇1
2+𝜇2

2+𝑐)(𝜎1
2+𝜎2

2+𝑑)
 , (4-9) 

where 𝜇1 and 𝜇2 are the mean of 𝐼1 and 𝐼2, respectively; 𝜎1
2 and 𝜎2

2 are the variances of 

𝐼1 and 𝐼2, respectively; and, 𝑐 and 𝑑 are two variables to stabilize the division with the 

denominator. 

This experiment evaluates the aforementioned three measurements and aims at 

finding the best one for image similarity. We choose the McGill calibrated color image 

database (Olmos and Kingdom 2004) as the test pool to conduct a 10-round-comparison. 

This database provides over 1500 images. These images are colorful natural and manmade 

scenes – stored in tif format and 72 dpi resolution – such as animals, foliage, fruits, and 

land water, which cover almost all the themes we see in web pages. During each round, 10 

pairs of similar images (i.e., 20 images) are randomly selected from the test pool to build 

up the test set. 20 images can make (20
2

) = 190 pairs of images (i.e., 190 comparisons). 

Among them, the preselected 10 pairs of similar images are marked as the first 10 pairs, 

and the remaining 180 pairs are randomly marked as the 11 to 190 pairs (i.e., last 180 pairs). 

All the 190 pairs of images are evaluated by the three measurements respectively. 

In Figure 4.4, two groups of box plots are drawn for each round, where group 1 

shows the first 10 pairs and group 2 shows the remaining 180 pairs. All of the 10 rounds 

(each sub-figure represents a round) reveal similar result patterns. Qualitatively, the MSE 

values of group 1 in any round are not distinguishable from group 2, so it cannot be a useful 
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measurement. Regarding the NCD results, although the values of the first 10 pairs are 

generally smaller than that of the last 180 pairs, they are too close to be distinguished, i.e. 

approximately 0.02 between the minimum and the maximum. Therefore, it is difficult to 

determine a threshold to divide the two groups apart. With respect to SSIM, there is a clear 

separation (i.e., the horizontal dashed line as shown) in each sub-figure to allow an accurate 

division between the two groups. As a result, among the three methods, only SSIM is 

capable of distinguishing between similar pages and dissimilar pages, and the empirical 

threshold is set to the overall mean value, which is 0.48. 

Quantitatively, the minimal, maximal, and mean values of MSE, NCD, and SSIM 

are illustrated in Table 4.3. For MSE and NCD, the value range (i.e., the values between 

the minimum and the maximum) of the first 10 pairs crosses with that of the last 180 pairs. 

In contrast, there is no common part between the value ranges of SSIM’s first 10 pairs and 

the last 180 pairs. This, again, proves that only SSIM among the three is able to distinguish 

the similar and the dissimilar of image pairs. Therefore, we select SSIM as the 

measurement to calculate web page similarity. Furthermore, for SSIM, the smallest value 

of the first 10 pairs is 0.5050, and the largest value of the last 180 pairs is 0.4504; therefore, 

we pick their overall mean (i.e., 0.4755) as the threshold to distinguish between similar and 

dissimilar images. 
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Figure 4.4 Distributions of Image Comparison Results 

Table 4.3 Image Comparison Results 

 
MSE NCD SSIM 

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

Minimum 36.8994 86.7609 0.9722 0.9894 0.5050 0.0476 

Maximum 311.8292 421.2648 0.9999 0.9999 0.8397 0.4504 

Mean 162.4931 206.7298 0.9927 0.9989 0.5920 0.2105 
 

2.6 Translating the Gestalt Law of Continuity 

The Gestalt law of continuity expresses that people tend to judge the elements on a 

web page as related in a situation where they are aligned, and as dissimilar when they are 

not aligned. In other words, this law refers to the geometrical alignment. By default, the 

browser places elements in a justified manner. If certain elements are not justified with 
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others, it indicates that they are not related. In this case, the designers have separated them 

deliberately. 

As shown in the example of Amazon’s home page (Figure 4.5), the paragraphs in 

the blue rectangle (“Get to Know Us”, “Careers”, “About Amazon”, etc.) are left aligned, 

indicating they are related content. In general, to evaluate continuity, we compare the left, 

top, right, and bottom coordinates of two elements. If any of the four coordinates of two 

elements are the same, we conclude that they are related; and that they are dissimilar 

otherwise. 

 
Figure 4.5 Home Page of Amazon 

2.7 Translating the Gestalt Law of Common Fate 

The Gestalt law of common fate describes that during the process of web page 

loading, elements in a web page can have different motion trends, and people’s tendency 

is to regard elements with the same motion trend as related. When the page is loaded, most 
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web page content does not move during the load operation. However, if the reader scrolls 

up and down the page, all nodes will move by default. In some situations, there are elements 

that do not move with scrolling pages, under this situation, we believe these elements have 

different motion trends and as such that we treat them as dissimilar. This motion trend is 

controlled by the CSS property “position”, therefore translation of this law will compare 

the corresponding values of DOM elements for merging determination. 

Taking the home page of Amazon in Figure 4.5 again as the example, when the page 

is scrolled, the search bar (marked by the red rectangle) is always hanging at the top, but 

other content moves accordingly. Under this circumstance, we tend to think of the search 

bar and the other content as dissimilar. 

With the DOM tree of a web page as the raw input, the translated Gestalt laws 

constructs the block tree by removing all invisible elements and merging semantically 

related elements into blocks, as shown in Figure 4.6. This data structure, the block tree that 

contains all visual information of a web page, is used for visual similarity evaluation and 

cross-browser difference detection. Efficiency of the block tree is discussed in (Xu and 

Miller, 2015a), where it is utilized as part of a web page segmentation algorithm 

empirically shown to outperform VIPS. 

 
Figure 4.6 Translation of Gestalt Laws of Grouping 
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3 The Empirical Visual Similarity Measurement 

The similarity between two block trees can be decided by the tree edit distance 

(TED) (Pawlik and Augsten 2015). To calculate TED, the first step is to determine their 

mapping relationship. If we post-order traverse all the nodes of a tree, then the mapping 

relationship between nodes of two trees is restricted to the following three rules: 

1) one-to-one rule: any node in one tree can map to one and only one node in the other 

tree; 

2) horizontal-order preserving rule: the (post-order-traversal) order of two sibling 

nodes in one tree is always the same with the order of the mapped nodes in the other 

tree; 

3) vertical-order preserving rule: if two nodes are parent and child in one tree, then 

their mapped nodes in the other tree must still be parent and child. 

Note that a node in one tree may not be mapped to any node in the other tree. After 

obtaining the mapping relationship, one of the following three types of edit operations is 

determined. (1) if a node from the first tree does not map to any node in the second tree, it 

is removed when the first tree is transformed to the second tree. (2) if a node from the 

second tree does not map to any node in the first tree, it is added. (3) if a node from the 

first tree maps to a node in the second tree, but the two mapped nodes have different content, 

then the node in the first tree is relabeled. If the two mapped nodes have the same content, 

then there is no edit operation during the transformational process. The value of TED 

between the two trees refers to the number of edit operations required to transform one tree 

to the other. 



101 

3.1 The Extended Subtree 

The edit distance of the corresponding two block trees denotes the visual similarity 

between two web pages. However, directly using TED as the visual similarity measurement 

is not sufficient. First, it calculates the absolute distance between two trees, which is unable 

to precisely reveal the similarity of two trees. Consider the situation of two comparisons 

where one compares two 1000-node trees and the other compares two 10-node trees. If the 

TED values under the two comparisons are both 10, the proportions of changed nodes are 

1% and 100%, respectively. It is obvious that the smaller the proportion, the more similar 

the two trees. Second, when we read web pages, we do not read only the detail of a single 

block. Instead, we read the sub tree of each block. This is because in a web page, all the 

descendants of a block (if exist) are placed above the block, thus the visible part of that 

block is actually the sub tree. Therefore, a TED measurement, which maps single nodes 

instead of sub trees, is not precise. 

To solve these problems, we employ the extended subtree similarity (EST) 

(Shahbazi and Miller 2014) to reflect the visual similarity between two block trees. This 

model normalizes the TED, with similarity ranging from 0.0 to 1.0, regardless of the sizes 

of the two trees. Particularly, 1.0 and 0.0 denote if two trees are identical or completely 

different, respectively. Furthermore, the EST model maps sub trees instead of tree nodes, 

which can be achieved by the new mapping rules (Shahbazi and Miller 2014): 

1) sub tree mapping: EST maps both sub trees and single nodes; 

2) one-time mapping: once two sub trees are mapped, the common sub trees of them 

are not allowed to be mapped again; 



102 

3) sub tree weight assignment: the weight of a map equals to the mean value of the 

two mapped sub trees’ weights, and a sub tree’s weight equals to the number of 

nodes it has. 

