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Abstract

In this thesis, we will study singular solutions of the Kadomtsev-

Petviashvili equation

(ut + 6uux + uxxx)x + 3α2uyy = 0, α2 = ±1

that will help improve our understanding and if possible give indicators to

the occurrence of rogue waves. We will only study the nonlinear interaction

of two such solutions.
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Chapter 1

Introduction

Rogue waves, also called giant or freak waves, are relatively powerful ocean

surface waves that are a threat to large ships and ocean liners. They are

responsible for the loss of many ships and lives.

Rogue waves are particularly spontaneous, as they appear from nowhere.

That is because they appear from an internal process of energy accumula-

tion sometimes combined with external processes of energy accumulation

such as the wind. As spontaneous as they are, they are not totally random,

they appear more frequently in certain regions of the ocean than others.

These regions seem to have the right ingredients for the internal energy to

build up and create rogue waves. One such region is in the area near Cape

Agulhas. The Agulhas current runs southwest while the dominant winds

are westerlies.

Rogue waves appear mostly in three categories: as walls of water, sets of

three called “three sisters” (three sisters is reported to have occurred in

Lake Superior), and as single, giant waves that build up and quadruples

the height of a new wave formed.
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For years, sailors and other eyewitnesses have recounted their encoun-

ters with large monstrous waves. These stories have been dismissed by

oceanographers. However, this attitude changed following the scientific

measurement of a large wave, called the “Draupner wave” at the Draupner

platform, in the North Sea on January 1, 1995. Since then, several other

accounts of rogue waves have been given, mostly in the media.

Even if we cannot determine all the factors that create a rogue wave, causes

may include strong winds together with fast converging currents, or diffrac-

tive focusing of winds and currents. Another cause may be a prominent

nonlinear effect in which a particular type of nonlinear wave forms and ex-

tracts energy from other nonlinear waves, growing into a bigger and taller

wave. The different causes that create rogue waves give rise to the occur-

rence of different types. The common elements in their occurrence are the

associated elevations and depressions of the surrounding water.

There are several models for rogue waves. Some scientists tried to model

them using the nonlinear Schrödinger equation (see ‘How to excite rogue

waves’, N. Akhmediev et. al.). Other models used data collected on the

heights of waves. However, none of these models are satisfactory because

they don’t give a complete picture of rogue waves.

Here are pictures of rogue waves curled from the Internet below. Figures

1.1 and 1.2 are found at http://justcoolpics.blogspot.com/2010/04/surfing-

giant-waves.html and http://earthsky.org/earth/lev-kaplan-rogue-waves-

are-not-tsunamis respectively.
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Figure 1.1: An example of a rogue wave - 1

Figure 1.2: An example of a rogue wave - 2

1.1 Objective

In this thesis, we will try to understand the basic mechanism of the rogue

wave. Rogue waves are a localized phenomenon both in space and in time,

most frequently occurring far out at sea. We will make use of the equation

derived by Kadomtsev and Petviashvili

(ut + 6uux + uxxx)x + 3α2uyy = 0, α2 = ±1 (1.1)
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and named after them, the Kadomtsev-Petviashvili equation (KP equa-

tion), which is one of the many models for water waves. The evolution

of the waves described by (1.1) is weakly nonlinear, weakly dispersive and

weakly two-dimensional. The sign of α2 depends on the magnitudes of

gravity and surface tension. When α2 = −1, surface tension dominates

gravity (gravity is negligible) and (1.1) is known as the KPI equation.

When α2 = 1, gravity dominates surface tension (surface tension is negli-

gible) and (1.1) is known as the KPII equation.

The KP equation (1.1) has been widely studied and used in the description

of several interesting phenomena. However, much of the interest in these

nonlinear evolution equations is due to the fact that they are completely

integrable systems. The initial value problem for each of these equations is

solved by a method called Inverse Scattering Transform.

We will consider appropriate singular solutions of the KP equation, and

study whether through their nonlinear interaction they can create rogue

waves. The KP equation will not be able to fully describe this phenomenon

due to its limitations, which includes the equation not accounting for over-

turning waves. However, we will show that despite it’s limitations, it gives

a good explanation to how rogue waves occur.

1.2 Problem Statement

With giant waves like rogue waves occurring and causing the loss of many

ships and lives, a good understanding of their occurrence will be of great

help. Rogue waves are not tsunamis, which are set in motion by earth-

quakes and propagate at high speeds, building up as they get to the shore.

Rogue waves occur most frequently in deep water and are short-lived.
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We attempt to improve the understanding and if possible the prediction in

the occurrence of these waves by using the Kadomtsev-Petviashvili equa-

tion. This will be made possible by focusing on one of the many causes

of these waves, the nonlinear effects. Thus, we study solutions of the KP

equation.

The organization of this thesis is as follows: in Chapter 1 we give an

overview of our study, state the objective and introduce the problem. In

Chapter 2 the physical derivation of the KP model is thoroughly presented.

The main results of this thesis are presented in Chapter 3, here special so-

lutions of the KP equation are given and we will see that these solutions

give an idea to the study of rogue waves in Section 3.3. In Sections 3.2 and

3.3, singular waves and the superposition of two singular wave solutions are

presented. We conclude the thesis in Chapter 4, by discussing the results

and some of their properties.

5



Chapter 2

The Kadomtsev-Petviashvili

Equation; Physical Derivation,

N-Soliton Wall Solution

Before we give the physical derivation of the KP equation, here is a small

introduction to solitary waves and solitons.

John Scott Russell made an important discovery concerning the water wave

problem in 1844, a phenomenon he termed solitary wave. This discovery

gave birth to the modern study of solitons.

From Russell’s observation, we find that the solitary wave has the following

properties

1. permanent form

2. velocity of propagation given by c2 = g(h+ a)i

3. taller waves travel faster than shorter ones

iwhere g, h and a are acceleration due to gravity, uniform depth, and amplitude as
measured from an undisturbed level respectively

6



Unfortunately, Russell’s observations contradicted Airy’s shallow water the-

ory that waves of finite amplitude do not propagate without change of pro-

file.

Russell’s work on the solitary wave received scientific importance and was

mathematically explained separately by Boussinesq and Rayleigh (1870),

using the equations of motion for an inviscid incompressible fluid. They

found Russell’s equation for the velocity of propagation. They also showed

that the wave profile z = ζ(x, t) for the free surface elevation is

ζ = a sech2x− ct
λ

, ε =
a

h
� 1, δ2 =

(
h

h

)2

= O(ε) (2.1)

where a and λ are the characteristic amplitude and wavelength respectively

in the x-direction. The characteristic wavelength λ is determined by the

Ursell number

U =
3ε

4δ2
= 1 (2.2)

This Ursell number tells us that the essential quality of the solitary wave

is the balance between nonlinearity and dispersion, [26].

For more detailed discussions on solitary waves and solitons, see [1], [7] or

[24].

2.1 Physical Derivation of the KP Equation

In this section, we derive the model equation describing the surface water

problem in a weakly two-dimensional space plus time. Kadomtsev and

Petviashvili (1970), derived the equation, now named after them, to model

the evolution of long ion-acoustic waves of small amplitude propagating in

plasmas under the effect of long transverse perturbations.
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The KP equation models shallow water waves where the amplitude of the

wave a must be less than the undisturbed depth h with respect to the

horizontal (x, y) wavenumber (k,m) of the characteristic disturbances and

g is acceleration due to gravity, [26]. The original KP equation is of the

form (
1

ν0
ζt + ζx +

3

2h
ζζx +

h2

6
ζxxx

)
x

+
1

2
ζyy = 0, ν0 =

√
g

h
(2.3)

where ζ(x, y, t) is the wave profile for the free surface elevation. Equation

(2.3) was derived based on the following assumptions:

1. a
h
� 1, small amplitude

2. h2(k2 +m2)� 1, long waves

3. m
k
� 1, nearly one-dimensional.

