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Abstract

For many years, traditional boardgames such as Chess, Checkers or Go have

been the standard environments to test new Artificial Intelligence (AI) al-

gorithms for achieving robust game-playing agents capable of defeating the

best human players. Presently, the focus has shifted towards games that of-

fer even larger action and state spaces, such as Atari and other video games.

With a unique combination of strategic thinking and fine-grained tactical com-

bat management, Real-Time Strategy (RTS) games have emerged as one of

the most popular and challenging research environments. Besides state space

complexity, RTS properties such as simultaneous actions, partial observabil-

ity and real-time computing constraints make them an excellent testbed for

decision making algorithms under dynamic conditions.

This thesis makes contributions towards achieving human-level AI in these

complex games. Specifically, we focus on learning, using abstractions and

performing adversarial search in real-time domains with extremely large action

and state spaces, for which forward models might not be available.

We present two abstract models for combat outcome prediction that are

accurate while reasonably computationally inexpensive. These models can in-

form high level strategic decisions such as when to force or avoid fighting or be

used as evaluation functions for look-ahead search algorithms. In both cases

we obtained stronger results compared to at the time state-of-the-art heuris-

tics. We introduce two approaches to designing adversarial look-ahead search

algorithms that are based on abstractions to reduce the search complexity.

Firstly, Hierarchical Adversarial Search uses multiple search layers that work

at different abstraction levels to decompose the original problem. Secondly,

Puppet Search methods use configurable scripts as an action abstraction mech-
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anism and offer more design flexibility and control. Both methods show similar

performance compared to top scripted and state-of-the-art search based agents

in small maps, while outperforming them on larger ones. We show how to use

Convolutional Neural Networks (CNNs) to effectively improve spatial aware-

ness and evaluate game outcomes more accurately than our previous combat

models. When incorporated into adversarial look-ahead search algorithms,

this evaluation function increased their playing strength considerably.

In these complex domains forward models might be very slow or even un-

available, which makes search methods more difficult to use. We show how

policy networks can be used to mimic our Puppet Search algorithm and to

bypass the need of a forward model during gameplay. We combine the much

faster resulting method with other search-based tactical algorithms to pro-

duce RTS game playing agents that are stronger than state-of-the-art algo-

rithms. We then describe how to eliminate the need for simulators or forward

models entirely by using Reinforcement Learning (RL) to learn autonomous,

self-improving behaviors. The resulting agents defeated the built-in AI con-

vincingly and showed complex cooperative behaviors in small scale scenarios

of a fully fledged RTS game.

Finally, learning becomes more difficult when controlling increasing num-

bers of agents. We introduce a new approach that uses CNNs to produce a

spatial decomposition mechanism and makes credit assignment from a single

team reward signal more tractable. Applied to a standard Q-learning method,

this approach resulted in increased performance over the original algorithm in

both small and large scale scenarios.
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Chapter 1

Introduction

Games are an attractive medium for exploring the capabilities of AI in con-
strained environments and fixed set of rules. As a result, problem-solving
techniques can be developed and evaluated before being applied to more com-
plex real-world problems [187]. The relation between AI research and games
started in 1950 when Claude Shannon proposed a Chess playing algorithm
just a few years after the first computer was built [194]. He explained that
‘it is hoped that a satisfactory solution of this problem will act as a wedge
in attacking other problems of a similar nature and of greater significance’
and gave a few examples such as military decision making or even electronic
design. Just one year later Alan Turing wrote the first Chess playing program
but he did not have the hardware able to run it yet. Many other programs
were developed in the following years, until 1957 when the first full-fledged
game of Chess was played by a computer at MIT [20].

Since the 1950s, AI has been applied to board games such as Chess, Scrab-
ble, Backgammon or Go, creating competition which has sped up the de-
velopment of many heuristic based search techniques [187]. Modern game
playing programs have been able to defeat top Chess and more recently, Go
grandmasters. Moreover, some of these games have been declared nearly or
completely solved (i.e., there are programs capable of playing optimally and
neither humans nor other computer programs can perform better), for exam-
ple Checkers [188], Connect-4 [231] and more recently Heads-up Limit Hold’em
Poker [23].

Most of the algorithms used to solve boardgames are based on tree search
methods with well designed evaluation functions, large databases of game in-
stances and sometimes even special purpose hardware such as Deep Blue [32].
AlphaGo Zero [198] used an MCTS variant and neural networks to learn to
play simply by playing games against itself, starting from completely random
play. It was trained for 40 days using 64 GPU workers and 19 CPU parameter
servers and reached a rating of over 5100 Elo, while no human Go player has
ever been rated over 3700 Elo 1. The hardware cost for a single AlphaGo

1https://www.goratings.org/en/history/
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Zero system, including custom components, has been quoted as around US$25
million [76]. The rapidly improving hardware capabilities have (sometimes
even single-handedly) helped computer programs to reach world-master per-
formance in increasingly complex boardgames.

Over the past several years the focus has shifted towards research on video
game AI, initiated by Laird and VanLent in 2001 with their call for using video
games as a testbed for AI research [130]. The authors saw video games as a po-
tential area for iterative advancement in increasingly complex scenarios. Just
two years later Buro called for increased research in Real-Time Strategy (RTS)
games, recognizing that they provide a perfect sandbox for exploring various
complex challenges that are central to game AI (and many other problems)
[27].

Motivation for RTS AI has since grown rapidly with the emergence of com-
petitions such as the Open RTS (ORTS) AI competition [26, 29], the Google
AI Challenges such as Planet Wars [80] and Ants [81]), and StarCraft AI Com-
petitions (organized as part of AIIDE and CIG conferences or as independent
tournaments [39]). Less than 20 years later, the biggest tech companies in
the world such as Google [82], Facebook [61], Microsoft [146] or IBM [256] are
using video games as means through which to challenge the state-of-the-art in
AI.

1.1 Real Time Strategy Games

RTS games, while similar to traditional abstract strategy games such as Chess
or Go, offer more complex environments in terms of state space size, the num-
ber of actions that can be performed at any time step, and the number of
actions required to reach the end of a game. Each player observes the battle-
field from a top-down perspective and controls multiple agents simultaneously
in real time. The customary goal is to overcome opponents by destroying their
armies and bases. To achieve this, gathering resources quickly and building a
powerful military force are essential. Being able to build a superior economic
base often helps to accomplish these tasks. RTS games demand precise hand-
ling of individual units (micro management) but also require planning in an
abstract world view and deciding what to spend one’s resources on: economy,
army or researching new technology (macro management).

Different maps with thousands of possible unit positions, army composi-
tions, sequences of building structures and researching technologies, and the
resulting very large action space make RTS games much more complex than
traditional games. The number of possible states in Chess is approximately
1050, Go has around 10170 states, while StarCraft has at least 101000 [168].
Brute force tree-search becomes impractical, and as a result, AI for RTS games
usually exhibits some form of abstraction or simplification, generally coupled
with a modular divide-and-conquer framework. Often, sub-problems are stud-
ied instead of learning to play RTS games end-to-end, and micro-management

2



scenarios are the most frequently tackled challenges [116].

1.1.1 Multiplayer Online Battle (MOBA) Arena Games

The MOBA game genre, also known as action real-time strategy (ARTS), has
originated as a subgenre of RTS games and is undoubtedly one of the most
popular in gaming today. Reports have estimated the number of monthly
active players of the MOBA game League of Legends at 100 million players
in August 2017, almost as many as all other well-known eSports combined
(second and third place were for the first person shooter Call of Duty and the
collectible card game Hearthstone with 28 and 23 million respectively, while
another MOBA game – Dota 2 – was in fourth with 12 million) [209].

In MOBA games players control a single character plus a few minions and
compete in teams of usually 5 players each. The objective is to destroy the
opposing team’s main structure with the assistance of periodically spawned
computer-controlled units that march forward along set paths. Characters
typically have several abilities and various advantages each, that improve over
the course of a game. Game mechanics usually do not include construction
of buildings or unit training, but focus heavily on character development and
customization through items and abilities.

Similarly to standard RTS games, there are complex decisions to be made
in respect to resource management, progression and control of the player’s
character which combine both micro and macro levels of strategy. While RTS
players focus more on the higher level strategies, MOBA games can offer more
difficult micro challenges and additionally require teamwork and communica-
tion between players. This focus on multi-player strategies and interactions
might be one of the reasons why MOBAs have pushed other genres aside to
become the largest eSport in the world in terms of players [209], viewers [35]
and prize money awarded [56]. In 2017, over US$113 million was awarded in
prizes, from which over US$50 million was totaled by just two MOBA games
– Dota 2 and League of Legends – while from the other genres the top games
were the shooters Counter-Strike and Call of Duty at US$12 and US$4 million
each [56]. StarCraft II was the top RTS game at slightly over US$3 million.

1.1.2 eSports and RTS Game AI

One incentive for AI research comes from the video game industry, which
generated well over US$100bn in revenues in 2017 [16]. While the focus often
falls on game aesthetics, a great interactive experience still plays an important
part. Crucial to this experience are adaptive AI-driven agents, which can
interact with the player in a variety of roles such as opponents, teammates
or other non-player characters (NPCs). In addition, besides providing a great
experience for players, eSports bring an increasing need for AI-based tools for
engagement with spectators, commentators and game developers which now
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have to be even more concerned by game balancing.
The increased popularity of eSports [210] brings extra incentive to AI de-

velopment. The established industry and competitive gaming scene provides
dependable access to professional human players, which offer a reliable way
of evaluating research progress. In contrast, games played only at amateur
level might seem reasonably difficult at first but may lack real challenges. For
example, Arimaa [216] was designed to be difficult to play by computers while
easy to master by humans. Eventually, computer programs were able to defeat
the best human players using only techniques already employed in Chess and
Go playing programs. However, after ten years of research it is hard to tell
how strong those computer programs really are, as there are no expert players
to judge their progress against. The large community offers great insight, and
we are now much more aware of the capabilities and limitations of current
efforts in RTS or MOBA game AI. A good example is the discussion around
the recent performance of OpenAI Five during the latest Dota 2 major com-
petition in August 2018 [169]. Analysis of the the two games – defeats by a
top 18 Dota 2 team and a team of Chinese superstar players – while of average
length and apparently competitive, showed that the AI excels at short-term,
reactionary back-and-forth teamfights but lacks high level strategic thinking
required to come back from behind or seal a victory.

Another advantage brought by the popularity of RTS and MOBA games
is that they provide one element that many machine learning systems need
and can benefit from: data. Most games publish complete replay data of
matches, and there are a significant number of parsing and analyzing tools that
enable hobbyists and researchers to use this public data for their own interests.
Benchmarking on publicly available datasets will only help progression of AI
methods, along with being able to play versus professionals and insightful
commentary and analysis from experts and community members.

1.2 Challenges

RTS games pose challenging problems for AI development and research. The
need to manage resources, to make critical decisions in situations while un-
certain about the current strength in relation to opposing forces, to conduct
spatial and temporal reasoning and the agent co-ordination required in this
genre still presents challenges to even the most state-of-the-art techniques.
Besides state space complexity, playing RTS games successfully – compared
to traditional turn-based board games – is a more difficult task due to the
following reasons [168]:

• In RTS games, players act simultaneously (i.e., more than one player can
issue commands at any given time).

• Gameplay takes place in real time. Players do not need to wait for their
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opponents to issue the next move, and only have a limited amount of
time to react to events on the playing field.

• The battlefield is usually partially observable, covered by the so called fog
of war. Visibility is restricted to areas close to the player’s own structures
and units, and the map needs to be constantly explored (process called
scouting).

• Some RTS games are non-deterministic, in the sense that some actions
may fail or have uncertain outcomes, such as probabilistic critical strikes
or missing when shooting an enemy uphill.

• RTS game maps are dynamic. Resources on the map may be depleted
or static objects may be destroyed to create new paths.

Recent research has brought to attention a few additional challenges, rele-
vant to current state-of-the-art techniques, such as how to best use the large
number of game replays available. Current challenges in RTS game AI have
been grouped in five main different areas [168, 232]:

1. Adversarial Planning in Large Real-Time Domains Standard ad-
versarial game tree search approaches are not directly applicable to RTS games
due to the large state and action spaces. Possible approaches include division
into smaller sub-problems for which search-based methods are feasible, such
as high level objectives like choosing whether to improve one’s economy or to
build a larger army, or lower level goals such as coordinating one’s troops in a
small region of the map. Both spatial and temporal reasoning are important
factors, and when or where are as important as what strategy to implement.
If the game engine cannot act as a forward model, or there is no access to one,
such a model would have to implemented at the representation level used by
the planning method. For RTS games, modeling combat between large armies
has significant impact on high level decisions, and is of particular interest.

2. Learning Most learning approaches in RTS games have been used for
addressing sub-problems only, and can be organized in three types:

• Prior Learning : typically uses large numbers of replays or other acquired
game data to infer some form of knowledge offline before starting to play,
for example, predicting the next expert human move in AlphaGo [197].

• In-Game Learning : concentrates on evolving new strategies or improving
the current ones while playing the game, by adapting to the opponent.
Reinforcement learning techniques can be used as well, but usually eval-
uation is done using a small number of games – for example tournaments
– and nowhere near what is required by common deep learning meth-
ods. This is related to the more general few-shot learning and transfer
learning challenges.
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• Inter-Game Learning : is usually done offline, and focuses on using knowl-
edge from past games to progress in the next one. For example, game-
theoretical concepts have been used to model the strategy selection pro-
cess in StarCraft as a metagame [226]. Some state-of-the art StarCraft
bots use bandit based Monte-Carlo planning to choose strategies accord-
ing to past performance against their opponent [168].

3. Spatial Reasoning When terrain and geographical factors impact deci-
sions, spatial reasoning is required to detect, exploit or estimate the effect of
these properties. In RTS games, it is needed at the long term planning level
for tasks such as building placement or choosing base expansion locations. At
the shorter term level, there are tactical decisions such as fleeing or reinforcing
contested areas, creating and avoiding ambushes and using terrain features
such high ground and choke-points to obtain advantages in combat.

4. Imperfect Information As mentioned above, in most RTS games play-
ers cannot observe the whole map, and everything that is outside the sight
range of one’s units is covered by the fog of war. Knowledge can be gained via
efficient scouting, and learning methods or inference modules can use past or
present information about the opponent to make assumptions about what is
possible, or probable with respect to his assets or strategy.

5. Task Decomposition For all the reasons already mentioned in this sec-
tion, RTS games are difficult to solve end-to-end, and most existing methods
are based on decomposition into smaller sub-problems, which they address
jointly or independently. Based on both time scale and level of abstraction,
these sub-problems have been classified in three categories in both literature
from military command [251] and AI research [37]: Strategy, Tactics and Reac-
tive Control. These categories imitate a military command hierarchy in both
use of abstraction and its flow of information amongst the different comman-
ders. For example, a high level commander can make a broad global strategic
decision based on the assembled knowledge of enemy and own resources and
map positioning. Based on this decision, tactical orders can be given to lower
level commanders that only have access to local information required to achieve
the given goal.

Related to both task decomposition and learning is the multi-agent aspect
of RTS games. Current multi-agent learning algorithms often use assumptions
of independence between the agents to avoid large action spaces. Scaling effec-
tively towards similar levels of performance as existing single agents algorithms
is a popular and open challenge.

These problems can also be found in real life situations such as air traffic
controlling, automated vehicles, drone exploration and military analysis, and
even weather prediction. Most areas with partial information and dynamic
environments can benefit from using tactical analysis techniques developed for
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RTS games. Games are a good testbed for AI development, and can be seen
as a limited environment (due to their finite discrete simplifications and well
defined rules) that can nonetheless model almost all characteristics of the real
world. Developing and testing AI algorithms in game environments benefits
research by greatly reducing the costs of real world resources and decreasing
testing effort.

1.3 Contributions

The work presented in this dissertation tackles some of the challenges described
in the previous sections. More specifically, we make the following contribu-
tions:

• Chapter 3: We describe a methodology for predicting the most probable
army composition produced by an opponent in imperfect information
strategy games. This system is based on a declarative knowledge rep-
resentation paradigm, and thus domain specific knowledge can easily be
encoded for any given adversarial environment. Predictions are very fast
and thus the algorithm would be a useful component in any complex
real-time domain with hidden opponent actions.

• Chapter 4 and 5: We design a combat model which approximates units’
strength from a small number of past battles. It accurately predicts
both battle outcomes as well as what type and how many troops are
needed to defeat any given army. Extensions are implemented in a second
combat model, which is both faster and more accurate, and can predict
the remaining army sizes and thus be used as a forward model. Such
models can inform high level strategic decisions such as when to force or
avoid fighting or be used as evaluation functions for look-ahead search
algorithms. In both cases we obtained stronger results compared to then
state-of-the-art heuristics.

• Chapter 6: We propose an adversarial search algorithm with multiple
search layers that work at different abstraction levels. Hierarchical de-
composition is used to provide the layers with partial or abstract views
of the game state and tasks to accomplish, in order to reduce the overall
branching factor of the search. This approach is useful for adversarial
domains with many agents that can be decomposed in relatively inde-
pendent sub-problems.

• Chapter 8: We propose an alternative adversarial look-ahead search
framework in which abstractions are easier to design and implement
compared to the one introduced in Chapter 6. Configurable scripts with
choice points are used as an abstraction mechanism, and we show that
very strong agents can be built even from basic scripts if we use accurate
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evaluation functions. We show how to combine this method with other
search-based tactical algorithms to produce strong RTS game playing
agents, which won the 2017 µRTS tournament.

• Chapter 7: We design state evaluation functions based on deep Convolu-
tional Neural Networks (CNNs) that consider the entire game state, and
are not restricted to tactical situations. We showed accuracy improve-
ments over other state-of-the-art evaluations and considerably stronger
gameplay when incorporated into adversarial look-ahead search algo-
rithms. This approach requires very little domain knowledge compared
to combat-specific models, and can be easily applied to other grid-like
domains.

• Chapter 9: We describe how CNNs and Reinforcement Learning (RL)
can be used to learn autonomous, adaptive and self-improving behavior
in complex cooperative-competitive multi-agent environments. No sim-
ulators or forward models are required, and agents defeated the built-in
AI and showed complex cooperative behaviors in a AAA game 2.

• Chapter 10: We design a novel learning approach for cooperative-com-
petitive multi-agent RL problems when agents are learning from a single
team reward signal. CNNs are used to produce a spatial decomposition
mechanism which learns action-value functions on a per-sector basis in-
stead of per-agent. We show that our new architecture made long-term
credit assignment from a single team reward more tractable, and im-
proved scaling to larger numbers of agents.

1.4 Publications

This article-based dissertation contains previously published material, and all
chapters outlined above correspond to one paper of which I was the first author
of. The exception is Chapter 8 which summarizes three papers to which I
contributed as second author. The list of publications from this thesis are:

• (2013) Stanescu, Poo Hernandez, Erickson, Greiner and Buro. Predict-
ing army combat outcomes in StarCraft [208]. AIIDE

• (2014) Stanescu, Barriga and Buro. Introducing Hierarchical Adversarial
Search, a Scalable Search Procedure for Real-Time Strategy Games [203].
ECAI poster

2AAA is an informal classification used for video games produced and distributed by a
mid-sized or major publisher, typically having higher development and marketing budgets.
AAA game development is associated with high economic risk and with high levels of sales
required to obtain profitability.
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• (2014) Stanescu, Barriga and Buro. Hierarchical Adversarial Search Ap-
plied to Real-Time Strategy Games [202]. AIIDE

• (2015) Stanescu, Barriga and Buro. Using Lanchester Attrition Laws for
Combat Prediction in StarCraft [204]. AIIDE

• (2016) Stanescu, Barriga, Hess and Buro. Evaluating Real-Time Strat-
egy Game States Using Convolutional Neural Networks [206]. CIG

• (2016) Stanescu and Čertickỳ. Predicting Opponent’s Production in
Real-Time Strategy Games with Answer Set Programming [207]. TCI-
AIG

• (2018) Stanescu and Buro. Multi-Agent Action Network Learning Ap-
plied to RTS Game Combat. AIIDE workshop

- (2015) Barriga, Stanescu and Buro. Puppet Search: Enhancing Scripted
Behavior by Look-Ahead Search with Applications to Real-Time Strat-
egy Games [11]. AIIDE

- (2017) Barriga, Stanescu and Buro. Combining Strategic Learning and
Tactical Search in Real-Time Strategy Games [12]. AIIDE

- (2017) Barriga, Stanescu and Buro. Game Tree Search Based on Non-
Deterministic Action Scripts in Real-Time Strategy Games [14]. TCI-
AIG

Two other publications mentioned in the Appendix are:

• (2014) Barriga, Stanescu and Buro. Parallel UCT Search on GPUs [10].
CIG

• (2014) Barriga, Stanescu and Buro. Building Placement Optimization
in Real-Time Strategy Games [9]. AIIDE
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Chapter 2

Literature Survey

This chapter first mentions the most popular platforms for research applied to
RTS games. As shown in Section 1.2, RTS games present many challenges and
this chapter reviews existing research in this domain. The same decomposition
presented above is used to organize this work, with a section dedicated to each
of Reactive Control, Tactics and Strategy. Another section describes holistic
approaches, which try to solve the whole problem using a single framework.
A separate section is dedicated to deep reinforcement learning, as progress in
this domain is more recent and follows a different trajectory that is better
presented independently.

Due to the difficulty of implementing full, working algorithms for RTS
games, a few research platforms have been developed. They offer more re-
stricted scenarios and minimize the amount of engineering required to evaluate
new algorithms. The most popular among RTS research are:

• SparCraft – a simplified StarCraft combat simulator that is much faster
than the original engine and has been used for research on unit control
(also see appendix B.2);

• µRTS – a less complex academic RTS game, deterministic, fully-observable,
with simultaneous and durative actions (see appendix B.3). AI compe-
titions have been organized recently as part of CIG 2017 and CIG 2018
conferences [165].

There are other research platforms that have seen less use, especially after
the release of BWAPI in 2009 and µRTS in 2012: the academic RTS engine
ORTS [26], the open source WarCraft II clone Wargus [3] and the 3D RTS
game engine SpringRTS [2].

Successful RTS game AIs usually address many of the problems and chal-
lenges presented in Section 1.2 simultaneously. Hence, it would be difficult to
label RTS AI research according to these challenges and researchers prefer a
classification by abstraction levels [168, 178]. The chosen categories are in-
spired by military command hierarchies [251]: Strategy, Tactics and Reactive
Control.
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The highest level decisions, which have impact on a global scale and are
concerned with winning the war, are part of one’s strategy (e.g., build order,
army compositions). It should be noted that here strategy is considered an ab-
straction category and is a different concept than strategy in a game theoretic
context. Next, tactics has a smaller scale, both in time and spatially. Tactical
problems often involve particular groups of units and smaller map areas, and
usually aim to accomplish a specific objective such as winning a battle or cap-
turing a certain location. Lastly reactive control finds low-level orders (such
as move to position P or fire at enemy unit E) for individual units. While tac-
tical decisions usually have a short-term time objective or plan, varying from
seconds to minutes, reactive control decisions have millisecond granularity.

Often the line dividing these abstraction levels is not completely clear, and
it is better to consider them as areas on a continuous scale. In the following
three sections we will offer more detail and describe relevant research in each
of these categories.

2.1 Reactive Control

This category encompasses the AI decisions with the shortest time horizon
and mostly deals with actions at the unit level. Reactive control decisions
usually are combat-related: how units will move, attack and use their abilities
to defeat enemy squads or achieve other goals.

Influence Maps have been widely used to make combat decisions. They
store relevant information about game objects such as units or wall as numer-
ical influence, which is stronger closer to the specific object and degrades with
distance. They are closely related to the idea of potential fields [89], sharing
the same underlying principles. Influence maps have been used to avoid ob-
stacles or to keep the optimum distance from opponents while shooting [233].
This behavior is called ”kiting” and it is used by the StarCraft bot Nova [233].
Influence maps can also be used to implement more intelligent squad move-
ment such as flanking [49], and can even help dealing with fog-of-war [88].

The main disadvantage of using influence maps is that many parameters
need to be hand-tuned in order to obtain specific behaviors. Consequently,
there has been research aimed at learning such parameters automatically, for
example self organizing maps [175] or by using RL [141]. However, even these
approaches have the drawback of occasionally leaving agents stuck in local
optima.

Reinforcement Learning has been used to control units in RTS games,
as it is relatively easy technique to apply to a new domain; it only requires
a scenario description, a set of possible actions and a reward metric [143].
Different RL algorithms are compared, without finding significant differences,
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in small scale StarCraft combat scenarios [248]. However, the large problem
space of RTS games and the long delay of rewards make RL methods difficult
to use for anything other than very short-term planning. The system proposed
in [195] beats the built-in StarCraft AI in 3 unit fights, but fails to defeat it if
the number of units is larger than 6 per side.

A hierarchical decomposition is proposed as a way of increasing the ef-
fectiveness of RL methods [144]. The game complexity is decreased using a
hierarchical decomposition to combine units’ Q-functions at the group (squad)
level. Another idea to reduce the search space is learning one Q-function for
all units of the same type [110]. Other recent RL research, based on advances
in deep networks, is discussed in Section 2.5.

Game Tree Search techniques have been employed with success in small
scale or abstracted instances of RTS combat scenarios. SparCraft was in-
troduced to allow fast evaluation of unit actions [44]. It is a simulator that
approximates StarCraft combat while ignoring some of the complex mecha-
nisms such as unit collision, acceleration or casting spells. For more details
on SparCraft, see Appendix B.2. The authors designed an alpha-beta search
method that takes actions duration into account and found it to be effective
for small and medium sized StarCraft combat instances.

The large number of actions and possible states, coupled with RTS time
constraints of tens of milliseconds per search, makes this approach too slow
for two player combat scenarios larger than 8 units per side. Portfolio Greedy
Search is a search algorithm designed to work better in large-scale combat [43].
This algorithm limits the actions searched for each unit to actions produced
by a set of scripts called a portfolio. Furthermore, it applies a hill-climbing
technique to reduce the exponential number of unit actions combinations to a
linear amount.

However, despite good performance within simulations, the results do not
translate completely to the real StarCraft game. The inconsistency is caused
by the discrepancy between action results in the simulation and the actual
game. Researchers do not have access to the original StarCraft engine, and
the outcome of actions issued through the BWAPI framework cannot cur-
rently be predicted with 100% certainty. More accurate simulators need to be
implemented to overcome this issue, and this is an open research avenue.

2.2 Tactics

Tactical reasoning is a step up in scale from reactive control, and deals with
decisions on a time scale of usually less than one minute. Tactics involves
reasoning about the different abilities of units within a group and about spatial
positioning of different units or groups of units on the battlefield. Typically,
research in this category can be classified as either terrain analysis or decision
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making [168].

Terrain Analysis assists decision making in games by providing map infor-
mation in a systematical way. Wargames especially need qualitative spatial in-
formation [64]. Most StarCraft bots use the BWTA library, which implements
relevant regions/choke points detection via Voronoi decomposition [174].

Another tactical decision that falls under terrain analysis is building place-
ment. Defensive or unit training buildings can be placed near the opponent’s
base to support an aggressive strategy. Building placement also has an impact
on the routes taken by units (e.g., one can block one’s own base entrance to
defend [34]). This paper only attempts to create a wall-type structure to help
against early enemy attacks, and recognizes that other goals such as preventing
enemy scouting or optimizing economic layout should also be pursued.

Decision Making Scouting the enemy is very important to both tactical
and strategic decision making. However, most StarCraft bots assume perfect
information, with a few exceptions [245]. The authors use particle filtering for
predicting positions of previously seen enemy units in StarCraft, with decreas-
ing confidence over time.

Once a player controls enough units, he must decide when and where to
attack the opponent, taking into account the army compositions, technology
levels and relevant spatial information. For example, in StarCraft two popular
attack patterns are

• timing attacks – executed during a certain period in which an attack is
stronger than outside that time window (e.g., own upgrade completed
providing a sharp increase in strength but opponent’s has not)

• attacking the opponent while he is building a new base, called expansion.

Decisions such as how to split one’s army, group the units, flank or attack
multiple areas at the same time are also taken at the tactical level. However,
there is not much work done in this area, and most combat related research is
focused in the lower level area of reactive control.

2.3 Strategy

Strategy encompasses the highest level decisions made during an RTS game.
Strategic decisions are concerned with the long-term results of player actions.
The following subsections describe the most important strategic sub-problems
and relevant research.

Hard-coded and scripted methods (such as finite state machines [108]) that
rely heavily on expert knowledge are the most common approaches in both
research and commercial RTS AI. These methods are popular because they are
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easy to design, computationally inexpensive, and simplify transferring expert
domain knowledge into basic AI behavior. However, these approaches cannot
adapt to circumstances unforeseen by the designers and exhibit static and
easily identifiable behaviors. For that reason, human players can easily exploit
and defeat such AIs.

Plan Recognition An important factor in strategic decision-making is be-
ing able to predict the opponent’s strategy. This is a difficult task in RTS
games due to not having perfect information about the enemy actions and
units, concealed by fog-of-war. One of the first attempts to tackle this prob-
lem in StarCraft was by using recorded games (replays) to build a decision
tree which is then used to predict the opponent’s current strategy [243]. A
similar idea uses a decision tree framework as well, but the tree structure is
created manually using expert knowledge [118].

Alternatively, probabilistic plan recognition uses game replays to train op-
ponent models automatically, without human input. The models learned can
then be used to predict unobserved parts of the enemy’s state, or future enemy
actions given his past and current states. Hidden Markov Model (HMM) with
state transitions happening every 30 seconds are used for prediction during
the first 7 minutes of a StarCraft game [51]. This work is extended later to
predict exact numbers of each unit and building type (every 30 seconds) in-
stead of only whether it exists or not [107]. This new model takes scouting
into account to infer if a unit/building was not discovered because it does not
exist or because the player has not spent enough time searching for it.

A semi-supervised Bayesian model has been used instead of an HMM to
predict opening strategies [218]. The authors also predict the current technol-
ogy level of an opponent using an unsupervised Bayesian model in [219]. Their
models are very robust providing predictions which on average are wrong by
only one building after randomly hiding 80% of the enemy base. With perfect
information they accurately predicted almost four buildings, on average, into
the future. However, when using these systems in their 2012 StarCraft AI
Competition bot, they only placed 4th.

Case-Based Reasoning (CBR) is also used for plan recognition, for example
to try to predict the success of a specific plan in a particular situation by taking
into account results from professional replays [109] . CBR was also used to
accurately classify an opponent according to a few abstract labels such as
defensive, aggressive, etc in the Spring RTS engine [186].

Planning systems are used to generate action sequences players should
follow in order to achieve specific goals. Some popular approaches detailed
below are Case-Based Planning (CBP), Goal-Driven methods and Hierarchical
Planning.