The EST similarity of two block trees X and Y is calculated by (4-10): 

 𝑆∗(𝑋, 𝑌) =
√∑ 𝛽𝑘×𝑊(𝑚𝑘)𝛼

𝑚𝑘∈𝑀
𝛼

𝑚𝑎𝑥(|𝑋|,|𝑌|)
 , (4-10) 

where, |𝑋| and |𝑌| represents the numbers of nodes in 𝑋 and 𝑌; 𝑊(𝑚𝑘) is the weight of a 

mapping 𝑚𝑘; 𝛼 is a coefficient that adjusts the relation among mappings according to their 

sub tree sizes; and 𝛽𝑘  is a geometrical parameter reflecting the importance of 𝑚𝑘  with 

respect to the position of 𝑘 in 𝑋 and 𝑌. 𝛽𝑘 = 1 when the node 𝑥𝑘 and 𝑦𝑘 have the same 

depth in 𝑋 and 𝑌, otherwise 𝛽𝑘 = 𝛽0, which equals to a constant within the range of (0,1).  

Figure 4.7 shows an example of the method, with the visual incompatibility detection 

and similarity estimation between the two trees X and Y being conducted as follows. 

 
Figure 4.7 Example of the Visual Incompatibility Detection and Similarity Estimation 

1) All the nodes from the two trees need to be attached with numbers. This numbering 

scheme is done by post-order traversal. Therefore, the nodes b, c, a in Tree X are 

denoted as 𝑥1, 𝑥2 and  𝑥3, and nodes d, b, c, a in Tree Y are denoted as 𝑦1, 𝑦2, 𝑦3 

and 𝑦4, respectively. 
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2) All possible mapping relationship need to be located before further analysis. As 

mentioned above, the mapping scheme considers subtrees instead of nodes, and 

therefore, the final mapping results include 𝑚1 = {𝑥1} ↔ {𝑦2}  (subtree of b, 

marked by the blue rectangle), 𝑚2 = {𝑥2} ↔ {𝑦3} (subtree of c, marked by the 

green rectangle), and 𝑚3 =  {𝑥2, 𝑥3} ↔ {𝑦3, 𝑦4}  (subtree of a-c, marked by the 

yellow rectangle). 

3) The mapping results are saved in two matrices 𝑀𝑥 and 𝑀𝑦, where each cell of the 

matrices records the mapping relationship between the corresponding nodes. For 

example, the subtree of a-c has the root node a, which is the 3rd node in X and the 

4th node in Y. Hence, the grid in the 3rd row and 4th column of 𝑀𝑥 stores {𝑥2, 𝑥3}, 

and the grid in 4th row and 3rd column of 𝑀𝑦 stores {𝑦3, 𝑦4}. If the corresponding 

nodes does not map, then the grid is an empty set. 

4) Now the complement set of nodes from the mapping results indicates the visual 

incompatibilities. In this case, the node d in Y – the corresponding content only 

appears in the web page instance Y but not in X. 

5) According to the one-time mapping rule, common subtrees are to be avoided in 

order to construct the largest subtree mapping. Of all the mapped subtrees, 𝑥1 only 

belongs to 𝑚1. Therefore, the first element of 𝐿𝑆𝑥 stores this mapping relationship, 

denoted as (1
2
). 𝑦1 does not belong to any mapping relationship, so the first element 

of 𝐿𝑆𝑦 stores an empty set. Both 𝑥2 and 𝑥3 in X (also 𝑦3 and 𝑦4 in Y) belong to 𝑚3, 

and herein, the 2nd and 3rd elements of 𝐿𝑆𝑥 (and the 3rd and 4th elements of 𝐿𝑆𝑦) 

store this mapping relationship. 



104 

6) Weights of each node in X and Y are assigned by comparing 𝑀𝑥 with 𝐿𝑆𝑥, and 𝑀𝑦 

with 𝐿𝑆𝑦. 𝐿𝑆𝑥 has 1 of (1
2
), 0 of (2

3
), and 2 of (3

4
). As such, the weight matrix 𝑊𝑥 

has the weights of {𝑥1}, {𝑥2} and {𝑥2, 𝑥3} as 1, 0 and 2, respectively. Similarly, the 

weight matrix 𝑊𝑦 has the weights of {𝑦2}, {𝑦3} and {𝑦3, 𝑦4} as 1, 0 and 2, too. 

7) 𝛽1 = 1 as the depth of node b in X and Y are not the same. However, the depth of 

node a in X and Y are the same, and accordingly, we can get 𝛽3 = 𝛽0. 𝛼 and 𝛽0 are 

set to 1.6 and 0.5 respectively following the recommendations in (Shahbazi and 

Miller 2014), hence, the similarity between X and Y equals to 0.55. 

3.2 The Validity Experiment 

This experiment is to evaluate the validity of the empirical measurement. It is 

repeated for 15 rounds. During the initialization of each round, 100 different web pages are 

randomly retrieved from Alexa’s statistics of worldwide top sites 

(http://www.alexa.com/topsites, the web pages were crawled on January 14, 2016) and 

manually classified by human volunteers according to their visual appearance. Cross-

comparing each pair of the web pages produces (100
2

) = 4950 EST records. As shown in 

Figure 4.8, these records are displayed in two boxplots, where the first plot illustrates EST 

values between two similar pages and the second plot denotes those between two different 

pages. 
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Figure 4.8 EST Similarity of All 15 Rounds 

According to the boxplots, group 1 in each round demonstrates larger values than 

group 2. The Mann–Whitney U test and the Cliff’s Delta effect size estimation are 

conducted to quantitatively analyze the EST records. Both of the two tests are conducted 

with a confidence level of 0.95. According to the results in Table 4.4, all the p-values are 

smaller than 0.05, and all the delta estimate values are categorized as “large” (Romano et 

al. 2006). This concludes that the EST similarities between similar web page pairs are 

higher than those between different pairs, indicating this measurement is able to identify 

web page visual similarity. 

Table 4.4 Results of Mann–Whitney U Test and Cliff’s Delta Effect Size Estimation 

Experiment 1 2 3 4 5 

p-value 1.64E-28 3.26E-26 7.09E-19 2.28E-24 3.88E-24 

Delta Estimate 0.9276 0.8368 0.8817 0.8531 0.8007 

Experiment 6 7 8 9 10 

p-value 4.76E-26 1.18E-18 1.53E-17 1.64E-23 1.19E-32 

Delta Estimate 0.8664 0.8515 0.8730 0.8737 0.8712 

Experiment 11 12 13 14 15 

p-value 2.70E-19 2.99E-17 4.25E-13 1.11E-24 2.22E-17 

Delta Estimate 0.8132 0.7942 0.9619 0.9070 0.8824 

We categorize the EST records, of the 15 rounds, into the following four categories: 

 true positive (TP): two similar pages are identified as similar correctly; 

 true negative (TN): two different pages are identified as different correctly; 
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 false positive (FP): the situation where two different pages are identified as similar 

incorrectly; and 

 false negative (FN): two similar pages are identified as different incorrectly. 

Five metrics based on the above four categories are investigated to find out the 

optimal threshold, namely: precision (positive predictive value, PPV), negative predictive 

value (NPV); recall (true positive rate, TPR), true negative rate (TNR), and accuracy 

(Olson and Delen 2008). To be specific, PPV represents the ratio of similar page pairs 

being correctly identified over all similar page pairs; while NPV reflects the proportion of 

different page pairs being identified as different. Similarly, TPR denotes the ratio of similar 

page pairs being correctly identified over all page pairs identified as similar; while TNR 

refers to the fraction of different page pairs over all the identified different page pairs. 

Accuracy is the ratio of correct identification to all identifications. 

