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Abstract

Designing a Dense Wavelength-Division Multiplexing (DWDM) optical network based on ring
protection schemes is logically similar to designing SONET ring-based networks. An aspect that
is common to much of the work on the optimized design of multiple-ring SONET (or WDM)
networks is that they treat the design as a form of graph-covering problem. Although this
provides good fully-restorable designs,_ there may be unnecessary lower bounds on the network

cost when the ring-sets found are restricted to protect every span in the fiber graph.

This thesis explores the performance of and feasibility of using “Span Elimination” to advance
the art of ring network design beyond the principle of pure coverage design. Span elimination is
the problem of finding those key spans of an existing fiber graph on which it is more effective not
to route any demands, thereby avoiding the requirement of ring coverage on the span. Four
systematic span elimination strategies and their variants have been developed to realize the
effects of span eliminations. They are Modular Aggregating Pre-Routing (MAPR), lterated
Routing and Elimination (IRE), Iterative MAPR (iMAPR) and Post-Inspection and Re-routing

(PIR). The experimental tests on these heuristics are performed on four trial networks.

The span elimination heuristics are compared against the pure coverage design with no span

eliminations. Experimental results show that the span elimination heuristics offer significant cost
reduction from the designs that emerge from a coverage-based solver, arising from judicious span
elimination. Each of the proposed span elimination heuristics has its own merits and performance

in terms of solution quality and computational time.
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1.0 Introduction

There has recently been increasing pressure on optical capacity, brought about by the tremendous
surge in both narrowband and broadband services. This unprecedented growth in demand for
transport capacity, largely driven by Intemet applications, has driven network carriers to draw
solutions for their, soon-to-be exhausted, fiber networks. With the advent of optical components
(e.g. tunable optical sources, filters, amplifiers and wavelength converters), optical multiplexers
and cross-connects are now becoming available, enabling the much anticipated Wavelength-
Division Multiplexing (WDM) based optical networks. With the favorable economics of WDM
networks, network carriers have found a straightforward solution to their network problems. To
date, WDM is the widely regarded answer for the very high bandwidth requirements, and the

foundation of optical transport networks in the future [1]-[3].

There has been a great deal of development on the implementation and technology of WDM
networks [4]-[6]. WDM systems with 32 wavelengths capable of supporting SONET systems
operating at 10 Gb/sec each are commercially available. Denser multiplexing schemes, such as
Dense WDM systems with 160 wavelengths developed by Nortel Networks [7], are currently
under field trial by MCI Worldcom [8]. When combined with SONET systems operating at 10
Gb/sec, this DWDM system is capable of delivering a total aggregate capacity as high as 1.6
Tb/sec, an equivalent of 28 million simultaneous Internet connections over a single strand of
fiber. With such a high concentration of traffic on a single fiber, a single point of failure in a fiber
network can potentially be disastrous. A single-fiber failure scenario with no fast protection
scheme could be catastrophic to the network carriers, and could have significant financial and

social consequences: therefore, some form of fast network restoration is essential.

In recent years, much work has been done on solving the problem of protecting optical networks
from a single point of failure. The work can basically be divided into two approaches, namely,
mesh networks and ring networks [9,10]. Although the mesh protection scheme is known to have
the lowest redundancy in transmission capacity (since it uses an undedicated spare capacity
routing), ring architectures are often preferred in practice because of their simpler and faster
switching mechanism, typically under 150 msec [11]. This point has since been debated with the
appearance of fast mesh restoration schemes [12] and increasingly fast optical technologies [13].
However, though not as capacity-efficient as mesh networks, ring networks can be more

economical in metropolitan applications where the dominant costs are incurred in nodal



equipment [14]. For this reason, SONET rings are now in common use for survivable transport
networking and are promising architectures for protecting optical networks from single-point

failure.

The problem of designing WDM optical networks based on ring architectures is logically similar
to designing SONET ring-based networks [15]. However, the design of multi-ring networks is
known to be an exceptionally complex combinatorial optimization problem [16,17]. In recent
years, a number of approximate design methods have been proposed for the multiple-ring design
problem [16]-[21] which approach the design as a form of the min-cost graph-covering problem.
Some schemes take a capacitated coverage view (the ring capacities placed must be adequate for
carrying all demand crossing the underlying span) [16]-[20], or an uncapacitated, purely logical

coverage view (at least one ring covers every span) [17,21].

The basic building blocks for a multi-ring network design are shown in Figure 1.1. At the highest
level, the problem inputs include the network topology, the demand matrix, the ring technologies
that are currently under consideration, and the cost model for the network equipment. The
SONET ring technologies that are commonly used for survivable transport networking are Bi-
directional Line-Switched Rings (BLSR) and Uni-directional Path-Switched Rings (UPSR) [22],
which have already undergone a fairly extensive study from the optimization perspective. The
solution is a min-cost ring design that consists of a set of ring systems specifying the type (BLSR
or UPSR), capacity (modular capacity of each ring system), assignment of demands (the working
capacities carried by each ring’s span modules) and inter-ring transitions (the connections
between each ring system) together to satisfy all the capacity requirements in the network at

minimum cost.
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Figure 1.1. The basic elements in a coverage-oriented multi-ring network design.
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The Nerwork Topology is the underlying fiber graph that consists of nodes and spans where the
nodes are the Add Drop Multiplexers (ADM) or, in the context of an all-optical network, Optical
Add Drop Multiplexers (OADM), and the spans are the physical fiber. Here it is assumed that the
physical characteristics of the network topology, e.g. node placement, span distances, the link

budget requirements of each span, have been investigated and realized.

The Demand Matrix is derived from Point-To-Point (PTP) customer traffic requirements. Here,
each demand represents an individual digital signal carrier, which could be a DS-3", STS-1 or
STS-N or a wavelength. The Cost Model for the physical network equipment represents the ADM
common equipment cost, the Add/Drop port cost, the ring-to-ring transition port cost and the fiber
cost. The adopted cost model generally follows a certain level of economy-of-scale. The Routing
Strategy routes the PTP demands from the demand matrix onto the given network topology,
thereby defining the “w;” capacity requirements on each span. The Multi-Ring Coverage Design

is an algorithm where, for the given capacitated network topology and the corresponding cost
model, the objective is to find a set of survivable rings that fully serves all the demands with

minirnum total cost. The result is the min-cost ring coverage design.

1.1 Concept of Span Eliminations

In general, the capacity requirements of each span are determined by routing demands over the
shortest path from end-to-end based on the geographical fiber distances. Intuitively, this can lead
to coverage solutions with one or more very low-utilized rings, that is, rings that were placed, in
essence, according to the strict coverage requirement but which serve little demand. Consider the
simple graph and demand matrix in Figure 1.2 where the capacities accumulated on each span
have been determined by the shortest-path routing of the PTP demands over the fiber graph.
Assuming OC-12 4-fiber BLSRs, a minimum of two rings is required in a min-cost ‘coverage’
design. Moreover, both of these rings are forced to cover span (2-4), though together they have

only 2/24" capacity utilization on that span.

" The rate for DS-3 is 44.736 Mb/s and the rate for STS-1 is 51.880 Mb/s. Note that this work focuses on
these highly multiplexed transport signals representing a unit of PTP demand from the source node to the
destination node depicted by the demand matrix. not on individual calls. sessions. packets. elc.
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Figure 1.2. Illustration of the span elimination concept.

In Figure 1.2, it is fairly apparent by inspection that “‘eliminating” span (2-4) would force the
demand flow using span (2-4) to take another route or routes (with demand bundle splitting) and,
as constructed in Figure 1.2b, would result in a single perfectly filled OC-12 ring to cover the
network graph. Note that the capacity utilization of the ring increases although fewer rings are
used due to eliminating span (2-4). In the language of [16], the capacity and capture efficiency are
both improved illustrating that cost optimization based on span elimination is possible and
feasible. The example, of course, shows the ideal situation. The challenge in practice is to identify
those spans of a graph which, for a given demand pattern and ring modularities, will have

desirable effects, if eliminated.

However, if the wrong span is eliminated, the results can backfire: total (inter-ring) routing costs
can increase due to excess detouring from the shortest-path, and ring counts can increase due to

exceeding a medularity threshold. For example, consider the same network graph and demand



pattern as that illustrated in Figure 1.2a. Suppose we modify the demand pair (2-4) to three units;
using the shortest-path, span (2-4) in the resulting capacitated network graph will have three units

of demand as shown in Figure 1.3 below.

Fully Capacitated
0C-12 Ring ——

Additional low-utilized
ring is required

Figure 1.3. Span Elimination ‘backfired’.

If span (2-4) is eliminated from the network graph and the affected demands are detoured using
other paths, the resulting sub-graph requires two rings, one of which is a single fully utilized OC-
12 ring and the other a copy of the ring, but with only 2/48" ring capacity utilization. The overall
result is a significant increase in the total ring design cost (additional network equipment is
required), illustrating that there are situations where span elimination has reverse effects; instead

of reducing cost, an increase in cost is obtained.

To summarize, span eliminations can lead to a better-optimized min-cost multi-ring design:
however, span eliminations can backfire. These two factors have led to the development of
efficient systematic methods to implement span eliminations. Essentially, physical network
equipment, such as ADMs, amplifiers and optical fibers, are saved in exchange for additional port
cards in the existing ADMs. Although the motivation is the potential cost benefit of these
exchanges. the selection of which spans to eliminate remains crucial. It is known that experienced
manual planners, with some trial and error, can fairly efféctively visualize the span elimination
opportunities in complex real-sized problems [23]. However, like any other similar design
problems, a systematic algorithmic approach would be desirable to consistently attain the most-

improved results.



At the practical perspective, implementing span eliminations can have significant impact on
decision making especially when carriers are planning their next growth increment. Using span
eliminations, planners can provide options and test different strategies to optimize the use of their
backbone network. For example, planners may find that, they can stop using an existing facility
route” for the next planned growth increment and least it to potential customers, while still be able
to maintain the current customer demands by using alternate facility routes. In addition, planners
may want to move selected demands off an existing facility route to retire old equipment or to
completely disuse a facility route and sell it. In other words, at the planner’s view, the facility
route for use is available for use if the planners which to establish a transmission line over it, but
the design is not compelled to do so. Therefore, span eliminations can provide planners with the
information that they need, enabling them to draw out the best strategy for their backbone

network.

1.2 Research Objectives

The objective of this thesis is to explore a different dimension of cost optimization in ring
network design based on topology reduction using span eliminations. Specifically, this thesis
proposes several systematic strategies to effectively implement the concept of span eliminations
and to provide good solutions to the optimized min-cost multi-ring design. It is hypothesized that
by removing the proper spans from the network, the total network design cost can be significantly

reduced.

The effectiveness of the proposed strategies will be evaluated and compared to designs obtained
using pure shortest-path routing without span eliminations, based on the reduction or increase of

the total network cost and runtime required by each strategy to achieve the given solutions.
1.3 Outline

Chapter 2 contains an introduction to the key concepts and terminology for span eliminations
and a review of the prior work relating to this area. This chapter also describes the characteristics

of the network models used in this research.

* facility route refers to a potential network span.



Chapter 3 introduces the Span Coverage Integer Program (SCIP) which will be used to evaluate
the proposed span elimination strategies. SCIP is a pure (ideal) capacitated span coverage integer
program that strictly finds a min-cost subset of rings that are required to cover all the non-zero
span working capacities in the network. Some experiments, which used this coverage tool on
networks using shortest-path routing, are described. These benchmark results will be used to
compare the efficiency of the proposed span elimination heuristics. With the simplicity and
repeatable aspects of SCIP (also to be described in this chapter), it is also claimed that it can be
applied effectively as a surrogate for the full-blown ring coverage heuristics, e.g.

RingBuilder{16], in purely relative or comparative design studies.

Chapter 4 and Chapter 5 present the first two span elimination heuristics that were developed
and studied in this thesis, namely Modular Aggregated Pre-Routing (MAPR) and Iterated Routing
and Elimination (IRE). The concepts and methods of implementing MAPR and IRE are described

in these chapters.

Chapter 6 describes experiments performed using MAPR and IRE on the selected network
models evaluated using SCIP. These heuristics are compared against the results using shortest-
path routing (also using SCIP) in terms of solution quality and computational runtimes. An
interim conclusion summarizes several observations obtained from the experiments which affect

the subsequent development of other span-elimination heuristics.

Motivated by the findings in Chapters 4 to 6, which outline several limitations and provide deeper
understanding of span eliminations, Chapter 7 details the modifications and improvements that
are made to MAPR. The improved MAPR heuristic is called Iterative MAPR (iMAPR), which

basically implements a series of MAPR runs.

Chapter 8 introduces a new span elimination heuristic called Post-Inspection and Re-routing
(PIR). From the evaluation of MAPR and IRE, it was realized that there are situations where
these heuristics fail to give good solutions. A simple example of this situation is presented and
exploited to develop PIR. The concepts and methodologies for implementing PIR are described in

this chapter.



Chapter 9 contains the results of the experiments performed using the improved strategies
iIMAPR, and IRE and the new strategy, PIR. These heuristics are evaluated in terms of their
solution quality and computational runtimes. A conclusion is drawn here on which span
elimination heuristic performs the best overall together with a detailed summary of a comparison

between the characteristics and performance of each investigated span elimination heuristic.
Chapter 10 evaluates SCIP against the full-blown ring design heuristic implemented in the
software package, RingBuilder. This chapter essentially collects sample results using both of

these coverage tools and finds out how well these samples are statistically correlated.

The thesis is concluded and summarized in Chapter 11 with suggestions for future research.



2.0 Span Elimination Concepts & Prior Work

This chapter is dedicated to describing the concepts and methodologies of span elimination. Later
in the chapter, the experimental requirements are laid out as well as the network models that were

investigated throughout this research.

2.1 Introduction to Span Elimination

As mentioned in the opening chapter, span elimination should be an integral part in a min-cost
multi-ring network design process. In a capacitated network, where the capacity requirement in
each span is determined by shortest-path routing over the network graph, it is obvious that this
can lead to some spans having little demand to serve. By themselves, such spans will ultimately
lead to coverage solutions having one or more low-utilized rings. Multi-ring coverage algorithms
are unable to harness the knowledge of these low-capacitated spans because they are required to
cover all capacitated spans. This is where a span elimination strategy comes in as a systematic
method of determining and eliminating spans that will deliver a better optimized min-cost multi-

ring coverage design.

The development of span elimination strategies is approached in two systematic categories. First,
the span elimination strategy is viewed as a pre-processor to the multi-ring coverage design as
shown in Figure 2.1a. The goal of this approach is to resolve the issue of low-capacitated spans
by avoiding their use in the resulting capacitated network. This is done by detouring the demand
routing paths” either at the span-level or at the path-level (refer to Figure 2.2) to take up the slack
capacity of other spans rather than restricting them solely to achieving the shortest distance as
with a shortest-path algorithm. The result of this modification on the routing algorithm could
deliver better network efficiency and increase the number of uncapacitated spans: the fact that
demand paths are detoured to fill up other spans will leave some spans unused. These unused
spans, satisfying the conditions to be discussed later in the Chapter 2.3.1, are eliminated and a
multi-ring coverage design is obtained from the resulting sub-graph (with unused spans

eliminated).

* Two edges are said 1o be adjacent if they share a common node. A parh is defined as a sequence of
adjacent edges (v/, va), (Va. va),..., (Vee2, Viet)s (Viess Vi), in which all the vertices Vi, V..., Vi are distinct.
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Figure 2.2. Different approaches that are used to detour demand (1-4) routing paths.
(a) Span-Level. (b) Path-Level.

In a second basic approach, span elimination is intended to serve as a post-processor to the multi-
ring coverage design (see Figure 2.1b). It starts with a coverage design resulting from the
shortest-path routing. Spans that satisfy the conditions to be described in Chapter 2.3.1 are
identified and eliminated. Affected demands that are served by the eliminated spans are detoured
over other alternate paths taking up the slack capacity of other spans to their modular sizes. The
idea is that if this type of procedure is successfully completed without pushing some other rings

over their modular boundaries, a better and improved design may be obtained.



2.2 Prior Work in Span Elimination

The first mention of the span elimination issue can be traced back to the work by Flanagan [23].
Flanagan briefly describes the application of span elimination in ring design suggesting that spans
with less traffic be eliminated. The traffic affected by the elimination can then be re-routed over

other rings. The idea is as quoted [23]:

“Spans with less traffic can be

F Ring 2 E eliminated from the ring design. If
span DE in Figure 8 has very little
D D traffic, it can be eliminated from the

ring design. Traffic between D and
E can be rerouted on ring 2 through
A A F. Combining these two techniques
— multiple spans and span
elimination — ensures that the ring

B 8 design closely matches the traffic
“Fig. 8. Span Elimination” (adapted from [23]) demand.”

More work was done by Doshi and Harshavardhana [18] in their work called Ring Deloading.
Their technique specifically identifies the under-utilized rings which they call the straggler rings.
These rings are the direct result of demands being placed on spans which are over their maximum
modular capacity, where additional ring(s) are required to cover the excess capacity. The object
of ring deloading is to see if the demands in the straggler rings can be removed by re-routing
them over alternate paths without pushing some other rings over their modular boundaries. These

rings can then be eliminated to significantly reduce the total network cost.

Another on-going work that implements span elimination is by Morley and Grover [30,34] in
Fixed Charge and Routing (FCRIP). FCRIP is one of the proposed mathematical programming
approaches to designing a ring network at min-cost. It simultaneously solves for the ring set and
the demand routing decisions for the ring design. As such, this approach does not implicitly
assume a strict full span coverage requirement but inherently solves the problem of sub-graph

topology determination, which involves one or more span eliminations.



2.3 Research Methods

Before reaching the core of this research, several preliminary considerations have to be
established. In the sub-chapters that follow, the key terminologies, requirements, parameters and

conditions which are adapted in this research are discussed.

2.3.1 Network Topology Considerations

In order for a graph to be survivable, it has to be bi-connected. In a bi-connected graph, each pair
of vertices a and b in the graph has at least two vertex-disjoint paths between them. This
requirement makes it feasible to protect the network from a single point of failure (either a span
failure or a node failure). Having satisfied this prerequisite, it is then essential to identify and
exclude from consideration certain spans that cannot be eliminated, because their removal would
result in the graph becoming one-connected. Any span which is required in order for rings to
cover all the network nodes when the limit in the number of ring nodes is taken into consideration
must also be excluded from removal. First a minimal bi-connected sub-graph (MBG) of the initial
fiber graph must be found, where a minimum number of spans is required by the graph to retain
full bi-connectivity” for all node pairs. This sub-graph is then said to consist of essential spans for
bi-connectivity, a necessary condition for a ring cover to exist. Essential spans are, by definition,

excluded from consideration for span elimination.

In addition to the essential spans derived from MBG considerations, other spans may be added to
the essential spans set if their removal would prohibit one or more other spans from being
covered given a design maximum cycle size (number of hops in a ring). For instance in Figure
1.2, if the maximum cycle size were three, span (2-4) would be essential because the minimum
cycle size to cover the resulting sub-graph if it were eliminated in Figure 1.2b would be four. The
remaining non-essential spans are eligible for the span elimination process. Figure 2.3 gives
another explicit example of this occurrence. Figure 2.3a shows the original network graph, the
essential spans and the non-essential spans when there is no limitation in the maximum cycle size.
When the maximum cycle size is set to three, span (2-3) becomes essential because if span (2-3)
were eliminated, span (1-2), (1-3) and (3-4) would become un-coverable since the minimum
cycle size for cycles to cover these spans now is four. This explanation also applies for span (2-
4): span (2-4) is essential since if this span were eliminated, spans (2-5), (3-4) and (4-5) would

become un-coverable.
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Figure 2.3. Illustration of the effects of maximum cycle size constraint on essential
spans. (a) Original network graph. (b) Span (2-3) and (2-4) become essential

when the maximum cycle size is set to three.

A distinction needs to be made here. Flanagan’s work describes the non-essential spans as spans
that carry less traffic. However, it is apparent here that non-essential spans need not necessarily
be spans that serve little demand. The important issue is to eliminate spans (regardless of the
affected demand size) where the affected demands can be re-routed to take up the slack capacities

of other spans without introducing additional rings to the coverage design.

There is a difference between minimal bi-connected sub-graph (implemented in this research) and
minimum bi-connected sub-graph. Minimal bi-connected sub-graph describes a sub-graph that
retains the full bi-connectivity requirements with minimum number of spans and no further
eliminations is possible. There can be more than one minimal bi-connected sub-graph. But, there
can only be one minimum bi-connected sub-graph, which refers to a sub-graph that retains the
full bi-connectivity requirements and has minimum total span weight (either the total distance or

the total cost of spans).

Note that there may be more than one distinct but equivalent MBG for a given network graph. In this
situation, one of the MBGs is arbitrarily chosen.



The algorithm to determine a minimum bi-connected sub-graph implements an exhaustive search
strategy to remove a span and test the resulting sub-graph for bi-connectivity. For a given graph
with N nodes and § spans, there can be a maximum of S-N spans that can be removed from the
graph such that the remaining sub-graph will still be bi-connected (assuming a bi-connected sub-
graph with only degree two nodes). Therefore, there are 2>V number of combinations where S-N
spans can be removed. Thus, the upper bound complexity to implement exhaustive search here is
O(2*"). And on top of that, the algorithm for testing a sub-graph for bi-connectivity is described
in [26] and has a complexity of O(N+5). Here, the overall complexity for the minimum bi-
connected sub-graph algorithm is O2¥¥(NV+S)). Due to the algorithm complexity, this algorithm
is not utilized in this research (therefore, minimum bi-connected sub-graph is not considered for

this research).

Instead, for simplicity sake, a minimal bi-connected sub-graph is chosen. In this research, the
MBGs (as described earlier) for each respective test network are determined by inspection - a

span is removed from the graph and after each removal, the following two criteria must be met:

1. Ensure that the resulting sub-graph is still bi-connected.
2. Verify that rings can completely cover the network nodes, taking the limit in number of ring

nodes into consideration.

Here, all the spans are tested and removed until further removing any span from the resulting sub-
graph will violate one of the above criteria. The objective here is to find the bi-connected sub-
graph with minimum number of spans °. The set of spans that are removed are then defined as the

set of non-essential spans.

Here, it is realized that there can be more than one MBG for a given network graph and choosing
different MBGs can lead to a different set of solutions. A test case is completed to partially assess

this issue in Chapter 11 and is otherwise left for future investigation.

" Since there are no guarantee that based on the two criteria, a minimal bi-connected sub-graph is obtained
and since this procedure is only done once for each test network, the procedure is repeated again (several
times, if required) to ensure that the resulting bi-connected sub-graph is in-fact a minimal bi-connected sub-
graph.
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2.3.2 Network Demand Routing

Throughout this work, the benchmark coverage design results used to compare the performance
of the span elimination strategy will employ the shortest-path algorithm for working demand
routing. Specifically, the pure shortest-path based on Dijkstra’s algorithm, which can be found in
[24], will be employed.

2.3.3 Cycle Generator

Given the maximum cycle size (maximum number of logical hops permitted in a ring), the cycle
generator searches the network graph exhaustively to find all the cycles that fall within the
specified maximum boundary. This cycle generator implements Johnson’s algorithm, which can
be found in [25,26]. A cycle is defined as a path with the same first and last vertices, and having a

combination of three or more vertices.

2.4 Experimental Network Models

Four experimental networks and demand matrices have been used to test the spar elimination
strategies. The networks are labeled Net A, Net B, Net C and Net D. Some characteristics of each
network are detailed in Table 2.1. Figures 2.4 to 2.7 show the topologies of these networks. The
corresponding span numbers and distances are detailed in Appendix A, which contains the

networks’ standard network interface files (SNIF).

Table 2.1. Characteristics of the test networks.
Network No. of No. of Average Network No. of Demand Total
Nodes Spans Degree pairs Demands
A 11 23 4.18 38 80
B 30 59 3.93 263 1557
C 50 65 2.52 233 380
D 101 136 2.7 585 877







Figure 2.5. Topology of Net B.
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Figure 2.6. Topology of Net C.



Topology of Net D.

Figure 2.7.
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3.0 Span Coverage Integer Program (SCIP)

This chapter introduces the Span Coverage Integer Program (SCIP) as an evaluation method for
the proposed span elimination strategies. SCIP was first introduced by Kennington [27] and a

variant is implemented by Morley [15]. A similar Integer Program (IP) is formulated here and is
verified and validated. This verification test summary can be found in Appendix B. This chapter
begins by detailing the concepts behind SCIP, and then its IP formulation will be laid out. Some

experimental results are presented later in this chapter.

3.1 Concepts

SCIP can be thought of as an ideal capacitated span coverage problem formulation. It finds
strictly the minimum cost set of rings required to cover all the non-zero span working capacities
in the network. Referring to Figure 3.1, in this approach all the demands are already routed over
the network topology. A separate process is executed to search for all possible network cycles
(using the cycle generator). With the values set for all the SCIP design parameters (listed in
Chapter 3.2.1), by taking the capacitated network topology, the set of cycles and the cost model
as inputs, SCIP creates a list of the cost of each of the ring candidates for each different user-
defined modular capacity size. The objective function is then to find the minimum cost set of ring
candidates to cover the network’s capacitated spans. Inherently, this formulation enables SCIP to
perform single-modular or multi-modular ring network design depending on the number of user-

defined modular capacity sizes.



Demand
Matrix
Network Routing scip*
Topology Algorithm
(SNIF) Capacitated - R
Network
ng
¢
wj L » Min-Cost Ring
S Coverage Design
8
m;
Cycle Set of X]
Generator Cycles
*scip Design
Cost Variables and
Model Pararpeters are
described in
Chapter 3.2.1.

Figure 3.1. SCIP block diagram.

SCIP involves certain idealizations: (i) every node is implicitly assumed to have an ADM in each
ring that transits the site; (ii) demands may transit between rings at any location; and, (iii) no
demand is ever re-routed, nor is any span eliminated in the design. With these idealizations, SCIP
is judged as a pure span coverage algorithm giving design results that strictly find the min-cost set
of ring candidates to cover all capacitated spans without reflecting any of the practical factors of
real ring systems, e.g. glass-through” nodes and inter-ring transition constraints. Such
assumptions have rendered the formulation of SCIP relatively easy but this is at the expense of
not attaining absolute cost minimization of a real ring network design. However, SCIP can be
used as a surrogate for the full-blown ring design in purely comparative studies. Later, in Chapter
10, a second prediction using a full-blown ring coverage heuristic is described, namely TRLabs’
RingBuilder v2.0, to determine how well this surrogate IP conforms to a real full-blown ring
design. It will be seen that there is a strong statistical correlation between the results of this IP and
those of RingBuilder, even though the accuracy of the IP has been compromised due to the

idealizations.