Case-Based Planning Similarly to CBR, a CBP system aims to retrieve
potential plans or plan fragments that are likely to prove useful in the current
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context. For example, a real time case-based system was implemented to play
Wargus (a Warcraft II clone) [167]. The authors learn plans from human
demonstration available in the form of annotated game logs which contain
sequences of actions for particular states and the goals the human was actively
pursuing. Previous CBP work is later improved by using a decision tree to
increase the plan retrieval’s speed and quality [148]. However, significant effort
is still needed for annotating logs.

Goal-driven Planning One limitation of CBP methods is that they do not
actively try to reason about why a goal is succeeding or failing, but only choose
a good plan for the current context. In comparison, in goal-driven models the
agent reasons about its goals, identifies when they need to be updated, and
adapts them as needed for subsequent planning and execution [153].

One such system was implemented for StarCraft [244]. The system main-
tains expectations about the current plan outcome, and each unexpected sit-
uation can be recorded as an exception. An explanation for this surprising
event is then generated, and the plan is revised. At first expert knowledge was
needed in the form of goals, strategies and computing expectations, but later
work added the possibility of learning all these from demonstration [246].

The need for expert domain knowledge was reduced by using CBR and RL
to create a learning goal-driven system [111]. This system improves its goals
and knowledge over time, and can adapt to changes better than a non-learning
agent. However, in practice, it did not out-perform the non-learning variant.

Hierarchical Planning Planning in RTS is a complex problem, and hierar-
chical systems aim to reduce this complexity using decomposition at different
abstraction levels. For example, hierarchical task networks (HTNs) decom-
pose goals into a series of sub-goals, at a lower abstraction level. The process
continues in the same fashion until eventually the goals can be decomposed
into concrete actions. While this approach can reduce the computational ef-
fort required for planning, HTNs generally need significant effort for encoding
strategies and goal decompositions.

A hand-crafted HTN is used to play the RTS game Spring, and is able to
defeat the built in scripted AI [129]. Learning the HTNs would be the next
step in this research area, however this has only been tried in very simple
domains and never in RTS games [159].

While these are the most popular methods for planning in RTS games,
other approaches have been explored. For example, several scripted players
are compared to a minimax and a Nash equilibrium player which are found to
perform better than the scripted players [182]. Monte Carlo was also used to
select high level strategies and showed promising results [37]. However, both
these approaches use very simple RTS games.

While most research at the strategic level of RTS games is dedicated to
planning, there are a few difficult planning sub-problems that are usually ad-
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dressed independently. For example, two such sub-problems are choosing a
good army composition and finding an optimal build order for the player’s
structures.

Army Composition can be part of a predetermined plan, or decided on-
the-fly, taking into account the predicted enemy army composition. Choosing
the army composition is a difficult subproblem by itself, as all unit types in
an RTS game such as StarCraft have different attributes (walking or flying,
attack damage, range and type, armor and health, size and speed). A CBR
approach is used to this extent and the authors claim good results but do not
present any quantitative evaluation [33]. There is very little work on selecting
army compositions, researchers preferring selecting a specific plan instead and
using a few scripted rules to slightly alter the army composition.

Build Order To reach a set goal of units and buildings, a player needs to
construct different buildings according to their pre-requisites; the timing or
order in which these buildings are constructed is called a build order. The
problem of planning a build order can be described as a constraint resource
allocation problem with concurrent actions [125]. A time intensive, off-line
build order planner that uses evolutionary algorithms discovered a few build
orders that proved very effective when implemented by humans [24]. Finally,
multiple lower bound heuristics and abstractions (such as macro actions and
income abstractions) were used to reduce the build order search effort and to
produce close to optimal plans in real-time [40].

2.4 Holistic Approaches

As mentioned above, one way to tackle the large search space in StarCraft
is by decomposing the problem of playing a RTS game into a set of smaller
independent problems. These are usually solved by separate AI modules.

Holistic approaches propose a unified perspective and try to address the
whole problem within a single framework (e.g., game-tree search). Until re-
cently, there have been few attempts to implement such a system, notably AL-
isp [144] and Darmok [160], which combines case-based reasoning and learning
from demonstration.

The research community is starting to focus again on this area, first by
tackling the problem of global search in smaller scale RTS games such as
µRTS [161, 162]. More recent research uses abstraction to only search over a
high-level representation of the game state [234, 235]. The authors decompose
the map into connected regions, and subsequently group units into squads
taking their type into account. The space search is reduced because moves
are then restricted to squads (which can go to a connected region, attack, or
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defend). However, this approach deals mainly with combat and disregards
some aspects of playing the full StarCraft game.

Adversarial Hierarchical Task Network (AHTN) planning combines game
tree search with HTN planning [166]. The authors implement five different
HTNs, at different abstraction levels. These HTNs produce game trees rang-
ing from one identical to the tree that would be generated by minimax search
applied to raw low-level actions, to a game tree with only one max/min choice
layer at the top, followed by scripted action sequences. Experiments are con-
ducted in µRTS, against several scripted and search based agents. The three
HTNs with more abstract tasks displayed good performance. The most ab-
stract one showed promise to scale well to more complex scenarios or games.

2.5 Deep Reinforcement Learning in

RTS Games

In machine learning, traditionally there have been three approaches to learn-
ing: supervised, unsupervised and reinforcement learning. All three can be
used to train deep neural networks to play games, in addition to other meth-
ods such as stochastic optimization approaches (e.g., neuroevolution) or hybrid
methods that combine several of these approaches. In this section we briefly
describe how these methods work and can be applied to RTS games, then fol-
low up with a more in-depth explanation of RL concepts in Section 2.5.1 and
finish by giving a historical overview of deep RL research applied to games, in
particular RTS games.

Supervised Learning is a process through which an algorithm learns from
a training dataset for which the correct answers are known. The algorithm
iteratively makes predictions such as a label in classification problems or a
real value in regression problems, and the difference between the given answer
and the ground truth is used to update the model. Learning stops when an
acceptable level of performance is achieved on the training data, with the goal
being to generalize and achieve good results on new and unseen data.

Supervised learning requires a large amount of training examples, which of-
ten require human effort to be produced or labelled. Game replays can be used
to learn which actions a human would perform in a given state [22]. Strate-
gic choices performed by humans in StarCraft macro-management tasks were
learned from game logs, and promising results were obtained when integrating
the neural network in an existing bot [117]. For AlphaGo [197], 30 million Go
positions from expert human games were used to train the algorithm in the
first stage, followed up by self play and reinforcement learning in the second
stage. If, however, there is not enough human data one could generate train-
ing data using other approaches. For example, in the research described in
Chapter 7 we trained a CNN as a state evaluator using bots to play games

17



and label them as victories or defeats. Moreover, if there is an algorithm with
good performance that is too slow to run in real time, supervised learning can
be used to train a neural network to predict its actions, as shown in work
described in Section 8.3.

Unupervised Learning techniques model the underlying structure or dis-
tribution in the data without access to any corresponding output labels or
values. Patterns in the data are learned and used to cluster similar data-
points into groups, to discover rules that describe large portions of the data,
or to reduce data dimensionality and compress it while maintaining its essen-
tial structure.

One popular unsupervised learning approach used in conjunction with deep
networks is the autoencoder, which is a hourglass shaped neural network that
learns to replicate its input. The first part of the network is called the encoder,
which compresses the input data into a short code, while the second part –
the decoder – decompresses the code into a copy of the original input. There
is no need for labels, as the performance is evaluated by how well the recon-
struction matches the original data. The goal is to learn a meaningful, shorter
representation of the data. Autoencoders were used to learn a compressed
state representation, and reinforcement learning methods were then applied in
the reduced state space at a substantially lower computational cost [5]. 8× 8
µRTS maps with information such as positions and health of all units were
compressed into a representation (code) that uses only 15 neurons.

Other Approaches to training deep neural networks includes neuroevolu-
tion (NE), which besides learning the network’s weights can be used to opti-
mize its topology as well. These methods use stochastic noise to explore in the
parameters space directly, and do not require computing gradients. Not relying
on differentiability allows evolutionary algorithms to be used in conjunction
with a wide range of algorithms, including search methods. NE methods have
been proved a scalable alternative to recent RL approaches [183]. More details
about applying NE methods to games can be found int [177].

A successful hybrid approach is AlphaGo [197], which combined supervised
learning from human replays, reinforcement learning and Monte-Carlo tree
search to defeat the world Go champion. Hybrid approaches have been applied
in RTS games as well, for example to inform tree search [163] or to reduce the
high dimensional input before applying a different method to learn how to
play [5]. A similar approach to the latter used autoencoders for compressing
but NE instead of RL for learning how to play a 3D shooter game [4], but has
not been tested yet in RTS games.
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2.5.1 Reinforcement Learning Approaches

In reinforcement learning, agents interact with an environment from which
they receive a reward signal and their goal is to learn a behavior that max-
imizes the accumulated rewards. Games are easy to be modeled as environ-
ments for RL, with agents having to learn which of the available actions to
take at each step to solve a Super Mario level or defeat a StarCraft enemy
player. The reward R(s) received for reaching a state s is usually close to zero
for most states, possibly reflecting small changes in score between sequential
states, and meaningful values are often sparse (e.g., large bonuses/penalties
for winning or losing a game). Assigning credit to the many actions taken
before receiving a reward signal is challenging, and below we introduce some
of the main algorithms in RL designed for this problem.

One of the most popular approach is temporal difference (TD) learning,
based on the idea that the utility value for a state is equal to the reward
obtained at the current step for reaching that state plus the utility value of
the next state [214]. This is implemented using the following update equation:

U(s) = U(s) + α(R(s) + γU(s′)− U(s)),

where γ is the discount factor for utility of future states and α is the algorithm’s
learning rate. It will take one step for R(st) to influence U(st), and another
step to influence the utility of a previous state U(st−1). With this update rule,
the rewards’ effect will propagate backwards in time until convergence.

This method doesn’t take into account which action was chosen to reach the
next state. There are other implementations of TD that learn utility values
for state-action pairs instead. These methods are model-free, in the sense
that agents can choose which action to take given a state without a state
transition model. Q-learning is a popular model-free approach that computes
utility values for states by taking the maximum Q(s, a) value over the actions
available in that state [241]. The update rule is:

Q(s, a) = Q(s, a) + α(R(s) + γmaxaQ(s′, a′)−Q(s, a)).

A very similar algorithm exists, called State-Action-Reward-State-Action (SARSA)
which updates estimates based on the a′ action taken by the agent instead of
the maximum estimate of possible next actions [180]:

Q(s, a) = Q(s, a) + α(R(s) + γQ(s′, a′)−Q(s, a)).

An agent’s policy π(s) is a function that takes the current environment state
and returns which action to take. SARSA is an on-policy algorithm, because
it uses the current policy’s action a′ to update Q-values, estimating the return
assuming the current policy continues to be followed. In contrast, Q-learning
is an off-policy algorithm, greedily choosing a′ for updates. It assumes a
greedy policy is followed when estimating the return, despite the fact that

19



any behavior policy can be used. Usually behavior policies are constructed
to balance exploration of new actions and exploitation of current knowledge.
Early in training it is more important to explore and not get stuck in local
optima while later, when Q-values are more accurate, actions can be chosen
more greedily.

Policy search is another approach in RL, and performs optimization directly
in policy space. If πθ(s, a) encodes the probability that action a is chosen in
state s, then policy search optimizes the parameters θ via techniques like gradi-
ent descent. For example, the REINFORCE algorithm [249] uses the gradient
∇θ

∑

a πθ(s, a)R(s) to update θ, where R(s) is the discounted cumulative re-
ward received from s to the end of the episode. The result is a stochastic
policy that samples actions and those that happen to eventually lead to good
outcomes get encouraged in the future, while actions taken that lead to bad
outcomes get discouraged.

Generally, value methods such as SARSA and Q-learning work well when
there is a finite set of actions, while policy search is useful when the action space
is continuous or stochastic. One issue with policy gradient methods is that all
actions from a trace are updated either positively or negatively, depending only
on the total reward at the end of the episode. Consequently, many samples
are required until convergence. Actor-Critic methods address this issue by
combining both value and policy estimation methods, and making updates at
each step instead of waiting until the end of the episode as in REINFORCE
[215]. A critic model learns a value function using TD learning, which is used
to evaluate the current policy. A second model – called the actor – uses this
value to replace R(s) from the policy gradient update rule to learn and improve
the current policy.

2.5.2 Overview of Deep RL Methods used in RTS Games

This subsection presents some of the more popular methods used in deep RL.
Many of these algorithms were developed and applied first on Atari games,
and then extended to more complex domains like RTS games. Therefore, we
first introduce the methods within their original application context, and then
mention relevant work that uses or extends this research to RTS games.

Deep Q-Networks (DQN) outperformed approaches such as NE [95] and
SARSA [18] and was the first algorithm that learned expert-level control in
Atari games, surpassing human expert scores in three games. A neural network
with two convolutional and one fully connected layer was used to approximate
Q-values, and was later extended by adding a second copy of this network.
This target network generates Q-values that are used to compute the loss
during training and is updated more slowly compared to the primary network,
increasing stability and preventing value estimations to spiral out of control.
Human scores were surpassed in 29 of the 49 Atari games [151]. DQN is a
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sample efficient algorithm, using experience replay to store past experiences
(tuples containing a state, action chosen, reward received and next state) in a
replay memory. Batches of random – and hopefully uncorrelated – experiences
are drawn from the memory and used for updates, forcing the network to
generalize beyond what is immediately doing in the environment.

There are many extensions to DQN algorithms, a few being:

• Double DQN used double Q-learning [93] to decorrelate the selection of
the best action from the evaluation of that action, reducing overestima-
tion of Q-values [94].

• Prioritized experience replay replaces the uniform sampling of experi-
ences from the memory replay with an approach that samples significant
– based on the transition error – transitions more frequently, and out-
performs the original version in 41 of the 49 Atari games [189].

• Dueling DQN uses a network architecture that, after the convolutional
layers, is split into two separate representations: the value function V (s)
and advantage function A(s, a) [240]. They are combined together at the
final layer to obtain Q-values: Q(s, a) = V (s) + A(s, a). Learning how
valuable states are is thus decoupled from learning the effect of every
action for each state, resulting in more robust estimates.

• Distributional DQN learns to approximate the return value distribution
instead of estimating a single value as output, providing a richer set
of predictions and a more stable learning target [17]. This extension,
without further algorithmic additions, surpassed gains made by double
DQN, the dueling architecture and prioritized replay.

• Noisy Nets perturbs the network weights representing the agent’s policy
to improve exploration efficiency [65]. The amount of noise added to
each parameter is learned during training.

• Rainbow integrates the above five DQN extensions and multi-step learn-
ing into one model, proving that these are largely complementary and
their combination led to new state-of-the-art results [105].

• Deep Recurrent Q-Learning (DRQN) provides ’memory’ functionality by
replacing the fully connected layer(s) with one or two recurrent layers
containing GRU or LSTM cells [96]. It helps in partial observability
settings, especially in games such as first person-shooters [131].

• There are various distributed versions of DQN, using multiple agents
to collect experiences into a shared memory replay. For example, Go-
rila [158] obtained higher scores than its non-distributed counterpart in
41 of the 49 Atari games.
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While all the above approaches were applied to complete Atari games, RTS
games are more complex environments and most research focuses on either
sub-problems or restricted game versions. In addition, the lack of the in-game
scoring present in console games makes rewards very sparse (e.g., winning or
losing a game) and reward shaping [52, 57] based on the difference between
statistics such as damage dealt and damage incurred is generally used to reduce
this delay. Deep learning methods applied in RTS games have thus focused
mostly on controlling units in combat scenarios, where feedback on actions
taken is obtained more easily and problem complexity can be increased via
the number of controlled units.

A DQN baseline was implemented for StarCraft combat scenarios, and
compared to a greedy approach that sequentially choses actions for agents and
searches in policy space using zero-order gradient optimization [237]. This lat-
ter method – GreedyMDP with Episodic Zero-Order Optimisation (GMEZO)
– successfully learned non-trivial strategies for controlling armies of up to 15
units while basic DQN and REINFORCE approaches struggled.

Independent Q-Learning (IQL) [225] is often used to decompose the multi-
agent problem into simpler, individual agent learning tasks by treating all
other agents as part of the environment. However, IQL is not stable when
used in conjunction with methods such as experience replay, as the multiple
learning agents make experiences lose relevance more quickly. This issue was
addressed and DQN with prioritized experience replay and a few stability fixes
has shown improved performance in small StarCraft combat scenarios with up
to 5 units on each side [63].

A different way to address multi-agent problems is to enable differen-
tiable communication between the agents, which allows them to cooperate.
In CommNet, each agent is controlled by a deep network which has access to
an all-to-all communication channel through which a summed transmission of
other agents is broadcasted [211]. This approach outperformed both indepen-
dent learning and fully connected models on simple combat tasks of up to 10
units per side.

Actor-Critic Methods are built with two components: the actor which
maintains and updates the agent’s policy and the critic which is used for state
evaluation. In Advantage Actor-Critic (A2C), the critic uses an advantage
function rather than a value function, and is often defined as a synchronous
version of the Asynchronous Advantage Actor-Critic (A3C) [149]. In A2C and
A3C multiple agents interact with the environment independently and simul-
taneously, and the diverse experiences are used to update a global, shared
agent network. They are equivalent mathematically, with the practical imple-
mentation difference that A3C agents send updates and retrieve parameters
to/from the central server asynchronously while A2C uses a deterministic im-
plementation that waits for each actor to finish its segment of experience and
batches them together. A2C and A3C have been found to perform similarly,
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with A2C utilizing GPUs more efficiently while A3C is preferred on CPU-only
architectures [253].

The main advantage of A2C and A3C methods is their capacity for mass
parallelization, which reduces training time in a nearly linear fashion with
the number of parallel executing agents [149]. The agents’ uncorrelated ex-
periences serve a similar function to the experience replay from the off-policy
DQN-based methods and improve learning stability. Compared to DQN how-
ever, actor-critic methods are less sample efficient.

Trust Region Policy Optimization (TRPO) is an off-policy gradient method
that uses an actor-critic architecture, but modifies how the actor updates the
policy parameters [192]. It constraints the size of the policy updates and
avoids parameter updates that change it too much at one step, which results
in improved training stability. This is done by computing the KL divergence
between the old and the new policy is relatively complicated, which is relatively
complicated. The newer Proximal Policy Optimization (PPO) method greatly
simplifies this computation using a clipping function while retaining similar
performance [193].

A3C was used as a benchmark in the StarCraft II Learning Environment
(SC2LE), in work that advocated using StarCraft II as a new and challeng-
ing environment for exploring deep RL algorithms and architectures [238].
Three different network architectures were compared and agents comparable
to novice players were trained for several minigames. However, no significant
progress was obtained on the full game, the basic A3C implementation failing
to defeat even the easiest difficulty (level 1 out of 10) built-in AI.

Counterfactual Multi-Agent Policy Gradients (COMA) is an actor-critic
method that uses a counterfactual baseline to marginalise out a single agent’s
action, while keeping the other agents’ actions fixed [62]. It outperformed
independent actor-critic methods, IQL, and GMEZO in StarCraft combat sce-
narios with up to 5 units per side.

Multiagent Bidirectionally-Coordinated Network (BiCNet) is a vectorized
version of actor-critic that uses bidirectional neural networks to exchange infor-
mation between agents [173]. In 4 out of 5 scenarios with 5 up to 20 units per
side, BiCNet outperformed other baselines such as an independent controller,
CommNet and GMEZO.

A PPO algorithm, extensive feature engineering and five networks with a
single LSTM layer each were used to produce competitive agents for the full 5
vs. 5 game of Dota 2, with only minor item and rule restrictions [170]. Some of
these restrictions were later lifted and the AI defeated several amateur teams
but lost against professional players [169].

Finally, an actor-critic framework used in conjunction with relational RL
and a more data efficient distributed algorithm [60] achieved state-of-the-art
results in six SC2LE minigames (movement and combat based scenarios that
are simpler than the full game) and its performance surpassed that of the
human grandmaster in four of them [257].
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Other Approaches Credit assignment from team reward signals is chal-
lenging, especially as the number of agents increases. One approach to deal
with this issue is to transform multiple agent interactions into interactions be-
tween two entities: a single agent and a distribution of the other agents [255].
This technique improved agents trained with either IQL or A2C over their orig-
inal versions on combat scenarios with 64 units per side. Another approach
to solve credit assignment is to use a value decomposition network (VDN)
to learn how to represent the total Q-value as sum of per-agent, individual
Q-values [213]. This method was extended in QMIX [176] by replacing the
sum operation with a mixing network that allows non-linear combinations of
Q-values. QMIX outperformed IQL and VDN in small SC2LE scenarios of up
to 8 units per side.

Finally, recent research published just before the submission of this thesis
by two different groups simultaneously uses hierarchial RL to speed up learning
and to explore the environment more efficiently. These are the first instances
of learning bots that play full scale and non-reduced versions of RTS games
on a comparative level to good human players. Firstly, a two-level hierarchial
architecture is constructed, with policies running at two different timescales
[172]. Abstraction is used to reduce the action space, the low level actions
consisting of macro-actions automatically extracted from experts’ trajectories.
The PPO algorithm is used for training the network, which achieves 93% win
rate against level 7 built-in SC2LE AI on the full StarCraft II game played on
a small 64× 64 map. The second group adopts a set of macro actions as well,
this time designed using hard coded prior knowledge [212]. While similar to
previous research that uses hand coded macro actions in a customized mini
RTS game [230], the authors implement a much larger set of rules – 165 macro
actions. On top there is a single controller trained with dueling double DQN
or PPO. On a SC2LE tournament map of 152× 136 tiles, both versions defeat
level 1 to level 9 AI in more than 90% of the games. Against level 10, the
DQN version achieves 71% win rate and PPO 81%.
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Chapter 3

Predicting Opponent’s
Production in Real-Time
Strategy Games with Answer
Set Programming

c⃝2016 IEEE. Reprinted, with permission, from Adrian Marius Stanescu and
Michal Čertickỳ, Predicting Opponent’s Production in Real-Time Strategy Games
with Answer Set Programming [207], IEEE Transactions on Computational
Intelligence and AI in Games, March 2016.

Abstract

The adversarial character of real-time strategy (RTS) games is one of the main
sources of uncertainty within this domain. Since players lack exact knowledge
about their opponent’s actions, they need a reasonable representation of alter-
native possibilities and their likelihood. In this article we propose a method of
predicting the most probable combination of units produced by the opponent
during a certain time period. We employ a logic programming paradigm called
Answer Set Programming, since its semantics is well suited for reasoning with
uncertainty and incomplete knowledge. In contrast with typical, purely prob-
abilistic approaches, the presented method takes into account the background
knowledge about the game and only considers the combinations that are con-
sistent with the game mechanics and with the player’s partial observations.
Experiments, conducted during different phases of StarCraft: Brood War and
Warcraft III: The Frozen Throne games, show that the prediction accuracy
for time intervals of 1-3 minutes seems to be surprisingly high, making the
method useful in practice. Prediction error grows only slowly with increasing
prediction intervals – almost in a linear fashion.
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3.1 Introduction

Real-time Strategy (RTS) games represent a genre of video games in which
players must manage economic tasks like gathering resources or building new
bases, increase their military power by researching new technologies and train-
ing units, and lead them into battle against their opponent(s). RTS games
serve as an interesting domain for Artificial Intelligence (AI) research, since
they represent well-defined complex adversarial systems [28] which pose a
number of interesting AI challenges in the areas of planning, learning, spa-
tial/temporal reasoning, domain knowledge exploitation, task decomposition
and – most relevant to the scope of this article – dealing with uncertainty [168].

One of the main sources of uncertainty in RTS games is their adversarial
nature. Since players do not possess an exact knowledge about the actions that
their opponent will execute, they need to build a reasonable representation
of possible alternatives and their likelihood. This work specifically tackles
the problem of predicting opponent’s unit production. The method presented
here allows artificial players (bots) playing RTS games to estimate the number
of different types of units produced by their opponents over a specified time
period.

Various problems related to uncertainty and opponent behavior predic-
tion in RTS games have already been addressed in recent years (an extensive
overview can be found in [168]). For example, Weber and Mateas [242] pro-
posed a data mining approach to strategy prediction, Dereszynski et al. [51]
used Hidden Markov Models to learn the transition probabilities within build-
ing construction sequences, Synnaeve and Bessiére [218] presented a Bayesian
semi-supervised model for predicting game openings (early game strategies).
Weber et al. [245] used a particle model to track opponent’s units out of vision
range and hidden semi-Markov models were used in conjunction with parti-
cle filters to predict opponent positions in [106]. Kabanza et al. [118] used
HTNs to recognize opponent’s intentions, while extending the probabilistic
hostile agent task tracker (PHATT) by [73]. We supplement this work by in-
troducing a logic-based solution to yet another subproblem from this area –
predicting opponent’s unit production. This particular challenge is relevant
to any conventional RTS game and takes almost the same form in all games
of this genre. Typically, the differences are only in the input data: costs and
production times of individual unit types and their technological precondi-
tions. Reasoning behind the prediction task itself is, however, not dependent
on game-specific information.

Expert knowledge about complex domains, such as RTS games, is often
extensive and hard-coding the reasoning for a number of different games in
imperative programming languages tends to be quite inconvenient and time-
consuming. Therefore it makes sense to consider using declarative knowledge
representation paradigms, many of which are well-suited for this kind of prob-
lems.
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Compared to traditional imperative methods, a declarative approach al-
lows for easier expression of typical RTS mechanics. Game-specific knowledge
can be separated from common reasoning mechanisms by employing modular
design patterns. A specific paradigm of logic programming called Answer Set
Programming (ASP) [74, 75, 8] was selected for the solution presented in this
work. Its nonmonotonic semantics with negation as failure is well suited for
reasoning with uncertainty and incomplete knowledge, and has already been
used for prediction tasks outside the computer games domain [55, 71]. In con-
trast with purely probabilistic approaches, using ASP to predict opponent’s
unit production allows for the exploitation of background knowledge about
the game, so that only those unit combinations that are reliably consistent
with game’s rules and player’s partial observations (both encoded by ASP)
are considered.

3.2 Answer Set Programming

Answer Set Programming has lately become a popular declarative problem
solving paradigm with a growing number of applications. In the area of game
AI, ASP has been used in attempts to implement a “general player”, either
in combination with other techniques [154], or in ASP-only projects like the
one presented in [1]. Additional work has been done on translating general
Game Description Language (GDL) into ASP [229]. However, to the best
of our knowledge, the only published application of ASP specifically for RTS
gameplay dealt with wall-in building placement in StarCraft [34].

The original language associated with ASP allows the formalization of var-
ious kinds of common sense knowledge and reasoning, including constraint
satisfaction and optimization. The language is a product of a research aimed
at defining a formal semantics for logic programs with default negation [74],
and was extended to allow also a classical (or explicit) negation [75] in 1991.
An ASP logic program is a set of rules of the following form:

h← l1, . . . , lm, not lm+1, . . . not ln.

where h and l1, . . . , ln are classical first-order-logic literals and not denotes a
default negation. Informally, such rule means that “if you believe l1, . . . , lm,
and have no reason to believe any of lm+1, . . . , ln, then you must believe h”.
The part to the right of the “←” symbol (l1, . . . , lm, not lm+1, . . . not ln) is
called the body, while the part to the left of it (h) is called the head of the
rule. Rules with an empty body are called facts. Rules with empty head are
called constraints. We also say that a literal is grounded if it is variable-free.
A logic program is called grounded if it contains only grounded literals.

The ASP semantics is built around the concept of answer sets. Consider
a grounded logic program Π and a consistent set of classical grounded literals
S. We can then get a subprogram called program reduct of Π w.r.t. set S
(denoted ΠS) by removing each rule that contains not l, such that l ∈ S, in
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its body, and by removing every “not l” statement, such that l /∈ S. We say
that a set of classical grounded literals S is closed under a rule a, if holds
body(a) ⊆ S ⇒ head(a) ∈ S.

Definition 1 (Answer Set) Let Π be a grounded logic program. Any min-
imal set S of grounded literals closed under all the rules of ΠS is called an
answer set of Π.

Intuitively, an answer set represents one possible meaning of knowledge
encoded by a logic program Π and a set of classical literals S. In typical case,
one answer set corresponds to one valid solution of a problem encoded by our
logic program.

In this work, returned answer sets will correspond to different combina-
tions of units that might be trained by the opponent during the following time
period, which are consistent with the game rules and current partial observa-
tions.

3.3 Predicting Unit Production

This work assumes that modeled game mechanics are consistent with the fol-
lowing conventions, typical for RTS games:

• Units are trained in production facilities – specific types of structures
such as Barracks, Workshop, Gateway, etc.

• Producing units or structures requires resources and time.

• There is a continuous income of consumable resources (e.g., minerals,
gold) that can be approximated based on a number of certain units
(referred to as workers).

• Renewable resources (e.g., supply, accommodation or power) are ob-
tained by constructing certain structures.

• Certain unit types may have specific technological prerequisites (avail-
ability of certain structures or technologies).

Good examples of games that satisfy all of these conditions can be found in
the Age of Empires, WarCraft or Command & Conquer franchises. Implemen-
tations presented in this article use two such games: StarCraft: Brood War and
Warcraft III: The Frozen Throne, both developed by Blizzard Entertainment.

Since the goal is to predict the most probable among the valid combinations
of units, the following need to be accomplished:

• generating all the unit combinations that could be trained, given the
opponent’s observed production facilities,
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• removing the unfeasible combinations (units take time to train, and they
cost resources and supply),

• selecting the most probable valid combination, using the information
from recorded games.

The game was accessed in real time via BWAPI1 in case of StarCraft and
by custom replay parser in case of WarCraft III. At each relevant time step, a
logic program representing the partial knowledge about current game situation
was constructed and the answer sets of this program were computed using the
ASP solver called CLASP [72], which supports several convenience features
like generator rules, aggregates or optimization statements. When reading the
code fragments in this section, one should note that the parameters starting
with uppercase letters are variables (e.g., “T”, “Z”, “Number”), while the others
are constants corresponding to objects from the domain or numbers (e.g.,
“gateway” or “40”). The following examples focus on the StarCraft game,
and therefore StarCraft-specific terminology is used, but only for the names of
units and structures; the proposed method can be easily converted for other
RTS games.

3.3.1 Generating Unit Combinations

First of all, the maximum number of each type of unit that can be trained
using the opponent’s production facilities needs to be computed. For example,
a Gateway can be used to train Zealots (each takes 40 seconds) or Dragoons
(50 seconds). For the sake of simplicity, only these two types of units are
considered in the examples below. Over a time interval of 200 seconds, the
maximum number of Zealots that can be trained will be 5, and the maximum
number of Dragoons 4. If the opponent had two Gateways instead, then these
numbers would double, to 10 and 8 respectively. For example, the code below
computes the maximum number of Zealots:

timeGateway(Number*T) :- built(gateway,Number), interval(T).

maxZealots(Z) :- timeGateway(T), Z = @min(T/40,24).

