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“Stability is an absolutely universal attribute of nature and therefore it has
to be reflected in the basis laws of nature. If the knowledge can be constructed
on the basis of small perturbations then scientific thinking could be based

on some type of Lyapunov function. In any case this function always ezists

from postulate of stability.”

Chetaev, 1936
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Abstract

Part 1 of this thesis contains our contribution to mathematical methodology. We
introduce a new approach to the method of global Lyapunov functions using graph
theory, and demonstrate the approach through two heterogenous epidemic models:
a multi-group SEIR model and a multi-stage model. The uniqueness and global
stability of endemic equilibria of the n-group SEIR model has been a well-known open
problem in mathematical epidemiology. This open problem is completely resolved in
the thesis (Theorem 2.3, p36) for the first time. More and more research activities
in mathematical epidemiology are directed at heterogeneity in disease transmission
dynamics. We expect that the graph-theoretical approach described in the thesis will
see a much wider range of applications.

In Part 2, we investigate the transmission dynamics of tuberculosis (TB) using
mathematical models. TB is an old infectious disease that saw an alarming global
resurgence since the 1990s. Many factors have contributed to the comeback of TB and
they have been well studied in the literature. In this thesis, we focus on the issue of
global spread of TB through population migration, and investigate the impact of the
immigration from developing countries on the TB incidence of developed countries.
We propose a multi-group Iﬁodel to investigate the TB transmission dynamics among
a population in a high TB incidence country, a population of immigrants and a local-
born population in a developed country. Such a model is new in the literature, and

the global dynamics are completely established (Theorem 5.3).
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We carry out two case studies using our model to analyze TB data from Canada
and the UK. We demonstrate that the cross-infection from immigrants to local-born
can be a significant factor for the TB incidence in the local-born population. The
effects of such a cross-infection may not be obvious when the TB incidence among the
immigrants is low, as in the case of Canada. However, we show that, if the TB incidence
among immigrants is sufficiently high, as in the case of the UK, the cross-infection can
significantly change the TB trend in the local-born population. Our analysis on the
recent TB trend in the UK confirms a hypothesis raised in a UK government T'B report
[64]. Impact of other important factors on the TB dynamics such as latency and loss

of immunity are also investigated in the thesis.
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Chapter 0. Introduction and Thesis

Summary

The impact of infectious diseases on human, animal and wildlife is enormous, both in
terms of suffering and in terms of social and economic consequences. From well-known
diseases like plague, cholera, tuberculosis, pneumonia, gonorrhea, smallpox, malaria,
measles to recent West Nile virus (1937), Lyme disease (1975), HIV/AIDS (1981),
hepatitis C (1989), hepatitis E (1990), avian influenza(1990s), hantavirus (1993), SARS
(2003) etc, there are no exceptions that they caused huge morbidity and mortality.
Although great advances have been made in vaccination and medical treatment since
the last century, emerging and reemerging infectious diseases still present an increasing
risk on a global scale, see 2, 17, 69].

According to the transmission agents of infectious diseases there are several
classes of transmission types [2]. One is that diseases are transmitted by viruses,
such as influenza, measles, rubella, chickenpox, usually conferring immunity against
reinfection. Another is that diseases are transmitted by bacteria, such as tuberculosis,
meningitis and gonorrhea, conferring no immunity against reinfection. Other agents
are protozoa, helminths and prions [69]. It is evident that prions are the main causes
of bovine spongiform encephalopathy (BSE), Creutzfeldt-Jakob disease (CJD). A more
severe situation now facing humans is that the infectious diseases are transmitted from
animals to humans. SARS, avian influenza and monkeypox have jumped from animals
into human populations. This led to a great challenge in understanding and controlling
infectious diseases. The following graph provides an illustration of cross-interactions

among human, wildlife and domestic animals diseases (see Figure 0.1).
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Figure 0.1: Interactions between human, wildlife and domestic animals emerging

infectious diseases (EID). Source: Daszak et al Science 2000.

0.1 Mathematical epidemiology

Mathematical epidemiology concerns with modeling the spread of infectious diseases
in host populations. One of main goals of mathematical epidemiology is to understand
how to control and eradicate diseases.

Earlier in the 18th century, Daniel Bernoulli made one of the first mathematical
contributions to infectious diseases control by developing a model of smallpox
[11, 69, 109]. Since Bernoulli, more and more mathematicians and scientists have
joined in and offered many practical insights into infectious diseases control. The first
contribution to modern mathematical epidemiology are due to P. D. En’ko between
1873 and 1894 [38]. In 1906, Hamer developed a discrete model to study the recurrence
of measles and mass-action principle was introduced for the first time [61, 109]. Ross
in 1911 formulated a differential equation model of malaria [69]. Beginning in 1927,
Kermack and McKendrick studied compartmental models of disease transmission in
their three famous papers and they first derived out the well-known threshold behavior
for epidemic models that the density of susceptibles must exceed a critical value in
order for an epidemic outbreak to occur [69, 82].

Since the Kermack and McKendrick’s deterministic compartmental models of
communicable diseases described by ordinary differential equations (ODEs), the

mathematical tools used in epidemiology modeling have evolved into a more broad field
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of mathematics. The models described by ODEs usually assume that the time spent in
compartment is exponentially distributed. For many diseases, hosts spend a fixed time
in a compartment. This gives rise to a differential-difference equation model. Moreover,
an arbitrary distribution can be assumed of time spent in a compartment, leading to
integral equation or integro-differential equations [17]. Epidemiological models with
spatial structures have been used to describe the spatial heterogeneity and the spatial
spread of infectious diseases by diffusion-type partial differential equations (PDEs).
One of such examples is the study of fox rabies [2, 69]. Spatial models with dispersal-
kernels are formulated by integral equations with kernels describing daily contacts of
infectives with their neighbors. Described often by integral-differential equations, age-
structured epidemiology models with either continuous age or discrete age groups are
used to model the age-related mixing behaviors of infectious diseases such as measles
and HIV/AIDS (see survey paper [69]).

In contrast with deterministic epidemic models, stochastic epidemic models
including, discrete time, continuous time Markov chain models and stochastic
differential equation models are brought forward in the last several decades [5]. Other
related methods have chain binomial epidemic processes and branching epidemic
processes [1]. Stochastic models are generally more difficult to analyze than their
deterministic counterparts. A more detailed discussion on the advantages and
limitations of different types of epidemic models is given in [71].

More recently, a new strategy of modeling heterogeneity of contact patterns of
infectiousness, contact network epidemiology appeared with ideas different from
conventional methods. In modeling more complex contact patterns of infectious
diseases, new strategy is based on contact network involving with the ideas from graph
theory (see survey paper [109]).

For many infectious diseases, the epidemic models can be very complicated and
this usually leads to the study of mathematical models with heterogeneous features.
Heterogeneity exists in many aspects of disease transmission processes: heterogeneous
spatial distribution of host populations, heterogeneous susceptibility among age groups,
heterogeneous social behaviors among groups for sexually transmitted diseases, and
multi-hosts for many diseases such as West Nile virus and Avian flu. Heterogeneity
produces complexity in the transmission processes of diseases. It has been a prime

subject of mathematical modeling in the past two decades, and the research has
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intensified in recent years. Due to the extremely large scales of the resulting models,
rigorously establishing their global dynamics poses a great mathematical challenge.

Mathematical modeling is an important tool in studying a diverse range of infectious
diseases, and has proven successful in investigating disease transmission dynamics to
gain better qualitative and quantitative understanding of the mechanisms of disease
transmission processes. Such an improved understanding can help public health
authorities to make more reliable predictions and to better evaluate disease prevention
and control strategies (see [69, 2] for details).

In this thesis we deal with the transmission dynamics of infectious diseases in
heterogeneous populations described by deterministic models using ordinary differential

equations.

0.2 Compartmental models

The spread of infectious diseases in a population can be described mathematically
using compartmental models. Disease transmission is a dynamical process driven by
the interaction between the susceptible and the infective. In compartmental models,
the total population is divided into distinct compartments according to the disease
status such as susceptible (S), exposed (latent) (E), infectious (I) and recovered (R)
compartments, as shown in Figure 0.2. The total host populationis N = S+ E+I+R.
All newborns or immigrants are assumed to be susceptible. When there is an adequate
contact between a susceptible and an infective so that transmission occurs, then the
susceptible enters the exposed class with a waiting time — latent period. After the
latent period ends, the individual enters the class of infectives, who are infectious in
the sense that they are capable of transmitting the infection. When the infection period
ends, the individual enters the recovered class with permanent or temporary immunity
(68, 69].

The transfer terms e¢E, vI, § R, correspond to exponentially distributed waiting times
in the corresponding compartments. So, 1/¢ is the mean latent period, 1/7 is the mean
infectious period, 1/4 is the mean immune period. The recruitment term of births or
immigration @ maybe be either a constant or a function of total population. The
natural death or emigration appears in all groups and an extra death rate is necessary

if the disease is death-related.
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Figure 0.2: Flow diagram of an SEIR model.

The horizontal incidence term A is the infection rate of susceptible individuals
through their contacts with infectives. Two commonly used incidence forms are simple
mass action form, 351, also called bilinear incidence, and standard incidence form,
BSI/N, also called proportionate mixing incidence. If 3 is the average number of
adequate contacts (i.e., contacts sufficient for transmission) of a person per unit time,
then BI/N is the average number of contacts with infectives per unit time of one
susceptible, and (8//N)S is the number of new cases per unit time due to the S
susceptibles. This formulation leads to standard incidence forms [69]. For simple
mass action law #SI, it is assumed that the average number of contacts capable of
transmitting the disease that an individual makes with infectious individuals per unit
time, is proportional to the number of infectives. Here ( reflects the likelihood that an
infectious case will successfully transmit the infection to a susceptible individual. For
the difference between these two incidence forms, we refer the reader to (68, 69, 106].

Based on this basic SEIR model and flow patterns between different compartments,
many other related models can be derived out such as SEIRS, SEI, SEIS, SIR, SIRS,
SIS, SI models depending on the characteristics of the particular disease being modeled
and the purpose of the model. For example, SEIRS model is suitable for influenza and
SEIR model for measles.

Many possible forms of the incidence, demographic structures and epidemiological-
demographic interactions can be added into the epidemic models. So the
epidemiological compartment structures vary from very simple to quite complicated.
For instance, the epidemic models can include vertical transmission, age-dependent
or age-specific disease transmission, infection class age, variable infectivity, cross
immunity, intercohort transmission, short infectious period, optimal vaccination

patterns, heterogeneity and structured mixing etc (see survey paper [5, 69]).

5
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0.3 Threshold - the basic reproduction number

A primary goal of public heath is to bring disease from above an epidemic threshold
value to below the threshold value, thereby eliminating the threat of a large-scale
epidemic. This can be achieved through interventions that either directly impact the
transmission of the pathogen (transmission reducing), modify patterns of interaction
so that the pathogen can not easily spread through the population (contact reducing),
or immunization segments of the population (immunizing) [109].

The threshold for many deterministic epidemiological models is the basic
reproduction number, which is defined as the average number of secondary infections
produced when one infected individual is introduced into a host population where
everyone is susceptible [2]. The basic reproduction number is also called the basic
reproduction ratio denoted by Ry. An infection can start in a fully susceptible
population if and only if the Ry is greater than one. In this sense, the basic reproduction
number is often considered as the threshold quantity which determines when an
infection can invade and persist in a new host population. A detailed explanation
can be found in [2, 69, 135].

In Section 0.2, we consider a standard SEIR model with bilinear incidence rate 351,
constant birth rate m and death rate d. The model has the basic reproduction number

€ 1
d+e¢ d+7v’

Ry =0

where (3 is the average number of effective contacts by a single infective per unit time
in an entirely susceptible population. The fraction €/(d + €) is the probability of an
infected to survive the latent period. The last part 1/(d+7) is mean infectious period of
individual in the infective class and alive. So for the SEIR model, if Ry > 1, the disease
will invade the population. If Ry < 1, the disease will die out in the population. In
other words, if Ry > 1, then each infected individual will transmit disease to at least one
other individual during the infectious period, and the model predicts that disease will
spread through the population. If not, then the disease is expected to fizzle out before
reaching a substantial fraction of the population. Thus Ry is a critical epidemiological
value. For most epidemic models, the threshold value exists and the following criteria
is stated in [37].

Threshold Quantity: The disease can invade population if Ry > 1, while it can
not if Ry < 1.
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Threshold criteria says that if Ry > 1, then the disease can invade in population
and after a long time period, the infective individuals or the infective fraction in the
whole population keeps constant. This situation is called endemic and in mathematical
epidemiology it is described by endemic equilibrium. In contrast that if Ry < 1, the
disease can not invade in population. This means that all the infective individuals will
be extinct and the whole population is susceptible; the disease dies out finally in the
population.

While for some epidemic models with extra immigration fraction into latent class
E or infectious class I, the threshold behavior doesn't exist [16, 104]. In the case
of presence of backward bifurcation in the model, multiple equilibrium situations
are possible and thus the disease can persist in the population even if Ry < 1
4, 54, 104, 134].

Mathematically, the basic reproduction number can be derived by several methods.
The most general method is by linearization at the disease-free equilibrium, based
on the local stability of disease-free equilibrium. Other ways are based on the
existence of endemic equilibrium and local stability of endemic equilibrium. For many
epidemic models of infectious diseases with features of heterogeneity such as multi-
group transmission, multi-strain infectivity, proportionate mixing, age structure etc,
the next generation operator approach has also been used to derive out the basic
reproduction number, which is defined as the spectral radius of a next generation
matrix that is related to the Jacobian matrix at the disease-free equilibrium. For the
general theory and derivation of next generation matrix approach, we refer to [37, 135].
In Chapter 2 and Chapter 3, a similar way is used to find out the basic reproduction
numbers for a class of multi-group models and a general class of multi-stage progression
models.

Although it is worthy to note that threshold behavior determines not only
when the local stability of the disease-free equilibrium switches, but also when the
endemic equilibrium persists in the population, the global behavior of the disease-free

equilibrium or endemic equilibrium requires further analysis to determine.
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0.4 Global stability

Consider the nonlinear system
o = f(a) 0.1)

where z € F, an open subset of R* and f : E — R" is C!. Let z(t; 7o) be the solution
to (0.1) satisfying the initial condition z(0) = zp and ¢, : E — R" be the flow of
(0.1) denoted by ¢.(zo) = z(t;z0). A point Z is called an equilibrium point or critical
point of (0.1) if f(z) = 0. A point p € E is called an w-limit point of z(t; o) of (0.1)
if there is a sequence {t,} such that lim, ¢, = oo and lim,_,. z(tn; zo) = p. All
w-limit points of the solution z(¢; zg) is denoted by a set w(zy), which always tell the
long-term behavior of the solution through z;.

An equilibrium point £ € E of (0.1) is said to be locally stable or simply stable if, for
each neighborhood U of z, there exits a neighborhood V' of Z such that z(¢,V) C U
for all £ > 0. The local stability of an equilibrium point z can be routinely verified by
definition or by linearizing (0.1) at £ and using Routh-Hurwitz Criteria.

An equilibrium point z € E of (0.1) is said to attract points in a neighborhood
W if z(t;z) — T as t — oo for each 1y € W. An equilibrium point Z is said
to be asymptotically stable if it is stable and attracts a neighborhood. The basin of
attraction of T is the union of all points which it attracts. An equilibrium point Z is
said to be globally asymptotically stable or simply globally stable with respect to an
open set D C R™ | if it is asymptotically stable and its basin of attraction contains D
(see [94]). Note that if z is globally stable with respect to D, then Z is necessarily the
only equilibrium in D. The proof of global stability is nontrivial mathematically and
difficult in practice.

In the study of epidemiology, an important aspect under consideration is to
investigate the long-time behavior of the system. It is desirable to determine whether
the disease goes to a steady state (disease-free or endemic), whether periodic oscillations
appear or whether there is other behaviors [101]. So for the simple case, i.e., if
w(zg) = {p}, then w-limit set contains only one equilibrium point p, then we can
make a conclusion that the disease will eventually go to the steady state, at the same
time, ruling out the existence of periodic behaviors.

There are several ways to rule out periodic solutions in the w-limit set of the
systems in the literature. The well-known Poincaré-Bendizson’s theorem combined

with Bendizson’s Criteria or Dulac’s Criteria are the classical results for the planar

8
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systems [53, 116]. In (18], a new condition is proposed based on the application of
Stokes theorem for 3-dimension system. Due to Hirsch [73], Smith[123] and Muldowney
[111], the Bendixson’s criteria was generalized to higher dimensions. This was further
developed and the generalized Dulac Criteria are derived for higher dimensions systems
in [90, 91, 94, 96]. This method is also called Li and Muldowney geometric approach
and has been used to solve the global stability problems in several classes of epidemic
models [54, 92, 93, 94, 95, 101, 104].

An alternative method, the Lyapunov second method dating back to the 1890s, is
also commonly used in proving stability in high dimensional systems. In next section,

we will introduce this method in detail.

0.5 Lyapunov functions

The Lyapunov second method have been a standard tool in the analysis of nonlinear
differential equations and dynamical systems. The following definitions follow that in
[116].

Let f € CY(E),V € CY(E), E C R" be an open set and let ¢, denote the flow of the
differential equation (0.1). Then, for z € E, the derivative of the function V(z) along
the solution ¢;(z) is

V(&) = SV (@u@)leeo = IV (&) - (@)

where V'V (z) is the gradient of V. If V(z) is negative in E then V (z) decreases along
the solution ¢;(xo) through zo € E.