Next, the SCIP formulation will be described in detail.

" In a practical ring system, there may exist glass-through nodes where the traffic crossing such nodes is not
dropped but amplified to the next subsequent node.
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3.2 SCIP Formulation

3.2.1 Notations

Sets:
R : setof ring camdidates.
Design Parameterss:

nr :number of ring candidates in set R.

¢; :cost of ring candidate j.

w; : working capacity of span j.

S : number of spans in the network.

6. : 1 ifring candi-date j intersects span i. O otherwise.

m; : modular capacity of ring candidate j.

Variables:

Xj :the number of copies of ring candidate j placed on the corresponding cycle of the
graph(integer)_

3.2.2 IP Formulation

With a set of ring candidates R consisting of 11z ring candidates, the objective function is:

Minimize : 2 c;- XJ. (3.1
subject to: /=1
Zlm,- Gy X, 2w Vie {12,..,5) 52)
J:
X, 2 0, integer Vjie {1,2,...,n,} (3.3)

The objective functi-on (3.1) is to minimize the total network equipment cost over all rings. The
subset of rings that wvill result in minimum cost is determined by the integer variable Xj, which is
decided by constrairat set (3.2). This constraint restricts the modular span capacity of all rings that

cross span i to be greater than or the same as the working capacity assigned to that span. This
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constraint inherently implies that every node has an ADM and that there are no constraints on the
inter-ring transition locations. In addition, due to constraint set (3.2), SCIP is only suitable for
shared-protection rings. This is because the capacity of a path-protection ring (in Uni-directional
Path Switched Rings, UPSRs) is shared amongst all its spans and, therefore, this ring scheme
cannot be modelled on a per-span basis. This restricts SCIP investigations to shared-protection

rings (Bi-directional Line Switched Rings, BLSRs).

The set of ring candidates R may be determined by identifying all the possible rings in the
topology, or by specifying a subset from all the possible rings. One can limit the number of ring
candidates, ng, by forcing 2 maximum cycle size in the cycle generator. The cost, c;, for each ring
candidate j includes the cost of fibre and ADM common equipment but excludes the cost of add-
drop port cards. The value for ¢; will be determined in section 3.2.4. All the experiments using
SCIP are implemented in AMPL [28] and solved using CPLEX v6.0.2 [29]. The AMPL model

file for this IP formulation is shown in Appendix C.

3.2.3 Complexity Analysis of SCIP

Consider the worst case scenario for SCIP where the given network graph is a complete graph
(i.e. each pair of distinct vertices form an edge) of order N, where N is the number of vertices. In
this case, the upper bound on the number of possible ring designs can be derived if the following

assumptions are made:

* Aring design consists of a set of distinct rings only.
e Each ring has infinite capacity.

e Only one type of ring is considered.

Under these assumptions, a feasible design can be recognized as a set of ring candidates that
covers every node in the network at least once. The upper bound for the number of ring
candidates is derived. Each ring candidate is restricted to some combination of three or more
active nodes up to a maximum of sixteen '. Here, the upper bound for the number of ring

candidates is as follows %

"'In practice, the K1 and K2 bytes responsible for the Automated Protection Switching (APS) in the
SONET ring networks support only up to 16 actively terminating nodes.

> Thisis a special case of the analysis obtained in [16,30].
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Q= i N (3.4)

=3\ 1

If a design is defined as consisting of some combination of one or more ring candidates, based on
the assumptions, it is realized that the maximum number of rings required to cover every node in
the network is N-2. Consider a limiting case where every ring contains only three active nodes: to
obtain a maximum coverage while still meeting the bi-connectivity requirement, every ring must
have at least two nodes in common and one node disjoint from the other rings in the ring cover. In
this case, the first ring covers three nodes and the remaining N-3 rings cover one additional node.
In total there are N-2 rings. Based on this argument, the upper bound for the number of feasible

designs is:

N-=2
Y Q (3.5)
j=t\J
From this analysis, it is realized that the number of ring candidates grows oY) " with N,
resulting in an even faster increase in the number of feasible designs. This is evident when the

number of possible designs is plotted against the number of nodes, as shown in Figure 3.2 below.

No. of Feasible Designs

4 5 [ 7 8 9 10 11 12 13 14 15 16

No. of Nodes

Figure 3.2. The upper bound for the number of feasible designs.

&(NY &(N . (N’+N+2 , ,
" since z < 2 L F 20 —(—2——) < 2% therefore the upper bound is O(2%).
=3l ! =3l !

25



It is apparent from Figure 3.2 that solving the multi-ring design problem of a large network using
an algorithm with O(2") can be onerous. Even for a network with N=16, there can potentially be
10% designs (or constraints), which is clearly impractical to solve'. Therefore, when solving for

large networks, the following restrictions have been adopted for practical interest:

¢ Enforcing a maximum cycle size, thereby reducing the number of ring candidates
(Chapter 3.2.5).
¢ Restricting the SCIP computational time where the min-cost design prior to time

exhaustion is held.

3.2.4 Network and Equipment Costs

As mentioned earlier, c; is the combined cost of all the ADMs and the total fibre distances of ring
candidate j. For accurate cost coverage design, ¢; must be precise. Since these investigations deal
with different span modular capacities, the ADM cost in ¢; should also reflect some level of
economy-of-scale to be realistic. As a result, a rule has been adopted: two times the cost for
equipment that delivers four times the capacity. This rule applies only for the cost of ADMs. The
cost of fibre remains fixed” for all different modular capacities. Keeping this in mind, the costs of

ADMs and fibre are implemented as in Table 3.1.

Table 3.1. Network Equipment and Fiber cost

Span Modular ADM Cost Fibre Cost
Capacity ($/ADM) ($/unit distance)
oc-12 71333
0OC-48 142666
10
OC-96 201730
0C-192 285332

! Consider even a single machine instruction that can solve a constraint executed at a speed of | ps. the total
execution time for 10** constraints is 10°1 ps or 3.2 x 10* years.

* The cost of fibre is fixed at $10/unit distance and directly refers to the single span module regardless of
the fibre count in that span module.
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3.2.5 Limiting the Maximum Cycle Size

The number of ring candidates can be limited by imposing a maximum cycle size. The main
benefit of doing so is to reduce the number of ring candidates, which then decreases the total
SCIP computational time (since there are fewer possible designs that need to be computed, see
Equation 3.5 and Figure 3.2). The definition of computational time will be discussed in Chapter
3.3.3. The number of ring candidates must be limited so as to obtain, within a reasonable amount
of time, a complete SCIP run. For example in Net B, if the maximum cycle size is set to sixteen,
there are a total of 119,340 distinct cycles. There are, in this case, an astronomical number of
possible designs, which would cause SCIP weeks or even months to complete. For research
purposes, therefore, the maximum cycle size for Net B has been reduced to seven. The maximum

cycle size for other networks is shown in Table 3.2 together with the resulting number of cycles.

Table 3.2. The maximum cycle size defined for each test network.
Max. Cycle No. of
Network size Cycles
A 16 307
B 7 330
C 16 63
D 18 295

Note that Net D has a maximum cycle size of eighteen. This is because the minimum cycle size
required for Net D to attain full restoration is eighteen. An exception, therefore, has to be made if
all nodes are assumed to include active ADMs as opposed to possible glass-through sites. This
arises in Net D from the large void in its center. Consider, for instance, the shortest-path for

replacement of span (111-116).
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3.3 Experimental Results: Pure-Coverage Designs with SCIP

3.3.1 Single-Modularity Ring Coverage Design

Table 3.3 shows the SCIP results using a single modular capacity design. Each network has four
different min-cost designs, each design using different ring modular capacities. The average
network working capacity, w, is the sum of all the span working capacity requirements divided
by the total number of spans. w is later used to study the effects of ring modular capacities on

SCIP design cost in single-modularity ring coverage design.

Table 3.3. Min-cost results obtained using shortest-path routing and SCIP single-

modular design.

Design
Network Ave. Network Modularity SCIP Design Cost
Capacity (millions)
ocC-
12 194 *
48 3.29
A 5.956
96 4.65
192 6.57
12 3472
48 20.11
B 78.508
96 17.84 *
192 20.62
12 14.45
48 1248 *
C 19.861
96 15.60
192 22.04
12 46.36
48 33.85
D 29.515
96 33.70 *
- 192 47.57
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The demands for each test network in Table 3.3 are routed using pure shortest-path where W is
later calculated for each resulting network. Then, for each of the selected design modularities (i.e.
0OC-12, OC-48, OC-96 and OC-192), a single-modular SCIP run is executed where the resulting
SCIP design cost is tabulated in the SCIP Design Cost column. The least-cost SCIP design for
each test network is indicated by (*) in the SCIP design cost column. The computational time

taken by each SCIP run is shown later in Table 3.5.

3.3.2 Multi-Modularity Ring Coverage Design

Table 3.4 shows SCIP results using multi-modular design. There are four distinct modular sizes
and costs used, shown in Table 3.1. Here, each network has a resulting min-cost coverage design
where the most improved ring-set may consist of rings with different modular capacities. SCIP
automatically selects the ring candidates, as well as the modular capacity for each of the ring
candidates, that will lead to the minimization of the total network coverage cost. The Ring
Modularities column shows the number of rings with their corresponding modular capacity used

in the resulting min-cost design.

Table 3.4. Min-cost results for multi-modular SCIP (CPU runtime limited to 24 hours).

SCIP Design Cost Ring Modularities
Network (millions)
12 | 48 | 96 | 192
A 1.94 6 - - -
B 16.73 - 3 8 3
C 11.08 4 7 1 -
D 26.85 11 9 6 -

3.3.3 Computational Time for SCIP Results

The computational time for each experiment in Tables 3.3 and 3.4 is shown in Table 3.5 below.
The definition of computational time includes the CPU time for routing all the demands onto the
network topology and the CPU time required by SCIP to determine the min-cost ring design. We
have limited the CPU time for each individual SCIP experiment to 24 hours (86,400 seconds).
Therefore, if an experiment has reached the 24-hour limit, the SCIP solution returned is the result
prior to the point of time exhaustion. The incomplete experimental runs are indicated by (*) in the
Total Computational Time column. Note that the computational time required by the incomplete

experimental runs is not exactly 86,400 seconds due to the additional CPU time required to route
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all the PTP demands. All the experiments were run on a Sun UltraSparc HPC-450 with four

processors, each running at 250 MHz.

Table 3.5. Computation times fox SCIP.
Network mncga;‘a?:?;hr c(::'c‘;::;e
12 3.63
scip 48 2.27
A (Single) 96 24
192 2.78
SCIP(Multi) - 9.7
12 £6600.04 *
scip 48 19.89
8 (Single) 9 19.47
192 1107.98
SCIP(Multi) - &6601.54 *
12 0.12
scip 48 0.08
c (Single) 96 0.34
192 0.35
SCIP(Muilti) - 39.91
12 7.62
scip 48 12.53
D (Single) 96 3213
192 901.51
SCIP(Multi) - 86496.02 *

* indicates incomplete experimental runs. The feasible
design after 24-hours is reported.

As expected, Table 3.5 shows that obtaining min-cost designs for- large networks with high
average network degree (Net B and Net D) requires more computational time than it does for
small networks (Net A) or networks with relatively low average metwork degree (Net C).
Furthermore, it shows that SCIP(multi) requires significantly more computational time than
SCIP(single). This is expected since SCIP(multi) has four times the number of ring candidates

than its SCIP(single) counterpart.
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3.4 Discussions and Summary

SCIP is simple and repeatable. Its IP formulation is clear and straightforward, leading to SCIP
results being easily reproduced and verified. There are several recognized idealizations in SCIP.
This IP assumes that every node has an ADM and that demands may transit between rings at any
location. This leads to several drawbacks, for example, SCIP is not suitable for situations where
the absolute design cost is desired, it does not take glass-throughs into consideration, and it is
limited to investigations using shared-protection rings. However, the main interest is the use of
SCIP as a quick surrogate for RingBuilder in relative cost comparison contexts. Experiments are
described later, in Chapter 10, which investigate the correlation between SCIP and RingBuilder

results.

In this chapter, SCIP has provided a set of reference designs that are at minimum cost for the
property of full coverage, i.e., before spans are eliminated. These reference designs are used later
to compare the designs obtained from the proposed span elimination strategies, thereby defining

their performance.

Referring to Figure 3.3, the results obtained from single-modular designs suggest that there is a
relationship between the selected ring modular capacity, m, and the average network working
capacity, w. It appears that the min-cost results occur only when the selected ring modular
capacity is larger than the average network working capacity (m / W > 1). This makes sense
because when the selected ring modular capacity is smaller than the average network working
capacity (m / W< 1), overlapping rings occur more often since it is more likely that a single span
module with the selected modular capacity is not adequate to cover the entire span’s working
capacity. However, selecting a larger modular capacity may resulit in a highly redundant network,
hence, there is a best-fit modular capacity between these modular capacities where min-cost

coverage design is obtained. This relationship is evident in Figure 3.3.
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Figure 3.3. Effects of modular capacity on single modular SCIP design cost (Nets A-D,
pure shortest-path).

As expected, the cost results obtained from the multi-modular capacity design always give a min-
cost design that is either equal to or better than the single-modular capacity design (Table 3.3 and
3.4). In practice, it is not cost-effective to use a single-modular ring capacity to cover the entire
network topology. The multi-modular capacity design is implemented since it gives better min-

cost coverage results and flexibility in integrating different modular ring capacities.

To conclude, in this chapter, SCIP has been formulated and benchmark results have been

produced to be used later for comparative assessment of the proposed span elimination heuristics.
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4.0 Modular Aggregating Pre-Routing (MAPR)

MAPR is a pre-processing span elimination heuristic which is meant to precede a multi-ring
coverage design. In this chapter, MAPR is described for single-modular capacity ring coverage

design.

4.1 Introduction

As described earlier in Chapter 2, shortest-path routing generally does not result in an evenly
distributed load on spans in the network (in the w; sense). This leads to inefficient use of the span
capacity in subsequently placed rings driven by the strict coverage imperative. Moreover, the
quantities of demand that accumulate on spans under shortest-path routing have no particular
regard for or relationship to the capacity modularity of the rings that may later be used in
coverage design. For example, consider the network topology and the current span working
capacity requirements shown in Figure 4.1a, and assume that there are still five unrouted demands
from source node 2 to destination node 6. By placing one unit of demand at a time over the
network topology using pure shortest-path, these five demands are routed over the network using
span (2-3) and span (3-6) (denoted by path (2-3)-(3-6)) as they have the shortest distance from
node 2 to node 6. As a result, span (2-3) would then have a total of five working units and the
subsequent ring design would be forced to use two rings with OC-12 modular capacity to cover
span (2-3). Together, however, they have only 5/24" capacity utilization on that span. It is fairly
apparent by inspection that a better overall ring design could have been obtained by preventing

demands from being accumulated on span (2-3).

@—— (3.10 (7.10) 12

(x,y) - Span ID x with distance y.

(a) (b)

Figure 4.1. Example of MAPR concept: (a) Original network topology and spans’
capacity requirements. (b) Remaining five demands from node 2 to node 6

routed using shortest-path.
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The motivating idea behind MAPR is to route demands in a manner that tends to aggregate flows
on spans, leaving totals that are well-suited for later min-cost ring coverage designs.

Specifically, the idea is that once a span has some demand on it, it is important to make it look
more attractive (cheaper) to subsequent least-cost routing det_erminations, but to cancel that effect
as soon as a modularity boundary arises. Consider the initial network topology and span capacity
requirements as shown in Figure 4.1a, and the five remaining unrouted demands from node 2 to
node 6. There are three distinct paths from node 2 to node 6, i.e., paths (2-1)-(1-3)-(3-6), (2-3)-(3-
6) and (2-4)-(4-5)-(5-6). Since span (2-3) is unused, the cost of routing using path (2-3)-(3-6) will
be the most expensive. The five demands are then routed, one unit at a time, using paths (2-1)-(1-
3)-(3-6) and (2-4)-(4-5)-(5-6). After one unit of demand is routed on path (2-1)-(1-3)-(3-6), it is
found that the working capacity requirements on span (1-3) have reached modular capacity (using
OC-12 span module). Using path (2-4)-(4-5)-(5-6) is now more attractive. The remaining four
demands are completely routed using path (2-4)-(4-5)-(5-6). These steps are detailed in Figure 4.2

below.

(x,y) - Span ID x with distance y.

Figure 4.2. Example of demands routed with OC-12 oriented flow aggregation.

The effects of this routing also create candidates for span elimination when all the demand is
drawn away by aggregation pressure onto routes over other “well-used” spans. Any non-essential
span having zero working capacity on it after MAPR may be considered eliminated. For example,
span (2-3) in Figure 4.2 is a non-essential span (refer to Chapter 2.3.1). A single run of MAPR in

general network investigations will possibly result in a set of several simultaneous span
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eliminations”. After the non-essential spans are eliminated, the min-cost coverage design is
obtained using SCIP implemented with single-modular capacity design. Figure 4.3 below shows

the result of subsequent SCIP executed on the resulting network in Figure 4.2 with span (2-3)

eliminated.
(x.y) - Span ID x with distance y.
(a)
SONET OC-12
4-BLSR Ring
(x.y) - Span ID x with distance y.
(b)
Figure 4.3. Example of eliminating a non-essential span resulting from MAPR. (a) Span

3 is eliminated by OC-12 aggregating routing. (b) OC-12 SCIP result.

4.2 Detailed Explanation of MAPR

This chapter describes the methodology used to implement MAPR. MAPR applies the principle
of aggregating routing described earlier in the chapter, which is enabled by introducing pseudo-
cost functions. First, the steps that are involved in implementing MAPR are described and then

several pseudo-cost functions that are used by MAPR are specified.

" Not shown in the examples in Figures 4.1 and 4.2. The full procedure of MAPR begins with routing the
first unit demand in the demand matrix until all demands are satisfied. MAPR ends when all the resulting
non-essential spans with zero working capacity are eliminated.
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4.2.1 Flow Chart

A schematic depiction of MAPR is shown in Figure 4.4.
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The design inputs (for single-modular design) contain four components: network SNIF file,
demand matrix, design modularity, and cost model. Initially, a separate pre-processing is required
where the cycle generator (Chapter 2.3.3) is used to find all the network cycles. These cycles are

defined in the cycle file.

MAPR begins with three inputs: the network SNIF file, the demand matrix and the design
modularity. First, the PTP demand elements from the demand matrix are sorted in descending
order of size, starting with the largest PTP demand. The pseudo-cost function (described in the
next chapter) to be used is then selected, calculated (using the design modularity), and assigned
for every span in the network. A single unit demand is routed at each iteration over the currently
apparent ‘least-cost’ path from source to destination. If there are equal least-cost paths, the unit of
demand is routed over an arbitrary choice amongst them. Each time a demand is routed, some
span working capacity requirements change, the pseudo-cost of these spans is recalculated, and
another unit demand iteration follows. The aggregation or attracting and clumping together of
demands results from the capacity-dependent span pseudo-cost model. After all the PTP demands
have been routed using the steps described above, any non-essential spans with zero working

capacity (zero w;) are eliminated from the network description file.
In the ring network design phase, the cycles that use the eliminated non-essential spans are

removed from the cycle file. Using the resulting sub-graph and the filtered cycle file, SCIP is

executed and the min-cost ring coverage design is then obtained.
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4.2.2 Modular Pseudo-cost function in MAPR (Single-modular case)

The pseudo-cost assigned to each span is determined by its geographical distance and its current
capacity requirement (number of demands so far accumulated on the span). Two pseudo-cost
functions have been tested; namely rise (Eq. 4.1) and impulse (Eq. 4.2). (Another pseudo-cost
function, fall, was also tested but initial experiments did not show any reasonable improvement in

design cost, and it was, therefore, removed from further work. Refer to Appendix D for further

details).
d,-M, (w;mod M )=0 ;
ci(wi) = 4.1)
d;-(w,mod M), (w;mod M )#0;
d-M, (w,mod M )=0;
(wi) =
o . (w,mod M )#0; @2)

ci{w;) -Pseudo-cost of span i.

d; - Geographical distance of span i.
w; - Accumulated demands crossing span /.
M - Span modularity constant.

The rise pseudo-cost function assigns a maximum routing cost to a span when it has a zero
capacity accumulation or when it reaches a capacity accumulation that is a multiple of the
modularity constant M. For example, a subset of the full family SONET rings that are strictly
defined (by standards) is characterized by M=12 for rings with OC-12 modular capacity, M=48
for rings with OC-48 modular capacity, M=96 for rings with OC-96 modular capacity and M=192
for rings with OC-192 modular capacity. The span pseudo-cost is at its highest when it has
accumulated enough capacity that it might be perfectly accommodated in a ring subsequently
chosen in the coverage design process. In contrast, as soon as the span has one more demand unit
crossing it than one of the module capacities, its cost is set at its lowest value. The logic is that in
this state an extra module is implied anyway by any subsequent coverage design process, so it
makes sense to make this span more attractive (lower routing cost) in the next iteration. For w;
values between these extremes, under the rise pseudo-cost function, the pseudo-cost rises linearly
with w; steadily reducing the aggregation pressure on this span as it rises towards a next full-

module total. Under the impulse pseudo-cost function, the span has a minimum constant routing
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cost as long as it has any slack at all vis-a-vis the next modular value at exact ‘full module’ values
of w;. Figure 4.5 below shows the example of c{w;) vs. w; on span ; with d=10 and M=12 using

rise and impulse.

130 4
120 ¢ * * [
110 4 * * ¢

100 A T * *

80 4 T * *
70 4 { T >

€0 * 4 ®

Pseudo-Cost, ci(w,)

S0 4 T > *

40 4

?IIH 1] |

S 6 7 89 10 11 92 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Working Capacity, w,

(a)

130

110
100
90
80
70
60

50

Pseudo-Cost, ¢,(w)

40

30

20

10 LR A B ZBK 2N IR BN 2K K N 2 L IR 2R JBE JEE 2N R R Y 3 LR I JNE K N R 2K R Y )
o] P - . - - . - - - . . . . - . . - . - - - - . - .
6 1 2 3 456 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36

Working Capacity, w,

(b)

Figure 4.5. Periodic MAPR pseudo-cost function for d;=10 and M=12. (a) rise.
(b) impulse.



4.3 Summary

MAPR was implemented and investigated as a pre-processor tool which is meant to precede the
multi-ring coverage design. MAPR routes demand using the least-cost paths determined by
calculating a w;i-dependant pseudo-cost of each span. As such, demands are routed more
efficiently with proficient piling of working capacities onto each span, leaving totals that are
well-suited for later ring coverage design. Subsequently, non-essential spans that have zero

working capacities in the network are eliminated, saving network equipment costs.

Chapter 6 investigates MAPR further to define its performance during several experiments.
Specifically, the solution quality that this heuristic presents and the required computational time
are of interest. A comparative study using these results against the results from designs without
span eliminations (presented in Chapter 3) will be discussed as well as the results from another
span elimination heuristic, namely. Iterated Routing and Elimination (IRE), at the single-

modularity design perspective.
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5.0 iterated Routing and Elimination (IRE): Single-Modularity

5.1 Introduction

Unlike MAPR, IRE is a post-processing span elimination heuristic. IRE uses a greedy approach
to ultimately eliminate each and every non-essential span~ from the network. Following each
elimination, the affected demands are detoured over alternate paths. Since there are many
different combinations of non-essential spans that can be eliminated at each stage of IRE, a

breadth-first-search (BFS) strategy is used to systematically eliminate spans.

To illustrate IRE, consider the example shown in Figure 5.1. This uses OC-12 design modularity
and the cost model described in Table 3.1 (ADM cost = $17,333/ADM and $10/unit distance
fibre cost). In the first iteration, the PTP demands are routed over the network graph using pure
shortest-path with the resulting network and span capacity requirements shown in Figure 5.1a. An
SCIP run is executed thereafter which gives a design cost of $572,764. Then, the network non-

essential spans are determined which are, in this case, span (1-3) and span (3-4).

On the next iteration, the sub-graphs resulting from the single elimination of each non-essential
span are examined. First, span (1-3) is eliminated. Since there are five demand units affected by
this elimination, these affected demands must again be rerouted using other paths. Because the re-
routing of demands is done at the path-level (refer to Figure 2.2), the working capacities of other
spans that were used to transport each of the five affected demands must also be removed. Since
the five affected demands in span (1-3) came from the PTP demand (1-5) using demand path (1-
3)-(3-5), five units of working capacity are removed from span (3-5) as well, thereby reducing the
working capacity requirements on span (3-5) from eleven to six. Now, the five demand units must
again be rerouted over the resulting sub-graph using MAPR(rise)-like routing principles where all
five demands are routed using path (1-4)-(4-5). An SCIP run is executed next on the resulting
sub-graph, which gives a design cost of $501,081 (Figure 5.1b). Next, returning to the network
graph before span (1-3) was eliminated, span (3-4) is eliminated and, using the procedures
described earlier, the four affected demands are re-routed where three demands are routed using

path (2-1)-(1-4) and one demand is routed using path (2-3)-(3-5)-(5-4)". Executing SCIP on the

" With OC-12 design modularity and MAPR(rise)-like routing principles. routing using path (2-1)-(1-4)
appears to be more expensive since the working capacity accumulated on span (2-1) has reached a single
full module after three units of demand are routed. Therefore, the remaining one unit of demand is routed

using the less expensive path (2-3)-(3-5)-(54).
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subsequent sub-graph results in a design cost of $501,181 (Figure 5.1c). Here, of the two SCIP
designs, the sub-graph that resulted from the elimination of span (1-3) appears to give the least-
cost design. Therefore, this sub-graph is permanently adopted and the work proceeds to the next

iteration.

Demand Matrix
1 2 3 4
9 - 2

1 4

N ® v |ty

SCIP Design Cost = $501,081 : SCIP Design Cost = $501,181
(b) 1% iteration test removal of span (c) 1" iteration test removal span
(1-3) from original network. (3-4) from original network.

SCIP Design Cost = $358,015

(d) 2™ iteration test removal of span (3-4) from least-
cost network after 1* iteration.

Figure 5.1. An example illustrating the concepts of IRE.