Computation time generally grows exponentially with the maximum num-
ber of allowed units, so certain limits were imposed (in the above case, maxZealots
was limited to 24). Note that this maximum number represents how many
units can be trained independently of other units, so obviously it is not pos-
sible to have 4 Zealots and 3 Dragoons within 200 seconds, using a single
Gateway. All unit combinations can be generated using the following code –
however, many of them will not be feasible:

1 {zealots(0..N)} 1 :- maxZealots(N) , N > 0.

1 {dragoons(0..N)} 1 :- maxDragoons(N) , N > 0.

gateway_units(Z,D):- zealots(Z), dragoons(D).

1http://github.com/bwapi/
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3.3.2 Removing Invalid Combinations

Next, the combinations that exceed the time limit need to be removed using
the following constraint:

:- gateway_units(Z,D), timeGateway(T1), (Z*40 + D*50) >= T1.

Assuming that the opponent tries to spend everything as soon as possible,
the maximum quantity of resources available over the next time period can be
accurately approximated using the number of current workers. The resources
per second gathering rate for a worker is a well known constant. We assume
that the opponent continues producing workers at a steady rate, which is what
skilled players usually do in StarCraft.

Knowing the maximum amount of resources, more constraints can be added
to prune out all the combinations that are too expensive to train. However,
there is one more restriction to be imposed, concerning the units supply. For
example, all the Gateway units take up 2 supply each, and a player cannot
exceed the current population limit. However, by building Pylons (specific
structures that can be built for 100 minerals), a player raises the supply cap
by 8 – and 4 extra Zealots can be trained, for example. If a combination uses
more supply than is currently available to the player, building as many Pylons
as necessary for sustaining it is also imposed.

3.3.3 Choosing the Most Probable Combination

The previous subsections have shown how to produce many possible unit com-
binations – answer sets representing different valid armies which can be trained
over the selected time interval. However, the goal is to be able to accurately
predict the most probable such combination. Consequently, only one answer
set should be selected from all the possibilities. One reasonable approach is to
assume that the opponent tries to spend the maximum amount of resources
or, equivalently, to have as few remaining resources as possible. This can be
easily accomplished using CLASP’s #minimize statement.

Alternatively, it might be useful to predict the most dangerous valid unit
combinations, so the player can prepare against them in particular. However,
this requires quantifying the strength of a group of units relative to other units
or states which is a hard problem, out of scope of this article (simulations [43]
or machine learning [208] might help).

Finally, the approach chosen in this paper is to actually pick the most
probable unit combination for a given game phase, based on a set of recorded
games – replays 2. Thus, the goal is to output the army combination most

2Note that these replays should be selected carefully. For example, if the probabilities
were computed using mostly professional human vs. human games, the prediction accuracy
against beginners or bots might suffer. We worked with the replays of high-level human vs.
human StarCraft games from [221] and a collection of replay packs from different WarCraft
III tournaments
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likely to be seen from the opponent, or at least sort the answer sets according
to such a criterion. The first step is to compute the probability of the oppo-
nent having Z zealots, D dragoons, and so on, at a specific Time, denoted
P (Z,D, · · · , T ime). Then, the answer sets are sorted according to this value.
An obvious simplification considered was to assume that training a unit is
independent of training the others. With this simplification, one can express
the probability of the whole unit combination at a given time as:

P (Z,D, · · · , T ime) = P (Z, T ime) · P (D,T ime) · . . .

Finding the probability of our opponent having Z zealots, etc. at a spe-
cific time is an easy task, accomplished by parsing a large set of replays and
computing it as follows:

P (Z, T ) =
Nr. of replays with exactly Z zealots trained at time T

Total nr. of replays
.

Even thought this simplifying assumption is quite strong, as there are con-
siderable correlations between training certain unit types, it will be shown
that it can be used for prediction with sufficient accuracy in the next section.
Once able to compute the probability of specific unit combination, CLASP’s
optimization statements are used to enforce the selection policies discussed
above:

#maximize [p(X) = X @ 2].

#minimize [remainingRes(M,G) = M+G @ 1 ].

The implementation used for the experiments combines two selection poli-
cies. First and foremost, it maximizes the likelihood of the combination (pri-
ority 2). If there are two equally probable answer sets, the one that leaves
the opponent with less remaining resources ( M – minerals and G – gas) is
favoured (priority 1).

3.4 Experiments and Results

This section describes the conducted experiments and explains the output of
the implemented program. Afterwards, the metrics used for quantifying the
prediction accuracy are introduced, and the obtained results are presented and
discussed.

To the best of our knowledge, there have been no other published solutions
to the problem of opponent’s unit production, and so it is impossible to em-
pirically compare the performance of the implemented method to alternatives.

3.4.1 Experiment Design

The experiments were conducted in four different game times: at 5th ,10th ,20th

and 30th minute after the start of the game for StarCraft and at 5th ,10th ,15th

and 20th minute for WarCraft III. The first time is usually associated with
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the early-game phase, next two with mid-game and the last one is usually
classified as a late-game phase. For each experiment, the units the opponent
will have 1, 2 and 3 minutes in the future are predicted. 300 StarCraft and
255 WarCraft III replays were used for the evaluation. However, some games
took less than 30, 20, or even 10 minutes to finish. For example, in the last
experiment (30th minute), only 65 out of the initial 300 StarCraft replays were
still valid, and only 34 WarCraft III replays were valid after 20 minutes (a
replay is considered valid if at least one unit is trained after the end of the
prediction time).

Below is a sample output of the program, representing a three-minute pre-
diction from 10th of a StarCraft game. It took less than 60ms to compute,
and it returned four answer sets. Below the prediction, there are the actual
units trained by the player in this interval – 7 Dragoons (second unit type
trained in the Gateway). Note that it is needed to keep the optimization
scores and probabilities unnormalized, because CLASP can only work with
integers. For instance, answer set 1 below has prob = 5312104 which corre-
sponds to a probability of p = 0.00053. The optimization score the program
is trying to minimize is just a constant minus the unnormalized probability.

------- Predicting for player 0 time 9000 to 11700 --------

( 10 mins, after 3 )

---------------------- CLASP output -----------------------
clasp version 2.1.1 Solving...

Answer: 1

gateway_units(4,4,0,0) robotic_units(0,0,0)

stargate_units(0,0,0,0) remainingRes(2202,866) prob(5312104)

Optimization: 112226583

Answer: 2

gateway_units(1,4,0,0) robotic_units(0,0,0)

stargate_units(0,0,0,0) remainingRes(2602,866) prob(5720728)

Optimization: 111817959

Answer: 3

gateway_units(0,7,0,0) robotic_units(0,0,0)

stargate_units(0,0,0,0) remainingRes(2227,716) prob(6803028)

Optimization: 110735659

Answer: 4
gateway units(1,6,0,0) robotic units(0,0,0)
stargate units(0,0,0,0) remainingRes(2252,766) prob(7266870)
Optimization: 110271817

OPTIMUM FOUND

Models : 1

Enumerated: 4

Optimum : yes

Optimization: 110271817

Time : 0.053s

CPU Time : 0.031s

---------------- Units trained in reality ----------------
Gateway: 0 7 0 0
Robotics: 0 0 0
Stargate: 0 0 0 0
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3.4.2 Evaluation Metrics

The number of units a player trains between two time stamps is predicted.
There are 11 different types of units in the Protoss faction (4 from the Gateway
and Stargate each, and 3 from the Robotics Bay), so the obtained answer set
is converted to a 11-dimensional vector. To keep things easy to understand,
the examples below only show the first 4 elements of this vector – the units
produced from the Gateway. Assume that the real number of trained units is
shown on the first line, and that the prediction for this situation is the second
line:

Zealots Dragoons High Templars Dark Templars 7 more
7 3 0 2 · · ·
5 3 0 3 · · ·

The difference between these two has to be computed in order to obtain an
accuracy measure. The root-mean-square error (RMSE) was chosen, a very
popular tool for this type of tasks. It is frequently used to measure differences
between values predicted by a model or an estimator and the values actually
observed:

RMSE =

√

∑n
i=1(x1,i − x2,i)

2

n

where n is a number of values predicted, x1,i are the real values observed and
x2,i are the predictions.

Applied to the previous example:

RMSE1:4 =

√

(7− 5)2 + (3− 3)2 + (0− 0)2 + (2− 3)2

4
= 1.118

If the prediction is off by one unit for every unit type, then a resulting
RMSE of 1 is obtained. But, as presented in the example, if the prediction is
wrong by more units (two zealots), even if most of the others are exactly right,
a RMSE bigger than 1 is obtained. This happens because RMSE penalizes
wrong predictions more, the more wrong they are, by squaring the difference.
With this in mind, a RMSE of approximately 1 for the accuracy on all eleven
units is more than decent and can be caused for example:

• by being 1 unit wrong for all unit types,

• or at the extreme, being right for 10 unit types and wrong for the last
one by 3.

In the example presented in the previous subsection, the output consisted of
4 answer sets in decreasing order w.r.t. the CLASP optimization score. Their
RMSE values are 1.5075 (answer set 1), 0.9534 (answer set 2), 0 (answer set
3) and 0.4264 (answer set 4).
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The last answer set printed (nr. 4) has the best optimization score, and
is called the optimal answer set. Since lower optimization score does not
necessarily mean better RMSE, the best answer set is also recorded – the one
with the lowest RMSE (which in the example is answer set nr. 3). This is the
closest one could get to the values actually observed, assuming a perfect job
with the optimization statements and heuristics.

As a simple illustrative baseline to compare against, the trivial per-unit
average (AVG) over all the valid replays was used, with some minor modifica-
tions. For example, for a target prediction the average across the replays is 5
Zealots and 2 Dragoons, for a total of 7 × 2 = 14 supply. However, if in the
current game the player does not have the required structure for producing
Dragoons, the AVG prediction is modified to 7 Zealots and 0 Dragoons instead,
to maintain the average target supply of 14. Naturally, the proposed method
is expected to achieve higher accuracy than this baseline, since it takes into
account background knowledge and partial observations.

3.4.3 Results

The algorithm had been run for all 300 StarCraft and 250 WarCraft III replays,
then the values for three quantities of interest were averaged: RMSE of AVG
baseline, best and optimal answer sets. The results are shown in Figure 3.1
for StarCraft and Figure 3.2 for WarCraft III . Standard deviation divided by
the square root of the number of examples is shown as the shaded quantity in
the plots. This measure is known as standard error ; one margin of standard
error gives 68% confidence (of the result being within the shaded area).

As expected, the best answer set has a significantly lower error than the
rest. However, the longer the game, the closer the optimal answer set gets to
the best answer set. Also, the deviation is larger as the time increases, partly
because there are more answer sets computed, and partly due to the fact that
the replay training set is smaller.

Both optimal and best answer sets have much lower RMSE than the AVG
baseline, except for the early-game prediction at 5th minute. At this time,
there are many instances in which no fighting units are trained, or they are
produced just seconds after the prediction range, which makes the prediction
more difficult. While it is likely that the correct answer set is among the ones
printed by CLASP (best answer set still has significantly lower RMSE), the
optimal answer set chosen is quite close to the baseline in this case. Biasing
the algorithm to choose the unit combinations that maximize the amount of
resources spent seems to be counter-productive in this phase.

The most important area is around 10th to 20th minute – the mid-game.
Before that, the game is dominated by the build order prediction and is more
strategy oriented. After 20 minutes, many matches are finished already or the
winner is obvious, and players do not train units so much. The prediction
error at 10th minute (until 11th ,12th and 13th min) is around 0.5, 0.9 and
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(a) Prediction at 5 minutes (b) Prediction at 10 minutes

(c) Prediction at 20 minutes (d) Prediction at 30 minutes

Figure 3.1: Average predictions over StarCraft replays, shown as RMSE for
best and optimal answer set, as well as a baseline that predicts the average
number of units trained across all replays. The number of replays varies from
300 (5th min) to 65 (30th min).

1.2 for StarCraft and 0.6, 1.1 and 1.6 for WarCraft III, which is a satisfactory
result. Predictions at this time tend to be more difficult in WarCraft III, where
player’s resource spending patterns temporarily deviate from typical RTS: they
hire their second “hero” and purchase an equipment for him/her. However, the
errors for the last two game times are very similar for StarCraft and WarCraft
III, the RMSE being close to 2 for the 2 minute prediction and a little under 3
for the 3 minute predictions. This level of accuracy could certainly be useful
in a real game and help the AI make better decisions towards what units to
train to beat the adversary.

3.4.4 Running Times

For StarCraft, the running times of the prediction are on average around 10ms,
100ms, 2s and 8s for the four game phases (5th, 10th, 30th and 30th minute).
This happens because after 30 minutes a player may have more than 10 pro-
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(a) Prediction at 5 minutes (b) Prediction at 10 minutes

(c) Prediction at 15 minutes (d) Prediction at 20 minutes

Figure 3.2: Average predictions over WarCraft 3 replays, showing the same quantities as
Figure 3.1. The number of replays varies from 255 (5th min) to 34 (20th min).

duction facilities, resulting in many valid combinations. Usually 20% of the
time is spent either grounding or reading the grounded program, especially as
the prediction time increases. A 10 second cut-off was imposed for the CLASP
solver; we force the program to terminate after 10 seconds and return the best
among the answer sets it managed to find so far.

The same prediction problem could in theory be solved using a “brute-
force” approach with identical results in some kind of imperative programming
language by (1) looping over all the unit combinations, (2) checking the validity
of each combination, (3) assigning the probability to it and (4) selecting the
most probable one. This in fact resembles the procedure performed by the
CLASP ASP solver: (1) looping over the answer set candidates invoked by
the generator rules, (2) eliminating the candidates that violate some of the
constraints, (3) computing the optimization score and (4) selecting the best
answer set according to it. Even though both of these problems have a high
worst-case time complexity, ASP solvers like CLASP are quite fast in the
average case, since they employ a variety of heuristic search strategies in the
process, including BerkMin-like, Siege-like or Chaff-like decision heuristics [72]
and can reduce the search space using the optimization statements.
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3.5 Conclusion

A prediction system based on the Answer Set Programming paradigm was suc-
cessfully built and its performance evaluated. As experiments suggest, it can
accurately predict the number and type of units a StarCraft or WarCraft III
player trains in a given amount of time. Very good results were demonstrated
during mid-game and late-game (10th to 20th minute), for prediction length of
1 to 3 minutes. This is the interval in which the prediction of opponent’s army
production would be most useful.

The presented implementation is faster than expected from an ASP pro-
gram. For the targeted interval described above, the running times averaged
around 200ms, which is acceptable for a high-level decision making in RTS
games AI.

It is clear from described results that building a simple probabilistic frame-
work works with decent results, and that using ASP in strategy games brings
certain advantages. A few other interesting tasks, suitable for future work,
would be:

• Smoothing over the probabilities, or working with a Gaussian framework.
We currently only consider P (Zealots, T ime), but looking from T ime−
∆t to T ime + ∆t and using weights, or trying to fit a Gaussian to the
data might work better.

• Replacing probability optimization with a learned heuristic (combination
of probabilities, resources spent, strength of units, and any other factors).

• Employing the reactive ASP paradigm [70], which can be viewed as an
extension to ASP, and is ideal for dynamically changing domains like
RTS games. Online ASP solvers like oClingo 3 process an initial logic
program, compute the answer sets, but do not terminate. Instead they
keep running as a server applications and wait for further knowledge
updates (observations), while preserving and reusing all the previous
computations. With this speedup, an artificial RTS player would po-
tentially be able process new observations and generate predictions with
much higher frequency.

3.6 Contributions Breakdown and Updates

Since Publication

Most of the work in this chapter was performed by Adrian Marius Stanescu.
Michal Čertickỳ gathered data and helped running experiments, as well as
assisted in writing the published article.

3http://www.cs.uni-potsdam.de/oclingo/
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To my knowledge, no research has been published since this chapter was
written on predicting what size of type of army an opponent can train during
a game. Build order prediction, or even more generally, strategy prediction
is a popular related problem. However, it presents a different challenge: first
one recognizes a player’s strategy, then classifies it into a set of known or
extracted strategies, and finally might switch his own strategy accordingly.
This approach type assumes a set of strategies to choose from, and works on a
high level without being able to provide accurate army estimations. Most build
order methods are optimization algorithms that do not take into account or try
to predict army sizes. They would indeed benefit from including a component
similar to the one we presented in this chapter. Nevertheless, I did not conduct
further research on the imperfect information aspect of RTS games. I chose
instead to focus on learning combat models and using abstractions to make
adversarial search approaches feasible for domains with large action and state
spaces.
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Chapter 4

Predicting Army Combat
Outcomes in StarCraft

This chapter is joint work with Sergio Poo Hernandez, Graham Erickson,
Russel Greiner and Michael Buro. It was previously published [208] at the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE), 2013.

Abstract

Smart decision making at the tactical level is important for Artificial Intelli-
gence (AI) agents to perform well in the domain of real-time strategy (RTS)
games. This paper presents a Bayesian model that can be used to predict the
outcomes of isolated battles, as well as predict what units are needed to defeat
a given army. Model parameters are learned from simulated battles, in order
to minimize the dependency on player skill. We apply our model to the game
of Starcraft, with the end-goal of using the predictor as a module for making
high-level combat decisions, and show that the model is capable of making
accurate predictions.

4.1 Introduction

4.1.1 Purpose

Real-Time Strategy (RTS) games are a genre of video games in which players
must gather resources, build structures from which different kind of troops can
be trained or upgraded, recruit armies and command them in battle against
opponent armies. RTS games are an interesting domain for Artificial Intelli-
gence (AI) research because they represent well-defined complex adversarial
systems and can be divided into many interesting sub-problems [28]. The
current best RTS game-playing AI still performs quite poorly against human
players. Therefore, the research community is focusing on developing RTS
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agents to compete against other RTS agents [30]. For the purpose of experi-
mentation, the RTS game Starcraft1 is currently the most common platform
used by the research community, as the game is considered well balanced,
has a large online community of players, and has an open-source interface
(BWAPI2).

Usually, in a RTS game, there are several different components a player
needs to master in order to achieve victory. One such sub-problem is the
combat scenario (usually called a battle). Each player has a known quantity
of each type of unit (called an army) and is trying to defeat the opponent’s
army while keeping his own units alive. Combat is an important part of playing
RTS games, as winning battles will affect the outcome of a match. We consider
1) given two specific armies (each composed of a specified set of units of each
type), predicting which will win; and 2) given one army, specify what other
army is most likely to defeat it.

4.1.2 Motivation

One successful framework for developing AI for the combat aspect of RTS
games relies on alpha-beta search, where nodes are evaluated by estimating
the combat outcome of two specified armies [30] (i.e., the winning player),
assuming that the two players fight until one of them has no units left. One
standard way to predict the outcome of such a combat is to use a simulator,
where the behavior of the units is determined by deterministic scripts (e.g.,
attack closest unit) [44]. This is time intensive, especially as the number of
units grows. The model we propose is inspired by rating systems such as
the ELO ratings used in Chess [58] or TrueSkillTM [104]. By learning from
battle outcomes between various combinations of units, one can predict the
combat outcome of such a battle using a simple mathematical equation, rather
than time consuming simulations. We are particularly interested in large scale
battles, which would take a longer time to solve using such simulators.

A second challenging problem is determining an army that will have a good
chance of defeating some other specified army. Given some unit combination
controlled by the opponent, we want to know similar sized armies that can
probably defeat it. A system that can answer this type of questions could
be used by tactical planners to decide which units should be built and what
unit combinations should be sent to battle the opponent. For example, if
an important location (e.g., near a bridge or choke-point) is controlled by the
opponent with X units (X1 of type 1, X2 of type 2, etc), what unit combination
Y should be sent to defeat X? Even more, what properties would such a
combination Y require? Maybe it needs firepower above a certain threshold, or
great mobility. Currently, there are no systems that can answer such questions
quickly and accurately.

1http://en.wikipedia.org/wiki/StarCraft
2http://code.google.com/p/bwapi/
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4.1.3 Objectives

The objectives of this work are to develop a model that can answer these two
types of questions effectively. Accuracy for the battle prediction problem (i.e.,
given two armies, who wins?) can be measured by the effectiveness of a trained
model on match-ups set aside for testing. Accuracy for the most likely army
problem (i.e., given one army, what other army is most likely to defeat it?)
can be measured using play-out scripts (i.e., when fixed policies are used, does
the army predicted to win, actually win?). From now on we will refer to the
first question as who wins, and the second question as what wins.

The next section presents background on Bayesian Networks as applied to
RTS games, and on ranking systems. In section 3 we introduce our proposed
model, and explain the process of learning the model parameters. In section
4, we present the data we use to evaluate the model, along with several exper-
iments and a discussion of the results. Future extensions and conclusions are
discussed in the section 5.

4.2 Background

4.2.1 Bayesian networks

The model we present uses Bayesian techniques in the form of a Bayesian net-
work, which is a type of Probabilistic Graphical Model (PGM) [122]. Bayesian
Networks represent a set of random variables (which could be observable quan-
tities, latent variables or unknown parameters) and their conditional depen-
dencies using a directed acyclic graph, whose edges denote conditional de-
pendencies. Each node has an associated probability function that, for each
specific assignment to the node’s direct parents, gives a probability distribution
of the variable represented by that node.

Bayesian networks encode the uncertainty of the situation, allowing incom-
pleteness (in a formal logic sense) to be transformed into uncertainty about the
situation [112]. There is much uncertainty in RTS games: the opponent’s state
is only partially known, moves are made simultaneously, and RTS games rep-
resent complex, dynamic environments that are difficult to model completely.
Even more, PGMs allow us to develop a single model that can support differ-
ent types of queries. Using variables that have known values as ’evidence’, we
can inquire about the (conditional) probability distribution of the remaining
variable(s).

Naturally, PGMs have seen an increased popularity in the RTS domain
over the past few years. Hidden Markov Models (a simple type of PGM) have
been used to learn high-level strategies from data [51] and PGMs have been
used to predict the opponent’s opening strategy [218] and to guess the order
that the opponent is building units in [220]. The same research group has
also developed models that allow their RTS agent to make decisions about
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where on the map it should send units to attack and with what kinds of
units [222]. The model makes major simplifications about unit types and does
not allow the agent to ask questions about how many of a specific unit type
it should produce. [220] have also used Bayesian modeling to enable units to
be individually reactive. This allows each unit to behave individually when
navigating the map; moreover, during combat the unit will determine if it
needs to retreat or continue fighting. The model only works for individual
unit decisions, but is not used to predict an outcome between two armies,
which is one of our interests.

Most recently, the same research group has clustered armies based on their
unit compositions and shown how battle predictions can be made using the
cluster labels [221], which effectively tackles the who wins problem. However,
their method was shown to have a low prediction accuracy, and differs from
ours in two ways. First, their model was developed on replay data (instead of
simulated data) which adds the noise of different player skills to the problem.
Second, their model can only be used to predict the following question: given
two armies, which one wins? It cannot be used to predict an army that can
defeat the opponent.

We chose to use a Bayesian network for our model, as there are many
advantages to such a choice. First, we could learn the model once, then answer
both types of questions simply by performing different types of queries on the
same model. Secondly, defining the model structure (based on intuition and
domain knowledge) helps to simplify the learning and the inference tasks.
Finally, Bayesian networks allow uncertainty to be modeled explicitly (i.e.,
predictions are reported in form of likelihoods or probabilities).

4.2.2 Rating Systems

A problem similar to battle outcome prediction is rating/ranking – the task of
attaching some numeric quantities to subjects, then arranging these subjects
in a specific order, consistent with the assigned values. Rating systems have
been historically used to estimate a player’s skill in one-on-one matches [58],
and subsequent systems even measured the uncertainty of that estimation [78].

During the last decade, rating systems have been extended for events that
include more players. The most significant results were obtained by Top-
Coder’s ranking algorithm3 and by Microsoft’s approach, TrueSkillTM [104].
The probabilistic model used by TrueSkillTM is designed to deal with players
that take part in games or enter tournaments, and compete in teams of various
sizes. It estimates the skills of these players after each match (or competition).
The system is initialized with a prior one dimensional Gaussian distribution
over each player’s skills: s ∼ N(µ, σ2). The mean player’s true skill is µ, where
σ indicates the uncertainty of the prior. After k games, the posterior can be

3http://apps.topcoder.com/wiki/display/tc/
Algorithm+Competition+Rating+System
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computed, and we obtain µk, σk, where this σk will usually decrease with the
number of matches, as we get more information about the respective player.
This approach could prove very useful, if we treat a battle as a match between
an arbitrary number of units on each side. Then, after observing a number of
battles, we would have ’skills’ estimates for each unit type. As each army is a
’team’ of units, we can combine the ’skills’ of all units in a team/army – for
example, by adding them up – and use this sum to predict the outcome of any
future battle.

4.3 Proposed model & Learning task

Current rating systems associate a single latent variable to each person (his
skill). This may work well for predicting the outcome of a Chess match,
but units in RTS games are inherently different and the outcome of a battle
depends on features such as damage, attack range, hit points, armor or speed.
Consequently, we need a model with multiple latent features for every unit.
Besides being able to predict battle outcomes, such a model could also provide
insight into why an army defeats another (e.g., army A wins because it has
very high damage output while army B is lacking in the hit points attribute).

4.3.1 The Model

Using a unit’s hit point and attack values, [44] propose the following evaluation
function for combat games, based on the life-time damage a unit can inflict:

LTD =
∑

u∈UA

Hp(u)Dmg(u)−
∑

u∈UB

Hp(u)Dmg(u)

UA and UB are the units controlled by player A and B; Hp(u) and Dmg(u)
are the hit points and damage the unit u inflicts per second. This was shown
to be effective and could serve as a starting point for our model. [68] prove
that in 1 vs. n units combat scenarios, there is an optimal way for the lone
unit to choose its targets: to minimize its sustained damage, it should order
its targets by decreasing value of Dmg(u)/Hp(u).

We would like to use a similar formula to predict whether army A can
win against army B. Of course, since an army has more units, we need to
define composite features such as Hp(A), Hp(B), Dmg(A), Dmg(B), where
for example Hp(A) =

∑

u∈UA
Hp(u). We can then define the quantity:

Dmg(A)/Hp(B)−Dmg(B)/Hp(A),

This expression will directly influence the probability of army A winning
against army B. The winning probability for army A will be higher if the
offensive feature – Dmg(A) – is high, and the opponent’s defense – Hp(B) – is
low. Our intuition is that combining terms from both armies (such as damage
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all combined nodes:

R =
1

1 + e−
∑F

i=1
Agg

i

There is one remaining node type (S - Supply), which enforces supply
restrictions on armies. Supply is a value Starcraft uses to restrict the amount
of units a player can command: each unit has a supply value (e.g., marine
1, zealot 2, dragoon 2, etc.), and an army’s supply value is the sum of its
composing units’ supply values. We incorporate supply into our model to
avoid trivial match-ups (e.g., 20 marines will defeat 1 marine), and to be able
to ask for armies of a specific size.

We decided to start with this simple but potentially effective model struc-
ture, and focus on learning the features in an efficient manner. In future work
we could investigate more complex models, and other ways of combining the
features (rather than a simple sum).

4.3.2 Learning

Having specified the structure of our model, we need to learn the offensive
and defensive feature values for each unit type (nodes at the top of our graph-
ical model). Afterwards, we can start asking queries and predicting battle
outcomes.

Let M = (m1, . . .mN) be the results of the observed matches, where each
mk is either A or B, depending on who won. We let F = (featji ) denote the
vector of features for all unit types; featji is feature i ∈ {1, 2, . . . 2 ∗ #feat}
of unit type j (out of U unit types). We will learn one such vector F ′ =
arg maxP (M,F ) based on observing the dataset M, as we assume that the
unit features stay constant and do not change between matches (eg. a marine
will always have the same damage, speed or hit points). The joint distribution
of F and the N results of the matches is then

P (M,F ) = P (F )
∏

i

P (mi|F ) (mj is the result of match j).

Because exact inference is intractable (at one point we will need to com-
pute integrals of sigmoid functions times Gaussians), we will use the core
approximation technique employed by [104] in TrueSkillTM - Gaussian den-
sity filtering (GDF). This method, also known as moment matching or online
Bayesian learning, is commonly used for approximating posteriors in Bayesian
models [147]. Given a joint distribution over some observed variables M and
hidden parameters F, it computes a Gaussian approximation q of the posterior
P (F |M):

q(F ) ∼ N(µ, σ).

To use Gaussian density filtering, we need to factor the joint distribution
into a product of factors P (M,F ) =

∏

i fi. We can choose f0 = p(F ) as the
prior and fi(F ) = p(mi|F ) as the other factors, one for each battle. We use
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the prior to initialize the posterior, and step through all the factors, updating
and incorporating each one into our posterior. At every step we start with a
Gaussian belief about the feature vector F, which is our current approximation
q(F ). We update it based on the new observation’s likelihood fi(F ) to obtain
an approximate posterior qnewi (F ):

The exact posterior, which is difficult to compute, is

P̂i(F ) =
fi(F )q(F )

∫

F
fi(F )q(F ) dF

.

We find the approximate posterior qnewi (F ) by minimizing the KL diver-
gence: qnewi (F ) = arg minq KL(P̂i(F )||q), while requiring that it must be a
Gaussian distribution [147]. This reduces to moment matching, hence the al-
ternative name for this method. The qnewN (F ) obtained after processing all
factors is the final approximation we will use in our model.

4.4 Experiments

Because we are most interested in comparing armies in terms of the units that
compose them, we made several simplifications of an RTS battle. Terrain or
advantages caused by terrain are not considered by the model. Spell-casters
and flying units are also left out. Upgraded units and upgrades at the per-unit
level are not taken into account. Battles are considered to be independent
events that are allowed to continue until one side is left with no remaining
units. That is, we do not represent reinforcements or retreating in our model,
and the outcome of one battle is unrelated to the outcome of another battle.
Furthermore, only one-on-one battles (in terms of one player versus another
player) are modeled explicitly.

4.4.1 Data

For the prediction problem (who wins? ), the model’s input is in the form of
tuples of unit counts. Each player is represented by one tuple, which has an
element for each unit type. For the current version of the model, only four
different unit types are considered (here two Terran faction units - marines
and firebats, and two Protoss faction units - zealots and dragoons). For each
unit type, the value of the element is the number of units of that type in the
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player’s army. The tuples refer to the armies as they were at the start of the
battle. The output of the model is a soft prediction (a probability of one of
the players winning).

The input to the model for the most likely army problem (what wins? )
is similar. Two army tuples are given, but the values in some or all of the
elements of one of the armies are missing (including the supply value, which,
if specified, can be used as a restriction). The output is an assignment for the
missing values that corresponds to the army most likely to win the battle.

For training and testing purposes, we generated data-sets using a Starcraft
battle simulator (Sparcraft, developed by David Churchill, UAlberta4). The
simulator allows battles to be set up and carried out according to determin-
istic play-out scripts (or by decision making agents, like an adversarial search
algorithm). We chose to use simulated data (as opposed to data taken from
real games) because the simulator allows us to produce a large amount of data
(with all kinds of different unit combinations) and to avoid the noise caused by
having players of different skill and style commanding the units. This would
be an interesting problem to investigate, but it is outside of the scope of this
paper.