Lyapunov Theorem: Let E be an open subset of R™ containing Z. Let f € C'(E) and
f(z) = 0. Suppose there ezists a real-valued function V € C'(E) satisfying V(z) = 0
and V(z) >0ifz € E and x #Z. Then

(i) If V(z) <0 for allz € E, T is stable.
(ii) If V(z) <0 for all x € E — {Z}, & is asymptotically stable.

(iii) If V(z) >0 for all x € E — {z}, Z is unstable.

A function V' : R* — R satisfying hypothesis (1) of the above Lyapunov theorem is

called a Lyapunov function. Lyapunov’s theorem was further extended as the LaSalle’s

9
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Invariance Principle [89]: if this only requires V < 0 in E, then all omega limit sets of
(0.1) are contained in the maximal compact invariant subset K of {z € E : V(z) = 0}.
In particular, if F is positively invariant and K = {z}, then z(t,zo) — Z as t — oco.
We note that this also implies the local stability of z, since otherwise K would contain
a non-constant full orbit.

Global Lyapunov functions are extremely useful especially in n-dimensional systems
(> 3) when they exist. It is known that Lyapunov functions are often difficult to
construct since there are no general approaches for their construction.

Lotka-Volterra systems are widely studied in both ecology and other fields and many
types of Lyapunov functions related are proposed (see review paper [118]). B. S. Goh
in 1977 [51, 52| constructed a special form of global Lyapunov functions when studying
global-stability problem for a generalized Lotka-Volterra systems [8]. Goh constructed

the following Lyapunov function:

n

* * Z;

Viz) = Z ¢ (azi —z; —z;ln x_:> , (0.2)
i=1 i

where z; > 0 is the ¢-th variable and zf > 0(¢ = 1,--- ,n) are positive constants

and usually they are coordinates of equilibria. ¢; are positive coefficients and can be

determined by a linear system. Thus V(z) > 0 if z # z* and V(z) =0 iff £ = z*. The

time derivative along a solution of system (0.1) is
n *
Vi)=Y ¢l1-=) .

In compartmental epidemic models, x; denotes the i-th disease status of host individual.
z; denotes the i-th component of the equilibrium point.

We remark that this class of global Lyapunov functions are very general and
contains the Lyapunov function for global stability of disease-free equilibrium (DFE),
Po=(z1,22,-+ ,zn) = (1,0,---,0). Substituting Py and ¢; = 0 into (0.2), we see that

n
V(R) = Z Gl
i=2
since ling_,0+ zilnz;/xf = 0.
This Lyapunov function has been successfully and widely used in ecological models

148, 51, 52, 75] and epidemic models [8, 22]. It is named the Volterra-Goh Lyapunov

10
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function (see [8] for more detail). For higher dimensional models, Goh, Capasso,
Beretta etc used matrix theory to derive sufficient conditions for the global stability.

Recently, Lyapunov functions of this type were revisited (e.g. [85, 86]) and
successfully applied to the study of several classes of epidemiological models [55, 56,
57, 58, 59].

In this thesis, we will further explore the potential of this important Lyapunov
function. We have developed a graph-theoretical approach, which allows us to apply
this Lyapunov function to several important classes of large-scale epidemic models,
and completely resolve the global stability problem for endemic equilibrium for these

models.

0.6 Thesis summary

The theme of the mathematical research in this thesis is the investigation of the
transmission dynamics of infectious diseases in heterogenous host populations, using
mathematical modeling. The thesis is divided into two parts. Part 1 is mathematical
methodology. Part 2 is mathematical modeling of tuberculosis.

Lyapunov functions are widely used in modern theories of differential equations and
dynamical systems. One reason is their easy application without much discussion and
direct consequence of global stability for nonlinear systems. Due to the difficulty in
constructing global Lyapunov functions, the application in high dimensional systems
has many restrictions. Because of the increased complexity, the derivative of Lyapunov
functions are quite complicated. Thus a general and unified method to deal with this
difficulty for a large class of nonlinear systems is necessary. In Chapter 1, we introduce
a new graph-theoretic approach to the method of global Lyapunov functions using
graph theory and demonstrate in detail how our graph-theoretical approach can be
used to completely resolve the global stability of endemic equilibria.

In Chapters 2 and 3, the graph-theoretical approach is demonstrated through two
classes of large-scale heterogenous epidemic models: a multi-group SEIR model and a.
multi-stage (MS) model. For the first time, we completely prove the uniqueness and
global stability of the endemic equilibria of the n-group SEIR models, which have been a
well-known open problem in mathematical epidemiology. In the mean time, a complete

framework of our graph-theoretical approach to the method of Lyapunov functions is
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presented to be applied to prove the global stability of endemic equilibria for more
complicated high-dimensional epidemic models. The multi-stage model is a generic
generalization of several endemic models with multiple stages. The global stability
of the endemic equilibria for a high-dimensional MS model with bilinear incidence is
resolved for the first time.

In Chapter 4, a basic introduction of tuberculosis (TB) is given and previous
mathematical compartmental modeling of tuberculosis is reviewed.

In Chapter 5, we focus on the global spread of TB through population migration
from developing countries to developed countries to investigate the impact of the
immigration from high TB incidence countries on the TB incidence rate of developed
countries (low TB incidence country). We propose a multi-population model to
investigate the TB transmission dynamics among three populations: a population in
a high TB incidence country, a population of immigrants from high TB incidence
countries and a local-born population within an immigration country. The global
dynamics of the full model is completely established.

In Chapter 6, based on the 2-population model of TB transmission in an immigration
country in Chapter 5, we investigate the impact of cross-infection from foreign-borns
to local-borns on the TB incidence rate of local-born population, and the effect of new
immigrants with latent TB on TB incidence rate of foreign-born population. Cases
studies in two countries, Canada and the UK, are carried out using real TB data from
these countries. Our simulation results establish that cross-infection from foreign-born
population to local-born population plays a key role in the TB incidence of local-born
population: when the TB incidence of the immigrant population is relatively low, as in
the case of Canada, TB incidence in local-born population may maintain its declining
trend; when the TB incidence in the immigrant population is sufficiently high, as is
the case of the UK, the TB incidence in the local-born population remains constant,
or even be on the rise. This result confirms a hypothesis in a government report from
the UK.

Our studies provide an answer to a public health issue raised in earlier TB studies:
should Canada continue to commit resources on TB screening of new immigrants, given
that the TB problem in immigrant population has little impact on the TB incidence
of Canadian-born population? Our studies in Chapter 6 show that the cross-infection

from immigrants to local-born populations can not be ignored. If Canada is to loosen
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the TB screening of new immigrants, especially those from high TB incidence countries,
then the current scenario in the UK may happen in Canada: not only TB incidence in
the immigrant population will shoot up, the TB incidence in the local-born population
will change from declining to going steady, even to growing.

In Chapter.7, a four-dimensional TB model with new immigrants who have high or
low risk to develop active TB is proposed to investigate the impact of new immigrants
in early latent or late latent stage on TB incidence of foreign-born population in
immigration countries using real TB data from Canada.

In Chapter 8, a TB model with partial immunity and relapses is proposed to
investigate the effects of loss of immunity on basic reproduction number and TB

incidence rate in a high TB incidence country. Simulations are carried out using real
TB data from South Africa.

13
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Part 1
A Graph-Theoretical Approach to
the Method of Global Lyapunov

Functions

14
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Mathematical models for infectious diseases in heterogenous population typically
consist of a large number of equations: an n-group SEIR model is a system of 3n
nonlinear differential equations, where n is an integer. To establish the global stability
of disease-free and endemic equilibria of such a system, the only feasible general method
has been the method of global Lyapunov functions. In applying this method, one needs
to determine the sign of the derivative of the Lyapunov function, which is the sum of
a huge number of signed terms (of the order n™). This turns out to be a very difficult
task. In the literature of mathematical epidemiology, the global stability results for
heterogenous models are few, and majority of the existing results are only partial
results.

In this part, we present a new approach to the method of Lyapunov functions,
particularly tailored for large scale systems. We show that how results from graph
theory can be used to characterize the patterns of the terms in the derivative V’
of the Lyapunov function. Such a pattern characterization leads to the most natural
grouping of terms and the determination of the sign of V. For many classes of epidemic
models, this approach leads to complete resolution of the global stability of the endemic
equilibrium. We choose to demonstrate our approach using two typical and very general

classes heterogenous models: multi-group models (Chapter 2) and multi-stage models
(Chapter 3).

15
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Chapter 1. Results from Graph
Theory

In this chapter, some materials from graph theory are presented, they will be the basis
for our graph-theoretical approach for global stability of endemic equilibrium of general
compartmental models for disease transmission. In Section 1.1, basic concepts of graphs
and directed trees are given. Section 1.2 describes the relationship between square
matrices and the associated directed graphs. In Section 1.3, we give an important result
from graph theory that describes solutions of a linear algebraic system using directed
rooted trees. In Section 1.4, we describe unicyclic graphs and their weights. We also
show how unicyclic graphs can be constructed from directed rooted trees by adding a
directed arc, and their relation to certain products that will occur in applications in
later chapters.

Graph theory has a long history and has been a very powerful tool in applications to
many different fields arising from science, engineering, even sociology. Recently, more
and more methods originating from graph theory are applied to epidemiological and
biological research fields. Keeling and Eames [81] reviewed the relationships between
networks and epidemic models and some of the ideas of modeling infectious diseases
come from graph theory directly. In [115], a graph-theoretical approach was used to
find to patterns among many factors in genomic medicine. In modeling gene networks,
combinatorial skills help to explore the structures in directed graphs on a n-hypercube
[40]. Solimano and Beretta [124] used some basic graph ideas to derive global stability
in predator-prey systems. B. L. Clarke used graph techniques to study the chemical
reaction networks [30]. In [120], applications of graph theory and combinatorics to
problems from biological and social sciences were presented. In [119], graph theory
was used to simplify and analyze the control problems from industry. In [36], a graph-

reduction method was used to compute net reproductive value for discrete matrix
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models. The book of Chen [26] provided a comprehensive and easy-to-use techniques

for analyzing electrical circuits using graph theory.

1.1 Basic definitions of graphs

Graph theory provides a useful tool to tackle complicated problems occurring in
completely different fields. In this section the basic vocabulary of graph theory is
outlined. The definitions and concepts introduced here are needed for the approach
developed in this chapter. We refer the reader to [26, 110, 119] for more detailed studies
of graph theory.

A graph is a mathematical structure which consists of two sets: wverter-set, the
set of vertices (or nodes, points), and edge-set, the set of edges (or arcs) whose two
endpoints are vertices. Often a graph is denoted by G, the vertex-set and the edge-set
by V = {vi,v2, -+ ,vn, -~} and E = {ey, ez, -+ ,en, -}, respectively. If both V and
E are finite sets, then the graph is called a finite graph. In this thesis only finite graphs
are considered. The following diagram is a graph with 4 vertices and 3 edges. The

vertex-set is V = {S, F, I, R} and edge-set is E = {ej, s, €3}, see Figure 1.1.

€1 . €2 . €3

Figure 1.1: A finite graph with 4 vertices and 3 edges.

Any edge may be specified by the vertices that it connects. These vertices are called
end-vertices of the edge under consideration. A self-loop is an edge whose end-vertices
coincide. Any edge is said to be incident with its end-vertices and two vertices are
adjacent if they are connected by an edge. The degree of a vertex is the number of
edges incident with it. An end-vertex of a graph is a vertex of degree one.

By removing some edges and/or vertices of a given graph G, one obtains a subgraph
G’ of G, denoted by G' C G. The removal of a vertex implies the removal of every
edge incident with it. The removal of edges, however, does not imply the removal of
its end vertices.

For the purpose of practical application, it is necessary to consider the graph with
orientation (labeled graphs). A graph whose every edge is equipped with a direction (or

orientation) is called a directed graph, for short, digraph. Then each edge has an initial
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vertex and final vertex. It is often useful to assign a number to each edge of a digraph
and to call it edge weight. The weight of each edge can also be literal. In this thesis,
only literal weight is used. Then a digraph augmented in this way is called a weighted
digraph. A directed graph or digraph is illustrated in Figure 1.2.

w
o
\
r
4]
N
v
L]

> £ 5 R
t e N

Figure 1.2: A digraph or directed graph.

Important classes of (sub-) digraph with special structures are paths, cycles and
trees. A directed path is a sequence of edges {e;, e;,---} such that the initial vertex
of the succeeding edge is the final vertex of the preceding edge. The number of edges
contained in the sequence {e;, e;,-- -} is called the length of the path. A path is called
simple if one reaches no vertex more than once, going along the path from its initial
to its final vertex no vertex more than once. In Figure 1.2, the path {ej,es, €3} is a
directed path with length 3 and is a simple path.

A closed path is a path whose initial and final vertices are the same. A closed path
is called a cycle if one reaches no vertex along the path, other than the initial-final
vertex, more than once. The number of edges contained in a cycle defines the length
of this cycle. Cycles of length 1 are called self-cycles. Figure 1.3 contains a self-cycle
{e1} and closed path {es,e3,e4, €5} with length 4, see Figure 1.3.

[

Figure 1.3: A digraph with a self-loop and a closed path.

A tree is a connected graph that has no cycles. A tree with n vertices is usually
denoted as T;,. A spanning tree (complete tree) of a connected graph G is a subgraph
which is a tree that involves all the vertices of G. A digraph is said to have a root r if
T 1s a vertex and, for every other vertex v, there is a path which starts in r and ends in
v. A digraph G is called a rooted tree if G has a root from which there is a unique path

to every other vertex. The following figure 1.4 is a list of trees with up to 6 vertices.
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Vertices 2 3

i v

Vertices

vy

Figure 1.4: Table of trees with n vertices (2 < n < 6).

An important result of trees in graph theory is the Cayley formula (1889), which

will be used later in this thesis. For its origin and proof, we refer the reader to [110].

Proposition 1.1. (Cayley formula): Let T'(n) denote the total number of tree Ty,

with n labeled vertices, for any n, then
T(n) =n""2 (1.1)

A graph is connected if every pair of vertices is joined by a path. A digraph, is
strongly connected if any two distinct vertices are joined by an oriented path between

them.

1.2 Association between digraphs and square

matrices

The analysis of a general linear system reduces ultimately to the solution of a
simultaneous linear algebraic equations. Directed-Graph Approach is an alternative
method to conventional algebraic methods of solving the system, by considering the
properties of certain directed graphs associated with the system. The unknown

variables of the equations correspond to the vertices of the graph, while the linear
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relations between them appear in the form of directed edges connecting the vertices
(26].

The basic idea of associating a directed graph with a linear algebraic system of linear
equations was first introduced by MASON in 1953 and the graph is called a signal-flow
graph. Later in 1959 COATES used flow graph to represent alternatively the equations
as a directed graph. The idea of the correspondence between the terms in the expansion
of a determinant of a matrix and the corresponding subgraphs in an associated directed
graph G(A) dates back to 1916. Konig first applied a graph-theoretic approach to the
evaluations of a determinant. We refer the reader to [26, 119] for more comprehensive
studies.

Let A = (a;;) be a square matrix with order of n. The directed graph G(A) associated
with A is a digraph of n vertices, 1,2, --- ,n, such that there exists an arc (j, k) leading
from j to k if and only if ax; # 0. For i # j,a;; is the weight of directed arc from
vertex j to vertex i, and a;; is the weight of the self-loop from vertex ¢ to itself, see

Figure 1.5.

Figure 1.5: A square matrix A and its associated directed graph G(A).

For n > 1, an n X n matrix A is reducible if, for some permutation matrix P,

A O
Ay A

PAPT =

¥

and A;, As are square matrices. Otherwise, A is irreducible. Irreducibility has
relationship with strongly connected digraphs. Then the following proposition is

important and useful.

Proposition 1.2. Square matriz A is irreducible if and only if G(A) is strongly

connected.
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For proof, we refer the reader to [10]. In Figure 1.6, two examples are given to

illustrate Proposition 1.2.

1 00
B=2 3 4) &> (U
5 6 7
B is reducible G(B) is not strongly connected
1 20
B=j0 3 4] & XD
56 7
B is irreducible G(B) is strongly connected

Figure 1.6: Examples of reducible and irreducible matrices and their associated directed

graphs.

1.3 Directed rooted trees and

algebraic systems

Consider a linear algebraic system

By =10,
where _ . .
Z[;&l B —fa
- —Bi2 El;ég Bay
B =
| B B
21

solutions to linear

—/Bnl
_/Bn2

Zl?én Bnl ]

(1.2)
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with Bij > 0, and v = (v, -- ,v,)T is a column vector. We have the following

proposition.

Proposition 1.3. Assume that the matriz (B:;)nxn s irreducible and n > 2. Then the

followings hold.
(1) The solution space of system (1.2} has dimension 1.

(2) A basis of the solution space is given by
(’Ul,’Ug,...,’Un) = (Cll,CQQ,...,Cnn), (14)

where Cy, denotes the cofactor of the k-th diagonal entry of B, 1 < k < n.

(3) Foralll <k <n,

C= TI B (15)

TET (j,h)€E(T)
where Ty is the set of all directed n-trees rooted at the k-th vertez, and E(T)

denotes the set of arcs in a directed tree T .

(4) For all1 <k <mn,
Ckk > 0.

