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Transmission line method (TLM) has been used in 2-D scalar finite-element (FE) analysis due to its parallelism and constant
admittance matrix. In this paper, the TLM is extended for the 3-D nonlinear vector FE problem that is more widely used
for electromagnetic apparatus in practice. TLM is specially adapted for tetrahedron edge elements to calculate quasi-static
electromagnetic field distribution for eddy current problems, and a dummy scalar gauge is applied to make the reduced magnetic
vector FE formulation full-ranked and uniquely solvable by TLM. For each element, the nonlinearity is separated by transmission lines
and only local small-scale Newton–Rapson iteration is needed, which is suitable for massive parallelization due to the independence
between different elements. The TLM is implemented on a many-core GPU for a nonlinear FE power inductor case study, and the
comparison of the results with a commercial FE software shows over 50 times speedup with a relative error of less than 2%.

Index Terms— 3-D edge element, Coulomb gauge, eddy current, finite-element method (FEM), nonlinear, reduced magnetic vector
potential (MVP), transmission line method (TLM).

I. INTRODUCTION

F INITE-ELEMENT method (FEM) has become one of
the most important tools in engineering design and sim-

ulation. FEM is widely used for field calculation in elec-
tromagnetic apparatus such as transformer, electrical motor,
and power inductor, where complex geometry and nonlin-
earity stemming from ferromagnetic materials are always
encountered.

Traditionally, the Newton–Raphson (N-R) method deals
with such nonlinearity in FEM formulations. The solution of
the nonlinear matrix system is gradually reached by solv-
ing the global Jacobian matrix in every iteration. However,
theJacobian matrix must be changed and repeatedly factorized
at each iteration step, which slows down the computation
dramatically.

On the other hand, with a bottleneck of clock speed,
the general trend in hardware development is to increase
the number of processing units for better overall perfor-
mance. Multi-core CPUs and many-core GPUs are widely seen
in high-performance computing. For example, the recently
released NVIDIA Tesla V100 GPU is equipped with
5120 Cuda cores and 16 GB HBM2 memory [1], which
encourages researchers to develop algorithms with high paral-
lelism to exploit such computational power [2].

Under such circumstances, the transmission line method
(TLM), which was introduced to the nonlinear circuit
network [3], [4] and 2-D FEM [5], [6] decades ago, has wit-
nessed increasing attention recently [7], [8]. When a nonlinear
system is solved by TLM, the update happens only inside the
system vector in each iteration step. This indicates that the
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system matrix remains the same during the whole solution
process, and only one-time matrix factorization is necessary.
In addition, the parallelism of the TLM-FEM is high because
elemental local nonlinearity is separated by transmission lines.
By utilizing these properties, the speed of TLM-FEM is fast
enough even for real-time simulation [7].

However, all of the above TLM-FEM applications are based
on 2-D triangle elements, while in reality, the geometry of
an electromagnetic model is in 3-D form but the 3-D-TLM-
FEM implementation is never conducted. Moreover, the above
FEM-TLM was only implemented for nodal elements in the
scalar form; however, nodal elements result in a large inaccu-
racy at sharp corners of geometry and when materials have
large permeability difference, the numerical error becomes
substantial [9], [10]. On the contrary, edge elements [11] and
vector basis functions, which are widely seen and have
been utilized for network equivalence [12], [13] in the 3-D
FEM analysis, do not have such problem. Considering the
above-mentioned facts, it becomes paramount to explore new
algorithms to implement transmission line modeling in 3-D
edges elements, especially for nonlinear transient electromag-
netic analysis where a large amount of computational resource
is needed.

In this paper, for the first time, the transmission line
decoupling technique is modified and extended from 2-D nodal
scalar elements (NSE) to 3-D edge vector elements (EVE) in a
nonlinear electromagnetic field problem. Challenges caused by
the difference between 3-D EVE and 2-D NSE are successfully
tackled. First, 3-D FE-discretized formulation for reduced
magnetic vector potential (MVP) is introduced. In contrast
with 2-D triangular NSE, the 3-D EVE formulation is not
full-ranked and a gauge is added to make a unique solvable
nonlinear matrix system.