The simulations use deterministic play-out scripts. Units that are out of
attack range move towards the closest unit, and units that can attack target
the opponent unit with the highest damage-per-second to hit-point ratio. This
policy was chosen based on its success as an evaluation policy in search algo-
rithms [44]. Two data-sets were created: 1) a data-set of armies of ten supply
(33 different armies, 1089 different battles), and 2) a data-set of armies of fifty
supply (153 different armies, 23409 different battles).

The simulator does not have unit collision detection, which means that we
can position all units of an army at the same position on the map. Using
this option, we can generate two datasets for each supply limit. One dataset
has the armies at opposite sides of the map in a line formation. This was
an arbitrary choice and it is not affecting the model’s parameters. The other
dataset has all units of each army in a single fixed position at opposite sides of
the map. We explored how using the single fixed position affects the accuracy
of the model.

We are interested in answering two main questions: who wins? - given
two armies, which one is more likely to win? and what wins? - given an
opponent army, what army do we need to build in order to defeat it? Both
questions will be tested on the 10 supply and 50 supply data sets.

4.4.2 Who Wins

This section describes the experiments we ran to answer the who wins question.
First, we are interested in the model’s capability to generalize, and how it
performs given a number of battles for training. If there is good performance

4https://code.google.com/p/sparcraft/
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Figure 4.2: Accuracy results for GDF - one pass and GDF - until convergence,
for who wins experiments.

even for a low number of battles, then we can train against a specific opponent,
for example when playing StarCraft AI tournaments. We randomly chose 10,
20, 50, 100, 200 and 500 different battles for training, and 500 other battles
to predict as a test. The accuracy is determined by how many outcomes
the model is able to predict correctly. We compute the mean accuracy for
20 experiments, and show errorbars (shaded area) for one standard error on
either side of the mean.

[147] notes that more passes of GDF on the same (training) data leads
to significantly improved results, a tendency also confirmed by [201]. Con-
sequently, after we process the data once, we run the same algorithm again
using our approximation as a starting point. We repeat this until conver-
gence – when the difference in successive approximations falls under a certain
threshold. In our case, around 10 iterations were enough to reach the best
performance. We show the results in Figure 2.

The more training data we use the better the model performs, which is what
we expected. The results are very encouraging; the improvement brought by
several GDF passes is obvious, and training on more than 50 battles provides
almost no additional gain. In the following experiments we use this version of
the algorithm, as the results are significantly better than only one GDF pass.

We compare our method with several popular algorithms, as a baseline.
We use logistic regression, a naive bayes classifier, and J48 decision trees, all
of which are implemented in Weka using default parameters [90]. We chose
these classifiers because they are well-known and simple to implement. The
results are shown in Figure 3 (for 10 supply armies) and in Figure 4 (for 50
supply armies).
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(a) Accuracy results comparing GDF and
three standard classifiers, for who wins ex-
periments, 10 supply battles.

(b) Accuracy results comparing GDF and
three standard classifiers, for who wins ex-
periments, 50 supply battles.

Figure 4.3: Accuracy results for who wins experiments.

For 10 supply armies, all algorithms have a similar performance for training
with large datasets (500 battles). However, the lower the number of battles,
the better our algorithm does, in comparison. After training on 20 battles, the
accuracy is better than any of the other algorithms, trained on 100 battles.
When increasing the size of the armies to 50 supply, the results are even better.
Even training with only 10 battles, we achieve well over 80% accuracy, better
than any of the baseline algorithms do even after seeing 500 battles!

Finally, in Table 4.1 we compare different starting positions of the armies:
line formation vs. all units juxtaposed at the same fixed position. In addition,
a 10 supply data set was created that uses a search algorithm as the play-out
policy instead of simple scripted policies. This provides better accuracy than
its scripted counterpart, probably because the fights are played by ’stronger ’
players. For the juxtaposed armies, the accuracy drops drops by 1-2% com-
pared to the spread formations. We conjecture this may be because clustering

Number of battles in training set

Pos. S 10 20 50 100 200 500

Line 82.83% 87.38% 91.81% 91.71% 92.00% 91.69%
Fixed 82.39% 85.96% 86.75% 89.10% 89.94% 90.00%
Fixed ✓ 82.71% 87.37% 91.57% 90.84% 91.02% 90.77%

Line 83.03% 86.90% 88.48% 89.41% 90.27% 91.18%
Fixed 81.94% 86.29% 85.99% 85.12% 86.02% 85.02%

Table 4.1: Accuracy of who wins experiment, using different starting positions
for 10 (upper section) and 50 supply armies (lower section).
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range units together provides them with an increasing advantage, as the size
of the armies grow. They would be able to focus fire and kill most of the
oncoming opponents instantly, and they would be far more valuable in high
numbers. Note, however, that our current system is not able to model this, as
it computes the army features as a sum of all individual features. The model
is not even aware of the unit positions, as the only inputs are the number and
type of units, along with the winner.

4.4.3 What Wins

For this question we first created all possible Protoss and Terran army com-
binations (of two unit types) that can be built with 10 and 50 supply (44 and
204 combinations, respectively). Once trained (using the same data as the
who wins experiment), we provide each (known) army combination as inputs.
Then, the model will predict the Protoss army that is most likely to defeat
(with 90% probability) the known, given army. Sometimes, if the given army is
very strong, the model is not able to provide an army to defeat it. Each given
answer is then tested with the simulator to verify that the predicted army
wins, as expected. The accuracy of the model is measured by the percentage
of instances where the predicted army actually wins.

The model has two options for predicting armies:

• With an army supply limit, the predicted army supply size must be equal
to the limit.

• Without an army supply limit, the predicted army can be of any size.

The results are shown in the Table 4.2. We see that the model is able to
predict a correct army that wins against an army of 50 supply 97% of the
time, when no supply limit is specified. With the supply limit enabled, the
accuracy drops to 87%. Against armies of 10 supply it is less accurate in
both cases, and drops again, from 82% to 68%. Predicting winning 10 supply
armies is the hardest task, because there are a few very strong armies, making
it hard to defeat with the limited available choices of 10 supply (5 Protoss
units). Therefore, the model is unable to predict an army that wins with 90%
probability in almost 22% of the cases.

It is clear that with no supply limit the system is able to accurately predict
an army that can win, which might happen because there are more available
armies to choose from, most of which have larger supply than the opponent
(and are clearly advantaged). The closer we ask the model to match the
known army in supply, the worse it is at estimating a winning army, because
the battles are more evenly matched.

4.5 Future Work & Conclusions

We are currently exploring several extensions:
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Predicted army

Data Supply limit Wins Loses Unavailable

10 supply 82.5% 17.5% 0%
10 supply ✓ 68.2% 9.1% 22.7%
50 supply 97.9% 0% 2.1%
50 supply ✓ 87.3% 8.8% 3.9%

Table 4.2: Accuracy of what wins experiment, with and without supply limits
for 10 and 50 supply armies.

• Currently the model is using 6 features for each unit type. We plan to
increase the number of features to explore how this affects the accuracy
for both questions. It would be interesting to see if adding more features
increases accuracy or if it leads to overfitting.

• We are also adding more army constraints. Currently we are using the
supply cost of the units in the army, but another way of limiting the
army size is by the resource cost of training that army. Resources are
one of the most popular metrics used to determine the army strength
by other systems that work with StarCraft. Being able to enforce both
supply and resource constraints would prove very useful.

• Our current model deals with only 4 unit types (marines, firebat, zealots
and dragoons). We would like to expand it to use other unit types
available in StarCraft. This change is critical if we want the model to be
used as part of a Starcraft playing AI.

• We would like to represent additional information, such as the units’
positions or number of hit points. Currently we treat all units as ’new’
and having maximum life, which is not always the case.

• We work with a simulated dataset, which makes everything easier by
disregarding several aspects of the game such as unit collision and the
noise induced by human micromanagement skills. We would like to com-
pare our model on real data (for example extracted from game replays),
which is a more difficult task.

• One limitation for the current model is assuming that units have inde-
pendent contributions to the battle outcome. This may hold for a few
troop types, but is particularly wrong when considering units such as
spell-casters, which promote interactions with other units using spells.
We also miss taking into account combinations such as melee+ranged
units, which are more efficient in general. We need to either consider a
few smart features to take these into account, or add correlations between
different types of units.
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• Finally, we want to expand the questions the model can answer. We
want to investigate how good the model is at estimating – given some
already-built units – what units we need to add to our army in order to
defeat our opponent. Expanding the model should be straightforward,
as we could simply duplicate the number of unit count nodes: for each
type of unit, have a node for the number of already existing units, and
one for units that could potentially be built. This would also work for
representing the opponent, making the difference between observed or
unobserved units.

The results we obtain are very promising. Our model can very accurately
predict who wins. The model does not do as well in estimating what wins but
the results are positive and it might be just a matter of modifying the model
by adding features that work better at estimating the answer for this question.
Moreover, trying more complex ways of combining the features (rather than
a simple sum) should lead us to a better understanding of the problem, and
could further increase the accuracy of the model.

A StarCraft agent would greatly benefit from incorporating such a frame-
work. Accurately predicting who wins could be used to avoid fighting battles
against superior armies, or to determine when flow of a battle is against the
player and the units should be retreated. However, sometimes losing units
could potentially be strategically viable, if the armies are close in strength
but the opponent’s army was more expensive (either resource cost or training
time). Estimating what wins would be used to decide what units to build in
order to best counter the opponent’s army. Furthermore, it could also help
the build order module by making suggestions about the units needed in the
future.

These are problems often encountered in the real-time strategy domain, and
consequently our model would prove useful in most RTS games. We also think
that it could potentially transfer to other games such as multiplayer online
battle arena (MOBA) games (eg. DOTA5). By recording the starting hero for
each of the ten players (who fight in a 5 vs. 5 match) and the outcome of
the game, we could potentially find out which heroes are stronger than others
(overpowered) for balancing reasons. A system that makes recommendations
for which heroes to chose at the start of the game is a viable option, too.

4.6 Contributions Breakdown and Updates

Since Publication

The bulk of the work in this chapter was performed by Adrian Marius Stanescu.
Sergio Poo Hernandez and Graham Erickson helped with generating the data-
sets for training and testing purposes, running experiments and writing the
published article. Russel Greiner and Michael Buro supervised the work.

5https://en.wikipedia.org/wiki/Defense of the Ancients
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Several classical machine learning classification algorithms like Linear and
Quadratic Discriminant Analysis, Support Vector Machines and kNN-based
versions were used for similar purposes [184]. This approach was different
in the sense that it predicted the outcome as the game progressed, and used
identical armies for the two players. Location of the troops was included in
the models, and experiments were run in StarCraft.

While being a promising approach, for the described model to be useful in
practice there are several limitations that need to be addressed:

• the model is linear in the unit features, which does not capture well
concentration of fire;

• small number of unit types tested;

• predicts the winner but not the remaining army size;

• no support for units with less than full health;

• experiments are done using simulators.

These are all fixed by research described in the next chapter. Such exten-
sions were required for use within a higher level search algorithm, either as
an evaluation function, as a forward model for combat, or both. Chapter 7
describes a method that also takes unit locations into consideration and is an
even stronger evaluation function.
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Chapter 5

Using Lanchester Attrition
Laws for Combat Prediction in
StarCraft

This chapter is joint work with Nicolas A Barriga and Michael Buro. It was
previously published [204] at the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE), 2015.

Abstract

Smart decision making at the tactical level is important for Artificial Intelli-
gence (AI) agents to perform well in the domain of real-time strategy (RTS)
games. Winning battles is crucial in RTS games, and while humans can de-
cide when and how to attack based on their experience, it is challenging for
AI agents to estimate combat outcomes accurately.

A few existing models address this problem in the game of StarCraft but
present many restrictions, such as not modeling injured units, supporting only
a small number of unit types, or being able to predict the winner of a fight but
not the remaining army. Prediction using simulations is a popular method,
but generally slow and requires extensive coding to model the game engine
accurately.

This paper introduces a model based on Lanchester’s attrition laws which
addresses the mentioned limitations while being faster than running simula-
tions. Unit strength values are learned using maximum likelihood estimation
from past recorded battles. We present experiments that use a StarCraft
simulator for generating battles for both training and testing, and show that
the model is capable of making accurate predictions. Furthermore, we im-
plemented our method in a StarCraft bot that uses either this or traditional
simulations to decide when to attack or to retreat. We present tournament
results (against top bots from 2014 AIIDE competition) comparing the per-
formances of the two versions, and show increased winning percentages for our
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method.

5.1 Introduction

A Real-Time Strategy (RTS) game is a video game in which players gather re-
sources and build structures from which different types of units can be trained
or upgraded in order to recruit armies and command them into battle against
opposing armies. RTS games are an interesting domain for Artificial Intelli-
gence (AI) research because they represent well-defined complex adversarial
environments and can be divided into many interesting sub-problems [28].
Current state of the art AI systems for RTS games are still not a match for
good human players, but the research community is hopeful that by focusing
on RTS agents to compete against other RTS agents we will soon reach the
goal of defeating professional players [168]

For the purpose of experimentation, the RTS game StarCraft 1 is currently
the most common platform used by the research community, as the game is
considered well balanced, has a large online community of players, and features
an open-source programming interface (BWAPI 2).

RTS games contain different elements aspiring players need to master. Pos-
sibly the most important such component is combat in which each player con-
trols an army (consisting of different types of units) and is trying to defeat the
opponent’s army while minimizing its own losses. Winning such battles has a
big impact on the outcome of the match, and as such, combat is a crucial part
of playing RTS games proficiently. However, while human players can decide
when and how to attack based on their experience, it is challenging for current
AI systems to estimate combat outcomes.

[41] estimate the combat outcome of two armies for node evaluation in
their alpha-beta search which selects combat orders for their own troops. Sim-
ilarly, [203, 202] require estimates of combat outcomes for state evaluation in
their hierarchical search framework and use a simulator for this purpose. Even
if deterministic scripted policies (e.g., “attack closest unit”) are used for gener-
ating unit actions within the simulator [44], this process is still time intensive,
especially as the number of units grows.

[208] recognize the need for a fast prediction method for combat outcomes
and propose a probabilistic graphical model that, after being trained on sim-
ulated battles, can accurately predict winners. While being a promising ap-
proach, there are several limitations that still need be addressed:

• the model is linear in the unit features (i.e., the offensive score for a group
of 10 marines is ten times the score for 1 marine). While this could be
accurate for close-ranged (melee) fights, it severely underestimates being
able to focus fire in ranged fights (this will be discussed in depth later)

1http://en.wikipedia.org/wiki/StarCraft
2http://code.google.com/p/bwapi/
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• their model deals with only 4 unit types so far, and scaling it up to
all StarCraft units might induce training problems such as overfitting
and/or accuracy reduction

• it only predicts the winner but not the remaining army size

• all units are treated as having maximum hit points, which does not
happen often in practice; there is no support for partial hit points

• all experiments are done on simulated data, and

• correlations between different unit types are not modeled.

In this paper we introduce a model that addresses the first five limitations
listed above, and we propose an extension (future work) to tackle the last
one. Such extensions are needed for the model to be useful in practice (e.g.,
for speeding up hierarchical search and adjusting to different opponents by
learning unit strength values from past battles).

We proceed by first discussing current combat game state evaluation tech-
niques and Lanchester’s battle attrition laws. We then show how they can be
extended to RTS games and how the new models perform experimentally in
actual StarCraft game play. We finish with ideas on future work in this area.

5.2 Background

As mentioned in the previous section, the need for a fast prediction method
for combat outcomes has already been recognized [208]. The authors propose
a probabilistic graphical model that, after being trained on simulated battles,
can accurately predict the winner in new battles. Using graphical models also
enables their framework to output unit combinations that will have a good
chance of defeating some other specified army (i.e., given one army, what
other army of a specific size is most likely to defeat it?).

We will only address the first problem here: single battle prediction. We
plan to use our model for state evaluation in a hierarchical search framework
similar to those described in [202] and [234]. Consequently, we focus on speed
and accuracy of predicting the remaining army instead of only the winner.
Generating army combinations for particular purposes is not a priority, as the
search framework will itself produce different army combinations which we
only need to evaluate against the opposition.

Similarly to [208], our model will learn unit feature weights from past
battles, and will be able to adjust to different opponents accordingly. We
choose maximum likelihood estimation over a Bayesian framework for speed
and simplicity. Incorporating Lanchester equations in a graphical model would
be challenging, and any complex equation change would require the model to
be redesigned. The disadvantages are that potentially more battles will be
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needed to reach similar prediction accuracies and batch training must be used
instead of incrementally updating the model after every battle.

There are several existing limitations our model will address:

• better representation of ranged weapons by unit group values depending
exponentially on the number of units instead of linearly,

• including all StarCraft unit types,

• adding support for partial hit points for all units involved in the battle,
and

• predicting the remaining army of the winner.

5.2.1 Lanchester Models

The seminal contribution of Lanchester to operations research is contained
in his book “Aircraft in Warfare: The Dawn of the Fourth Arm” [132]. He
starts by justifying the need for such models with an example: consider two
identical forces of 1000 men each; the Red force is divided into two units of 500
men each which serially engage the single (1000 man) Blue force. According to
the Quadratic Lanchester model (introduced below), the Blue force completely
destroys the Red force with only moderate loss (e.g., 30%) to itself, supporting
the “concentration of power” axiom of war that states that forces are not to be
divided. The possibility of equal or nearly equal armies fighting and resulting
in relatively large surviving forces for the winner army are one of the interesting
aspects of war simulation based games.

Lanchester equations represent simplified combat models: each side has
identical soldiers, and each side has a fixed strength (no reinforcements) which
governs the proportion of enemy soldiers killed. Range, terrain, movement, and
all other factors that might influence the fight are either abstracted within the
parameters or ignored entirely. Fights continues until the complete destruction
of one force (which Lanchester calls a “conclusion”). The equations are valid
until one of the army sizes is reduced to 0.

Lanchester’s Linear Law is given by the following differential equations:

dA

dt
= −βAB and

dB

dt
= −αBA ,

where t denotes time and A,B are the force strengths (number of units) of
the two armies assumed to be functions of time. Parameters α and β are
attrition rate coefficients representing how fast a soldier in one army can kill
a soldier in the other. The equation is easier to understand if one thinks of β
as the relative strength of soldiers in army B; it influences how fast army A is
reduced. The pair of differential equations above may be combined into one
equation by removing time as a variable:

α(A− A0) = β(B − B0) ,
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where A0 and B0 represent the initial forces. This is called a state solution
to Lanchester’s differential equation system that does not explicitly depend
on time). The origin of the term linear law is now apparent because the last
equation describes a straight line.

Lanchester’s Linear Law applies when one soldier can only fight one other
soldier at a time. If one side has more soldiers some of them will not always be
fighting as they wait for an opportunity to attack. In this setting, the casualties
suffered by both sides are proportional to the number actually fighting and the
attrition rates. If α = β, then the above example of splitting a force into two
and fighting the enemy sequentially will have the same outcome as without
splitting: a draw. This was originally called Lanchester’s Law of Ancient
Warfare, because it is a good model for battles fought with edge weapons.

Lanchester’s Square Law is given by:

dA

dt
= −βB and

dB

dt
= −αA .

In this case, the state solution is

α(A2 − A0
2) = β(B2 − B0

2) .

Increases in force strength are more important than for the linear law, as we
can see from the concentration of power example. The squared law is also
known as Lanchester’s Law of Modern Warfare and is intended to apply to
ranged combat, as it quantifies the value of the relative advantage of having a
larger army. However, the squared law has nothing to do with range – what is
really important is the rate of acquiring new targets. Having ranged weapons
generally lets your soldiers engage targets as fast as they can shoot, but with a
sword or a pike to which the Linear Law applies one would have to first locate
a target and then move to engage it.

The general form of the attrition differential equations is:

dA

dt
= −βA2−nB and

dB

dt
= −αB2−nA ,

where n is called the attrition order. We have seen previously that for n =
1, the resulting attrition differential equations give rise to what we know as
Lanchester’s Linear Law, and to the Lanchester’s Square Law for n = 2. As
expected, the state solution is

α(An − A0
n) = β(Bn − B0

n) .

The exponent which is called attrition order represents the advantage of a
higher rate of target acquisition and applies to the size of the forces involved
in combat, but not to the fighting effectiveness of the forces which is modeled
by attrition coefficients α and β. The higher the attrition order, the faster any
advantage an army might have in combat effectiveness is overcome by numeric
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superiority. This is the equation we use in our model, as our experiments
suggest that for StarCraft battles an attrition order of ≈ 1.56 works best on
average, if we had to choose a fixed order for all possible encounters.

The Lanchester Laws we just discussed have several limitations we need to
overcome to apply them to RTS combat, and some extensions (presented in
more detail in the following section) are required:

• we must account for the fact that armies are comprised of different RTS
game unit types and

• currently soldiers are considered either dead or alive, while we need to
take into account that RTS game units can enter the battle with any
fraction of their maximum hit points.

5.3 Lanchester Model Extensions

for RTS Games

The state solution for the Lanchester general law can be rewritten as

αAn − βBn = αA0
n − βB0

n = k .

The constant k depends only on the initial army sizes A0 and B0. Hence, for
prediction purposes, if αA0

n > βB0
n then PA wins the battle. If we note Af

and Bf to be the final army sizes, then Bf = 0 and αA0
n − βB0

n = αAf
n − 0

and we can predict the remaining victorious army size Af .
To use the Lanchester laws in RTS games, a few extensions have to be

implemented. Firstly, it is rarely the case that both armies are composed of a
single unit type. We therefore need to be able to model heterogeneous army
compositions. To this extent, we replace army effectiveness α with an average
value αavg. Assuming that army A is composed of N types of units, then

αavg =

∑N

i=1 aiαi

A
=

∑A

j=1 αj

A
,

where A is the total number of units, ai is the number of units of type i and
αi is their combat effectiveness. Alternatively, we can sum over all individual
units directly, αj corresponding to unit j.

Consequently, predicting battle outcomes will require a combat effective-
ness (we can also call it unit strength for simplicity) for each unit type involved.
We start with a default value

αi = dmg(i)HP(i) ,

where dmg(i) is the unit’s damage per frame value and HP(i) its maximum
number of hit points. Later, we aim to learn ααα = {α1, α2, . . .} by training on
recorded battles.
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The other necessary extension is including support for injured units. Let us
consider the following example: army A consists of one marine with full health,
while army B consists of two marines with half the hit points remaining. Both
the model introduced by [208] and the life-time damage (LTD) evaluation
function proposed by [126]

LTD2 =
∑

u∈UA

HP(u)dmg(u)−
∑

u∈UB

HP(u)dmg(u)

would mistakenly predict the result as a draw. The authors also designed the
life-time damage-2 (LTD2) function which departs from linearity by replacing
HP(u) with

√

HP(u) and will work better in this case.
In the time a marine deals damage equal to half its health, army B will

kill one of army A’s marines, but would also lose his own unit, leaving army A
with one of the two initial marines intact, still at half health. The advantage of
focusing fire becomes even more apparent if we generalize to n marines starting
with 1/n health versus one healthy marine. Army A will only lose one of its
n marines, assuming all marines can shoot at army B’s single marine at the
start of the combat. This lopsided result is in stark contrast to the predicted
draw.

Let’s model this case using Lanchester type equations. Denoting the attri-
tion order with o, the combat effectiveness of a full health marine with m and
that of a marine with 1/n health as mn, we have:

nomn − 1om = (n− 1)omn =⇒ mn =
m

no − (n− 1)o

If we choose an attrition order between the linear (o = 1) and the square
(o = 2) laws, o = 1.65 for example, then m2 = m/2.1383, m3 = m/2.9887 and
m4 = m/3.7221. Intuitively picking the strength of an injured marine to be
proportional with its current health mn = m/n is close to these values, and
would lead to extending the previous strength formula for an individual unit
like so:

αi = dmg(i)HP(i) ·
currentHP(i)

HP(i)
= dmg(i)currentHP(i).

5.3.1 Learning Combat Effectiveness

For predicting the outcome of combat C between armies A and B we first com-
pute the estimated army remainder score µC using the generalized Lanchester
equation:

µC = αCA
o − βCB

o

From army A’s perspectives µ is a positive value if army A wins, 0 in case
of a draw, and negative otherwise. As previously mentioned, experiments
using simulated data suggest that o = 1.56 yields the best accuracy, if we had
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to choose a fixed order for all possible encounters. Fighting the same combat
multiple times might lead to different results depending on how players control
their units, and we choose a Gaussian distribution to model the uncertainty
of the army remainder score r:

PC(r) = N(r;µC , σ
2) ,

where σ is a constant chosen by running experiments. Just deciding which
player survives in a small scale fight where units cannot even move is PSPACE-
hard in general [68]. Hence, real-time solutions require approximations and/or
abstractions. Choosing a Gaussian distribution for modeling army remainder
score is a reasonable candidate which will keep computations light.

Let us now assume that we possess data in the form of remaining armies
Af and Bf (either or both can be zero) from a number of combats CCC =
{C1, C2, . . . , Cn}. A data-point Ci consists of starting army values Ai, Bi and
final values Aif , Bif . We compute the remainder army score Ri using the
Lanchester equation:

Ri = αCi
Ao

if − βCi
Bo

if

This enables us to use combat results for training even if no side is dead by
the end of the fight.

Our goal is to estimate the effectiveness values αi and βi for all encountered
unit types and players. The distinction needs to be made, even if abilities of a
marine are the same for both players. If the player in charge of army A is more
proficient at controlling marines then αmarine should be higher than βmarine.

The likelihood of {ααα,βββ} given CCC and RRR = {R1, R2, . . . , Rn} is used for
approximating the combat effectiveness; the maximum likelihood value can
then be chosen as an estimate. The computation time is usually quite low
using conjugate gradients, for example, and can potentially be done once after
several games or even at the end of a game.

If we assume that the outcomes of all battles are independent of each other
and the probability of the data given the combat effectiveness values is

P (RRR|CCC, {ααα,βββ}) =
∏

i

N(Ri;µCi
, σ2) ,

then we can express the log likelihood

L({ααα,βββ}) =
∑

i

logN(Ri;µCi
, σ2) .

The maximum likelihood value can be approximated by starting with some
default parameters, and optimizing iteratively until we are satisfied with the
results. We use a gradient ascent method, and update with the derivatives
of the log likelihood with respect to the combat effectiveness values. Using a
Gaussian distributions helps us to keep the computations manageable.
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To avoid overfitting we modify the error function we are minimizing by
using a regularization term:

Err = −L({ααα,βββ}) + γReg({ααα,βββ})

If we want to avoid large effectiveness values for example, we can pick Reg =
∑

i α
2
i +

∑

i β
2
i . We chose

Reg =
∑

i

(αi − di)
2 +

∑

i

(βi − di)
2 ,

where di are the default values computed in the previous subsection using
basic unit statistics. In the experiments section we show that these estimates
already provide good results. The γ parameter controls how close the trained
effectiveness values will be to these default values.

5.4 Experiments and Results

To test the effectiveness of our models in an actual RTS game (StarCraft)
we had to simplify actual RTS game battles. Lanchester models do not take
into account terrain features that can influence battle outcomes. In addition,
upgrades of individual units or unit types are not yet considered, but could
later be included using new, virtual units (e.g., a dragoon with range upgrade
is a different unit than a regular dragoon). However, that would not work for
regular weapon/armor upgrades, as the number of units would increase beyond
control. For example, the Protoss faction has 3 levels of weapon upgrades, 3 of
shields and 3 of armor, so considering all combinations would add 27 versions
for the same unit type.

Battles are considered to be independent events that are allowed to con-
tinue no longer than 800 frames (around 30 seconds game time), or until one
side is left with no remaining units, or until reinforcements join either side.
Usually StarCraft battles do not take longer than that, except if there is a con-
stant stream of reinforcements or one of the players keeps retreating, which is
difficult to model.

5.4.1 Experiments Using Simulator Generated Data

We start by testing the model with simulator generated data, similarly to [208].
The authors use four different unit types (marines and firebats from the Terran
faction, zealots and dragoons from the Protoss faction), and individual army
sizes of up to population size 50 (e.g., marines count 1 towards the population
count, and zealots and dragoons count 2, etc.). For our experiments, we
add three more unit types (vultures, tanks and goliaths) and we increase the
population size from 50 to 100.
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The model input consists of two such armies, where all units start with full
health. The output is the predicted remaining army score of the winner, as
the loser is assumed to fight to death. We compare against the true remaining
army score, obtained after running the simulation.

For training and testing at this stage, we generated battles using a Star-
Craft battle simulator (SparCraft, developed by David Churchill, UAlberta3).
The simulator allows battles to be set up and carried out according to de-
terministic play-out scripts, or by search-based agents. We chose the simple
yet effective attack closest script, which moves units that are out of attack
range towards the closest unit, and attacks units with the highest damage-
per-second to hit point ratio. This policy, which was also used in [208], was
chosen based on its success as an evaluation policy in search algorithms [44].
Using deterministic play-out scripts eliminates noise caused by having players
of different skill or playing style commanding units.

We randomly chose 10, 20, 50, 100, 200, and 500 different battles for train-
ing, and a test set of 500 other battles to predict outcomes. The accuracy is
determined by how many outcomes the model is able to predict correctly. We
show the results in Table 5.1, where we also include corresponding results of
the Bayesian model from [208] for comparison. The datasets are not exactly
the same, and by increasing the population limit to 100 and the number of
unit types we increase the problem difficulty.

The results are very encouraging: our model outperforms the Bayesian
predictor on a more challenging dataset. As expected, the more training data,
the better the model performs. Switching from 10 battles to 500 battles for
training only increases the accuracy by 3.3%, while in the Bayesian model it
accounts for a 8.2% increase. Moreover, for training size 10 the Lanchester
model is 6.8% more accurate, but just 2% better for training size 500. Our
model performs better than the Bayesian model on small training sizes because
we start with already good approximations for the unit battle strengths, and
the regularization prevents large deviations from these values.

3https://code.google.com/p/sparcraft/

Table 5.1: Accuracy of Lanchester and Bayesian models, for different training
sets sizes. Testing was done by predicting outcomes of 500 battles in all cases.
Values are winning percent averages over 20 experiments.

Number of battles in training set

Model 10 20 50 100 200 500

Lanchester 89.8 91.0 91.7 92.2 93.0 93.2

Bayesian 83.0 86.9 88.5 89.4 90.3 91.2
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5.4.2 Experiments in Tournament Environment

Testing on simulated data validated our model, but ultimately we need to as-
sess its performance in the actual environment it was designed for. For this
purpose, we integrated the model into UAlbertaBot, one of the top bots in
recent AIIDE StarCraft AI competitions 4. UAlbertaBot is an open source
project for which detailed documentation is available online5. The bot uses
simulations to decide if it should attack the opponent with the currently avail-
able units — if a win is predicted — or retreat otherwise. We replaced the
simulation call in this decision procedure by our model’s prediction.