Proof. Since the sum of each column in B equals zero, we have
Cit =Ci, 15,k <n, (1.6)

where Cj; denotes the cofactor of the (4, k) entry of B. Since B is singular, we know that
(Ch1,Cha, - - ., Chn) is a solution of system (1.2). Therefore, by (1.6), (C11,Ca2, ..., Cpp)
is also a solution of system (1.2).

For 1 < k < n, in the k-th column of B, the diagonal entry, X 2k Bri, equals the
negative of the sum of nondiagonal entries. By a result on directed graphs in [110, p.
47, Theorem 5.5, we obtain

Ckk:Z H th-

TeTy, (5,h)€E(T)
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Since (B;;) is irreducible, its associated directed graph is strongly connected, by

Proposition 1.2. Thus, for each k, at least one term in IT th is positive.
TeTy (5,h)EE(T) .
Therefore, Cix > 0 for £k = 1,2,...,n. Since C}; is a n — 1 minor of B, we know

rank(B) = n—1, and the solution space of (1.2) has dimension 1, completing the proof

of Proposition 1.3. u

We give an illustration of (1.5), for the case n = 3. Then (1.2) becomes
Bz + B3 —Ba —Bs1 -
—Bi2 Ba1 + Baa — B2 vp | =107]. (L.7)
—Bus —Bas Bs1 + Bz vs
By (1.4), we have
Ba1 + Bos —Bs2 o . o
v=0Ch= - _ _ = (32321 + B31821 + Bazfs1,
—f3a3 Ba1 + Baz
Biz + Bia —B31 o _ _
vy = Coy = _ _ . = (12031 + B12832 + B3B3z,
—bh3 Bs1 + Ba2
Bz + Bis — B2 o o o
vy = Cy3 = _ _ - = (2023 + Bi3far + Brafas.
— B2 Ba1 + P23
Let Ty be the set of all directed trees rooted at the vertex k in the directed graph
associated with matrix B, k = 1,2,3, see Figure 1.7. Then, T; = {T},T? T3},
Ty = {13, T2, T3}, T3 = {T3, T2, T3}, and

E(T) ={(3,2),(2, 1)}, B(TY) = {(2,1), (3, 1)}, B(T}

) =A
E(T21) = {(37 1)’ (1>2)}’ E(TZZ) = {(3¢2)7 (172)}’ E(T23) = {(173)’ (3’2)}'
) ={ 2

E(T3) ={(2,1),(1,3)}, B(TY) = {(1,2),(2,3)}, B(T}) = {(1,3),(2,3)}.
Therefore,
Z H th = B32091 + Bo1 P31 + Bo3Ba1 = Cu, (1.8)
TET: (j,h)eE(T})
Z H Bin = Ba1Brz + BaaBrz + Biafs2 = Coa, (1.9)
Ti€T, (j,h)EE(T})
Z H Bin = B21B13 + Bi2B2s + BizBas = Caa. (1.10)

TieTs (j,h)eE(T})
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T2 1
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T3 2

43
ﬂ12ﬂ23

T2

1 v 3
_2_
ﬁl2ﬂ32

T;

1 v 2
_3_
B3 Bs

BB,

T3
2

1

*3
ﬂ21ﬁ13

Figure 1.7: All directed rooted 3-trees and their weights.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.4 Unicyclic digraphs and their weights

Let

w=>Y, [ Bmn k=1--,n,

TeTx (5,h)€E(T)
be the solution basis to system (1.2). We know that
II 8
(5,MeE(T)

can be regarded as the weight of a directed tree T" rooted at vertex k. In our application

of Lyapunov function in later chapters, we will be dealing with products of form
Uk/Bkj) k,_]:l, ) 1L,

which are sum of products of n 3,,’s. Each of these products is the weight of a unicyclic
n-digraph, formed from the directed tree T" € Ty by adding a directed edge from the
root k to vertex j. In Figures 1.8 — 1.10, we have illustrated all the products in vSk;,
and their unicyclic graphs for the case n = 3.

A closer examination of Figures 1.8 — 1.10 reveals that not all the unicyclic graphs
are distinct. For instance, the unicyclic graphs {(2,3),(3,1),(1,3)} appears twice
in different configurations, see Figure 1.11. The two corresponding weights, though
written in different orders since (313031515 appears in v; 813 and B130303 appears in
v3fa1, are equal.

Similarly, the unicyclic graph {(1,2),(2,3),(3,1)} appears three times in three
different configurations, see Figure 1.12. The three corresponding weights, appearing
in vy B2, vofa3 and vsls, respectively, are all equal.

The following patterns can be summarized:

1. Products in Figure 1.8 - 1.10 that correspond to the same unicyclic graph are

all equal.

2. The number of products in Figure 1.8 - 1.10 that correspond to the same
unicyclic graph @ is equal to the length of the cycle in (). For instance, the
unicyclic graph {(2, 3), (3,1), (1,3)} in Figure 1.11 has a 2-cycle, and the unicyclic
graph {(1,2),(2,3),(3,1)} in Figure 1.12 has a 3-cycle.
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VIB—H = B_uﬁzugu + 521531511 + 323/8—31311

2

i v :

ﬂvﬂﬂﬂu *21 31:-8-11 /72313315’11

ﬁ 32ﬂ21ﬂ1” +ﬂ’lﬂ31ﬂ12 +ﬂ23ﬂ%lﬂ12
& 1
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3 2 3 2
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E&Z/E’ZIIEB 321531/713 BBIB;]BH

Figure 1.8: Unicyclic graphs representing products in v18;,5 = 1,2,3.
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Figure 1.9: Unicyclic graphs representing products in vaf;,7 = 1,2, 3.
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Figure 1.10: Unicyclic graphs representing products in vgﬁgj,j =1,23.

2 1 2
. O
1 3

B B3 B3 B3B3 By

Figure 1.11: Two configurations of a unicyclic graph with a 2-cycle.
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2 3 1
3 1
1 2 3

ﬂ23:831:812 ﬂ}lﬂlzﬂzz ﬁ12ﬂ231531
Figure 1.12: Three configurations of a unicyclic graph with a 3-cycle.

3. The total number of products in Figure 1.8 - 1.10 is 33. The number of
distinct products can be counted using distinct unicyclic graphs. Let D(3,r) be

the number of unicyclic 3-graphs with a r-cycle, r = 1,2,3. Then
D(@3,1)=9, D(3,2)=6, D(3,3)=2.
The relation between D(3,r) and the number of all the products is

D(3,1)-1+D(3,2) -2+ D(3,3) -3 =33

4. In general, for k,7 = 1, - ,n, there are n" products in all expression of
vkBk;j, each represented as the weight of a unicyclic n-digraph. The products
represented by the same unicyclic graph are the same. A unicyclic graph with a

r-cycle represents r products.

5. Let D(n,r) be the number of unicyclic n-digraph with a r-cycle, 1 < r < n.
Then the following relations are well-known in graph theory (see e.g. [9, Chapter
2]).
n n—r—1
D(n,r) = n Tl (1.11)
r

n" = D(n,r)r (1.12)
1=1

Patterns summarized here and relations (1.11) and (1.12) will be extremely useful
in Chapter 2 and Chapter 3, for the proof of the global stability of the endemic
equilibrium, using the method of global Lyapunov functions. They allow us to

group terms in the derivative of the Lyapunov function by unicyclic graphs.
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Chapter 2. Global Dynamics of a
Class of Multi-Group SEIR Models

Multi-group models have been proposed in the literature to describe the transmission
dynamics of infectious diseases in heterogeneous host populations. Heterogeneity in
host population can be the result of many factors. Individual hosts can be divided
into groups according to different contact patterns such as those among children and
adults for Measles and Mumps, or as distinct number of sexual partners for sexually
transmitted diseases and HIV/AIDS. Groups can be geographical such as communities,
cities, and countries, or epidemiological, to incorporate differential infectivity or co-
infection of multiple strains of the disease agent. Multi-group models can also be used
to investigate infectious diseases with multiple hosts such as West-Nile virus and vector
borne diseases such as Malaria. For a recent survey of multi-group models, we refer
the reader to [131].

In this chapter, the global dynamics for a class of multi-group SEIR models with
varying group sizes are completely determined by the basic reproduction number Ry.
In particular, we prove that when Ry < 1, the disease-free equilibrium is globally
stable in the feasible region. When Ry > 1, the unique endemic equilibrium is globally
asymptotically stable in the interior of feasible region. The uniqueness and global
stability of the endemic equilibrium of the n-group SEIR models have been a well-
known open problem in mathematical epidemiology. We completely resolve this open
problem using the graph-theoretical approach proposed in Chapter 1. The whole
procedure of the proof of global stability of endemic equilibrium illustrates our graph-
theoretical approach in detail.

In Section 2.1, we formulate the multi-group SEIR model and recall the history of
multi-group models. The basic reproduction number is calculated and compared with

those in the literature in Section 2.2. The detailed proof of the main theorem in this
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chapter is shown in Section 2.3 (Theorem 2.3).

2.1 Modeling infectious diseases in heterogenous
populations

A multi-group (n-group, n > 2) model is, in general, formulated by dividing the
population of size N(t) into n distinct groups. For 1 < k < n, the k-th group is further
partitioned into four compartments: the susceptible, infected but not infectious (latent
or exposed), infectious, and recovered, whose numbers of individuals at time ¢ are
denoted by Sk(t), Ex(t), Ix(t), and Ry(t), respectively. For 1 < k,j < n, the disease
transmission coefficient between compartments Sy and I; is denoted by [B;, so that the

new infection occurred in the k-th group is given by
> Brj Skl (2.1)
j=1

The form of incidence in (2.1) is bilinear. Other incidence forms have been used in
the literature, depending on the assumptions made about the mixing among different
groups. The matrix B = (Bx;)nxn i the contact matrix, where §;; > 0. Within the k-th
group, it is assumed that natural death occurs in Sy, Ey, Iy, and Ry compartments with
rate constants di,dZ, di, and df, respectively. Individuals in Ej becomes infectious
with rate constant e;. The influx of individuals into the k-th group is given by a
constant Ay. We assume that individuals in [, suffer an additional death due to
disease with rate constant 6, and recover with a rate constant -y, once recovered they
remain permanently immuned for the disease . Based on these assumptions, a n-group
epidemic models of SEIR type with bilinear incidence, is described by the following
system of differential equations

(

Sy, = Ap —di S — Zﬁkjskfj,
7=1
{ Ep =Y BeSel; — (df + e)Ee, g =12... . (2.2)
j:l
- R
| Bk = Yelx — di Ry
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The parameters in the model are summarized in the following list:

Br; : transmission coefficient between compartments Sy and I;.
dy,dE df,df . natural death rates of S, F, I, R compartments in the k-th
group, respectively.
Ay :  influx of individuals into the k-th group.
€, : rate of becoming infectious after latent period.
v : recovery rate of infectious individuals in the k-th group.
#r. : disease-caused death rate in the k-th group.

All parameter values are assumed to be nonnegative and df ,dZ db dR Ay > 0 for all
k. We also assume that ¢; > 0 and df > 0 where d = min{dg, d?, df + 6;}. For other
detailed discussions of the model and interpretations of parameters, we refer the reader
to [131].

Observe that the variable Ry does not appear in the first three equations of (2.2).
This allows us to consider first the following reduced system for Sy, Ex and I

( n
Sk =Mx —diSk =Y BriSkl;,
j=1

, k=12 ,n 2.3
{Ek=2ﬁkj5k1j—(df+ek)Ek, " (23)

i=1

{ I = By — (df + v + Ok) L.

For each k, adding the three equations in (2.2) gives

(Sk + Ei + Ik)/ = Ay — dek — dkEEk - (CIZ,Ic + gk)[k
< Ap— dZ(Sk + By + [k),

where d* is defined as above. Hence limsup,_ (Sk + Ex + Ix) < Ag/d}. Similarly,
from the S equation we obtain limsup,_, S < Ax/ df . Therefore, omega limit sets of

system (2.3) are contained in the following bounded region in the non-negative cone of
RSTL

A A

D= {(S0Bi 1, Su B 1) € RY Sy < 28, Set B+ I < 25, 1<k <n}.
k k

(2.4)

Behaviors of Ry can then be determined from the last equation in (2.3). It can be

verified that region I is positively invariant.
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System (2.3) always has the disease-free equilibrium Py, = (57,0,0,---,57,0,0)
on the boundary of T, where SY = Ay/d{,k = 1,---,n. An equilibrium P* =
(S;, By, IF, -+, Sy, B, IY) in the interior f‘, of I', namely, Sy, Ex, I; > 0,1 <k <m,is
called an endemic equilibrium. The parameter B;; > 0 is the transmission coefficient
between compartments Sy and I;, and f; = 0 if there is no transmission of the disease
between the two compartments. The matrix B = (f;) encodes the patterns of contact
and transmission among groups that are built into the model.

One of the earliest work on multigroup models is the seminal paper by Lajmanovich
and Yorke [87] on a class of SIS multigroup models for the transmission dynamics
of Gonorrhea. A complete analysis of the global dynamics is established. The global
stability of the unique endemic equilibrium is proved using a quadratic global Lyapunov
function. Global stability results also exist for other types of multi-group models,
see e.g., [8, 67, 70, 99, 130]. Due to the large scale and complexity of multigroup
models, progresses in the mathematical analysis of their global dynamics have been
slow. In particular, the question of uniqueness and global stability of the endemic
equilibrium, when the basic reproduction number Ry is greater than 1, has largely
been open. Hethcote [67] proved global stability of the endemic equilibrium for
multigroup SIR model without vital dynamics. Beretta and Capasso [7] derived
sufficient conditions for global stability of the endemic equilibrium for multigroup SIR
model with constant population in each group. Thieme [130] proved global stability of
the endemic equilibrium of multigroup SEIRS models under certain restrictions. The
most recent result on global stability is given by Lin and So [99] for a class of SIRS
models with constant group sizes, in which they proved that the endemic equilibrium
is globally asymptotically stable if the cross-group contact rates are small or if the
recovery rates in each group are small. The complete resolution of the global stability
of endemic equilibrium when the basic reproduction number exceeds one has been a
well-known open problem in mathematical epidemiology. On the other hand, results
in the opposite direction also exist in the literature. For a class of n-group SIR models
with proportional incidence, uniqueness of endemic equilibria may not hold when the
basic reproduction number is greater than 1 (see [76, 131]). In light of these results,
complete determination of the global dynamics of these models is essential for their
application and further development. It is also crucial to determine how incidence

forms or other epidemiological factors influence the uniqueness and global stability of
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endemic equilibria (see [60]).

2.2 The  Dbasic reproduction number and
preliminary analysis

Throughout this chapter, we assume that B is irreducible (see Section 1.2 for
definition). Biologically, this is equivalent to assuming that any two groups S; and

I; have a direct or indirect route of transmission. Let
Ry = p(My), (2.5)

denote the spectral radius of the matrix

156057
M, = ( _ g 165, ) _
(df +e)(d] + v +0) 1<ij<n
The parameter Ry is referred to as the basic reproduction number. In [59], we have

derived our threshold parameter

i BrerS? Bin€rSY i
(df + e1)(d] +m + 61) (df + e1)(d] + m + 61)
Ry=p : : (2.6)
Br1€,S° Brn€n S
L ([@F+e)di+7m+0,) (A +ea)(d + v+ 6n) |

from the stability analysis of the disease-free equilibrium F, using the method of
Lyapunov functions. We have shown that Ry plays the role expected of the basic
reproduction number, namely, if By < 1 the disease always dies out, and if Ry > 1
the disease persists. In [135], a method of deriving the basic reproduction number for
epidemic models in heterogeneous populations is proposed. Apply the method of [135]

to our model (2.3), we can derive the basic reproduction number as

511615(1J L 51n615?
(df +e))(d] +m +61) (dF + e)(df + vn + 6,)
Ry=p 5 5 , (2.7)
5n16n52 @mﬁnSg
@ +e) @ +n+6)  (dF+e)(d +pn + )
Briei Sy

where the matrix ( ) is called the next generation matrix in [37] (see

(dF +¢;)(d] +7;+6;)
Example 4.2 in [135]). Biological interpretation of Ry in (2.7) as the basic reproduction
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number is given in [37, 131, 135]. It is straightforward to verify that two expressions
of Ry in (2.6) and (2.7) are equivalent.
System (2.3) is said to be uniformly persistent in f if there exists constant ¢ > 0
such that
litn_l'igf Sk(t) > c, ligglf E(t) > ¢, and ligglf I(t) > ¢,

where k = 1,--- ,n, provided (51(0), E1(0), [,(0),- -, Sx(0), En(0), I.(0)) € T".
The following result for system (2.3) is known in the literature, at least for some

special classes of system (2.3), and its proof is standard (see [70, 130, 135]).

Proposition 2.1. Assume B = (8;;) is irreducible. Then followings statements hold.
(1) If Ry <1, then Py is the unique equilibrium and it is globally stable in I'.
(2) If Ry > 1, then Py is unstable and system (2.3) is uniformly persistent in T

For the proof, we refer the reader to [59, section 4] for detail.

Uniform persistence of (2.3), together with uniform boundedness of solutions in 12,
implies the existence of an equilibrium of (2.3) in r (see Theorem D.3 in [122] or
Theorem 2.8.6 in [12]).

Corollary 2.2. Assume B = (f;;) is irreducible. If Ry > 1, then (2.3) has at least

one endemic equilibrium.

2.3 Global asymptotical stability of the endemic
equilibrium

A long-standing open question in mathematical epidemiology is that whether a multi-
group model such as system (2.3) has a unique endemic equilibrium P* when Ry > 1,
and if so, whether P* is globally stable when it is unique [131].