We derive the physical KP equation by assuming that the amplitude a of

oscillation of the free surface and the ratio of amplitude to wavenumber

are small. This implies that the slope of the surface is small, and that

the instantaneous depth does not differ significantly from the undisturbed

depth. These conditions will allow us to linearize the problem, [18].

The classical water wave problem considers a fluid that is, [1]

1. incompressible

2. irrotational

3. inviscid

4. homogeneous

5. subject to gravitational acceleration g.

8



A fluid with the above features is usually known as an ideal fluid in fluid

mechanics.

We consider a fluid that rests on a horizontal impermeable bed of finite

extent at z = −h and has a free surface at z = η(x, y, t), η represents the

elevation of the free surface above some reference plane position x,y and

time t. For a schematic illustration to the derivation of the Kadomtsev-

Petviashvili equation for water waves, see Figure 5.1 in [9].

Let u be the velocity vector of a particle at a point. Since the fluid is

incompressible and irrotational, we have that

∇ · u = 0, ∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(2.4)

and

∇× u = 0 (2.5)

The fluid has a velocity potential φ, such that u = ∇φ, and satisfies

∇2φ = 0 − h < z < η(x, y, t) (2.6)

To have a well posed problem, we need to impose boundary conditions at

the bottom of the bed and at the free surface.

The normal component of velocity should satisfy

u · n = 0 (2.7)

at the bottom since the bed is impermeable (no penetration). This gives

us

∂φ

∂z
= 0 at z = −h (2.8)

9



On the free surface, we have a kinematic boundary condition, that is, the

fluid at the boundary flows along the boundary and never leaves,

Dη

Dt
≡ ηt + φxηx + φyηy = φz

ii at z = η (2.9)

For our problem (small amplitude waves), φx, ηx, φy and ηy are small, so

φxηx, φyηy are negligible. Equation (2.9) then simplifies to

ηt = φz at z = η (2.10)

Taylor expanding equation (2.10) about η = 0, we have

∂η

∂t
=
∂φ

∂z

∣∣∣
z=0

+ η
∂2φ

∂z2

∣∣∣
z=0

+ . . . (2.11)

which approximates to

∂η

∂t
=
∂φ

∂z
at z = 0 (2.12)

At z = η, we have a dynamic boundary condition that involves the interface

between water and air (fluid-fluid boundary). On this surface, pressure is

not continuous across the interface. There should be a pressure balance

∆p = T∇ · n (2.13)

where ∆p = pa− p is the change in pressure, pa is atmospheric pressure, T

is surface tension.

iiDη
Dt = ∂η

∂t + u · ∇η

10



For an interface with radii of curvature R1 and R2, the pressure jump

across the interface is, [18]

∆p = T

(
1

R1

+
1

R2

)
at z = η (2.14)

where

1

R1

=
ηxx(1 + η2y)

(1 + η2x + η2y)
3
2

≈ ηxx (2.15)

and

1

R2

=
ηyy(1 + η2x)

(1 + η2x + η2y)
3
2

≈ ηyy (2.16)

The above approximations are only valid for small slopes. For this, the

boundary condition (2.14) becomes

p ≈ −T (ηxx + ηyy) (2.17)

where the atmospheric pa is considered to be zero here, (i.e, pa = 0). Since

we have an ideal flow, we can apply the unsteady Bernoulli’s equation for

small amplitude waves:

∂φ

∂t
+
p

ρ
+ gz = C(t) (2.18)

where ρ is the density of the fluid, C(t) is an integrating function indepen-

dent of location. Defining φ as φ−
∫
C(t)dt, we have

∂φ

∂t
= −gη + S(ηxx + ηyy) at z = η (2.19)

where S = T
ρ
. The term ∂φ

∂t
in (2.19) can be evaluated at z = 0 rather than

at z = η for small amplitude waves.
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The linearized mathematical model describing the surface, small amplitude

gravity waves in a weakly two-dimensional space plus time is

∇2φ = 0 − h < z < η(x, y, t) (2.20a)

∂φ

∂z
= 0 at z = −h (2.20b)

∂φ

∂z
=
∂η

∂t
at z = 0 (2.20c)

∂φ

∂t
= −gη + S(ηxx + ηyy) at z = η (2.20d)

To apply the boundary conditions, we need to assume a form for η(x, y, t).

Since small-amplitude water waves become roughly sinusoidal some time

after their generation, we choose η(x, y, t) to be of the form

η(x, y, t) = ei(kx+my−ωt) (2.21)

Another reason for this choice is that, an arbitrary disturbance can be

decomposed into sinusoidal components by Fourier analysis.

Equation (2.21) and the boundary conditions (2.20c) and (2.20d) suggests

that we look for a separable solution of equation (2.20) of the form

φ(x, y, z, t) = f(z)ei(kx+my−ωt) (2.22)

where f(z) and ω(k,m) are to be determined. Substituting equation (2.22)

into equation (2.20a), we obtain

f ′′ − κ2f = 0, κ =
√
k2 +m2 (2.23)
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whose general solution is

f(z) = C1e
κz + C2e

−κz, C1, C2 are constants. (2.24)

The velocity potential is

φ(x, y, z, t) = (C1e
κz + C2e

−κz)ei(kx+my−ωt) (2.25)

Using the boundary conditions (2.20b) and (2.20c), we find

C1 = − iω

κ(1− e−2kh)
(2.26)

C2 = − iωe−2kh

κ(1− e−2kh)
(2.27)

The solution for the velocity potential is then

φ(x, y, z, t) = −iω
κ

cosh(κ(z + h))

sinh(κh)
ei(kx+my−ωt) (2.28)

We solved (2.20a) using only the kinematic boundary conditions (2.20b)

and (2.20c), which is typical of irrotational flows. We now apply the dy-

namic boundary condition (2.20d) to the problem. This gives us a relation

for κ and ω. Substituting equations (2.28) and (2.21) into (2.20d), we

obtain

ω2 = κ(g + Sκ2) tanh(κh) (2.29)

A relation such as equation (2.29), giving ω as a function of κ is called a

dispersive relation, because it expresses the nature of the dispersive process.
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If we consider only the positive root of equation (2.29)

ω =
√
κ(g + Sκ2) tanh(κh) (2.30)

Taylor expanding equation (2.30) about κ = 0, we have

ω = ν◦κ

(
1− 1

6
h2(1− Ŝ)κ2

)
+O(κ5) (2.31)

where ν◦ =
√
gh, Ŝ =

3S

gh2

ν◦ and Ŝ represent the phase speed and the dimensionless surface tension.

From equation (2.31), we obtain the group velocity as

c =
ω

κ
= ν◦

[
1− 1

6
h2(1− Ŝ)κ2

]
+O(κ4) (2.32)

This shows that the linearized problem is non-dispersive as κ → 0, (i.e,

long waves or shallow water waves), where it is weakly dispersive. The

KdV and KP equations arise as models of the water wave problem in this

weakly dispersive limit κh� 1, [1].