Figure 4.9 shows how the metrics vary according to the shift of the threshold. From 

the left side figure, we can find that with the increase of the threshold, 0.40 is a turning 

point of TP, FP, FN, and TN. Prior to this turning point, FP decreases significantly and TN 

increases quickly; while after this point, TP has a sharp decrease and FP has a dramatic 

increase. A similar pattern can be seen from the right side figure, too. This indicates that 

0.40 is a best point for a threshold. 
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Figure 4.9 Performance of the Empirical Measurement on Different Thresholds 

4 Detection of Cross-Browser Differences 

The differences are detected by a series of experiments, where the EST similarity 

value of each web page pair is calculated by comparing the corresponding block trees. A 

static web page contains the same content for every loading, so the potential cross-browser 

differences refer only to rendering style differences. However, due to many modern pages 

having dynamic content, they change during every refreshing. Therefore, this dynamic 

content should also be part of the detection targets. 

In fact, there are two types of dynamic content: page-related content (for example, 

weather status in a weather report page, or breaking news items in a newspaper page) and 

advertisements. Although the first type is determined by the server side and cannot be 

controlled by browsers, the second type is able to be filtered. Consequently, the 

experiments are designed to proceed twice, where the first time is to evaluate the original 

version of the web pages, and the second time is to test the ad-free version. During the 

advertisement filtering in the second experiment, we employ “Adblock Plus” and 
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maximize its filter by enabling all its supported languages. We do not add any customized 

filters. 

4.1 Experimental Setups 

The test sets of the two experiments use the same URL pool, which contains 1000 

different records retrieved from Alexa’s top web sites (crawled on August 20th, 2016). 

These web pages covered 360 different web sites, and the average number of pages per site 

is 2.78. “bitauto.com” contains 31 pages in the pool, which is the largest number. 191 of 

the 360 sites contribute only one page. The distribution is shown in Figure 4.10. 

The first step of each experiment is the data retrieval. Two of the most popular 

browsers, Google Chrome and Mozilla Firefox, are selected for cross-browser difference 

detection, and they are further tested on both Linux and Windows platforms. Therefore, 

there are four scenarios in each experiment, Chrome in Linux (CL), Chrome in Windows 

(CW), Firefox in Linux (FL), and Firefox in Windows (FW). During the retrieval of each 

scenario, we compose extensions compatible for the two browsers to parse the 1000 web 

pages into a set of block trees. Specially, we set the browser’s inner window size to 

1024×768 to eliminate potential side effects to the difference detection. Additionally, 

Adblock Plus is enabled in the second experiment to filter any possible advertisements 

from the original web pages. The four scenarios finally collect four sets of block trees for 

each experiment. 
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Figure 4.10 Distribution of Test Cases 

The second step is tree comparison. We cross-compare the corresponding block 

trees of a web page by fixing either the browser or the platform. That is, by fixing the 

browser, we will compare results in different platforms (i.e., CL vs. CW and FL vs. FW); 

and by fixing the platform, we compare results in different browsers (i.e., CL vs. FL and 

CW vs. FW). 

Finally, we select the WebCompare algorithm (Alpuente and Romero 2009) as the 

benchmark to test the performance of the proposed algorithm. This is because the 

WebCompare algorithm (1) provides a compatible output; and, (2) can be considered as 

the current state of the art. Many other algorithms were also considered as one of the 

comparisons, but are finally removed from the experiments; the rationale for this decision 

is discussed in Section 5. 

4.2 Experimental Results 

Figure 4.11 shows the distribution of EST and WebCompare similarity values for 

each comparison scenario. Each bar in the histograms indicates the number of records that 

is greater than or equal to the corresponding value as indicated in the x-axis, and each curve 

shows the accumulate number of records that are less than the next value. For example, the 

highest bar in the first chart shows that there are 450 EST values equal to “1.0”, and the 
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corresponding dot (the second dot from the right side) of the curve is 550 – the summation 

of the two numbers is exactly 1000. 

 
Figure 4.11 Distributions of the Experimental Results for Original Web Pages 

According to the figure, the distribution of the four scenarios reveals the following 

patterns: (a) All of the EST similarity values are greater than or equal to 0.75, and most of 

them are greater than or equal to 0.9, indicating that the web pages are renderer similarly 

by the two browsers on the two platforms. (b) Less than 60% of all the 1000 EST values 

are 1.0, meaning that the cross-browser visual differences exist in the test cases and are 

detected by the measurement. (c) The same-browser-comparisons generally produce higher 

similarity estimates than same-platform-comparisons. And, (d) the EST similarity shows 

higher values than the WebCompare similarity: most of the WebCompare values are 

between 0.5 to 0.9, with the lowest value of 0.1095 and only one value of 1.0. That is 

WebCompare only believes that in one situation is a web page rendered identically across 

two browsers. 
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To figure out whether the two measurements are consistent with human perceptions, 

we asked five volunteers to view the screenshot images of all the previous test cases and 

then make further comparisons. They were required to mark “same” or “different” for each 

pair of web pages. The identification results from all of the volunteers were identical. This 

is because it is possible for a human to assert whether two screenshot images are identical 

or not, but it is difficult for humans to assert numerically how much dissimilar they are 

(this is exactly the reason why we need a numeric measurement to evaluate the similarity 

of web pages). By comparing the previous (EST/WebCompare) values with the volunteers’ 

identifications, a confusion matrix can be built for the following scenarios: “both 

EST/WebCompare value and the volunteer identification of the two pages are same”, 

“EST/WebCompare value of two web pages shows different but the volunteer identifies as 

same”, “both EST/WebCompare value and the volunteer identification of the two pages 

are different”, and “EST/WebCompare value of the pages shows same but volunteer 

identifies as different”. As shown in Table 4.5, the EST similarity can identify the web page 

differences with the precision and accuracy over 90% and 70%, respectively. As the 

comparison, WebCompare’s precision and accuracy are all below 50%. This is because the 

WebCompare identifies very few identical comparisons, leading to the low TP rate. 

Table 4.5 Comparison of Human Perceptions and Calculation Results (Original Web Pages) 

  TP FP TN FN Precision Accuracy 

EST 

CL vs. CW 256 5 505 234 0.9808 0.7610 

FL vs. FW 263 2 494 241 0.9925 0.7570 

CL vs. FL 97 2 799 102 0.9798 0.8960 

CW vs. FW 137 1 753 109 0.9928 0.8900 

WebCompare 

CL vs. CW 13 486 479 22 0.0261 0.4920 

FL vs. FW 9 575 400 16 0.0154 0.4090 

CL vs. FL 26 444 456 74 0.0553 0.4820 

CW vs. FW 25 534 363 78 0.0447 0.3880 
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As mentioned in the previous subsection, two types of dynamic content affect the 

results, and the advertisements can be controlled in the experiment. The distribution of the 

Ad-free version of the 1000 web pages is illustrated in Figure 4.12. By comparison, Figure 

4.11 and Figure 4.12 reveal similar patterns as discussed above. Furthermore, after removing 

the advertisements, the EST similarity values become higher. For example, the number of 

EST records with value 1.0 in Figure 4.11 is 450, but it increases to 490 in Figure 4.12. The 

precisions and accuracies are listed in Table 4.6, which shows similar pattern with Table 

4.5, indicating the efficiency evaluation using TP, FP, TN, FN is consistent and stable. 

 
Figure 4.12 Distributions of the Experimental Results for Ad-Free Web Pages 

Table 4.6 Comparison of Human Perceptions and Calculation Results (Ad-Free Web Pages) 

  TP FP TN FN Precision Accuracy 

EST 

CL vs. CW 270 7 449 274 0.9747 0.7190 

FL vs. FW 277 5 450 268 0.9823 0.7270 

CL vs. FL 121 1 770 108 0.9918 0.8910 

CW vs. FW 139 2 738 121 0.9858 0.8770 

WebCompare 

CL vs. CW 18 416 546 20 0.0415 0.5640 

FL vs. FW 11 409 562 18 0.0262 0.5730 

CL vs. FL 32 549 343 76 0.0551 0.3750 

CW vs. FW 27 375 522 76 0.0672 0.5490 
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4.3 Case Studies 

Figure 4.13 shows the home page of Google.ca in different browsers and platforms. 

It is evident that the two pages in the same browser are rendered identically, but it shows 

noticeable differences between the Chrome version and the Firefox version. Both Chrome 

versions have a microphone icon at the right side of the search bar (i.e., the icon marked 

by the blue rectangle); and both Firefox versions have an extra popup message window 

(i.e., the top right block marked by the red rectangle). By parsing the sources of the four 

pages, the results are illustrated in Table 4.7, where the “visual tree size” refers to the 

number of visible elements in the original DOM tree. Quantitatively, the sizes of the three 

types of trees are all the same for pages rendered by the same browsers, but the sizes 

between Chrome version and Firefox version are different. The EST values of the first two 

comparisons are both the highest possible values (i.e. 1.0000), and the values of the second 

comparisons are both 0.8134, which is relatively low. Interpretations of these values are 

consistent with Figure 4.13. As the comparison, however, the WebCompare similarity 

approach provides lower results; in addition, the same-browser-comparisons fail to reflect 

the identicalness. 