Denote an endemic equilibrium by

P*= (8!, BN I, S B I, ..., S5 EL I,

1 n n' n

S;>0,E; and I} >0 for k=1,2,...,n. The following main result on the uniqueness
and global stability of P* when Ry > 1 is established. Choose

Bij = Bi;S{I;, 1<4,j<n, n22, (2.8)

[y
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then we get the n x n matrix B as given in (1.3). If B = (§;;) is assumed to be
irreducible, then matrix (8;;) is irreducible. Let {vi, - ,v,}, vy > 0, be a basis for
system (1.2), Bv = 0, as described in Proposition 1.3. We have the following main

result.

Theorem 2.3. Under the assumption that B = (B;;) is irreducible, if Ry > 1, then
there exists a unique endemic equilibrium P*, and P* is globally asymptotically stable

[e]
T

The proof of Theorem 2.3 is given in the Subsections 2.3.1 - 2.3.3.

2.3.1 Global Lyapunov function

Let P* be any endemic equilibrium, whose existence is assured by Corollary 2.2. We
will prove that P* is globally asymptotically stable. The global stability of P* also
implies its uniqueness. The global stability of P* is proved by considering a global

Lyapunov function

dkE-i-Ek

€k

V = ka{(sk—S,:lnSk)+(Ek—E,:lnEk)+

k=1

(I — I*In Ik)], (2.9)

where vy are chosen as that in Proposition 1.3. Differentiating V' along solutions to

(2.3) and using the equilibrium equations

A =diSp+) " BSils, (2.10)
j=1
(@F + ) By =Y ByStl;, ey = (df+ v + 0)I;, (2.11)
7=1

and
(dF + ex) (df + vk + Ok

€k

) p; - > BySiI;, (2.12)
j=1
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which follows the last of (2.11), we obtain

y n n S* * n *
Vo= 3 oAk Sk — X5y BuSil — Mg+ dESi + T, Bt

. n . EiSil .
+ 251 By Sl — (dF + &) B = 327, Brs kE: o+ (df + ) Bf
df + e )(di + v + 0 IE
HE + ey - eI ALIA R gy o
k
(g + e)(ds + 7 + b) ]
+ - :

" fo_ St _ S n o (df +e)(di + 7k + 6k)
= 3 wlaisi(2-E- %)+ (Sh Bl - -

n . T n « (82)? n o :
+(3 Zj:l ﬁkjSkIj - Zj:l ﬁkj[j (s,c) - Zj:l 5kjSk[jE_: - (df + Ek)Ek%)]
n n o (dF 4 e)(di + e+ 6k)
S ] (e s - L)

n . Tx n x S* 2 n Ex *
+(3 S B S — S Bl S — ST B Sel; 2 — (dF + fk)Ek%)] :
(2.13)
The inequality in (2.13) holds because S} /S, + Sx/S; > 2, and the last equal sign holds

N

(A

if and only if Sy = S§. In the above derivation, we have substituted the two incidences
of Ay in V using (2.10). Next, we show

“ = . df + e )(dL + v + 6
ka [Z ,Bk]SkI] _ ( k k)( 6];; Yk k)[k:' =0 (214)
k=1 j=1

for all (1y,---,1,) € R}. To see this, we note that

n

S BuSil = v Y BuSih = (D BaSju ) (215)
i=1 k=1 1 j=1

k=1  j=1 j k=

It suffices to show

" df dl 9
N BuSiu; = (d; +€’“)(6’°+7’“+ e k=12 .n. (2.16)
=1 k

In fact, from Bv = 0 in (1.2) and (2.8), using and (2.12), we have

* Ik * Jk * Tk dE+ dl+
BuSi; - BuSilt | [ w S By St Grall@iim) fay,
BinSILy - BunSily | | vn o BriSiliv, o ten) o t7n) oo,
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and this leads to (2.16). Using inequality (2.13) and identity (2.14) and (df + €x) Ej =
271 BeiSil;, we have

Vo< Y u(3D sttt - Y Ausils o ZMH e
k=1 j=1 j=1
~(df + )" §—§—>

n S [E n (2.17)
= ka( Z/Bkj Zﬂkgs Zﬁk]SfI* Zﬂk; )

_ kaﬁk( __E_M_Ekfk)
! Se  SiIE. Eil

Denote
Hn = Hn(SlvElvll""7Sn7EnaIn)

S Sy SWEr  El; (2.18)
— {3 _ “k 17k k )
gzzl Ukbks < Sk SiLE, Ei, )

In the following, we show H, < 0 for all (Sy, Fy, I}, - ,S,, En, I,) € T. The key to
our proof is a complete description of the patterns exhibited in the expressions of kakj

as described in Sections 1.3 and 1.4.

2.3.2 Application of graph theory
To show H,, <0, we need to substitute the expression for vy

=> 1] Bn k=1 ,n (2.19)

TeTy (5,h)EE(T)

into (2.18), and expand the sums in
UkBkj) ka] = 1) , T (220)
The expression

S SLBL  EJp
Sk Si:E.  Et;

(2.21)

will be kept intact, since the subindices in the expression are the same as in the B;
term of Uk,Bkj.
We first demonstrate the proof for the case n = 3, and show how terms in Hj are

regrouped according to the unicyclic graphs representing each coefficient.
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From (2.18), we know

i S*  S.LE* E.I
s = D, vl Se  SiLEx E;;Ik)

Sl* SlflEf Elll*)

S, SIE, E;

= (3 Sf Slngf Ellf)

(2.22)

Sy Si;E; Eils

§ (3 S;  S3LEj E31;)

where

vy = B2 + Ba1Bar + BasBa,
vy = B31812 + B32B12 + BrsPa, (2.23)
vs = B21013 + Br2fas + Bi3Bas.
Each product in vy is the weight of a directed 3-tree, rooted at vertex k,k = 1,2, 3, as
shown in Figure 1.7.

Expanding vk[i’kj, k,7=1,2,3, we have

v1B11 = B32821511 + BorBa1Bur + B23fa1 611,
01812 = B32B21812 + Ba1 831812 + B23031 512,
01813 = B32021513 + BorB31B13 + B23 P31 B1s;
V221 = B31512821 + Bs2Pr2Pa1 + Biafs2a1,
vaBa2 = B31812022 + Ba281282 + B13P32Pa2, (2.24)
U2523 = 331612623 + 532512523 + 613632523;
v3f31 = Ba1P13Bs1 + Br2BasBa1 + B13PasbBat,
vsBs2 = B1P130s2 + Br2BasBs2 + Prsfesfaz,
v3fss = B P130s3 + Pr2BasBss + BisPealas.

As we have seen in Section 1.4, each product in vxfBy; is the weight of a unicyclic graph,

all of which are shown in Figures 1.8 - 1.10.
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As we have described in Section 1.4, the 3% products in (2.24) can be divided into

three groups, according to the unicyclic graphs representing them.
Group I: Unicyclic graphs with a 1-cycle, 9 in total as shown in Figure 2.1.

3 5 3 2
2 v 3
532/721/711 B—nﬁzlﬁn B—zgﬁnﬁ”
3 1 3 1
Wk
Lf @
531512522 B]ZB}?_B?J 513332322
1 2
1 2
2 v 1
g ¢ &

BoBrBs  BiBubn  BuBiBs

Figure 2.1: Unicyclic 3-digraphs with a 1-cycle and their weights.

Each unicyclic graph in Figure 2.1 represents one product in v; 811, vafa2, vsfs3 of

(2.24).

Group II: Unicyclic graphs with a 2-cycle. There are 6 distinct unicyclic 2-digraphs
with a 2-cycle, by (1.11). Each has two different configurations, leading to two different
expressions of the same weight product, as we have pointed out in Section 1.4. This is

again illustrated in Figure 2.2.

Group III: Unicyclic graphs with a 3-cycle. There are 2 distinct unicyclic 3-digraphs,
each has three configurations, leading to three expressions of the same weight (product),
see Figure 2.3.

According to the above grouping of products in (2.24), we can re-arrange the terms
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3 3

BB &z W BBuPn
1 2
2 2 3

BB By, C? \%) BBy Bis
3 1
1 1

B PP 2 W BsPoaPe
3 2
3 2 3

sai 4 &F Aaa
2 1

o 2 1 2

ﬂzsﬂnﬂm és W BBE]SBH
1 3

o 1 1 2

BBl és X@ PP
2 3

Figure 2.2: Each unicyclic 3-digraphs with a 2-cycle, has two configurations, producing

two expressions of the same weight.
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Figure 2.3:

2 3
3 1
1 2

5231531512 [Zlﬁllﬁ_ﬁ

producing three expressions of the same weight.

in Hj as follows

Each unicyclic 3-digraphs with a 3-cycle, has three configurations,

o o o ST SLE E\ Iy
Hz = (532ﬁ21ﬁ11 + 821831811 + ﬂzaﬁmﬁu) [3 - S—i - ﬁ - E}Ill]
o _ o St S,LE E, I
+ (/831/612ﬂ22 + ﬂ32/812ﬂ22 + /813/332/622) [3 - S_z - ﬁ - E;Iz]
oL o o Sy S3LE B3l
+ (Burabls + Buabs + Prsbusis) [3 - 3t = G — o]
o St SiLE; E; S; S;LE;  Elj
+ + T e 2 - 2
(Brabubra+ b )6~ 5 - G E B~ B~ 3 - 5B  BiE
L o St S\LE} EI; S3 SiLhE; Esl}
+( + Y- oot L% Jels
21031513 + B23031513 S, SLE B S SilBs  Eils
_ - S; S2I3E2 EZI; S; SBIQEB Eg.lg-
+ ( 23032012 + ﬂ13532ﬂ23) S, T SnE BiL S SiiEs  Eil)
I St SiLE: EIr S} ShE; Bl
+ P————————————————
(512ﬁ23ﬁ31) S, SiE, EL, S, SyE, El
_ ﬁ _ S3[1E; _ Eglg]
Ss  S3IE; EilL
o S S1;E E\IF S Sl E. Ep 13
N g_ 21 _»ushy  Ily oy o2hify  Laly
(ﬂ 13ﬁ32ﬁ2l) [ S, SiGE  EL S, SIE, EL
_ % _ Sg[gEg _ E3[§]
Ss  SiZE; Eil,
(2.25)

It can be verified that expressions in each pair of parenthesis are non positive, by the
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inequality
ai+ay+---+a,>n, ifa;>0anday-ag------ a, = 1.

For instance, since

S; SiLE; Ed; S5 S;LEj Es _
S, SiGE, Eil, S, SiliE, EjL

1,

we have

We have thus shown

for all nonnegative (Sy, E1, I1, S, Eq, I2, S3, Es, I3).

For the general n, the same procedure as illustrated for n = 3 applies. We regroup
the n"™ products in vkﬁkj, k,j = 1,---,n, according to the cycle lengths of their
corresponding unicyclic n-graphs.

For 1 < n, let D(n,!) be the set of all unicyclic n-digraphs with a l-cycle. For each
Q@ € D(n,l) with the l-cycle CQ = {r1,--- ,r} whose edge set is

E(CQ) ={(r1,r2), (r2,73), -+, (r-1, 1), (i, m) 1

We know that there are ! products in the expansions of vf; that are all equal to the
weight of (), wg. Therefore, the {-terms in H,, with these [ products as coeflicients can

be combined as

Hog =
Q=te S, S:L:E, Eil,

S (s Sy SyL.E; E,,I;)

(p9)€EE(CQ)

S 9 g O
—wg [3- (_P+M+ﬂ) ,
S,  S;I;E, Eil,
(P)EE(CQ) pra P

We can verify that

H _;.___;._P: H __IqI;:1
waesca O B Bilo o ciioq) ity

here CQ is a cycle. Therefore,

5 (i Syl E: E,,I;)
(P)EE(CQ) Sp SpliEy Bl

v

31,
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and thus H, g <0, and

oo e S5 _ Sl _ Bol;

S, S;I:E, E:I,

(p,9) € E(CQ). (2.26)

This implies that .
H,o=)" > Hy<0 (2.27)
I=1 QeD(n,l)
There are [ terms in each H, g, so the total number of terms contained in the sum of
(2.27) is

Z D(n,l)l =n"
=1

by (1.12). Therefore all n”* terms in H, are accounted for in our regrouping (2.27).

2.3.3 LaSalle’s Invariance Principle

We have shown that V < 0 for all (S1,E1, Iy, - ,Sn, Ep, I,) € T, and that V =0iff
Sk = S; and H, = 0. We claim that if 5, = S;;,1 <k < n, then

H,=0 < Ey=aE}, I,=al;, k=12 n, (2.28)

where a is an arbitrary positive number. It suffices to show that Ey/E} = E,/E} =
Ii/I} = L./ I* when B, # 0. By the irreducibility of (8;;), (k,r) € E(CQ) for a l-cycle

CQ contained in a unicyclic graph @ € D(n, ) such that [1  Bjn#0. Therefore,
(7R)EE(CQ)
from (2.26), we know Ey/Ef = E./EX = I,/I} = I,/I* if H, = 0.

From (2.13) and (2.28), we know that V = 0 iff Sy = S}, Ex = aE., I = al},k =
1,2,--- ,n. Substituting S, = S;, By = ak}, and I, = al}; into the first equation of

system (2.3), we obtain
0=Ac—dgSp—ad  BSil;. (2.29)
7j=1

Since the right-hand-side of (2.29) is strictly decreasing in a, we know, by (2.10), that
(2.29) holds iff a = 1, namely at P*. Therefore, the only compact invariant subset of
the set where V = 0 is the singleton {P*}. By the LaSalle Invariance Principle, P* is
globally stable in f‘ if Ry > 1. This completes the proof of Theorem 2.3.
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2.4 Summary

In this chapter, we study a class of heterogenous epidemic models — multi-group SEIR
models with varying subpopulations. Starting with the seminal work by Lajmanovich
and Yorke on a multi-group SIS model of Gonorrhea [87], progresses have been achieved
slowly in investigating the dynamical behaviors of multi-group models during the past
several decades. However, the questions of uniqueness and global stability of the
endemic equilibria when the basic reproduction number is greater than 1, remain an
open problem [22, 131]. In addition, most of the multi-group models in the literature are
assumed to have constant subpopulations and which are not appropriate for modeling
the fatal infectious diseases (e.g. HIV/AIDS). Here the population size in each group
is varying.

We rigorously establish the global dynamics of the multi-group SEIR model with
bilinear incidence by the graph-theoretical approach (Proposition 2.1 and Theorem 2.3).
In particular, we prove the global stability of the endemic equilibrium P* when the
basic reproduction number is greater than 1 without any restriction. Biologically, our
results imply that, if By < 1, then the disease always dies out from all groups; if Ry > 1,
then the disease always persists at the unique endemic equilibrium level in all groups,
irrespective of the initial conditions.

We note that other incidence forms have been used in the literature for multi-group
models. The question of global stability and uniqueness of endemic equilibria for multi-
group models with other forms of incidence remains open. We also point out that, for
multi-group models with standard incidence, earlier results have shown [76, 131] that
multiple endemic equilibria can exist when Ry > 1, and hence general results on the
uniqueness and global stability for standard incidence may not be expected.

The significance of this chapter is the successful use of our graph-theoretical approach
to the proof of global stability of endemic equilibrium for a class of multi-group
SEIR models with bilinear incidence rate. Thus a complete framework of our graph-
theoretical approach is presented and illustrated by the multi-group SEIR model. At
the same time, a long open problem about global stability of endemic equilibrium is
resolved completely. In the next chapter, we will show another application of our
graph-theoretical approach to the proof of global stability of endemic equilibrium for a
class of heterogenous models: multi-stage models which is distinct from the multi-group

model.
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Chapter 3. Global Dynamics of a
Class of Multi-Stage (MS) Models

For endemic models with long infectious period or latent period, it is reasonable to
divide the long period of infectiousness or latent period into multiple stages. In
this chapter, we propose a new class of heterogenous endemic model- multi-stage
compartmental models to describe the transmission dynamics of infectious diseases
with long infectiousness or latent period. We rigorously establish the global dynamics
of the MS model using the graph-theoretical approach developed in Chapter 1.

In Section 3.1, the biological background of the multi-stage model is presented and
some basic results of M-matrix are provided. In Section 3.2, the threshold quantity
is calculated and the uniqueness of endemic equilibrium is shown strictly. In Section
3.3, the global stability of disease-free equilibrium is established rigorously using a
Lyapunov function. The globally asymptotical stability of the endemic equilibrium
when the basic reproduction number is greater than 1 is resolved completely using the

graph-theoretical approach to the method of global Lyapunov functions in Section 3.4.

3.1 Modeling disease progression and amelioration

through discrete stages

For infectious diseases that progress through a long infectious period, infectivity or
infectiousness can vary greatly in time. The progression of a typical HIV infection can
take eight to ten years before the clinical syndrome (AIDS) occurs, and the progression
goes through several distinct stages, marked by drastically different CD4* T-cell counts
and viral RNA levels. HIV-infected individuals are highly infectious in the first few

weeks after infection, then remain in an asymptomatic stage of low infectiousness for
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many years, and become gradually more infectious as their immune system becomes
compromised and they progress to AIDS. Variability of infectiousness in time has been
modeled in the literature by Markov chain models, or staged-progression (SP) models
(see e.g. [56, 66, 72, 77, 83, 84, 100, 102, 129, 132)).