UAlbertaBot’s strategy is very simple: it only builds zealots, a basic Pro-
toss melee unit, and tries to rush the opponent and then keeps the pressure
up. This is why we do not expect large improvements from using Lanchester
models, as they only help to decide to attack or to retreat. More often than
not this translates into waiting for an extra zealot or attacking with one zealot
less. This might make all the difference in some games, but using our model
to decide what units to build, for example, could lead to bigger improvements.
In future work we plan to integrate this method into a search framework and
a build order planner such as [124].

When there is no information on the opponent, the model uses the default
unit strength values for prediction. Six top bots from the last AIIDE compe-
tition6 take part in our experiments: IceBot (1st), LetaBot (3rd), Aiur (4th),
Xelnaga (6th), original UAlbertaBot (7th), and MooseBot (9th). Ximp (2nd)
was left out because we do not win any games against it in either case. It
defends its base with photon cannons (static defense), then follows up with
powerful air units which we cannot defeat with only zealots. Skynet (5th) was
also left out because against it UAlbertaBot uses a hard-coded strategy which
bypasses the attack/retreat decision and results in a 90% win rate.

Three tournaments were run: 1) our bot using simulations for combat
prediction, 2) using the Lanchester model with default strength values, and
3) using a new set of values for each opponent obtained by training on 500
battles for that particular match-up. In each tournament, our bot plays 200
matches against every other bot.

To train model parameters, battles were extracted from the previous
matches played using the default weights. A battle is considered to start
when any of our units attacks or is attacked by an enemy unit. Both friendly
and opposing units close to the attacked unit are logged with their current
health as the starting state of the battle. Their health (0 if dead) is recorded
again at the end of the battle – when any of the following events occurs:

• one side is left with no remaining units,

• new units reinforce either side, or

4http://webdocs.cs.ualberta.ca/∼cdavid/starcraftaicomp/
5https://github.com/davechurchill/ualbertabot/wiki
6http://webdocs.cs.ualberta.ca/∼scbw/2014/
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Table 5.2: Tournament results against 6 top bots from AIIDE 2014 com-
petition. Three tournaments are played, with different options for the at-
tack/retreat decision. In the first our bot uses simulations, and in the second
the Lanchester model with default strength values. In the third we use battles
from the second tournament for training and estimating new strength values.
Winning percentages are computed from 200 games for each match-up, 20 each
on 10 different maps.

UAB Xelnaga Aiur MooseBot IceBot LetaBot Avg.

Sim. 60.0 79.0 84.0 65.5 19.5 57.0 60.8
Def. 64.5 81.0 80.5 69.0 22.0 66.5 63.9
Train 69.5 78.0 86.0 93.0 23.5 68.0 69.7

• 800 frames have passed since the start of the battle.

There are some instances in which only a few shots are fired and then
one of the players keeps retreating. We do not consider such cases as proper
battles. For training we require battles in which both players keep fighting
for a sustained period of time. Thus, we removed all fights in which the total
damage was less than 80 hit points (a zealot has 160 for reference) and both
sides lost less than 20% of their starting total army hit points. We obtained
anywhere from 5 to 30 battles per game, and only need 500 for training.

Results are shown in Table 5.2. Our UAlbertaBot version wins 60% of
the matches against the original UAlbertaBot because we have updated the
new version with various fixes that mainly reduce the number of timeouts and
crashes, especially in the late game.

On average, the Lanchester model with learned weights wins 6% more
games than the same model with default strength values, which is still 3%
better than using simulations. It is interesting to note that the least (or no)
improvement occurs in our best match-ups, where we already win close to
80% of the games. Most of such games are lopsided, and one or two extra
zealots do not make any difference to the outcome. However, there are bigger
improvements for the more difficult match-ups, which is an encouraging result.

The only exception is IceBot, which is our worst enemy among the six bots
we tested against. IceBot uses bunkers to defend which by themselves do not
attack but can load up to four infantry units which receive protection and a
range bonus. We do not know how many and what infantry units are inside,
and the only way to estimate this is by comparing how much damage our own
units take when attacking it. These estimates are not always accurate, and
furthermore, IceBot also sends workers to repair the bunkers. Consequently,
it is very difficult to estimate strength values for bunkers, because it depends
on what and how many units are inside, and if there are workers close by
which can (and will) repair them. Because UAlbertaBot only builds zealots
and constantly attacks, if IceBot keeps the bunkers alive and meanwhile builds
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other, more advanced units, winning becomes impossible. The only way is to
destroy the bunkers early enough in the game. We chose to adapt our model
by having five different combat values, one for empty bunker (close to zero),
and four others for bunker with one, two, three or four marines inside. We still
depend on good damage estimations for the loaded units and we do not take
into account that bunkers become stronger when repaired, which is a problem
we would like to address in future work.

5.5 Conclusions and Future Work

In this paper we have introduced and tested generalizations of the original
Lanchester models to adapt them to making predictions about the outcome
of RTS game combat situations. We also showed how model parameters can
be learned from past combat encounters, allowing us to effectively model op-
ponents’ combat strengths and weaknesses. Pitted against some of the best
entries from a recent StarCraft AI competition, UAlbertaBot with its simu-
lation based attack-retreat code replaced by our Lanchester equation based
prediction, showed encouraging performance gains.

Because even abstract simulations in RTS games can be very time con-
suming, we speculate that finding accurate and fast predictors for outcomes of
sub-games – such as choosing build orders, combat, and establishing expan-
sions – will play an important role in creating human-strength RTS game bots
when combined with look-ahead search. Following this idea, we are currently
exploring several model extensions which we briefly discuss in the following
paragraphs.

A common technique used by good human players is to snipe off crucial or
expensive enemy units and then retreat, to generate profit. This is related to
the problem of choosing which unit type to target first from a diverse enemy
army, a challenge not addressed much in current research. Extending the
current Lanchester model from compounding the strength of all units into an
average strength to using a matrix which contains strength values for each own
unit versus each opponent unit might be a good starting point. This extension
would enable bots to kill one type of unit and then retreat, or to deal with a
unit type which is a danger to some of its other units. For instance, in some
cases ranged units are the only counter unit type to air units and should try
to destroy all fliers before attacking ground units.

A limitation of the current model is assuming that units have independent
contributions to the battle outcome. This may hold for a few unit types, but
is particularly wrong when considering units that promote interactions with
other units, such as medics which can heal other infantry, or workers that
can repair bunkers. We could take some of these correlations into account by
considering groups of units as a new, virtual unit and trying to estimate its
strength.
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Another limitation of our prediction model is that it completely ignores
unit positions, and only takes into account intrinsic unit properties. An av-
enue for further research is to expand the model to take into account spatial
information, possibly by including it into the combat effectiveness values.

Lastly, by comparing the expected outcome and the real result of a bat-
tle, we could possibly identify mistakes either we or the opponent made. AI
matches tend to be repetitive, featuring many similar battles. Learning to ad-
just target priorities or to change the combat scripts to avoid losing an early
battle would make a big difference.

5.6 Contributions Breakdown and Updates

Since Publication

Most of the work in this chapter was performed by Adrian Marius Stanescu.
Nicolas A. Barriga helped with setting up expriments, and Michael Buro su-
pervised the work. A tutorial version of the work described in this chapter
has also been published as a chapter in Game AI Pro 3, a book targeted at
industry professionals [205].

Since publication, there were two research endeavors that tackled similar
problems and used Lanchester-inspired models. Firstly, there is an algorithm
that uses Lanchester-like equations to generate fire support plans in a simu-
lated combat environment [92]. The authors focus on concepts that are present
in modern military doctrine but are missing in most RTS games, such as tacti-
cal risk management and suppressive firepower effects. Their model leverages
these concepts and is slightly different than our approach. They consider the
defenders all but invulnerable until assaulted and thus use one-sided versions
of the Lanchester equations, while we use a two-sided approach.

Secondly, a more extensive version of our work was presented in a journal
paper [236]. Besides predicting the winner or the final state of a combat,
the authors run experiments for predicting combat durations and simulating
partial combats (i.e., not fight to the end). They focus on predicting which
units survive for heterogeneous army compositions, and on the forward model
aspect and utility of the algorithms. They propose three such models:

• Target-Selection Lanchester’s Square Law which is similar to ours, with
the addition of a target selection policy used at the end of the simulation
to choose the surviving units;

• Sustained DPF which simplifies combat by assuming that the inflicted
army damage does not decrease over time during the combat, but it
models which units can attack each other in more detail than the first
algorithm (e.g., ground vs. air units);

• Decreasing DPF which takes into account attrition and model the re-
duced damage an army can inflict as units die.
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For predicting the winner the first model shows the best results, similar to
ours. However direct comparisons are difficult as the datasets are different.

The combat model presented in this chapter was used as an evaluation
function in subsequent research presented in Chapter 8, in which it led to
stronger results compared to other popular heuristics used at the time. To
improve the performance of high level search algorithms even further, we pro-
posed evaluation functions that look at the entire game state instead of just
combat, and take spatial details into account. Designing and choosing features
for such approaches is difficult and ultimately we decided to learn these func-
tions automatically using convolutions and neural networks, which initiated
research described in Chapter 7.
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Chapter 6

Hierarchical Adversarial Search
Applied to Real-Time Strategy
Games

This chapter is joint work with Nicolas A. Barriga and Michael Buro. It was
previously published [202] at the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE), 2014.

Abstract

Real-Time Strategy (RTS) video games have proven to be a very challeng-
ing application area for artificial intelligence research. Existing AI solutions
are limited by vast state and action spaces and real-time constraints. Most
implementations efficiently tackle various tactical or strategic sub-problems,
but there is no single algorithm fast enough to be successfully applied to big
problem sets (such as a complete instance of the StarCraft RTS game). This
paper presents a hierarchical adversarial search framework which more closely
models the human way of thinking – much like the chain of command em-
ployed by the military. Each level implements a different abstraction – from
deciding how to win the game at the top of the hierarchy to individual unit
orders at the bottom. We apply a 3-layer version of our model to SparCraft –
a StarCraft combat simulator – and show that it outperforms state-of-the-art
algorithms such as Alpha-Beta, UCT, and Portfolio Search in large combat
scenarios featuring multiple bases and up to 72 mobile units per player under
real-time constraints of 40 ms per search episode.

6.1 Introduction

Real-Time Strategy (RTS) games are a genre of video games in which players
gather resources, build structures from which different types of troops can be
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trained or upgraded, recruit armies, and command them in battle against op-
ponent armies. RTS games are an interesting domain for Artificial Intelligence
(AI) research because they represent well-defined complex adversarial decision
problems and can be divided into many interesting and computationally hard
sub-problems [28].

The best AI systems for RTS games still perform poorly against good
human players [30]. Hence, the research community is focusing on develop-
ing RTS agents to compete against other RTS agents to improve the state-
of-the-art. For the purpose of experimentation, the RTS game StarCraft:
Brood War [21] has become popular because it is considered well balanced,
has a large online community of players, and has an open-source interface –
BWAPI, [102] – which allows researchers to write programs to play the full
game. Several StarCraft AI competitions are organized every year [30]. Such
contests have sparked increased interest in RTS game AI research and many
promising agent frameworks and algorithms have already emerged. However,
no unified search approach has yet been developed for a full RTS game such as
StarCraft, although the research community is starting to tackle the problem
of global search in smaller scale RTS games [37, 182, 162]. Existing Star-
Craft agents rely on a combination of search and machine learning for specific
sub-problems (build order [40], combat [43], strategy selection [217]) and hard-
coded expert behaviour.

6.1.1 Motivation and Objectives

Even though the structure of most RTS AI systems is complex and comprised
of many modules for unit control and strategy selection [252, 42, 222], none
comes close to human abstraction, planning, and reasoning abilities. These
independent modules implement different AI mechanisms which often interact
with each other in a limited fashion.

We propose a unified perspective by defining a multi-level abstraction frame-
work which more closely models the human way of thinking – much like the
chain of command employed by the military. In real life a top military com-
mander does not concern himself with the movements of individual soldiers,
and it is not efficient for an RTS AI to do that, either. A hierarchical structure
can save considerable computing effort by virtue of hierarchical task decom-
position. The proposed AI system partitions its forces and resources to a
number of entities (we may call commanders) – each with its own mission
to accomplish. Moreover, each commander could further delegate tasks in a
similar fashion to sub-commanders, groups of units or even individual units.
More similar to the human abstraction mechanism, this flexible approach has
a great potential of improving AI strength.

One way of implementing such a layered framework is to have each layer
playing the game at its own abstraction level. This means we would have
to come up with both the abstractions and a new game representation for
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each level. Both are difficult to design and it is hard to prove that they
actually model the real game properly. Another way, which we introduce in
this paper, is to partition the game state and to assign objectives to individual
partition elements, such that at the lowest level we try to accomplish specific
goals by searching smaller state spaces, and at higher levels we search over
possible partitions and objective assignments. Our approach comes with an
additional benefit: the main issue that arises when approximating optimal
actions in complex multi-agent decision domains is the combinatorial explosion
of state and action spaces, which renders classic exhaustive search infeasible.
For instance, in StarCraft, players can control up to 200 mobile units which
are located on maps comprised of up to 256×256 tiles, possibly leading to
more than 101,926 states and 10120 available actions [168].

The hierarchical framework we propose has the advantage of reducing the
search complexity by considering only a meaningful subset of the possible
interactions between game objects. While optimal game play may not be
achieved by this kind of abstraction, search-based game playing algorithms
can definitely be more efficient if they take into account that in a limited time
frame each agent interacts with only a small number of other agents [139].

6.2 Background and Related Work

In implementing a hierarchical framework we extend state-of-the-art RTS unit
combat AI systems that use Alpha-Beta, UCT, or Portfolio Search [42, 44, 43]
and focus only on one abstraction level, namely planning combat actions at
the unit level. By contrast, our proposed search algorithm considers multiple
levels of abstractions. For example, first level entities try to partition the
forces into several second level entities – each with its own objective.

Similar approaches have been proposed by [152] and [179]. The latter
implements a framework to bridge the gap between strategy and individual
unit control. It conceptualizes RTS group level micromanagement as a multi-
agent task allocation problem which can in principle be integrated into any
layered RTS AI structure. However, while these papers only deal with the
bottom level, we target several abstraction levels at the same time. Our goal
is to interleave the optimization of direct unit control with strategic reasoning.
Next, we look at competing algorithms designed for other problem domains
whose large complexity render complete search impractical.

6.2.1 Multi-Agent Planning

A similar problem has been considered in [139]. The authors substitute global
search considering all agents with multiple searches over agent subsets, and
then combine the results to form a global solution. The resulting method
is called Agent Subset Adversarial Search (ASAS). It was proved to run in
polynomial time in the number of agents as long as the size of the subsets is
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limited. ASAS does not require any domain knowledge, comparing favourably
to other procedural approaches such as hierarchical task networks (HTNs),
and greatly improves the search efficiency at the expense of a small decrease of
solution quality. It works best in domains in which a relatively small number
of agents can interact at any given time. Because we aim our framework
specifically towards RTS games, avoiding using domain knowledge would be
wasteful. Hence, we introduce a procedural component in the algorithm, in
the form of objectives that each subset tries to accomplish. This will allow our
algorithm to make abstract decisions at a strategic level, which should further
improve the search efficiency compared to the ASAS method.

6.2.2 Goal Driven Techniques

Heuristic search algorithms such as Alpha-Beta search and A* choose actions
by looking ahead, heuristically evaluating states, and propagating results. By
contrast, HTNs implement a goal-driven method that decomposes goals into
a series of sub-goals and tries to achieve these. For choosing a move, goals
are expanded into sub-goals at a lower level of abstraction and eventually
into concrete actions in the environment. In [199], the authors successfully
deploy HTNs to play Contract Bridge. Using only a small number of operators
proves sufficient for describing relevant plays (finessing, ruffing, cross-ruffing,
etc.). HTNs have also been successfully applied to Go [250]. The advantage is
that Go knowledge (e.g., in books) is usually expressed in a form appropriate
for encoding goal decompositions by using a rich vocabulary for expressing
reasons for making moves. However, HTNs generally require significant effort
for encoding strategies as goal decompositions, and in some domains such as
RTS games this task can be very difficult. For example, [145] uses HTNs to
build a hierarchical architecture for Infantry Serious Gaming. Only a small
set of very simple actions are supported, such as monitoring and patrolling
tasks, and we can already see that the planning domain would become quite
convoluted with the addition of more complex behaviour.

6.2.3 Goal Based Game Tree Search

Goal based game tree search (GB-GTS) [140] is an algorithm specifically de-
signed for tackling the scalability issues of game tree search. It uses procedural
knowledge about how individual players tend to achieve their goals in the do-
main, and employs this information to limit the search to the part of the game
tree that is consistent with the players’ goals. However, there are some limi-
tations: goals are only abandoned if they are finished, policy which does not
allow replacing the current plan with a potentially better one. Also, goals are
assigned on unit-basis level and more units following the same goal require
more computational effort than if they were grouped together under the same
objective. This is more similar to a bottom-up approach, the goals in GB-GTS
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estimate the chance of winning fights before engaging the enemy. Since simula-
tion must be faster than real-time, SparCraft abstracts away game details such
as building new structures, gathering resources or training units. Because of
this limitation we consider simpler base-defense scenarios in this paper instead
of playing full RTS games, and we focus on the lower two levels of the search:
constructing and executing plans, while fixing the objective to destroying or
defending bases. With extra implementation effort these scenarios could be
set up in StarCraft as well, likely leading to similar results.

Fig. 6.1(a) shows a sample plan with three partial game states. The blue
(solid, bottom) player chose three units to defend the left base (task 1), one
unit to defend the middle base (task 2) and eight units to attack the enemy
base to the right (task 3). Analogously, the red (striped, top) player chose
two attacking tasks (tasks 1 and 2) and one defending task (task 3), assigning
four units to each. In this example the first partial game state contains the
first task of each player, the second partial game state the second task, and
the last partial game state the third task. After a while the red units of the
middle (second) partial game state get within attack range of the blue units
assigned to the third partial game state and re-planning is triggered. One
possible resulting scenario is shown in Fig. 6.1(b):

• the blue player still chooses to defend with three units against four on
the left side in the first partial game state

• he switches his nine units to attack the middle enemy base, and is op-
posed by four enemy units in the second partial game state

• the blue player chooses to do nothing about the right base, so the third
partial game state will only contain four enemy units attacking (blue
player has an idle objective).

6.3.2 Bottom Layer: Plan Evaluation and Execution

The bottom layer serves two purposes: in the hierarchical search phase (1)
it finds lowest-level actions sequences and rolls the world forward executing
them, and in the plan execution phase (2) it will generate moves in the actual
game. In both phases we first create a new sub-game that contains only the
units in the specific partial game state. Then, in phase (1) we use fast players
with scripted behaviour specialized for each objective to play the game, as
the numbers of playouts will be big. During (1) we are not concerned with
returning moves, but only with evaluating the plans generated by the middle
layer. During phase (2) we use either Alpha-Beta or Portfolio search [43] to
generate moves during each game frame, as shown in Fig. 6.2. The choice
between Alpha-Beta or Portfolio search depends on the number of units in the
partial game state. Portfolio search is currently the strongest algorithm for
states with large numbers of units, while Alpha-Beta search is the strongest
for small unit counts.
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Algorithm 6.1. Hierarchical Adversarial Search (2 layers)

1: procedure PlanSearch(Depth d, State s, Task oppTask, Player p)
2: best← −∞;
3: if empty(oppTask) then ▷ First player gen. tasks
4: if endSearch() then
5: return evaluate(s) ▷ w.r.t. objectives
6: else

7: tasks ← genTasks(s, p)
8: for Task t in tasks do

9: val ← - PlanSearch(d+ 1,s,t,opp(p))
10: if val > best then

11: best← val;
12: end if

13: end for

14: return best

15: end if

16: else ▷ Second player gen. tasks
17: tasks ← genTasks(s,p)
18: plans ← genPlans(s,enemyTask,tasks,p)
19: for Plan plan in plans do

20: playout(plan)
21: merge(s) ▷ Merge partial game states
22: val ← - PlanSearch(d+ 1,s,<>,opp(p))
23: if value > best then

24: best← val;
25: updatePrincipalVariation()
26: end if

27: end for

28: return best

29: end if

30: end procedure

move (line 17), and the opposing tasks are paired and combined into a plan
consisting of several partial game states (line 18). We call a plan consistent
if the partial game states do not interfere with each other (i.e., units from
different partial game states cannot attack each other), and one example is
shown in Fig. 6.1(b). If a plan is not consistent we skip it and generate the
next plan to avoid returning a plan that would trigger an immediate re-plan.
Otherwise, we do a playout using the scripted players for each partial game
state and roll the world forward, until either one of the tasks is completed or
impossible to accomplish or we reach a predefined game time (line 20). Fig. 6.3
shows two playouts at the same search depth, finishing at different times t1
and t2.

At this point we combine all partial game states into a full game state (line 21)
and recursively continue the search (line 22). The maximum search depth is
specified in game time, not search plies. Hence, some branches in which the
playouts are cut short because of impossible or completed objectives might
trigger more middle layer searches than others, like the leftmost branch in
Fig. 6.3.
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Finally, for leaf evaluation (line 5), we check the completion level of the
top layer objectives (for example, how many enemy buildings we destroyed if
we had a destroy base objective). Node evaluations can only be done at even
depths, as we need both players to select a set of tasks before splitting the
game into several partial game states.

After the middle layer completes the search, we will have a plan to execute:
our moves from the principal variation of the minimax tree (line 25). At every
game frame we update the partial game states in the plan with the unit data
from the actual game, and we check if the plan is still valid. A plan might
become invalid because one of its objectives is completed or impossible, or
because units from two different partial game states are within attack range
of each other. If the plan is invalid, re-planning is triggered. Otherwise it will
be executed by the bottom layer using Alpha-Beta or Portfolio search for each
partial game state, and a re-plan will be triggered when it is completed. To
avoid re-planning very often, we do not proactively check if the enemy follows
the principal variaton but follow the more lazy approach of re-planning if his
actions interfere with our assumption of what his tasks are.

We did not implement the top layer and we simply consider destroy and
defend all bases as objectives to be accomplished by the middle layer, but we
discuss more alternatives in the last section, as future work.

6.3.4 Implementation Details

After receiving a number of objectives that should be completed from the top
layer, the middle layer search has to choose a subset of objectives to be accom-
plished next. To generate a move we need to create a task for each objective in
this subset: each task consists of some units assigned to accomplish a particu-
lar objective. Such assignments can be generated in various ways, for instance
by spatial clustering. Our approach is to use a greedy bidding process similar
to the one described in [179] that assigns units to tasks dependent on proximity
and task success evaluations. The first step is to construct a matrix with bids
for each of our units on each possible objective. Bids take into account the
distance to the target and an estimate of the damage the unit will inflict and
receive from enemy units close to the target. Let O be the total number of ob-
jectives, and N ∈ {1, · · · , O} a smaller number of objectives we want to carry
out in this plan. We consider all permutations of N objectives out of O possi-
ble objectives (for a total of O!/(O −N)!). For example, if O = 4 and N = 2,
we consider combinations (1, 2), (2, 1), (1, 3), (3, 1), . . . , (3, 4), (4, 3). The dif-
ference between (x, y) and (y, x) is objective priority: we assign units to ac-
complish objective x or y first.

For each of these combinations and each objective, we iterate assigning
the unit with the highest bid to it until we think that the objective can be
accomplished with a certain probability (we use 0.8 in the experiments) and
then continue to the next objective. This probability is estimated using a
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sigmoid function and the LTD2 scores of the Hierarchical Adversarial Search
player’s units assigned to complete that objective versus the LTD2 score of
the enemy units closest to the objective. The moves will be sorted according
to the average completion probability of all the O tasks (the assigned N as
well as the O−N we ignored). Consider the case in which one of the left-out
objectives is a defend base objective. Consequently, the middle layer did not
assign any units for this particular objective. In one hypothetical case there
are no enemy units close to that particular base, so we will likely be able
to accomplish it nonetheless. In another case, that particular base is under
attack, so there will be a very low probability of saving it as there are no
defender units assigned for this task. If the middle layer sorts the moves only
using the probabilities for the N tasks to which it has assigned units, it will
not be able to differentiate between the previous two cases and will treat them
as equally desirable. Hence, we need to consider the completion probability
of all tasks in the move score, even those to which the middle layer did not
assign units.

After both players choose a set of tasks, we need to match these tasks to
construct partial game states. Matching is done based on distances between
different tasks (currently defined as the minimum distance between two units
assigned to those tasks). Because partial game states are considered indepen-
dent, we assign tasks that are close to each other to the same partial game
state. For example, “destroy base A” for player 1 can be matched with “de-
fend base A” for player 2 if the attacking units are close to base A. If the
units ordered to destroy base A for player 1 are close to the units that have to
destroy base B for player 2, then we have to match them because the involved
units will probably get into a fight in the near future. However, we now also
need to add the units from “defend base A” and “defend base B” to the same
partial game state (if they exist) to avoid conflicts. After matching, if there
are any unmatched tasks, we add dummy idle tasks for the opponent.

While performing minimax search, some of the plans generated by task
matching might still be illegal (i.e., units in one partial game state are too
close to enemy units from another partial game state). In that case we skip
the faulty plan and generate the next one.

In our current implementation, when re-planning is needed, we take the
time needed to search for a new plan. In an actual bot playing in a tournament,
we would have a current plan that is being executed, and a background thread
searching for a new plan. Whenever the current plan is deemed illegal, we
would switch to the latest plan found. If that plan is illegal, or if the search
for a new plan has not finished, we would fall back to another algorithm, such
as Alpha-Beta, UCT, or Portfolio Search.

For plan execution, the time available at each frame is divided between
different Alpha-Beta searches for each partial game state. The allotted time is
proportional to the number of units in each, which is highly correlated to the
branching factor of the search. As the searches usually require exponential ef-
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fort rather than linear, more complex time division rules should be investigated
in the future.

It is worth noting that both plan execution and evaluation are easily par-
allelizable, because each partial game state is independent of each other. Plan
search can be parallelized with any minimax parallelization technique such
as ABDADA [247]. Because at each node in the plan search we only ex-
plore a fixed number of children and ignore the others, the search might also
be amenable to random sampling search methods, such as Monte Carlo tree
search.

6.4 Empirical Evaluation

Two sets of experiments were carried out to evaluate the performance of the
new Hierarchical Adversarial Search algorithm. In the first set we let the
Hierarchical Adversarial Search agent which uses Portfolio Search for plan
execution play against the Alpha-Beta, UCT, and Portfolio Search agents pre-
sented in [43]. All agents have the same amount of time available to generate
a move. In the second set of experiments Hierarchical Adversarial Search us-
ing Alpha-Beta Search for plan execution plays against an Alpha-Beta Search
agent whose allocated time varies.

Similar to [43], each experiment consists of a series of combat scenarios
in which each player controls an identical group of StarCraft units and three
bases. Each base consists of four (on half of the maps) or five (on the other
half) structures: some are buildings that cannot attack but can be attacked
(which are the objectives in our game), and some are static defences that can
attack (e.g., photon cannons in StarCraft). Both players play the Protoss race
and the initial unit/building placement is symmetric to ensure fairness.

The battlefields are empty StarCraft maps of medium size (128×72 tiles)
without obstacles or plateaus because none of the tested algorithms has access
to a pathfinding module. Experiments are done on four different maps, with
three bases totalling 12 to 15 buildings for each player. The set-up is similar to
Fig. 6.1(a), though on some maps the position of the middle base for the two
players is swapped. To investigate the performance of the different algorithms
we vary the number of units — 12, 24, 48, or 72 per player, equally split
between the three bases.

For the first experiment we generate 60 battles for each unit configuration.
For the second experiment we use only one map with 72 units per player, and
play 10 games for each Alpha-Beta time limit. Each algorithm was given a 40
ms time limit per search episode to return a move. This time limit was chosen
to comply to real-time performance restrictions in StarCraft, which runs at 24
frames per second (42 ms per frame). The versions of Alpha-Beta, UCT, and
Portfolio Search (depending on parameters such as maximum limit of children
per search node, transposition table size, exploration constant or evaluation)
are identical to those used in [43]. It is important to note that the Alpha-Beta
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archical Adversarial Search on real StarCraft maps. We also plan to improve
the task bidding process by using a machine learning approach similar to the
one described in [208] for predicting battle outcomes. It would still be fast
enough but possibly much more accurate than using LTD2 scores, and could
also integrate a form of opponent modelling into our algorithm. Finally, we
currently only use two of the three layers and generate fixed objectives for the
middle layer (such as destroy opponent bases) instead of using another search
algorithm at the top layer. If we extend SparCraft to model StarCraft’s econ-
omy, allowing the agents to gather resources, construct buildings, and train
new units, the top layer decisions become more complex and we may have to
increase the number of abstraction layers to find plans that strike a balance
between strengthening the economy, building an army, and finally engaging in
combat.

6.6 Contributions Breakdown and Updates

Since Publication

My main contributions to this work were focused on the spatial decomposition
of the state and the bottom layer implementation, while the second author
helped with the top and middle layer architectures. We collaborated on the
overall design with Michael Buro, who also supervised the work.

An alternative abstract search mechanism was presented [234, 235] at the
same conference as the research presented in this chapter. While our algorithm
is using the lowest level to forward the world, the authors abstract the game
state and perform look-ahead search at this abstract level directly. No exper-
iments were ever performed to assess the relative strengths and weaknesses of
each approach.

Hierarchical task decomposition combined with minimax search was also
the core idea in other similar research [166]. However, while we used three
fixed, separate levels of abstractions the authors relied on scripted actions in
the form of HTN planning.

Other research that uses configurable scripts as an action abstraction mech-
anism is presented in Chapter 8. This algorithm, called Puppet Search, outper-
formed the HTN based approach mentioned above. Despite promising results,
we chose to discontinue the method presented in this chapter in favor of Pup-
pet Search because of the difficulties in hand-crafting the multiple search layers
and abstraction levels. Puppet Search offers a more elegant way of implement-
ing a similar concept – adversarial search with state and action abstraction –
by using already common action scripts as the first abstraction level.
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Chapter 7

Evaluating Real-Time Strategy
Game States Using
Convolutional Neural Networks

c⃝2014 IEEE. Reprinted, with permission, from Adrian Marius Stanescu, Nico-
las A. Barriga, Andy Hess and Michael Buro, Evaluating Real-Time Strategy
Game States Using Convolutional Neural Networks [206], IEEE Conference
on Computational Intelligence and Games, 2016.

Abstract

Real-time strategy (RTS) games, such as Blizzard’s StarCraft, are fast paced
war simulation games in which players have to manage economies, control
many dozens of units, and deal with uncertainty about opposing unit locations
in real-time. Even in perfect information settings, constructing strong AI
systems has been difficult due to enormous state and action spaces and the
lack of good state evaluation functions and high-level action abstractions. To
this day, good human players are still handily defeating the best RTS game AI
systems, but this may change in the near future given the recent success of deep
convolutional neural networks (CNNs) in computer Go, which demonstrated
how networks can be used for evaluating complex game states accurately and
to focus look-ahead search.