An equivalent electrical circuit network (rather than a mag-
netic equivalent circuit network) is then extracted from the
matrix system to facilitate the introduction of transmission
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lines. Next, this network is solved with elemental nonlinearity
decoupled by the TLM technique. A new concept of scattering
box is defined to abstract away elemental local nonlinearity
in the form of 21 nonlinear resistors, compared with only 3
nonlinear resistors for 2-D triangular NSE. Also, the process
of assigning value after partial N-R iterations is introduced
to solve nonlinearity inside each element. The new process
eliminates the need for an explicit function of �B as a dependent
variable of the voltage difference, which is essential in 2-D
TLM FEM. Transmission lines are then used to separate the
scattering boxes from the linear network, allowing massive
parallelism at the elemental level.

This paper is arranged as follows. Section II introduces
the gauged eddy current formulation based on reduced MVP,
which is discretized by edge element interpolation functions
in Section III. Sections IV and V describe the massively
parallelized TLM-FEM scheme of the discretized formulation.
In Section VI, the massive parallelism is verified by a GPU
implementation, and the comparison between the proposed
3-D-TLM-FEM scheme and Comsol indicates an excellent
speedup of over 50 while a good precision (2%). Finally,
Section VIII gives the main conclusion of the work.

II. FEM FORMULATION FOR EDDY CURRENT ANALYSIS

A. Reduced Magnetic Potential Formulation

Quasi-static Maxwell’s equations give restriction of mag-
netic flux density ( �B) in eddy current analysis. Through
Maxwell’s equations, it is obvious that �B jumps at the interface
between different materials, which causes inconvenience for
numerical computation [14]. To deal with such a problem,
the well-known �A − ϕ formulation was introduced and �A,
ϕ can be made continuous between materials [14]. The �A −ϕ
formulation can be simplified to the reduced �A formulation (1)
when the edge element is used, which allows perpendicular
jump of �A between different conductivities

∇ × (υ∇ × �A) + σ
∂ �A
∂ t

= �Je (1)

where υ is the field-dependent reluctivity, σ is the electrical
conductivity, and �Je is the impressed current density.

B. Gauge for Non-Conducting Region

The system in (1) is uniquely solvable if all solution
domains are conductors. However, when solution domain
(�all) includes non-conduction region (�n), (1) does not
have a unique solution because it loses restriction to the
divergence of �A in �n . To get a unique solution, an inno-
vative gauge [15], [16] can be added by introducing a dummy
variable χ in �n , which results in the following:⎧⎨

⎩∇ × (υ∇ × �A) + σ
∂ �A
∂ t

− ∇χ = �Je

∇ · �A + χ = 0.
(2)

Suppose �Je is divergence-free, by taking divergence to both
sides of the first equation in (2), one finds that χ satisfies the
Laplace equation:

∇2χ = 0| �n. (3)

By forcing χ to be zero at the outer boundary of �n

χ = 0| �n (4)

where �n is the boundary of �n , (3) becomes a simple
boundary value problem and the solution is 0 in �n . Now that
χ is 0, considering second equation of (2), ∇ · �A becomes 0.
Therefore, Coulomb gauge is applied to �A to get a unique
solution. For simplicity, a homogeneous Dirichlet boundary is
imposed to �A in this work

�A‖ = 0| �all (5)

where �all is the boundary of �all. Equations (2), (4), and (5)
form the formulation used for the eddy current analysis in this
paper.

III. FINITE-ELEMENT METHOD AND

DISCRETIZED FORMULATION

A. Magnetic Vector Potential Field

FEM can be used to solve the above-mentioned formulation.
It simplifies the problem by representing the unknown field
with a limited degree of freedom. The solution domain is
divided into many subdomains (elements). Within each ele-
ment, the unknown field is a linear combination of known
pattern fields (interpolation functions fully determined by the
coordinate of the element, as shown in Fig. 1). The terms
(A1, A2, A3. . .) of this linear combination for every element
are the degree of freedom to be solved.

The Galerkin method can be used to find those terms. For
the method, the weight function is the same as interpolation
function. If one uses vector identities and forces the integration
of the product of weight function and residual from (2) to be
zero within one element, elemental-discretized formulation is
obtained as follows:∫

Se
(υ∇ × �A) × �ds · �Ni +

∫
Ve

(υ∇ × �A) · ∇ × �Ni dV

+ σ
∂

∂ t

∫
Ve

�Ni · �AdV −
∫

Ve

�Ni · �∇χdV −
∫

Ve

�Ni · �JedV = 0

(6)∫
Se

Li �A �ds +
∫

Ve

�A · �∇Li dV −
∫

Ve
LiχdV = 0 (7)

where Se is the surface boundary of the element and i is
integer from 1 to 6. By substituting two FEM-discretized field
expressions at the top of Fig. 1 into (6) and (7) and ignoring the
first term in (6) and (7), the matrix-form element-discretized
formulation is obtained as[[ ÂAi j ]6×6 [ Âχ i j ]6×4