A deterministic Stage Progression (SP) model with amelioration was proposed and
analyzed in [102, 58], i.e. allowing for infectives moving from more advanced stages
of infection to less advantaged stages of infection. Thus current treatment can lead
to both prolonging patients’ lives and to increased available time for the transmission
of HIV. Due to the recent HAART drug therapy advances, it is possible for infectives
to move from advanced stages back to far earlier stages [102]. Also it is possible for
an HIV patient to become deteriorated due to the disease development and the HIV
patients could accelerate to proceed to far next stages. Based on this description about
HIV patients moving in multi stages, a general multi-stage (MS) model is formulated
to investigate the global dynamics in this section.

To formulate a MS model, the total host population is partitioned into the following
compartments: the susceptible compartment z;, the infectious compartment z;(: > 2)
whose members are in the i-th stage of the disease progression, where i = 2,--- | n, and
the terminal compartment T Let ¢;; be the mean rate of movement or transfer from
the j-th stage to the i-th stage, for ¢, j = 2,- - ,n, and d,,41,, the mean progression rate
from the n-th stage to the ‘stage of active disease. When ¢ > j, J;; represents disease
progression rate; when ¢ < j, d;; represents disease amelioration rate. We assume
that hosts in the terminal compartment are non-infectious due to inactivity. In fact,
in the case of AIDS, the terminal compartment consists of people with active AIDS.
AIDS patients typically either become sexually inactive or isolated from the infection
process, and their infectivity is negligible. We also assume that there is no recovery
from the disease, and thus the only exit from the compartment T is death. Let §;
be the transmission coeflicient for the infection of a susceptible from an infectious in
the class x;, which takes into account of average number of contact and probability
of infection for each contact, then the total incidence is given by > ", Biz;z1 f(N),
where N = 3" | z; is the total active population. Here we assume that the density
dependence of the incidence is given by a function f(N) which will be specified later.
A class of special interest is f(N) = N~%, 0 < a < 1, the resulting incidence term

includes two of the most common incidence forms: the standard incidence form (a = 1)
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and the bilinear incidence (a = 0). Average death rate for susceptible compartment is
di, for the compartment z; is d;, which may include death due to infection, and for the
active disease compartment is dr. We assume the inflow to susceptible compartment is
a constant A. The population transfer among compartments is schematically depicted

in the Figure 3.1. All parameters in the model are assumed to be nonnegative.

SN B s 5
A =2 x2 o x N
Loy 5 3 e X, AN X, e
¢ Oo%, ¢d3x
dlxl dzxz d4x4
Oy,

Figure 3.1: Flow diagram of a multi-stage (MS) model (3.1).

Based on our assumptions and the transfer diagram, the following system of

differential equations can be derived for the multi-stage model

4

dzy (1) 3
i = A- dlxl - f(N) ;ﬁil'iwla
dw;t(t) _ f(N) z Bixir, — (d2 + Z 67"2) Ty + Z dor Ty,
i=2 r=3 r=3
{ n ] (3.1)
d.le(t) = Z 61;7-.'11} — (dz + Z 57‘i> Z;, (1‘ = 3’ L 1)
t r=2,r#i r=2,r#1
J ) ; n } n—1
xdt( ) = Z 671,7'377' - (dn + 6(n+1)" + Z 67‘71,) Tn
L r=2,r#n r=2

and a7 (1)
t
T = (5(n+1)n$n - dTT

The incidence form is density dependent. We assume that the function f(V) satisfies

the following assumptions, for N > 0,
(H) f(N) >0, f(N) <0, (Nf(N)) >0.

The assumptions that f(N) > 0 and f/(N) < 0 are biologically motivated. As the
total population N increases, the probability of a contact with a susceptible decreases,
and thus the force of infection is expected to be a decreasing function of N. The other

condition we impose on f is needed for our analysis. It can be verified that the class

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



f(N) = N>, 0 < a < 1, satisfies (H). This class contains the standard incidence
(a =1) and the bilinear incidence (a = 0).

Let d, + 8(n+1)n = dn in the n-th equation of (3.1). Also note that the “T” equations
in doesn’t appear in other equations, we only need to consider the following reduced

System

( dCEl (t
dt

{ ddet(t) = f(N) Z Bizixy — <d2 + Z 5r2> Iz + Z Oor Ty, (3.2)
=2 r=3 r=3

dat Z Jirxr_<di+ Z 6n~>a:,-, (i=3,--,n)

\ r=2,r#i r=2,r#£i

—

= A —diz; — f(N) Zﬂiﬁﬂifﬂh
i=2

Adding up the n equations in (3.2) we obtain
N,:A—d1$1—d2$2—"'—dn$nSA—dN.

A
where d = min{d;,---d,}. It follows that tlim sup N(t) < T Similarly, from the first

: A
equation of (3.2) we obtain z; < A — dyz;, and thus tlirn supz1(t) < o The feasible
region for (3.2) can be chosen as the closed set
n A A
F:{($l7"'7xn)€R+:nglgd_70le+"'+wn§E}7
1

which can be verified to be positively invariant with respect to (3.2). An equilibrium

(z1,22, -+ ,xy) of (3.2) satisfies

0 = A—dizy— f(N) 7, Bz,
0 = f(N) X, Birizy — (d2 + 3> 5r2) Ta + Yy 0oy,

r=3 r=3 (33)
n n
0 = Z Oy — | di + Z Ori | T, (i=3,"',”)
r=2,r#i r=2,r#£i
The disease-free equilibrium P, = (A/dy,0,---,0) exists for all positive parameter
values. Next we consider the existence of endemic equilibria P* = (z},z},--- ,z),
z;>0,i=1,--,n.
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For the purpose of notation simplification, we let

dy + Z Or2 —023 s —09n
r=2,1#2
—03p ds+ >, O3 --- —03n
—A = r=2,1#£3 . (34)
_5712 —6n3 dn + E Jrn
L r=2,r1#n i

The following definition and properties of M-matrices are used in our analysis. They

can be found in most of the textbooks on matrix theory, see e.g. [74].
Definition of M-Matrix: B, x, is a M-matrix if

(1) Off-diagonal entries of B are non-positive, and

(2) B is positively stable, namely, all eigenvalues of B have positive real parts.
Proposition 3.1. Properties of M-matrices:

(1) B=al—-P, P>0, a> p(P), the spectral radius of P.

(2) B is nonsingular and B! > 0.

(8) There exists 8 > 0 such that B~'z > Bz for z > 0.

Then the following properties of the matrix A follow from the Proposition 3.1.
Proposition 3.2. The following holds for the matriz A defined in (3.4).

(1) —A is a M-matriz.

(2) —A7! exists and is a non-negative matriz.

(3) There exists a > 0 such that —A~™'z > az for z > 0.

By Proposition 3.2, we know that

A= —(By, -+, B.)A7H (_) >0, (3.5)

0

which would be used to define the basic reproduction number later.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 The  Dbasic reproduction number and

preliminaries

Define

Ro= A C/l\—o f(%), (3.6)

which is the basic reproduction number of model (3.2). We will see this clearly in
Section 3.2 and Section 3.3. If By < 1, the disease dies out irrespective of the initial
number of cases. If By > 1, then the disease persists in the feasible region and there
is a unique endemic equilibrium. Such a role of threshold parameter is expected of
the basic reproduction number, the average number of infections caused by a single
infective in a population at the disease-free equilibrium. For the interpretation of Ry,
we refer the reader to [102].

Our derivation of Ry is based on the stability analysis of the disease-free equilibrium
P, using a Lyapunov function. Other methods of deriving Ry exist in the literature,
among them are the method of second generation matrix in [37], which was later
modified in [135], and the derivation based on the linear stability analysis of Py (see
[69]). The following Theorem 3.3 and Theorem 3.4 establish Ry as a sharp threshold

parameter. Firstly we have the following result on the number of equilibria.

Theorem 3.3. Assume that f satisfies (H). If Ry <1, then Py is the only equilibrium

in . If Ry > 1, then a unique endemic equilibrium P* exists in the interior of I'.

Proof. The last n — 1 equations of (3.3) can be written in the form

I To ] —f(N) ;ﬂixixl [ To ] ;ﬁixixl ]
T
Al = 0 cor | B = At 0 . (37)
| Ty J 0 L In ] 0

Multiplying both sides of (3.7) by the row vector (Ba,- - - ,5,), we have
To Z BiziTy
=2

Z3

> B = (G- ) = (B, B)l=a7 sy | F
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Since Y ., Biz; # 0, we obtain

1
10
L= a1 f(N) B B)=AT |, | =2 )N (38)
0
Also, by (3.7),
] ) ] 1
I3 1 0
(L,-,1) | | ==, DA D | @ f(N Zml pz1f(N Zmu
. . i=2
Ty 0
- o (3.9)
where, by Proposition 3.2,
1]
. 1 0
p=—(1,---,1)A | >0. (3.10)
0
From the first equation of (3.3) we get
CL'lf Zﬁz-rz - A dlzl,
=2
which, together with (3.9), implies
Z.’Ei = p(A — dll'l),
=2
and thus .
i=1
Substitute (3.11) into (3.8), we obtain the equation for an endemic equilibrium
(1, %, -+ ,Ty) to exist
1

We will show that equation (3.12) has a unique positive solution in the interval
(0, A/dy) when Ry > 1. Let

g(z1) = =1 f(pA + (1 = pdy)z)).
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Then ¢(0) = 0, and
g(;\—l) = %f(pl\wt(l —pd1)%> = %f(%) = %-

Furthermore, by our assumption (H) on function f(NV),

(pA+ (1 = pdy)z1) + (1 — pdi)z, f'(pA + (1 — pdr)71)

g'(z) = f
= f(N)+ N f'(N) —pA f'(N) >0,

where N = pA + (1 — pd;)z;. Thus the function y = g(z;) is strictly monotonically
increasing, and its graph has at most one intersection with the line y = 1/A. Such an
intersection exists for z; € (0, A/d;) if and only if g(A/d;) > 1/A, namely, Ry > 1.
This completes the proof of Theorem 3.3. [

3.3 Global asymptotical stability of disease-free
equilibrium

Theorem 3.4. Assume that f satisfies (H). If Ry < 1, then Fy is globally
asymptotically stable inT'. If Ry > 1, then P, is unstable, and system (3.2) is uniformly

persistent with respect to I

Proof. The last (n — 2) equations in (3.2) can be rewritten as

- -

i, f(N) X Biziz T2
i=2
T I3
3 | _ 0 LA 7
z 0 Ty,
where A is given as in (3.4). Multiplying a row vector (cg,cs,--,¢,) to the above
equation, we obtain
T4 T2
T4 " T3
(2,03, ca) | 7 | =caf(N) Zﬁixﬂl + (c2,03,° . cn)A
i=2
.’L';l Tn
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Choose

(CQ,C3,"' ,Cn) = _(ﬂ27/637"' 7ﬁn)A_1' (313)
Since —A™! is nonnegative, we know ¢, > 0, k= 2,--- ,n. In particular,
4|0
= _(/82)ﬁ3""1/8n)A . = A>0.
0

For the choice of ¢; in (3.13), define a Lyapunov function

n
L = E CrT.-
k=2

Then, using assumption (H) we obtain, along a solution of (3.2),

L' = Cgf leﬁzxz Zﬁzxz = ch 1;1 -1 Zﬂzxz
:( wl_l Z,Bzxz_ Afxl "El_]- Zﬂzwz

< [Af(dl)——l] Zﬁzzz — (Ry—1) gﬁz—xi <0, ifRy<1.

Furthermore, L' = 0 if and only if either (a) 22 =23 =--- =z, =0or (b) Rp =1 and

z1 = A/d, are satisfied. In either case, the largest compact invariant subset of the set
G = {(z1,22,- - ,x,) €T : L' =0}

is the singleton {F}. To see this, let K be the largest compact invariant subset of G.
In case (a), each solution in K satisfies equation zj = A — dyz, and the only solution
that is bounded for t € (—o0,+00) is z; = A/d;. In case (b), z; = A/d; satisfies

equation

zy = A — diz - [f(N) Zﬂkxk]xl,

which implies Y Byzr =0, ie., z3 = z3 = -+ = x, = 0. Therefore, all solutions in T
k=2
converge to Py, by LaSalle’s Invariance Principle (see [89]). The global attractivity of

F, and the Lyapunov function L imply that F, is also locally stable, since otherwise Py
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will have a homoclinic orbit that is entirely contained in G, contradicting the fact that
the largest compact invariant set in G is {P}. This establishes the global stability of
Py when Ry < 1.

If Ry > 1, L' > 0 for z; sufficiently close to A/d;, and thus solutions in I" sufficiently
close to Py move away from Py, except those on the invariant z;-axis, along which
solutions converge to P,. Therefore, P, is unstable. Furthermore, {F,} is the only
compact invariant set on the boundary of I' and is isolated. The local dynamics near
Py and the boundary of I' imply that system (3.2) is uniformly persistent (see [19])
with respect to [', when Ry > 1. The proof of uniform persistence of (3.2) is similar to
that of Proposition 3.3 in [92].

3.4 Global asymptotical stability of endemic
equilibrium

In this section, for f(N) = 1, we prove the global stability of the endemic equilibrium
P* when Ry > 1 using the global Lyapunov function and the graph-theoretical approach
we developed earlier. Again we demonstrate that the use of graph-theoretical approach

can greatly simplify the proof for high-dimensional systems.
Theorem 3.5. Assume that f(N) =1 and Ry > 1. Then the endemic equilibrium P*
is globally asymptotically stable in the interior of I'.

The endemic equilibrium equations are

(

n
* * %
0=A-dz] - E Bizizy,
i=2

(0= iz - <d2+ > 5r2) T+ Y O, (3.14)
=2

r=2,r#2 r=2,r#2

n n
0= ) G- (di+ > 5”) z, (=3, ,n)
\ r=2,r#£1 r=2,r#1
Let z = (z1, %2, - - ,z,). Consider a global Lyapunov function
V(z) = Zv,— (wi —z;—zln —1) ,
i=1 L3

a5
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where v; are positive constants which would be specified later, and z} is the component

of endemic equilibrium P*. The derivative of V' (z) along the solution z(t) is

dV(z) T\ dz;
- =) (1—I—i) - (3.15)

i=1

n
Using A = dyz} + > Bizjz], the first endemic equilibrium equation, we have

z}\ dzy - z} . .
(1 - i) E =A- d1$1 - Zﬁimxi - A.’E_l + dl.’El + Z,Bil‘l.’lji

+3 " Baia; - § j@ ' :— (3.16)
=
Z" T Ty

< _S_ T1T; — E o+ dy (2- 55— =L

< 2 Bixix 2 Biz1z; + 1331( e 331)

n
T
Lk * * x1
+ E Bix] E Bixixr —.
=2 T1

Similarly we have
_Z2) 4o
Io dt

= ;ﬁixlzi — <d2 + Z 5r2> T + Z O2rTr (3.17)

T=2,r#2 r=2,r#2
- Zﬁzzlwl_ + <d2 + Z 5r2> Ty — Z 52r1'r—-
r=21#2 r=2,r#2
For i =3,-.- ,n, we obtain
dz; =

l1-— : rdr — \Uy ri

( Il) r;;éz6l g (d " —ZZ;éié )w
(3.18)
Z 6zr-rr d + Z 671 .'El
r=2,r#i Ti r=2r#t
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Substitute (3.16), (3.17) and (3.18) into (3.15), we obtain

dv n n .
diw) = (v2 — 1) ; Biziz; + vy ,z_; Biziz;

+ En:’Ui ( i 0irTr — (dl + i 5Ti)$i>

i=2 r=2,r#i r=2,r#i
n n n
+ U Z Biziz; + Z vi(d; + Z 0ri) T} (3.19)
i=2 i=2 r=2,r£i

n * n z* n n *

* _ x] 2 1

— U0 E 5i$1$i w_ — Uy E 5i$1$iz— - E Ui E Jirmr;
i=2 1 i=2 2 :

i=2  r=2r#i

Ty T}

+ Uldll'){ 2 — — tl .
Ty T

We choose v; so that the following holds

(Uz - Ul) =0,
n n n n (3-20)
(%1 Zﬁlm’{xz + Z’Ui < Z 52'7«1'7. - (dz + Z 5”')1'1') = 0,
=2 i=2 r=2,r#i r=2,r#i
for all nonnegative values of z;,i = 1,--- ,n. This is equivalent to the following linear
system
(v —v1) =0,
n—1 n
Pazivr + Z Oig; — <d2 + Z 5r2> vy =0,
1=2,1#£2 r=2,r#2 (321)
Bn:c;vl + Z 6invi - (dn + Z 6rn> Up = 0.
1=2,i#n r=2,r#n
Multiplying the i-th equation by z}(i = 2,--- ,n), we obtain
n
(vg — 1) Zﬁix;‘ z =0,
=2
n n
U1 522527 + Z vi0;2T5 = U2 (d2 + Z 5i2) T3,
i=2,i£2 i=2,i£2 (3.22)

nnzhx] + Z VibinZ;, = Up (dn + Z 5m> T,

1=2,i#n i=2,i#n
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For the last N — 1 equations in (3.14), multiply vs, vs,- - - , v, both sides, we get