Span (3-4) is the only non-essential span left in this iteration. By eliminating span (3-4), three
demands are re-routed using path (2-1)-(1-4) and the remaining demand is re-routed using path
(2-3)-(3-5)-(5-4). A subsequent SCIP run on the resulting sub-graph gave a design cost of
$358,015 (Figure 5.1d). Since there are only essential spans left in the network graph, the IRE
process stops here where the most-improved multi-ring coverage design found from using IRE is

shown in Figure 5.1d with a design cost of $358,015.

The objectives and operations of IRE can also be represented by using a tree to illustrate the BFS
aspect. This starts with a capacitated ring coverage design found by using pure shortest-path

routing and SCIP which will be the root of the tree as shown in Figure 5.2.

¢ Fuli Network Graph
with shortest-path
routing.

* SCIP Design.

Helght Total No. Successive least-cost . Detern:line the non-
of Spans sub-graphs essential spans set.
0 i S
¢ Span Elimination
1 $-1 * Re-Route Affected
T i Demands
s SCIP Design
2 S-2  feeercccccrcccsecee(" Jooen
. Least-Cost
Sub-Graph
I B ok Tl 0 2 T SR R SRR, g T " f—
k S-k Minimal Bi-Connected
Sub-Graph

Figure 5.2. IRE Breadth-First Search (BFS) Tree.

All the non-essential spans in the full network topology are identified. The number of non-
essential spans is represented by the parameter k. During the first iteration when the depth of the
tree is equal to one, every single elimination of non-essential spans of the root graph is examined
followed by the MAPR(rise)-like re-routing of the affected demands. SCIP is executed thereafter
to evaluate the ring design cost of the subsequent sub-graphs. Span elimination, re-routing of

affected demands, and SCIP design are represented by the vertices in the tree (except for the root
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vertex) shown in Figure 5.2. Since there are k non-essential spans, the first level depth search will
have k vertices. After all the & span eliminations have been assessed for SCIP design cost at this
depth, the elimination that led to the least-cost SCIP design is kept. The solid dark vertex, as
shown in Figure 5.2, represents the least-cost sub-graph found. The set of non-essential spans is
then updated by removing the non-essential span that had resulted in the least-cost sub-graph,

whence the set has k-1 remaining non-essential spans.

The next iteration is then considered, where the root of this iteration is the least-cost sub-graph
found earlier in the first iteration. Here, each element in the set of non-essential spans is tested,
the overall least-cost sub-graph is selectéd, the next iteration with k-2 number of non-essential
spans is tested, and so on until the leaf node of the BFS tree is reached, at which time all the non-
essential spans have been eliminated. The overall result is a greedy sequence of span eliminations
forming a trajectory through the space of all possible span elimination sequences. The leaf node
at the end of this sequence is a minimal bi-connected sub-graph where further span elimination

would leave the sub-graph non-restorable.

The maximum depth of the tree corresponds to the total number of non-essential spans, i.e., if
there are k non-essential spans, the maximum depth of the tree will also be &. Since, at each

iteration, there will be one less non-essential span to be examined, the total number of SCIP runs

can be calculated using equation (5.1) below:

k(k—l)zk(k+l)
2

-~

Total SCIPruns =k +(k—1)+(k—=2)+..+ 1=k’ - (5.1

where, k is the number of non-essential spans.

Here, if k=20, the total number of SCIP runs in IRE will be 210. A flow chart for implementing

the IRE strategy is described in the next section.
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5.2 Implementing IRE

A schematic depiction of IRE is shown in Figure 5.3 below.

Network
Topology (SNIF)

Design
Modularnty

Cycle
Generator

Cost Model

Route al PTP demands
using shortest-path and
update SNIF.

Run SCIP and save
dasign results.
Determine the non-
essental spans set.

Currant non-essential

spans set, current SNIF
& current Cycle File.

-

For each remawung
non-essential spans

Eliminate the non-essential span & re-route
aftected demands on current SNIF and

save as temp SNIF. Fiiter current Cycle
Next element in Fie and Save as temp Cycle Fie.
current non- i
essenbal span set.|

Run SCIP using temp SN!IF
and temp Cycie File and save
the SCIP design results.

Tested all non-
essential spans?

Compare the SCIP designs and
capture the least-cost SCIP design with
the correspending SNIF and Cycle File.

Updata currant SNIF, current Cycle File
with least-cost SNIF and its Cycle File.
Update the current non-essential span set.

Is the non-
assental span
setl empty?

Write successwve
ieast-cost SCIP
designs.

Figure 5.3. Block Diagram: Implementing IRE.
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IRE (single-modular design) begins with five inputs: network SNIF, demand matrix, design
modularity, cost model, and cycle file (generated by the cycle generator detailed in Chapter
2.3.3). First, the PTP demands are routed over the network topology using pure shortest-path, and
an SCIP design is obtained for the subsequent capacitated network topology. The set of non-
essential spans is determined by finding a minimal bi-connected sub-graph and any additional

spans that are essential for the hop-limited cycle coverage (Chapter 2.3.1).

Then, using the current set of non-essential spans, current capacitated network SNIF, and current
cycle file, the IRE iterations begin. Each non-essential span is tentatively eliminated from the
SNIF file, the affected demands are re-routed at the path-level using an MAPR(rise)-like routing
principles, and the cycle set is filtered to eliminate cycles using that span. Finally, SCIP is
executed on the resulting sub-graph to obtain the min-cost ring coverage. design. This is repeated
with subsequent non-essential spans until all non-essential spans have been examined, in terms of
their impact on SCIP design cost, for prospective single-span elimination. After all non-essential
spans have been examined, the elimination that leads to the lowest SCIP cost is permanently

adopted.

This is repeated until all non-essential spans have been permanently eliminated. A graph of
successive least cost SCIP designs can then be plotted against the number of span eliminations.
From this, the most-improved least cost SCIP design amongst other least cost SCIP designs and

the corresponding number of span eliminations can be determined.

5.3 Summary

In this chapter, IRE has been investigated as a post-processor span elimination heuristic and its
implementation has been illustrated. The full schematic detail of the methods that were used to
implement IRE is shown in Figures 5.2 and 5.3. From the flow chart, the IRE program can be
viewed as making function “calls” to the SCIP program. Figure 5.4 below shows the relationship
between the IRE program and SCIP.
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* Network SNIF

* Cycle File

¢ Design Modularity
* Cost Model

IRE
Program

* SCIP Design
Cost

Figure 5.4. Communications between IRE program and SCIP

Basically, the IRE program can be viewed as ‘remodeling’ the demand patterns in the network
graph to accommodate span eliminations. Each time a span is eliminated, a new SNIF is obtained
(as a result of detouring the affected demands which, in tumn, defines the new capacity
requirements of some network spans) with its corresponding new cycle file (the cycles that use
the eliminated span are removed). The design modularity and the cost model remain the same
with respect to the current IRE investigation. Using the new SNIF and its cycle file, design
modularity and cost model, the IRE program calls SCIP and returns the design cost of the new
SNIF. Using this result to choose the span elimination that give the overall least cost SCIP design
amongst the other SCIP designs at this iteration, IRE continues to the next iteration where it

eliminates yet another span, and so on.

It is important to realize that the number of SCIP runs in IRE rises quadratically with the number
of non-essential spans (Equation 5.1). This means that a network with a high average network
degree with a large number of non-essential spans will require a high number of SCIP runs. This

factor increases the computational time for IRE, as will be seen in the next chapter.
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6.0 Initial Experimental Results and Discussions

6.1 Results and Analysis of MAPR and IRE

6.1.1 Non-Essential Spans (Candidates for Elimination)

Table 6.1 shows the non-essential span sets for each test network presented in Chapter 2.4. The
method used to identify these spans was illustrated in Chapter 2.3.1. These sets of non-essential
spans are used in the IRE investigations (a specific MBG has to be chosen prior to IRE to
determine which set of non-essential spans to use). A graphical view of the chosen minimal bi-
connected sub-graph and non-essential spans is shown in Figures 6.1 to 6.4 for Nets A, B, C and

D, respectively.

Table 6.1. Test networks’ non-essential spans (for IRE investigations).
Network A B C D
M";gz‘:" 16 7 16 18
No. of Non-
Essential 11 18 7 21
Spans, k
(1-3) (1-3) (32-84) (9-31)
(1-4) (3-4) (36-118) (9-46)
(1-5) (7-3) (36-119) (25-97)
(1-8) (6-9) (70-113) (25-102)
(4-8) (5-11) (71-79) (30-96)
(5-6) (12-10) (78-118) (34-101)
(5-8) (10-8) (83-84) (34-109)
(5-9) (10-13) (36-118)
(5-11) (13-15) (36-119)
) (8-9) (9-15) (38-62)
Non;i::;snnal (9-11) (9-17) (39-40)
(8-17) (62-103)
(17-19) (63-65)
(19-18) (63-119)
(22-25) (70-113)
(9-18) (71-79)
(23-29) (78-118)
(21-23) (83-85)
(89-104)
(113-123)
(104-125)
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Max. Cycle Size : 8

Number of Non-Essential
Spans : 11

Non-Essential Spans

= Essential Spans

Figure 6.1. Net A: Minimal bi-connected sub-graph and non-essential spans.
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Non-Essential Spans

- Essential Sparas

Max. Cycle Size : 7

Number of Non-Essemtial
Spans :18

Figure 6.2. Net B: Minimal bi-connected sub-graph and non-essential spans.
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Non-Essential Spans

= Essential Spans

Max. Cycle Size : 16

@ @ Number of Non-Essentiatl

@ Spans :7

Figure 6.3. Net C: Minimal bi-connected sub-graph and non-essential spans.
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Non-Essential Spans

Max. Cycle Size : 18

=  Essential Spans Number of Non-Essential
Spans : 21 '

Figure 6.4. Net D: Minimal bi-connected sub-graph and non-essential spans.
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Note that the non-essential spans shown in Table 6.1 may differ from the spans eliminated by
MAPR. For example, assume that after routing all demands in MAPR on Net B, the resulting
network has zero working capacity on span (2-4) but has working capacities on span (3-4). In this
situation, MAPR will eliminate span (2-4) since it has zero working capacity, but eliminating this
span will not leave the network one-connected; span (3-4) will become essential because (i) it has
working capacity and (ii) it is restricted by the bi-connectivity requirements of node 4 (each
vertex must have at least two connecting edges). This differs from the non-essential spans set
shown for Net B in Table 6.1 where span (2-4) is an essential span and span (3-4) is a non-
essential span. Therefore, determining and eliminating the non-essential spans in MAPR which
have zero working capacity may vary from Table 6.1, and may require an additional check to

ensure that the sub-graph after elimination is still bi-connected.

As described earlier in this section, only a single set of non-essential spans is investigated for
each respective test network. Later for future improvements, Chapter 11 shows a test case and
elaborates the impact of using a different set of non-essential spans on IRE (The test case is

performed using IRE on Net B).

6.1.2 MAPR

Tables 6.2 to 6.5 show the results obtained from SCIP for Net A, Net B, Net C and Net D.
respectively, following rise and impulse pseudo-cost rules in MAPR. The Design Modulariry
column represents the permitted modular capacity. The #E/im (Number of Span Eliminations)
column represents the number of spans that were removed from the corresponding network. The
Elim. Span (Eliminated Span) column shows the spans that were eliminated from the
corresponding network by MAPR’s aggregating routing. The SC/P Design Cost column shows
the min-cost multi-ring coverage design obtained by SCIP foliowing the MAPR run. The least
cost result for each network is shown by the (*) in the SCIP Cost column. The Comp. Time
(Computational Time) represents the total required CPU time, as described in Chapter 3.3.3, and
the Relative SCIP Design Cost is the SCIP design cost normalized by the SCIP results for the
shortest-path routing case (i.e. no eliminations) using the smallest design modularity (refer to

Table 3.3 for SCIP design cost for each test network using OC-12).
Tables 6.2 to 6.5 indicate that, as the permitted design modularity increases, there exists a point at

which the best-fit design modularity occurs where a minimum SCIP design cost is obtained.

Increasing the permitted design modularity increases the number of span eliminations. When the
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minimum SCIP design cost obtained for rise is compared with the minimum SCIP design cost

obtained for impulse, rise gives a better min-cost design than impulse. In addition, impulse

requires a relatively larger permitted design modularity to obtain the min-cost SCIP design with

respect to rise. As for the computational time, when the computational times obtained for both

MAPR(rise) and MAPR(impulse) are compared with respect to the computational times obtained

for shortest-path and no eliminations (Table 3.5), it can be seen that the MAPR algorithm

generally has a faster computational time. These observations will be discussed and summarized

later in this section.

Table 6.2. MAPR results for Net A.
MAPR Pseudo- Design S$Elim Elim. Span SCIP Design | Comp. Time | Relative SCIP
Cost Moduiarity Cost (Millions) | (seconds) Design Cost
12 6 (1-4),(4-8).(5-8),(5-11),(8-9),(9-11) 194 0.13 1.00
(1-3).(1-4),(1-8),(5-6),(5-8).(5-9),(5-11),
. 48 9 (8.9).(5-11) 2.29 0.08 1.18
(1-3),(1-4).(1,5).(1-8).(5-6).(5-8).(5-9).
9% 10 (5-11).(8-9).(9-11) 2.83 0.1 1.46
(1-3).(1-4).(1.5),(1-8),(5-6).{5-8).(5-9).
192 10 (5-11).(8-9)(8-11) 4.00 0.0¢ 2,07
(1-2),(1-3).(1-6),(4-9}.(5-7).(5-8),(5-9). .
12 9 7-8)(9-10) 222 0.01 1.15
. (1-2),(1-3).(1-4).(1-6),(4-9).(5-7).(5-8). *
_ 48 10 (5-9).(7-8).©-10) 2.00 0.01 1.03
impulse (1-2),(1-3),(1-4),(1-6),(4-9).(5-7).(5-8)
9% 10 RNy 2.83 0.01 1.46
(1-2),(1-3).(1-4),(1-6),(4-9).(5-7).(5-8),
192 10 (5.9).(7-8).(0.10) 4.00 0.01 207
Table 6.3. MAPR results for Net B.
MAPR Pseudo- Design SEli Elim. Span SCIP Design | Comp. Time | Relative SCIP
Cost Modularity | ¥E'M - SP Cost (Millions) | (seconds) | Design Cost
12 0 - 3465 4825.37 1.00
48 0 . 19.54 0.27 0.56
m *
9% 3 {17-18),(19-20).(9-8) 17.03 3.69 0.49
192 6 (12-10),(9-17),(17-18),{19-20),(28-23),(21-23) 19.47 74.89 0.56
12 0 - 38.05 5779.99 1.10
48 3 (13-15),(9-17),(8-18) 2485 1.02 0.72
impulse
% 7 (2-4).(10-13),(13-15),(16-21),(19-20),(25-26), (21-23) 21.89 5.26 0.63
(1-3),(3-4),{12-10),{10-13).{9-15),(9-17),(17-18). .
192 ] (16:21)(19-18),(9-8),(23-29),25.26) (21-23) 1947 7588 0%
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Table 6.4. MAPR results for Net C.
et | Modtany | 5 Eim. Span (Mitions) | (uaconde) |  Design Cost

12 2 (32,84),(36-118) 15.69 0.15 1.09

48 2 (32,84),(36-118) 1278 0.18 0.88

rise

% 4 (32,84),(36-118),(36-89),(71-79) 14.79 020 1.02

192 4 (32,84),(36-118),(36-89),(71-79) 20.89 0.24 1.45

12 0 - 18.21 0.61 126

48 4 (32.84),(36-118),(36-89).(71-79) 1393 0.01 0.96

impulse

% 4 (32,84),(36-118),(36-89),{71-79) 14.79 0.03 1.02

192 4 (32,84),(36-118),(36-89),{71-79) 2089 0.02 145

Table 6.5. MAPR results for Net D.
e ent ™ | Modulary | I Eim. Span (ilions) | (seconde) | Design Cost

12 6 | (8-31),(25-97),(32-84),(36-118),(36-62).(121-123) 53.76 3285 1.16
| @ 7 (931).(2597).(32—:(3:;1(162 ;8).(38-62).(78—79). 2802 033 0.82
e % 7 (931).(2597),(32?2.1(?3; ; 8).(38-62),(36-89), 3349 087 0.7
192 g | O3NS 97).((:;ig«;)).'((:zfzr:l%sasz),(3&89). 46.71 0.27 1.01

e | 8 | CMmM@MEmEEm®mD | o |, o
e 48 g | ©SNE o o) g (o ook 4882 0.05 1.05
w | o | CMBNRMmEmEmED [ g | o 2

192 9 (9-31).(25-3673)‘.5?3-)?3);(5;69—:(912(13-(:-21:;)8),(38-62). 71 0.36 101
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Using the results gathered from Table 6.1 through Table 6.4, the relationship between SCIP
design cost and design modularity can be shown. Figure 6.5 and Figure 6.6 below show the
effects of design modularity on SCIP design cost with span eliminations by MAPR using rise and
impulse for each test network. The x-axis is the design modularity. The y-axis (Relative SCIP
Design Cost) is the SCIP design cost obtained from MAPR normalized by the SCIP results for

shortest-path routing case (i.e., no eliminations) with the smallest permitted design modularity.

2.50

2.00 -

1.50 -

1.00

Relative SCIP Design Cost

0.50

Pseudo-cost function: rise

0.00 -
12 48 96 192

Design Modularity, OC-N

—o—NetA —a—NetB —a—NetC —e—NetD

Figure 6.5. Effects of modular capacity on design cost with span eliminations by MAPR

(Nets A-D, rise pseudo-cost function).
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2.00 -

150

1.00 -

Relative SCIP Design Cost

0.50

Pseudo-cost function: impulse

0.00
12 48 96 192
Design Modularity, OC-N

—o—NetA —a—Net B —a— Net C —@—NetD

Figure 6.6. Effects of modular capacity on design cost with span eliminations by MAPR
(Nets A-D, impulse pseudo-cost function).

Examining the results from Figures 6.5 and 6.6, it can be found that there exists a point for each
network at which, for the given design modularity, the SCIP design cost is minimum. It is also
apparent that further increasing the design modularity beyond this minimum point increases the
SCIP design cost. When aggregation pressure is introduced to the demand routing, demands are
routed over longer paths (relative to shortest-path) to efficiently fill up span modules that are
currently in use (since they are cheaper to route), allowing the more expensive unused spans to
remain at zero capacity. The effect of this routing method increases the total routing distance
consumed by the network thereby increasing the network’s average working capacity on each
span relative to shortest-path routing. Therefore, when the design modularity is small, the
increase in span capacity requirements is more likely to exceed any surplus or slack capacity in
the span module, resulting in more rings being placed. Also, when the design modularity is small,
more span modules are easily packed to their full modular capacity, hence the likelihood of
unused spans remaining at zero working capacity decreases. Consequently, the number of span

eliminations is relatively fewer (Table 6.2 to 6.5).
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However, when the design modularity gets larger, it is more likely that the slack capacity in the

span will be large enough to accommodate the increase in span capacity requirements, resulting

in fewer rings being placed. Furthermore, increasing the design modularity increases the

likelihood of unused spans remaining at zero working capacity, so relatively more span

eliminations are observed. Nonetheless, using larger design modularity does not always lead to

better cost results since the network equipment that handles larger capacity costs more (say two

times the cost for four times the capacity). Hence, the design cost increases when the design

modularity used becomes too large even though there are more span eliminations. Table 6.6

below summarizes the least cost results obtained by MAPR for rise and impulse.

Table 6.6. Least cost SCIP design obtained using MAPR(rise) and MAPR(impulse).
MAPR(rise) MAPR(impulse)
Network | pegign SCIPCost | Comp.Time| Design SCIP Cost | Comp. Time
Modularity (Millions) (seconds) { Modularity (Million) (seconds)
A 12 1.94 0.13 48 2.00 0.01
B 96 17.03 3.69 192 19.47 75.83
Cc 48 12.78 0.18 48 13.93 0.01
D 96 33.49 0.87 192 46.71 0.36

As shown in Table 6.6, the least cost SCIP designs obtained from MAPR(rise) in all cases out-
perform MAPR(impulse). When comparing MAPR(impulse) designs with designs using pure
shortest-path routing and no span eliminations over all design modularities, only seven out of
sixteen MAPR(impulse) designs showed an improvement in cost. Most of these cases occur when
relatively large design modularity is permitted (compare the MAPR(impulse) results in Tables 6.2
to 6.5 against the shortest-path routing with no span eliminations designs in Table 3.3). A span
implementing the impulse pseudo-cost function (Figure 4.5b) exhibits extreme aggregating
pressure due to the minimum constant routing pseudo-cost for the span as long as it has any slack
capacity, except when the span is unused or is at exact full modular value. As a result, demands
tend to be routed over longer paths (relative to shortest-path and MAPR(rise)) since used span
modules with minimum pseudo-cost “attract’ the demands until they are fully packed. Hence,
subsequent demands are likely to be routed using these spans with minimum pseudo-cost, where
the resulting paths are likely to be longer, leaving more spans unused and increasing the average

working capacity on each span. Therefore, although more span eliminations are obtained, the
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design costs are still higher since there is not enough slack capacity in the spans to accommodate
the increase in span capacity requirements leading to relatively more rings being placed. Only
when relatively large design modularity is used does MAPR(impulse) show cost improvement
over pure shortest-path routing with no span eliminations. Based on these interim results on
MAPR(impulse), it was decided to focus only on MAPR(rise) since eleven out of sixteen designs

showed cost improvements over pure shortest-path.

It is also important to note that the MAPR algorithm requires less computational time than its
counterpart using pure shortest-path with no eliminations. The explaination for this is that MAPR
eliminates the resulting non-essential spans that have zero capacity requirements and removes the
cycles that use the eliminated non-essential spans from the cycle file before SCIP is executed.
Therefore, with fewer cycles, MAPR exhibits relatively faster computational runtimes since SCIP

has fewer possible designs to compute with respect to shortest-path and no eliminations.

6.1.3 IRE

A similar experimental process was used to investigate IRE. This heuristic was run on the four
test networks with the corresponding demand matrices presented in Chapter 2.4. Previous
experiments on MAPR showed that there exists a point for each network where, for a given
design modularity, the SCIP design cost is at minimum. It was found that the minimum design
costs occur when the design modularities are 12, 96, 48 and 96 for Net A, Net B, Net C and Net
D respectively. Note that these results are similar to the results obtained in Table 3.3 for pure
shortest-path with no span eliminations. With these findings, as a practical matter (since the
number of SCIP runs in IRE rises quadratically with number of non-essential spans), the IRE
investigations have been reduced to one design modularity per test network. The design
modularities that have led to the minimum SCIP design cost described earlier have been adopted
since they have shown the potential of giving the least min-cost results. Table 6.7 below
summarizes the design modularity, the number of non-essential spans, and the required number of

SCIP runs (Eq.5.1) for each test network.
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Table 6.7. The selection of design modularity, the number of non-essential spans and
the number of SCIP runs for each test network in IRE investigation.

Network Module Size Ng;‘o.f':’:.:. No. of SCIP
Spans, k runs
A 12 11 66
B 96 18 171
c 48 7 28
D 96 21 231

Figures 6.7 to #6.10 show the results of using IRE on Net A, Net B, Net C and Net D respectively.
These results czorrespond to a specific combination of span eliminations that were found during
the IRE span e limination process on each of the test networks. The eliminated spans for each IRE

iteration numbeer are displayed adjacent to each point shown on the graphs.

2.00E+06
1.90E+06
Net A
1.80E+06 Module Size = 12
‘8" Biminated S
O 1.70E+06
O &~ Span
o (5-11) x
(7]
a
o 1.60E+06 (5-6) (1-5) (9-11) (1-8) (5-9)
o ° v e -
a (4-8)
(1-3)
1.50E+06 -
1.40E+06 - &8
1.30E+06 -
0 1 2 3 4 5 6 7 8 9 10 1

No. of Span Eliminations

Figure 6.7. SCIP results for Net A using IRE.
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Figure 6.8. SCIP results for Net B using IRE.
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Figure 6.9. SCIP results for Net C using IRE.
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Figure 6.10.  SCIP results for Net D using IRE.

It can be observed that a consistent” pattern occurs in all the IRE curves (with the exception for
Net D in Figure 6.10, to be discussed later in this section) and that an optimum point (with respect
to the points obtained in each respective figure) exists as the number of eliminations increases. In
other words, it is possible to do too many span eliminations. The first falling section of the curves
occurs when too many rings emerge in the design forced by the coverage requirement. These are
lightly loaded rings forced upon the design to cover relatively light loaded spans. In this region
costs can be reduced by eliminating spans and detouring the affected demands, sending them over
longer alternate paths via other rings. Thus cost decreases as more spans are eliminated. A
minimum value (most-improved design) is reached when the rings and spans achieve the best
possible utilization. When more spans are removed, however, demands may be diverted over
longer and longer paths, which eventually drives up the capacity requirements until ring capacity
is exceeded and additional rings are triggered. These observations are further summarized in

Figure 6.11.

" in the sense of the general behavior to be described in Figure 6.11.
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Figure 6.11.  Typical IRE curve pattern. (a) Typical IRE cost vs. span eliminations curve.

(b) Typical ring network design characteristics for each region (this model is

obtained using IRE results for Net A).

Figure 6.1 1a illustrates the typical IRE cost curve divided into three regions and Figure 6.11b
shows the typical ring network characteristics for each region. Specifically, the IRE results for
Net A are used to portray this figure illustrating the average capacity utilization, the average ring
size and the number of rings for each region to provide a clearer understanding of span
eliminations. Region | represents the initial phase of span eliminations in IRE. In this region.
there are many spatially distinct and lightly loaded rings forced by the strict coverage
requirements resulting in relatively more low-utilized rings. Eliminating spans and detouring the
affected demands over alternate paths via other rings gradually reduces the SCIP design cost until
a minimum value is reached. Here the rings and spans achieve the best possible utilization
requiring relatively fewer number of rings and higher average capacity utilization as shown in
Region 2. Further span eliminations progressively drive up the capacity requirements until the
ring capacity is exceeded. Subsequently, Region 3 tends to have many large similar stacked rings

triggering more and higher design cost.
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A further explaination is required for the IRE curve for Net D depicted in Figure 6.10 which
shows that the overall SCIP design cost drops as more spans are eliminated and the minimum
SCIP design cost occurs when all the non-essential spans are eliminated. This curve is in fact
portraying Region 1 (and/or parts of Region 2) of Figure 6.1 la. This curve shows that using
design modularity of OC-96 for Net D is large enough to accommodate the increase in span
capacity requirements due to the span elimination and re-routing of demands over longer paths,

without triggering additional rings.