[χ̂ Aij ]4×6 [χ̂χ i j ]4×4

] [[A j ]6×1
[χ j ]4×1

]

+σ
∂

∂ t

[[ĈCi j ]6×6 [0]6×4
[0]4×6 [0]4×4

] [[A j ]6×6
[0]4×6

]
=

[[bi ]6×6
[0]4×6

]
(8)

where

ÂAi j =
∫

Ve
(υ∇ × �Ni ) · (∇ × �N j )dV , i, j ∈ [1, 6] (9)

Âχ i j =
∫

Ve

�Ni · �∇L j dV , i, j ∈ [1, 6] (10)
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Fig. 1. Scalar nodal and vector edge interpolation functions.

χ̂ Aij =
∫

Ve

�∇Li · �N j dV , i, j ∈ [1, 6] (11)

χ̂χ i j =
∫

Ve
Li L j dV , i, j ∈ [1, 6] (12)

ĈCi j =
∫

Ve

�Ni · �N j dV , i, j ∈ [1, 6] (13)

bi =
∫

Ve

�Ni · �JedV , i, j ∈ [1, 6]. (14)

However, (8) only indicates the relationship between
edge/node unknowns that belong to the corresponding ele-
ment. In the assembling phase, the relationship between all
unknowns of the solution domain is constructed by adding the
contribution of every element to a global matrix. The surface
integration in (6) and (7) is not shown in (8). In fact, they are
canceled out during the assembling to ensure the continuity
of tangential υ∇ × �A and the continuity of perpendicular �A at
the interface between every element. As a result, the Coulomb
gauge is automatically satisfied and every element can have
different υ with almost no computational expense. Note that
Ai is not the value of x , y, or z component of magnetic
potential on the corresponding edge i . In fact, Ai is the
terms of the edge’s interpolation function. The value of Ai

is the value of projection of magnetic potential to the edge’s
direction. According to the definition of edge interpolation

function, �B can be expressed by Ai as

�B = ∇ × �Ai =
6∑

i=1

∇ × �Ni =
6∑

i=1

2 �∇Li1 × �∇Li2

li
. (15)

B. Excitation Current Field

The excitation current field is calculated by solving a 3-D
static current conservation problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∇ · �Je = −∇2σclϕ = 0| �cl

ϕ = 0| �Gd

ϕ = V (t)| �Vs

�n · �Je = �n · �∇ϕ| �cl

(16)

where �cl is the coil domain, �Gd and �Vs are the boundary of
coil surface, ground, and excitation voltage. V (t) is the voltage
used to calculate the time-variant excitation current field, and
σcl is the material conductivity of the coil. The coil domain
is discretized by tetrahedrons and scalar basis function Li

shown in Fig. 1. Similarly, (16) is discretized with the Galerkin
method. The voltage value at each tetrahedron vertex is then
solved. The current inside each element is found by σcl �∇ϕ.

IV. SOLVING THE NONLINEAR SYSTEM

A. TLM for FEM Analysis

The nonlinear system assembled by (8) is usually solved
by N-R or the quasi-Newton method. However, these methods
require updating of the global matrix, which slows down the
computation. The TLM, in contrast, does not have such a
problem.

TLM was already implemented to handle nonlinearity,
despite its full-wave physical essence. Although the TLM
originates from the Huygens’ wave propagation model and
was used to solve full-wave problems [4], due to the delaying
and isolating functions of the transmission line, TLM was
successfully extended to solve nonlinear problems, such as
the solution of a nonlinear electrical circuit network [3].
By converting 2-D FEM equations into a nonlinear electrical
circuit equivalence, the TLM was further implemented for the
2-D magnetic field analysis [5].