Uy Zﬁiw;‘x‘{ + vy Z dor &y = Vg <d2 + Z 5,2) T3,
=2

r=2,r#2 r=2,r#2
n n
(%] Z 63T(E: = U3 (d3 + Z 6,«3) .’L‘;,
r=2,r#3 r=2,7#3 (323)
n n
U, Z Our Ty = Up (dn + Z 5m> z.
r=2,r#£n r=2,r#n
Substituting (3.23) into (3.22), we obtain
n
(vg — v1) Zﬁix; z] =0,
i=2
n n n
vy Y BTzl tvy Y Spwp = miBamiat + Y uibigs,
i=2 r=2,r#2 1=2,i#2
- - (3.24)
U3 Z 03,7, = v1F3T3T] + Z V30,373, '
r=2,r#3 i=2,i#3
n n
Up, z OnrZy = 01 BpT, 2] + Z Vi0in Ty,
r=2,r#n 1=2,i#n
Rewriting above system about variables v;, vq,---v, , we get a linear system
- n -
Y. Biwiay - Bz} 0 0
i=2 i=2
n n
—ﬂ2$;1}){ Z ,BI.T:CEI + Z 627-(13': —(532.’17; e _5n2$3 - - - -
i=2 —2 U1 0
r#£2
* n ]
—,83$§$I —5231»'; Z 53r$: _6n3$§ U3 =
r=2
r#3
- vn - L 0 -
n
— BT} —Bon 1}, — 6307, > b
I rotn ]
(3.25)
o8
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Let

B = - Biriaiy =0, i=3,n,
o = 2 P o (3.26)
Ba = Biziay, i=2,--,n; By =06z, 1,J=2,--,n, i#]
Thus all 8;; > 0 and there is a relationship
Bra = Zﬁ_il' (3.27)
i=2

The linear algebraic system (3.25) is converted to the standard form of (1.2). The
coefficient matrix is irreducible and has the property that the sum of each column
equals to zero. By Proposition 1.3, the solution space of system (3.25) has dimension

1 and a basis of the solution space is given by
’Uk:Z H /th>0a k:]-)"')n7
TETy (j,h)eE(T)

where T}, is the set of all directed n-trees rooted at the k-th vertex, and E(T") denotes
the set of directed arcs in a directed n-tree 7. With vy determined in this way, (3.20)
always holds and (3.19) reduces to

<vlzﬂla:1$ +sz(d + Z 6”)

r=2,r1#1 (3 28)
— U Z/Bzx I - v?Zﬁlmlxz_ - sz Z 517'1'7' _7
=2  r=2r#&i i
1,*
since v,d;x} < — x—i —~ 2L} < 0. From the first equation in (3.22) we know that

v = vy. Sum up all equations in (3.23), we get

11225,:5 .Tl-f-Z’Ul Z diry sz(d + Z 5”) (3.29)

=2  r=2,r#i r=2,r#t

Substituting (3.29) into (3.28), we obtain

n n "
T
) < v E Bixix; — v E Biziz] 1 +’U1 E Biziz; — 0 E Bixlmiw_z
‘ ; 2

=2 =2

n_on 4 (3.30)
+ Z Vi Z (Sirx: - Z (2 Z 5irwrj-
i =3
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Using the definition in (3.26) and (3.27), we have

i=2 = i =2 r=2 T
T
] = T, T; Ty
= 1, 1__1) v _.(1__1_’_2)
Uzﬂm( o +u Z:: Bi1 -
n
_ Ty X
+U2 r2< __r_z) Z’Uzzlﬁn(l__*_)
T* T
r=2 i=
r#2 r;éz
o T1T; T
=un i1 (1 - _1—% 2)
p—r T} T] To
3 - T, T,
+ U2512(1 - —1) + v Zﬁm( - —:——2)
I r—3 Z,. T2
F3ou 31~ 55
=3 r=2 T
r#£i
(3.31)
Define
- T1L; T 3 " T, T
_ 1 _ _
Hy(z) = v Z,Bil(l - —;—%—2) + vz [612(1 - '—1) 261‘2( - —:—2)]
P 1 Z; T2 T —3 T, T3
n n (3.32)
_ T T
+Zvi Zﬂri( - ;;'m'l‘),
=3 r=2 T
r#i
where z = (z1,- -, z,). It remains to prove that H, < 0.

Observe that, as in the case of multigroup models, vy satisfies system (1.2), and
thus expansions of Ukﬂ_jk in (3.32) have products represented by unicyclic n-digraphs.
Re-grouping the terms in H,(z) according the unicyclic graphs, as in Section 2.3.2, we
can show H,(z) < 0 for all nonnegative values of x.

The set {x € I' | H,(x) = 0} can be similarly characterized to show that it has {P*}
as the largest compact invariant set. Therefore the global stability of P* follows from

the LaSalle’s Invariance Principle.
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3.5 Summary

In this chapter, we consider a multi-stage endemic model with amelioration and
rigorously establish its global dynamics. The proof of the global stability of the endemic
equilibrium uses our graph-theoretical approach to the method of global Lyapunov
functions developed in Chapter 1.

Models for the spread of HIV/AIDS often incorporate staged progression where an
individual may proceed through several distinct infective stages before developing full
AIDS [77, 98]. Sometimes these stages are meant to correspond to T4 cell count ranges
[71, 98]. With recent advances in drug therapies (HAART), it is necessary to consider
amelioration where individuals may move from more advanced stages of infection to
less advanced stages. It is also reasonable to incorporate HIV infection deterioration
due to other causes. Thus the multi-stage model containing all these considerations is
appropriate to be used to study the transmission dynamics of disease progression in a
host population, for example HIV infection.

Actually, the multi-stage (MS) model (3.1) is a generalization of many epidemic
models with multiple stages in the literature: including a stage-progression model in
[77], and a stage-progression model with amelioration in [102]. The MS model (3.1)
also contains the classical SEIR and SIR models when n = 3 and 2, respectively. In
such cases, a latent class can be regarded as an infectious stage with infection coefficient
equals to 0. In [103], a SE | E; - - - E,,_oI R model was proposed to model the long latent
period. The model is a special case of our MS model with 3; = 0,9 = 2,--+- ,n — 1.
Our results of the MS model contain those established in [56, 58]. However, it is an
impossible task to prove the global stability of endemic equilibrium of our MS model
using the technique, partition of unity.

The significance of this chapter is that our graph-theoretical approach can be used
to prove the global stability of the endemic equilibrium P* when Ry > 1 for a class
of heterogenous endemic multi-stage models. Thus it is expected that our graph-
theoretical approach has a wide applicability to deal with the global stability of endemic

equilibria for a large-scale class of epidemic models with bilinear incidence.
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Part 2. Mathematical Modeling of
Transmission Dynamics of

Mycobacterium Tuberculosis
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Tuberculosis (TB) is an ancient infectious disease and continues to be a major global
threat to public health today. According to the 2007 WHO TB Report [140], an
estimated 1.6 million people died of TB and 8.8 million new TB cases occurred in
2005, of which 7.4 million in Asia and sub-Saharan Africa. It is estimated that one-
third of the world’s population (2 billion) are infected with TB [141], most of which
occur in developing countries in sub-Sahara Africa and south-east Asia. After HIV,
TB is the greatest infectious killer of youth and adults in the world today.

Over the past several decades, there has been a sharp reduction in the incidence rate
and death rate of TB in most developed countries [62, 63, 64, 79, 128]. Such countries
include, for example, Australia, Canada, Denmark, Netherlands, New Zealand, Norway,
Sweden, the United States and the UK etc. In most of these immigration countries, the
foreign-born population has contributed most of active TB cases and maintained a high
TB incidence rate. The TB incidence rate of local-born population has maintained a
declining trend and at a lower level. Data from the UK [63, 64], however, is showing a
different trend: the local-born population maintains a constant TB incidence rate and
the foreign-born has a increasing trend for the TB incidence rate.

In Chapter 5, we propose a three-population TB model to investigate the impact
of cross-infection on TB incidence of local-born population in immigration countries,
and the effects of foreign-born population on overall TB incidence in an immigration
country. After establishing the qualitative behaviors, we investigate quantitatively the
detailed impact of those factors on TB incidence in Chapter 6 by two case studies in
Canada and the UK. Our model can explain both countries’ TB trends.

Since early and late latent TB have high and low risk to develop active TB, we
investigate the impact of annual new immigrants with early and late latent TB on
the incidence rate in immigration countries in Chapter 7. TB doesn’t have permanent
immunity, we study the effects of partial immunity and relapses of TB on the basic
reproduction number and TB incidence in a high TB incidence country — South Africa
in Chapter 8.
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Chapter 4. Introduction

In this chapter, we first give a brief history of TB, followed by a brief introduction
to basic epidemiology of TB. We will also discuss previous TB studies using

compartmental models.

4.1 A brief history of Tuberculosis

Evidence of tuberculosis in humans dates back to at least 8,000 B.C., documented in
prehistoric skeletal remains in Germany and Peru. The disease has also been found in
ancient Egyptian mummies [31]. Due to the high fatality, tuberculosis had been known
historically as “consumption” and “white plague”. TB was responsible for at least one
billion deaths during the nineteenth and early twentieth century [24].

For centuries, it was not clear how TB was transmitted until the German scientist
Robert Koch, discovered the causative agent (organism) - tubercle bacillus in 1882. In
1952, Isoniazid (INH) was first used to treat TB patients which indicated the beginning
of chemotherapy using antibiotics. Most countries have undergone sharp decreases in
both active TB cases and TB deaths since 1950s until this trend halted during late
1990s in United States and other countries [114].

Tuberculosis was declared a ‘global emergency’ by the World Health Organization
(WHO) in 1993. In 1995, a comprehensive plan — Directly Observed Therapy and
short course (DOTS) plan to stop tuberculosis spread globally was launched by WHO.
By 2005, DOTS plan has been implemented in 187 countries and an estimated 60%
of new smear-positive cases were treated under DOTS [140]. Though great progress
has been made under the DOTS plan in TB control globally, new factors continue to
challenge the current control measures. International migration accelerates the global
spread of TB from high TB incidence countries to low TB incidence countries and

changes the transmission dynamics in developed countries ultimately [62, 79, 128].
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Other continuing challenges of TB control are: inadequate diagnostics and treatment;
limited access to DOTS program; Multi-drug resistant TB (MDR-TB) and HIV co-
infection and global spread of TB [114]. The Global Plan to Stop TB (2006 — 2015) is
implemented to achieve the target: to reduce TB incidence, TB prevalence and death
rates by 50% (relative to 1990) by 2015.

4.2 Basic epidemiology of TB and earlier works on

mathematical modeling

Tuberculosis is caused by Mycobacterium tuberculosts. It spreads from person to person
by inhalation of droplets containing the tubercle bacillus, expelled by infectious persons
with active tuberculosis when they coughs, sneezes or talks. TB usually infects the
lungs but can affect other organs of the body, such as the lymph nodes, the bones and
(rarely) the brain. The disease in the lungs is called pulmonary tuberculosis and those
not in the lungs are called eztra pulmonary tuberculosis [42]. Only individuals with
pulmonary TB are infectious and those with extra pulmonary TB are not infectious.

Mathematical models have been developed to study TB relatively late compared to
other diseases (possibly since TB is curable due to available chemotherapy) [24]. The
first TB transmission model was proposed by Waaler et al in 1962 {138] using discrete
equations for TB in India. After that many other TB models have been proposed and
most of which are statistical models (see recent survey [24] for mathematical modeling
of TB). Blower et al [13, 14, 117] considered the intrinsic transmission dynamics of
tuberculosis using mathematical models with two routes to active TB — fast route and
slow route, which are typical characters of TB progression. They used these models to
investigate the historical decline of TB incidence and deaths in Europe and the United
States before the antibiotics.

Infection with M. tuberculosis does not necessarily lead to tuberculosis. Most people
who are infected with TB carry the bacterium without showing any symptom and are
said to be in latent stage. The latency is variable from a couple of months to many
years. People with latent TB are not infectious and cannot transmit tuberculosis.
Approximately 10% of people with latent TB who are not given preventive therapy
will develop active TB disease. Half will become ill within the first 2 years of infection,

while the other half will develop active TB at some point later in their lives. Feng
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et al considered the effects of long and variable latent period to the TB dynamics in
[46]. In [143], a TB model with early and late latent stage TB was explored to assess
the effects of different treatment strategies for treatment of patients with early or late
latent TB. Castillo-Chavez and Song [125] considered the fast and slow dynamics due
to the different epidemiological time scales, short TB infectiousness period and long
and slow TB period of progression. Changes from environmental, demographic and
social conditions would also lead to alter the dynamics of evolution of TB strains (3].
Most cases of active TB are the result of reactivation of an endogenous infection. Left
untreated, each person with active TB disease will infect on average between 10 and 15
people every year [140]. In [137], Vynnycky et al used a partial differential equations
model to explore the effects of endogenous reactivation, exogenous reinfection and BCG
vaccination.

Inconsistent or partial treatment has resulted in multi-drug resistant tuberculosis
(MDR-TB) which is defined to be resistant to at least isoniazid and rifampicin [140].
Though MDR-TB is generally treatable, the drug regime is quite expensive and toxic
[114, 140]. Castillo-Chavez and Feng [23, 45] considered one or two-strain TB models
to study the mechanisms of survival and spread of naturally resistant strains of TB
and antibiotic-generated resistant strains of TB. Due to the partial (incomplete or
temporary) immunity of TB, exogenous reinfection or relapses of TB are not rare in high
TB incidence areas. The impact of exogenous reinfection of TB is investigated by both
Feng et al [44] and Chiang et al [27, 44]. In this thesis, we will investigate the impact of
partial immunity and relapses on the TB incidence rate and basic reproduction number
in Chapter 7.

People infected with HIV are at a much higher risk of progressing to active TB than
those without them. Thus co-infection with HIV may have significant impact on TB
dynamics. Kirschner [83] studied the dynamics of co-infection with tuberculosis and
HIV-1. Current research on this topic has been intensified not only on its dynamical
behaviors but the potential benefits for TB-HIV control.

Two of the most important challenges for TB modeling raised in [24] are immigration
and ethnicity. Murphy et al [112] compared the TB epidemic in demographically
distinct heterogenous populations between India and USA to investigate the effects of
host genetics. McCluskey and van den Driessche considered a TB model with latent

and infective immigration to the population [104]. Global spread by migration and/or
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air travel from high TB incidence countries to low TDB incidence countries poses a
new challenge to TB control in developed countries. In [113], the author considered
the dynamics of tuberculosis transmission among foreign-born people from a point of
view of molecular epidemiology. To my best knowledge, there is no published works
in the literature that investigate the effects of migration and cross-infection on the TB
incidence rate using compartmental models.

In the next chapter, we propose a three-population TB model to investigate the
impact of migration from developing countries to developed countries on the TB
incidence in the developed countries. One population represents that of a developing
country, the other two populations represent those of immigrant and local-born in
a developed country. We assume that a fraction of immigrants from the developing
country are latently infected with TB, so they will directly influence the TB incidence
in the immigrant population. We also assume that there is cross-infection from the
immigrant population to the local-born population, so the new immigrants with latent
TB will also indirectly influence the TB incidence of the local-born population.

The model will be used to evaluate the impacts of the fraction of the new immigrants
who have latent TB, and the level of cross-infection from immigrant population to the
local-born population. In Chapter 5, we rigorously establish the global dynamics of
the three-population model and derive the basic reproduction number.

In Chapter 6, the model is used to explain the TB data in Canada and the UK,
using numerical simulations. Our analysis demonstrate that, if the TB incidence
rate in the immigrant population is low, as in the case of Canada (19.4 per 100,000
population), then the cross-infection from immigrants to local-born population has
little effect, and latent TB through new immigrant only affects the TB incidence of the
immigrant population. However, if the TB incidence rate in the immigrant population
is sufficiently high, as in the case of the UK (103.3 per 100,000), then the effects of
cross-infection can be very serious, and latent TB brought in by new immigrants will
not only increase the TB incidence rates among immigrants, but also alter the TB
trend in the local-born population.

From a public health viewpoint, our results suggest that it is necessary for Canada to
maintain the strict screening of TB among new immigrants, to keep the TB incidence
among immigrant population at a low level. This will reduce the damage caused by

cross-infection from foreign-born to local-born population.
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In Chapters 7 and 8, we develop mathematical models to investigate the effects of

TB latency and TB immunity.
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Chapter 5. Impact of Immigration

on TB Incidence

In a number of developed countries with substantial levels of immigration, foreign-
born population becomes a major force that increasingly contributes to the national
TB incidence [62, 63, 64, 79]. A recent trend can be clearly observed in the TB data
in most immigration countries: the overall TB incidence rates are on the decline, an
increasingly greater proportion of the TB cases comes from the immigrant population.
TB incidence of foreign-born population remains at a high constant level, and TB
incidence of local-born population remains low and is on the decline. However the TB
data from the UK shows a different trend. Since 2000, TB incidence among non-UK
borns keeps increasing, and TB incidence among UK-borns remains at a constant level
(63, 64]. Why does the TB incidence rate of the UK-born population show a constant
instead of a declining trend as in other immigration countries? It has been suggested in
UK government studies [63, 64] that cross-infection from non-UK born to UK-born may
be a key factor. The effects of cross-infection of TB from foreign-born population to
local-born population have been investigated in several studies [62, 78, 97, 107, 113].
However, the results are mixed and far from conclusive. A study by Dasgupta and
Menzies [35] has revealed that, among developed countries, the proportion of active
TB cases among the local-born that can be attribute to transmission from the foreign-
born ranges from as low as 2% to as high as 17%. Recent studies using DNA fingerprint
techniques have confirmed significant cross-infection in Spain (78] and the Netherland
(15}, but not in Norway [34] and Denmark [97].