For sufficiently small κ, we drop the O(κ5) term, so that equation (2.31)

becomes

ω = ν◦
√
k2 +m2

[
1− 1

6
h2(1− Ŝ)(k2 +m2)

]
(2.33)

If we assume that the waves are nearly one dimensional, k small but

(m/k)2 � 1, we have that

1

ν◦
ωk − k2 − 1

2
m2 +

1

6
h2(1− Ŝ)k4 = 0 (2.34)
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We recall that, we assumed the solution of the linearized problem equation

(2.20) to be of the form (2.21). Equation (2.34) suggests that (2.21) satisfies

(
1

ν◦
ηt + ηx +

1

6
h2(1− Ŝ)ηxxx

)
x

+
1

2
ηyy = 0 (2.35)

To satisfy certain conservation laws from physics and also to cause a vari-

ation in the amplitude for both space and time of η(x, y, t), we add the

nonlinear term (ηηx)x to (2.35), thus obtaining

(
1

ν◦
ηt + ηx + ηηx +

1

6
h2(1− Ŝ)ηxxx

)
x

+
1

2
ηyy = 0 (2.36)

Under the change of variables

r =
x− ν◦t
h

, ζ =
y

h
, τ =

ν◦t

6h
, η = u(r, ζ, τ) (2.37)

we have the dimensionless form of equation (2.36)

(uτ + 6uur + (1− Ŝ)urrr)r + 3uζζ = 0 (2.38)

For very thin sheets of water Ŝ > 1 (surface tension dominates gravity),

then equation (2.38) is equivalent to equation (1.1) in Section 1.1, with

α2 = −1, that is

(ut + 6uux + uxxx)x − 3uyy = 0 (2.39)

which is called the KPI equation. For most cases of interest in water waves

1 − Ŝ > 0 (usually, Ŝ � 1 and is negligible). This corresponds to α2 = 1

in equation (1.1) of Section 1.1, called the KPII equation, that is

(ut + 6uux + uxxx)x + 3uyy = 0 (2.40)
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2.2 N-soliton Wall Solution of the KP Equa-

tion

In this section, we present the N -soliton wall solution for the KP equation.

To derive this solution, we will make use of the Dressing Method devised

by Zakharov and Shabat, and presented in [21].

2.2.1 Lax’s Representation

We introduce Lax’s representation for solving partial differential equations.

This representation is used by Zakharov and Shabat in their Dressing

Method. The concept of Lax’s representation is reproduced from [1].

Consider two differential operators L and M , where L is the operator of

the spectral problem

Lψ = λψ (2.41)

and M is the operator governing the associated time evolution of the eigen-

function ψ(x, t)

ψt = Mψ (2.42)

Taking a time derivative of (2.41) gives

Ltψ + Lψt = λtψ + λψt (2.43)

and using (2.42), we obtain

[Lt + (LM −ML)]ψ = λtψ (2.44)
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and in order to solve for the nontrivial eigenfunctions ψ(x, t)

Lt + [L,M ] = 0 (2.45)

where

[L,M ] = LM −ML,

if and only if λt = 0. Equation (2.45) is called Lax’s equation, and contains

a nonlinear evolution equation for suitably differential operators L and M .

For example, for the KdV equation

ut + 6uux + uxxx = 0 (2.46)

choosing

L =
∂2

∂x2
+ u (2.47)

and

M = (α + ux)− (4λ+ 2u)
∂

∂x
(2.48)

equation (2.45) is satisfied.

Equation (2.46) may be thought of as the compatibility condition of the lin-

ear operators (2.47) and (2.48). If a nonlinear partial differential equation

arises as a result of the compatibility condition of the two operators L and

M , then (2.45) is called the Lax representation of the partial differential

equation and the pair L and M , written (L,M) are the Lax pair.

17



The following Lax pair, [21] were found for the KP equation (1.1),

L = α
∂

∂y
+

∂2

∂x2
+ u(x, y, t) (2.49)

and

M = −4
∂3

∂x3
− 6u

∂

∂x
− 3ux + 3αω (2.50)

The Lax pair (2.49) and (2.50), and the equation (2.45) allow us to write

the KP equation in evolution form as

ut − 6uux − uxxx − 3α2ωy = 0, ωx = uy (2.51)

which is equivalent to

(ut − 6uux − uxxx)x − 3α2uyy = 0 (2.52)

Since the properties of solutions of the KP depends on the sign of α2, we

have different choices of L for each choice of α.

For α2 = −1 (KPI equation), L is a nonstationary Schrödinger operator

L = i
∂

∂y
+

∂2

∂x2
+ u(x, y, t) (2.53)

and for α2 = 1 (KPII equation), L is the operator of heat conductivity

L =
∂

∂y
+

∂2

∂x2
+ u(x, y, t) (2.54)
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2.2.2 N-soliton Wall Solution of the KPII equation

To construct this solution, we use the technique of the Dressing Method in

constructing several particular solutions. The Dressing Method is repro-

duced from [21].

Consider the Fredholm operator F̂ depending on y and t,

F̂ φ(x, y, t) =

∫ ∞
−∞

F (x, z, t, y)φ(z, y, t)dz (2.55)

which admits the triangular factorization

1 + F̂ = (1 + K̂+)−1(1 + K̂−) (2.56)

where K̂+ and K̂− are the Volterra operators

K̂+φ(x) =

∫ ∞
x

K+(x, z, y, t)φ(z, y, t)dz (2.57)

K̂−φ(x) =

∫ x

−∞
K−(x, z, y, t)φ(z, y, t)dz (2.58)

Assume a differential operator

L0 = α
∂

∂y
+M0

is given, where

M0 = m0
∂n

∂xn
+m1

∂n−1

∂xn−1
+ · · ·+mn (2.59)

with the coefficient mi functions of x, y, and t.
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Suppose that F̂ commutates with L0

F̂L0 − L0F̂ = 0 (2.60)

and also with ∂
∂t
− A0

(
∂

∂t
− A0

)
F̂ − F̂

(
∂

∂t
− A0

)
= 0, A0 = −4

∂3

∂x3
(2.61)

The operator L0 remains invariant, when the space of φ(x) is transformed

by 1 + F̂ , that is

(1 + F̂ )−1L0(1 + F̂ ) = L0

⇒ (1 + K̂+)L0(1 + K̂+)−1 = (1 + K̂−)L0(1 + K̂−)−1

and

(1 + F̂ )−1
(
∂

∂t
− A0

)
(1 + F̂ ) =

∂

∂t
− A0

⇒ (1+K̂+)

(
∂

∂t
− A0

)
(1+K̂+)−1 = (1+K̂−)

(
∂

∂t
− A0

)
(1+K̂−)−1

Once we obtain F̂ , we find K̂+ by multiplying (1+K̂−) to the left of (2.56)

and obtain

(1 + K̂−)(1 + F̂ ) = (1 + K̂+) (2.62)

Assuming z < x leads us to the Gel’fand-Levitan-Marchenko equation

K+(x, z, t, y) + F (x, z, t, y) +

∫ ∞
x

K+(x, s, t, y)F (s, z, t, y)ds = 0 (2.63)
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The new class of solutions of the KPII equation is generated from

u(x, y, t) = −2
∂

∂x
K+(x, x, y, t) (2.64)

Thus the Dressing Method yields a new class of solutions from already

known solutions, [21].

Now we apply the Dressing Method to the KPII equation (α = 1), and

taking note that F̂ commutes with both L0 and ∂
∂t
− A0.