In this paper we present a CNN for RTS game state evaluation that goes
beyond commonly used material based evaluations by also taking spatial re-
lations between units into account. We evaluate the CNN’s performance by
comparing it with various other evaluation functions by means of tournaments
played by several state-of-the-art search algorithms. We find that, despite its
much slower evaluation speed, on average the CNN based search performs sig-
nificantly better compared to simpler but faster evaluations. These promising
initial results together with recent advances in hierarchical search suggest that
dominating human players in RTS games may not be far off.
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7.1 Introduction

The recent success of AlphaGo [197], culminating in the 4-1 win against one
of the strongest human Go players, illustrated the effectiveness of combining
Monte Carlo Tree Search (MCTS) and deep learning techniques. For AlphaGo,
convolutional neural networks (CNNs) [134, 127] were trained to mitigate the
prohibitively large search space of the game of Go in two ways: First, a policy
network was trained, using both supervised and reinforcement learning tech-
niques, to return a probability distribution over all possible moves, thereby
focusing the search on the most promising branches. Second, MCTS state
evaluation accuracy was improved by using both value network evaluations
and playout results.

In two-player, zero-sum games, such as Chess and Go, optimal moves can
be computed by using the minimax rule that minimizes worst case loss. In
theory, these games can be solved by recursively applying this rule until reach-
ing terminal states. However, in practice completely searching the game tree
is infeasible, the procedure must be cut short, and an approximate evalua-
tion function must be used to estimate the value of the game state. Because
states closer to the end of the game are typically evaluated more accurately,
deeper search produces better moves. But as game playing agents often have
to make their move decision under demanding time constraints, great perfor-
mance gains can be achieved by improving the evaluation function’s accuracy.

The size of the state space of the game of Go, although much larger than
that of Chess, is tiny in comparison to real-time strategy (RTS) games such
as Blizzard’s StarCraft. In the game of Go, at every turn, a single stone can
be placed at any valid location on the 19×19 board and the average game
length is around 150 moves. In RTS games, each player can simultaneously
command many units to perform a large number of possible actions. Also, a
single game can last for tens of thousands of simulation frames, with possibly
multiple moves being issued in each one. Moreover, RTS game maps are
generally much larger than Go boards and feature terrain that often affects
movement, combat, and resource gathering. Therefore, for RTS games, good
state evaluations and search control, such as using policy networks, plays an
even greater role.

CNNs are adept at learning complex relationships within structured data
due to their ability to learn hierarchies of abstract, localized representations
in an end-to-end manner [127]. In this paper we investigate the effectiveness
of training a CNN to learn the value of game states for a simple RTS game
and show significant improvement in accuracy over simpler state-of-the-art
evaluations. We also show that incorporating the resulting learned evaluation
function into state-of-the-art RTS search algorithms increases agent playing
strength considerably.

84



7.2 Related Work

Search based planning approaches have had a long tradition in the construction
of strong AI agents for abstract games like Chess and Go, and in recent years
they have progressively been applied to modern video games, especially the
RTS game StarCraft. This is a difficult endeavor due to the enormous state and
action spaces, and finding optimal moves under tight real-time constraints is
infeasible for all but the smallest scenarios. Consequently, the research focus
in this area has been on reducing the search space via different abstraction
mechanisms and on producing good state evaluation functions to guide this
search effort.

In this section we briefly discuss some of these attempts, starting with
various methods used for state evaluation in RTS games. We then present
recent research on deep neural networks and their use in game playing agents.

7.2.1 State Evaluation in RTS Games

Playing RTS games well requires strategic as well as tactical skills, ranging
from building effective economies, over deciding what to build next based on
scouting results, to maneuvering units in combat encounters. In RTS game
combat each player controls an army consisting of different types of units and
tries to defeat the opponent’s army while minimizing its own losses. Because
battles have a big impact on the result of RTS games, predicting their outcome
accurately is very important, especially for look-ahead search algorithms.

A common metric for estimating combat outcomes is LTD2 [126], which
is based on the lifetime damage each unit can inflict. LTD2 was used, in
conjunction with short deterministic playouts, for node evaluation in alpha-
beta search to select combat orders for individual units [44]. A similar metric
was later used as state evaluation, this time combined with randomized play-
outs [162, 166].

Likewise, Hierarchical Adversarial Search [202] requires estimates of com-
bat outcomes for state evaluation and uses a simulator for this purpose. How-
ever, because simulations become more expensive as the number of units grows,
faster prediction methods are needed. For instance, a probabilistic graphical
model trained on simulated battles can accurately predict the winner [208].
This model, however, has several limitations such as not modeling damaged
units and not distinguishing between melee and ranged combat. Another
model, based on Lanchester’s attrition laws [204], does not have such short-
comings. It takes into account the relative strength of different unit types,
their health and the fact that ranged weapons enable units to engage several
targets without having to move, which causes a non-linear relationship between
army size differences and winning potential. After learning unit strength val-
ues offline using maximum likelihood estimation from past recorded battles,
this improved model has been successfully used for state evaluation in a state-
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of-the-art RTS search algorithm [11].
All mentioned approaches focus on a single strategic component of RTS

games, (i.e., combat), and lack spatial reasoning abilities, ignoring information
such as unit positions and terrain. Global state evaluation in complex RTS
games such as StarCraft has been less successful [59], likely due to the limited
expressiveness of the linear model used.

7.2.2 Neural Networks

In recent years deep convolutional neural networks (CNNs) have sparked a
revolution in AI. The spectacular results achieved in image classification [127]
have led to deep CNNs being effectively applied to a wide range of domains.
For vision tasks, CNNs have been applied to object localization [77], seg-
mentation [142], facial recognition [191], super-resolution [53] and camera-
localization [120] to name just a few examples, all the while continuing to
make further progress in image classification [224]. Deep CNNs have also
been successfully applied to tasks as diverse as natural language categoriza-
tion [114, 258], translation [7] and algorithm learning [119].

Deep CNNs owe their success to their ability to learn multiple levels of
abstraction, each one building upon abstractions learned in previous layers.
More specifically, deep CNNs learn a hierarchy of spatially invariant, localized
representations, each layer aggregating and building upon representations in
previous layers toward the combined goal of minimizing loss [77].

There is a long history of using simple linear regression and shallow neu-
ral networks to construct strong AI systems for classic board games such as
Backgammon and Othello [69]. However, scaling up state evaluations to more
complex games such as Go only became possible when it was discovered how
to effectively train weights in deep neural networks, which can be considerably
more expressive than shallow networks with the same number of weights [135].

Since then CNNs have been successfully used to play Atari video games
with a policy network trained by supervised learning, using training data gen-
erated by a slow but strong UCT player [85]. Similar networks have been
trained with reinforcement learning [150, 151]. Most remarkable, however, is
the recent 4-1 win of AlphaGo [197], a deep CNN based Go playing program,
over one of today’s best Go players Lee Sedol. AlphaGo combines MCTS
with deep CNNs for state evaluation and move selection that were trained by
supervised and reinforcement learning.

This historic accomplishment sparks hope that CNNs can also be used
for even more complex tasks, such as playing real-time games with imperfect
information – a domain still dominated by human players.
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7.3.1 Data

The dataset used for training the neural network was created by playing round-
robin tournaments between 15 different µRTS bots, 11 of which are included
in the default µRTS implementation. The other 4 are versions of the Pup-
pet Search algorithm [11]. Each tournament consists of (15 × 14)/2 = 105
matches. One 8×8 map was used, with 24 different initial starting conditions.
All scenarios start with one base and one worker for each player, but with
different, symmetric, initial positions. These tournaments were played under
four different time limits: maximums of 100ms, 200ms, 100 playouts and 200
playouts per search episode. In total 105 × 24 × 4 = 10 080 different games
were played from which draws were discarded (≈ 8%).

Predicting game outcomes from data consisting of complete games leads to
overfitting because while successive states are strongly correlated, the regres-
sion target is shared for the entire game. To mitigate the problem, the authors
of AlphaGo [197] add only a single training example (s, w) to the dataset from
each game. Because we have significantly less data (10 thousand vs. 30 million
episodes), we chose to sample 3 random positions from each game. As a result,
for game i we add {(si1, wi), (si2, wi), (si3, wi)} to the dataset, and slightly over
25 000 positions are generated.

The dataset was split into a test set (5 000 positions) and a training set
(the remaining 20 000 positions). Finally, the training set was augmented by
including all reflections and rotations of each position for a total of 160 000
positions.

7.3.2 Features

Each position s is preprocessed into a set of 8×8 feature planes. These features
correspond to the raw board representation and contain information about
each tile of the µRTS map: unit ownership and type, current health points,
game frames until actions are completed and resources.

All integers, such as unit health points, are split into K different 8×8 planes
of binary values using the one-hot encoding. For example, five separate binary
feature planes are used to represent whether an unit has 1, 2, 3, 4 or ≥ 5 health
points. The full set of feature planes is listed in Table 7.1.

7.3.3 Network Architecture & Training Details

The input to the neural network is an 8×8×25 image stack consisting of 25
feature planes. There are two convolutional layers that pad the input with
zeros to obtain a 10×10 image. Each then is convolved with 64 and respectively
32 filters of size 3×3 with stride 1. Both are followed by leaky rectified linear
units (LReLUs) [254, 100]. A third hidden layer convolves 1 filter of size 1×1
with stride 1, again followed by an LReLU. Then follow two fully connected
(dense) linear layers, with 128 and 64 LReLU units, respectively. A dropout
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Table 7.1: Input feature planes for the neural network.

Feature
# of
planes

Description

Unit type 6 Base, Barracks, worker, light, ranged, heavy
Unit health 5 1, 2, 3, 4, or ≥ 5
Unit owner 2 Masks to indicate all units belonging to one player
Frames to
completion

5 0−25, 26−50, 51−80, 81−120, or ≥ 121

Resources 7 1, 2, 3, 4, 5, 6−9, or ≥ 10
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Figure 7.2: Neural network architecture.

ratio of 0.5 is applied to both fully connected layers. The output layer is
a fully connected layer with two units, and a softmax function is applied to
obtain the winning probabilities for player 0 and player 1 (P (p0) and P (p1)).
All LReLUs have negative slope of α = −1/5.5. The resulting architecture is
shown in Figure 7.2.

Our architecture was motivated by current trends toward the use of small
filter sizes (≤ 3×3), few (or no) pooling layers, and same-padded convolution
(multiple layers of the same width and height, each layer padded with ze-
ros following convolution) [99, 197]. We were also guided by the principle of
gradually decreasing the dimension of internal representations as one moves
from input toward task; one example being the reduction from 64 to 32 filters,
another being the use of 1×1 convolutions for dimensionality reduction [224].
This principle can also be seen in the fully connected layers. LReLUs were
used following suggestions from [254] and [100].

Before training, we used Xavier random weight initialization [79] which
equalizes signal variance. During training, the stepsize alpha was initialized
to 0.00001 and was multiplied by 0.2 every 100K training steps. We used
adaptive moment estimation (ADAM) with default values of β1 = 0.9, β2 =
0.999, ε = 10−8 as suggested in [121]. The network was trained for 400K mini-
batches of 64 positions, a process which took approximately 20 minutes on a
single GPU to converge.
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For training, we used the Python (2.7.6) interface to Caffe [113], utilizing
CUDA2 version 7.5 and cuDNN3 version 4. The machine used for training the
neural network had an Intel(R) Pentium(R) CPU G2120 3.10GHz processor,
8 GB RAM and one GeForce GTX 760 GPU (1152 cores and 4 GB memory)
running Linux Mint 17.3.

7.4 Experiments and Results

All experiments that are reported below were performed on Intel(R) Core(TM)
i7-2600 CPU @ 3.40GHz with 8 GB RAM machines running Ubuntu 14.04.
The test machines do not have CUDA capability 3 and the neural network
computations were run solely on the CPU. µRTS software is implemented in
Java and compiled and run with JDK 8u74.

7.4.1 Winner Prediction Accuracy

In the first set of experiments we compare the speed and accuracy of our neural
network for evaluating game states with a Lanchester model [204] and a simple
evaluation function that takes into account the cost and health points of units
and the resources each player has. This is the default evaluation function that
the µRTS search algorithms use. In equation 7.1 player indices are either 0 or
1: player ∈ {0, 1}.

eval(player) = Eplayer − E1−player (7.1)

In equation 7.2, Rp is the amount of resources a player currently has, Wp

is a player’s set of workers, Ru is the amount of resources each worker unit is
carrying, Cu is the cost of unit u, HPu the current health points of unit u, and
MaxHPu its maximum health points. Wres,Wwork,Wunit are constant weights.

Ep = WresRp + Wwork

∑

u∈Wp

Ru + Wunit

∑

u∈p

CuHPu

MaxHPu

(7.2)

Two versions of this simple evaluation functions were used: one with
µRTS’s default weights, and one optimized via logistic regression on the same
training set used for the neural network. The Lanchester model keeps the two
resource terms of the simple evaluation function but revises the army’s impact.
While the contribution of the buildings is similar to equation 7.2, a new term
is added for combat units:

E ′

p = WresRp + Wwork

∑

u∈Wp

Ru + Wbase

HPbase

MaxHPbase

+

Wbarracks

HPbarracks

MaxHPbarracks

+ N (o−1)
p

∑

u∈p

αu

HPu

MaxHPu

(7.3)

2https://developer.nvidia.com/cuda-toolkit
3https://developer.nvidia.com/cudnn
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of the game army balance is more relevant, and both the neural network and
the Lanchester model perform better than the simple evaluation functions.

The average time needed for a single simple evaluation is 0.012µs, the
Lanchester model takes 0.087µs, while a full network evaluation on the CPU
takes 147µs. This time includes processing the games state into feature planes,
sending the data to a Python thread (on the same CPU core as the search
algorithm), running a forward pass on the network and returning the outcome.
The network evaluation takes close to two thirds of the time, around 102µs.
We tested the speed of the network evaluation on a GPU as well. On a
mid-range NVIDIA GTX 760, the time is slightly shorter than the CPU-only
version (118µs).

However, processing only one position at a time does not take advantage
of the pipelined GPU architecture. To measure potential gains of evaluating
positions in parallel, we ran batches of 256 positions whose evaluation took
10 707µs, of which 9 985µs was spent on the CPU (feature planes) and 722µs
on the GPU, for an average of 2.8µs of GPU time per evaluation. A search al-
gorithm — like AlphaGo’s — that can perform leaf evaluations asynchronously
would benefit greatly from doing state evaluations on the GPU.

7.4.2 State Evaluation in Search Algorithms

A second set of experiments compares the performance of four game tree search
algorithms — ϵ-Greedy MCTS, Näıve MCTS, AHTN-F and AHTN-P, de-
scribed below — when using the simple evaluation function, the optimized
evaluation function, the Lanchester model or the neural network for state
evaluation.

The sixteen resulting algorithms played against the following eleven oppo-
nents provided by the µRTS implementation, all using default parameters and
the simple µRTS evaluation function:

WorkerRush: a hardcoded rush strategy that constantly produces workers
and sends them to attack.

LightRush: builds a barracks, and then constantly produces light military
units to attack the nearest target (it uses one worker to mine resources).

RangedRush: is identical to LightRush, except for producing ranged units.

HeavyRush: is identical to LightRush, except for producing slower but
stronger heavy units.

MonteCarlo(MC): a standard Monte Carlo search algorithm: for each legal
player action, it runs as many simulations as possible to estimate their
expected reward.

ϵ-Greedy MC: Monte Carlo search, but using an ϵ-greedy sampling strategy.
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Näıve MCTS: Monte Carlo Tree Search algorithm with a sampling strat-
egy specifically designed for games with combinatorial branching factors,
such as RTS games. This strategy, called Näıve Sampling, exploits the
particular tree structure of games that can be modeled as a Combinato-
rial Multi-Armed Bandit [162].

ϵ-Greedy MCTS: like NäıveMCTS, but using an ϵ-greedy sampling strategy.

MinMax Strategy: for a set of strategies (WorkerRush, LightRush, Range-
dRush and Random), playouts are run for all possible pairings. It
approximates the Nash equilibrium strategy using the minimax rule,
whereby one player (Max) maximizes its payoff value while the other
player tries to minimize Max’s payoff [182].

AHTN-P: an Adversarial Hierarchical Task Network, that combines mini-
max game tree search with HTN planning [166]. In this AHTN def-
inition the main task of the game can be achieved only by three non-
primitive tasks (abstract actions that decompose into actions that agents
can directly execute in the game). The tasks are three rushes with three
different unit types.

AHTN-F: a more elaborate AHTN with a larger number of non-primitive
tasks for harvesting resources, training units of different types, or at-
tacking the enemy.

All search based algorithms (bottom seven in the list above) evaluate states
by running a short playout of 100 frames. The playouts are performed using
a random policy in which non-move actions (harvest, attack, build) have a
higher probability than moves. The only exception is MinMax, whose play-
outs are 400 frames long, because it only does 16 playouts — one for each
pair of strategies — and uses its fixed set of strategies instead of the random
policy. The resulting states are evaluated with the simple evaluation function
in equation 7.1, the optimized function, the Lanchester model or the neural
network.

Every player has a computational budget of either a given time duration or
a maximum number of state evaluations per game frame. Moreover, players
can split the search process over multiple frames; for example, if the game
state does not change during 10 game frames before a player needs to issue an
action, then players have ten times the budget to issue actions. We call this
consolidated budget a search episode.

In the tournament each of the 176 matchups consists of 24 games played
on an 8×8 map, with different but symmetric starting positions. To compute
the score, every win is worth 1 point, and if the game reaches 3 000 frames, it
is considered a draw, and awarded 0.5 points.

Figure 7.4 summarizes the average win rate against all opponents when
using the different evaluation methods. On average, the neural network shows
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7.5 Conclusions and Future Work

In this paper we have used deep CNNs to evaluate RTS game states. We
have shown that the evaluation accuracy is higher than current alternatives
in µRTS. This new method performed better evaluating early game positions
which led to stronger gameplay when used within state-of-the-art RTS search
algorithms.

While CNNs might not perform significantly better in all cases (for in-
stance compared to Lanchester when used in ATHN-P and AHTN-F, see Fig-
ures 7.4 and 7.5), the game playing agents based on them were stronger on
average. Evaluating our CNN is several orders of magnitude slower than the
other evaluation functions, but the accuracy gain far outweighs the speed dis-
advantage.

With these promising results, coupled with the fact that modern CNNs
have shown excellent results on large problem sets [127], we are confident that
the presented methods will scale up to more complex RTS games. StarCraft
maps are similar in size to the images these networks are usually applied to.
Using an MCTS implementation based on game abstractions similar to µRTS,
that allows for asynchronous state evaluations on multiple GPUs can aid in
tackling these larger problems while meeting real time constraints. Moreover,
policy networks may also be trained to return probability distributions over
the possible moves which can be used as prior probabilities to focus MCTS on
the most promising branches.

Unlike Go, however, even RTS games with professional leagues such as
StarCraft do not make replays of competition games publicly available. With-
out a large number of high quality records, reinforcement learning techniques
will likely need to be considered in future work.

7.6 Contributions Breakdown and Updates

Since Publication

The bulk of this research was performed by Adrian Marius Stanescu. Nicolas
A. Barriga contributed with µRTS expertise and helped running experiments,
Andy Hess offered feedback and advice for using the Caffe framework and
Michael Buro supervised the overall work.

The good results obtained in this article motivated us to continue exploring
this avenue of research. Two updates were introduced in work described in
Section 8.3. Firstly, we have evaluated the work presented in this chapter on
8 × 8 maps only. Having fully connected layers means that different input
sizes cannot easily be accommodated, and we designed a fully convolutional
network that can be used on maps of any size. Secondly, we used this new
network to predict which action the Puppet Search algorithm introduced in
Section 8.1 would choose for a given state, instead of the value of the state.
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This policy network was only slightly weaker in play strength compared to the
original algorithm, but orders of magnitude faster. Ultimately this encouraged
us to explore Deep RL methods in future research, presented in Chapters 1
and 10.
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Chapter 8

Combining Strategic Learning
and Tactical Search in RTS
Games

This chapter is a summary of work led by Nicolas A. Barriga, in which I,
Adrian Marius Stanescu participated as second author. Michael Buro super-
vised the projects. I include short summaries instead of full articles, and focus
more on placing this work in context with other research presented in this the-
sis.

8.1 Puppet Search: Enhancing Scripted

Behavior by Look-Ahead Search with

Applications to Real-Time Strategy Games

This section describes and contains parts from joint work with Nicolas Barriga
and Michael Buro. It was previously published [11] at the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE), 2015.

This work introduced a new search framework, Puppet Search, that com-
bines scripted behavior and look-ahead search. We presented a basic imple-
mentation as an example of using Puppet Search in RTS games, with the goal
of reducing the search space and make adversarial game tree search feasible.

Puppet Search builds on hierarchical decomposition ideas and adds look-
ahead search on top of expert knowledge in the form of non-deterministic
scripts. These scripts can expose choice points to the search procedure, adding
flexibility and the ability to adapt to unforeseen circumstances better than
hand-crafted traditional scripted AI systems. Moreover, the branching factor
will be easier to manage and by controlling the number of choice points in
this process, the resulting AI system can be tailored to meet given search time
constraints. Selecting a combination of a script and decisions for its choice
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points represents a move to be applied next. Such moves can be executed in
the actual game, thus letting the script play, or in an abstract representation
of the game state which can be used by an adversarial tree search algorithm.
Puppet Search returns a principal variation of scripts and choices to be executed
by the agent for a given time span.

The algorithm was implemented in a complete StarCraft bot. During the
search, look-ahead requires forwarding the game state for a certain number of
frames during which buildings need to be constructed, resources mined, tech-
nology researched, units moved, and combat situations resolved. The Build
Order Search System (BOSS) library [40] was used to simulate all economic
aspects of the game, and a simple high-level simulation was built for troop
movement. Units were grouped into squads that move from one region to an-
other along the shortest route, towards the region they are ordered to defend
or attack. If they encountered an enemy squad along the way, SparCraft [38]
was used to resolve the battle.

Due to having an imperfect model for forwarding unit movement and com-
bat, we decided against using MCTS which would heavily rely on it in the
playout phase. Instead we opted for using a modified Alpha-Beta search,
which required a a suitable evaluation function. A few approaches were tried,
such as the destroy score assigned by StarCraft to each unit based on its costs
and used in [235, 234] or LTD2 [126, 44], a basic measure of the average dam-
age a unit can deal over its lifetime. The best results were obtained using
the model based on Lanchester’s attrition laws presented in chapter 5. This
choice still presents a limitation, as it only models combat units and largely
ignores economic incentives. An evaluation function was trained against each
individual opponent played during the evaluation tournament, played against
state-of-the-art bots from the 2014 AIIDE StarCraft competition.

In our experiments the average performance against all chosen opponents
was similar or better than the best benchmark script, and moreover, further
analysis indicated that Puppet Search is more robust, being able to defeat a
wider variety of opponents. Despite all the limitations of the implementa-
tion used for the experiments, such as imperfect squad movement and combat
modelling, incomplete evaluation function, and small variety of scripts, our
encouraging initial results suggested that this approach is worth further con-
sideration.

8.1.1 Contributions Breakdown and Updates
Since Publication

The bulk of the work in this section was performed by the first author, Nicolas
A. Barriga. Adrian Marius Stanescu implemented and trained the evaluation
function used by the algorithm, provided suggestions for overall algorithm
design, and helped write the published article. Michael Buro supervised the
work.
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Our first attempt at using state and action abstraction in conjunction with
adversarial search for RTS games was presented in Chapter 6. The proposed
algorithm is general enough to encompass a full RTS game, but only combat-
related experiments were conducted. Building state and action abstractions
implies significant effort, and Puppet Search offers a more elegant way of im-
plementing a similar concept by using already common action scripts as the
first abstraction level. For this reason we continued future research building
on the Puppet Search framework instead of extending Hierarchical Adversarial
Search.

Improving the performance of the Alpha-Beta search component requires
a more comprehensive evaluation function, as the one used in this work only
accounted for combat units. For future work we proposed a function that
evaluates the entire game state as described in [59] but ultimately we decided
to learn such a function automatically using CNNs, which initiated research
described in Chapter 7.

This first article on Puppet Search left a series of open questions about
the impact of several design decisions such as forward model quality, search
algorithm or choice points design. These questions, as well as others such as
the effect of different map sizes, are answered by research described in the next
section.

8.2 Game Tree Search Based on

Non-Deterministic Action Scripts

in Real-Time Strategy Games

c⃝2017 IEEE. This section describes and contains parts reprinted, with per-
mission, from Nicolas A. Barriga, Adrian Marius Stanescu and Michael Buro,
Game Tree Search Based on Non-Deterministic Action Scripts in Real-Time
Strategy Games [14], IEEE Transactions on Computational Intelligence and
AI in Games, June 2017.

This work builds on the Puppet Search algorithm described in the previous
section, addressing some of the mentioned concerns and The experimentation
is more extensive, and a wide range of map sizes was used to study the algo-
rithms’ performance when increasing the scenario complexity.

The earlier version of Puppet Search from Section 8.1 was tested in Star-
Craft, with encouraging results despite the poor accuracy of the simulator used
as a forward model. All experiments in this paper were performed in µRTS –
where there is direct access to the game engine – to avoid the external noise
caused by an inaccurate forward model. The algorithm was directly compared
against state-of-the art methods published recently for µRTS. To maintain a
fair comparison, all algorithms use the same evaluation function based on fixed
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length playouts.
Two choice points designs were evaluated, both based on the 4 simple action

scripts that are part of the µRTS framework, each focusing on one of the 4
types of units available in the game. PuppetSingle uses a single choice point to
select among these 4 scripts, generating a game tree with constant branching
factor of 4. In addition to this choice point for selecting the unit type to build,
PuppetBasic has an extra choice point for deciding whether to expand (i.e.,
build a second base) or not. Because this choice point is only active under
certain conditions, the branching factor is 4 or 8, depending on the specific
game state. PuppetSingle outperformed PuppetBasic on the smaller maps,
while the opposite was true on larger maps. This exemplifies the importance of
designing choice points carefully. They must be potentially useful – small maps
do not require expanding –, otherwise they are just increasing the branching
factor of the search tree without providing any benefit.

RTS game states tend to change gradually, due to actions taking several
frames to execute. To use computation time efficiently and capitalize of this
slow rate of change, the assumption was made that the game state does not
change for a predefined amount of time and a deeper search can be performed
than otherwise possible during a single frame. This approach was called a
standing plan, and it used a generated solution (a series of choices for a script’s
choice points) to control the game playing agent for multiple frames, while the
search produces the next solution. The longer term plan approach was bene-
ficial on the larger maps, where action consequences are delayed and deeper
search is important. On small maps computing a different plan every time
instead led to better performance.

Search algorithms based on UCT and Alpha-Beta were used, with similar
performance on small maps. On larger scenarios Alpha-Beta performed better,
and we believe this was because MCTS algorithms usually work best for games
with larger branching factors. This weakness was likely masked on the smaller
maps because of the larger number of nodes that can be explored due to faster
script execution.

Compared to state-of-the-art algorithms, our method showed a similar per-
formance to top scripted and search based agents in small maps, while vastly
outperforming them on larger ones. Even PuppetSingle can outperform the
other players in most scenarios. In addition, on larger maps the ability to use
a standing plan to issue actions, while taking more time to calculate a new
plan, boosted the performance even further.

8.2.1 Contributions Breakdown

The majority of the work presented in this section was performed by the first
author, Nicolas A. Barriga. My contributions were the evaluation function
used by the algorithms, feedback regarding algorithm design choices and help
with running experiments and writing the published article. Michael Buro
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supervised the work.

8.3 Combining Strategic Learning and Tacti-

cal Search in Real-Time Strategy Games

This section describes and contains parts from joint work with Nicolas Barriga
and Michael Buro. It was previously published [13] at the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE), 2017.

To cope with large state spaces and branching factors in RTS games, Puppet
Search described in the sections above focuses on state and action abstractions
via action scripts. It worked increasingly well in larger problems, as it can make
strong strategic choices. However, its rigid scripted tactical micromanagement
is a weakness, and it showed in modes results on the smaller sized scenarios
where good unit control is key to victory. More generally, algorithms that focus
on state and action abstractions might suffer from limited tactical ability due
to their necessarily coarse-grained abstractions. We investigated blending such
algorithms with search-based approaches to refine and improve their tactical
decisions. This paper’s contributions are a network architecture capable of
scaling to larger map sizes than previous approaches, a policy network for
selecting high-level actions, and a method of combining the policy network with
a tactical search algorithm that surpasses the performance of both individually.

We built on previous work presented in Chapter 7, which introduced a
CNN-based evaluation function composed of two convolutional layers followed
by two fully connected layers. It performed very well on 8×8 maps. However,
as the map size increases, so does the number of weights on the fully connected
layers, which eventually dominates the weight set. To tackle this problem, we
designed a fully convolutional network (FCN) which consists of ten intermedi-
ate convolutional layers [200] without any fully connected layers, and has the
advantage of being an architecture that can more easily fit a wide range of
board sizes.

This network is used for two purposes, firstly as an evaluation function
in conjunction with the original Puppet Search algorithm, and secondly as a
policy network by training to predict the output of a 10 second run of this
new Puppet Search. Since this policy will be much faster than Puppet Search,
there will be plenty of ’thinking’ time left for use by a tactical algorithm on
the side. These network architectures are largely the same, only differing in
the first and last layers. The policy network needs the current player as an
input and it has four outputs – choosing one of the four scripts available –
while the evaluation network has only two – which player wins from the given
position. Training data was generated by running games between a set of bots
using several different maps and starting positions.

Using a policy network for script selection during game play allows for
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bypassing the need for a forward model of the game, required by the original
Puppet Search. This is usually too slow for online use in conjunction with any
search algorithm. It will still be required for the offline supervised training
phase, where execution speed is less of an issue.

With the policy network running significantly faster (3ms versus a time
budget of 100ms per frame for search-based agents) compared to the original
search algorithm, the unused time was used to refine micromanagement during
combat. A separate MCTS-based adversarial search algorithm is used to gen-
erate updated actions for all units that are within close distance to opposing
units.

The evaluation network reached 95% accuracy in classifying samples as
wins or losses. The resulting performance of Puppet Search using it was better
than when using random playouts or even Lanchester based evaluation func-
tion as presented in Section 8.2 even though the network is three orders of
magnitude slower. The policy network predicted the correct Puppet Search
move with 73% accuracy and had a top-two accuracy of 95%. It was slightly
weaker in playing strength but still managed to defeat all scripts and other
state-of-the-art µRTS agents in the evaluation tournament.

The combined agent using a separate tactical search algorithm for micro-
management had much higher win-rates than either of its two independent
components, and defeated all other state-of-the-art µRTS agents easily. To
the best of our knowledge, this research was the first successful application
of a deep convolutional network to play a full RTS game on standard game
maps, as previous work has focused on sub-problems, such as combat, or on
very small maps.