Table 6.8 below summarizes the cost results for the most-improved design with the corresponding
number of span eliminations, the span elimination sequences and the computational time obtained

using IRE for each test network.

Table 6.8. The minimum SCIP results using IRE single-modular capacity design.
Module | No.of Span SCIP Design | Comp. Time
Network |~ cire Elim. Span Elim. Sequence Cost (Millions)| (seconds)

A 12 8 {5-11)-(4-8)-(5-6)-(1-5)-(3-11}-(1-8)-(5-8)-(1-4) 1.43 37.45

8 96 5 (3-15)-{17-19}-(8-17)-(7-3)-(10-13) 16.02 1424350

c 48 2 (70-113)~(32-84) 12.05 83.20

(3-31)-(71-79)-(89-104)-(62-103)-(104-125)-(9-31)-(25-97)-(36-118)-(63-
D 96 11 119)-(63-65)-(78-118)-{39-40)-(83-85)-(84-121)-(70-113)-(113-123)-(36- 3127 3.813.58
119)-(34-109)-(34-101)-(25-102)-(30-96)

6.2 Interim Conclusions

This section compares the performance of MAPR and IRE for single-modular capacity design.
Several interim conclusions were drawn which affect the direction of the ideas and investigations

of other span elimination heuristics in the second half of this work.

6.2.1 Comparison of the Performance of MAPR and IRE

Table 6.9 below shows the results found for MAPR and IRE. These results were compared
against SCIP for the shortest-path routing case with no span eliminations (Table 3.3). Figure 6.12
below gives the percentage decrease (increase) in the total design for IRE and MAPR algorithms

relative to the cost obtained with shortest-path routing and no span eliminations.



Table 6.9. The most-improved SCIP results and the total computational time using
pure shortest-path (no eliminations), MAPR (rise) and IRE.
Pure Shortest-Path MAPR (rise) IRE
Modular
Min-Cost SCIP Min-Cost SCIP Min-Cost SCIP
Network Capacity Design Comp. Time Design Comp. Time nDe?ign Comp. Time
(Miions) | (%8°°M98) §  iiions) | (eeconds) (Milions) | (8econds)
A 12 1.94 3.63 1.94 0.13 1.43 37.45
B 96 17.84 19.47 17.03 3.69 16.02 142435
c 48 12.48 0.08 12.78 0.18 12.05 83.2
D 96 33.70 32.13 33.49 0.87 31.27 3813.58
30%
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25%
20%

% SCIP Design Cost Savings

g
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Figure 6.12.  Percentage Total Network Cost Savings for MAPR/SCIP(rise) and

IRE/SCIP.
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The SCIP design cost savings reported by IRE range from 3% to 26% as compared to -2 % to 5%
reported by MAPR. These results show that the most-improved design found by a run of the IRE
algorithm consistently outperformed the MAPR algorithm. The cost increase of 2% by MAPR
using rise for Net C was a case where too many eliminations occurred requiring significantly
more or larger (longer) rings to cover the remaining sub-graph within which demands were
severely detoured. Hence, for this situation, using shortest-path with no span eliminations will be
the preferred solution, which implies that MAPR has resulted in zero cost savings™. It can be
observed that there are instances where MAPR may not be the suitable approach to use and in
hindsight it seems clear why: MAPR results in one specific set of eliminated spans and re-routed

flows whereas an IRE generates a progression of increasingly span-eliminated designs to

consider.
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Figure 6.13.  Scatter plot for MAPR and IRE results normalized to corresponding
shortest-path and no span elimination results to show the relationship

between solution quality and computational time (Nets A-D pooled).

* The MAPR algorithm alone does not perform trial design using shortest-path with no span eliminations.
In practical situation, a planner will perform a baseline design using shortest-path with no span eliminations
before attempting to initiate any span elimination strategies. Therefore to reflect practical interest, negative
cost savings will be denoted as zero cost savings.
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On the other hand, IRE has a considerably longer computational time than MAPR (as shown in
Table 6.9) prompting a trade-off in terms of solution quality and computational time. This
relationship is shown in the scatter plot in Figure 6.13 for the SCIP design cost and the
computational time results obtained using MAPR and IRE normalized to the results using
shortest-path and no span eliminations. The x-axis (Relative Computational Time) is the
computational time results obtained from MAPR and IRE normalized by the respective
computational time results using shortest-path and no span eliminations (refer to Table 6.9). The
y-axis (Relative SCIP Design Cost) is the SCIP design cost obtained from MAPR and IRE
normalized by the respective SCIP results for shortest-path routing and no span eliminations. The
full run-time for IRE is high (the IRE points are scattered to the right of Figure 6.13) due to its
built in breadth-first search strategy, of which each iteration employs an SCIP coverage design. In
large networks, there are likely to be many non-essential spans, causing an increase in IRE run-
times since the number of SCIP runs rises quadratically with the number of non-essential spans.
MAPR, however, requires only a single SCIP run regardless of the size of the network (MAPR

points are scattered to the left of Figure 6.13).

6.2.2 Discussions and Conclusions

As presently described, the conclusion must be that MAPR is not reliable as a span elimination
heuristic. The increase in design cost obtained for Net C signifies that MAPR has over-done the
span elimination. In essence, MAPR is a one-shot span elimination strategy that depends on the
aggregation pressure applied to the span using the capacity-sensitive pseudo-cost function to
efficiently route demands on the network, leading to a certain number of span eliminations.
MAPR has no means of indicating that a pseudo-cost function may have applied too much
aggregation pressure, leading to too many span eliminations that result in high coverage design
cost. In principle, to solve this problem, al/ possible pseudo-cost functions could be examined
with different aggregation pressure to capture the most-improved design cost. However, since
there is an infinite number of pseudo-cost curves, and each span in the network may require

different aggregation pressure, this is impractical.

From the results in Table 6.9, it can be seen that the advantage of using MAPR is speed whereas
the advantage of using IRE is that it generates a succession on the number of span eliminations
where the overall min-cost (most-improved) design is captured. Consequently, in Chapter 7, an

improvement to MAPR has been developed by allowing a specific number of pseudo-cost
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functions to be examined, incorporating both of the above properties. This improved strategy is
calied Iterative MAPR (iMAPR).

At this point, consideration of multi-modularity is also added. Chapters 4 and S investigate
MAPR and IRE using single-modular design where each resulting design obtained is limited to
only a single ring modular capacity. The results summarized in Figure 6.5 suggest a strong
dependency between the min-cost design and selection of modular capacity. In addition, design
costs are limited since there are situations where using a smaller ring modular capacity is
adequate to cover the same demands previously covered by a larger ring modular capacity. There
are also situations where it will be cost-effective to use a larger ring that has twice the modular
capacity to cover the same demands previously covered by two smaller rings with one half the
modular capacity of the larger ring (due to economy-of-scale effects). By implementing multi-
modular design, rings can now be selected in terms of cost and modular capacity to cover the
working demands in the network, which will in turn result in better and improved cost results
relative to single-modular designs. In the chapters to follow, multi-modular SCIP design will be

discussed. The IRE algorithm is revisited in Chapter 9 using multi-modular SCIP design.

For the reader’s information, the work done in Chapters 3, 4, 5 and 6 was the basis of the related

conference paper in [33].
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7.0 ldeas for Modification and Improvements for MAPR

The conclusions in Chapter 6 led to the modification and improvement of the MAPR span
elimination heuristic. This chapter details the modifications and improvements that have been

made.

7.1 Iterative MAPR (iMAPR)

7.1.1 Introduction

In Chapter 6, it was found that MAPR using the rise pseudo-cost function gave better results than
MAPR using the impulse pseudo-cost function. This was deemed to be due to the effects of very
high aggregation pressure. Applying too much aggregation pressure tends to draw demands to
route over longer alternate paths relative to shortest-path routing and MAPR(rise), leading to an
increase in average working capacity on each span. Here, slack capacity in the spans is not able to
accommodate the increase, resulting in additional rings being required to cover the excess
capacities where subsequent SCIP runs will yield higher design costs. In contrast with
MAPR(rise), there is a compromise in the level of aggregation pressure applied to the spans,
leading to a relatively smaller increase in average working capacity which slack capacity in spans

is more likely to be able to accommodate, resulting in better SCIP design costs.

These insights about the relationship between the aggregation pressure applied to the spans and
the SCIP design cost led to the idea of progressively applying the aggregation pressure from weak
to strong seeking the best-fit aggregation pressure that will result in the most-improved SCIP
design. Using rise and impulse alone for general investigations of all networks is not sufficient

when searching for and determining the best possible minimum cost.

Iterative MAPR(iMAPR) improves on MAPR by stepping through a family of pseudo-cost
functions, allowing the capture of one sub-graph that gives the most-improved SCIP coverage
design. Here, there is an iterative strategy where MAPR (which itself is very fast) is executed at
each iteration, with a different pseudo-cost curve each time. The ideal would to examine all
possible pseudo-cost curves, but doing this would be impractical as there could be an infinite
number of possible curves. Therefore, a family of pseudo-cost curves have been selected, and
starts with the first iteration using a pseudo-cost curve that has a very light level of aggregation
pressure. For each subsequent iteration, the level of aggregation pressure is increased in nearly

constant steps until the final iteration is reached where the curve has the highest level of
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aggregation pressure, much like an impulse pseudo-cost function. The equations and selected

pseudo-cost functions are described in Chapter 7.1.2.

Another approach to improving problem fidelity is to utilize SCIP using multi-modular design.
The same modular span capacities, as well as network equipment, ring configurations and cost
models described in Table 3.1 and Table 3.2, are used. The SCIP formulation for multi-modular
capacity design is the same formulation described in Chapter 3.2.2. For multi-modular design,
SCIP generates a set of ring candidates R containing rings with different modular capacities and
searches for the set of ring candidates (that may consist of ring candidates with different modular

capacities) that will lead to the min-cost ring coverage design.

Changing single-modular SCIP to multi-modular capacity SCIP has prompted changes to the
location of the peak pseudo-cost in the pseudo-cost curve, previously defined in MAPR (Chapter
4.2.2). When single-modular SCIP is used, peak pseudo-cost occurs when the span capacity
requirement is at span modular capacity or multiples of span modular capacity. For example, if
the current investigation is using a modular capacity of OC-12, peak pseudo-cost occurs when the
span capacity requirement is at 0, 12, 24, 36, 48 and so on; or if, the modular capacity is OC-192,
peak pseudo-cost occurs at span capacity requirements of 0, 192, 384, 576 and so on. The reason
behind this is to have the pseudo-cost for deploying a new span module at its highest. By doing
so, the pseudo-cost of placing a demand on a span that has already reached its full modular
capacity is at the highest. However, once a new span module has already been ‘paid’ for
(meaning once a demand is placed over a new span module), the cost for placing subsequent
demands on that span is relatively lower since the aim is to utilize the span module as much as

possible until it reaches its next full modular capacity where a full period is repeated again.

When several different modular capacities are possible in multi-modular SCIP, it would be more
economical to use a larger span modular capacity to replace a smaller span modular capacity
when there are excess demands placed over the smaller span modular capacity. For example, in
the single-modular situation, if there are excess demands being placed over an OC-48 span
module, an additional OC-48 span module is required to cover the excess demand; however., in a
multi-modular SCIP, it would be more economical to use a single OC-96 span module in place of
the two OC-48 span modules since the cost of a single OC-96 is relatively cheaper. Therefore, the
pseudo-cost function has been adjusted in a way that will select the best span modular capacity.

For example, if the span capacity requirement is in the range of 49 to 96, using a span with a
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modular capacity of OC-96 would be the most economical. Therefore, the peak pseudo-cost
occurs when the span’s capacity requirement is at 96. Alternatively, if the span’s capacity
requirement is within the range of 193 to 204, the most economical combination of span modules
would be to use a single OC-192 span module and a single OC-12 span module. Here, the peak
pseudo-cost occurs when the span’s capacity requirement is at 204. By determining these ranges
and the best combination of span modules for those ranges, the positions for the peak pseudo-cost
can be determined. So far, it has been determined that the peak pseudo-cost occurs when the span
capacity requirement is at 0, 12, 48, 96, 192, 204, 240, 288, 384, and so on: notice that the curves
between 0 and 192 are repeated for every period of 192.

There are, however, exceptions. Using the network equipment and fibre cost depicted in Table
3.1, if the span capacity requirement is in the range of 97 to 108, the most economical
combination of span modules is, in fact, using a single OC-96 span module and a single OC-12
span module (total cost = $273,063). As described earlier, it is assumed that using a single OC-
192 span module is the most economical (total cost = $285,332). Hence, for simplicity’s sake, the

peak pseudo-cost described earlier has been adopted.

Section 7.1.2 provides more detail about the pseudo-cost equations that are used and the
adjustments that are made to reflect the family of selected pseudo-cost curves and the changes to

the location of the peak pseudo-cost when multi-modular SCIP is implemented.

7.1.2 iIMAPR Pseudo-Cost Function

With the conceptual understanding of the desired pseudo-cost function from the previous section,
two conditions are defined that are similar to those adopted by MAPR. These two conditions are
used to formulate the general equation for iIMAPR pseudo-cost function. The conditions are as

follows:
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d;'G9 (w; MOD M(w, ))=0;

c;(w,)= ” (10, MOD M(w, )= I; (1.1)

ci(wi) - Pseudo-cost of span / with w; capacity requirements where
0<w; <192,

d; - Geographical distance of span i.

G=10 - An arbitrarily selected constant multiplier set to 10.

M(w;) - the next modular capacity that is smaller than or equal to w;

where M(w;) € {0, 12, 48,96, 192}. For example, if w; = 13,
then M(w;) = 12, or if w; = 96, then M(w;) = 96.

The conditions shown in Equation 7.1 only apply for O < w; < 192. Later in this chapter, the

procedure of calculating pseudo-cost for w; > 192 will be illustrated.

The two conditions in (7.1) are defined as (i) the peak pseudo-cost which occurs when w; is at 0
or an exact full modular value of 12, 48, 96 or 192 and, (ii) the minimum pseudo-cost occurs

when one demand is piled over a new span module or over an exact full module.

A rise-like pseudo-cost function with the capability of varying the aggregation pressure is of
interest. Notionally this is related to the rate of ascent of the rise pseudo-cost function. Therefore,
a family of exponential functions. parameterized by a strength parameter ¢ to control the
aggregation pressure has been utilized. Two general exponential equations were used: a general
negative exponential equation to define a set of upper curves, and a general positive exponential
equation to define a set of lower curves (Figure 7.1) °. The general expressions are shown in

Equation 7.2 and Equation 7.3, respectively.

It was later found that it is possible 1o use onc exponential equation to define both the set of upper
curves and the set of lower curves, which can further simplify iMAPR pseudo-cost.
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Figure 7.1 Desired ¢;" and ¢; exponential curves.
c; =B (1-A"e™) O<as<l (7.2)
c; =B (1+A ™) O<a<l (1.3)
cit(wi) - Pseudo-cost for the set of upper curves.
ci (wi) - Pseudo-cost for the set of lower curves.

x=w; MOD M(wi) - The remainder of w; divided by M(w;) where M(w,) is the next
modular capacity that is smaller than or equal to w; where
M(w;) € {0, 12, 48,96, 192} and 0 < w; < 192.

o - Aggregation pressure coefficient, 0 < r< 1.

A, B A B - Coefficients.

Note that Equations 7.1, 7.2 and 7.3 take multi-modular capacities into consideration. Next, the

steps involved in deriving the general iIMAPR pseudo-cost equation are shown.
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Step 1: Derive ¢;* and c; for single modularity.

First, ¢;" is isolated for single modularity. For w; =0, ¢;* is equal to d;-G. For 0 < w;, < M, ¢;" is at
minimum, d;, when w; is equal to I and ¢;* is at maximum, d;-G, when w;, is equal to M, where M
is the module size. Substituting these values into Equation 7.2 for x = w;, the following equations

are obtained for single modularity:
d, =B"(1-A%e™) O<a<l (7.4)

d-G=B"(1-A%e*") oO<acxi (7.5)

Using Eq. 7.4 and Eq. 7.5, the solution for A* and B* is found, thereby deriving ¢;* for single-
modularity (Equation 7.6):

A+ _ G _1 B+ = di
_G.e—a_e-mM 1 G-1 -a
- G e—a _e—a‘M "€
d;-G, w; =0 (7.6)
c'=1d(Ge™* —e "M —Ge™*" 4™ )
i e Y N 0<aSI-O<VL'iSM
e —e€

Similarly, for w; =0, ¢/ is equal to d;-G. For 0 < w; <M, ¢; is at minimum, d,, when w; is equal to
1 and ¢;* is at maximum, d;-G, when w; is equal to M, where M is the module size. Substituting
these values into Equation 7.3 for x = w;, the following equations are obtained for single

modularity:

d, =B (1+Ae%) O<a<l (7.7)

d-G=B (1+Ae™) o<acsl (7.8)
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Using Equations 7.7 and 7.8, the solution for A" and B is found and ¢; is derived for single-

modularity (Equation 7.9):

A— = a-MG_l a B = G(il
é _G‘e 1+( — a]_ea
e -G-e

dl- * G, W,' =0
¢ = dfe™ —Ge® 1 Gom — ot i
l aM a L] O<aSI, O<W',-SM
e — €

Step 2: Derive ¢;* and c; for multi-modularity using ¢;* and c; for single modulariry.

First the locations of the breakpoints in the pseudo-cost curves (where the peak pseudo-cost arises
in multi-modularity) are determined. As described in the previous section, the breakpoints are
intended to occur when w; equals 12, 48, 96 and 192 for O< w; <192. As such. A is introduced as

the difference between two subsequent breakpoints. The A values are as follows:

(12, 0<(w,MOD192)<12

36, 12 <(w, MOD 192) < 48
48, 48 <(w, MOD192)<96
196, 96 <(w, MOD 192) <192

(7.10)

75



By replacing M with A and w; with x where x is (w; MOD M(w;)), ¢;” and ¢; are obtained for

multi-modularity as shown by Equation 7.11 and Equation 7.12 below.

d,- -G, x=0
¢’ =4d(Ge ™ —e ™™ —Ge™ +¢7°¥) 0<a<i (7.11)
e —e™ " 0<x<192
di .G, x=0
¢’ =1dfe"* —Ge® +Ge™* —e**) (7.12)
a-A a b 0<6¥Sl
€ —e 0<x<192

where,

x=w; MOD M(wi),0 <w; <192 - The remainder of w; divided by M(w;) where
M(w;) is the next modular capacity that is
smalier than or equal to w, where M(w;) €
{0, 12, 48,96, 192}.

G=10 - Constant multiplier.

A - The difference between two subsequent
breakpoints, Equation 7.10.

o - Aggregation pressure coefficient.

d; - Geographic distance of span i.

Step 3: Define ofor ¢;* and c; for 21 pseudo-cost curves.

Next, the values for orare defined to determine the strength of aggregation pressure for each
upper and lower curve. H_ere, the criterion is established that each subsequent pseudo-cost curve
from the highest aggregation pressure to the lowest should be roughly equally spaced for use in
iMAPR. Since 21 different pseudo-cost curves will be examined, & in Equations 7.11 and 7.12 is
replaced by a,(r), where r is the curve number, and A is defined by Equation 7.10. The updated

equations for ¢;* and ¢;” are shown in Equation 7.13 and Equation 7.14, respectively.
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d; -G, x=0

ch=1d(Ge ™™ — g™V _ G i)x 4 pasti)x (7.13)
I ]
e () _ praaln)a * O<a<1,084,<10
0<x<192
d,. -G, x=0
c.=1d (e —Ge® ) 4 Ge® ¥ _ grat)x ) (7.14)
' : , O<a<l,11<r <20
eaA(rz)-A _eaA(rz) 2
0<x<192
where,

x=w; MOD M(wi),0 <w; <192 - The remainder of w; divided by M(w;) where
M(w;) is the next modular capacity that is
smaller than or equal to w; where M(w;)
{0, 12, 48,96, 192}.
G=10 - Constant multiplier.
as(rr), au(rs) - Aggregation pressure coefficient.
-Ae {12,36,48,96}, Eq.7.10.
- r; curve number, integer, 0 < r; < 10
- r2 curve number, integer, 11 < r; £20

d; _ - Geographic distance of span /.

Using ¢;* and ¢; in Equations 7.13 and 7.14 described above, a set of a,(r;) and ax(r-) values was
obtained through trial and error for use in iMAPR. These are listed in Table 7.1. An example of
iMAPR pseudo-cost function for a span i with d;=15 is shown in Figure 7.1. The pseudo-code
illustrated in Figure 7.2 is used to calculate the pseudo-cost for all w;. For w; > 192, the pseudo-

cost curves shown in Figure 7.1 are repeated.
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Pseudo-Cost, ¢;

Table 7.1. Aggregation pressure coefficient, a,(r;) and a,(r;), for corresponding A, r,
and r; values determined through trial and error.

A
12 < 48 26
Curve No.
] 1 1 1 1
1 0.75 0.51 0.51 0.35
2 0.58 0.32 0.32 0.18
3 0.46 022 022 0.1
4 0.36 0.16 0.16 0.078
re s 028 0.12 0.12 0.056
[} 022 0.09 0.09 0.042
7 0.16 0.07 0.065 0.03
8 0.11 0.05 0.045 0.02
] 0.06 0.03 0.025 0.01
10 0.01 0.01 0.007 0.001
11 0.045 0.01 0.01 0.008
12 0.095 0.03 0.028 0.018
13 0.15 0.055 0.048 0.03
14 021 0.08 0.071 0.042
re 15 0265 0.11 0.008 0.058
16 034 0.145 0.135 0.082
17 0.44 02 02 .12
18 0.55 03 o3 0.18
19 0.73 0.5 05 0.35
20 1 1 1 1
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Figure 7.2. An example of a non-periodical pseudo-cost function for IMAPR with d; = 15
for 0 <w;<192.
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START cal_pseudo_cost_iMAPR({
for (r=0;r <20; r++ ){
if (0<r<10){
if (w, < 12){
UpperPseudoEquation(w, 4, A=12)
lelse if (12 < w,< 48)
UpperPseudoEquation(w, d, A=36)
Jeise if (48 < w < 96)
UpperPseudoEquation(w, 4, A=48)
leise if (96 < w, < 192)
UpperPseudoEquation(w, 4, A=96)
Jeise if (w, > 192)
w,=w,MOD 192
if (w, < 12){
UpperPseudoEquation(w,, d,, A=12)
lelse if (12 < w, < 48)
UpperPseudoEquation(w,, d,, A=36)
Jelse if (48 < w,< 96)
UpperPseudoEquation(w,, d,, A=48)
lelse if (96 < w, < 192)
UpperPseudoEquation(w,, d,, A=96)

}
if (11 <r<20)
if (w, < 12){
LowerPseudoEquation(w, d,, A=12)
Jelse if (12 < w, < 48)
LowerPseudoEquation(w,, d, A=36)
Jeise if (48 < w, < 96)
LowerPseudoEquation(w,, d, A=48)
lelse if (96 < w: < 192)
LowerPseudoEquation(w-, 4, A=96)
lelse if (v, > 192)
w,=w, MQOD 192
if (w, < 12){
LowerPseudoEquation(w, d,, A=12)
lelse if (12 < w < 48)
LowerPseudo Equation(w,, d,, A=36)
leise if (48 < w, < 96)
LowerPseudoEquation(w,. d,, A=48)
}eise if (96 < w, < 192)
LowerPseudoEquation(w,, d,, A=96)

Figure 7.3. Pseudo-code for calculating iMAPR pseudo-cost for all w;.
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7.1.3 Summary of Complete iMAPR Procedutre

A full description of the iMAPR process is shown in Figtare 7.3 below.

Network

Demand Cost Model
Topology (SNIF)

Matrix

Cycle
Generator

ey
iMAPR

Current SNIF &
Current Cycle Fiile

forr=0t0 20

MAPR on current MAPR on current
SNIF and demand SNIF and demand
matrix using ¢,’. matrix using c,.

Determine and elim. nonz-essential
spans. Save as temp SMIF. Fiiter
Cycle File. Save as temp Cycie File.

v

Run SCIP(multi) using temp SNIF
and temp Cycle File. Saave SCIP
design results for current r.

r - curve number.

Figure 7.4. Schematic depicttion of iMAPR.
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iMAPR begins with four inputs: the SNIF, the demand matrix, the cost model and the cycle file
generated by the cycle generator (Chapter 2.3.3). Twenty-one pseudo-cost curves are then
stepped through to route the PTP demands. First, the PTP demands are routed using curve
number r=0. The a,(r) for the corresponding r and for Ae {12, 38, 48, 96} are shown in Table
7.1. After all the PTP demands have béen routed, the non-essential spans with zero working
capacity (zero w;) are determined and eliminated. Similarly, the cycles that use the eliminated
non-essential spans are filtered from the cycle file. Using the resulting sub-graph and the filtered
cycle file, multi-modular SCIP is executed and the resulting min-cost design is saved. Because
SCIP now has four times the number of ring candidates (a set for each modular capacity), the
computational time for each SCIP increases. As a practical matter, therefore, and to provide a
repeatable basis for comparison, all SCIP run times are limited to 900 sec (an arbitrarily chosen
value). Next, r is incremented by one, and the entire iIMAPR process is repeated using the full
SNIF and the full cycle file until all twenty-one pseudo-curves are stepped through. Here,
amongst all the min-cost SCIP designs obtained from the different r curves, the overall least cost

design is captured as the most-improved design obtained from using iMAPR.

7.1.4 Discussions and Summary

iIMAPR was implemented and investigated as a continuing idea derived from the discussions and
conclusions of MAPR in Chapter 6.2.2. Essentially, iMAPR consists of a set of MAPR runs,
where each MAPR run uses a different pseudo-cost curve with a systematic variation of
aggregation pressure. The idea here is to sweep the pseudo-cost curves and capture the
subsequent sub-graph from the MAPR routing and span elimination process that gives the least

min-cost (most-improved) ring-coverage design.