L0F̂ − F̂L0 = 0

⇒
(
∂

∂y
+

∂2

∂x2

)∫ ∞
−∞

F (x, z, y, t)φ(z, y, t)dz

−
∫ ∞
−∞

F (x, z, y, t)

(
∂

∂y
+

∂2

∂z2

)
φ(z, y, t)dz = 0

⇒
∫ ∞
−∞

[
∂F (x, z, y, t)

∂y
+
∂2F (x, z, y, t)

∂x2
− ∂2F (x, z, y, t)

∂z2

]
φ(z, y, t)dz = 0

⇒ ∂F

∂y
+
∂2F

∂x2
− ∂2F

∂z2
= 0 (2.65)

Similarly for ∂
∂t
− A0, we get

∂F

∂t
+ 4

(
∂3F

∂x3
+
∂3F

∂z3

)
= 0 (2.66)
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One simple solution of the system of equations (2.65) and (2.66) is

choosing F as

F (x, z, t, y) =
N∑
n=1

Cn(y, t)e(pnx+qnz) (2.67)

where

Cn(y, t) = cne
[(q2n−p2n)y−4(p3n+q3n)t] (2.68)

and pn, qn, cn > 0, m,n = 1, 2, · · · , N.

We seek to solve (2.63) for K+ of the form

K+(x, z, t, y) =
N∑
n=1

Kn(x, t, y)eqnz (2.69)

Substituting equation (2.69) into (2.63), and using equation (2.67), we ob-

tain

Kn(x, t, y) +
N∑
m=1

Km(x, t, y)Cn(y, t)
e(pn+qm)x

pn + qm
= −Cn(y, t)epnx(2.70)

m,n = 1, 2, · · · , N, pn + qm 6= 0

Let A = A(x, y, t) be an N ×N matrix of (2.68),

Amn = δmn + Cn(y, t)
e(pn+qm)x

pn + qm
, m, n = 1, 2, · · · , N (2.71)

where

δmn =

 1 if m = n

0 if m 6= n
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By Cramer’s rule, we find that the solution of equation (2.71) is

Kn(x, t, y) =
detA(n)

detA

where A(n) is the matrix obtained from A by replacing its n-th column with

the elements of −Cn(y, t)epnz.

The solution K+ of (2.63) is therefore

K+(x, z, t, y) =
1

detA

N∑
n=1

detA(n)eqnz (2.72)

We know that,

detA =
N∑
n=1

Amn(−1)m+nMmn (2.73)

where Mmn is the determinant of the minor matrix obtained by deleting

the m-th row and n-th column of A.

Differentiating equation (2.73) with respect to x, we have

∂

∂x
detA = −

N∑
n=1

eqnx
∑
m∈Pn

(−1)mA1m(1)A2m(2) (2.74)

· · · (−cm(n)(y, t)e
pm(n)x) · · ·ANm(N)

= −
N∑
n=1

detA(n)eqnx

Hence from equation (2.72), we obtain

K+(x, z, t, y) =
1

detA

(
− ∂

∂x
detA

)
= − ∂

∂x
ln detA (2.75)
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Now from equations (2.64) and (2.75), we get the new solution of the

KPII equation

u(x, y, t) = 2
∂2

∂x2
ln detA (2.76)

Equation (2.76) is called the N -soliton wall solution. The new class of

solutions is derived from the soliton-wall solutions.

By constructing the N -soliton solution of the KPII equation, we can easily

derive the N -soliton solution of the KPI equation, by making the change

of variables y → iy, i2 = −1.

Some examples of the N -soliton solution of the KP equation are given

below.

(a) 3D plot (b) Projection onto xy-plane

(c) Contour plot

Figure 2.1: 1-soliton wall solution with p1 = 1, q1 = 0.5, c1 = 1, at t = 0
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Figures 2.1 and 2.2 show a plot of the 1-soliton wall and 2-soliton wall

solutions in various views respectively.

(a) 3D plot (b) Projection onto xy-plane

(c) Contour plot

Figure 2.2: 2-soliton wall solution with p1 = 1.6, p2 = 0.9, q1 = 0.5,
q2 = 0.3, c1 = 2, c2 = 1, at t = 0
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Chapter 3

Modeling Rogue Waves

3.1 Special Solutions of the KP equation

The solution we obtain here is the continuation of the work in [17]. In [17],

Kovalyov and Bica derived the N -harmonic breather solutions for the KP

equation as

u(x, y, t) = 2
∂2

∂x2
ln detK (3.1a)

where K is an N ×N matrix with entries

K =



K11 K12 · · · K1N

K21 K22 · · · K2N

...
...

...
...

KN1 KN2 · · · KNN


(3.1b)

Knn = −Υn +
cos 2Γn

2λn
, (3.1c)
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Knk =

[
(λn + λk) cos(Γn + Γk)

α2(µn − µk)2 + (λn + λk)2
− (λn + λk) sin(Γn − Γk)

α2(µn − µk)2 + (λn − λk)2

]
(3.1d)

+ α

[
(µn − µk) sin(Γn + Γk)

α2(µn − µk)2 + (λn + λk)2
+

(µn − µk) cos(Γn − Γk)

α2(µn − µk)2 + (λn − λk)2

]
,

n 6= k

Υn = ρn + x cos(αχn) + 2

[
λn sin(αχn)

α
− µn cos(αχn)

]
y (3.1e)

+ 12[λ2n cos(αχn)− α2µn cos(αχn) + 2αλnµn sin(αχn)]t

Γn = γn + λnx− 2λnµny + 4λn(λ2n − 3α2µ2
n)t (3.1f)

n = 1, 2, · · · , N

where λn’s, µn’s, χn’s, γn’s, ρn’s are some appropriately chosen constants.

This solution is real whenever the constants λn’s, µn’s, χn’s, γn’s, ρn’s are

real.

In this thesis, we consider other classes of real solutions of the KP equation,

which may be derived just like (3.1) in [17]. These solutions are presented

in the theorem below.

Theoremi 1. Let u(x, y, t) be defined as

u(x, y, t) = 2
∂2

∂x2
ln detK (3.2)

iThis theorem is based on a suggestion by Dr. Kovalyov (supervisor) to find solutions
in terms of sinh and cosh
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where K is an N ×N matrix given by

K =



K11 K12 · · · K1N

K21 K22 · · · K2N

...
...

...
...

KN1 KN2 · · · KNN


(3.3)

1. Then u(x, y, t) is a solution of the KPI equation if the matrix K has

the following entries

Knn = −Υn −
sinh 2Γn

2λn
(3.4a)

Knk =
(λn + λk) sinh(Γn + Γk)

(µn − µk)2 + (λn + λk)2
− (λn − λk) sinh(Γn − Γk)

(µn − µk)2 + (λn − λk)2
(3.4b)

+i

[
(µn − µk) cosh(Γn + Γk)

(µn − µk)2 + (λn + λk)2
− (µn − µk) cosh(Γn − Γk)

(µn − µk)2 + (λn − λk)2

]
ii,

n 6= k

Υn = ρn + x cosχn − 2[λn sinχn + µn cosχn]y (3.4c)

− 12[λ2n cosχn − µ2
n cosχn − 2λnµn sinχn]t

Γn = γn + λnx− 2λnµny − 4λn(λ2n − 3µ2
n)t (3.4d)

iiSome entries of the matrix here are complex, however the matrix is self-adjoint, and
hence has a real determinant
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2. Then u(x, y, t) is a solution of the KPII equation if the matrix K has

the following entries

Knn = −Υn +
sinh 2Γn

2λn
(3.5a)

Knk =
(λn − λk) sinh(Γn − Γk)

(µn − µk)2 − (λn − λk)2
− (λn + λk) sinh(Γn + Γk)

(µn − µk)2 − (λn + λk)2
(3.5b)

+
(µn − µk) cosh(Γn + Γk)

(µn − µk)2 − (λn + λk)2
+

(µn − µk) cosh(Γn − Γk)

(µn − µk)2 − (λn − λk)2
,

n 6= k

Υn = ρn + x coshχn − 2[λn sinhχn + µn coshχn]y (3.5c)

− 12[λ2n coshχn + µ2
n coshχn + 2λnµn sinhχn]t

Γn = γn + λnx− 2λnµny − 4λn(λ2n + 3µ2
n)t (3.5d)

where λn’s, µn’s, χn’s, γn’s, ρn’s are constants, and n = 1, 2, · · · , N .