Table 4.7 Case Study of Google.ca 

 CL CW FL FW 

DOM Tree 343 343 299 299 

Visual Tree 30 30 34 34 

Block Tree 14 14 16 16 

 CL vs. CW FL vs. FW CL vs. FL CW vs. FW 

EST 1.0000 1.0000 0.8134 0.8134 

WebCompare 0.8167 0.8382 0.7188 0.7188 

The next case, the home page of JSON tutorials from w3schools 

(http://www.w3schools.com/json/default.asp), illustrates how the advertisements cause 
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cross-browser differences. In Figure 4.14, the screenshots of the original pages are 

partially cropped and only the differences are the four pieces of advertisements marked in 

red rectangles. Due to this dynamic content, the EST values of the four comparison 

scenarios are 0.9368, 0.9343, 0.8988, and 0.8948, respectively; and after the removal of 

the advertisements, all the EST values are 1.0000, as shown in Table 4.8. The 

WebCompare results show slight increment after the advertisement filtering, however are 

still lower than the EST. 

Table 4.8 Case Study of W3schools’ JSON Home Page 

 CL vs. CW FL vs. FW CL vs. FL CW vs. FW 

EST (Original) 0.9368 0.9343 0.8988 0.8948 

WebCompare (Original) 0.6877 0.6442 0.7470 0.5731 

EST (Ad-Free) 1.0000 1.0000 1.0000 1.0000 

WebCompare (Ad-Free) 0.6950 0.6467 0.7490 0.5772 
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Figure 4.13 Screenshots of Google.ca in the Four Browser Scenarios 

(a) Chrome in Linux (b) Chrome in Windows 

(c) Firefox in Linux (d) Firefox in Windows 



116 

 
Figure 4.14 Screenshots of W3schools’ JSON Home Page in the Four Browser Scenarios 

The third case is the home page of Amazon.ca, which reveals the effects of the 

page-related dynamic content. The top search bar, the big poster and the footer sections of 

(b) Chrome in Windows 

(c) Firefox in Linux (d) Firefox in Windows 

(a) Chrome in Linux 
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the four versions are exactly the same, so they are cropped in Figure 4.15. However, the 

rest of the pages are different. For simplicity, we name the different blocks with unique 

numbers, where identical blocks have the same value. As shown in the figure, there are 

totally 21 different blocks in the four pages. Through comparing each pair of pages, it is 

concluded that the pages on the same platforms are most similar. That is, subfigure (a) and 

(c) are the first similar pair, and subfigure (b) and (d) are the second similar pair. For 

example, subfigure (a) has blocks 1 through 13, and subfigure (c) also has these blocks 

except block 9. The EST similarity values reveal the same results as well. Specifically, the 

EST values are 0.8765, 0.8734, 0.9788 and 0.9156, respectively. The WebCompare results 

are 0.6494, 0.7016, 0.6153 and 0.8207, indicating that it is able to identify the differences. 

However, it provides a lower similarity value than EST. In addition, the third scenario (CL 

vs. FL) is considered as the most similar comparison, however, the corresponding 

WebCompare value is smaller than the fourth one, which is viewed as an inconsistency. 

The fourth case is the home page of FedEx.com, as shown in Figure 4.16Error! 

Reference source not found.. The only visual difference of the four versions is the select 

box in the middle: the two Windows versions have a solid white background while the two 

Linux versions are gradient gray; besides, the Firefox version in Linux has a larger height 

than the other three. The values of EST similarity further reflect the above observations. 

More specifically, the value between CL and CW is 0.9003; the values between FL and 

FW, CL and FL are both 0.8188; and the value between CW and FW is 1.0. In comparison, 

the values of the WebCompare similarity are more than 30% lower than the EST similarity, 

namely 0.5345, 0.5079, 0.1767 and 0.1095 for each comparison scenario, respectively. 
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Note that the two browsers in Windows render the web page identically, however 

WebCompare shows only 10% of the similarity. 

 
Figure 4.15 Screenshots of Amazon.ca in the Four Browser Scenarios 

(b) Chrome in Windows (c) Firefox in Linux (d) Firefox in Windows (a) Chrome in Linux 
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Figure 4.16 Screenshots of FedEx.com in the Four Browser Scenarios 

5 Related Work 

The area of web page visual analysis is widely adopted by researchers. Michailidou 

et al. (2008) investigated the user perception of visual complexity and aesthetic appearance 

of web pages. They further proposed the definition of visual complexity for web pages by 

empirical experiment using card sorting and triadic elicitation (Harper, et al. 2009). Eraslan 

et al. (2016) performed Scanpath trend analysis by clustering users’ eye tracking scanpaths 

according to visual elements of a web page. Wu et al. (2016) used the structural SVM and 

a multitask fusion learning model to conduct multimodal web aesthetics assessment. These 

(a) Chrome in Linux (b) Chrome in Windows 

(c) Firefox in Linux (d) Firefox in Windows 
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researchers analyzed web page visual elements to determine whether the visualization a 

web page is clear and easy to read. Similarly, in this chapter, we analyze the visual elements 

of web pages. However, as stated in the introduction section, we focus on cross-browser 

issues from the angle of web page visual similarity. Therefore, we will mainly investigate 

the work in the literature related to web page visual similarity, and pay less attention on 

behavioral incompatibilities. A number of papers have focussed on the detection of visual 

cross-browser issues. 

Fu et al. (2006) evaluated web page similarity by using the Earth Mover’s Distance 

(EMD) metric. They treated different web pages as pure images, normalized them into 

squares with the same size, downgraded the pixel colors with different granularities as the 

signature, and finally determined similarity by the signatures. The size matrices in the 

chapter included 100*100 and 10*10, which potentially downgraded the precision of the 

screenshot images. In our research, we retrieve all visual features while keeping the web 

pages in their original resolution, in order to prevent precision loss. 

Saar et al. (2014) proposed another detection methodology purely base on image 

processing, the Browserbite. The original web pages were first rendered in different 

browsers and operating systems so that the precise screenshot images can be retrieved. The 

images were then split into segments by pixel-level visual features such as discontinuity or 

color changes. Pairwise comparisons were finally conducted among the segments for cross-

browser incompatibility detection. Treating web pages as images ultimately reflects how 

people seeing and processing the pages, however it ignores all the structural information 

and thus may introduce false identifications. For example, if a logo image of a web site has 

both texts and figures, then image processing could split the two components apart. In our 
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research, we determined to preserve the structural information in order to improve the 

accuracy of segmentation. 

Mesbah and Prasad (2011) proposed an automated testing framework to detect 

cross-browser incompatibilities in both visual and behavioral aspects. They defined and 

limited the cross-browser compatibility issues in a novel aspect that both human users and 

the client-side browsers can find, and conducted detections within this aspect. 

Rao and Ali (2015) exploit the speed up robust features (SURF) detector, a 

computer vison technique, to extract discriminative feature points of images, to compare 

the similarity of suspicious and legitimate web pages. They first create a list of legitimate 

web pages as the base pool, compare the suspicious web pages with the web pages in the 

base pool, and then updated the base pool based upon the results of the comparison. When 

comparing images, the similarity score is calculated for the screenshots of both the 

suspicious and legitimate web pages by the SURF algorithm, and a threshold score is used 

as a judging standard. This is an interesting method for computing web page similarity, but 

the determination of a threshold score is difficult. 

Takama and Mitsuhashi (2005) investigate web page visual features, and develop 

a method to calculate visual similarity between the top pages of two web sites. In web page 

layout processing, they divide each web page into several regions and labeled them as text, 

image, or mixture. In the next procedure, they perform graph matching based upon a layout 

processing procedure. Finally, visual similarity is calculated according to the graph 

matching results. Their primary contribution is considering visual features when 

comparing web page similarity and their proposed method works well for this purpose. 
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Unfortunately, they only focus on static images and do not take into account other 

multimedia elements found in web pages. 