To stay consistent with previous TLM-FEM works,
we opted to represent the 3-D FEM equations with a similar
nonlinear equivalent circuit model. According to the circuit
analysis theory [17], the symmetric matrix system in (8) can
be represented by a circuit network. The right-hand side (RHS)
corresponds to node injection currents and the unknowns
correspond to the circuit node voltage. To the first matrix,
the negative value of the matrix element i j corresponds to the
conductance between nodes i and j . The sum of the first six
elements in row i corresponds to nonlinear conductance of
node i to the ground, and the sum of the last four elements
corresponds to the linear ground conductance of node i .
Similarly, the second matrix can be represented by a linear
capacitor network. Since the two admittance matrixes in (8)
are added together, the resistive and capacitive networks are,
according to the circuit analysis theory, parallel connected to
the same circuit topology, which is shown in the next part.
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Fig. 2. TLM technique for the nonlinear system in (8) without χ .
(a) Electrical circuit for element equation without χ . (b) Resistors replaced
by TL line model in scattering phase. (c) TL lines replaced by the Norton
circuit in gathering phase.

Nonlinear resistors in the circuit network are separated
from the linear circuit by transmission lines with arbitrary
characteristic impedance Zc. The linear circuit only sees linear
Zc and “communicates” with nonlinear resistors by traveling
waves on transmission lines. After reflecting between the two
line terminals many times, the waves reach steady values.
In this way, nonlinearity is replaced by equivalent current
sources and the admittance matrix stays the same during each
TLM iteration.

It is worth mentioning that υ is constant inside one element,
which implies coupling of all nonlinear resistors inside one
element. These resistors should be treated as a small sub-
system separated by transmission lines for each element. The
subsystem is defined as a “scattering box” in this paper. Since
these small subsystems (scattering boxes) for each element are
separated by transmission lines, it is possible to solve each
subsystem independently of others.

B. Elemental Electrical Circuit and TLM Process

In (8), matrix elements involving χ do not include υ and
they correspond to linear resistors. For simplicity, they are
not shown in the elemental circuit model. Fig. 2(a) shows the

Fig. 3. Inside scattering box: coupled elemental nonlinear network for
scattering phase.

nonlinear resistors of the equivalent circuit model of submatrix
[ ÂAi j ]6×6, σ [ĈCi j ]6×6 in (8). The six red dots are the circuit
nodes, and the voltage of the nodes (Ai ) corresponds to the
value of projection of �A field to the corresponding edge
direction. Yellow lines are the branches between two nodes,
and blue lines are the branch between each node and ground.
The circuit component of each branch is shown on the right
side with the following values:
Gi j = −

∫
Ve

υe(∇× �Ni ) · (∇× �N j )dV i, j ∈ [1, 6], i �= j

(17)

Gi =
6∑

j=1

∫
Ve

υe(∇× �Ni ) · (∇× �N j )dV , i, j ∈ [1, 6] (18)

Ci j = −σ ĈCi j , Ci =
6∑

j=1

ĈCi j i, j ∈ [1, 6] (19)

where υe is the unknown reluctivity determined by Ai . υe is
to be solved by N-R iteration inside the scattering box.

The TLM process is divided into two major phases: scatter-
ing and gathering. In the scattering phase shown in Fig. 2(b),
the nonlinear resistors are replaced by transmission lines and
a scattering box. The transmission line characteristic conduc-
tance is given by

YGi j = −
∫

Ve
υ

g
e (∇× �Ni ) · (∇× �N j )dV i, j ∈ [1, 6], i �= j

(20)

YGi =
6∑

j=1

∫
Ve

υ
g
e (∇× �Ni ) · (∇× �N j )dV , i, j ∈ [1, 6] (21)

where υ
g
e is the guessed elemental reluctivity value before

computation and should be as close as possible to the final
solution of υe.

In this phase, information of the global circuit is fed
to elemental nonlinear resistors through transmission lines.
Injection waves affected by nodal voltages (Ai ) and branch
voltages (Ai − A j ) enter the scattering box (Fig. 3). Since each
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Fig. 4. Detailed massively parallel implementation of 3-D-TLM-FEM method.

scattering box only sees transmission lines and incident
waves rather than other scattering boxes, the solution process
inside each scattering box is independent of other scattering
boxes. Inside each individual scattering box, incident wave
at one port is scattered to all ports according to the cou-
pling relation of nonlinear resistors. After scattering, waves
leave the box and become reflection waves. For example,
V 1

inj enters port 1 and it is distributed and guided toward
ports 1–21 based on the relationship between G1 and other
conductance. All incident waves are recombined to form
reflection waves. Since υe is determined by (Ai ) rather than
(Ai − A j ), only blue ports participate in the N-R itera-
tion. The nonlinear relationship between Vinj and Vref is as
follows:

Gi
(
V i

inj + V i
ref

) − YGi
(
V i

inj − V i
ref

) = 0 i ∈ [1, 6] (22)

where YGi are guessed (fixed) but Gi are the functions
of V i

inj + V i
ref. These functions are determined by (15) and

B − υ/B − H curve. To calculate this 6 × 6 system, the N-R
iteration is used and the following equation yields the Jacobian
matrix:

∂Gi

∂V j
ref

= ∂Gi

∂ B2

∂ B2

∂V j
ref

i, j ∈ [1, 6]. (23)

After the 6 × 6 N-R iteration, υe is found and υe is used
to calculate the Gi j at ports 7–21. The reflection waves for
ports 7–21 can be found by

V ij
ref = V ij

inj
Gi j − YGi j

Gi j + YGi j
i, j ∈ [1, 6]. (24)

The above-mentioned local N-R solving process does not
involve nodal voltage difference (Ai − A j ). In other words,
the solution process does not need an explicit function of �B
as a dependent variable of the voltage difference. Therefore,
an extra transformation is unnecessary for (15), which might
be extremely difficult.

During the gathering phase [Fig. 2(c)], the reflected waves
carrying the information from elemental nonlinear resistors
return to the global circuit network. Transmission lines and
reflected waves are replaced by the Norton model, and node
voltages are then updated for the global circuit network and
these voltages are used to generate injection waves for the next
iteration. It is worth mentioning that the circuit network in such
a phase is a massive network assembled from all elemental
circuits in the mesh.

As explained above, each TLM iteration involves many
independent parallelizable solutions for scattering boxes dur-
ing the scattering phase and one solution of the fixed global
admittance matrix.
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Fig. 5. Dimensions of the studied power inductor.

C. Time Discretization for Capacitors

As shown in Fig. 2, there are capacitors in parallel with
nonlinear resistors. The capacitors involve time derivatives that
can be replaced by a resistor and a history current source by
different numerical methods (backward Euler rule used in this
paper). The admittance and current sources are given by

YCi j = Ci j/	t YCi = Ci/	t i, j ∈ [1, 6] (25)

ICi j = YCi j
(
A(n−1)

i − A(n−1)
j

)
i, j ∈ [1, 6] (26)

I (n)
Ci = YCi j A(n−1)

i i, j ∈ [1, 6] (27)

where 	t is the timestep, the upper index (n) means the
current timestep, and (n − 1) means the previous timestep.

V. PROGRAM FOR MASSIVELY PARALLEL ARCHITECTURE

As mentioned above, the scale of N-R iteration in the
TLM is small (6×6). More importantly, the N-R iteration of
different elements is independent and thus can be massively
parallelized. In addition, TLM iterations do not change the
admittance matrix; thus, only one time of admittance matrix
inversion is needed for the whole solution process. These
properties make it suitable to run the proposed 3-D-TLM edge
FEM on massively parallelized architectures such as the GPU.
A Cuda C program is developed, and the flowchart is shown
in Fig. 4 for GPU implementation.

VI. CASE STUDY

To demonstrate the precision and efficiency of the
3-D-TLM-FEM method, a power inductor shown in Fig. 5
is studied in comparison with Comsol. The blue iron core has
a size of 0.15 m × 0.1 m × 0.0475 m and it is surrounded
by a coppery solid coil. The test case is implemented on a
work station with Intel Xeon E5-2698 v4 CPU and NVIDIA
Tesla V100-PCIR-16GB GPU. Material properties and voltage
to generate excitation current are given in Table I.

For the given problem definition, computation is carried out
based on the following parameters. The relative tolerance for
TLM iteration is set to 10−5. Timestep for the case study is
set to 1/1200 s and the time length is 0.25 s.

After post-processing, the magnetic flux density vector field
is obtained. The field distribution is shown in Fig. 6 at the time
when the maximum value occurs.

Fig. 6. Magnetic flux density distribution (module and vector) at 0.00667 s.

TABLE I

PROBLEM DEFINITION

TABLE II

EXECUTION TIME AND SPEEDUP OF 3-D-TLM

A comparison is made with Comsol to verify the precision
and efficiency of the proposed algorithm, and the result shows
good accuracy with average relative error less than 2% over
all space and time span. Figs. 7 and 8 display the field results
obtained from both Comsol and the TLM-FEM scheme.

Meanwhile, a significant speedup can be seen for different
mesh sizes (Table II). It is not surprising to witness an
excellent speedup since the proposed 3-D-TLM-FEM scheme,
in nature, has excellent parallelism and the V100 GPU has
over 5000 cores. However, it is still worth mentioning that the
speedup depends on TLM iterations needed per timestep and
may vary for different B–H curves and excitation amplitudes.
Also, different matrix solution algorithms affect the solution
time.