Proof. We give the proof for the case α = 1. We start with the N -soliton

wall solution in the form

u(x, y, t) = 2
∂2

∂x2
ln detB (3.6a)

where

Bmn = δmn +
cn

pn + qm
e(pn+qm)x+(q2n−p2n)y−4(p3n+q3n)t, m, n = 1, 2, · · · , 2N.

(3.6b)
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δmn =

 1 if m = n

0 if m 6= n

and pn, qn, cn > 0 are arbitrary constants.

Noticing that both m and n go from 1 to 2N , we choose

p2k−1 = −λk + µk + εe−χk , p2k = λk + µk + εeχk (3.7)

q2k−1 = −λk − µk + εeχk , q2k = λk − µk + εe−χk

c2k−1 = 2εe−2γk+2ρkε, c2k = 2εe2γk+2ρkε

λk, µk, χk, γk, ρk ∈ <, k = 1, 2, · · · , N

ε is a perturbation parameter.

The substitution of (3.7) into (3.6) gives the transformation

u(x, y, t) = 2
∂2

∂x2
ln detBε (3.8)

where

Bε =



Bε11 Bε12 · · · Bε1N

Bε21 Bε22 · · · Bε2N
...

...
...

...

BεN1 BεN2 · · · BεNN


(3.9)

with 2× 2 block entries

Bεmn =

Bεmn,11 Bεmn,12
Bεmn,21 Bεmn,22

 (3.10)
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Bεmn,11 = δmn +
c2n−1

p2n−1 + q2m−1
e(p2n−1+q2m−1)x+(q22n−1−p22n−1)y−4(p32n−1+q

3
2n−1)t

Bεmn,12 =
c2n

p2n + q2m−1
e(p2n+q2m)x+(q22n−p22n)y−4(p32n+q32n)t

Bεmn,21 =
c2n−1

p2n−1 + q2m
e(p2n−1+q2m−1)x+(q22n−1−p22n−1)y−4(p32n−1+q

3
2n−1)t

Bεmn,22 = δmn +
c2n

p2n + q2m
e(p2n+q2m)x+(q22n−p22n)y−4(p32n+q32n)t

δmn are the regular Kronecker symbols.

Then

detBε =
∑
σ∈S2N

sgn(σ)
N∏
i=1

Dεiσi (3.11)

where S2N is the group of permutations of {1, 2, · · · , 2N}, and σi =

{k1, k2, · · · , k2N} ∈ S2N . Dεiσi are the 2×2 matrices obtained by taking the

elements of Bε at the intersection of the (2i − 1) − th and (2i) − th rows,

and the k2i−1 − th and k2i − th columns, with k2i−1 < k2i. These 2 × 2

matrices have the following determinants as ε→ 0 :

1. if k2i−1 = 2i− 1 and k2i = 2i, then

detDε2i−1 2i k2i−1 k2i
= detBεii = 4ε

[
−Υi +

sinh 2Γi
2λi

]
+O(ε2) (3.12a)
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2. if k2i−1 = 2i− 1 and k2i 6= 2i, then

detDε2i−1 2i k2i−1k2i
= (3.12b)

− 2ε

[
cosh(Γki1 − Γki2)

(µki1 − µki2)− (λki1 − λki2)
+

sinh(Γki1 − Γki2)

(µki1 − µki2)− (λki1 − λki2)

+
cosh(Γki1 + Γki2)

(µki1 − µki2)− (λki1 + λki2)
+

sinh(Γki1 + Γki2)

(µki1 − µki2)− (λki1 + λki2)

]
+O(ε2)

3. if k2i−1 6= 2i− 1 and k2i = 2i, then

detDε2i−1 2i k2i−1k2i
= (3.12c)

− 2ε

[
cosh(Γki1 − Γki2)

(µki1 − µki2) + (λki1 − λki2)
− sinh(Γki1 − Γki2)

(µki1 − µki2) + (λki1 − λki2)

+
cosh(Γki1 + Γki2)

(µki1 − µki2) + (λki1 + λki2)
− sinh(Γki1 + Γki2)

(µki1 − µki2) + (λki1 + λki2)

]
+O(ε2)

4. if k2i−1 6= 2i− 1 and k2i 6= 2i, then

detDε2i−1 2i k2i−1k2i
= O(ε2) (3.12d)

As ε→ 0 we obtain that u(x, y, t) as defined by equation (3.5) satisfies

the KPII equation.

For the change of variables y = α−1y∗, µn = αµ∗n and χn = αχ∗n, we

obtain as proof that u(x, y, t) as defined by equation (3.4) satisfies the KPI

equation.

How do we understand the formulas in Theorem 1? For N = 1,

we obtain one such explicit solution (soliton), for N = 2, we obtain the

interaction of two such explicit solutions (interaction between two solitons),

and so on. The formula given in Theorem 1 describes the nonlinear

interaction of N solutions (interaction between N solitons).
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In this thesis, we are only interested in describing the nature of one such

solution (N = 1), and the simulations for two such solutions (N = 2).

The general study of the nonlinear interactions of these singular solutions

is quite involved and will be a good study for future work.

3.2 Singular Solutions

In this section, we consider the simplest form of the solutions of equations

(3.4) and (3.5). For the KPI equation (α = i), we have the singular solution

of (3.4) as

u(x, y, t) =
8λ31 sinh 2Γ1

2Υ1 + λ1 sinh 2Γ1

− 8

[
cosχ1 + λ21 cosh 2Γ1

2Υ1 + λ1 sinh 2Γ1

]2
(3.13a)

Υ1 = ρ1 + x cosχ1 − 2[λ1 sinχ1 + µ1 cosχ1]y (3.13b)

− 12[λ21 cosχ1 − µ2
1 cosχ1 − 2λ1µ1 sinχ1]t

Γ1 = γ1 + λ1x− 2λ1µ1y − 4λ1(λ
2
1 − 3µ2

1)t (3.13c)

Each singular solution is characterized by the essential parameters (spectral

pair) λ1 and µ1.

The solution (3.13) is a singular solution and due to the fact that the range

of the sinh function is (−∞,∞), then for any spatial domain (x, y), we

will encounter singularities in time. We can isolate small domains where

we do not have singularities for limited amounts of time, but this is not

the purpose of this work. We are interested to see how these singularities

behave within the system and what role they play in the formation of rogue

waves. Is there any “rule” in the chaos they are usually associated with?
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From the simulations of the nonlinear interaction of two of such singular

solutions it seems there is, but the mathematical “truth” is deeply hidden

in the complex structure of their interaction.

In this thesis we just observe through the time simulations that we make

how the singular solutions that are notorious to bring chaos into a system

can actually create a certain order through their nonlinear interaction.

The wave profile of (3.13) moves with a velocity v = (vx, vy), where vx and

vy are the velocities in the x− and y−directions respectively.

We determine the velocity components from the linear system

vx − 2[λ1 tanχ1 + µ1]vy = 12[λ21 − µ2
1 − 2λ1µ1 tanχ1] (3.14a)

vx − 2µ1vy = 4(λ21 − 3µ2
1) (3.14b)

If the determinant of system (3.14) is nonzero, the system has a unique

solution

vx = 4(λ21 + 3µ2
1)−

8λ1µ1

tanχ1

(3.15a)

vy = 12µ1 −
4λ1

tanχ1

(3.15b)

The velocity vector v is never zero. The velocity v = (vx, vy) is the veloc-

ity of the motion of the wave profile, and should not be confused with u′,

which is the velocity of the fluid motion.