The resulting sub-graphs from the routing and elimination process in iMAPR are evaluated using
multi-modular SCIP. The computational time for multi-modular SCIP is much higher than that
for single-modular SCIP. This tremendous change in computational time prompted the limiting of
CPU time for each SCIP run to 900 seconds. Experimental results for IMAPR are deferred to
Chapter 9 where they can be presented in a comparative format relative to the next and last two

span elimination methods to be considered.
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8.0 Post-Inspection and Re-Routing (PIR)

Post-Inspection and Re-Routing (PIR) is a new strategy developed in the second half of this work
to resolve the problem of long computational time in IRE. As concluded in Chapter 6, IRE gives
good solutions but suffers tremendously in computational time due to the quadratic relationship
between the number of SCIP runs and the number of non-essential spans (Equation 5.1). As will
be described in this chapter, PIR requires only two SCIP runs, regardless of network size, so
computational time required is reduced dramatically. This chapter begins by detailing the
motivation, the conceptual idea and the algorithm behind PIR. Later, in Chapter 9, the

experimental results obtained using this strategy will be illustrated and compared.

8.1 Introduction

PIR, as the name suggests, is a post-processing span elimination heuristic. The idea behind PIR is
similar to that of IRE in the sense that it examines one span elimination at a time seeking the
most-improved design cost. However, while IRE uses a greedy approach to choose a non-
essential span to eliminate at each step based on an evaluation of cost by SCIP, PIR uses a
different cost evaluation process where a complete ring coverage design is not necessary. This
process is described later in the chapter. PIR adopts the Breadth-First Search (BES) strategy to
systematically perform the eliminate-detour-evaluate process on every non-essential span. When
all the non-essential spans have been examined, it then chooses the sub-graph that most satisfies
the given criterion (for IRE, this criterion is least-cost). Using this sub-graph, it then moves down
the BFS tree, with one less non-essential span to test, and performs the eliminate-detour-evaluate
process again using the remaining non-essential span set. Unlike IRE however, PIR does not
necessarily continue progressing through the tree until all the elements in the set of non-essential
spans has been eliminated. PIR halts when a special condition is met. This special condition is

described later in the chapter.
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To aid in understanding PLR, the factors that limited the performance of IRE are first illustrated.
As described in previous chapters, IRE’s computational time suffers due to the large number of
SCIP runs. In addition, further investigations of IRE show that there are situations where
eliminating non-essential spans does not reduce the SCIP design cost, for instance, where the
SCIP design for the netwoxk with no eliminations is the preferred most-improved min-cost
design. For example, consider the network and span working capacity requirements resulting
from shortest-path routing in Figure 8.1. Using IRE with muiti-modular SCIP, the following sub-

graphs and SCIP designs were obtained as shown in Figure 8.2.

(x,¥) - Span No. x with distance v.

Figure 8.1. A network example where demands are routed using pure shortest-path.
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SCIP Design
Cost = $716,180

5
7 A

SCIP Design
Cost = $787,763

SCIP Design
Cost = $787,613

(b) 1¥ iteration: Test elimination of span (2-3). (c) 1* iteration: Test elimination of span (2-5).

SCIP Design
Cost = $857,596

(d) 2™ iteration: Test elimination of span (2-5).

Figure 8.2. IRE results for the network in Figure 8.1 using multi-modular SCIP. (a) The _
full network graph with demands routed using pure shortest-path. (b) Span (2-
3) is eliminated. (c) Span (2-5) is eliminated. (d) F ollowing the SCIP design in
(b), span (2-5) is eliminated.
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Clearly, the most-improved SCIP design cost obtained by IRE was the initial graph shown in
Figure 8.2a with no span eliminations and a total SCIP design cost of $716,180 (using the same
cost model as presented in Table 3.1). In other words this is a case where the resulting SCIP
design cost did not benefit from any IRE span elimination. By observing the step-by-step span
elimination process used by IRE, it can be seen that, due to the workin g capacity requirements on
span (3-6), the best method of covering the network is to use two OC-12 rings where these rings
are restricted to covering span (3-6). The remaining three units of excess working capacity (15
MOD 12) on span (3-6) have forced the coverage from the additional OC-12 ring. Using an OC-
48 ring will not be cost-effective here since it was found, in this example, to cost more than using
two OC-12 rings. The important role of span (3-6) is realized because it has three more units of
capacity than the ring module size, when OC-12 is being considered. Thus, we could say that
span (3-6) has a supermodularity of three with respect to OC-12. In this example, the existence of
supermodular span (3-6) in the network, and because span (3-6) is also an essential span, has

restricted the ability of span eliminations in IRE to reduce cost.

Supermodular spans are defined as spans where the accumulated w, is greater than the largest
modular ring capacity placed on the span with respect to the reference rings first placed in a basic
SCIP run on the network using shortest-path and no span eliminations. For example, if a span has
a working capacity requirement of 52 and is assumed to be covered by an OC-48 ring and an OC-
12 ring, this span is a supermodular span with a supermodular capacity of four (52 MOD 48).
However, if the span working capacity requirement is 40 and is assumed to be covered by an OC-
48 and an OC-12 ring, this span is not a supermodular span since the span has fewer working
capacity requirements than the largest modular ring capacity (OC-48) placed on the span. Hence,
a span is not a supermodular span if it has a working capacity requirement that is less than or

equal to the largest modular ring capacity that is placed on the span.

The idea in PIR is to harness the knowledge of supermodular spans. When supermodular spans
are determined, the supermodular capacities of these spans are reconfigured by re-routing so as to
reduce the number of supermodular spans. To understand the concept of PIR, first it must be
determined why a reduced number of supermodular spans may lead to a better cost result from
SCIP. Take Figure 8.1 as an example: from the set of rings (Figure 8.2a) obtained from SCIP on
the network using shortest-path and no span eliminations, through an evaluation, it is found that
span (3-6) is the only supermodular span in the network with three units of supermodular capacity

(15 MOD 12). Here, three units of supermodular capacity are re-routed by detouring them using
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an MAPR(rise)-like routing at the span-level (as described in Figure 2.2). As a result, the three
units of extra working capacity are detoured through path (3-2)-(2-5)-(5-6). MAPR(rise)-like re-
routing is useful here to ensure that detouring of supermodular capacities will not bump ring
capacities over their modular boundaries, triggering additional rings, unless necessary. After the
supermodular capacities have been re-routed, the resulting graph is then evaluated again for the
number of supermodular spans with respect to the same reference set of rings placed initially on
the network with shortest-path and no span eliminations. Figure 8.3 illustrates the resulting

network after the supermodular capacities have been re-routed.

Re-route the
supermodular

. Re-routing
capacities. supermodular
capacities at
supermodular I / span-level

5
7 ~ 6

+3

No. of supermodular spans = 1

No. of supermodular spans = 0

Figure 8.3. Phase I of PIR where the supermodular capacities of span (3-6) have been
re-routed.

After the supermodular capacity has been re-routed, and since the resulting graph has fewer
numbers of supermodular spans than it initially had, the resulting graph in Figure 8.3 is
permanently adopted. A brief evaluation shows that there are no subsequent supermodular spans

left, therefore this PIR Phase I is complete.
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In the second phase, PIR further examines the possibility of reducing the number of supermodular
spans by means of eliminating the non-essential spans. This is accomplished by initiating the
greedy Breadth-First-Search (BFS) strategy to search for the combination of non-essential span
eliminations that permits the lowest number of supermodular spans. This step is similar to IRE
except for the polynomial-time evaluation procedure used at the end of each span elimination and
re-routing. The evaluation procedure in PIR considers the number of supermodular spans (with
respect to the reference set of rings placed on the network earlier using shortest-path and no span
eliminations) in the resulting sub-graph after span elimination and re-routing of the affected
demands. The fewer the number of supermodular spans, the better the sub-graph is presumed to
be for a final SCIP design run. Therefore, at each depth of the BFS tree, a sub-graph with the least
number of supermodular spans is kept. If there is more than one sub-graph with the same least
number of supermodular spans, one is chosen arbitrarily from amongst them. This PIR Phase II
halts when moving further down the BFS tree does not result in an equal or lower number of

supermodular spans.

An example of PIR Phase II is shown in Figure 8.4 where the BFS strategy is initiated to find the
lowest number of supermodular spans by means of eliminating the non-essential spans and re-
routing the affected demands on the network shown in Figure 8.3. The network after PIR Phase I
in Figure 8.3 has no supermodular spans. This network is the root of the BFS tree in PIR Phase II.
There are two non-essential spans, span (2-3) and span (2-5). At the first depth of the tree,
eliminate-reroute of span (2-3) results in zero supermodular spans and eliminate-reroute of span
(2-5) results in two supermodular spans. The supermodular spans are determined with respect to
the reference rings placed on the network earlier using shortest-path and no span eliminations
(Figure 8.2a). The resulting sub-graph due to the elimination-reroute of span (2-3) is kept for this
iteration since it gives a lower number of supermodular spans than the other sub-graph, and this
number is less than or equal to the number of supermodular spans before the span eliminations

process was executed.

Going down to the second depth of the tree, one non-essential span is left. Here, eliminate-reroute
of span (2-5) results in two supermodular spans. Consequently, PIR halts here since there are no
eliminations of non-essential spans that can result in an equal or lower number of supermodular
spans. Note that it is possible that eliminating a span can create a supermodular span but

eliminating the next span can remove it. This effect is desired since in total two spans are
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eliminated without increasing the number of supermodular spans. However, for simplicity’s sake,

The no-elimination
reference set of
& Q) rings.
O 0O
‘.
(» O (&)

(a) The initial network in PIR Phase II.

this factor is not taken into consideration at this point.

No. of supermodular spans = 0

5
7 ~ 9
No. of supermodular spans = 2
No. of supermodular spans = 0 Supermodutar
spans
(b) 1% Iteration: Trial elimination (c) I* Iteration: Trial elimination
of span (2-3). of span (2-5).

Supermodular No. of supermodular spans = 2

spans ND
(d) 2" Iteration: Trial elimination

of span (2-5).

Figure 8.4. PIR Phase II results following PIR Phase I in Figure 8.3. (a) Resulting
network from PIR phase one. (b) Span (2-3) is eliminated. (c) Span (2-5) is
eliminated. (d) Following the elimination of span (2-3) in (b), span (2-5) is
eliminated.
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The most-improved sub-graph found by PIR is the sub-graph that gives the fewest possible
supermodular spans (Figure 8.4b). By executing SCIP on this sub-graph (Figure 8.5), it can be
seen that the SCIP design cost is $572,864. Comparing this cost result with the most-improved
cost result obtained by IRE (Figure 8.2a), a 20% reduction is observed.

No. of supermodular spans =0

SCIP Design Cost = $572,864

Figure 8.5. SCIP design results on the most-improved sub-graph found by PIR.

The example shown above using PIR shows that reducing the number of supermodular spans by
means of re-routing the supermodular capacities and eliminating the non-essential spans does in
fact give a better SCIP design cost. Furthermore, the major advantage in PIR is that the overall
algorithm uses only two SCIP runs, regardless of the network size, enabling it to give the most-
improved solution in a relatively fast computational time. Next, the overall PIR algorithm is

described.
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8.2 Complete PIR Algorithm

The fully detailed description of the PIR process is shown in Figure 8.6 and Figure 8.7.
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The retaerence
sat of nngs

Figure 8.6. Phase I of PIR showing the processes that are involved in reducing the total

number of forcer spans by means of re-routing the supermodular capacities.
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Phase II of PIR: Search for the minimum number of supermodular spans by

eliminating non-essential spans and re-routing trials.
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The PIR algorithm has two phases. The objective in Phase I is to reduce the number of
supermodular spans by means of re-routing the supermodular capacities. Phase II implements
span eliminations using the BFS strategy to search for a set of span eliminations and re-routing

that will give the minimum number of supermodular spans.

Phase I begins with four inputs: network SNIF, demand matrix, cycle file and cost model. First,
the PTP demands are routed over the network SNIF using pure shortest-path and SCIP is
executed on the subsequent capacitated network SNIF to obtain the no-elimination reference set
of rings to cover the network graph. With this reference set of rings, the set of supermodular

spans and the corresponding supermodular capacities can be determined.

For example, to determine the set of supermodular spans for the network in Figure 8.1, the rings
found by SCIP shown in Figure 8.2a are utilized. Using this as the no-elimination reference set of
rings, each span in the network is investigated. Specifically, the number and modularity size of
the rings that are used to cover each span are considered. Here, all spans in the network in Figure
8.1 are covered by a single OC-12 span module except for span (5-6) and span (2-6), where two
OC-12 span modules are used. In detecting supermodular capacities a span that is covered by a
single span module is ignored since it has no supermodular capacities and, therefore, is not a
supermodular span. For the spans that require multiple overlying modules, its capacity
requirements w; are divided by the largest span modular capacity used to cover this span. and then
it is observed to determine whether there are any supermodular capacities; the remainder of w;
divide by the largest span modular capacity is the supermodular capacity. If there are
supermodular capacities, this span is supermodular with respect to the no-elimination reference
set of rings. As such, span (5-6) is not a supermodular span and span (3-6) is a supermodular span
with three supermodular capacities. After the set of supermodular spans, the number of
supermodular spans and the supermodular capacities have been determined, a for loop is entered
with the current SNIF, the current set of supermodular spans, the supermodular capacities, and

the current number of supermodular spans.

The first element in the set of supermodular spans and the corresponding supermodular capacities
are re-routed at the span-level using an MAPR(rise)-like re-routing. This re-routing is performed
at the span-level. The subsequent graph is analyzed and the number of supermodular spans it has
is determined with respect to the no-elimination reference set of rings. If the number of

supermodular spans is less than or equal to the current number of supermodular spans, the
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changes to the current SNIF are committed to and the number of supermodular spans with the
reduced number of supermodular spans is updated. If not, the process is repeated again with the
next element in the set of supermodular spans until all the supermodular spans have been
examined. As a result, the network that has the lowest possible number of supermodular spans is
found from re-routing the supermodular capacities. Phase II is then entered using the SNIF, which
has the smallest number of supermodular spans from Phase I, the number of supermodular spans,

and the no-elimination reference set of rings as inputs.

Phase II begins by determining the non-essential spans as per all prior methods. Using this set of
non-essential spans, the current network SNIF, the current number of supermodular spans, the
current cycle file, and the no-elimination reference set of rings, the BFS iterations begin. For each
non-essential span, a non-essential span is eliminated from the network SNIF, the affected
demands are re-routed at the span-level using MAPR(rise)-like re-routing, the cycles that use the
eliminated non-essential span are filtered, and the number of supermodular spans is found
following the elimination and re-routing with respect to the no-elimination reference set of rings.
The resulting sub-graph is saved as a temporary SNIF together with the temporary cycle file and
temporary number of supermodular spans. The above process is repeated with another non-
essential span on the current network SNIF and the current cycle file until all the elements in the
non-essential span set have been examined. Then, the trial elimination and re-routing that gives
the smallest number of supermodular spans is kept. If there is more than one sub-graph with the

same lowest number of supermodular spans, one is arbitrarily chosen.

At each iteration, the number of supermodular spans in the trial case is compared with the current
minimum number of supermodular spans. If the number of supermodular spans is less than or
equal to the current minimum number of supermodular spans, the number of supermodular spans
is determined as the minimum number of supermodular spans. However, if the number of
supermodular spans is more than the current minimum number of supermodular spans, the BFS
strategy is halted where SCIP is then executed on the current SNIF using the current cycle file.
This new SCIP design is compared to the SCIP design obtained earlier in Phase I. The SCIP
design that gives the lowest cost design is kept, and will be the most-improved SCIP design
obtained using the PIR strategy together with the number of span eliminations and the number of

supermodular spans.
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8.3 Summary

The PIR strategy was developed in response to the problem of excessive run-time sustained by
IRE due 0 intemal SCIP calls. PIR is based on a polynomial time analysis of supermodular
capacities as a means of detecting the desired span eliminations. The hypothesis is that a reduced
number of supermodular spans will lead to a lower ring network design cost in a single final SCIP
coverage run. This is an intuitive motive, which will later be confirmed by experimental results

shown in Chapter 9, verifying that PIR is an efficient heuristic.

A major advantage of PIR is that it requires only two SCIP runs regardless of network size. The
first SCIP run is part of PIR Phase I to obtain the ring coverage design of the initial network
graph where the demands are routed using the pure shortest-path algorithm. The ring-set thus
obtained provides the reference modularities against which to later define and detect
supermodular spans and capacities used in the PIR strategy. The second SCIP run is performed at
the end of PIR Phase II to obtain the final ring coverage design on the span eliminated and the re-
routed sub-graph that yields the minimum number of supermodular spans. Among the two SCIP
designs, the SCIP design that gives the least-cost will be the most-improved SCIP design found

using PIR. Since only two SCIP runs are required, PIR is expected to be much faster than IRE.
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9.0 Performance and Results

This chapter reports the experimental results obtained using iMAPR, IRE and PIR. At this stage
all methods and results are multi-modular and, in any case where SCIP is used, each SCIP run
itself was given at a maximum of 900 seconds to run. These span elimination strategies are now

compared in terms of their solution quality and computational time.

9.1 Resuits of Pure Shortest-Path Routing using Multi-Modular
Capacity SCIP - Revised

To have consistent SCIP runtimes for all three span elimination strategies iMAPR, IRE and
PIR), the experiment for a network using pure shortest-path in Chapter 3.3.2 has been revised
using SCIP limited to 900 seconds of CPU runtime. Consequently, because of this and the switch
to multi-modular designs, the baseline results for SCIP coverage designs employing no span
eliminations need to be updated.

Table 9.1. Min-cost results obtained for network using shortest-path routing and SCIP
multi-modular capacity design with SCIP’s CPU runtime limited to 900

seconds compared to CPU runtime limited to 24-hours.

SCIP Design Cost | SCIP Design Cost
Network (million) (million) % Difference
800-sec 24-hour
A 1.94 1.94 0.00%
B 17.72 16.73 5.61%
C 11.08 11.08 0.00%
D 27.21 26.85 1.33%

Comparing the results in Table 9.1 and the results obtained in Table 3.4, the difference in design
costs between SCIP limited to 24-hour CPU runtime and SCIP limited to 900-sec CPU runtime is
in the range of 0% to 6%; the $00-sec limitation has not significantly altered the baseline results

against which performance of the various span elimination methods will be assessed.
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9.2 Results and Analysis of iIMAPR

The same four test networks and demand matrices detailed in Chapter 2.4 have been used to test
iMAPR. Here, each of these networks is examined using multi-modular design with four different
modular capacities, i.e., OC-12, OC-48, OC-96 and OC-192. The ring coverage designs for all the
resulting sub-graphs are generated by SCIP using the network cost model described in Chapter
3.23.

Table 9.2 through Table 9.5 show the results obtained from SCIP for Net A, Net B, Net C and
Net D, respectively, following the span eliminations using iMAPR. The Curve Number column
represents the r value that was used in the pseudo-cost function (refer to Equations 7.6 and 7.7).
The resulting Number of Span Eliminations is shown in the next column. The SCIP Design Cost
column is the min-cost ring coverage design obtained using the multi-modular SCIP of the
respective network with the corresponding span eliminations. The overall min-cost result is
shown by the (*) in the SCIP Design Cost column. Table 9.6 summarizes the most-improved

results obtained using iMAPR for each test network.
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Table 9.2. iMAPR resulits for Net A.
Network Curve No. of Span | SCIP Design Cost Comp. Time
Number, r | Eliminations (Miillion) {seconds)
0 3 1.93
1 3 1.93
2 3 1.79
3 S 1.72
4 6 1.72
5 6 1.93
6 7 2.00
7 6 1.72
8 6 1.86
9 € 1.86
Net A 10 6 1.93 33.1
11 7 1.86
12 7 1.93
13 8 1.92
14 8 2.07
15 9 1.93
16 9 1.79
17 9 2.00
18 9 1.65"
19 10 1.86
20 10 1.86
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Table 9.3. iMAPR results for Net B.
Network Curve No. of Span SCIP Design Cost | Comp. Time
Number, r Eliminations (Million) (seconds)
(o} 0 17.65
1 0 16.87
2 0 17.82
3 0 17.23
4 0 17.09
5 0 17.66
6 0 16.70
7 0 16.46
8 0 16.42
9 0 18.97
NetB 10 1 16.09 * 19,438.40
11 0 16.66
12 2 17.15
13 2 16.79
14 2 17.37
15 4 16.13
16 2 17.53
17 3 18.40
18 4 18.76
19 6 19.01
20 2 19.22
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Table 9.4. iMAPR results for Net C.
Network Curve No. of Span SCIP Design Cost | Comp. Time
Number, r | Eliminations (Million) (seconds)
0 2 11.15
1 2 11.15
2 2 11.15
3 2 11.15
4 2 11.58
5 2 11.15
6 2 11.15
7 2 11.72
8 2 11.72
9 2 11.58
Net C 10 2 11.58 214.15
11 2 11.58
12 2 11.58
13 2 11.63
14 2 11.56
15 2 10.99 *
16 3 11.99
17 4 11.94
18 4 11.94
19 4 11.94
20 4 12.52
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Table 9.5. iMAPR: results for Net D.
Network Curve No. of Span SCIP Design Cost Comp. Time
Number, r Eliminations: {Million) (seconds)
) 6 29.70
1 6 29.18
2 6 29.02
3 6 28.80
4 6 29.22
5 6 28.69
6 6 28.22"
7 6 28.93
8 6 28.93
9 6 28.40
Net D 10 6 29.12 17.347.29
1 8 30.80
12 8 30.26
13 8 31.16
14 9 32.97
15 9 32.90
16 9 34.00
17 8 32.59
18 8 34.42
19 8 33.90
20 8 35.33




Table 9.6.

The most-improved SCIP results for each test network using iVIAPR.

iMAPR
Network %
Curve No. of Span SCIP Design Cost | Comp. Time | Improvement
Number, r Eliminations (Million) (seconds)
A 18 S 1.65 33.10 14.93%
B 10 1 16.09 19,438.40 9.24%
C 15 2 10.99 214.15 0.78%
D 6 6 28.22 17,347.29 -3.73%

As expected, the results in Table 9.2 to 9.5 show that as the pseudo-cost curves are swept from

the lowest aggregation pressure (r=0) to the highest (+=20), the number of span eliminations

increases. However, the corresponding SCIP design costs do not appear to follow any specific

pattern; in general, they vary with r. As for the computational time, in Table 9.6, it can be seen

that Net B and Net D require a relatively longer computational times as compared to Net A and

Net C where relatively short computational times were observed. The % improvement shows the

percentage improvement obtained from the most-improved SCIP design results over the

corresponding design using shortest-path and no span eliminations (Table 9.1).

9.3 Results of IRE using Multi-Modular SCIP

A similar experimental setup was used to investigate IRE, this time, however, embedding multi-

modular SCIP. Figure 9.1 to Figure 9.4 show the results of using IRE(multi) on Net A, Net B, Net

C and Net D, respectively. The eliminated spans for each IRE iteration number are displayed

adjacent to each point shown on the graphs. The non-essential span set found for each network is

the same as the non-essential span set shown in Table 6.1.
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Figure 9.1. SCIP results for Net A using IRE(multi).
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Figure 9.2, SCIP results for Net B using IRE(multi).
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Examining the figures above, it can be seen that a similar pattern occurs for all the IRE(multi)

curves resembling the curves obtained for IRE(single) in Chapter 6.1.2. The first falling section

of the curves occurs when too many rings emerge in the design forced by the need to cover all

spans. The lightly loaded rings that result are reduced by eliminating spans and detouring the

affected demands, sending them over longer alternate paths via other rings. Thus, cost decreases

as more spans are eliminated and ring utilization increases. A minimum value (most-improved

design) is reached when the rings and spans achieve the best possible utilization. When yet more

spans are removed, demands are diverted over longer and longer paths, which eventually drives

up the capacity requirements until the ring capacity is exceeded and additional rings are triggered.

Table 9.7 below summarizes the most-improved results obtained from using IRE(multi). The %

improvement shows the percentage improvement obtained from the most-improved SCIP design

results over the corresponding design using shortest-path and no span eliminations (Table 9.1).

Table 9.7. The most-improved SCIP design results using IRE multi-modular design.
Network No.;::nn Span Elim. Sequence SCIP(“D‘:I:;?‘:;:« t m&";e Impro:imont
A 8 (511){4-B1-{5-6)-{1-4)-(1-5]-{3- 11)-{5-81-{1-) 143 7580 25.91%

B 8 (817)1-3)-{13-18){ 12-10} (10-8){3-4)-{10-13)-13-15) 14.54 145538.70 17.95%
c 3 (36-119)-{71-79)-{78-118) 1092 2627 1.43%
o | |EEmemeseesorageoe] | oo | oo




9.4 Results using PIR

Table 9.8 summarizes the most-improved SCIP design found by PIR for each respective test

network. The No. of Span Elim (Number of Span Eliminations) column indicates the number of

spans that are removed from the network. PIR reduces the total number of supermodular spans in

the network by first re-routing the excess capacities in the supermodular spans, and then second

by means of eliminating the non-essential spans from the network and detouring the affected

demands at the span-level. PIR halts when subsequent elimination of the remaining non-essential

spans has resulted in an increase in the number of supermodular spans. The minimum number of

supermodular spans is shown in Table 9.8 below in the Remaining No. of Supermodular Spans

column. The % improvement shows the percentage improvement obtained from the most-

improved SCIP design results over the corresponding design using shortest-path and no span

eliminations (Table 9.1).

Table 9.8. The most-improved SCIP design obtained using PIR.

Network No. ;:l:p." Eliminated Span H;::EEEE::‘:‘: ' SCIP(:Tlo"lg:)Cost ?:;'I‘I:;e Impr o:ment
A 6 (1-3){1-4)-(4-8){5-8-(5-11)-(9-11) 0 158 197 18.55%
B 1" (3(‘147)_'2;ﬁ‘gg‘;&*_‘z"g;g;g:&(ﬂg' 0 15.68 1204.26 10.42%
c 3 (32-84)-(36-89)-(35-118) 6 10.91 74.82 1.46%
D 0 10 26.85 2304.84 0.00%

Note that the most-improved SCIP design results for Net D has zero number of span eliminations

and using PIR shows no improvement in design cost over SCIP design using shortest-path and no

elimination. This observation is further discussed later in this chapter.
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9.5 Comparison

This section compares the performance of iMAPR, IRE and PIR using multi-modular design.
Table 9.9 below shows the most-improved SCIP design from iMAPR, IRE and PIR over the

series for each test network. These results were compared against those from multi-modular SCIP

using pure shortest-path and no span eliminations included in Table 9.9. Figure 9.5 below gives

the percentage decrease (increase) in the total design for the iMAPR, IRE and PIR strategies

relative to the cost obtained with shortest-path routing.