Shi, et al. (2008) investigate text similarity computation and extended the concept 

of similarity computation into multimedia elements. They put forward a multi-layer 

semantic model by describing each multimedia type in a single layer according to its 

characteristics and user demands. A limitation of this model is that it ignores the 

relationship among different multi-media content and may lead to inaccuracies of similarity 

computation. The image in terms of visual similarity analysis is difficult to handle. 

Choudhary et al. (2010) investigated cross-browser issues by the WebDiff 

algorithm. They further improved their research by combining the WebDiff with CrossT 

to propose new algorithms, namely CrossCheck and X-Pert (2012, 2013). Detection of the 

visual incompatibilities from these algorithms were all the same. They identified the 

content by cropping the screenshot image with DOM coordinates, and then compared the 

similarity based on the color histogram of the cropped sub-images. Screenshots reflect the 

final representation of web pages; however, they will potentially raise false positive results. 

For example, when a web page defines its text style with a font family such as “serif” 

instead of the concrete font, different browsers will interpret this with their own standards 

(and actually this standard can also be customized by the user). The users are not concern 

with the actual font at all, and many times they do not recognize such differences. In our 

research, we avoid using the screenshots of web pages. On contrary, we evaluated all the 

CSS values supported by different browsers, which consists of the comparison candidates 

of cross-browser visualization incompatibilities. 
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Alpuente and Romero (2009) developed the theory that first extracted web page 

content to different categories, namely “grp”, “row”, “col”, and “text”, and then merged 

and compressed the DOM tree. The visual similarity was then determined by the 

normalized version of the tree edit distance. 

6 Conclusion and Future Work 

Web applications have pervaded into almost every aspect of our daily life. However, 

with the advent of various versions of web browsers, issues abound, i.e., different web 

browsers cannot always render web pages and applications correctly. In order to detect 

whether web pages and applications are rendered the same across different web browsers, 

this chapter starts from the perspective of visual similarity, and develops a visual similarity 

measurement to evaluate the visual similarity of a web page or application across different 

web browsers. 

We notice that the Gestalt laws of grouping are capable of revealing human’s 

mechanisms of visual processing; hence, we introduce these laws into the study of web 

page visual similarity by translating them into a computer compatible version. During this 

process, the measurements of proximity, color similarity, and image similarity are obtained 

through experimentation. To represent web pages correctly, we substitute the block tree 

from the DOM tree by extracting visual features and combining visible elements through 

the Gestalt laws of grouping (the code is available at 

https://github.com/MarcoXZh/GestaltBlockTree). The block tree is then employed to 

calculate web page visual similarity by the EST model. An experiment is conducted and a 

case is studied to use this measurement to detect cross-browser differences among a test 

set of 1000 web pages. The experimental data concludes positive results for this solution. 
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CHAPTER 5  An Automated Testing Framework 

for Cross-Browser Visual Incompatibility 

Detection7 

Abstract 

Due to the rapid evolution of web applications and computer techniques, visual 

incompatibility of web pages has become a problem across different browsers and 

platforms influencing the functionality of the web applications. At the present, researchers 

have made progress to address such issues; in addition, many commercial tools have 

emerged as well. However, drawbacks still exist in the existing work, where fully automate 

testing at the system level is still not achieved. In this chapter, we attempt to propose a 

framework to detect the cross browser visual incompatibilities automatically. Highlights 

of the proposed framework include template based case organization, version based 

automation, and similarity embedded incompatibilities identification. 

Keywords: Automated testing; Visual incompatibility; Visual similarity. 

1 Introduction 

Web applications have become more and more popular nowadays. Compared with 

traditional applications with a client-server architecture, they are cross-platform, fully-

functional, and easier to deploy (ready-to-use and no installation or configuration required). 

Developers of web applications, work hard on the goal of providing a universally identical 

user experience. However, due to the incompatibilities among browsers (and platforms), 

                                                           
7 Xu, Zhen, and James Miller. “An Automated Testing Framework for Cross-Browser Visual Incompatibility 
Detection”. Submitted to International Journal of Web Engineering and Technology. 
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this goal is difficult to achieve. Visual differences of a web page rendered across browsers, 

in some cases, are expected or acceptable (such as fonts of text). However, in many other 

cases, they are incorrect and therefore may cause reading problems (such as missing or 

incorrectly presented content). The latter inconsistencies are considered as the cross-

browser visual incompatibility (VI) in this chapter. 

The test of a web application to identify such VIs can be conducted manually, by 

reading and comparing each page through all the target browsers. This activity is highly 

manual and thus cost-intensive, time-consuming, and in many cases error-prone. On the 

one hand, a fully functional web application usually contains thousands of web pages, 

which makes it impossible to test all of them manually. On the other hand, many of the 

web pages are rendered from the same template, hence testing each of these pages is a 

repetitive and unnecessary task. In this chapter, we propose an automated testing 

framework to solve these problems. The highlights of the framework include: 

 template based case organization – extract different web pages rendered by the 

same source template as a single test case; 

 version based automation – rerun the test case when changes of the source code are 

detected; and 

 incompatibility identification with similarity estimation – provide both the list of 

visual. Incompatibilities and the quantitative similarity score for each pair of 

browsers being compared. 

The rest of the chapter is organized as follows. Section 2 discusses related work, 

including the advantages and limitations of currently existing cross-browser testing tools. 

Section 3 describes the automated testing framework. It covers VI detection algorithm and 
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the automation schemes. Section 4 concludes the current progress and presents the future 

work. 

2 Related Work 

In this section, we will review existing research and tools regarding cross browser 

testing of web applications and web pages. There are many testing tools related to this area 

in the market. We will describe each in detail in this section by pointing out their pros and 

cons. 

The research papers in the literature, regarding this area, are limited. Mesbah and 

Prasad (2011) propose an approach to automatically analyze web applications under 

various browsers and present the observed discrepancies on a pairwise basis. The analysis 

crawls the target web application first and then analyses  the crawled results. Choudhary et 

al. (2010) investigate cross browser issues and propose an approach to automatically detect 

these issues based on differential testing. They implement their approach in the WebDiff 

tool with acceptable number of false positives. Later, they propose a more comprehensive 

tool, namely, CrossCheck, based on the WebDiff and the CrossT. The CrossCheck tool 

(Choudhary, et al., 2012) combines the benefits of WebDiff and CrossT, and can provide 

both visual difference detection and functional difference detection. Subsequently, they 

present another tool called X-Pert (2013). The above tools divided the detection of VIs into 

three aspects: structure XBI (cross-browser incompatibility) detection, text-content XBI 

detection, and visual-content XBI detection. The structure XBI detection employs the 

“alignment graph”, which records the hierarchical and geometrical information of each 

DOM element (e.g., element 1 is above element 2 and they are left and right aligned). This 
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is a novel idea of XBI detection as it narrows down the numeric coordinates of elements 

into a limited number of relations based on the relative position. The text-content XBI 

detection compares the text of elements. The potential problem of comparing textual strings 

is that in a multi-language web page scenario (e.g., the English and the French version of 

Google’s home page), text is not the core content, and thus the pages are similar to 

users/developers while the comparison results suggests dissimilar, leading to false positive 

results. The visual-content XBI detection takes the screenshot images as the input – the 

images of the leaf DOM elements only, to be precise – and compares the color histogram 

using 𝜒2 distance. The limitation of it is that leaf elements represent only part, and in many 

cases only a small part of the whole page; and using color distribution to determine image 

similarity ignores the actual content, thus may also raise false positive results. 

Figure 5.1 shows three tools that only support cross-IE incompatibility detections. 

The Expression Web SuperPreview (2011) supports only versions of IE 6 and 7 (IE 11 is 

in the list, but actually not supported). It provides functions such as side-by-side 

comparison, window size customization, and DOM inspection. The side-by-side 

comparison enables us to compare web pages with different browsers intuitively and 

conveniently on a single screen. The window size customization allows us to change the 

width and height of the view port to simulate different devices and screens. With the DOM 

inspection function, we can investigate the web pages in a responsive way. This tool returns 

error on many web pages (marked by the yellow circle in the figure); and when the page 

preview is acquired, it is limited in the current view port. Content outside of the view port 

will not be rendered (as shown in the blue circle). IETester (2017) can perform side-by-

side comparison, but lacks in window size customization. With the extension of DebugBar, 
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it can also perform DOM inspection. Although most versions of IE are claimed to be 

supported, many return errors. IE NetRenderer (2017) can only draw web pages with the 

target version of IE to generate screenshot image. Therefore, it provides no side-by-side 

comparison or DOM Inspection. By investigating the tool, we also observe that it does not 

support window customization. 