The solution (3.13) is singular and approaches −∞. Where these singu-

larities occur, the KP model fails, however, we should not be deterred by

this, it is just like Coulomb’s law in electrostatics. Away from these singu-

larities, the model is valid and gives good solutions. For the model to be

physically correct, we need to remove the singularities. However, there is

no particular way of regulating these singularities.
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We choose the ad-hoc regularization

U = eu − 1 (3.16)

due to its properties

U = 0, if u = 0 (3.17)

U → −1, as u→ −∞

Enormous energy from these singularities gives rise to the rogue waves.

The case N = 2 is meant to be at an observational level. We will observe

in Section 3.3, a very interesting situation which leads to the idea that the

Kadomtsev-Petviashvili model can be a good start to the understanding of

rogue waves.

Here, we see the graphs of singular waves for both the KPI and KPII

equations.

(a) Projection onto xy-plane (b) 3D plot

Figure 3.1: Singular Wave of the KPI equation with χ1 = 0.9, λ1 = 1.2,
µ1 = 0.01, γ1 = 0, ρ1 = 0, at t = 0.
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Figure 3.1 shows the graph of U iii, where u is as given by equation

(3.13). The fluid moves to the left for U < 0, shown in regions with dark

shadings in Figure 3.1; the fluid moves to the right for U > 0, shown in

regions with light shadings in Figure 3.1. When the fluid moving to the left

collides with the fluid moving to the right, we obtain a point of “crossing”

of dark and light shades. The velocity of motion of the fluid at this point

is as given in equation (3.15). Here are other graphs of equation (3.13).

(a) Projection onto xy-plane (b) 3D plot

Figure 3.2: Singular Wave of the KPI equation with χ1 = 0.5, λ1 = 2,
µ1 = 0.05, γ1 = 0, ρ1 = 0, at t = 0.

(a) Projection onto xy-plane (b) 3D plot

Figure 3.3: Singular Wave of the KPI equation with χ1 = 2, λ1 = 1.95,
µ1 = 0.006, γ1 = 0.8, ρ1 = 3, at t = 0.

iiiU = eu − 1
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(a) Projection onto xy-plane (b) 3D plot

Figure 3.4: Singular Wave of the KPI equation with χ1 = 2.5, λ1 = 1.65,
µ1 = 0.01, γ1 = 1, ρ1 = 0.3, at t = 0.

For the KPII equation (α = 1), we have the single wave solution of (3.5)

as

u(x, y, t) = − 8λ31 sinh 2Γ1

2Υ1 − λ1 sinh 2Γ1

− 8

[
coshχ1 − λ21 cosh 2Γ1

2Υ1 − λ1 sinh 2Γ1

]2
(3.18a)

Υ1 = ρ1 + x coshχ1 − 2[λ1 sinhχ1 + µ1 coshχ1]y (3.18b)

− 12[λ21 coshχ1 + µ2
1 coshχ1 + 2λ1µ1 sinhχ1]t

Γ1 = γ1 + λ1x− 2λ1µ1y − 4λ1(λ
2
1 + 3µ2

1)t (3.18c)

The wave profile of (3.18) also moves with a velocity v = (vx, vy), where vx

and vy are the same as defined for the wave profile of (3.13). We determine

these components from the linear system

vx − 2[λ1 tanhχ1 + µ1]vy = 12[λ21 + µ2
1 + 2λ1µ1 tanhχ1] (3.19a)

vx − 2µ1vy = 4(λ21 + 3µ2
1) (3.19b)
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If the determinant of this system in nonzero, we find the unique velocities

as

vx = 4(λ21 − 3µ2
1)−

8λ1µ1

tanhχ1

(3.20a)

vy = −12µ1 −
4λ1

tanhχ1

(3.20b)

The explanations that applied to the wave profile (3.13) are the similar for

the wave profile (3.18) and we will use the same regularization as (3.13).

(a) Projection onto xy-plane (b) 3D plot

Figure 3.5: Singular Wave of the KPII equation with χ1 = 1, λ1 = 1.5,
µ1 = 0.01, γ1 = 0, ρ1 = 0, at t = 0.

Figure 3.5 shows the graph of U iv, where u is as given by equation

(3.18). The fluid moves to the left for U < 0, shown in regions with dark

shadings in 3.5; the fluid moves to the right for U > 0, shown in regions

with light shadings in 3.5. When the fluid moving to the left collides with

the fluid moving to the right, we obtain a point of “crossing” of dark and

light shades. The velocity of motion of the fluid at this point is as given in

equation (3.20).

ivU = eu − 1
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Here are other graphs of equation (3.18).

(a) Projection onto xy-plane (b) 3D plot

Figure 3.6: Singular Wave of the KPII equation with χ1 = 2, λ1 = 1.3,
µ1 = 0.009, γ1 = 0, ρ1 = 0, at t = 0.

(a) Projection onto xy-plane (b) 3D plot

Figure 3.7: Singular Wave of the KPII equation with χ1 = 1.9, λ1 = 1.7,
µ1 = 0.01, γ1 = 0, ρ1 = 0.2, at t = 0.
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(a) Projection onto xy-plane (b) 3D plot

Figure 3.8: Singular Wave of the KPII equation with χ1 = 1.1, λ1 = 1.85,
µ1 = 0.002, γ1 = 0.8, ρ1 = 0, at t = 0.

Each graph in Figures 3.5, 3.6, 3.7 and 3.8 have been cut at the top, to

improve visualization.

The singularities break the solution into two simple-connected waves,

each of which is a solution of the KP equation. Each wave moves like a

soliton, just like the waves observed in oceans. This can be observed from

the Figures shown below. Figure 3.9 shows the graph of U , where u is

(a) Projection onto xy-plane (b) 3D plot

Figure 3.9: Simple-Connected Wave of the KPI equation with χ1 = 0.9,
λ1 = 1.2, µ1 = 0.01, γ1 = 0, ρ1 = 0, at t = 0.

as given by equation (3.13) and it is an example of the simple-connected

waves. This graph is similar to what we observe in Figure 3.10, for u
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(a) Projection onto xy-plane (b) 3D plot

Figure 3.10: Simple-Connected Wave of the KPII equation with χ1 = 1.9,
λ1 = 1.7, µ1 = 0.01, γ1 = 0, ρ1 = 0.2, at t = 0.

Figure 3.11: A rogue wave that compares to Figures 3.9 and 3.10

as given by equation (3.18) and can be compared to the picture in Fig-

ure 3.11 (http://www.popsci.com/science/article/2009-11/econophysicists-

rogue-waves-could-account-volatility-financial-markets).

Figure 3.11 shows how the water wave collects at it’s highest point of

elevation. We observed similarities in the depression and elevation of Fig-

ures 3.9 and 3.10, compared with the picture in Figure 3.11. This could be

as a result of wind blowing over a calm water surface, therefore generating

ripples which are affected by gravity and surface tension. Over a period
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of time, energy builds up between high and low frequencies. Some energy

is lost as a result of breaking, and the rest of the energy is transfered by

nonlinear effects to the lower frequencies causing a sudden change in peaks.

3.3 Interaction of Singular Solutions
v

In this section, we will show how the Kadomtsev-Petviashvili equation pre-

dicts the occurrence of rogue waves. Some aspects of the waves we will

study will be considered non-physical due to how thin they are. The KP

equation does not take into account wave-overturning, this therefore does

not make the KP equation a good model for traveling waves.