8.3.1 Contributions Breakdown and Updates
Since Publication

Most of the work in this chapter was performed by the first author, Nicolas
A. Barriga. My contributions were the design of the evaluation network and
help with training of both evaluation and policy networks, as well as article
writing. Michael Buro supervised the work.

Our next step after publishing this work was using reinforcement learning
to eliminate the need for a forward model to label training data with Puppet
Search. We implemented double DQN [94] with experience replay [151] and
used the evaluation network to provide a non-sparse reward. Unfortunately,
in all of our experiments the network converged to always selecting the script
with the best average performance, regardless of the game state.

We believe that the main culprit is the reward mechanism. The virtual
rewards generated by the value network are small and potentially noisy at the
start of the game, when good action choices have the largest impact. Towards
the end of the game the rewards are more accurate, but action choices are
largely irrelevant. Any action (script choice) is able to successfully finish a
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game that is very nearly won, and conversely, if the position is very disadvan-
tageous, no script choice will be able to reverse it. An attempt was made to fix
this issue by starting the learning process with states closer to the endgame
and progressively introducing states from earlier in the game, but without
success.

The drawback of requiring a forward model is also present in most tac-
tical search algorithms, for example the MCTS variant we used for blending
in this research. Using machine learning for tactical decisions would elimi-
nate this requirement, but had limited success even on simple scenarios pre-
viously [237, 223]. Recent research based on integrating concepts such as
communication [211], bidirectional recurrent neural networks [173] or value
decomposition networks [213] promises stronger tactical networks for strategy
games and draws even more attention towards using reinforcement learning.

Consequently, for future research I continued to explore the reinforcement
learning paradigm for use in RTS games and techniques that help in com-
plex environments with sparse rewards: reward shaping [52], curriculum learn-
ing [19] and hierarchical reinforcement learning that use auxiliary rewards for
the lower levels [101, 128].
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Chapter 9

Case Study: Using Deep RL in
Total War: Warhammer

The following work was done as part of a 7-month internship at Creative As-
sembly, the UK games studio behind the popular Total War franchise. The aim
of this project was to apply some of the latests insights from deep RL research
to RTS games. The 4-1 victory of AlphaGo 2 months previous to starting
this project provided additional support and incentive for bringing the games
industry and AI research closer.

After successfully using deep CNNs for state evaluation in the basic, re-
search oriented µRTS framework, and experimenting with DQN-based methods
for small combat scenarios in the StarCraft: Broodwar game, I was confident
that deep RL can be used in even more complex environments. This internship
presented an opportunity to tackle more difficult multi-agent problems and to
get acquainted with the games industry’s perspective on such challenges. As
well as a stepping stone to further research in the MARL domain, using an
off-the-shelf game engine for this project offered a new outlook on blending
academic research with the game production process.

9.1 Introduction

Inspiration for this project stemmed from the recent success of AlphaGo [197]
which won 4-1 against one of the strongest human Go players in 2016 – il-
lustrating the effectiveness of combining MCTS and deep learning techniques.
For AlphaGo, CNNs were trained to shrink the prohibitively large search space
of the game of Go in two ways: first, a policy network was trained, using both
supervised and RL techniques, to return a probability distribution over all
possible moves. These results were used to focus the search on the most
promising branches. Second, MCTS state evaluation accuracy was improved
by combining playout results with evaluations produced by a value network.

The work presented in the previous chapter focused on this second part –
state evaluation. The results were very promising, and we continued by ex-
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tending this work and investigating learning policies for unit control in small
scale StarCraft: Broodwar scenarios. Good progress was made, but even bet-
ter results using similar methods were published first in [237] and then then
in [173], and consequently we were not able to publish our findings. Instead,
we took advantage of the accumulated experience and aimed to apply it for
battle AI in the popular Total War game franchise. Battles in Total War
can pose much more difficult challenges, since the complex movement and
targeting that is crucial to games such as µRTS and StarCraft is affected by
additional mechanics: units can get tired, a defender’s orientation with respect
to its attacker is crucial, there are effects that reward charging an enemy but
discourage prolonged melee (cavalry) or the other way around (pike infantry),
and morale is often more essential for obtaining victory than troop health.
As a consequence, strategies such as pinning, refusing a flank while trying to
overpower the other flank and obtain rear attacks on the enemy are required.
Cooperation between units is much more important than in games such as
StarCraft, and the built-in game AI uses complex behaviors and a portfolio
that contains multiple strategies. As a result, besides good reactions, human
or AI players need to employ complex behaviors as well to consistently defeat
this built-in game AI.

Automatically training agents to achieve diverse behaviors is a natural
fit for the Total War battle AI. In Total War games, every time the players
choose to fight a battle during the turn-based campaign, they usually have
three options: 1) flee to avoid the battle, 2) let the built-in AI autoresolve
the conflict for them and 3) or pause the game and proceed to a arena-like
environment where they can fight the battle in real-time. A screenshot of how
such a battle might look can be seen in Figure 9.1. Considering the duration of
and the resources available for the internship, we chose to address this multi-
agent battle aspect of the game rather than the challenges presented by the
campaign part for the following reasons:

• As the number of possible agent actions increase, the learning process
becomes much more difficult and more data is needed for sufficient ex-
ploration. In battles, agents could have a few move actions (e.g., four
or eight cardinal directions) and several attack actions either generated
by some scripts (e.g., attack closest, weakest etc) or by direction (e.g.,
attack North). However, for a campaign game, just considering the dif-
ferent structures one can build in one’s settlements might spawn tens of
action by itself.

• The earlier a training episode ends and an agent can receive its reward,
the easier it is to explore and learn good behaviors. Outcomes of cam-
paign games are much more delayed than those of single battles. For
instance, the impact of diplomacy decisions (such as declaring war on
a neighbor) would be particularly hard to quantify. Just using learned
policies directly to make battle decisions at run-time is likely to work
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Figure 9.1: Example battle scenario in TotalWar: Warhammer.

well, while for campaign games we would need to use look-ahead search
to explore the consequences of our decisions and offset the longer delay
in observing their impact.

• The input size is larger for campaign games. Moreover, training by
playing a hundred thousand single battles is more feasible than acquiring
the same number of complete campaign games.

While achieving strong campaign AI might be a more difficult task, battle
AI offers a diverse set of challenges that require spatial reasoning and coopera-
tion between the agents, as previously mentioned. Some of the most commonly
encountered are: deciding when to pull out from a melee and when to switch
targets, positioning of the range units, avoid crossing paths between ally units,
maintaining a coordinated unit front when approaching the enemy, or pinning
enemies while creating superiority elsewhere.

9.2 Implementation

The goal of this project was to learn control policies for agents in cooperative-
competitive environments. RL, in particular, represents a natural fit to learn
adaptive, autonomous and self-improving behavior in a multi-agent setting.
CNNs have made it possible to extract high-level features from raw data,
which enabled RL algorithms such as Q-learning to master difficult control
policies without the help of hand-crafted features and with no tuning of the
architecture or hyper-parameters for specific games [150].
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9.2.1 Network Architecture

The network architecture chosen is similar to the AtariNet model, and used
three convolutional layers followed by a fully connected one and output layers.
Lower dimensional input was used instead of raw pixels, as coarser grid repre-
sentations worked well in previous experiments on StarCraft combat scenarios.
The network weights were learned via Q-learning, while agents played games
against the built-in AI.

Due to the limited time and resources available the Independent Q-Learning
(IQL) [225] paradigm was chosen. In IQL, the current agent is considered to be
learning while all other agents are treated as part of the environment. Thus,
the multi-agent learning task is decomposed into simultaneous single-agent
problems.

For each unit, the input state consisted of a number of 128× 128 grid-like,
local feature planes centered around the unit:

• 6 of them were Boolean values indicating own and enemy presence on
each grid square, and the unit types grouped in 4 categories: spearmen,
other melee infantry, archers and cavalry. There is a rock-paper-scissors
interaction, and similarly priced units counter and are countered by other
unit types. Usually swords or axes beat spears in melee, spears are the
best counter to cavalry and cavalry units can cause great problems to
melee troops. Archers can deal damage from a distance to most units
except perhaps the slower, heavier armored ones, but usually suffer in
melee.

• 4 more feature planes contained values indicating hit points, morale,
orientation and stamina. Only one unit type was used for each of the
4 categories, so there was no obvious need of adding more features such
as damage, armor or defence values as they do not change during the
course of the battle and can be absorbed into the unit type.

• There were as many Boolean layers as enemy units, used for masking
them and correlation with the attack enemy order.

• There were two more feature layers containing minimap information for
both armies. For these layers, the original map unit information was
scaled down to 128× 128, and normalised such that each cell value was
equal to the number of units within divided by total number of alive
units. A value of 1 was added to the cell containing the acting agent,
in the allied minimap. These minimap layers were included to provide
the agents information about the global state. All other features were
normalised by their maximum possible values.

The possible actions for each unit were chosen as: no-op, move in one of
the 4 cardinal directions, and an attack action for each enemy unit in the
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scenario. The attack actions corresponding to units that are not shown in the
local feature planes were masked out.

9.2.2 Reward Shaping

Because team reward signals do not directly relate to individual agent’s ac-
tions, individual reward functions are commonly used for IQL and were used
here as well. Reward shaping via potential-like functions was chosen, as it is
one of the few methods that guarantee to preserve optimality w.r.t. the initial
objective [52, 57]. The score function ϕ is a weighted sum of the unit’s current
health, morale and stamina values as well as the damage inflicted upon enemy
units to both health and morale from the start of the game and a bonus term
for each routed or killed enemy unit. The reward signal at time step t, for unit
i was Ri

t = ϕ(Si
t)−ϕ(Si

t−1)− rstep + routcome where rstep is a small positive term
to discourage time wasting and routcome is 1 if the battle ended with a victory
and 0 otherwise.

Learning was evaluated objectively by win ratio against the built-in AI on
the highest difficulty, rather than by subjective human players. As a note, the
games industry is often more concerned about players having a fun experience
and prefers a human-like, believable AI to stronger but potentially less pol-
ished behavior. Avoiding behaviors such as switching orders frequently, units
crossing each others’ paths, erratic movement patterns at the start of the game
or not maintaining a coordinated unit front can often be more important than
optimality and winning at all costs. Adding extra terms to deal with these
concerns via reward shaping is not difficult, and it was a major argument for
choosing this form of providing rewards.

9.2.3 Experimental Setting

Although troops could be concealed in forests, for example, fog of war does
not play as big a role in Total War battles compared to other RTS games.
Thus, dealing with partial observability was out of scope of this project, and
there was no unit vision limitation or fog of war mechanism. The proposed
method could be extended to work with imperfect information, and several
ideas for doing so are mentioned in section 9.5. For simplicity, small flat maps
were used, without terrain features such as hills, forests or river crossings.

Battles in Total War are driven by units: groups of specific troop types that
can be deployed in formation. In our experiments, up to 6 units were used per
army, each unit containing 40 to 100 soldiers depending on its type – infantry
units usually contain more soldiers than cavalry ones, for example. In Total
War battles orders are given on a per-unit basis, and the game engine deals
with the movement and attack animations of the individual soldiers within the
unit, to maintain coherence.

Actions were emitted every 3 seconds for all alive units, which was also the
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default setting for the built-in AI. For these settings battles were often con-
cluded in around 5 minutes or real-time play. To avoid dithering, we forcefully
ended games after 7.5 minutes of real-time play, which translates to up to 150
orders per unit.

The game ran on Windows machines, and the ZMQ distributed message
queue framework was used for communication with the machine learning server
running on Linux and using PyTorch. Due to the large number of resources
needed for running the game engine, only up to 8 game instances could run
simultaneously on a single machine, and only if graphics were completely dis-
abled. Usually, on the scenario sizes described above, up to 9k - 10k games
could be played per machine (Intel Core i7 CPU and Nvidia GTX 1070 GPU)
in 24h.

9.2.4 Models and Training

A network architecture similar to the ones used in Atari research and early
experiments in the StarCraft II Learning Environment (SC2LE) [238] was
used. The 128× 128 feature planes were first processed by three convolutional
layers. The extracted map representation was then passed through a fully
connected layer with 256 units. The Q values were represented using value
and advantage functions as recommended by the dueling architecture [240].

To reduce the number of learnable parameters network weights were shared
between all agents. Training battles were fought against the built-in AI on the
highest difficulty setting. The learning algorithm was based on DQN [151] with
the dueling architecture update and multi-step returns. The replay buffer was
chosen to contain only the most recent 1000 games worth of experiences, to
help with stability issues. Close to default settings were chosen for the other
DQN parameters, with brief tuning on a scenario where each player controls
2 melee units.

9.3 Results

Results were very good for scenarios where the DQN player controlled 1 or
2 units, the DQN agents defeating the built-in AI in over 90% of the games.
Complex behaviors often used by human players were learned, such as ”cycle
charging” which works as follows. Cavalry units have a large charge bonus that
helps deal significant damage upon impact, but wears down after a few seconds.
Since they are often overmatched in the ensuing melee, a good strategy is to
retreat, regroup and repeat charging for as long as possible. When controlling
a weaker melee unit and a cavalry unit against a stronger enemy melee unit,
the system learned to use the melee unit to pin down the enemy and only
then use the cavalry troop to manoeuvre and charge with the cavalry from the
enemy’s flank or rear. Doing so heavily deteriorates enemy morale and often
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Total War battles are won or lost by reducing morale and causing the enemy
to flee, rather than by killing all enemy soldiers.

An example of this behavior can be seen in the following replay 1. In
this and all following videos shown in this chapter, the agent controls the
highlighted troops with green health bars, while the enemy has red health bars.
Here the enemy commands an elite axe melee unit. The agent controlling a
weaker spear melee unit pins down the enemy and the cavalry unit charges it
repeatedly in the rear.

When using more than 3 units per side, learning with DQN was very un-
stable, probably due to the non-stationary aspect of the environment. The
learning and exploration of other agents adds noise and instability, and the
environment is changing so fast that games in the experience replay quickly
lose relevance. Hence, the learning algorithm was switched to A3C, an on-
policy actor-critic framework. As a consequence learning was more stable,
even though less efficient w.r.t the number of games played due to the lack of
experience replay.

Using a set of network weights for each unit type (spear, melee, cavalry,
ranged) worked better than sharing the same set of parameters for all units.
The algorithm plateaued at over 82% win rate on a symmetric 3v3 scenario
with mixed units, after 70k games played. Over 73% win rate was achieved
when scaling up and training from scratch on 6v6 scenarios, but learning re-
quired more than twice the time, at around 150k games. Further increases of
army sizes seemed achievable, but were not attempted due to the limited time
and computational resources available.

The following examples show battles with agents trained via A3C, the
next two using agents that learned on 3v3 scenarios with mixed units. In the
first video 2 each side controls 3 identical melee units and the agents display
a coordinated unit front while closing the distance to fight. They use flank
attacks and better positioning to bring more troops in contact, fighting on the
frontline. In the second video 3 there are 2 melee units and 1 ranged unit
per side. The ranged agent avoids the incoming melee units and takes out
the enemy ranged unit, while the melee units surround the enemy melee and
finish them off with subsequent help from the ranged agent. Finally the last
example 4 shows agents trained on the 6v6 scenarios controlling 4 melee and 2
ranged units. The melee units out-manoeuver the enemy and obtain a better
front, while the ranged units help focus damage on the same melee units. The
leftover enemy ranged are easy to deal with afterwards.

Compared to training directly on the last scenario, learning was faster when
using a curriculum based approach. Army size was extended progressively
from 1 to 6, and for each scenario the hit points of enemy units were gradually

1https://drive.google.com/file/d/1ZnJWhU3FiUYZ7ZIblmp_jT-FPItuuJGP/view
2https://drive.google.com/file/d/1SiQH5FNEEVWyl1T3wUoK8YlwTTL-5tXt/view
3https://drive.google.com/file/d/1dd8On9o3d_gxkWjYbRPgs4_QrnBZm1ow/view
4https://drive.google.com/file/d/1etkbNw0XEqz1XScTtQmFkSFDvey68jA-/view
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increased from 60% to 100%. Scenario switching was done when the algorithm
reached 70% win rate on the current task, up until reaching the final task. With
these settings a higher win rate of 77% was achieved for the 6v6 scenarios, using
fewer games for training – 110k.

9.4 Hierarchical Reinforcement Learning

The results described above confirmed that the proposed method, even with
basic architecture choices and without extensive hyperparameter search, worked
well for the intended purposes. The last month of the internship was then
aimed at investigating ways of obtaining similar results using less samples/games
or at scaling towards scenarios with more agents.

Hierarchical reinforcement learning (HRL) was chosen as a potential answer
to both concerns, as it is a promising approach to expand traditional RL
methods to work with more difficult and complex tasks. In HRL several levels
of policies are trained to control agents at increasingly higher levels of spatial,
temporal and behavioral abstraction. In this hierarchy of policies the lowest
level applies actions to the environment, and the higher levels learn to plan
over a larger region or extended time period.

9.4.1 Implementation

We decided against using an option-critic architecture [6] as these approaches
can have difficulties such as learning sub-policies that terminate every step or
learning policies that run for the length of the whole episode. A better fit
for industry use would be methods that use auxiliary rewards for the lower
levels, similar to [101, 123, 128, 228]. Using hand-crafted rewards based on
prior domain knowledge would be easier to implement and used to control the
resulting agent behaviors.

A two-layer structure was used, with the higher level policy making deci-
sions on a coarser layer of abstraction and choosing goals to be implemented
by the lower level policy, in a similar fashion to [66]. The higher level policy
observed the current state every k = 10 steps and chose a goal to be achieved
from approach, outflank, attack, disengage and an enemy unit w.r.t which this
particular order should be considered. For example approach unit x is be suc-
cessful when the distance between the current unit and unit x is less than a
particular threshold; disengage aims for the opposite, outflank relies mostly
on the relative orientations of the two units and attack is assessed based on
inflicted damage to target unit.

The lower level policy observed the state and the goal every time step, and
produced an in-game action – from the same action set as in previous exper-
iments – which was applied directly to the environment. Training this lower
level was done via intrinsic rewards provided by the higher-level controller.
For this experiment the rewards were again designed using potential based
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shaping. For example, the approach unit x goal for unit u used a potential of
the form ϕ(Su

t ) = w1 ∗HPu +w2 ∗moraleu−w3 ∗ (d(u, x)− 10)2, with the first
two terms discouraging recklessness and the last term based on the distance
between the two units. The default rewards provided by the environment are
summed up over the 10 steps and used to train the higher level policies.

9.4.2 Results

Training both high and low level policies jointly did not yield good results for
the 6v6 scenario even after a few days of learning (roughly 200k games), the win
rate never going over 40%. To investigate, we pre-trained the low level policy
first and then fixed the corresponding network parameters and trained only the
high level policy. The low level policy learned how to accomplish the disengage
and approach objectives in less than 5000 games, the outflank objective in 8000
games and the attack objective in 25000 games. The achievement of the first
three objectives was judged based on the final relative positions of the involved
unit, while the attack was considered successful if the total morale and hit point
damage inflicted exceeded the received amount by a given margin.

Even with a pre-trained and fixed lower level, the high level was not able
to surpass 50% win rate even after playing a comparable number of games
as the non hierarchical version. This suggests the designed goals and their
hand-crafted auxiliary rewards did not map very well to the main task to
be solved – winning the battle. The number of possible goal actions Ng =
4 × Nalive enemies is higher than the number of low level environment actions
Na = 4moves + Nalive enemies except when there is only one enemy unit left.
The difference is largest before engaging and killing enemy units, and that is
when smart maneuvering is most important! Exploring via ε-greedy action
selection might require a higher number of games and, moreover, game result
is very sensitive to one bad high-level decision. One poorly timed withdraw
order can expose one’s flank to being rear charged and that may lead to chain
routing of the whole army and a subsequent defeat.

9.5 Conclusions and Future Work

While basic, the proposed approach worked well for less complex scenarios.
Scaling up to the maximum number of unit in a Total War battle (20 per
side) might prove challenging, however. IQL suffers from instability caused by
non-stationarity introduced by learning and exploration of other agents and
increasing the number of units will accentuate this effect.

In addition, more computation time would be required, and more games
would need to be played. Hierarchical RL and other methods that are more
data efficient should help, especially in conjunction with environments where
obtain samples is not cheap. One idea is to use world models, which learn
compressed spatial and temporal representations of the environment and can
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be trained relatively quickly in an unsupervised manner [87]. Then compact
agents can be trained, even entirely inside their own hallucinated dreams gen-
erated by the world model. The authors show that such policies transfer
surprisingly well to the actual, real environment. Learning how to decompose
the team reward should help as well, and there are methods that proved suc-
cessful in partially-observable cooperative multi-agent scenarios with a single
joint reward signal [213].

In a multi-agent hierarchical framework, high level decisions that are fol-
lowed for a fixed number of steps can have multi-modal returns. Depending
on what its allies and enemies do, following an order that has a large expected
value might often lead to negative rewards. In other words, there might be
many risky choices and currently the games industry is not in a position to
explore high risk AI designs. Distributional RL [17] is a paradigm that has
been proved to help preserve multimodality in value distributions and lead to
more stable learning.

Finally, a few assumptions were made that could be addressed by a larger
project, most notably about the imperfect information aspect of the game. To
deal with these, there are a few extensions that have been considered but were
out of the scope of this project’s timeline:

• Fictitious self-play can be combined with deep reinforcement learning
to learn stronger strategies in imperfect information scenarios. This
has been shown to converge reliably to approximate Nash equilibria in
cooperative games [155] and poker [103] while simple greedy or average
deep Q-learning strategies did not. Stacking multiple input frames along
the depth dimension, using gated architectures such as LSTM and GRU,
could also help in this respect.

• Policy distillation can be used to extract the policy of a reinforcement
learning agent and train a new network that performs similarly while
being dramatically smaller and more efficient [181]. Results show agents
with 15 times fewer NN parameters performing on par with the original
networks. Furthermore, the same method can be used to consolidate
multiple task-specific policies into a single policy. The implied run-time
speedup and memory reduction is especially important for resource in-
tensive games that might have to run on budget hardware.

• The model could be extended to learn the behavior of opponents in ad-
dition to a good policy [98]. A second, separate NN is used to encode
observations of opponent actions, and different strategy patterns are dis-
covered by this enhanced model without extra supervision.
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9.6 Contributions Breakdown and Updates

Since Publication

The work presented in this chapter was performed by Adrian Marius Stanescu
during an internship at Creative Assembly, UK. Guidance in respect to the
game engine, existing codebase, and overall project management via weekly
planning meetings was provided by Andre Arsenault, Scott Pitkethly and Tim
Gosling, from Creative Assembly. Advice with machine learning design was
offered by Michael Buro. Besides implementing and experimenting with the
DQN, A3C and HRL agents described, other tasks completed during this
project include:

• Writing a basic module that acts as a bridge between the C++ game
engine and the machine learning framework – PyTorch. A structured,
grid-like representation of the game state is provided to the machine
learning side, and unit commands are received back and then executed
in the game. Substantial effort was required to create and control cus-
tom scenarios, to disable nonessential game features and speed up game
running, as well as to reduce its resource footprint and enabling several
instances to run on the same machine.

• Implementing a server-client framework that connects the machine learn-
ing code (server) to multiple instances of the game running on one or
multiple machines (clients). As the game was not designed to run thou-
sands of games in this continuous regime, there were a few memory leaks
and exceptions that required handling.

• Helping a Creative Assembly employee integrate the above framework in
an existing overnight testing tool that used idle machines to run more
experiments.

We found that designing good individual reward functions is very impor-
tant to the overall learning stability and might require extensive tuning to
obtain impressive results. Using team reward signals and then learning how to
assign the credit might prove a more elegant and simple option. During this
internship another paper was published that dealt with reward decomposition
in multi-agent environments [176]. Together with the already existing VDN
[213], this new QMIX architecture showed the advantages of such decompo-
sitions in mixed cooperative-competitive scenarios and convinced us to add
similar concepts to our next research.

Off-policy algorithms, often based on some form of Q-function learning,
generally exhibit substantially better sample efficiency than on-policy actor-
critic or policy gradient variants [83]. This was the case in our project as well,
and was later supported by research such as [157, 156]. On-policy training has
generally been attractive in the past and at the time of this project because is
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it usually more stable. However, we think that better results can be obtained
by taking advantage of subsequent progress in robust, general off-policy RL
methods [157, 15, 67].

Consequently, our next efforts use off-policy algorithms and also learn how
to decompose the team reward among agents. Even though time constraints
prevented reaching good results with HRL in this project, we believe that
spatial and/or temporal abstractions are needed for more complex or difficult
environments. The following chapter describes research that uses these insights
and tries to overcome inefficiencies of standard multi-agent Q-learning methods
by exploiting existing spatial action correlations.
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Chapter 10

Multi-Agent Action Network
Learning Applied to RTS Game
Combat

This chapter describes work done by Adrian Marius Stanescu and supervised
by Michael Buro. It is accepted for publishing at the Workshop on Artificial
Intelligence for Strategy Games, part of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE), 2018.

Abstract

Learning good policies for multi-agent systems is a complex task. Existing
methods are often limited to a small number of agents, as learning becomes
intractable when the agent number increases considerably. In this paper we
describe Spatial Action Decomposition Learning that tries to overcome inef-
ficiencies of standard multi-agent Q-learning methods by exploiting existing
spatial action correlations. We apply our method to real-time strategy (RTS)
game combat scenarios and show that Spatial Action Decomposition Learning
based systems can outperform handcrafted scripts and policies optimized by
independent Q-learning.

10.1 Introduction

As multi-agent decision problems are ubiquitous, building better AI agents
that work together has numerous real-world applications, such as city trans-
port optimization, stock trading, advertisement bidding, multi-player online
gaming, and coordinating robot swarms. Multi-agent reinforcement learning
(MARL) [171, 31] is a popular solution paradigm in this research area. Typ-
ically, a set of autonomous agents share a common environment and jointly
optimize a single team’s reward signal accumulated over time. While ap-
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plying standard RL techniques like Q-learning to multi-agent settings seems
straight-forward, difficulties arise from the combinatorial explosion of the joint
action sets and non-trivial interactions with the environment and other agents
– which can be cooperative or adversarial or mixed (e.g., opposing teams). In
addition, partial observability and communication constraints require decen-
tralised policies that only depend on local agent observations. This also helps
dealing with the exponential growth of the joint action space when increasing
the number of agents. Learning these decentralised policies in a centralised
fashion has the added benefit of being able to use extra state information dur-
ing learning that is hidden from agents at runtime (e.g., lifting the fog-of-war).
This approach has become very popular lately [115, 62, 176].

A challenging aspect of decentralization is to find an effective represen-
tation of the centralized action-value function Qtot that integrates the effects
of all agents’ actions. But such functions are difficult to learn in the pres-
ence of many agents and extracting the decentralised individual agent policy
(one agent chooses one action based on individual/partial observation) is not
straightforward.

In the next section we discuss in more detail related work that tackles
multi-agent Q-learning in various ways – ranging from centralized learning,
over simple Q-function decompositions, to learning expressive networks for
mixing individual Q-functions. We then describe our novel learning approach
which is based on the observation that agent actions are often spatially corre-
lated (e.g., nearby agents frequently execute similar actions), such as moving
in the same direction, or collaborating to achieve a local goal such as defending
a choke point. We then present experimental results for our spatial action de-
composition method – applying it to the popular multi-agent learning domain
of 2-team combat in real-time strategy (RTS) games with up to 80 vs. 80 units.
Finally, we conclude the paper with summarizing our findings and discussing
future work.

10.2 Background and Related Work

10.2.1 Independent Q-Learning

Arguably the easiest and most commonly used learning method for multiple
agents is Independent Q-Learning (IQL) [225]. It considers all other agents
as part of the environment and decomposes the multi-agent learning task into
simultaneous single-agent problems. IQL suffers from instability caused by
non-stationarity introduced by learning and exploration of other agents [133],
and consequently loses the convergence guarantees of Q-learning. As a con-
crete example, [46] show that independent Q-learners cannot distinguish team
mates’ exploration from stochasticity in the environment, and fail to solve even
an apparently trivial, 2-agent, stateless, (3× 3)-action problem.

While there are ways of improving IQL’s stability [63], it usually requires
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individual reward functions as uniform team reward signals do not directly re-
late to individual agents’ actions. Reward shaping is difficult and few methods
guarantee to preserve optimality w.r.t. the initial objective [52, 57]. A prefer-
able, more general approach is to learn how to decompose the team reward.
Still, in practice, IQL is an unexpectedly strong benchmark method, even in
mixed cooperative-competitive MARL problems [136].

10.2.2 Centralised Learning

Alternatively, the joint action Q-function Qtot can be learned directly. This
avoids the non-stationarity problem and can lead to better coordination and
results, at the cost of poor scaling performance. For example, experiments in
[237] are limited to 15 agents per side. Some methods are partially centralised,
using one or more centralised critics to guide the optimisation of decentralised
policies in an actor-critic paradigm [62, 86, 136]. To work well, these methods
require additional information to be exchanged between agents (e.g., Comm-
Net [211] or BicNet [173]). Furthermore, such on-policy methods are usually
sample inefficient.

Using a team reward signal makes credit assignment challenging, even for
simple problems. For example, in a 2-player soccer game with the number
of scored goals being the team reward, the agent who is worse at scoring
sometimes ends up failing to learn to shoot at all, as its exploration would
impede its teammate [97].

Coordination graphs have been used to decompose the global reward into
a sum of local agent rewards [84], but the method requires solving a linear
program and message passing between agents at runtime. COMA [62] is an
actor-critic method that uses a counterfactual baseline to marginalise out a
single agent’s action, while keeping the other agents’ actions fixed. Another
idea is to transform multiple agent interactions into interactions between two
entities: a single agent and a distribution of the other agents [255].

10.2.3 Value Decomposition

A more elegant way of solving the credit assignment problem is to use a
value decomposition network (VDN) to represent Qtot as sum of individual
Q-functions Qi which depend only on agent-local observations [213]. The net-
work learns how to assign the team reward signal to Qis implicitly, without
shaping or global state information.

One disadvantage is that the VDN representation of Qtot is limited by
the addition, because agents’ interactions are usually more complex. QMIX
addresses this issue by replacing the sum operation with a mixing network that
combines all individual Qi into Qtot in a complex, monotone, and non-linear
fashion informed by the global state information during training [176]. Access
to the global state is not required after training because due to monotonicity,

119



the arg-max performed on Qtot yields the same result as individual arg-max
operations on each Qi.

While more natural, these methods still suffer when handling larger num-
bers of agents as Q-learning becomes infeasible due to noise accumulation
caused by many exploratory actions [47].

10.2.4 Abstractions and Hierarchies

To address the scaling issue and improve sample efficiency the value decom-
position networks can be combined with hierarchical decomposition. This can
be done by considering temporal abstraction layers [138]. Multiple policies
can represent a diverse set of behaviors, and learning is sped up because the
environment can be explored at higher levels more effectively. Alternatively,
in suitable domains spatial abstractions can be used to speed up learning. In
feudal reinforcement learning [50] the state space is hierarchically subdivided
into increasingly smaller regions at each level of abstraction – similar to quad-
trees in the grid world pathfinding example they discuss. Each level has an
associated Q-function that is trained by giving lower levels credit for achieving
higher level goals. The experimental results indicate that feudal reinforcement
learning outperforms classic non-hierarchical Q-learning in their domain. The
method we present in the next section is also based on spatial decomposition.
However, its objective is to generate concurrent actions for multiple agents and
to effectively learn agent policies despite huge combinatorial action spaces.