 
Figure 5.1 The Three Tools for Cross-IE Incompatibility Detection 

Browsershots (2005), Browsera (2017), BrowserBite (2017), BrowserStack (2017), 

and CrossBrowserTesting (2017) are five tools that support multi-browser and multi-

platform detections. This meets the minimum request for VI detection. For the input, only 

Browsera can take multiple URLs as the input, while all the other tools allow only one 

(a) Expression Web SuperPreview (b) IE NetRenderer 

(c) IETester 
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URL per test. Thus, for web application developers to conduct full-site tests, most tasks 

will have to be performed manually. Also, Browsershots, BrowserStack and 

CrossBrowserTesting provide configurations to customize window size. As for the 

detection, Browsershots, BrowserBite and BrowserStack load a web page with all selected 

browsers and then simply take all the screenshot images as the results, without doing any 

VI detection. On the other hand, Browsera and CrossBrowserTesting provides both 

screenshot images and detection reports, as shown in Figure 5.2. 

 

Figure 5.2 Detection Reports of Browsera and CrossBrowserTesting 

3 Automated Testing Framework 

In our previous work (Xu and Miller, 2015), we developed a method to calculate 

the quantitative visual similarity of two web pages. The present chapter extends this 

method by adding an extra step to identify different elements between the two pages, and 

uses the extended method as the core function of the automated testing framework to detect 

VIs. 

(a) Browsera 

 

(b) CrossBrowserTesting 
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3.1 Automated Page-Level Detection of VIs 

The page-level detection employs the above extended method as the core function 

of the proposed testing framework. This method extracts block trees from the web page 

rendered by two different browsers, and uses the two block trees to detect VIs. 

3.1.1 Block Tree Extraction from Web Page 

The DOM tree contains all the information from a web page, but only the visible 

elements contribute to the visualization of the web page. Therefore, the first step of the 

block tree extraction is to remove invisible DOM elements. The next step is to merge 

semantically related elements into blocks. This is done by translating and applying the 

Gestalt laws of grouping as follows. 

 The Gestalt law of simplicity shows people’s tendency to recognize the simplest 

representation of objects. To interpret this law, we take each DOM element as the 

simplest representation of objects. 

 The Gestalt law of closure indicates that people are inclined to construct complete 

shapes from incomplete ones. A DOM element is often overlapped by its child 

DOM elements, leaving the shape incomplete, but people are still able to recognize 

it as a complete rectangle. As such, to interpret this law, we treat all DOM elements 

as complete rectangular objects. 

 The Gestalt law of proximity states that people have the tendency to group close 

objects and separate distant ones. Therefore, to translate this law, we merge 

elements into blocks based on this distance. In the web page scenario, we compare 

the distances between each pair of adjacent sibling DOM elements, those with 
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smaller distances are “clustered” into a group, and those with larger distances are 

separated into different groups. 

 The Gestalt law of similarity illustrates that people are prone to regard similar 

objects as a group. Here, similarity refers to the visual features related to 

background, foreground, and size. If any of a list of sibling DOM elements is 

different from others in the above three aspects, we put it into a different group. 

 The Gestalt law of continuity describes people’s tendency to group aligned objects. 

In other words, if any DOM element is not aligned with its siblings, it is put into a 

different group. 

 The Gestalt law of common fate reveals that people are inclined to put objects with 

the same motion into the same group. To translate this law, we focus on the 

scrolling behaviors when it comes to motion trends. Most DOM elements move 

accordingly when the user scrolls a web page, but some other elements may stay 

still, or move slower or faster. Such elements that do not move in the same way 

with others are place into a different group. 

 The Gestalt law of symmetry tells us that people tend to perceive symmetric objects 

as a single group. Since this law is not common in web pages, we do not consider 

it in the present chapter. 

 The Gestalt law of past experience states that people are prone to rely on past 

experience when interpreting objects. Again, we do not consider this law in the 

present chapter, because it is beyond the scope of web page analysis. 

Figure 5.3 shows an example of the block tree extracted from University of 

Alberta’s home page. By applying the Gestalt laws of grouping, the semantically related 
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DOM elements are grouped into blocks. In Figure 5.3b, semantically related elements are 

marked with the same background colors. For example, as shown in the yellow circle at 

the lower left part, the news items are marked with the same background color. This is 

because they refer to the same topic. As a comparison, the three boxes in the middle area 

(marked in the black circle) contain image, text and buttons respectively, indicating that 

they are semantically non-related, so they are marked with different colors. Figure 5.3c 

shows partial of the block tree, where each line denotes a single block. From this figure, 

we can find that a) the DOM hierarchy is well maintained in the block tree; b) the root 

block consists of the “BODY” element from the DOM tree; and c) some blocks contain only 

one DOM element while others merge a group of elements into one block. 
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Figure 5.3 The Example of UAlberta’s Home Page 

3.1.2 VI Detection and Similarity Estimation 

The two block trees retrieved from two browsers of a web page are compared to 

detect VIs. During the comparison, a tree edit distance (TED) based mapping scheme, the 

extended subtree model (Shahbazi and Miler, 2014), is employed. An overview of the 

model is given below: 

 Subtree mapping. Regular TED mapping schemes only map tree nodes. However, 

in a web page scenario, content elements are stacked up so that lower elements are 

(a) Original Page (b) Analyzed Page 

[BODY]: left=0,top=0,right=1007,bottom=1588; ... 
|- [FORM,DIV]: left=-1988,top=-1999,right=1007,bottom=1588; ... 
| |- [HEADER,DIV,FOOTER]: left=0,top=0,right=1007,bottom=1588; ... 
| | |- [DIV,DIV,DIV]: left=0,top=0,right=1007,bottom=196; ... 
| | | |- [DIV]: left=50,top=10,right=956,bottom=50; ... 
| | | | |- [NAV,DIV]: left=218,top=10,right=956,bottom=48; ... 
| | | | | |- [UL]: left=276,top=10,right=798,bottom=41; ... 
| | | | | | |- [LI]: left=276,top=20,right=798,bottom=34; ... 
| | | | | | | |- [UL]: left=276,top=22,right=798,bottom=34; ... 
| | | | | | | | |- [A,A,A,A,A,A,A]: left=276,top=22,right=802,bottom=34; ... 
| | | | | |- [INPUT,BUTTON]: left=802,top=13,right=956,bottom=45; ... 
| | | |- [DIV]: left=50,top=61,right=956,bottom=151; ... 
| | | | |- [A,NAV]: left=50,top=87,right=957,bottom=151; ... 
| | | | | |- [UL]: left=416,top=115,right=957,bottom=144; ... 
| | | | | | |- [A,A,A,A]: left=436,top=119,right=957,bottom=134; ... 
| | | |- [NAV]: left=51,top=155,right=956,bottom=195; ... 
| | | | |- [UL]: left=51,top=155,right=956,bottom=195; ... 
| | | | | |- [LI]: left=52,top=155,right=956,bottom=195; ... 

(c) Partial of the Block Tree 
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always covered by upper elements. Hence, when we see the content of a block in 

the web page, it is the content of a subtree that is rooted at the block. Consequently, 

the subtree mapping scheme is more accurate approach. 

 One-time mapping. If two subtrees are mapped, then they will have common 

subtrees (if there are subtrees in them). However, to avoid duplications, we do not 

map these common subtrees again. 

 Subtree weight determination. A subtree mapping has a weight that is equal to the 

mean value of the weights of the two subtrees. The weight of a subtree is equal to 

the number of nodes that take this subtree as their largest subtree. 

The mapping of two block trees reflects the visual compatibilities, i.e., are the two 

corresponding blocks similar or not. Therefore, the detection of VIs is to locate blocks that 

are not in the mapping results. In another word, blocks that are added, deleted or changed 

from one tree to the other tree contain VIs. The quantitative similarity of the two block 

trees, the extended sub tree (EST) value, is calculated by (5-1): 

 𝑆∗(𝑋, 𝑌) =
√∑ 𝛽𝑘×𝑊(𝑚𝑘)𝛼

𝑚𝑘∈𝑀
𝛼

max(|𝑋|,|𝑌|)
 , (5-1) 

where, 𝑋 and 𝑌 are the two trees; |𝑋| and |𝑌| are the sizes of the two trees, which equal to 

the numbers of nodes in 𝑋 and 𝑌, respectively; 𝑀 is the mapping results; 𝑊(𝑚𝑘) is the 

weight of the mapping 𝑚𝑘; 𝛼 is the coefficient to adjust the relation among mappings with 

different subtree sizes; and 𝛽𝑘 is a geometrical parameter to reflect the importance of the 

mapping 𝑚𝑘 with respect to the position of block 𝑘 in 𝑋 and 𝑌. 𝛽𝑘 = 1 when the node 𝑥𝑘 

of 𝑋 and 𝑦𝑘 of 𝑌 in 𝑚𝑘 have the same depth, otherwise 𝛽𝑘 = 𝛽0, which is a constant in the 

range of (0,1). 
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3.2 Automated System-Level Testing for VI Detections 

System-level testing is designed to evaluate all the web pages in a web application. 