In this section, we consider the case N = 2 for both equations (3.4) and

(3.5). This will give us the interaction of two singular waves. Below, we

give the time evolution of the singular waves of Figures 3.1 and 3.2. Since

the matrix of the solutions (3.4) and (3.5) are symmetric, we will only

move forward in time, that is from t = 0 to t = 0.2. Moving backwards in

time gives us the same solution but in the opposite direction. Here are the

graphs;

(a) Projection onto xy-plane (b) 3D plot

Figure 3.12: Interaction of two singular waves with χ1 = 0.9, χ2 = 0.5,
λ1 = 1.2, λ2 = 2, µ1 = 0.01, µ2 = 0.05, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at t = 0.

vAs suggested by Dr. Kovalyov (supervisor), we studied interaction of singular solu-
tions
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(a) Projection onto xy-plane (b) 3D plot

Figure 3.13: Interaction of two singular waves with χ1 = 0.9, χ2 = 0.5,
λ1 = 1.2, λ2 = 2, µ1 = 0.01, µ2 = 0.05, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = 0.01.

(a) Projection onto xy-plane (b) 3D plot

Figure 3.14: Interaction of two singular waves with χ1 = 0.9, χ2 = 0.5,
λ1 = 1.2, λ2 = 2, µ1 = 0.01, µ2 = 0.05, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = 0.05.

Figures 3.12 to 3.17 show the time evolution of the interaction of U ,

where u is as given by equation (3.4). We observe that the amplitude of

the wave was high at time t = 0, and started decreasing after. We however

see that at times t = 0.01 and t = 0.1, the amplitudes (peaks) are higher

than at time t = 0. We consider the waves in this situation unphysical,

since they are not strong enough to stand alone, and will therefore collapse.

Taking a closer look at the views will make this clearer. This time evolution

43



shows that the life span of the wave formed from the interaction of the two

singular waves of Figures 3.1 and 3.2 is very short.

(a) Projection onto xy-plane (b) 3D plot

Figure 3.15: Interaction of two singular waves with χ1 = 0.9, χ2 = 0.5,
λ1 = 1.2, λ2 = 2, µ1 = 0.01, µ2 = 0.05, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = 0.1.

(a) Projection onto xy-plane (b) 3D plot

Figure 3.16: Interaction of two singular waves with χ1 = 0.9, χ2 = 0.5,
λ1 = 1.2, λ2 = 2, µ1 = 0.01, µ2 = 0.05, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = 0.15.
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(a) Projection onto xy-plane (b) 3D plot

Figure 3.17: Interaction of two singular waves with χ1 = 0.9, χ2 = 0.5,
λ1 = 1.2, λ2 = 2, µ1 = 0.01, µ2 = 0.05, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = 0.2.

We will now take a closer look at the amplitudes of the waves occurring

at a time before (t = −0.1), at t = 0, and the time after (t = 0.1) in Figures

3.18, 3.19 and 3.20.

(a) Projection onto xy-plane (b) 3D plot

Figure 3.18: Interaction of two singular waves with χ1 = 0.9, χ2 = 0.5,
λ1 = 1.2, λ2 = 2, µ1 = 0.01, µ2 = 0.05, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = −0.1.
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(a) Projection onto xy-plane (b) 3D plot

(c) Cross-Section by plane y = 0 (d) Cross-Section by plane x = 0

Figure 3.19: Interaction of two singular waves with χ1 = 0.9, χ2 = 0.5,
λ1 = 1.2, λ2 = 2, µ1 = 0.01, µ2 = 0.05, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at t = 0.

We notice that the waves will have an inelastic collision and observe

that energy accumulates to increase the amplitude of a new wave, much

larger than the ones creating it. This gives us an idea that the KP model

may describe up to a point the evolution of a rogue wave. The more waves

would collide with each other’s at the same time, the larger the amplitude

of the new wave; this is the birth of a rogue wave. As the amplitude grows

larger and larger, the KP equation fails at some point when the surface

becomes multi-valued and the waves break. The waves of interest to us

are Figure 3.19, Figure 3.18 (backwards in time t = −0.1) and Figure 3.20

(forward in time t = 0.1), they show the wave appearing from nowhere.
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The two small peaks in Figure 3.19 are very thin and should be considered

unphysical since they are not strong enough to support themselves, and

will therefore, collapse.

(a) Projection onto xy-plane (b) 3D plot

Figure 3.20: Interaction of two singular waves with χ1 = 0.9, χ2 = 0.5,
λ1 = 1.2, λ2 = 2, µ1 = 0.01, µ2 = 0.05, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = 0.1.

(a) Projection onto xy-plane (b) 3D plot

Figure 3.21: Interaction of two singular waves with χ1 = 0.6, χ2 = 5,
λ1 = 1.8, λ2 = 1.5, µ1 = 0.007, µ2 = 0.0005, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = −0.1.

Figure 3.21 above, and Figures 3.22 and 3.24 below, show the graph of

the time evolution of the solution of equation (3.4). This is an interesting

case where the energy accumulates into a single peak as in Figure 3.22. We

observe in Figures 3.21 and 3.24 that, the amplitude is smaller than the
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amplitude in Figure 3.22. We should also take note of the elevations and

depressions surrounding the wave. Elevations and depressions are observed

whenever a rogue wave occurs.

(a) Projection onto xy-plane (b) 3D plot

(c) Cross-Section by plane y = 0 (d) Cross-Section by plane x = 0

Figure 3.22: Interaction of two singular waves with χ1 = 0.6, χ2 = 5,
λ1 = 1.8, λ2 = 1.5, µ1 = 0.007, µ2 = 0.0005, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = 0.

Figure 3.23 below (http://www.armageddononline.org/Rogue-Waves-

and-Freak-Waves.html) shows an example of a rogue wave, that is similar

to the graph in Figure 3.22. Figure 3.22 may be similar to Figure 3.23

when we compare how the wave builds up, and also the elevations and

depressions of the surrounding water.
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Figure 3.23: An example of a rogue wave similar to Figure 3.22

(a) Projection onto xy-plane (b) 3D plot

Figure 3.24: Interaction of two singular waves with χ1 = 0.6, χ2 = 5,
λ1 = 1.8, λ2 = 1.5, µ1 = 0.007, µ2 = 0.0005, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = 0.1.

Figures 3.25, 3.26 and 3.27 below show the time evolution of the in-

teraction of the singular waves of Figures 3.3 and 3.4. We notice that the

collision of the two different waves cause an increase in the amplitude of the

new wave created as a result of the interaction. Here we observe that there

are three different peaks, however, two of them are small in such a way that

they do not have enough energy to support themselves. This could be due

to the limitations of the KP equation as a model.
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(a) Projection onto xy-plane (b) 3D plot

Figure 3.25: Interaction of two singular waves with χ1 = 2, χ2 = 2.5,
λ1 = 1.95, λ2 = 1.65, µ1 = 0.006, µ2 = 0.01, γ1 = 0.8, γ2 = 1, ρ1 = 3,
ρ2 = 0.3, at t = −0.1.

(a) Projection onto xy-plane (b) 3D plot

(c) Cross-Section by plane y = 0 (d) Cross-Section by plane x = 0

Figure 3.26: Interaction of two singular waves with χ1 = 2, χ2 = 2.5,
λ1 = 1.95, λ2 = 1.65, µ1 = 0.006, µ2 = 0.01, γ1 = 0.8, γ2 = 1, ρ1 = 3,
ρ2 = 0.3, at t = 0.
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(a) Projection onto xy-plane (b) 3D plot

Figure 3.27: Interaction of two singular waves with χ1 = 2, χ2 = 2.5,
λ1 = 1.95, λ2 = 1.65, µ1 = 0.006, µ2 = 0.01, γ1 = 0.8, γ2 = 1, ρ1 = 3,
ρ2 = 0.3, at t = 0.1.