Table 9.9. The most-improved multi-modular SCIP design cost and the required
computational time using pure shortest-path, iMAPR, IRE and PIR.
Mutti-Modular Shortest-Path) MAPR RE oIR
SCiP
Network
SCIP Design | Comp. Time] SCIP Design |Comp. Time) SCIP Design | Comp. Time]| SCIP Design | Comp. Time
Cost (Million) | (seconds) | Cost (Million) | (seconds) | Cost (Million) | (seconds) | Cost (Million) | (seconds)
A 1.94 9.7 1.65 33.10 1.43 75.80 1.58 19.7
8 17.72 900.14 16.09 19,438.40 1454 145,538.70 15.88 1204.26
c 11.08 39.91 10.99 214.15 10.92 296.27 10.91 74.82
D 27.21 900.59 8.2 17,347.29 24.26 152,503.60 27.21 2304.84
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Figure 9.5. Percentage Total Network Cost Savings for iMAPR, IRE(muiti) and PIR

relative to multi-modular SCIP reference design.

In Figure 9.5, the total network cost savings reported by iMAPR range from -4% to 15%. The
negative cost savings reported my iMAPR on Net D implies that the ring design using shortest-
path and no elimination is the preferred solution *. PIR performs slightly better with cost savings
ranging from 0% to 19%, where the 0% signifies that reducing the supermodular spans in PIR did
not have an effect on reducing the SCIP design cost with respect to the SCIP design using pure
shortest-path and no span eliminations. The best cost savings came from using IRE, where the

reported cost savings range from 1% to 26%. However, amongst the span elimination heuristics

" The iMAPR algorithm alone does not perform a trial design using shortest-path and no elimination. In
practical situation, a planner will perform a baseline design using shortest-path with no span eliminations
before attempting to initiate any span elimination strategies. Therefore to reflect practical interest, negative

cost savings will be denoted as zero cost savings.
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examined, PIR requires the least amount of CPU computational time followed by iMAPR. IRE,

on the other hand, requires a large amount of computational time. The relationship between

solution quality and computational time is depicted in Figure 9.6. The x-axis (Relative

Computational Time) is the computational time results obtained from iMAPR, IRE and PIR

normalized by the respective computational time results using shortest-path and no span

eliminations (refer to Table 9.9). The y-axis (Relative SCIP Design Cost) is the SCIP design cost

obtained from iMAPR, IRE and PIR normalized by the respective SCIP results for shortest-path

routing and no span eliminations.

1.2 -

Relative SCIP Design Cost

Figure 9.6.
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Scatter plot for IMAPR, IRE and PIR results normalized to corresponding
shortest-path and no span elimination results to show the relationship

between solution quality and computational time.

The scatter piot in Figure 9.6 shows that IRE has a slow computational runtime (IRE points to the

right of the figure) but has the best solution quality (IRE points are scattered lower that other

heuristics). PIR, on the other hand, has the fastest computational runtime providing an average

solution quality (PIR points are scattered to the left of Figure 9.6 and are vertically in-between
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IRE and iMAPR points). iMAPR requires a moderate computational runtime and give an average
solution quality (iMAPR points are scattered horizontally between PIR and IRE points and are

vertically higher than other heuristics).

9.6 Concluding Discussion of Results

This chapter explored and compared the performance of iIMAPR, IRE and PIR. The results
illustrated in Table 9.9 and Figure 9.5 show a clear trade-off between the solution quality and the
total computational-time. Although IRE still gives the highest solution quality (between 1% and
26% improvement), it requires a considerably longer computational time than iMAPR and PIR
(as shown in Table 9.9). The full runtime for IRE is high because of its built-in BFS strategy
where it employs SCIP as a fundamental measurement for selecting the span elimination that lead

to the least min-cost SCIP design at every iteration.

iMAPR, however, demands a relatively shorter computational time since, regardless of the size of
the investigated network, it requires a constant total of 21 SCIP runs. But the solution quality
found is compromised (between 0% to 15%) relative to IRE. The zero cost savings by iMAPR for
Net D signifies that there is a case where iMAPR is unable to give a better and improved cost
solution relative to its counterpart results using pure shortest-path. Further suggestions to improve

iIMAPR heuristic are given later in Chapter 11.1.

Using PIR, requiring only a fraction of iMAPR’s total computational time, gives a better solution
quality than iMAPR (between 0% to 19%). For example, in the investigations of Net B, the cost
savings reported by iMAPR are 9% with a computational time of 353.3 minutes; PIR only
requires 20.1 minutes, which is a mere 6% of the computational time required by iMAPR, and
gives a total cost savings of 10%. As such, PIR gives better solutions employing less
computational time. Overall, the results obtained by PIR generally outperformed iMAPR both in

terms of solution quality and computational time.

When comparing PIR against IRE, three out of the four investigations, Net A, Net B and Net D,
show that IRE gives better solutions than PIR. For Net C, PIR gives a slightly better solution than
IRE, 1.46% for PIR as opposed to 1.43% by IRE. However, the 0% cost savings reported by PIR
on Net D signify that there are situations where the current PIR strategy is unable to produce a

solution quality as good as IRE’s, and reducing the number of supermodular spans did not result
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in a positive cost reduction with respect to the SCIP design obtained from shortest-path and no
eliminations. Some further improvements on the PIR strategy will be described later in Chapter

I1.1.

In terms of total computational time, PIR has a strong advantage. PIR requires only two SCIP
runs regardless of the size of the network. A large portion of the PIR processes and
methodologies are based on a straight-forward process of determining the supermodular spans.
The built-in BFS strategy searches for the sub-graph, amongst other sub-graphs, that has the
minimum number of supermodular spans at every BFS iteration. Here the measurement used is a
function call that searches for the number of supermodular spans on the remaining sub-graph as
opposed to the complete SCIP run implemented by IRE. In addition, PIR does not need to
examine and trial-eliminate all non-essential spans; it halts when subsequent elimination of the

remaining non-essential spans results in an increase in the number of supermodular spans.

In all the experiments performed in this chapter SCIP is limited in CPU time to 900 seconds. The
rationale was a necessary practical measure to permit the development of a complete set of
comparative results in a reasonable time while retaining a fair and defined basis amongst the
methods in the way that they use SCIP. When multi-modular SCIP is employed, there are four
times the number of ring candidates that the IP has to investigate relative to a single-modular
SCIP. Indeed, the ideal would be to remove the constraint of computational time and let SCIP
finish investigating all the possible SCIP designs. But for investigations of large and complex
networks, such as Net B and Net D. it might take weeks or even months for a single SCIP run to
be completed. In addition, the improvements generated by SCIP with high computational runtime
are relatively small. Comparing SCIP designs with a 24-hour limit runtime obtained in Table 3.4
with SCIP designs for a 900-second limit runtime obtained in Table 9.1, it can be seen that the
gap between the cost results ranges from 1% to 6%. Hence, the benefit of limiting SCIP to a
shorter runtime out-weighs the benefit of the cost improvements from SCIP with a long

computational run-time.
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A qualitative summary comparison of each span elimination heuristic investigated in this chapter

is illustrated in Table 9.10. The Category row displays the approach that the span elimination

heuristic used as described in Chapter 2.1. The Quality of Solution and Comp. Time rows compare

the cost and runtime results obtained for each of the strategies. The No. of SCIP Runs shows the

total number of SCIP runs necessary to complete the corresponding strategy. Here, & is the

number of non-essential spans found in the given network topology. The Re-routing Method

illustrates the strategy used to re-route the affected demands due to the elimination of non-

essential spans. The Span Elimination Technique displays the core mechanism used by each

heuristic to systematically eliminate the non-essential spans and obtain the most-improved SCIP

design.
Table 9.10. Qualitative Comparison of the Span Elimination Heuristics.
Span Elimination Heuristics
Pure Graph
Cover
iMAPR IRE PIR
Category - Pre-Processor Post-Processor Post-Processor

Existing state of

Technique

Pressure on Spans

BFS using SCIP

Quality of Solution the art Medium Goad Medium
Comp. Time Fast Moderate Slow Fast
No. of SCIP Runs 1 21 k(k+1)/2 2
. ) 3 MAPR(rise), MAPR(rise),
Re-routing Method Path-Level Span-Level
Span Elimination Applying Aggregation BFS using

Supermodular Spans
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10.0 Correlation between SCIP and RingBuilder

10.1 The Issue

This chapter investigates the use of SCIP as the evaluation tool for span elimination heuristics. As
described in Chapter 2, SCIP involves certain idealizations. For example, SCIP assumes that
every node in the network has an ADM on every ring at its site and that demands may transit
between rings at any location. In addition, a ‘side-effect’ of using the IP described in Chapter 3
has limited SCIP to use only BLSRs for its investigations. As such, a sub-study was warranted to
see how well SCIP correlates to full-blown RingBuilder® results. The requirement is not that
SCIP absolute design costs be as good as RingBuilder, but only that high SCIP costs correlate to
high RingBuilder costs. As long as this is true, SCIP can be used confidently as a surrogate for
the complete ring design process in a comparative study such as this. From what follows, it can
be concluded that SCIP is useful as a precisely defined and repeatable reference model for the
ring coverage design phase through which the effectiveness of the span elimination strategies

investigated previously can be interpreted.

The method used to evaluate the usage of SCIP is by completing a second run using RingBuilder
v2.0 on all the experiments that were executed in Chapters 3.3, 6 and 9 using SCIP. RingBuilder
is a full-blown ring coverage design heuristic that is used commercially for SONET ring-based
network planning. It uses a greedy heuristic method that selects from the modular ring candidate
system for the network design to achieve a near-optimal placement of ring systems on the
network. A more thorough methodology and optimization strategy taken by RingBuilder is
described in [15,30]. RingBuilder uses the same inputs as SCIP, i.e., the capacitated SNIF and the
cost model. It has a built-in cycle finding module that searches exhaustively for all the cycles in a
given network graph similar to the cycle generator used in this work. In addition to these inputs,
RingBuilder requires a routing file that consists of all the route information taken by each PTP
demand. All the proposed span elimination algorithms (single-modular and multi-modular)
proposed in this work generate a routing file except for PIR. Hence, results using PIR are not
included in this investigation. Additional information on the inputs required by RingBuilder are
described in [30]-[32].

" RingBuilder is a group of software programs dei/eloped by TRLabs for synthesizing ring-based network
designs using BLSRs and UPSRs. RingBuilder heuristic finds the best ring system to achieve a near-
optimal placement of ring systems on the network.
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Two data sets were obtained, one a set of SCIP design results and the other a set of RingBuilder
results. Only SCIP results obtained from completed SCIP runs are included in the data set, not
SCIP results that are found strictly due to the time limitations, e.g. the results that are marked by
(*) in the Comp. Time column in Table 3.5. Similarly, other designs that resulted from an
incomplete SCIP run are not included in the data set. The aim is to determine how well SCIP

results and RingBuilder results correlate statistically over a large number of trial runs.

The method used to measure the relationship between the two ranges of data is measuring the
correlation coefficient of the two data sets that are scaled to be independent of each other. Eq.10.1

below measures the correlation coefficient of data set X and data set Y.

_cov(X,Y)

Pxy —?;r_ (10.1)

where,

1

cov(X,Y) =;Z(X,-—/1x)<Y,- —Hy)
2 1 2
O'X- =ZZ(X,—1UX)-

» 1 5
oy =;Z(Yi —Uy)

a - No. of samples.

Hx - Mean of data set X.

My - Mean of data set Y.

X; - Element i of data set X.
Y: - Element / of data set Y.

The population correlation calculation returns the covariance of two data sets X and Y, cov(X.Y),
divided by the product of their standard deviations, oy and oy. This covariance of the two data
sets returns the average of the product of deviations of data points from their respective means.
As such, this correlation coefficient determines whether two ranges of data move together - i.e.,
whether large values of one set are associated with large values of the other (positive correlation),
whether small values of one set are associated with large values of the other (negative

correlation), or whether values in both sets are unrelated (correlation near zero). For the
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measurement to be reliable, a relatively large pool of data is required. Here, a total of 183 data

samples (a = 183) has been accumnulated.

10.2 Results and Discussions

Using Equation 10.1, it was found that the correlation coefficient between the two data sets with
a=183 is 0.97. In addition, for visual inspection, Figure 10.5 below shows the cost results

obtained from SCIP and RingBuilder plotted against the sample number.

more than SCIP design cost.
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Figure 10.1.  The total network cost obtained using RingBuilder v2.0 and SCIP.

Figure 10.1 shows a minimal discrepancy between the cost resulting from SCIP and the cost
resulting from RingBuilder. In most of the samples, the large values of one set do associate with

the large values of the other set and vice versa. Hence, using Eq.10.1, the correlation coefficient
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between the two data sets was found to be 0.97. This value suggests a very strong correlation that
supports the claim that SCIP results can be well applied as a surrogate for the full-blown

RingBuilder designs in purely relative or comparative design studies.

With accurate cost modelling, the absolute dollars obtained by RingBuilder results are almost
always lower than those obtained by the SCIP results, since RingBuilder takes the cost for all the
required rings and the ring-to-ring transitions into consideration, including the effects of glass-
throughs where ADMs are replaced with the relatively cheaper repeaters. SCIP only takes into
consideration the cost of all required rings, ignoring the ring-to-ring transition cost and the effects
of glass-throughs. However, the cost reported by RingBuilder may not always be less than the
cost reported by SCIP as indicated in Figure 10.1. These situations occur for the designs on Net
A, Net B and Net D when the total cost of the ring-to-ring transitions is high due to the relatively

high average nodal degree of the networks.



11.0 Summary of Thesis

This thesis explored the feasibility and the performance of using span eliminations to advance the
art of ring network design beyond the pure coverage design principle. Currently, there are good
solutions for optimized multi-ring network design where the design problem is posed as a form of
graph-covering problem. The capacity requirements of each span are generally determined by
routing demands over the shortest-path from end-to-end. Intuitively, this can lead to one or more
low-utilized spans. Performing optimization in ring design on the resulting fiber graph, and
approaching this optimization problem as a graph-covering problem, may impose unnecessary
lower bounds on the network cost when the min-cost ring set found exists strictly to protect every
capacitated span in the fiber graph, including the low-utilization spans. In this case, one or more

rings may effectively be required due to strict coverage requirement, but serve little demand.

By solving the min-cost multi-ring network design problem from the topological perspective of
the network, one can recognize and remove those key spans in the existing fiber graph at the point
where it may be more effective not to route any demands at all, thereby avoiding the requirement
for ring coverage on those spans. The motivation behind the present work was, therefore, to
explore methods to systematically analyze the fiber graph for opportunities to remove certain
spans so that subsequent coverage algorithms on the resulting sub-graph would give better ring

network design costs.

In a relatively small network, it is sometimes easy by manual inspection to spot situations where
span eliminations will improve the overall network cost. However, this is not the case for large
networks of practical interest. Even without the aspect of span eliminations, the design of multi-
ring networks is an exceptionally complex combinatorial optimization problem [16]-[20] and is
known to be NP-Complete [16,17]. Therefore, the span elimination problem has been approached
by proposing heuristic procedures, based on insights into the underlying nature of the ring-
network design problem, for finding improved ring network designs. There is no formal proof
that the results are optimal. Nevertheless, experimental results show that the proposed heuristic
methods offer worthwhile improvements in design cost, and that some may be efficient tools to

consider for production use in systems such as RingBuilder.

The work in span elimination was begun by determining the standard coverage algorithm to be

implemented. The Span Coverage Integer Program (SCIP) [14] was adopted. Described in
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Chapter 3, SCIP is a pure (ideal) capacitated span coverage integer program which finds the
strictly min-cost subset of rings that are required to cover all the non-zero span working
capacities in the given capacitated network. Several idealizations have been recognized, that is,
this IP assumes that every node has an ADM and that demands may transit between rings at any
node. In addition, due to its IP formulation (constraint set 3.2), SCIP is only suitable for shared-
protection rings limiting the investigations to SONET BLSRs only. In spite of the drawbacks,
SCIP is precisely defined and repeatable, leading to results being easily reproduced and verified.
To validate SCIP, a comparison between the SCIP results and the RingBuilder was performed,
and the results are given in Chapter 10. It has been shown that there is a minimal discrepancy
between the costs resulting from SCIP and the costs resulting from RingBuilder with the
correlation coefficient found to be 0.97, strengthening the claim that SCIP results can be well-
applied as a surrogate for the full-blown RingBuilder designs in purely relative or comparative
design studies. It is important to note, however, that the focus of this study is in the usage of SCIP
as a quick surrogate for a full-blown ring network design in relative cost comparison contexts. In
accuracy-sensitive situations, for example if an absolute and accurate cost minimization of a real

design is to be deployed, RingBuilder or other full-scale design development tools may be used.

In Chapter 4, a pre-processor span elimination heuristic called Modular Aggregating Pre-Routing
(MAPR) is proposed. Unlike the conventional ring design shortest-path algorithm, MAPR routes
demands based on the least-cost path determined by the pseudo-cost of each span. The motivation
is to route demands in a manner that tends to aggregate flows on spans, leaving totais that are
well-suited for later modular ring coverage design. The pseudo-cost is determined by the span’s
geographical distance and its current capacity requirements with the idea that once a span has
some demand on it, it should look more attractive (cheaper) to subsequent least cost routing
determinations, but that it should be cancelled as soon as a module boundary arises. Two pseudo-
cost functions were tested, namely rise and impulse (Eq.4.1 and Eq.4.2). Implementing MAPR is
relatively simple as it only requires a single iteration where PTP demands are routed using rise or
impulse; any non-essential spans thereafter with zero working capacity are eliminated, and SCIP

is executed on the resulting sub-graph.

Chapter 5 introduced a post-processor span elimination heuristic called Iterated Routing and
Elimination (IRE). IRE uses a strategy that involves a series of single span elimination trial runs
with ring coverage design process calls for each one to search for a set of span eliminations that

permits (ideally) the lowest cost coverage design. In IRE, the non-essential spans are identified,
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after which IRE begins. IRE can be described at two logical levels: one is a low-level iteration at
which a single non-essential span is eliminated, the affected demand matrix is routed in a MAPR-
like way at the path-level (specifically using rise pseudo-cost function) on the remaining sub-
graph, and a ring coverage design trial using SCIP is obtained; and, above this, a BFS is in effect
to develop a sequence of accumulating eliminations from the set of non-essential spans.
Consequently, IRE requires a high number of SCIP runs which are quadratically dependant upon

the number of non-essential spans.

In Chapters 4 and 5, the investigations were limited to using a single-modular design (OC-12,
OC-48, OC-96 and OC-192) with the cost model for the network equipment following a certain
economy-of-scale (Table 3.1). The experimental results obtained for MAPR showed a strong
relationship between resulting SCIP design costs and the permitted modular capacity. Using a
small modular capacity may not be adequate for accommodating the increase in the w; due to the
span eliminations at which additional rings are prompted to cover the excess capacities,
increasing the overall network costs. On the other hand using large modular capacity increases
the network equipment cost. Hence, there exists a best-fit modular capacity where the overall
minimum SCIP results are obtained. Comparing the MAPR results using rise and impulse, it can
be seen that MAPR(rise) showed cost improvements for 11 out of 16 results whereas
MAPR(impulse) only showed cost improvements for 7 out of 16 results when compared against
designs using pure shortest-path without span eliminations. It appears that impulse introduces an
extreme level of aggregation pressure at which demands are severely detoured, and there is not
enough slack capacity in the spans to accommodate the increase in w;. Therefore, although there
are more span eliminations (since more demands are attracted towards the ‘cheaper’ used spans,
more spans will remain unused), the design cost may still be higher. As such, impulse may show
a better design cost when a large modular capacity is permitted. The evaluation of impulse led the
research to focus on MAPR(rise) where there is a compromise in the level of aggregation

pressure.

As for IRE results, it was discovered that a similar pattern occurs in all the IRE curves obtained
from different test networks. The first falling section of the curves shows that cost decreases as
more spans are eliminated so that the lightly loaded rings that are forced upon the design to cover
relatively lightly loaded spans are either removed or become more efficiently loaded. This

continues until 2 minimum value (most-improved design) is reached where the spans and rings
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have achieved the best possible utilization. Further span eliminations eventually drive up the

spans’ capacity requirements until the ring capacity is exceeded and additional rings are triggered.

Comparing both MAPR(rise) and IRE results relative to the designs using pure shortest-path and
no span eliminations, it was found that there is a trade-off between solution quality and
computational time. The total network cost savings with respect to shortest-path and no
elimination SCIP design reported by IRE range from 3% to 26% as compared to 0% to 5%
reported by MAPR(rise), showing that IRE consistently out-performed MAPR. The zero cost
savings by MAPR(rise) shows that the shortest-path with no elimination SCIP is the preferred
design, and that there are instances where MAPR may not be the suitable approach to use.
However, IRE requires a considerably longer computational time since it employs the breadth-
first search strategy, at which each low-level iteration employs a full SCIP coverage design,
causing an increase in the runtimes when the network has a large number of non-essential spans
(The number of SCIP runs increases quadratically with the number of non-essential spans,
Equation 5.1).

In conclusion, it was found that MAPR in general is not a reliable span elimination heuristic,
essentially because it produces a one-shot set of span eliminations that depends on the
aggregation pressure applied on the span using the capacity-sensitive pseudo-cost function to
efficiently route demands on the network, leading to a certain number of span eliminations. As
such, MAPR does not have any indication whether it has over-done the span eliminations or not.
IRE, on the other hand, has the highest solution quality but requires a substantial amount of

runtime to complete.

Chapter 7 proposed to improve the MAPR primarily by giving it a progressive sweep-like aspect
over a range of aggregation pressures. This was done by using 21 different pseudo-cost curves
with different aggregation pressures and capturing the SCIP design results from each. This was
called Iterative MAPR (iMAPR) where MAPR is executed at each iteration, each time using a
different pseudo-cost curve. Here, relatively more complex pseudo-cost functions have been
developed (Eq.7.6 and E1.7.7). The SCIP design that gives the overall least-cost will be the most-
improved SCIP design found by iMAPR.

Further motivated to try some wholly new approach that can give good solutions with a fast

runtime, Chapter 8 presented Post Inspection and Re-Routing (PIR). PIR is a pOst-processor span
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elimination heuristic which utilizes the knowledge of supermodular spans in a baseline SCIP
design to reduce the total network design cosmt. A supermodular span is a span where the w; is
more than the current largest span modular capacity used to cover the span with respect to the
reference rings first placed in a basic SCIP ru:n on the network using shortest-path and no span
eliminations. The remainder of w; divided by the largest span modular capacity is called the
supermodular capacity. PIR is based on the hwpothesis that a reduced number of supermodular

spans will lead to lower cost ring network cowerage designs.

PIR has two phases. Phase I reduces the number of supermodular spans by means of re-routing
the supermodular capacities at the span-level. Phase II then implements span elimination using
the BFS strategy to search for the sub-graph thhat gives the fewest supermodular spans. This is a
purely polynomial time re-routing test and doees not involve any SCIP runs for evaluating each
trial-elimination. Iteration stops upon the discsovery of a sub-graph with the fewest supermodular
spans. A final SCIP design run follows. Hence, only two SCIP runs are required: the first is to
obtain the ring coverage design of the initial fiber graph with no elimination using pure shortest-
path, and the set of rings is then used as a refemence to determine supermodular spans; and, the
second SCIP is executed on the sub-graph tham gave the least possible number of supermodular
spans. The two SCIP designs are then comparesd where the overall least cost SCIP desi gn
becomes the most-improved SCIP design foumd using PIR. With only two SCIP runs, PIR does

not have the problem of high computational tiame.

Chapter 9 was the main results chapter for the final half of the thesis. It compares the
performance of iMAPR, IRE(multi) and PIR ussing multi-modular SCIP. In multi-modular
designs, rings are selected in terms of the cost and modular capacity that can best be implemented
to cover the w; of the network. However, since: four different modular capacities are being
investigated, SCIP now has four times the number of ring candidates that it has to compute. This
change has a tremendous impact on computatieonal time since the increase in the number of ring
candidates increases the number of possible de=signs in SCIP (Eq.3.5). Here, the total CPU time
for each SCIP run was limited to 900 seconds. This was a necessary practical measure to perrnit
the development of a complete set of comparative results in a reasonable time while retaining at
least a fair and defined basis amongst the meth:ods in the way that they use SCIP. It was found
that when comparing the design cost obtained wmsing a 24-hour limited CPU runtime and a 900-

seconds limited CPU runtime, the gap betweens the two results was between 0% to 6%. It was
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then fair to conclude that the benefit of limiting SCIP to a shorter runtime out-weighs the benefit

of the cost improvements given by SCIP with a long computational runtime.

Comparing the solutions obtained by iMAPR, IRE(multi) and PIR relative to the SCIP designs
obtained for the network using pure shortest-path and no eliminations, it was found that
IRE(multi) gave the highest solution quality with cost savings ranging from 1% to 26%. PIR
came second with cost savings ranging from 0% to 18% and then iMAPR with 0% to 15%. The
zero cost savings by iMAPR and PIR reported for Net D shows that zero elimination and using
shortest-path for Net D is the preferred design, indicating that there are situations where the
current iMAPR and PIR strategies are unable to produce solutions that are as good as IRE.
iIMAPR was unable to find the aggregation pressure to use a better and a positive cost reduction

~ relative to its counterpart results using pure shortest-path.

In terms of total computational time, PIR has the fastest runtime, iMAPR is next, and IRE(multi)
requires the longest runtime. These results are mainly based on the total number of SCIP runs that
each heuristic employs. PIR implements only two SCIP runs where iMAPR requires 21 SCIP
runs, and the SCIP runs for IRE are based on k(k+1)/2 (where k is the total number of non-

essential spans).

Of all the span elimination heuristics, it seems clear that PIR gave the best compromise between
solution quality and computational time. PIR gave an average solution quality, but the most
appealing aspect of PIR is that it requires only two SCIP runs and the remainder of its algorithm
is based on a polynomial time analysis of supermodular capacities as a means to detect the
desired span eliminations. In this regard, it is capable of giving a relatively fast span elimination
solution regardless of the network size. On the other hand, IRE offers good solution quality and
gives positive cost savings while the other heuristics may not. With up to a reported cost saving
of 26%, IRE has shown considerable cost benefits and is an appealing algorithm by giving good
span elimination solutions. However, due to its reliance on SCIP and the quadratic relationship
between its total number of SCIP runs and the number of non-essential spans, it can and does
exhibit relatively long computational runtimes for large test network models. iMAPR has been
shown to give average solution quality employing a moderate runtime. Further research in

iMAPR is required to improve its effectiveness in terms of solution quality.