10.3 Spatial Action Decomposition Learning

In this work we focus on the MARL challenge of increasing the number of
agents and the resulting combinatorial explosion of the joint action sets and
interactions with other agents present in the environment, friend or foe. As
previously mentioned, IQL is a quick and simple solution, but does not guar-
antee convergence and is poorly suited for modelling all interactions between
agents. On the other hand, fully combinatorial approaches are better at han-
dling coordination but do not scale well with the number of agents.

One approach that showed good results is to estimate the join action-
value of a team of agents as a linear [213] or non-linear [176] combination of
individual, per-agent action-values. These per-agent values condition on agent-
local observations, which is required in a partial observable environment. [176]
use hypernetworks to integrate the full, global state information into the joint
action-value during training.

10.3.1 Spatial Action Decomposition Using Sectors

We build on the value decomposition idea, but as we focus on the number of
agents as the main challenge, we choose to work in a fully observable environ-
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ment. As such we do not have to condition on agent-local observations. We
decompose Qtot into individual values similarly to VDN and QMIX, but use
the full, global state both during training and evaluation. To handle the large
number of agents and the difficulty introduced by their exploratory actions, we
use a grid based spatial decomposition. We add a sector abstraction, making
the assumption that the joint action value can be decomposed into value func-
tions across sectors (disjoint areas of the map) instead of individual agents.
We use a simple sum and leave more complex decompositions such as QMIX
to future work, as experiments in [176] show that non-linear value function fac-
torisation is often not required for scenarios with homogeneous agent types.

After the sector actions are chosen by the network, each sector is respon-
sible for emitting low-level actions for each agent present within, through a
separate mechanism. The sector action can be as simple as selecting which
action script to use to generate actions for the agents within that particular
sector. Besides simple but resource inexpensive methods, other algorithms
that don’t scale as well could be used due to the smaller problem size, for
example search algorithms if there is a forward model.

Each sector’s Q-function QSi
will be learned implicitly by the network

and will not benefit from any reward specifically given to sector Si or to any
individual agent. Strictly speaking QSi

is more an utility function than a
value function because it does not estimate an expected return by itself. For
simplicity, however, we will continue to call both Qtot and QSi

value functions.
Each sector chooses its action greedily with respect to its own QSi

, and
the joint action Qtot is chosen by maximizing

∑

i QSi
. The maximization of

Qtot can now be performed in time linear in the number of sectors, which will
usually be much smaller than the number of agents. For this method to work
well, the sectors dimension should be large enough such that at least a few
agents are present in most sectors.

10.3.2 Network Architecture

To reduce the number of learnable parameters it is common to use a neural
network for each agent and to share its weights between the agents. This
approach can be taken with sectors as well, but since we have access to the
global state it is more natural to use convolutions to keep the number of
parameters low.

A deep ConvNet computes higher and higher level features layer by layer,
with the same or possibly different spatial resolutions. It’s a very good tool for
a sector-based approach: it starts with higher resolution maps with low-level
features and produces lower and lower resolution maps but with increasingly
relevant features until reaching the target sector granularity.

An example network used for a grid-like 2-player combat scenario is shown
in Figure 10.1. There are 5 input feature planes for a 64× 64 grid map. Three
of them are Boolean values indicating unaccessible terrain (e.g., walls), own
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sector would be compared to the other actions. Using a number of filters equal
to the number of possible actions A for a sector results in the corresponding
4× 4×A block A1. The argmax over the last dimension gives the action with
the highest advantage value for each of the 16 sectors.

The same output head filters can be applied to any resolution Si layer to
obtain Q-values for a desired sector granularity. Actions can be emitted based
on the values from any of these layers, either by choosing a specific resolution
beforehand, by taking the max across all resolutions, or even by adding a
separate network component responsible for learning which sector granularity
to pick given the current state.

Increasing the number of sectors provides more accurate control over the
agents, but also increases the difficulty of the credit assignment and slows the
learning process. Using fewer sectors and the resulting ability to specify large
scale actions should make the exploration for actions leading to large rewards
more efficient, and unnecessary micro-management could be avoided for map
areas that are largely empty or that do not require complex behaviors.

In this work we focus on spatial decomposition, and opt for the simple fully
convolutional design described above. Although more sophisticated network
blocks could be designed, and even though temporal abstractions are compat-
ible with our method, they are not the focus of this paper. Stacking multiple
input frames along the depth dimension, using gated architectures such as
LSTM and GRU, or learning agent policies that implement the provided sec-
tor actions are left for future work.

10.4 Experimental Setting

In this section we describe the combat scenario problem to which we apply
Spatial Action Decomposition Learning. We provide details of the state fea-
tures and training methodology and evaluate our method’s performance in
comparison to independent Q-learning.

10.4.1 Environment

Real-time strategy (RTS) games are now a well established benchmark for the
RL community. They offer more difficult multi-agent challenges compared to
previous environments such as Atari games. In particular, RTS game com-
bat scenarios are a popular evaluation method for MARL algorithms, offering
mixed cooperative and competitive multi-agent environments. Combat sce-
narios have been traditionally used to test algorithms’ ability to scale, from
simple search based methods [44, 164] to script and portfolio blended vari-
ants [43, 239, 137].

The StarCraft II Learning Environment (SC2LE) [238] is one such pop-
ular platform for RL experiments. However, for our experiments we chose
the simpler but faster many-agent (MAgent) environment [259]. It supports
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fog of war.
Necessarily, sector actions should translate into low-level actions for the

agents located within. Here we choose to use 5 scripted algorithms to do so:
four that move units in each of the cardinal directions and one for approaching
and attacking enemy units, the same attacking script used by the enemy. In
future work these scripts can be replaced with other fixed or even learnable
agent policies, and the sector action can simply be which of these policies the
agents within should use, similar to a meta-learning approach [66]. To avoid
switching behaviors too often and to make exploration easier via temporal
abstraction, the sector action is only changed every k environment time steps.
A value of k = 5 was chosen based on a brief tuning process. As a note, keeping
the sector action fixed for a number of steps is recommended in conjunction
with moderately intelligent scripts or policies. Otherwise, extremely basic
scripts might move left for 1 step and then keep colliding into another unit or
a wall for the remaining n−1 steps.

The network input is the global state, a 64× 64 grid with 5 feature planes:
obstacles, own and enemy units and own and enemy hit-points. All features
are normalised by their maximum possible values.

10.4.2 Model and Training Settings

The network used for the sector abstraction is shown in Figure 10.1, with
actions being emitted on a 4× 4 sector granularity, unless otherwise specified.
For IQL, the input is a 13×13 observation centered around the agent’s position,
with 7 feature planes. In addition to the 5 already mentioned, there are two
more layers containing minimap information for both armies. For these layers,
the original map unit information is scaled down to 13 × 13, and normalised
such that each cell value is equal to the number of units within divided by
total number of alive units. A value of 1 is added to the cell containing the
acting agent, in the allied minimap. These minimap layers were included to
provide the agents information about the global state.

The IQL network consists of one 4×4 stride-2 convolutional layer followed
by two 3×3 stride-1 convolutional layers, all three with 32 filters and followed
by ReLU activations and batch normalisation. A linear layer of 256 units
follows, and two output heads for the value and advantage functions which are
summed to extract the final Q-values.

The learning algorithm is based on DQN [151], with the dueling architec-
ture update and N -step returns, with N = 3 across all experiments. The
replay buffer contains the most recent 300k experiences. Training starts after
the buffer is populated with 10k experiences. Batches of 128 experiences are
sampled uniformly from the replay buffer every 128 steps played, and the net-
work parameters are updated. The target network is updated every 3000 time
steps. All experiments use γ = 0.99.

All networks are trained using the Adam learning algorithm [121] with the
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Chapter 11

Conclusions and Future Work

In this chapter we give an overview of the contributions made in this thesis,
first as a summary then on a more detailed per-chapter basis and organized
into three broad areas. We follow by a discussion of promising future topics
for research.

11.1 Contributions

This thesis focuses on learning, using abstractions and adversarial search in
real-time domains with large action and state spaces, such as RTS games.
The presented abstract models for combat outcome prediction are very accu-
rate while reasonably computationally inexpensive. Hence, they can be used
in conjunction with higher level adversarial search algorithms to produce com-
petitive agents. We introduced two approaches to designing such algorithms
that are based on abstractions to reduce the search complexity. Firstly, Hier-
archical Adversarial Search uses multiple search layers that work at different
abstraction levels to decompose the original problem. Secondly, PuppetSearch
methods use configurable scripts as an action abstraction mechanism and of-
fer more flexibility. Both combat models and scripts have very basic spatial
capabilities, if at all, and we showed how to use CNNs effectively to improve
spatial awareness and increase the strength of search algorithms further.

Finally, for these complex domains full-game forward models rarely are
readily available and require extra effort to design and adjust. End-to-end
methods that learn or do not require implementation of such models are ap-
pealing. We have shown how the need of a forward model can be bypassed
during gameplay by policy networks using convolutions, or eliminated alto-
gether by using reinforcement learning algorithms. We obtained good results
using reinforcement learning to train agents in small scale battle scenarios.
However, these methods are challenged by larger environments, and learning
becomes more difficult with increasing numbers of agents. We have intro-
duced a new approach that uses CNNs to produce a spatial decomposition
mechanism which learns action-value functions on a per-sector basis instead of
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per-agent. Applied to a standard Q-learning method, this approach resulted
in increased performance over the original algorithm in both small and large
scale scenarios.

11.1.1 Combat Models

Chapter 3 describes a methodology for predicting the most probable army com-
position produced by an opponent in imperfect information strategy games.
The presented prediction system is based on a declarative knowledge repre-
sentation paradigm and thus background knowledge about game rules and
player observations can easily be encoded for any given adversarial environ-
ment. The system uses the game rules knowledge and player observations to
generate valid army compositions that the opponent might have over a given
period of time. When combined with data extracted from human replays,
this algorithm had very good prediction accuracy over intervals few minutes
in length. The algorithm is able to provide these predictions in real-time and
would be an useful component of high-level decision making algorithms in any
adversarial domain with many rules that can be expressed as constraints and
hidden opponent actions. In RTS games estimating the number of different
types of units produced by an enemy can be used to inform build order and
strategy selection, especially when coupled with the ability of predicting the
outcome of such a possible encounter. Two combat models built for this pur-
pose are described in the following two chapters.

Estimating outcomes for complex tactical problems is needed in high level
strategic decisions, such as when to force or avoid fighting, timing a retreat
or deciding what to build to best counter the opponent’s forces. While we
apply our research to RTS games, combat prediction could transfer to many
other multi-player or multi-agent games of an adversarial nature such as team-
based sports. Fast and accurate predictors are especially useful for look-ahead
search algorithms such as the ones presented in Chapters 6 and 8: they can
be used to assign agents to tasks, to estimate task completion likelihood or
for state evaluation. In Chapter 4 we present a Bayesian model that can
be used to predict battle outcomes, as well as predict what type and how
many troops are needed to defeat a given army. Model parameters are learned
from past encounters. Even training using only 10 battles, we achieve well
over 80% prediction accuracy, better than any of the baseline algorithms do
(logistic regression, naive bayes classifier, decision trees) even after seeing 400
battles. Moreover, it can suggest winning army compositions of equal size
to the opponents with 87% accuracy. This was, to our knowledge, the first
combat simulator applied to strategy games and trained on past encounters
against specific opponents. We encountered some limitations when we tried
incorporating it within our StarCraft AI bot, and we addressed them with
subsequent research described below.

Chapter 5 introduces a model that generalized the Lanchester attrition
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laws and successfully addressed the previous’ research three main limitations:

• The previous model was linear in the unit features (i.e., the offensive
score for a group of 10 marines is ten times the score for 1 marine).
While accurate for close-ranged (melee) fights, it underestimated the
effect of focusing fire in ranged fights.

• Only which army would win was predicted, but not the remaining army
size. That means the old model could be used for state evaluation, but
not as a forward model in look-ahead search algorithms. This is an
important requirement for instances where we do not have access to the
game forward model such as closed source commercial games.

• Experiments were run only using simulated data, without investigating
the model’s ability to adjust to different opponents by learning unit
strength values from past battles.

Learning from the limitations of the first combat prediction algorithm, this
new model fixed its most important deficits and proved to be quite useful in
practice. Pitted against some of the best entries from a recent StarCraft AI
competition, our bot with its simulation based attack-retreat code replaced by
predictions made using the new algorithm showed encouraging performance
gains. Overall, our combat model achieved better performance and was much
faster than the original game engine or simulators such as SparCraft. This
makes it suitable for search-based approaches that need a forward model to
advance or predict the next state after executing a certain action. Indeed,
when used as an evaluation function in research presented in Chapter 8, it
led to stronger results compared to other alternative popular heuristics. We
eventually introduced an even more accurate evaluation function method based
on CNNs, which is more general and considers the entire game state instead
of just combat units (Chapter 7).

11.1.2 Adversarial Search

As discussed in the introduction, standard adversarial tree search approaches
are not directly applicable to problems with large state and action spaces. To
reduce the search space, we propose different methods based on abstraction,
and perform adversarial tree search in the smaller resulting sub-problems. Ac-
curate evaluation functions like the ones described in the previous subsection
also help by to obtain good results from shallower searches.

Chapter 6 describes Hierarchical Adversarial Search – an algorithm with
multiple search layers that work at different abstraction levels. Hierarchical
decomposition is used to provide the layers with partial or abstract views
of the game state, and tasks to accomplish, in order to reduce the overall
branching factor of the search. This approach benefits from fast and accurate
predictors such as the ones described in Chapters 4 and 5 for estimating task
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completion likelihood and unit assignment to tasks. A simulator was used
as a basic forward model, and better results might have been obtained by
replacing it with the combat model presented in Chapter 5. This method can
be adapted to other adversarial problems with many agents, as long as they
could be decomposed in relatively independent problems. However, despite
promising results and potential, we discontinued this approach in favor of
the subsequent PuppetSearch method (Chapter 8) due to difficulties in hand-
crafting the multiple search layers and abstraction levels.

In Chapter 8 we present adversarial look-ahead algorithms that use config-
urable scripts with choice points as an action abstraction mechanism. We show
that capable agents can be obtained even using basic PuppetSearch designs
that select among a few given action scripts and that use coarsely abstracted
simulators for world forwarding (Section 8.1). Different algorithm designs were
explored in later research (Section 8.2) with the main results listed below:

• Using scripts with fewer choice points worked better on smaller maps,
and conversely more choice points led to better performance on larger
maps.

• Alpha-Beta variants performed better than MCTS ones, especially on
larger maps.

• Running a deeper search by spreading the computation over multiple
frames during which actions are generated according to the principal
variation from the old search proved effective, especially on larger maps.

These script-based methods can be very valuable to commercial game AI
designers, or to other domains where control over the range of resulting plans
or behaviors is required. Techniques based on neural networks, for example,
are sometimes less appealing when system decisions need to be justified and
understood by designers. Configurable scripts can be used as an action ab-
straction mechanism in other domains, as long as they are combined with
search and reasonably fast forward models or other methods to chose the next
action – such as policy networks as in Section 8.3. Example applications might
include airport routing and planning traffic lights, or power grid balancing.

Chapter 7 shows effective use of CNNs to learn the value of game state
for RTS games. We showed significant improvement in accuracy over simpler
state-of-the-art evaluations, including methods based on previous research de-
scribed in Chapters 4 and 5 . The learned function evaluates the entire game
state, and is not restricted to just tactical situations like the described combat
models are. As a result, despite its much slower evaluation speed, on average
the search algorithms that incorporated the CNN based evaluation function
were considerably stronger. Even more, this method requires less domain
knowledge and parameter tinkering compared to combat-specific models, and
can be easily applied to many other grid-like domains.
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We extended this research for a broader variety of scenarios and tested
the new network design using competition size RTS maps in work described in
Section 8.3. We also trained a policy version of the same network to predict the
output of slower search-based algorithms. Using a policy network has several
advantages, the first of which being that it eliminates the need of a forward
model during gameplay. Secondly, it is much faster than the original search
algorithm it was trained to emulate, which allowed the use of a separate tactical
search algorithm to improve unit micromanagement. The resulting combined
algorithm was stronger than all its individual components and other state-
of-the-art algorithms. This gave us the confidence to use recent advances in
neural network and reinforcement learning algorithms to bypass the need for
forward models, which resulted in research summarized in the next subsection.

11.1.3 Deep Reinforcement Learning

Chapter 9 describes the application of popular RL algorithms such as DQN
and A3C to learn how to fight battles in a AAA game without the use of
simulators or forward models. The multi-agent learning task was decomposed
into simultaneous single-agent problems via the IQL paradigm. To speed up
learning in this complex environment with sparse rewards, we used techniques
such as potential reward shaping and curriculum learning. The resulting agents
demonstrated complex cooperative behaviors and soundly defeated the built-
in game AI. In Section 9.4 we describe a hierarchical RL approach designed to
scale better with the number of agents and to decrease the number of required
games required for learning. A two-layer structure was used, with the higher
level policy making decisions on a coarser layer of abstraction and choosing
goals to be implemented by the lower level policy. While low level policies
able to accomplish the given handcrafted objectives were obtained, training
both high and low level policies jointly did not yield good results. Even so,
we believe that learning hierarchically structured policies can improve sample
efficiency, especially on new tasks (e.g., an unseen map or a scenario using
a new type of unit) by re-using shared primitives executable over many time
steps. These primitives can be policies that learn to accomplish a small set
of fixed goals like in our case, or use a larger goal space, but they could also
be much simpler, for example hand-crafted action scripts as in PuppetSearch.
Temporal abstractions and shared policy hierarchies are proven to help on a
wide range of environments with long time horizons, including 2D continuous
movement, gridworld navigation, and 3D physics tasks [66]. Alternatively, in
suitable domains spatial abstractions can be used to speed up learning, and
research to this extent is described in the final chapter and summarized in the
paragraph below.

Lastly, Chapter 10 describes a novel learning approach for cooperative-
competitive multi-agent RL environments with agents learning from a single
team reward signal. Existing methods are often limited to a small number of
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agents, as learning becomes intractable when the agent number increases con-
siderably. We described a method that overcomes inefficiencies of standard
multi-agent Q-learning methods by exploiting existing spatial action corre-
lations, which are leveraged by CNNs to decompose the joint action-value
function on a per-sector basis. Fixed scripts are used as abstract actions cho-
sen by each sector, but other options would also work because of the smaller
dimensions of a sector compared to the full map (e.g., 1/16 or 1/64). Al-
ternatives include algorithms discussed and used in previous chapters: search
based algorithms if there is a forward model, or policies learnt from replays
or via RL. Results for combat scenarios with 20 to 100 units per side showed
improved performance over simple scripting and policies optimized by inde-
pendent Q-learning. Our experiments demonstrated that our new architecture
made long-term credit assignment from a single team reward more tractable,
and improved scaling to larger numbers of agents. The proposed method could
be applied to other environments that allow a hierarchical and spatial division
of the space, for example 2D or 3D navigation or routing multi-agent tasks.

11.2 Future Work

We feel that one important area for future research is model-based RL [214].
Complex applications, such as AAA games, do not provide access to their in-
ternal forward models. Even if they do, they are usually too slow and use
too many resources to be useful in online decision making, especially in look-
ahead search algorithms. Handcrafting such a simulator is time consuming
and the result is seldom as accurate as desired. The SparCraft simulator is
one example: attempts at improving its movement simulation has shown that
small StarCraft mechanics such as acceleration and turning animations which
are not explicitly modeled by the simulator created cumulative errors that re-
sulted in rapid divergence over time [190]. One solution is to use model-free
RL to learn a Q-value function that estimates the expected reward of the dif-
ferent actions available in the present state, as we have done in Chapters 9 and
10. Model-free agents can greedily maximize their value function every time
step, and do not require computationally expensive planning and look-ahead
search. Another alternative which we propose for future work is to explicitly
learn a model of the environment, which can be used for planning or training
purposes. Recent research shows promising results of model-based agents in
3D shooter games. The world models [87] approach learns a compact model
of the environment and can be trained relatively quickly in an unsupervised
manner. The resulting world model can be used as a forward model, and
agents can be trained entirely inside their own hallucinated dreams gener-
ated by it. Executing world model simulations can be done using GPUs in a
distributed environment and would offer a significant speed-up compared to
the original environment. Furthermore, the authors of [87] show that policies
learnt only in the hallucinated world transfer surprisingly well to the actual,
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real environment.
In Chapter 9 we suggested that in a multi-agent hierarchical framework,

following high-level decisions for a fixed number of steps can increase the multi-
modal aspect of the returns. Typical RL algorithms predict the average reward
an agent receives from repeated attempts at a task, and use this estimation to
choose the best action to take in a given state. However, randomness in the
environment can produce outcomes very different from this average, and even
orders with large positive expected values might lead to negative rewards. For
example, defeating weak melee troops like a catapult squad is an easy task for
a general’s bodyguards in TotalWar games, but the one lucky shot they might
pull off can happen to hit the general, causing morale wavering and significant
impact on the battle. Randomness can certainly be part of the environment
by design, it can arise because of partial observability and it will increase with
the number of interacting agents. Distributional RL [17] is a paradigm that
models not only the average but also the full variation of rewards, making it
possible to differentiate between safe and risky choices that have similar ex-
pected returns. This can be valuable for games that require AIs to exhibit
very stable combat behaviors and to spend their resources wisely, as well as
for any other domain where budgeting plays an important part – for example
money in online trading or time in traffic problems. Recent research intro-
duced distributional generalizations of the DQN algorithm that are flexible,
generally applicable and prove both faster to train and more accurate than
previous models [48]. We believe that incorporating this paradigm would ben-
efit learning in complex multi-agent domains, especially when large numbers
of agents are learning simultaneously.

One of the issues that arose when designing RL agents for our research,
most notably in Chapter 9, is that of alignment between the goals the agent is
trying to achieve and those of its designer. Undesired behavior can emerge as
a result misspecifying reward functions, which is a common cause of misalign-
ment. For example, agents in a boat racing game learnt to completely ignore
desired behavior of racing and to repeatedly collect points instead by moving
in a small loop [45]. Agents can even prefer to get killed on purpose at the
end of one level, to avoid having to play a more difficult second level [185]. In
our case, we found that the process of manually redesigning the reward func-
tions to encourage some behaviors and discourage others is a tedious process,
and we believe that approaches that optimize a learned reward function are
promising avenues to be explored in this context. For example, recent work
defines desired goals using non-expert human preferences between pairs of tra-
jectory segments [36]. This approach has been shown to solve complex RL
tasks (including Atari games) effectively without access to the reward func-
tion, with human feedback on less than one percent of the agent’s interactions.
We believe this technique would reduce the need of anticipating unexpected
scenarios and behaviors while designing the agent, by adding new training
data to deal with issues as they are discovered.
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Another interesting research avenue lies in the direction of hierarchical RL.
Very recent research shows promising results using a two-level hierarchical
RL algorithm built on top of 165 abstract macro actions that were designed
manually [212]. While the resulting agent consistently defeats the built-in
StarCraft II AI and above average-level human players for the first time in
StarCraft games, it has lost against expert (top 50% - 30%) human players.
Inspired by these results, we continue exploring hierarchical RL ideas which
require less hand-crafting effort. Firstly, future work should explore replacing
the scripts used to generate low-level actions the method presented in Chapter
10 with learnable policies. Secondly, the approaches presented in Chapters 6,
8, 9 and 10 only possess two temporal scales. While the PuppetSearch action
scripts and HAS tasks are abstract enough primitives, in the RL experiments
presented in Chapters 9 and 10 we used a fixed ratio of 10 and 5 real-world steps
respectively to one high-level action. A deeper or more temporally abstracted
architecture should help with exploration and long horizon tasks. Finally, we
note that designing task-specific goals to be used in conjunction with temporal
abstraction requires effort and might not generalize well between tasks. In
future work we would like to study proposing and learning goals automatically
by the high-level controllers, which has been shown to work even with off-policy
experience based methods [156]. The authors introduce off-policy corrections
to alleviate the fact that low-level behaviors change the action space for the
high-level policies, and learn goals in the same space as the problem’s state
space resulting in a generally applicable and very sample-efficient algorithm.

There is on-going research in several other adjacent areas that could offer
insights and benefit our work. To mention a few, transfer learning is a popular
approach where models developed for a task are reused as starting points for
models on other tasks, where it allows rapid progress or improved performance.
Using simpler scenarios in which agents can master a set of specific skills
and then transferring knowledge to new environments can enable learning
and drastically reduce the learning time on very challenging tasks. Another
relevant problem is few shot learning, which deals with the lack of training data
(e.g., we might only have a few human expert game replays) and an algorithm’s
ability to adapt to unforeseen situations that have not been encountered during
training. Using standard techniques in these scenarios often leads to overfitting
the data, and the model has to be forced to generalize beyond the few available
training instances.

Lastly, further effort at encouraging the videogame industry to adopt tech-
niques described in this dissertation should be undertaken. We have partic-
ipated in many AI competitions for RTS games, and while we are far from
defeating human players as in Go [197] or more recently Dota II [169], these
efforts showcase the benefits over more traditional AI methods. We have pub-
lished tutorial versions of Chapters 5 and 8 in a book directed at industry
professionals [205, 12], and the availability of a new generation of open-source
tools that empower game developers with ML techniques [227] will make such
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efforts easier in the future. Finally, we feel that efforts at bringing the games
industry and AI research closer, such as the internship presented in Chapter
9, are a positive step in this direction, and benefit both parties.
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game-tree search in RTS games. In Artificial Intelligence in Adversarial
Real-Time Games Workshop, Tenth Artificial Intelligence and Interac-
tive Digital Entertainment Conference, pages 14–18, 2014.

[236] Alberto Uriarte and Santiago Ontañón. Combat models for rts games.
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Appendix A

Other Research

This appendix contains abstracts of further work I contributed to as part of

my doctoral research. It is not included in the main body of this dissertation

because my contributions were minor.

A.1 Parallel UCT Search on GPUs

This section contains the abstract of work led by Nicolas A. Barriga. My main

contributions were in feedback relating to algorithm design and article writing.

Michael Buro supervised the work. c⃝2014 IEEE. Reprinted, with permission,

from Nicolas A. Barriga, Adrian Marius Stanescu and Michael Buro, Parallel

UCT Search on GPUs [10], IEEE Conference on Computational Intelligence

and Games, 2014.

We propose two parallel UCT search (Upper Confidence bounds applied to

Trees) algorithms that take advantage of modern GPU hardware. Experiments

using the game of Ataxx are conducted, and the algorithm’s speed and play-

ing strength is compared to sequential UCT running on the CPU and Block

Parallel UCT that runs its simulations on a GPU. Empirical results show that

our proposed Multiblock Parallel algorithm outperforms other approaches and

can take advantage of the GPU hardware without the added complexity of

searching multiple trees.
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A.2 Building Placement Optimization in Real-

Time Strategy Games

This section contains the abstract of work led by Nicolas A. Barriga. My main

contributions were in assisting with experiments design and execution, and

article writing. Michael Buro supervised the work.

It was previously published [9] at the Workshop on Artificial Intelligence

in Adversarial Real-Time Games, part of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment (AIIDE), 2014.

In this paper we propose using a Genetic Algorithm to optimize the place-

ment of buildings in Real-Time Strategy games. Candidate solutions are eval-

uated by running base assault simulations. We present experimental results

in SparCraft – a StarCraft combat simulator – using battle setups extracted

from human and bot StarCraft games. We show that our system is able to

turn base assaults that are losses for the defenders into wins, as well as reduce

the number of surviving attackers. Performance is heavily dependent on the

quality of the prediction of the attacker army composition used for training,

and its similarity to the army used for evaluation. These results apply to both

human and bot games.
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Appendix B

Research Environments

Here we describe some of the most common RTS game AI research environ-

ments in current use.

B.1 StarCraft: Brood War

StarCraft is a military science fiction RTS game developed by Blizzard Enter-

tainment and published in 1998. StarCraft: Brood War is the expansion pack

published later in the same year. The game features three distinct races that

require different strategies and tactics to succeed. The Protoss have access

to powerful units with advanced technology and psionic abilities. However,

these units are costly and slow to acquire, encouraging players to focus on

strategies that rely more on unit quality than quantity. The Zerg, in contrast,

have entirely biological units and building which are weaker, but faster and

cheaper, forcing the player to rely on large unit groups to defeat the enemy.

The Terran provide a middle ground between the other two races, offering

more versatile units. The game revolves around players collecting resources

to construct a base, upgrade their military forces, and ultimately destroy all

opponents’ structures.

The BWAPI library enables AI systems to play the game and compete

against each other. This, coupled with the fact that there are professional

players and thousands of replays available for analysis, have contributed to

make StarCraft the leading platform for RTS game AI research.
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Figure B.1: Screenshot of StarCraft:Brood War, showing a group of Zerg
assaulting a Protoss base.

Some characteristics of StarCraft are:

Real-time: The game runs at 24 simulation frames per second, and it moves

on even if a player does not execute any actions.

Simultaneous moves: All players can issue actions at every frame.

Durative actions: Some actions take several frames to complete.

Imperfect information: Fog-of-War prevents each player from seeing the

terrain and enemy units until a unit under his command has scouted it.

Moreover, only terrain remains visible, with all enemy activity hidden, in

previously revealed areas without a friendly unit currently in the vicinity.

Map size: Common map sizes range between 64x64 and 256x256 build tiles.

A build tiles is the basic map subdivision, used for placing building. Each

build tile can be divided into 4x4 walk tiles, for determining walkable

areas. Each walk tile is comprised of 8x8 pixels, which determine the

precise location moving units.
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Figure B.2: Screenshot of SparCraft, showing a combat experiment between
Alpha-Beta and UCT based players.

State/Action Space: [168] provide 101685 as a lower bound on the number

of possible states in StarCraft. They also estimate the average branching

factor to be ≥ 1050.

B.2 SparCraft

SparCraft is a StarCraft combat simulator written by David Churchill1. Its

main design goal was to estimate the outcomes of battles as quickly as possible.

To accomplish this it greatly simplifies the game. There are no collisions,

thus, pathfinding is not required. Only basic combat units are supported,

and no spells, cloaking or burrowing. It comes with several scripted players

implementing different policies, as well as several search based players. Adding

missing features is possible, as SparCraft is an open source project.

B.3 µRTS

µRTS2 is a simple RTS game designed to test AI techniques. It provides

the basic features of RTS games, while keeping things as simple as possible:

only four unit and two building types are supported, all of them with size

1https://github.com/davechurchill/ualbertabot
2https://github.com/santiontanon/microrts
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