The automated testing framework should be able to discover objective functions, trigger 

actions, and report outcomes without human intervention. To achieve this goal, three 

modules are proposed to construct the testing framework, namely the source parser, the 

schedule builder and the result reporter. 

3.2.1 Source Parser 

The core task of this module is to discover the objective functions. In the web 

application scenario, to detect VIs, the objective functions cover all the web pages because 

all of these pages must (ideally) be bug-free. Development of modern web applications 

relies on page templates. That is, utilizing one template dynamically generates similar web 

pages. Consider Google’s search result page, when a user types in “online shopping”, the 

search result page displays dozens of online shopping related links; and when the user types 

in “health care”, the page displays another dozens of links, which are similar in the layout 

with the previous page except the details. This is because the search result page utilizes a 

template that shows different content according to the inputs. To test a web application, it 

is useless and impractical to test all possible web pages. Instead, we only need to test one 

case for each page template. Consequently, to conduct automated testing, the practical 

objective functions should be narrowed down to include only unique page templates. 

Consider a typical Django project as an example, each component app of a Django 

project contains a source file named “urls.py”, where all the implemented URL entries are 

recorded and linked to the corresponding view methods. The view methods are further 
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linked to the page templates that are used for displaying actual content. Therefore, in the 

Django project testing practice, the objective functions map to all these URL entries. To 

automatically test such projects, the source parser should be able to detect all possible URL 

entries. Meanwhile, some of these entries contain parameters, and thus, the source parser 

also needs to be able to detect these parameters and assign proper values to them. This may 

require accessing data models and querying databases. 

3.2.2 Schedule Builder 

As the name indicates, the schedule builder manages the schedule of testing 

automation. During the development of a web application, the source code keeps changing 

constantly, and it is necessary to repeat the tests through out the whole development period. 

A straightforward solution to automatically repeat the tests is to set up a schedule 

based on the time. The second method we proposed to automatically run the tests is based 

on the source code changes. Not all the objective functions change all the time, so we 

should only re-test those that have changed and ignore those that have not changed. For 

instance, the developer may focus on one app of the web application today and another app 

tomorrow, so it is unnecessary to re-run tests on the second app. In this case, the schedule 

builder should monitor each template, and automatically triggers the actions to re-run the 

corresponding tests based on changes of the template’s source codes (for example, re-test 

after a defined number of updates to the source code). 

3.2.3 Result Reporter 

The automatic testing framework runs without human intervention; therefore, once 

the results are produced, it is possible for users to ignore their implications if the framework 
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does not notify the developer. This is acceptable if a test case passes, but when the result 

fails, the result reporter module must notify the developer. Content of the notifications 

include a true/false assertion (i.e., indicating whether the template page is rendered 

identically in the target browsers), a quantitative value of the visual similarity (where 1.0 

indicates identical and 0.0 indicates completely different), and a list of differences between 

the rendered pages. 

Priorities must be added to the notifications automatically, and the result reporter 

must display the outputs accordingly. This is because automatic repetitions of the 

scheduled tests will generate significant numbers of results, and only those failed results 

(i.e., VIs that have been detected) require the developer’s attention. If the objective of a 

test is to confirm the template is rendered identically by all browsers, then all the results of 

“true”, “1.0”, or an empty list of differences are not important. In this case, the priority of 

these results should be set to lowest. As the opposite, the lower the similarity value (or the 

larger the difference list is), the higher the priority should be. 

The difference list is easier to read if it is combined with the side-by-side display 

for locating VIs. Therefore, presentation of VIs must be done by rendering the web page 

in all the browsers simultaneously and highlighting the identified differences (for example, 

highlight them by changing the background colors or by outlining the borders of the related 

blocks). 

Figure 5.4 shows the outline of the automated testing framework, where the green 

and yellow rectangles indicate the data and components of the framework, respectively; 

the green and yellow arrows denote the data and control flow, respectively; and the blue 

arrows refer to the notification flow. 
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Figure 5.4 The Automated Testing Framework 

 The framework accepts both templates of web applications and specific 

URLs/HTML code as the input. Although the templates require extra processing by 

the source parser, the specific URLs/HTML code can be directly input in the 

schedule builder. 

 The browser controller registers and manages the supported browsers. 

 The schedule builder manages the automation schedule, either by time, or by 

changes to the source code, or by both. According to the schedules, its 

subcomponent, the action trigger, conducts the testing process, where the sources 

are passed to the VI identifier for VI detection and similarity estimation. 
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 The result reporter collects all the test results, filters them by priorities, and notifies 

web application developers selectively. By updating the web pages in the browsers 

with the difference list, a side-by-side comparison provides fast location of VIs. 

4 Automated Testing Tool 

To conduction VI detection, the minimum request is that the automated testing tool 

must support multiple browsers and/or multiple platforms. The implementation, hence, is 

designed as a distributed system, where a central node communicates with and controls all 

leaf nodes. The leaf nodes run specific OSes and browsers and therefore consist of the 

testing farm, which renders the target web pages and collects the corresponding source data 

(i.e., the block trees). The central node deploys the automated testing tool as well as the 

target web application, and performs the testing automation. Figure 5.5 shows a sequence 

diagram of the tool’s testing process. 

4.1 Browser and Platform Registration 

During the initialization of the automated testing tool, the supported browsers and 

platforms are to be configured. The core thread of this distributed system that is located in 

the central node will send queries to all branches for browser detection. The active leaf 

nodes will respond to it with the configuration information, including the name and version 

of both its own operating system and installed browsers. Hardware configurations of the 

machine (either physical or virtual) could also be included if necessary, such as resolutions 

of mobile devices. Figure 5.6 shows the two initialization dialogs of the tool, where the 

browser registration illustrates examples of local browsers. 
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Figure 5.5 Sequence Diagram of the Automated Testing Tool 

 

Figure 5.6 Initialization Dialogs of the Automated Testing Tool 

4.2 Template Based Test Case Organization 

The automated testing tool analyzes the source code that encode all the templates 

such as the full list of RESTful URLs, and generates test cases for each such template entry. 

(a) Browser Registration (b) Project Options 
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As mentioned in the previous section, this task is done by the source parser. If necessary, 

the source parser will dig further information (for example dynamic content in the URLs, 

such as the user ID “MarcoXZh” in “https://github.com/MarcoXZh/”) from sub apps and 

the web application’s database. Note this step is project dependant – different web 

applications require different strategies for code analysis. 

Figure 5.7 shows example pseudocode of the source parser for Django project 

analysis. This algorithm takes a Django project’s project name and root directory as inputs. 

It searches the “manage.py” script for configurations of installed apps and databases (Line 

6 to 8), and then parses the templates as follows: 
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ALGORITHM ParseSource_Django: 

    INPUT: project name: PN, 

           root directory PN: RD 

    OUTPUT: all template URLs: TS 

 

    config_script = get_config_script(RD.mangage.py) 

    apps = get_installed_apps(config_script) 

    database = get_database(config_script) 

    connect(database) 

    TS = [EMPTY_LIST] 

    FOR EACH app IN apps DO: 

        FOR EACH url, view IN urlpatterns(app.urls.py) DO: 

            IF contains_django_variables(url) THEN: 

                variables = retrieve_variables(url) 

                model = retrieve_model(view) 

                sql_table = retrieve_sql_table(app.model) 

                values = [EMPTY_LIST] 

                FOR EACH var IN variables DO: 

                    value = query(sql_table, var) 

                    values.append(value) 

                END FOR 

                replace_all(url, variables, values) 

            END IF 

            TS.append(url) 

        END FOR 

    END FOR 

    close(database) 

    RETURN TS 

END ALGORITHM 

Figure 5.7 Extracting Templates from Django Projects 
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1) for each installed app, it checks its “urls.py” script to detect all supported URL 

patterns and the corresponding views;  

2) for each URL pattern, if it contains variables, then the source parser needs to assign 

correct values by querying the view-model-table chain for all the variables (Line 

13 to 23); 

3) after assigning values to the variables, or if the pattern is a regular URL and 

contains no variables, the URL pattern is added to the template list; and 

4) the full template list includes all the URL patterns of all the installed apps. Due to 

the templates list consisting of URL patterns only extracted from the “urls.py” 

script, it will not store duplicated URL entries, and at the same time cover all the 

supported URLs of the web application. 