In this chapter, we propose a three-population TB model with immigration and
cross-infection to describe the transmission dynamics due to global spread of TB from
high TB incidence countries to low TB incidence countries. The main purpose of this

chapter is to rigorously establish the global dynamics of our model. This model will be
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used in Chapter 6 to investigate the impact of latent TB cases among new immigrants
on the TB incidence of the foreign-born population, and the effects of cross-infection
on the TB incidence rate of local-born population. Our TB model can explain both
TB trends in the UK and other immigration countries.

In Sections 5.1 and 5.2, we present the TB data and summarize the common trend
and possible causes. In Section 5.3, we propose our TB model with migration and
cross-infection. In Section 5.4, the strategy for model analysis for proof is explained.
In Sections 5.5 — 5.7, we establish the global dynamics for the limiting subsystems and
then global behaviors for our full model using the theory of asymptotically autonomous

systems. The proof of global stability of endemic equilibrium is given in Appendix A.

5.1 Introduction

Among the annual notified active TB cases from foreign-born, 20% more are discovered
at arrival and many develop the disease several years of post-immigration [79]. It is
reasonable to assume that a large proportion of immigrants have latent tuberculosis
infection (LTBI) pre-immigration. Thus strategies for the control and elimination of TB
among foreign-born population are at highest need in the public health sectors in these
countries. From view point of molecular epidemiology, foreign-born people are more
likely to be infected in their country of origin and then either primary disease develops
shortly after immigration or the people remain at risk for reactivated disease for the
rest of their lives [113]. It is also plausible that TB transmission within immigrant
communities in the host country is common [63]. In [79, 113], it is estimated that there
is almost half of immigrants who got recent TB infection within community. Also the
cross infection is not very rare between immigrants and their next generation or other
local-born persons [63, 64, 79].

Migration from countries with high TB incidence and prevalence to countries with
low TB incidence and prevalence has increased during the last couple of decades and
would continue to increase in the future. Most immigrants come from developing
countries and it seems impossible to neglect the impact posed by immigrants in every
immigration country. Figure 5.1 shows a diagram of migration between developed
countries and developing countries and interaction among populations in immigration

countries. Among most developed countries with immigration policies, a recent trend

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Developing Countries

Migration | Immigration

.......................................

Immigrant Population

P A .
i i Interaction
\ A

Native-born Population

Figure 5.1: Migration from developing countries to developed countries and interaction

between immigrant and local-born populations in developed countries.

Groups Proportion in | Proportion of | Incidence rate

in Australia | total population TB Cases cases per 100,000

Oversea-born 25.5% 82.3% 21.7
Non-indigenous 72.5% 13.98% 1.0
Indigenous 2% 3.72% 8.1
Total 20,111,300 1,076 5.4

Table 5.1: Australia 2005 TB data summary.

can be clearly observed in the TB data: while the overall TB incidence rates are on the
decline, an increasingly greater proportion of the TB cases comes from the immigrant

population.

5.2 Trends in TB data from developed countries

In Table 5.1, a summary of 2004 Australia TB data is given [79]. The data comes
from “Tuberculosis notifications in Australia, 2005”, annual report of Communicable
Diseases Network Australia. We see from the data that the oversea-born population has
a much higher TB incidence rate (21.7 per 100,000 persons per year) and contributes
a majority (82.3%) of the overall TB cases in 2005.

In Canada, since 1970, a steady increase of the proportion of TB cases contributed
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Groups Proportion in | Proportion in | Incidence rate
in Canada total population TB Cases cases per 100,000
Foreign-born 19% 67% 194
Non-aboriginal 7% 16% 1.0
Aboriginal 4% 15% 23.3
Total 100% 98% 5.2

Table 5.2: Canada 2002 TB data summary (PHAC).
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Figure 5.2: Percentage of TB cases by origin in Canada from 1982-2002 (PHAC).

by foreign-born population has been noted, see Figure 5.2 [62]. TB incidence rate
among the foreign-born population remains to be high and relatively constant while
the incidence rate among the Canadian-born population is on the decline, see Figure
5.3. Table 5.2 is a summary of Canada TB data in 2002. Data comes from annual
report “Tuberculosis in Canada 2001” by Public Health Agency of Canada (PHAC).

In the Netherlands, the proportion of TB patients with a non-Dutch passport rose
from approximately 35% in 1980 to almost 60% in 1997 [142]. In Norway, two thirds
of the TB cases were discovered in immigrants [43]. In mid-1970’s, the proportion
of immigrants in total population is 2.4% and TB cases contributed by immigrants
constitutes 4%. In 2002, those two figures increase to 6.9% and 76%, respectively. In
2002, TB incidence rate among Norway-born population is 1.4 (per 100,000 persons)
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Figure 5.3: TB incidence rate by origin in Canada from 1992-2002 (PHAC).

Groups Proportion in | Proportion of | Incidence rate
in the UK total population TB Cases cases per 100,000
Non-UK born 7.5% 72% 103.3
UK-born 92.5% 28% 4.2
Total 60,111,300 8,113 14.7

Table 5.3: The UK 2005 TB data summary (HPA).

while it becomes 61.9 among immigrants.

In the United States, the proportion of TB cases for foreign-born is 21.6% in 1986,
29.8% in 1993 and 41.6% in 1998 [50, 105, 128]. The TB incidence rate for foreign-born
decreased from 34.1 in 1993 to 30.1 in 1998 [128]. The total TB cases contributed by
foreign-born are 4925 in 1986, 7346 in 1993 to 7591 in 1998. The TB case rate is 32.9
for foreign-born and 5.8 for US-born [28, 139].

Data in Table 5.3 is obtained from annual surveillance report of the Health Protection
Agency (HPA) in UK ([63, 64, 65, 121]). The data from the UK shows a somewhat
different trend from those in other developed countries. The TB incidence rate among
non-UK born population is on the rise, while the incidence rate among UK born
population remains relatively constant, see Figure 5.4.

Comparing the situation between the UK and Canada, we found that TB incidence

among non-UK born population is increasing all the time and that of foreign-born in
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Figure 5.4: TB incidence rate for UK-born and non-UK born populations from 2000-
2005 (HPA).

Canada remains relatively constant. In the mean time, TB incidence among UK-born
population remains constant and that of Canadian-born population is decreasing all
the time. One common point is that proportion of active TB cases contributed by the
foreign-born population increases annually.

Total population of the UK is double that of Canada and the number of active
TB cases in the UK is around 5-fold that of Canada. Canada has more immigrants
(6.5 million, 2005) than that of the UK (4.9 million, 2005). Two countries’ medical
surveillance systems are similar and average life expectancy is close. Why there is a big
difference on TB incidence between these two countries? What is the intrinsic dynamic
mechanism which caused the difference?

It has been suggested in the UK [65] that cross-infection between non-UK born
and UK-born population may explain the constant TB incidence rate in the UK-
born population, while studies in Canada [108] cast doubts on the effects of such
cross-infection. We propose a three-population TB model with migration and cross-

infection among different groups to investigate qualitatively and quantitatively the

intrinsic factors of the TB dynamics in Canada and the UK.
Over the past decade most of the 250,000 new immigrants who arrived in Canada

annually are adults, and more than 80% of them were from TB-endemic countries [29).
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Among the annual new immigrants, it was estimated that 40% of new immigrants
are positive for tuberculin skin test [108]. This indicates that there are almost half
of annual new immigrants with latent TB, some of them will develop TB quickly
after entry and a fraction of them will develop TB during later time. Due to strict
immigration medical checks before entry, new immigrants with active TB at arrival are
rare (except for refugees [20]).

The percentage of new immigrants who develop TB after arrival is estimated in
several studies. In 1998 [20], it was estimated that 8% of foreign-born TB cases
reported in Canada who developed TB within the first year arrival, 18% developed
active TB within 2 years and 37% within five years. Another study from Australia

is shown in Figure 5.5. Since most immigrants are adults and they are infected with

280

Notifications

Year of arrival

Figure 5.5: 2005 TB notification numbers of immigrants who develop TB after arrival

in Australia.

latent TB before entry, there is a highest risk to develop active TB within the first
few years’ arrival [62, 63, 64, 79]. A more detailed comparison of probability of new
immigrants who develop active TB after arrival among the UK, Canada and Australia

is given in Table 5.4.
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Groups Non-UK born Foreign-born | Overseas-born

classification 2000-2005, the UK | 2002, Canada | 2005, Australia
within 2 years’ arrival 22% 25% 23%
3 or more years prior 78% 75% 74%
Total 100% 100% 100%

Table 5.4: Percentage of latently-infected immigrants who develop TB after entry in

three different studies.

5.3 A three-population model for TB

The data presented in the previous section clearly shows a common TB trend
in immigration countries: steady increase in the proportion of reported TB cases
contributed by the foreign-born population and a relative decline by local-born
population as summarized in [41]. TB contributed by immigrants plays a critical role
in the overall TB in immigration countries. Annual new immigrants with latent TB
mostly from developing countries, contributed sustaining imported TB to the foreign-
born population. Thus it is important to understand the impact of new immigrants
with latent TB on the transmission dynamics of TB within foreign-born population in
immigration countries, and to investigate effects of cross-infection between immigrants
and local-born population within immigration countries.

Motivated by the TB data presented in Section 5.1 in this chapter, especially
Canada and the UK, we formulate a three-population TB model to describe the
transmission dynamics of TB among the populations: population in a developing
country, the foreign-born population and the local-born population in a developed
country with immigration policy. This transmission route also describes the global
spread of TB from developing countries (high TB incidence) to developed countries
(low TB incidence). Each population can be further divided into three epidemiological
subclasses: susceptible (S;), latent (exposed but not yet infectious) (F;) and infectious
(I;), (i = 0,1,2). Here subscripts 0, 1,2 represent the populations in the developing
country, the foreign-born population and the local-born population in the host country.
Note that by foreign-born population, we mean all immigrants who are born outside of
the host developed country. The next generation of foreign-born (immigrants) belongs

to the local-born population (or local-born population).
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The population in the developing country is relatively closed and it is reasonable
to assume that TB transmission between susceptible and infectious occurs only
within the population. The susceptible or infected immigrants move from the Sy, Ey
compartments in the developing country to the Sy, E; compartments in the foreign-born
population in the host country with constant rates Ag, Ag, respectively. Susceptible
individuals in the foreign-born population get TB infection from an infective individual
not only within the foreign-born population but also get cross-infection from the
local-born population [113]. Similarly, the susceptible individuals in the local-born
population get TB infections not only from infective individual within population but
also from the foreign-born population as well. Latently infected individuals among all
three populations can develop TB within the first 2 years of infection or through a
slower route by reactivation. The transfer diagram for the whole model is depicted in

Figure 5.6. The top part (subscript ‘0’) of the figure describes the TB transmission

71,
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Figure 5.6: TB transmission diagram among the population from a developing country, the
foreign-born and local-born populations in an immigration country. Solid lines represent
population transfer or removal among compartments. Dashed lines represent cross-infection

among populations. Heavy solid lines represent immigration.
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7o : annual new births to the population in a developing country.
B; : transmission coefficient between compartments S; and I; (: =0, 1,2).
d; : removal rate in the i-th population (i = 0,1, 2).
A : immigration rate from a developing country (k = S, E).
v; . slow progression rate to active TB in the i-th population (i = 0,1, 2).
p; : proportion of newly infected who develop TB within two years (i =0, 1, 2).
«p : removal rate (TB-caused death and treatment) in a developing country.
ay : removal rate (TB-caused death and treatment) in the k-th population
in an immigration country (k = 1,2).

7 : annual new births to local-born population in an immigration country.

B2 : transmission coefficient from infective individuals (/3) in local-born
population to susceptible individuals (S)) in foreign-born population.
Ba1 : transmission coefficient from infective individuals (I;) in foreign-born

population to susceptible individuals (S3) in local-born population.

Table 5.5: Parameters in the three-population TB model.

within the population in a developing country. The part inside the dashed line box
describes the TB transmission within the foreign-born population (subscript ‘1’) and
the local-born population (subscript ‘2’) within an immigration country and the cross-
infection between two populations (dashed red arrows). The parameters used in the

three-population TB model are described in Table 5.5.
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The model is described by the following system of ordinary differential equations:

' d“o’;’f D o - BoSo(t)Io(t) — (do + As)Sol(t),
%’t(t) = (1 — po)BoSo(t)Io(t) — (do + vo + Ap) Eol(t),
dI;it) = p0BoSo(t)1o(t) + voEo(t) — (do + ) Io(t),
ds;t(t) = AsSo(t) — BiSi(H)i(t) ~ Br2Si(t) 2(t) — S (1),
4 QE(}T(t) = ApEo(t) + (1 = p1)[BiS1(8) [1(¢) + PreSi(0) Lo(t)] — (da + m)Ea(t), (5.1)
dlcliit) = p1BiSi (O () + p1BraS1 () 2 (t) + i By (8) — (dy + o) L1 (2),
Bll) _ 5uSat) a(t) — B S)(6) ~ o),
L) _ (1 ) ) a) + BrnSo O 0)] = (a4 ) ),
dI;Et) — 12B2Sa(8)Io(£) + paBar Sa (D) (£) + v Ea(t) — (do + a2) In(t).

Here G4 is transmission coeflicient of the pathogen which reflects the likelihood that
an infectious case will successfully transmit the infection to a susceptible individual
(13]. In our model (5.1), following those in [13, 14, 117, 143|, bilinear incidence
forms of new infections are used. Other TB modeling used standard incidence forms
(23, 27, 44, 45, 46, 112|. Also the fast and slow transmission routes to active TB,
typical characters of TB progression, are incorporated in the model (5.1).

The new features in our model (5.1) are the description of global spread of TB which
allows immigrants with latent TB to move from a developing country to a developed
country with immigration policy, and the possible cross-infections between foreign-born

population and local-born population in an immigration country.

5.4 Model reduction and strategy for model
analysis

The qualitative analysis of model (5.1) with cross-infection and migration is difficult in
both global behaviors and available mathematical tools. To my knowledge, no one has
proved a detailed analysis for a TB with migration and cross-infection in the literature.

Our strategy for the mathematical analysis of model (5.1) is as follows:
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Step 1. Because no infections on population ‘0’ are assumed to come from populations
‘1’ and ‘2’, we can first investigate the submodel for population ‘0’ independent of

populations ‘1’ and ‘2’.

d‘S}l)t(t) =m0 — BoSolo — (do + As)So,
dFy(t _
% = (1 — po)BoSolo — (do + vo + Ag)Eo, (5.2)
dl{t
;t( ) = poBoSolo + voEo — (do + ap)lo.

The global dynamics of system (5.2) are described in Section 5.5.

Step 2. From Section 5.5, we know that solutions to (5.2) converge to an equilibrium
as t — oco. Using the theory of asymptotically autonomous systems [25, 131}, we can
replace Sy(t) and Ey(t) that appear in equations for populations ‘1’ and ‘2’ by their

limits, and consider the following limiting system

{
dS;ilt(t) = As = B1Sily — fraSilz — diSy,
dE(t
dlt( ) =g+ (L —p)6iSili + (1 = p1)BieSila — (di + 1) En,
dI(t)

=p15i1S1h + p1fieSila + By — (di + aa) ],
% dt (5.3)

dS,(t
2 =7 — 3pSaly — P21 5211 — dpSy,

~—

dt
dE,(t

dzt( ) _ (1 = p2)BaSaly + (1 — p2) B Saly — (dy + 1) B,
dl,(t

c2lzg Lo P22S2lz + P2 Saly + Vo By — (dy + a2) I,

where Ag = Ag tlim So(t),A\g = Mg tlim Ey(t). The global dynamics of system (5.3) are
described in Section 5.6.

Step 3. The global dynamics of (5.1) can be obtained from those of subsystem (5.2)
and the limiting system (5.3). They are described in Section 5.7.

5.5 Dynamics of the one-population submodel

Model (5.2) is same as that in [13] and its global dynamics are given in [55]. The

feasible region is

I' = {(So, By, Ip) € Ri | So < mo/(do + As), So + Eo + Ip < mo/d},
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where d = min{dy+ s, dy+v9+ g, do+ap}. Model (5.2) has a disease-free equilibrium
Py = (mo/(do + As),0,0) and a unique endemic equilibrium P* = (S5, Ej, I§) with

7o * _ (1 B po)ﬂosglg

Sr=—— 9% E= 0
0" Bz +do+As’ Y dot+ e t+w

, I =—BJ/A>0,
where
A = —By(dy + Ag + o) (do + o) < 0,
B = (po(do + Ap) + 1) Bomo — (do + Az + o) (do + ao)(do + As)-
The basic reproduction number is given in [55]

@0 [po(do +?;\E) + ) o
(do + As)(d() + Ag + l/o)(do + 060) '

Roy =
The following result was proved in [55].

Theorem 5.1. If Ry < 1, the disease-free equilibrium Fy s globally asymptotically
stable in the feasible region I' and the disease dies out from the population. If Ry > 1,
the disease-free equilibrium is unstable and the endemic equilibrium P* is globally

asymptotically stable in the interior of I'. The disease always persists in the population.