11.1 Suggestions for Further Research

11.1.1 Test Case: The impact of using a different non-essential spans set
on SCIP design cost (Using IRE heuristic on Net B).

Throughout the experiments in Chapter 6 and Chapter 9, only a single set of non-essential spans
is investigated for each test network (as shown in Figures 6.1 to 6.4). These non-essential span
sets are determined by arbitrarily selecting one of the test networks’ minimal bi-connected sub-
graph, determined by inspection (details are outlined in section 2.3.1). However, it is realized that
there can be more than one MBG. As a result, different non-essential spans set can be obtained
for the test networks. Therefore, this section is a test case of the impact that using a different non-
essential span set will have on the SCIP design cost. Specifically, the test case to be performed
here investigates Net B using a different set of non-essential spans and IRE multi-modular span

elimination heuristic.

To begin this test case, it is realized that from [35], that odd degree nodes can cause rings to
overlap. This can be avoided by having even degree nodes. Thus, the selected MBG for Net B in
Figure 6.2 may be improved by increasing the “evenness” of the node degrees. This is performed
manually (by hand) and the improved MBG is shown in Figure 11.1 with the new set of non-
essential spans shown in Table 11.1. Set | in Table 11.1 is the set of non-essential spans
previously defined from Figure 6.2 and the new set of non-essential spans is called Set 2 in Table
I1.1. When this two sets are compared, the MBG for Set 1 has 14 even degree nodes where as the
new Set 2 has 20 even degree nodes, an increase by 6. Both of these sets have 18 non-essential

spans.
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Figure 11.1.  The new mi nimal bi-connected sub-graph and non-essential spans for Net B.



Table 11.1. The new set of non-essential spans for Net B.
Network
Set 1 2
Max. Cycle Size 7 7
No. of Non-
Essential Spans, 18 18
k
(1-3) (1-3)
(3-4) (2-3)
(7-3) (3-5)
(6-9) (5-10)
(5-11) (6-9)
(12-10) (8-10)
(10-8) (10-12)
(10-13) (10-13)
Non-Essential (13-15) (13-15)
Spans (8-15) (9-15)
(9-17) (9-17)
(8-17) (9-18)
(17-19) (17-18)
(19-18) (17-19)
(22-25) (18-19)
(9-18) (21-23)
(23-29) (22-25)
(21-23) (23-29)

A similar experimental setup, used to investigate IRE(multi) in Chapter 9, was used here to test
the impact of Set 2, the new non-essential spans set. Figure 11.2 shows the IRE(multi) resulits and
the specific combination of span eliminations that were found during each IRE iteration are
displayed adjacent to each point as shown in Figure 11.2. The IRE(multi) curve obtained using
Set 1 non-essential spans are also included in Figure 11.2 for comparison. The solution quality
and the computational time obtained from IRE(multi) using both Set 1 and Set 2 non-essential

spans are shown in Table 11.2.
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SCIP results for Net B using IRE(multi) with Set 1 and Set 2 non-essential

The most-improved SCIP design results using IRE(multi) with Set 1 and Set

Non-Essential | No. of Span " SCIP Design Cost | Comp. Time %
Network| “coansset |  Eiim. Span Elim. Sequence (Milions) | (seconds) |improvement
Set 1 8 (8-17)-{1-3)-(19-18)-{12-10)-{10-8)-(3-4}-(10-13}-{13-15) 1454 145,538.70 17.95%
8
Set?2 9 {12-15)-(5-10)(9-17)-(23-29)-(10-13)-(2-3)-(17-18)-{17-13)-(18-19) 14.50 144,535.08 18.19%
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Observing Figure 11.2, the IRE curve obtained using Set 2 exhibits similar pattern resembling the
curves obtained for IRE(single) in Chapter 6.1.2. In fact, this curve is almost similar to the IRE
curve obtained using Set 1. Table 11.2 shows that the most-improved design using Set 2 occurs
when nine spans were eliminated giving a 18.19% improvement over design using shortest-path
and no eliminations. When compared these results with the results using Set 1, Table 11.2 shows
that Set 2 has a completely different Span Elim. Sequence and giving results slightly better than
Set 1, a mere 0.24% improvement (Set | gave 17.95% improvement over SCIP design using
shortest-path and no eliminations). In addition, IRE using Set 2 exhibits a slightly faster runtime
than IRE using Set 1.

The results from this test case shows that different design solutions can be obtained using
different set of non-essential spans. In this test case, by improving the ‘evenness’ of the selected
MBG for Net B, a slightly better and improved design can be obtained. At least in this one trial
case, there is no evidence of great dependence on the choice of MBG. Further investigation in the
impact of using different non-essential spans set is required to further outline the criteria for

selecting the MBG of the test network that will lead to a better-improved SCIP design.

11.1.2 Future Improvements for iMAPR and PIR heuristics

This work presented a first attempt to formulate a systematic strategy to offer a solution to the
topological level of cost optimization in designing ring-based transport networks based on span
eliminations. From the understanding of the work presented, it is accepted that the PIR heuristic
gave a good compromise between the solution quality and computational time. We also realized
that there are situations where using PIR and iMAPR have failed to achieve a certain level of
positive cost savings. Further research in PIR and iMAPR is required to improve their
effectiveness. The following recommendations summarize several proposed modifications in PIR

and iMAPR to date that may improve their productivity in terms of solutions quality.
PIR
i During Phase I of PIR, supermodular spans are found and supermodular capacities are re-

routed where a decision is later made on whether to permanently adopt the resulting

graph based on the resulting number of supermodular spans. No re-routing priority is
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ii.

IMAPR

given to whether the supermodular spans are essential spans or non-essential spans. It is
conceptually more efficient if the re-routing priority is given to supermodular spans that
are also essential spans. Since the non-essentials spans may be eliminated anyway in
Phase II of PIR, detouring the supermodular capacities of the supermodular spans that are
also non-essential spans in Phase I serves no practical advantage in reducing the number
of supermodular spans. It is more efficient if the supermodular capacities of the
supermodular spans which are also essential spans are given priority where they are first
arranged in descending order of supermodular capacity size and the element with the

largest supermodular capacities are re-routed first.

Detouring the supermodular capacities (in Phase I) or the affected demands (in Phase II)
at the span-level is relatively inefficient. Span-level re-routing may cause the same unit of
demand to be routed over using the same span more than once, falsely increasing the
overall average network working capacity and causing a subsequent rise in the cost of
ring design. Modifications can be made here by utilizing a path-level re-routing
algorithm, where a new set of spans from source to destination is determined to route the

given single unit of demand.

The pseudo-cost function used in iMAPR (Equations 7.13, 7.14 and Figure 7.1) for multi-
modular design implies that the range of the pseudo-cost for placing a demand on a span
is the same regardless of the cost of the span module. For example, a span has w; less
than 12 and d; of 15 (refer to Figure 11.1). Therefore, it is assumed that an OC-12 span
modular will be placed on this span. Here the range of ¢; for this w; is 15 < ¢; < 150,
which is the same for a span with 12 < w; < 48 where an OC-48 span module is assumed.
However, since OC-48 is more expensive than OC-12, demands might first be placed on
the OC-48 span module to efficiently utilize the OC-48 span module before choosing to
place them on the OC-12 span module. Therefore, the absolute scaling on the range of
pseudo-cost must take into consideration the cost of the span module that the span is
currently assumed for. This may or may not follow the same cost rule, i.e. two times the
cost for four times the capacity. An example of the proposed changes to the IMAPR

pseudo-cost using the 2:4 cost rule is shown in Figure 11.1.
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Appendix A
Test Network Standard Network Interface Files (SNIF)

In this appendix, the network topologies for Net A, Net B, Net C and Net
D are listed. These topology files are arranged in SNIF format. The SNIF
file starts with four description lines detailing Date, File Name, Network
and Program. The positions of the network nodes are then listed in the
second portion of the SNIF file. The third portion lists all the spans, which
are arranged in 6 columns. These columns are span ID, the end nodes,
distance, working capacity and the spare capacity of the span.
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Network: Net A

Date:

File Name:

February 7,
bellcore.snif
Bellcore (Net A)

Network:
Program:

HlJUJm-JO\mAthNFJE
[+Y
[

= o

1997

Xcoord

400
500
100
100
200
600
400
500
200
300
400

Ycoord

600
500
600
400
550
500
470
300
200
100
200

Span NodeA NodeRB Distance

WONOUd WK

1

HPWOLWOONOUMWVMITUIU UL B D WK R e

o

VWOORFRWOVWONIOANWOUWUMWOO U™ WN

PR
o

20
30
75
35
50
60
20
40
35
70
25
55
45
40
45
50
40
15
60
30
18
30
20

Working

[eNeNeNololNeNoNolNeNoNoNoNoNoNoNoNoRoNoRoRoRe Ne)

‘w

Spare

ejejoNooNeoNeoNoNoNoNoNoNoNoNoNoNoNoNoNeRoRe Re)



Network: Net B

Date: June 23, 1994

File Name: btrl.snif

Network: British Telecom Study Network (Net B)
Program: None

Node Xcoord Ycooxrd

1 27662 58733

2 36839 59453

3 40193 51952

4 59028 51473

5 45300 48681

6 36839 45327

7 26544 44810

8 31358 32213

9 39315 39740

10 53040 41815

11 60304 44847

12 64071 37623

13 50965 35670

14 62094 28058

15 53441 30961

16 48094 28886

17 40193 25933

18 32545 19089

19 40272 16914

20 48094 18512

21 51893 19353

22 57272 23060

23 57512 17315

24 61578 24480

25 65811 23221

26 65650 17716

27 59652 14602

28 47375 10850

29 47454 15240

30 33568 12448

Span NodeA NodeB Distance Working Spare
0 1 2 100 0] 0
1 1 3 100 0 0
2 1 7 100 0 0
3 2 4 100 0 0
4 2 3 100 0 0
) 4 11 100 0 0
6 3 5 100 0 0]
7 3 4 100 0 0]
8 7 6 100 0 0
9 7 8 100 0 0
10 7 3 100 0 0
11 6 5 100 0] 0
12 6 9 100 0 0
13 5 11 100 0 0
14 10 5 100 0 0
15 11 10 100 0 0]



16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

12
10
13
14

13
13
15
15
17
18
17
18
16
19
15
21
24
22
15
25
20
28
30
18
18
29
28
26
23
25
23
20
21
18
20
10

29
22
26
23
23

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
i00
100
100
100
100
100
100

SRS ehoNalejoloNoNoNooNoleNoNoNoloNoNoNoNoNoNoNeNoNoNoNoRoleNo o ReRe Re Re Re N =)

OOOOOOC)OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO



Network: Net C

Date:

Sept 09,

1997

File Name: mci3l.4.snif
Network: MCI Telecom Network (Net C)
Program: None

Xcoord

167.751
183.225
187.805
175.881
169.106
195.122
18.9702
80.2168
15.4472
146.07

154.743
164.499
126.287
141.734
66.1247
54.7425
39.5664
124.932
131.978
117.344
15.7182
47 .4255
63.9566
51.7615
104.878
117.886
97.019

78.3198
106.233
78.0488
186.992
122.764
111.653
136.856
41 .4634
70.1897
58.8076
39.8374
39.8374
23.3062
57.4526
94.5799
162.331
79.6748
42.5474
124.9322
92.4119
104.336

Ycoord
43.9024
67.4797
46.0705
55.2846
19.7832
7.31707
49.8645
85.0949
7.31707
64.2276
19.5122
63.9566
37.3984
28.7263
75.0678
18.9702
61.5176
23.0352
48 .5085
93.4959
18.6992
106.504
100.271
85.6369
66.3957
78.0488
21.9512
35.7724
85.3659
71.0027
19.7832
60.4336
37.3984
59.3496
36.0434
43.9024
60.9756
6.77507
48.2385
31.7073
39.5664
66.9377
7.31707
109.756
75.8808
5.42005
36.3144
49.3225



73.4417 21.4092
30.0 45.0
NodeA NodeB Distance
2 5 5

2 7 20
2 29 281
3 4 41
3 5 46
3 11 125
3 31 209
4 80 10
7 80 5
11 115 224
13 119 36
13 125 36
14 36 29
14 118 1
15 62 12
15 103 30
18 31 75
18 85 175
29 33 113
32 33 20
32 54 25
32 84 305
36 89 148
36 118 31
36 119 7
38 62 185
38 124 69
41 99 123
41 104 27
51 75 144
51 120 65
54 85 10
59 71 63
S9 118 25
62 77 152
38 103 30
62 105 304
63 64 8
65 119 2
63 118 19
63 119 36
64 65 1
70 83 112
70 113 10
70 123 14
71 78 43
71 79 76
75 124 125
77 79 361
78 79 76
78 118 88
79 113 71
83 84 12

Working

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO



128
129
130
131
133
134
141
145
146
147
148
149

83
84
86
86
89
89
9%
113
113
115
104
84

85

121
105
107
104
107
119
121
123
120
125
51

207
140
200
104
138
132
16

14
65

140
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Network: Net D

Date:

Sept 09,

1997

File Name: mciSnew.snif

Network:
Program:

Node Xcoord

167.751
183.225
187.805
175.881
136.314
169.106
191.599
149.051
18.1572
195.122
18.9702
80.2168
15.4472
146.07
102.71
§.214089
32.7913
139.566
162.602
23.0352
154.743
7.04607
164.499
126.287
141.734
68.8347
66.1247
61.7886
54.7425
145.051
169.106
39.5664
164.77
23.0
120.596
162.602
153.6589
81.5718
124.932
134.417
46.6125
131.978
22.4932
180.759
117.344
148.78
63.6856

Ycoord
43.9024
67.4797
46.0705
55.284¢6
131.978
19.7832
95.122

94 .5799
99.187

7.31707
49 .8645
85.0949
7.31707
64.2276
135.501
139.024
158.537
173.984
132.249
129.81

19.5122
78.3198
63.9566
37.3984
28.7263
176.152
75.0678
142.005
18.9702
117.886
102.439
61.5176
121.68

148.0

131.707
80.7588
172.629
127.642
23.0352
109.214
127.642
48.5095
142.818
80.4878
93.4959
104.878
128.184

MCI Telecom Network (Net D)
None
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62
63
64
65
66
68
70
71
72
74
75
77
78
73
80
81
83
84
85
86
87
88
89
g0
91
93
95
96
g7
98
s
100
101
102
103
104
105
107
108
108
111
113
115
l1le
117
118
1198
120
121
122
123
124
125
126

15.7182
47.4255
63.9566
51.7615
88.8889
21.9512
104.878
117.886
119.241
110.569
97.019
78.3198
106.233
78.0488
186.992
71.2737
122.764
111.653
136.856
41.4634
153.93
192.683
70.1887
149.593
33.3333
140.108
123.848
28.7263
121.68
46.3415
58.8076
106.775
107.317
123.306
39.8374
39.8374
23.3062
57.4526
102.981
§2.3035
177.778
84.579S
162.331
189.431
5.14905
79.6748
42.5474
124.932
92.41189
21.40892
104.336
73.4417
30.0
140.0

18.6992
106.504
100.271
85.6369
189.431
155.556
66.3957
78.0488
113.008
150.678
21.9512
35.7724
85.3658%
71.0027
19.7832
189.702
60.4336
37.3984
59.3496
36.0434
151.491
81.3G08
43.9024
132.249
173.442
188.618
162.331
82.9268
173.984
165.583
60.9756
188.618
173.713
189.16
6.77507
48.2385
31.7073
39.5664
113.008
176.152
133.333
66.39377
7.31707
149.051
95.122
109.756
75.8808
5.42005
36.3144
116.531
49.3225
21.4082
45.0
22.0
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Span NodeA NodeB

WWOUOWYWLOOIAO B WWWWNLNDN

5

7
29
4

5
11
31
80
90
45
80
9
88
31
46
108
96
117
115
104
125
36
118
62
103
31
85
45
49
28
55
122
68
98
48
93
95
97
102
90
111
53
33
62
96
117
33
54
84
66
31
101
108
89
118
118

Distance
5
20
281
41
46
125
209
10
79
80
5
168
296
214
16
143
91
36
224
36
36
29

12
30
75
175
12
128
263
459
i8
572
397
15
114
38
307
35
594
317
322
113
118
79
64
20
25
305
23
25
32
53
148
31

Working

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
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71
72
73
74
75
76
77
78
79
80
81
83
84
85
86
87
89
S0
91
g2
93
S4
95
96
99
100
101
102
103
104
105
106
107
108
108
110
111
112
113
114
115
116
117
118
119
122
123
124
125
127
128
129
130
131
132
133
134

37
38
38
39
39
39
39
39
40
41
41
43
43
46
48
49
51
51
52
52
53
54
55
56
59
59
62
62
62
63
63
63
63
64
66
70
70
70
71
71
72
74
74
74
75
77
78
78
73
83
83
84
86
86
87
83
89

53
62
124
40
42
49
60
90
42
99
104
68
55
56
87
61
75
120
60
72
61
85
68
88
71
118
77
103
105
64
65
118
119
65
100
83
113
123
78
79
108
87
95
108
124
79
79
118
113
84
85
121
105
107
116
104
107

256
185
69
48
28
210
411
243
20
123
27
290
150
358
64
224
144
65
180
72
148
10
407
67
63
25
152
30
304

19
36

11
112
10
14
43
76
205
80
51
348
125
361
76
88
71
12
207
140
200
104
401
139
132
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136
137
138
139
140
141
142
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

91
91
93
96
97
99
100
113
113
115
104
37
81
111
115
126
102
103
46

119
125
121

g8
108
102
122
101
119
101
121
123
120
125
115
91
116
126
33
97
38
31
40
65
105
123

725
79
98
155
70
16
38

14
65

53
75
168
208
150
50
50
50
50
50
50
50

SHeleleloloNoNeoNeNoNoNoNoRoNoNoNoNoNoNoRe Ne Re)

OOOOOOOOOOOOOOOOOOOOOOO



Appendix B
Span Coverage Integer Program (SCIP):

Implementation Validation

in this appendix, the Span Coverage Integer Program (SCIP) formulated
in Chapter 3 of this study, SCIP(Chee Yoon), is verified against the
original SCIP developed by Morley in [15], SCIP(Morley). Both of these
IPs employ the cost model given in Table 3.1. Table B.1 in the appendix
shows the test samples and the corresponding SCIP design cost obtained
for each IP. Figure B.1 illustrates the graphical depiction of the SCIP
Design Cost obtained from each IP vs. Sample No.

In conclusion, Figure B.1 shows a minor difference between the two IPs.
The difference lies in the cost of fiber where SCIP(Morley) uses $10 per
unit distance per fiber where as SCIP(Chee Yoon) uses $10 per unit
distance per span module (regardless of the fiber counts in the span
module). In terms of the IP itself, both SCIP(Chee Yoon) and
SCIP(Morley) are equivalent as shown in Table B.2 where the cost of
fiber in SCIP(Morley) is modified to use $2.5 per unit distance per span

module.
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Table B.1. Cost results obtained from SCIP(Chee Yoon) and SCIP(Morley).

Sample | sciP(Ches Yoon) |  SCiP(Moriey)
1 1934871 1961511
2 11076129 11325549
3 1835871 1965511
4 3290098 3316438
5 4648570 4674910
6 6571416 6597756
7 14448650 14994800
8 12483840 12699542
9 15600400 15801870
10 22037754 22239324
11 20113240 20533240
12 17840240 18104240
i3 20615904 20831904
14 46359908 49336268
15 33852020 34828550
16 33698130 34330980
17 47573362 48198112
50.0E+6 - .
3
*
45.0E+6 A
40.0E+6 A
35.0E+6 T .
g 30.0E+6
o TUETT
&
& 25.0E+6 4
[-3]
(@] [ 3
Q  20.0E+6 . .
(&) [}
7]
15.0E+6 3 ¢
10.0E+6 4 '
»
5.0E+6 A [
o
[ 2 ®
OO0.0E"‘O T T T T T T T T T T T T T T -T T T 1
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Sample No.
+ SCIP(Chee Yoon) = SCIP(Morley)

Figure B.1. SCIP Design Cost vs. Sample No. to verify SCIP(Chee Yoon) against
SCIP(Morley).
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Table B.2. Cost results obtained from SCIP(Chee Yoon) and SCIP(Morley).

s‘h"';'_"‘ SCIP(Chee Yoon) SCIP(Morley)
1 1934871 1934871
2 11076129 11076129
3 1935871 1935871
4 3290098 3290098
5 4648570 4648570
6 6571416 6571416
7 14448650 14448650
8 12483840 12483840
9 15600400 15600400
10 22037754 22037754
11 20113240 20113240
12 17840240 17840240
13 20615904 20615904
14 46359908 46359908
15 33852020 33852020
16 33698130 33698130
17 47573362 47573362
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Appendix C
AMPL Model File for SCIP

This appendix describes the AMPL model file that describes the [P
formulations for SCIP (Chapter 3). An exact copy of the AMPL model file
is presented together with PERL script used to generate the AMPL data
file. An example of the AMPL data file is also presented.
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AMPL Model File

AMPT,
This

L

Model for BLSR Network Design
AMPL model finds the min-cost set of

rings (with a given module size) that covers
the working capacity assigned to each span
in the network.

By: C.Y. Lee, April 15, 1999.

set CYCLE; # cycles
set SPAN; # spans
set CYCLE_SPAN within {CYCLE, SPAN};

param moduleSize{CYCLE} >= 0; # the working capacity of each

ring.

param CycleCost{CYCLE} >= 0;
param working{SPAN} >= 0;

var CycleCopies{CYCLE} integer >=0, <=10;

minimize total_modules:
sum{j in CYCLE} CycleCopies[j]*CycleCost[j];

subject to span_coverage {j in SPAN}:
sum {(i,Jj) in CYCLE_SPAN} moduleSize[i] * CycleCopies{i] >=
working([jl;

PERL Script: Used to generate AMPL Data File

#! /usr/local/bin/perl

require

5.004;

use Snif;
use Cycle;
use Text::Wrap qw (wrap $columns);

# Process command line arguments

while (¢

defined (Smyarg = shift) ) {

if (Smyarg =~ /~-c$/i) {

ScycleFileName = shifr;

} elsif (Smyarg =~ /~-n$/i) {

$snifFileName = shift:

} elsif (Smyarg =~ /~-m$/i) (

/7\d+$/;

$modSize = shift;
die "Module Size must be a positive integer!"” unless $modSize =~

die "Module Size must be a positive integer!" unless $modSize > 0;

} elsif (Smyarg =~ /~-z$/1i) {

/\d+$/;

$maxCycle = shift;
die "Max cycle size must be a positive integer!:” unless $maxCycle =~

die “Max cycle size must be at least 3!:" unless $maxCycle >= 3;
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} elsif ($myarg =~ /~-w$/i) {
$columns = shift;
die ~display width must be a positive integer!:* unless Scolumns =~
/~\d+$/;
}
}

die *Usage: $0 -c cycleFile -n snifFile -m moduleSize -w displaywidth (-z
maxCycleSize) "

unless (defined ScycleFileName) and (defined $snifFileName) and (defined
$modSize) ;

# Read in snif file
SNIFReadNetFile ($snifFileName, \$nnodes, \$nspans, \@nodes, \@node2tag,
\@tag2node, \@spans, \@span2tag, \@tag2span) ;

# Read in cycle file
CYCLEReadCycleFile ($cycleFileName, \@cycles, \@tag2span) ;

# Define or limit maxCycle to the number of network nodes
$maxCycle = S$nnodes if (! defined $maxCycle) or (SmaxCycle > S$nnodes)

# Generate AMPL datafile (printed to STDOUT)

print "param moduleSize :=\n";
$ci = 1;
foreach $i (3 .. $maxCycle) {

foreach $j (0 .. $#{Scycles[$il]}) (
print "$ci 12\n-";
Sci++;
}
}
foreach $i (3 .. S$maxCycle) ¢{
foreach $j (0 .. $#(Scycles[S$i]}) ¢
print "$ci 48\n";
Sci++;
}
}
foreach $i (3 .. $maxCycle) {
foreach $j (0 .. S$#{Scycles[$il}) (
print *"Sci 96\n";
$ci++;
}
}
foreach $i (3 .. $maxCycle) {
foreach $j (0 .. S#(S$cycles([Si}}) {
print *S$ci 192\n*:;
Sci++;
}
}

print *\;\n";

print "set SPAN :=\n";

$line = **;

foreach $i (0 .. $nspans) {
$line .= "S$span2tag($i] *:

}

print wrap(“®,**,S$line);

print "\;\n\n";

print *param working :=\n":;
foreach $i (0 .. $nspans) (
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print *$span2tag($i] $spans[$i]->{WORKING}\n";
}

print *\;\n*;

print "set CYCLE :=\n";

$line = **;

$ci = 1;

# do once for each span modular size
foreach $1 (1 .. 4)({

foreach $i (3 .. S$maxCycle) {
foreach $j (0 .. S#{Scycles[$i]l}) (
$line .= "$ci *;
Sci++;
}
}

}
print wrap(**, "", $line);
print *\;\n\n";

$ci = 1;
print ®“set CYCLE_SPAN :=\n";
# do once for each span modular size
foreach $1 (1 .. 4)({
foreach $i (3 .. S$SmaxCycle) {
foreach $3 (0 .. S$#{Scycles([$il}) {
$line = "($ci,*) *;
foreach $k (0 .. $#{Scycles[$i]($j1}) (
$line .= *$span2tagl[Scycles([$i] [$3]1(Skl] *-;
}
print wrap ("","*,$line);
print "\n*;
Sci++;

}

}
print “\;\n";

print "param CycleCost :=\n";

$Sci = 1;
$n = 0;
$fibercost = 10;
foreach $i (3 .. $maxCycle) (
foreach $j (0 .. S$#({Scycles([$i]}) (

ScycleADM = S$#{Scycles($i] [$j1} + 1:

foreach $k (0 .. S$#{Scycles{Si]l(S$jl1}) {
$m = $spans([$cycles[$i][$j](Skll:
Sn = $n + $m->{DISTANCE};

}

$cycleDISTANCE = $n ;

$cycleCost = ($cycleADM * 71333) + ($ScycleDISTANCE * 4 * $fibercost):
print "$ci $cycleCost\n*;
$Ci++;

}

}
foreach $i (3 .. SmaxCycle) (
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foreach $j (0 .. $#{Scycles($i]}) ¢
ScycleADM = S$#{Scycles[$i]l[Sjl}) + 1:
foreach $k (0 .. $#(Scycles($i][$51}) (

$m $spans(Scycles[$i] [$7]1([Sk]];
$n Sn + Sm~>{DISTANCE};

}
$cycleDISTANCE = $n ;
$n = 0;

ScycleCost = ($ScycleADM * 142666) + (ScycleDISTANCE * 4 * S$fibercost);
print "$ci $cycleCost\n*;

$Ci++;
}
}
foreach $i (3 .. $maxCycle) {
foreach $j (0 .. $#(Scycles[$il}) (
ScycleADM = S#{Scycles[$i]([$31) + 1;
foreach $k (0 .. $#{Scycles($i]l([$j1}) (
Sm = S$spans{S$cycles({$il($3j][($k]]:
$n = $n + $m->{(DISTANCE};
}
$ScycleDISTANCE = $n ;
$n = 0;
S$cycleCost = ($ScycleADM * 201730) + (ScycleDISTANCE * 4 * Sfibercost);
print “$ci S$ScycleCost\n";
Sci++;
}
}
foreach $i (3 .. S$maxCycle) (
foreach $3j (0 .. S$#{Scycles($il}) (
ScycleADM = S$#{Scycles[Si][$j]1} + 1;
foreach $k (0 .. $#{Scycles[$i]l[$j1}) (
$m = $spans($cycles($i][$7](sk]l];
$n = $Sn + S$m->{DISTANCE};
}
ScycleDISTANCE = $n ;
$n = 0;
ScycleCost = ($cycleADM * 285332) + ($cycleDISTANCE * 4 * Sfibercost);
print “S$Sci $cycleCost\n";
SCi++;
}
}

print "\;\n";
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Example of AMPL data file for Net C using multi-modular SCIP

param mocduleSize :=
112

2 12
3 12
4 12
5 12
6 12
7 12
8 12
9 12
106 12
11 12
12 12
13 12
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132
133

137
138



139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
l61
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
150
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

154



210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

’

set
23
89 9
124

192
182
192
192
192
192
192
192
192
192
182
192
192
192
192
192
192
192
192
192
192
192
192
182
192
192
182
192
192
182
192
152
192
192
182
192
192
192
192
192
132
192
192

4567
0 94 99
125 127

8 9 12 22 24 25 28 29 30 31 34 35 56 60
100 101 102 103 104 105 106 107 108 110
128 129 130 131 133 134 141 145 146 147

param working :=

17
39
4 16
5 7
6 19
7 23
8 11
9

12 6
22 2
24 2
25 0
28 3
29 S
30 6
310
34 2
35 2
S6 1
60 1
61 2

2
2

8
2

1
1
8
8
1
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61 62 68 69 70 72 73
111 112 113 114 119

148 149

.