4.3 Version Based Automation 

Once the templates are extracted from the web application’s source code, the core 

thread sends signals to all the leaf nodes according to the predefined schedule for VI 

detection. This tool contains both time-driven schedules (i.e., triggers actions after a fixed 

time) and change-driven schedules (i.e., triggers actions after a fixed number of changes 

being made in the target source codes). Once the predefined time has expired or the 

predefined number of code changes has detected, a re-test is triggered. However, if the 

target source code remains unchanged (i.e., no changes of source code found by the diff 

process, or http response code of the target web page being 304), then the test will be 

skipped. Figure 5.8 shows the scheduler builder of the tool, which combines the functions 

of template extraction and schedule configuration. Note the three source entries at the right-

side list view are raw HTML code – a regular URL without variables and a variable-
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included URL. The “`|$1|`”, “`|$2|`”, etc. are the variable names, and the 

corresponding values are stored however not displayed. Testing frequency of the schedule 

builder can be configured as either change-based or time-based or both. Collection of the 

target test cases’ screenshots can be customized, too. 

 

Figure 5.8 Schedule Builder of the Automated Testing Tool 

4.4 Case Study 

In this chapter, we evaluate the efficiency of the automated testing tool though the 

case of University of Alberta’s home page. Comprehensive experiments and result 

discussions can be found in (Xu and Miller, 2015). We run the tools to compare the page 

in two popular browsers: Google Chrome version 57 and Mozilla Firefox version 52, and 

on two platforms: Windows 10 and CentOS 7. By comparing the results of 

CrossBrowserTesting and our VI detection, the following conclusions can be derived: 
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1) Both CrossBrowserTesting and our automated testing tool can locate VIs of web 

pages among different browsers; and at the same time, both can make the correct 

conclusion without raising false positives if two versions of a web page are identical. 

2) Results of CrossBrowserTesting contains only VIs, lacking in intuitive conclusions 

to determine how similar the two versions of a web page are. Thus, if a test result 

contains ten small VIs and another test result contains one big VIs, it is difficult to 

figure out the priority for developers to start debugging. As the comparison, our 

tool calculates the EST similarity, which enables the priority judgement. Table 5.1 

shows the EST values of the evaluation. 

Table 5.1 EST Similarity Values of the Cross-Comparisons 

Browser1 Windows-Chrome CentOS-Chrome Windows-Chrome Windows-Firefox 

Browser 2 Windows-Firefox CentOS-Firefox CentOS-Chrome CentOS-Firefox 

EST 

Value 
1.0000 1.0000 0.9603 0.9603 

 

3) During the tree comparison, our EST model maps sub trees instead of nodes, thus 

it can avoid potential duplications of VI detection. As previously shown in Figure 

5.2b, CrossBrowserTesting identified four VIs caused by the X coordinates of the 

elements. However, the second and the third VIs are child elements of the element 

in the first VI. Due to the mismatch of the parent element’s X coordinate from the 

two versions of the page, its child elements consequently mismatch, too, Therefore, 

the second and the third VIs are actually a duplication of the first VI. Our EST 

model, by absorbing comparisons of child elements and mapping subtrees, prevents 

such hierarchical false positives from being detected. 
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5 Conclusions 

Diversity of present web browsers and platforms have brought cross browser issues 

to both web users and developers. To detect cross browser incompatibilities, many 

commercial tools have been developed and relevant topics have gained attention among 

researchers as well. In this chapter, we target the detection of VIs and attempt to propose a 

testing framework to detect these incompatibilities automatically. Three advantages exist 

in the automated testing framework. Firstly, the detection of VIs is based on source 

templates. By doing so, we narrow down the scale of testing. Second, automation is 

achieved by schedules based on both time and changes of the source code, which avoids 

human intervention and at the same time this further reduces the test ranges. Finally, the 

framework provides both a list of VIs (including a rendered presentation of these 

differences) and a quantitative similarity value as the result. This makes it possible to notify 

web application developers by priorities. 

An automated testing tool is designed according to the framework. This tool allows 

the registration of browsers on both local and remote machines, and utilizes all these 

registered browsers to conduct VI detection. It extracts the templates depending on the type 

of the target web application. A Django example is employed showing that this tool can 

extract both plain URLs and URLs with variables, where the extraction of the latter is done 

by querying information from the web application’s database. Version base automation of 

the tool is achieved by both time-driven and change-driven schedules. A case study is 

presented to illustrate the efficiency of the extended subtree model by comparing it with 

the CrossBrowserTesting. Conclusions reveal that the quantitative values indicate how 

similar the two browser versions of a web page are and serves as a reference to debug these 
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VIs; and the subtree mapping scheme has eliminated duplications of the VI detection 

results. 
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CHAPTER 6  Conclusions 

1 Summary of Thesis 

The purpose of this thesis is to investigate issues existing in the field of web pages, including 

the detection of semantic content, visual similarity, and cross-browser incompatibilities. To address 

these issues, we propose four research topics and present them in separate chapters that follow the 

introduction chapter. In this section, we will describe the accomplishments within each topic in 

both terms of their strengths and limitations. 

In Chapter 2, we present our first journal paper, which develops an approach to identify 

semantic blocks in web pages. Since traditional methods cannot work well for modern web pages, 

we seek to introduce human perception into this topic. To remove the hierarchical inconsistencies 

between the visual layout and the DOM tree of web pages, we propose the layer tree. Based on it, 

we interpret the Gestalt Laws of grouping by novel measurements such as the normalized Hausdorff 

distance, the CIE-Lab color difference, and the normalized compression distance. A classifier is 

trained finally to operationalize the interpreted laws. Semantic blocks are extracted by applying the 

translated Gestalt laws to the layer tree. For this topic, we have achieved what we proposed in the 

introduction chapter. A limitation of the proposed technique is that it cannot work well with large 

web pages. 

In Chapter 3, we present our second journal paper, which provides a method to detect web 

page similarity for modern rich-format web pages. Unlike existing approaches that adopt DOM 

trees or images, the new method considers both structural and visual information of the web pages. 

Based on the idea of the block tree, we propose a visual similarity measurement that use tree edit 

distance to calculate visual similarity between web pages. As stated in the introduction section, we 

have succeeded in presenting a way to detect web page similarity. One limitation of the proposed 
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method is that tree edit distance is not the perfect data structure to describe web pages, because its 

mapping detection is based on nodes while web pages visualization is based on sub trees. 

In Chapter 4, we present our third journal paper, which improves the visual similarity 

measurement by conducting empirical experiments to determine the measurements for Gestalt laws 

translation and replacing the tree edit distance with extended subtree model. By using this visual 

similarity measurement, we conduct experiment to evaluate visual similarity of different web pages. 

In this topic, we solved the limitation of the second topic described in the previous paragraph. 

Specifically, we introduced extended sub tree concept to represent web pages in order to obtain a 

more accurate comparison. 

In Chapter 5, we present our fourth journal paper, which focuses on the development of an 

automated testing framework to detect cross-browser visual incompatibilities between web pages. 

An automated testing tool is designed according to the framework, by using the improved visual 

similarity. 

2 Publications 

1) Papers: 
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Deficient documentation detection: a methodology to locate deficient project 

documentation using topic analysis,” 10th Working Conference on Mining 

Software Repositories, pp. 57-60, 2013. 

 Xu, Zhen, and James Miller. A New Webpage Classification Model Based on 

Visual Information Using Gestalt Laws of Grouping. International Conference on 

Web Information Systems Engineering. Springer International Publishing, 2015. 
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 Zhen Xu, James Miller, Syed Tauhid Zuhori. A New Web Page Classification 

Model based on Visual Information using Gestalt Laws of Grouping. 25th Annual 

International Conference on Computer Science and Software Engineering. 

 Zhen Xu, James Miller. An Empirical Metric for Web Page Visual Similarity based 
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