All the graphs above were for the KPI equation. Now we look at graphs

of the KPII equation, and see what effects surface tension and gravity

have on the peaks of these waves. We start with the time evolution of the

interaction of the singular waves of Figures 3.5 and 3.6 below.

(a) Projection onto xy-plane (b) 3D plot

Figure 3.28: Interaction of two singular waves with χ1 = 1, χ2 = 2, λ1 =
1.5, λ2 = 1.3, µ1 = 0.01, µ2 = 0.009, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at t = −0.1.
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(a) Projection onto xy-plane (b) 3D plot

(c) Cross-Section by plane y = 0 (d) Cross-Section by plane x = 0

Figure 3.29: Interaction of two singular waves with χ1 = 1, χ2 = 2, λ1 =
1.5, λ2 = 1.3, µ1 = 0.01, µ2 = 0.009, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at t = 0.

In the graphs for the KPI equation, we saw that the waves collided

and energy accumulated to give birth to a new wave with an increased

amplitude. This energy accumulation occurred at time t = 0. However,

the graphs for the time evolution of the KPII equation (Figures 3.28, 3.29

and 3.30) show a different trend, where the energy accumulation is at time

t = 0.1. We notice that, there are two peaks in Figure 3.29, however, these

are considered unphysical, since they are not wide(strong) enough to stand

alone.
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(a) Projection onto xy-plane (b) 3D plot

(c) Cross-Section by plane y = 0 (d) Cross-Section by plane x = 0

Figure 3.30: Interaction of two singular waves with χ1 = 1, χ2 = 2, λ1 =
1.5, λ2 = 1.3, µ1 = 0.01, µ2 = 0.009, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at t = 0.1.

The graphs in Figures 3.31-3.33 below, show another interesting case.

Here, at time t = 0, Figure 3.32, we notice there is only one peak (increase in

amplitude). This peak is not strong enough to support itself, so we consider

it unphysical. At time t = 0.1, Figure 3.33, we observe two different peaks

that are strong enough to support themselves. In this situation, we say

the wave interaction did not produce a new wave of significant change in

amplitude at time t = 0. However, at time t = 0.1, the interaction produced

a new wave Figure 3.32, that is strong enough to support itself.
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(a) Projection onto xy-plane (b) 3D plot

Figure 3.31: Interaction of two singular waves with χ1 = 0.6, χ2 = 2,
λ1 = 1.5, λ2 = 1.8, µ1 = 0.001, µ2 = 0.02, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = −0.1.

(a) Projection onto xy-plane (b) 3D plot

(c) Cross-Section by plane y = 0 (d) Cross-Section by plane x = 0

Figure 3.32: Interaction of two singular waves with χ1 = 0.6, χ2 = 2,
λ1 = 1.5, λ2 = 1.8, µ1 = 0.001, µ2 = 0.02, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = 0.
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(a) Projection onto xy-plane (b) 3D plot

(c) Cross-Section by plane y = 0 (d) Cross-Section by plane x = 0

Figure 3.33: Interaction of two singular waves with χ1 = 0.6, χ2 = 2,
λ1 = 1.5, λ2 = 1.8, µ1 = 0.001, µ2 = 0.02, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = 0.1.

The following graphs show the time evolution of the interaction of the

singular waves of Figures 3.7 and 3.8. This graph has a similar trend to the

graphs for the KPI equation, with a jump occurring at time t = 0, Figure

3.35. The only difference is that the jump that occurred at time t = 0.1,

Figure 3.36 is bigger (taller) than that at time t = 0.
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(a) Projection onto xy-plane (b) 3D plot

Figure 3.34: Interaction of two singular waves with χ1 = 1.9, χ2 = 1.1,
λ1 = 1.7, λ2 = 1.85, µ1 = 0.01, µ2 = 0.002, γ1 = 0, γ2 = 0.8, ρ1 = 0.2,
ρ2 = 0, at t = −0.1.

(a) Projection onto xy-plane (b) 3D plot

(c) Cross-Section by plane y = 0 (d) Cross-Section by plane x = 0

Figure 3.35: Interaction of two singular waves with χ1 = 1.9, χ2 = 1.1,
λ1 = 1.7, λ2 = 1.85, µ1 = 0.01, µ2 = 0.002, γ1 = 0, γ2 = 0.8, ρ1 = 0.2,
ρ2 = 0, at t = 0.
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(a) Projection onto xy-plane (b) 3D plot

(c) Cross-Section by plane y = 0 (d) Cross-Section by plane x = 0

Figure 3.36: Interaction of two singular waves with χ1 = 1.9, χ2 = 1.1,
λ1 = 1.7, λ2 = 1.85, µ1 = 0.01, µ2 = 0.002, γ1 = 0, γ2 = 0.8, ρ1 = 0.2,
ρ2 = 0, at t = 0.1.

To conclude this section, we observe that the graphs of the KPI equation

and KPII equations behave differently. Whilst all the graphs of the KPI

equation shown here have the jumps and bigger waves occurring at time t =

0, the KPII equation had its bigger waves occurring at a later time, t = 0.1.

We observe that, when surface tension dominates gravity (KPI equation),

the jumps are bigger than when gravity dominates surface tension (KPII

equation).
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Chapter 4

Conclusion

The study and understanding of rogue waves is of great importance to

us, because not only do they affect naval and civilian shipping, they can

destroy coastal structures and offshore oil platforms. We can see such

importance from the pictures that was taken from the Internet, Figure

4.2 at http://www.surfersvillage.com/news.asp?Id news=14709, and Fig-

ure 4.1 at http://folk.uio.no/karstent/waves/index en.html.

Figure 4.1: Destruction caused by a rogue wave - 1
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Figure 4.2: Destruction caused by a rogue wave - 2

We used the Kadomtsev-Petviashvili equation to show the basic mecha-

nism of rogue waves. Our solutions showed the appearance (occurrence) of

large-amplitude waves with a short life span, that appear seemingly from

nowhere and cause great destructions. We showed in particular how sin-

gular solutions (nonlinear waves) upon interaction suddenly create a new

wave with an amplitude higher than those creating it, as a result of energy

accumulation.

We must say that, the problem we considered is physical, however we did

not take physical dimensions in our solutions. The solution obtained in this

work is from the dimensionless form of the Kadomtsev-Petviashvili equa-

tion. As a result of this, contributions from physical parameters like wind,

gravity, density and surface tension were lost.
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We can conclude that, among the many theories for rogue waves, the

mechanism produced by the Kadomtsev-Petviashvili model may be able

to forecast and predict the occurrence of rogue waves. By studying the

solutions obtained, the Kadomtsev-Petviashvili model seems to describe the

time evolution of their interaction. Existing models say many waves come

together and create rogue waves. In our study, we saw how two singular

waves produced a wave with relatively high amplitude upon interaction. We

also observed that even though the equation of our solution is dimensionless,

the roles played by surface tension and gravity is evident. The amplitudes

for solutions where surface tension dominates gravity were much higher

than those where gravity dominates.

We observe that the Kadomtsev-Petviashvili model does not account for

overturning waves. This is a limitation to the KP equation in modeling

rogue waves, since these waves overturn at a point in their short life span.

It should however be noted that, the KP equation can be quite a good

model even under these ‘ideal’ conditions.

For further research, it will be interesting to see what to add to the KP

equation to make it account for overturning waves and also for one to see the

birth of these waves (i.e, total evolution of the wave). Also, we suggest that

the physical KP equation be used in an experimental laboratory setting,

with all the physical variables accounted for. This might go a long way in

improving the results obtained in this thesis.
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