80
122

81
123



123
124
125
127
128
129
130
131
133
134
141
14S
146
147
148
149

’

set CYCLE :=
1234567879

30 31 32 33
56 57 58 59
82 83 84 85

106
126
146
166
186
206
226
246

set
(1,
(2,
(3,
(4.
(s,
(6.
(7
(8,
(9,
(10

107
127
147
167
187
207
227
247

108
128
148
168
i88
208
228
248

34 35
60 61
86 87

109
12¢%
149
169
189
209
229
249

CYCLE_SPAN
~) 30 102 31
) 113 123 114
*) 111 146 112
*) 28 69 29

~*)} 104 108

*} 24 148 25

110
130
150
170
190
210
230
250

105

,*) 99 113 124 100

*) 69 106 107 70
94 128 127 62
,*) 99 114 123 124 100

*) 61

10 11
36 37
62 63
88 89

111
131
151
171
191
211
231
251

12

64

90

112
132
152
172
192
212
232
252

i3 14 15
39 40 41
65 66 67
91 92 92

113
133
153
173
193
213
233

i

114
134
154
174
194
214
234

16 17 18
42 43 44
68 69 70
94 95 96

11s
135
155
175
195
215
235

116
136
156
176
196
216
236

1°
45
71
97
117
137
157
177
197
217
237
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20 21 22 23 24 25 26 27 28 29
46 47 48 49 50 51 S2 53 54 S5
72 73 74 75 76 77 78 79 8C 81

98 99 100 101

1i8
138
iss
178
198
218
238

119
139
159
179
199
219
239

120
140
160
180
200
220
240

121
141
161
181
201
221
241

122
142
162
182
202
222
242

123
143
163
183
203
223
243

124
144
164
184
204
224
244

102 1C3 104 105

125
145
165
igs
205
225
245



(11, ")
(12, *)
(13,~)
(14,*)
(15, *)
(16, ")
(17, *)
(18, ")
(19, ")
(20, *)
(21,*)
(22,*)
(23,")
(24, ")
(25, =)
(26,*)
(27, ")
(28, ")
(29, ")
(30, ")
(31, ")
(32,")
(33, ")
(34, ")
(35,7}
(36,")
(37,=)
(38, )
(39,")
(40, *;
(41, %)
(42,")
(43,")
(44, )
45, ")
(46, *)
(47,")
(48, ")
(49, )
(50,7
(31,7}
(52, =)
(53, ")
(54, )
(55, *)
(56, *)
(57, )
(S58.,")
(59, )
(60, )
(61,*)
(62, )
(63, ™)
(64, )
(65, ~)
(66, )
(67,~)
(68, ")
(69,~)
(70,*)
(71, )
(72,~)
(73,7
(74, ~)
(75, ")
(76, ")
(77,7}
(7€, )
{79,*)
(80, )
(81, *)

110 127 129 145 111

28 70 107 106 29

265 9123

110 127 129 145 146 112

68 133 81 80 141 70

61 94 128 110 111 145 129 62

68 133 81 80 141 107 106 69

61 94 128 110 112 146 145 129 62

28 68 133 81 80 141 107 106 29

72 101 122 125 145 129 149 89 119 73

7 22 147 90 149 127 128 35 34 8

2 6 8 34 35 94 61 60 56 4

68 134 131 130 103 101 122 123 124 69

2 6 7 22 147 90 149 62 60 56 4

7 22 147 90 149 62 61 94 35 34 8

2 6 8 34 35 128 127 62 60 56 4

72 101 122 125 111 110 127 149 89 119 73

28 68 134 131 130 103 101 122 123 124 29

68 134 131 130 103 101 122 114 99 100 69

68 134 131 130 103 101 122 114 113 124 69

312 95 8 34 35 94 61 60 56 4

72 101 122 125 146 112 110 127 149 89 119 73

68 134 131 130 103 101 122 123 124 106 107 70

28 68 134 131 130 103 101 122 114 99 100 29

28 68 134 131 130 103 101 122 114 113 124 29

68 134 131 130 103 101 122 123 113 99 100 69

7 22 147 90 149 129 145 111 110 128 35 24 8

312 95 7 22 147 90 149 62 60 56 4

312 95 8 34 35 128 127 62 60 56 4

28 68 134 131 130 103 101 122 123 113 99 100 29

68 134 131 130 103 101 122 114 99 100 106 107 70

68 134 131 130 103 101 122 114 113 124 106 107 70

2 6 7 22 147 90 149 127 128 94 61 60 S6 &

7 22 147 90 149 129 145 146 112 110 128 35 34 8

2 6 8 34 35 128 110 111 145 129 62 60 S6 4

69 124 123 122 101 103 130 131 134 133 81 80 141 70

80 141 107 106 124 123 122 101 103 130 131 134 133 81
68 134 131 130 103 101 122 123 113 99 100 106 107 70

61 94 128 110 111 125 122 101 72 73 119 89 149 62

2 6 8 34 35 128 110 112 146 145 129 62 60 56 4

28 70 141 80 81 133 134 131 130 103 101 122 123 124 29
63 100 99 114 122 101 103 130 131 134 133 81 80 141 70
69 124 113 114 122 101 103 130 131 134 133 81 80 i41 70
80 141 107 106 100 99 1i4 122 101 103 130 131 134 133 8:
80 141 107 106 124 113 114 122 101 103 120 131 134 133 81
61 94 128 110 112 146 125 122 101 72 73 119 89 149 62
312 9 5 7 22 147 90 149 127 128 94 61 60 56 4

312 95 8 34 35 128 110 111 145 129 62 60 S6 4

28 70 141 80 81 133 134 131 130 103 101 122 114 $9 100 29
28 70 141 80 81 133 134 131 130 103 101 122 1i4 113 124 29
68 134 131 130 103 72 73 119 89 149 129 145 125 123 124 65
69 100 99 113 123 122 101 103 130 131 134 133 81 80 141 70
80 141 107 106 100 99 113 123 122 101 103 130 131 134 133 81
30 102 31

113 123 114

111 146 112

28 69 29

104 108 10S

24 148 25

99 113 124 100

69 106 107 70

61 94 128 127 62

99 114 123 124 160

110 127 129 145 111

28 70 107 106 29

2659 12 3

110 127 129 145 146 112

68 133 81 80 141 7¢C

61 94 128 110 111 145 129 62

68 133 81 80 141 107 106 69

61 94 128 110 112 146 145 129 62

157



(82,+) 28 68 133 81 80 141 107 106 29

(83,*) 72 101 122 125 145 129 149 89 1139 73

(84,~) 7 22 147 90 149 127 128 35 34 8

(85,*) 2 6 8 34 35 94 61 60 56 4

(86,*) 68 134 131 130 103 101 122 123 124 69

(87,*) 2 6 7 22 147 90 149 62 60 56 4

(88,*) 7 22 147 90 149 62 61 94 35 34 8

(89.*) 2 6 8 34 35 128 127 62 60 56 4

(80, *) 72 101 122 125 111 110 127 149 89 119 73

(91,+) 28 68 134 131 130 103 101 122 123 124 29

(92,*) 68 134 131 130 103 101 122 114 99 100 69

{(93,~) 68 134 131 130 103 101 122 114 113 124 69

(94,*) 3 12 9 5 8 34 35 94 61 60 56 4

(95,*) 72 101 122 125 146 112 110 127 149 89 119 73

(96,~) 68 134 131 130 103 101 122 123 124 106 107 70

(97,*) 28 68 134 131 130 103 101 122 114 99 100 29

(98,*) 28 68 134 131 130 103 101 122 114 113 124 29

(98,=) 68 134 131 130 103 101 2122 123 113 99 100 69

(100,*) 7 22 147 906 149 129 145 111 110 128 35 34 8

(101,*) 3 12 9 5 7 22 147 90 149 62 60 S6 4

(102,+") 3 12 9 5 8 34 35 128 127 62 60 56 4

(103,+) 28 68 134 131 130 103 101 122 123 113 99 100 29

(104,*} 68 134 131 130 103 101 122 114 99 100 106 107 70
(105,*) 68 134 131 130 103 101 122 114 113 124 106 107 70
(106,*) 2 6 7 22 147 90 149 127 128 94 61 60 56 4

(107,+) 7 22 147 90 149 129 145 146 112 110 128 35 34 8

(108,+) 2 6 8 34 35 128 110 111 145 129 62 60 S6 4

(109,*) 69 124 123 122 101 103 130 131 134 133 81 80 141 70
(110,=) 80 141 107 106 124 123 122 101 103 130 131 134 133 81
(111,*) 68 134 131 130 103 101 122 123 113 99 100 106 107 70
(112,~) 61 94 128 110 111 125 122 101 72 73 119 89 149 62
(113,*) 2 6 8 34 35 128 110 112 146 145 129 62 60 56 4

(114,*) 28 70 141 80 81 133 134 131 130 103 101 122 123 124 29
(115,*) 69 100 99 114 122 101 103 130 131 134 133 81 80 141 70
(116,=) 69 124 113 114 122 101 103 130 131 134 133 81 80 141 70
(117.*) 80 141 107 106 100 99 114 122 101 103 130 131 134 133 81
(118,*) 80 141 107 106 124 113 114 122 101 103 130 131 134 133 81
(119,*) 61 94 128 110 112 146 125 122 101 72 73 119 89 145 62
(120,*) 3 12 9 5 7 22 147 90 149 127 128 94 61 60 56 4

(121,*) 3 12 9 5 8 34 35 128 110 111 145 129 62 60 56 4

(122,*) 28 70 141 80 81 133 134 131 130 103 101 122 114 99 100 29
(123,~) 28 70 141 80 81 133 134 131 130 103 101 122 114 113 124 29
(124,~) 68 134 131 130 103 72 73 119 89 149 129 145 125 123 124 69
(125,*) 69 100 99 113 123 122 101 103 130 131 134 133 81 86 141 70
(126,") 80 141 107 106 100 99 113 123 122 101 103 130 131 134 133 81
(127,.=) 30 102 31

(128,*) 113 123 114

(129,") 111 146 112

(130,~) 28 69 29

(131.~} 104 108 105

(132,~) 24 148 25

(133,*) 99 113 124 100

(134.,~7) €9 106 107 70

(135,*) 61 94 128 127 62

(136,=) 99 114 123 124 100

(137.=*) 110 127 129 145 111

(138,~) 28 70 107 106 29

(139.") 2 6 59 12 3

(140,~) 110 127 129 145 146 112

(141,~) 68 133 81 80 141 70

(142,-) 61 94 128 110 111 145 129 62

(143,~) 68 133 81 80 141 107 106 69

(144,*) 61 54 128 110 112 146 145 129 62

(145,~) 28 68 133 81 80 141 107 106 29

(146.*) 72 101 122 125 145 129 149 89 119 73

(147.,*) 7 22 147 90 149 127 128 35 34 8

(148,~) 2 6 8 34 35 94 61 60 56 4

(149,*) 68 134 131 130 103 101 122 123 124 69

(150,") 2 6 7 22 147 90 149 62 60 56 4

(151,+) 7 22 147 90 149 62 61 94 35 34 8

(152,*) 2 6 8 34 35 128 127 62 60 56 4
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(153, )
(154, ")
(155, )
(156, *)
(137, ™)
(158, *)
(159, =)
(160, ™)
(161, ")
(162, ")
(163, *)
(164, ")
(165, *)
(166, *)
(167, *)
(168, *)
(169,")
(170,*)
(171, *)
(172, )
(173.*)
(174,")
(175.,")
(176, ")
(177, *)
(178, ")
(179, *)
(180, ")
(181, ~)
(182,")
(183, )
(184, ")
(185, )
(186, ")
(187, ")
(188, ")
(189, )
(19GC, ~)
(191. ")
(192, ")
(193, )
(194, ~)
(195, )
(196, *)
(197, *)
(198, *)
(199, ")
(200, ")
(201, ")
(202, "
(203, ")
(204, )
(208, ")
(206, ")
(207, ")
(208, ")
(209, ")
(210, ")
(211, ")
(212, =)
(213, "}
(214, ")
(215, +;
(216, ")
(217, )
(218, *)
(219, ")
(220, )
(221, )
(222, =)
(223, )

72 101 122 125 111 110 127 149 89 119 73

28 68 134 131 130 103 101 122 123 124 29

68 134 131 130 103 101 122 114 99 100 69

68 134 131 130 103 101 122 114 113 124 69

312 95 8 34 35 94 61 60 56 4

72 101 122 125 146 112 110 127 149 89 119 73

68 134 131 130 103 101 122 123 124 106 107 70

28 68 134 131 130 1063 101 122 114 99 100 29

28 68 134 131 130 103 101 122 13i4 113 124 29

68 134 131 130 103 101 122 122 113 99 100 69

7 22 147 90 149 129 145 111 110 128 35 34 8

3 12 9 5 7 22 147 90 149 62 60 56 4

3 12 9 5 8 34 35 128 127 62 60 S6 4

28 68 134 131 130 103 101 122 123 113 99 100 29

68 134 131 130 103 101 122 114 99 100 106 107 70

68 134 131 130 103 101 122 114 113 124 106 107 70

2 6 7 22 147 90 149 127 128 94 61 60 56 4

7 22 147 90 149 129 145 146 112 110 128 35 34 8

2 6 8 34 35 128 110 111 145 129 62 60 56 4

69 124 123 122 101 103 130 131 134 133 81 80 141 70

80 141 107 106 124 123 122 101 103 130 131 134 133 81

68 134 131 130 103 101 122 123 113 99 100 106 107 70

61 94 128 110 111 125 122 101 72 73 119 89 149 62

2 6 8 34 35 128 110 112 146 145 129 62 60 56 4

28 70 141 80 81 133 134 131 130 103 101 122 123 124 29

69 100 99 114 122 101 103 130 131 134 133 81 80 141 70

69 124 113 114 122 101 103 130 131 134 133 81 80 141 7C
80 141 107 106 100 99 114 122 101 103 130 131 134 133 81
80 141 107 106 124 113 114 122 101 103 130 131 134 133 81
61 94 128 110 112 146 125 122 101 72 73 119 89 149 62
312 9 5 7 22 147 90 149 127 128 94 61 60 56 4

3 12 9 58 34 35 128 110 111 145 129 62 60 56 4

28 70 141 80 81 133 134 131 130 103 101 122 114 99 100 29
28 70 141 80 81 133 134 131 130 103 101 122 114 113 124 29
68 134 131 130 103 72 73 119 89 149 129 145 125 123 124 69
69 100 99 113 123 122 101 103 130 131 134 133 81 80 141 70

80 141 107 106 100 95 113 123 122 101 103 130 131 134 133 81

30 102 31

113 123 114

111 146 112

28 69 29

104 108 105

24 148 25

99 113 124 100

69 106 107 70

61 94 128 127 62

99 114 123 124 100

110 127 129 145 111

28 70 107 106 29

2 659 12 3

110 127 129 145 146 112

68 133 81 80 141 70

61 94 128 110 111 145 129 62

68 133 81 80 141 107 106 69

61 94 128 110 112 146 145 129 62

28 68 133 81 80 141 107 106 29

72 101 122 125 145 129 149 89 119 73

7 22 147 90 149 127 128 35 34 8

2 6 8 34 35 94 61 60 56 4

68 134 131 130 103 101 122 123 124 69

2 6 7 22 147 90 149 62 60 56 4

7 22 147 90 149 62 61 94 35 34 8

2 6 8 34 35 128 127 62 60 56 4

72 101 122 125 111 110 127 149 89 119 73
28 68 134 131 130 103 101 122 123 124 29
68 134 131 130 103 101 122 114 99 100 69
68 134 131 130 103 101 122 1i4 113 124 69
3 12 9 5 8 34 35 94 61 60 56 4

72 101 122 125 146 112 110 127 149 89 119 73
68 134 131 130 103 101 122 123 124 106 107 70
28 68 134 131 130 103 101 122 114 99 100 29
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(224, )
(225, )
(226,*)
(227, *)
(228, %)
(229, %)
(230, ")
(231, )
(232,7)
(233, )
(234, ")
(235, *)
(236, ")
(237, )
(238,7)
(239, )
(240, )
(241, *)
(242, %)
(243, )
(244, =)
(245, %)
(246, 7)
(247,%)
(248, *)
(249,7)
(250, )
(251, +)
(252, %)

28 68 134 131 130 103 10X 122 114 113 124 29

68 134 131 130 103 101 122 123 113 99 100 69

7 22 147 90 149 129 145 111 110 128 35 34 8

3 12 9 5 7 22 147 90 149 62 60 56 4

312 9 58 34 35 128 127 62 60 56 4

28 68 134 131 130 103 101 122 123 113 99 100 29

68 134 131 130 103 101 122 114 99 100 106 107 70

68 134 131 130 103 101 122 114 113 124 106 107 70

2 6 7 22 147 90 149 127 128 94 61 60 56 4

7 22 147 90 149 129 145 146 112 110 128 35 34 8

2 6 8 34 35 128 110 111 145 129 62 60 56 4

69 124 123 122 101 103 130 131 134 133 81 80 141 70

80 141 107 106 124 123 122 101 103 130 131 134 133 81

68 134 131 130 103 101 122 123 113 99 100 106 167 70

61 94 128 110 111 125 122 101 72 73 119 89 149 62

2 6 8 34 35 128 110 112 146 145 129 62 60 56 4

28 70 141 80 81 133 134 131 130 103 101 122 123 124 29

69 100 99 114 122 101 103 130 131 134 133 81 80 141 70

69 124 113 114 122 101 103 130 131 134 133 81 80 141 70

80 141 107 106 100 99 114 122 101 103 130 131 134 133 81
80 141 107 106 124 113 114 122 101 103 130 131 134 133 81
61 94 128 110 112 146 125 122 101 72 73 119 89 149 62

312 9 5 7 22 147 90 149 127 128 94 61 60 56 4

3 12 9 58 34 35 128 110 111 145 129 62 60 56 4

28 70 141 80 81 133 134 131 130 103 101 122 114 99 100 29
28 70 141 80 81 133 134 131 130 103 101 122 114 113 124 29
68 134 131 130 103 72 73 119 89 149 129 145 125 123 124 69
69 100 99 113 123 122 101 103 130 131 134 133 81 80 141 70
80 141 107 106 100 99 113 123 122 101 103 130 131 134 133 81

param CycleCost :=

214719
215949
214379
214609
214109
214789
287522
286262
362255
35994
35946
35758
42926
43097
43259
57881
57605
65032
19 64737
20 72726

WO o WwN -

B
N O

-

(&

o
S

o
®

5
5
5
8
8
8
4
4
7
7
¢]

21 726300

22 72292
23 72929
24 79855
25 79884
26 79914

0
]
3
3
3

27 798473
28 800613
29 800623

30 80105
31 86583
32 86998

3
6
€

33 872266

34 87194

&

35 872376

36 87238

6

37 942859

38 94146

9

39 942059

40 94370

9
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943599
944029
1012042
1014372
1015702
1016262
1016432
1015362
1017822
1087215
1087585
108759¢%
1088025
1087765
1088195
1089335
1154958
1158618
1158918
1159348
1160958
1159358
1159528
428718
429948
428378
428608
428108
428788
572854
571594
718920
716610
716130
714250
857266
858976
860596
1149478
1146718
1292324
1289374
1440590
1439630
1436250
1442620
1583216
1583506
1583806
1583136
1585276
1585286
1585716
1721832
1725982
1728262
1727942
1728372
1728382
1870188
18687398
1869388
1871¢C3
1870928
1871358
2010704
2013034
2014364
2014924
2015094
2014024
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112
113
114
11s
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

169
170
171
172
173
174
175
176
177
178
179

181
182

2016484
2157210
2157580
2157590
2158020
2157760
2158190
2159330
2296286
2299946
2300246
2300676
2302286
2300686
2300856
605910

607140

605570

605800

605300

605980

8039110

807850

1014240
1011930
1011450
1009570
1211650
1213360
1214980
1621990
1619230
1823900
1820950
2031230
203027¢G
2026890
2033260
2232920
2233210
2233510
2232840
2234980
2234990
2235420
2430600
2434750
2437030
2436710
2437140
2437150
2638020
2636630
2637220
2638870
2638760
2639190
2837600
2839930
2841260
2841820
2841990
284G923
2843380
3043170
3043540
3043350
3043980
3043720
3044150
3045290
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183
184
185
186
187
188
189
180
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
2358
236
237
238
239
240
241
242
243
244
245
246
247
248
249
25C
251
252

3241310
3244970
3245270
3245700
3247310
3245710
3245880
856716

857946

856376

856606

856106

856786

1143518
1142258
1432250
1429940
1429460
1427580
1713262
1714972
1716592
2290806
2288046
2576318
2573368
2867250
2866290
2862910
2869280
3152542
3152832
3153132
3152462
3154602
3154612
3155042
3433824
3437974
3440254
3439934
3440364
3440374
3724846
3723456
3724046
3725696
3725586
3726016
4008028
4010358
4011688
4012248
4012418
4011348
4013808
4297200
4297870
4297580
4298010
4297750
4298180
4299320
4578942
4582602
4582902
4583332
4584942
4583342
4583512



Appendix D
MAPR(fall)

This appendix describes MAPR using fall pseudo-cost cost and the initial
experiments that were performed using this method. The results showed

no reasonable improvement in design cost and therefore fall pseudo-cost
was removed from subsequent work in MAPR.

164



Pseudo-cost function, fall, is described by Eq.D.1 and an example of this pseudo-cost is shown in

Figure D.1 below.

(D.1)

d;-M (w,mod M )=0;
: ')-{M'(W; mod M)-d, (w,mod M )#0;

c{w;) - Pseudo-cost of span i.

d; - Geographical distance of span i.
w; - Accumulated demands crossing span &.
M - Span modularity constant.
140 -
120 ¢ * * *
L 4 L 4 L 3
100 A ? * *
— * * *
2
o 80 41 * * *
§ 4 L 2 L 4
b3 p
(=}
B 60 S ¢ ¢
Q
("]
e 4 L 4 L 3
40 + * * *
20 1
0 T - I T

O 1 2 3 4 5 6 7 8 9 G I 2 13 K IS 1 7 188X 2021 222328 2526 2726 29 30 31 3233 34 25 2

Working Capacity, w;

Figure D.1. Pseudo-cost function fall for d;=10 and M=12.
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The results of implementing MAPR(fall) on Net A, Net C and Net D are shown in Table D.1
below. Other results using rise and impulse pseudo-cost function are also included. The No. of
Unused Span column is the number of spans that are found to have zero working capacity in the
resulting capacitated graph after all the demands have been routed using the respective routing
principles. The Required No. of Span Modules show the number of span modules that are
required in the resulting min-cost ring coverage design.

Table D.1. MAPR results.

Network MAPR Pseudo-{ Design # unused | Required No. of
cost Modularity spans Span Moduies
12 3 23
s.path
24 3 20
12 6 21
fis@
24 9 14
A 12 11 22
impulse
24 11 14
12 6 21
fail
24 6 18
48 7 62
s.path
96 7 57
48 9 57
fise
96 15 49
(o]
48 14 61
impulse
96 17 47
48 8 64
falt
96 8 56
96 7 118
s.path
192 7 118
96 21 104
rise
192 24 101
D
96 25 137
impulse
192 31 94
96 20 122
fall
192 23 17

As shown in Table D.1, MAPR(rise) and MAPR(impulse) in general out-performed MAPR(fall)
except for Net A with design modularity 12, where MAPR(impulse) require a single span module
more than MAPR(fall). All of the results by MAPR(rise) show improvements over shortest-path
routing. Five out of six MAPR(impulse) results show improvements and four out of six
MAPR(fall) results give improvements over shortest-path results. Therefore, with these results.

the focus became rise and impulse, and fall was removed from further studies.
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