VII. DISCUSSION

As shown in Table II, the speedup decreases as mesh com-
plexity increases. This leads to the following questions and dis-
cussion: is the performance hindered by TLM algorithm itself
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Fig. 7. Comparison of magnetic flux density module at probe point versus
time.

Fig. 8. Comparison of the magnetic flux density module at Z = 0.33 and
t = 0.00667 (left from the proposed 3-D-TLM-FEM scheme and right from
Comsol).

for the case study? and will the 3-D-TLM-FEM method remain
efficient for a larger mesh size? More analysis/discussion is
given in the following.

For the time analysis, the following approximation is used:
TTLM ≈ NTLM × (tNR + tLU) (28)

where TTLM is the total TLM execution time, NTLM is the
total TLM iterations needed for entire computation, tNR is the
N-R iteration time at one single iteration, and tLU is the (LU)
triangle matrix back substitution time. tNR and tLU stay almost
unvaried because LU matrix/routine and scale of N-R iteration
stay the same during the entire TLM iteration.

To find the reason for the speedup drop, NTLM for the
case study is investigated. By comparing information given
in Fig. 9 and Table II, it is obvious that the increase in TTLM
versus DOF is much higher than that of NTLM. According
to (28), a nonlinear growth of tNR + tLU is seen, and the
timeline generated by Cuda Visual Profiler indicates that tNR
stays almost the same for all meshes. Therefore, the nonlinear
increment in tLU hinders the computation for a larger mesh,
possibly due to the insufficient number of cores to fully
parallelize triangle matrix back substitution. It is the LU
solving process rather than TLM-FEM scheme that causes the
majority of speed reduction for the case study. With better
algorithm and more powerful GPU, the LU triangular solution
time is likely to approach ideal O(DOF), and the performance
of the case study will increase dramatically.

NTLM is not the “black sheep” in the case study, but is
it possible that NTLM grows impractically large for bigger

Fig. 9. TLM iteration number at each timestep for the case study.

Fig. 10. TLM iterations required to reach tolerance of 10−5 in static scenario.

problems? To eliminate the interference of time stepping,
another comparison of NTLM between different mesh sizes
is carried out for a static case where excitation current drives
the inductor into deeper saturation, and results in Fig. 10 show
that TLM iteration number is not sensitive to mesh DOF. Even
an initial descending trend of NTLM versus DOF is witnessed.
This coincides with the intuition that TLM iteration is much
more related to matching than the network complexity.

Based on the above-mentioned discussion, the proposed
3-D-TLM-FEM scheme is promising, especially for large
mesh since its algorithm complexity comes close to O(DOF).
Furthermore, for long-time-span transient simulations, the
3-D-TLM-FEM will gain more advantage—NTLM reduces at
later timesteps and the difference between NTLM narrows for
different mesh sizes, as shown in Fig. 9. The increment in
TLM iterations is much smaller than that of mesh DOF.
With a good convergence rate and an iterative nature, the
3-D-FEM-TLM scheme may look similar to the quasi-Newton
method; however, they are essentially two different methods.

VIII. CONCLUSION

In this paper, the TLM was successfully extended for the
3-D nonlinear electromagnetic field analysis using edge vector
FEs. The challenges were discussed and conquered, and it
turned out that the good features of the TLM such as constant
admittance matrix and massive parallelism can also benefit the
computation of 3-D nonlinear EVEs in practice.

More specifically, for the first time, the transmission line
modeling was applied to the edge-element-discretized for-
mulation to calculate EM field with nonlinearity. To solve
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the discretized formulation with excellent parallelism, nonlin-
earity and matrix rank were properly handled. The concept
of scattering box was introduced to model elemental local
nonlinearity for the TL-circuit system. Transmission lines in
the system successfully decoupled local nonlinearity from the
global linear network so that computation can be parallelized
at the 3-D element level. In addition, the proper gauge was
applied to edge FE formulation, which results in a full ranked
matrix system to allow LU factorization of the global linear
network, making it possible to carry out matrix factorization
only once during the whole computation process.

Due to the above-mentioned property, the proposed
3-D-TLM-FEM is perfectly suitable for high-performance
parallel computation, and the comparison between the TLM
implementation and Comsol shows excellent speed up
(over 50) while maintaining a good precision for the power
inductor case study.
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