5.6 Dynamics of the two-population submodel

The two-population model (5.3) describes the intrinsic transmission dynamics between
foreign-born and local-born populations in immigration countries. Its transfer diagram

is shown in Figure 5.7. The feasible region is defined as
I' = {(Sl,El,Il,Sg,Ez,Iz) € R_S‘_ | Sl + E1 + ]1 + Sz + E2 + Iz < (/\S + )\E' +7T)/J},

where d = min{d;, d.}.
By Theorem 5.1, if Ry; < 1, system (5.2) has a disease-free equilibrium which implies
So(t) — 7T0/(d0 + ;\S); E()(t) — 0. Setting /\S = ;\57l'0/(d0 + ;\3),)\5 = 0, system (53)
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Figure 5.7: Transfer diagram for the two-population TB model (5.3).

becomes
( ds(ljlt(t) = As — B1S1(t) 11(t) — Br2S1(t) [2(t) — 151 (),
dfiilt(t) = (1 - p))BiS1(O (L) + (1 — p1)Br2aS1(8) () — (dy + 1) Ex(t),
dl(t)

prai p1BLS1(E)1(t) + p1Br2Si(8) [2(t) + i Er(t) — (dy + an) L1 (),
{ (5.4)

d%t(t) =1 — 02S2()15(t) — B S2 ()11 (t) — d2Sa(2),
% = (1 — p2)B2Sa2(t) [2(t) + (1 — p2)BarS2(t)I1(t) — (dg + o) Eq(t),
d];it) = poBaSa(t) Ia(t) + p2f21S2(¢) 1 (t) + 2 Ea(t) — (do + a2)la(t).

Model (5.4) has a disease-free equilibrium Py = (S7,0,0,55,0,0) where Sf =

As/d1, S5 = m/d,, and a basic reproduction number
Roz = p(FV_l), (55)

where p denotes the spectral radius of matrix

Sy npi1 Sy 1 B12ST vap1B12ST

d1 + (03] (dl + al)(dl + 1/1) d2 -+ (8%) (d2 + a2)(d2 + 1/2)
(1 —p1)5151+ V1(1 —pl)ﬁ151+ (1 —171)51251+ V2(1 —Pl)ﬁ1251+

di + o (di + oq)(dy + 1) do + ap (da + a2)(ds + 1)

P252152+ V1P252152+ 1325252+ Vzpzﬁzs;

d1 + a (dl + Oll)(dl + 1/1) d2 + (0%) (d2 + a2)(d2 + 1/2)
(1 - Pz)ﬁmsrj V1(1 - pz)ﬁmsf (1 - Pz)ﬂzS; Vz(l - Pz)ﬂzs;

di+ o (dy + aq)(dh + v1) dy + ap (d2 + az)(dz + o) |
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Derivation of matrix F'V ! uses the method of next generation matrix (see [135]).

If Ry, < 1, disease-free equilibrium P, is globally asymptotically stable in the feasible
region . If Ry; > 1, system (5.4) has a unique endemic equilibrium P* which is globally
asymptotically stable in the interior of feasible region I'.

If Ryy > 1, So(t) — S, Eo(t) — Ef (as t — oo) and model (5.3) becomes the case
where

As =AsS; >0, M\g=AgEj>0.
System (5.3) has a unique endemic equilibrium which is always globally asymptotically
stable in the interior of feasible region I'. In summary, we have the following theorem
for model (5.3).

Theorem 5.2. The global dynamics of (5.3) can be described as follows:

Case 1. \g = 0.

(1) If Ryy < 1, system (5.3) has a disease-free equilibrium Py = (S7,0,0,S5,0,0),
and P* is globally asymptotically stable in the feasible region I'. TB dies out from

the population in the developed country.

(2) If Rye > 1, system (5.3) has a wunique endemic equilibrium P* =
(Si, EY, I}, S5, B3, 13), and P* is globally asymptotically stable in the interior
of feasible region I'. TB always persists in the population of developed country.

Case 2. \g > 0.

When Ag > 0, there is no basic reproduction number or disease-free equilibrium.
System (5.3) has a unique endemic equilibrium and it is globally asymptotically
stable in the interior of feasible region I'. TB always persists in the population of

developed country.

The detailed proof of Case 2 of Theorem 5.2 is given in Appendix A.

5.7 Global dynamics of the full three-population

model

Now we go back to study global dynamics of the full model (5.1). According to
Section 5.5, if Ry; < 1, system (5.2) has a disease-free equilibrium and Sp(t) —
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7o/ (do + As), Eo(t) — 0. Thus Ag = 0, Case 1 in Theorem 5.2 holds.
If Ryy > 1, Syp(t) — S, Eo(t) — EF, Ip(t) — I; (as t — o0), and model (5.3)

becomes the case where
As =AsS; >0, A\p=AgE; >0. (5.6)
Case 2 in Theorem 5.2 implies system (5.3) has a globally stable endemic equilibrium
P = (ST BT I, Sy BT LY. (5.7)

Thus for the full model (5.1), we have the following result, using the theory of

asymptotically autonomous systems.
Theorem 5.3. The global dynamics of system (5.1) are described as follows:
Case 1. If Ry <1, system (5.2) has a disease-free equilibrium. TB dies out in the

population of the developing country. Sy(t) — mo/(do + As), Eo(t) — 0,Iy(t) — 0.
System (5.3) becomes (5.4). Furthermore,

(a) if Roz < 1, then solutions to system (5.4) satisfy
(Sl(t)) El(t)’ Il(t)a SQ(t)a E2(t)’ ‘[2(t)) - (/\S/dh 07 07 7T/d2, 07 0)
TB dies out in the populations of the developed country.

(b) If Ros > 1, then solutions to system (5.4) satisfy
(Sl (t), El(t)a [1(t)’ S2(t)’ E2(t)’ 12(t)) - (Sik’ Ef’ If’ S;v E;v I;)
TB persists in the populations of the developed country.

Case 2. If Ry > 1, system (5.2) has a unique endemic equilibrium. TB
persists in the population of the developing country. So(t) — S35, Eo(t) —
Eg, Ip(t) — I3. System (5.1) has a unique globally stable endemic equilibrium
(S3, B, I3, S B I, Sy By, IT), where P = (St*, B, It*, Sy*, By, I3*) s given
in (6.7). TB always persists in the populations of the developed country.

This is a direct result using Theorem 5.2, Theorem 5.1 and the theory of asymptotical

autonomous system.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.8 Summary

In this chapter, we propose a three-population TB model to describe the impact of
migration from developing countries to developed countries on the TB transmission
dynamics. The population in a developing country does not pose TB transmission
to the population in an immigration country. But the accumulated foreign-born
population in immigration countries has a direct impact on the TB incidence and
the potential of cross-infection to the local-born population in immigration countries.

Due to the close transmission of TB within the population in a developing country,
we focus on the TB transmission dynamics between foreign-born and local-born
populations in an immigration country. According to the theory of asymptotically
autonomous systems proposed by H. R. Thieme et al [131], we can reduces the full
three-population TB model (5.1) into a one-population model (5.2) and a limiting
system (5.3). The global dynamics of system (5.2) were established in [55]. For the two-
population subsystem (5.3), we rigorously establish its global dynamics in Section 5.6
(Theorem 5.2). Then the dynamical behaviors of the full system (5.1) are established
accordingly in Section 5.7 (Theorem 5.3). The proof of global stability of endemic
equilibrium in Theorem 5.2 is given in Appendix A.

The significance of this chapter is as follows. The three-population model (5.1),
describing the TB transmission dynamics of global spread from high TB incidence
countries to low TB incidence countries, is proposed based on the TB trend in Canada
and the UK. The global dynamics of the full TB model are established rigorously for
the first time for a large endemic TB model in the literature. Our results show that
when there are new immigrants with latent TB entering the developed country, the TB
transmission dynamics in an immigration country have a unique endemic equilibrium
and it is globally asymptotically stable. TB always persists in the developed countries.

Numerical simulations of our model will be carried out in the next chapter to
investigate quantitatively the impact of immigrants on the TB incidence rate of foreign-
born and effects of cross-infection on the TB incidence rate of local-born population in

two case studies using realistic data from Canada and the UK.
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Chapter 6. Case Studies: TB in
Canada and the UK

In this chapter, based on the two-population TB model (5.3) proposed in Chapter 5,
numerical simulations are carried out for different scenarios using data from Canada
and the UK. The purpose of our simulations is to investigate quantitatively the impact
of latently-infected new immigrants on the TB incidence rate of the host immigration
countries, and the importance of cross-infection between foreign-born and local-born
populations in Canada and the UK.

In the simulations, we use the following model equations

(L5 _ (1 )0+ 2e) — SOIBL( + Bualalt)] — 8100,
db;lt(t) =q(As + Ag) + (1 — p1)S1(t) [B111(t) + Prala(t)] — (di + 1) EA(2),
dh(t) = S1(8) [ (t) + Bral2(t)] + i Er(t) — (di + )1 (2),
) dsdit) (6.1)
d2t =7 — Sy(t)[B2la(t) + Par1(t)] — daSa(t),
Pall) (1~ p)$a(0){Balolt) + Bn s (0] — (da + ),
\ dI;Et) = p25a(t)[B212(t) + Bar 1 ()] + v2Ea(t) — (d2 + a2) Ia(t),

where g denotes the fraction of total number of new immigrants Ag + Ag with latent
TB before entry to immigration countries. Ag+ Ag is estimated as the total number of
annual new immigrants. Subscripts ‘1’ and ‘2’ denote the foreign-born population and
local-born population in an immigration country, respectively. Terms (3,5, 21 represent
the rates of cross-infection between two populations.

Our simulations show that, if the TB incidence rate in the immigrant population

is relatively low, as is the case of Canada, then the cross-infection to the local-born
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population is small and negligible. However, if the dynamics are such that the TB
incidence in the immigrant population is sufficiently high, as is the case of the UK, then
the effect of cross-infection is obvious and can significantly impact the TB incidence
rate of the local-born population. The comparison of the TB dynamics between Canada
and the UK offers an important public health lesson: maintaining control of latent TB
in new immigrants is important, and the TB incidence in the immigrant population
is essential to control the overall TB problem in Canada. Failing this, the scenario

currently in the UK may happen in Canada.

6.1 Simulations of Canada TB incidence

6.1.1 Parameter estimation from data

In the 2002 census [21], total immigrants in Canada is 5,639,175 and total new births are
246,038 for Canadian-born population. Total active TB cases contributed by foreign-
born is 1,094 in 2002 [62]. Annual average new immigrant number is 223,840, namely,
As + Agp = 223,840 [29]. We assume that 0 < g < 50% [108]. Average life expectation
in Canada is 80 years [21]. Mean age of new immigrants arriving in Canada is 30 years
[29]. We assume that the removal rate for Canadian-born population is dy = 0.001, the
removal rate for immigrant population is d; = 0.039. The parameter values in Table
6.1 are used in the simulations of our model (6.1).

We choose the initial values for both populations as
(Y, EY, I9; S2, E9, I9] = [4431746, 1206335, 1094; 25481638, 388045, 576].
This corresponds to 13% of the total immigrants within Canada who have latent TB

and 1.5% of total Canadian-born people who have latent TB [62], respectively.

6.1.2 Effects of imported latent TB among new immigrants

Study 1: Suppose all new immigrants to Canada are susceptible, namely ¢ = 0 in
model (6.1). We assume that there is no cross-infection between two populations.
Then Case 1 in Theorem 5.2 applies. If the basic reproduction number Ry, is strictly
less than 1, the TB incidences of local-born and foreign-born populations experience a

decline and eventually die out, see Figure 6.1.
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Immigrant Population

B =1x10"% transmission rate within immigrant population in Canada.
d; = 0.039 removal rate for immigrants in Canada.

p1 = 5% 5% high-risk LTBI immigrants develop TB in 2 years.

v; = 0.00027 1.35% low-risk LTBI immigrants develop TB in 50 years.
a; = 0.86 removal rate (TB-reduced death 6%+ treatment 80%.

As + Ag 223, 840, average annual new immigrants to Canada.

Canadian-born Population

By =05x 1078 transmission rate within local-born population in Canada.
dy = 0.001 removal rate for Canadian-born population.

po = 1% 1% high-risk LTBI Canadian-born develops TB in 2 years.
vy = 0.0001 0.8% low-risk LTBI Canadian-born develop TB in 80 years.
as = 0.86 removal rate (TB-reduced death 6%+ treatment 80%).

m = 246,038 average new births in Canada.

B21 € [0,1 x 1078] transmission rate between foreign-born and local-born.

Bi2 € [0,0.5 x 1078]  transmission rate between local-born and foreign-born.

q € [0,50%)] % of total number of annual new immigrants with LTBI.

Table 6.1: Parameter values for simulations of the two-population TB model for

Canadian-born and foreign-born populations.
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Figure 6.1: TB incidence rates in both foreign-born and Canadian-born populations

decline if there is no latently-infected new immigrants to Canada.

Study 2: Suppose a percentage ¢(> 0) of total number of all new immigrants
are latently infected with TB before entry to Canada. Suppose that there is no
cross-infection between Canadian-born and foreign-born populations. Then Case 2
in Theorem 5.2 applies.

Increasing the percentage g of total number of latently-infected new immigrants
from 20% to 50%, we observe that the TB incidence rate in Canadian-born population
always decreases while the TB incidence rate in foreign-born population increases from
6.1 (per 100,000 population) to around 15, see Figure 6.2. The national average always

decreases when ¢ increases from 20% to 50%.

6.1.3 Effects of cross-infection

Study 3: Fix ¢ = 40%, change the rate of cross-infection. We assume that cross-
infection rates between Canadian-born and foreign-born populations are 813 > 0, 35 >
0. Then Case 2 in Theorem 5.2 applies. Increase Bo1 from 0 to 1 x 1078, the same level
as ;. We observe that TB incidence rate for foreign-born population is around 12 (per
100,000 persons per year) and TB incidence rates for Canadian-born population does

not change, see Figure 6.3.
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Figure 6.2: TB incidence rates for foreign-born, Canadian-born and whole country

with no cross-infection.

6.1.4 Conclusions

Our simulations show that latently-infected new immigrants have a big impact on the
TB incidence of foreign-born population in Canada, while they have little impact on
the TB incidence of the Canadian-born population due to cross-infection.

This seems to suggest that TB is only a problem for the immigrant population, and
the cross-infection to the Canadian-born population can be ignored. However, we will

see a very different picture in the simulation for the UK.
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Figure 6.3: TB incidence rates for foreign-born, Canadian-born and whole country

with cross-infection.
6.2 Simulation of the UK TB incidence

6.2.1 Parameter estimation from data

The average life expectation in the UK is 79 years [133]. Mean age of new immigrants is
around 30 years. We assume the removal rates for non-UK born, UK-born populations
are d; = 0.02, dy = 0.01266, respectively. In the 2001 census, total immigrants in
the UK is 4,301,230 [39] and total new birth to UK-born population is 594,634 [133].
Total active TB cases in 2001 is 5,500 {64]. Annual average number of new immigrants
is estimated to be 220,000 [39]. The parameter values in Table 6.2 are used in the

simulations of our models.
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Non-UK born population

81 =8x1078 transmission rate within non-UK born population UK.

d; = 0.02041 removal rate for non-UK born population.

p; = 0.05 5% high-risk LTBI immigrants develop TB in 2 years.

v; = 0.0021 8.4% low-risk LTBI immigrants develop TB in next 40 years.

a; = 0.86 removal rate (TB-reduced death 6%+ treatment 80%).

As + Ag 220, 000, estimated annual new immigrants to the UK.
UK-born population

By =T7x10"% transmission rate within UK-born population.

do = 0.0141 removal rate for UK-born population.

p2 = 0.03 3% high-risk LTBI UK-born develop TB in the first 2 years.

vy = 0.00125 10% low-risk LTBI UK-born develop TB in future 80 years.

az =0.86 removal rate (TB-reduced death 6%+ treatment 80%).

m = 594,634 average new births in UK.

B21 € 10,2 x 107%] transmission rate between non-UK born and UK-born.

B2 € [0,1 x 1078]  transmission rate between UK-born and non-UK born.

g € [0,50%)] % of total number of annual new immigrants with LTBI.

Table 6.2: Parameter values for simulations of the two-population TB model for UK-

born and non-UK born populations.
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Figure 6.4: TB incidence rates for both UK-born and non-UK born populations decline

if there is no latently-infected immigrants to the UK.

We choose the initial values for both populations as
(S, E?, I?; 89, E9, I9] = [2362053, 1935727, 3450; 48195679, 983626, 2050].

This data indicates that 45% of the total non-UK born population have latent TB and
2% of total UK-born population have latent TB, respectively [64].

6.2.2 Effects of latent TB among new immigrants

Study 1: Suppose all new immigrants to UK are susceptible, namely, assume ¢ = 0
in model (6.1). We assume that there is no cross-infection between non-UK born
and UK-born populations. Then Case 1 in Theorem 5.2 applies. Thus if the basic
reproduction number Ry is strictly less than 1, TB incidence in the non-UK born
population, UK-born population and whole country have a decline trend, see Figure
6.4.

Study 2: Suppose a percentage g(> 0) of total number of all new immigrants are
latently infected with TB before entry to the UK. Suppose that there is no cross-
infection between two populations. Then Case 2 in Theorem 5.2 applies. Increasing the

percentage g from 20% to 50%, we observe that TB incidence of UK-born population
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Figure 6.5: TB incidence rates for non-UK born, UK-born and whole country with

increasing percentage of latently-infected new immigrants to the UK.

always decreases while the TB incidence rate of foreign-born population increases from
30 (per 100,000 persons per year) to 116 and becomes constant in a high level after a
long time, see Figure 6.5. The TB incidence for national average increases from 10 to

21 when ¢ increases from 20% to 50%.

6.2.3 Effects of cross-infection

Study 3: Fix ¢ = 30%, change the rate of cross-infection.

Case 1: If 815 = 0, namely, one way cross-infection rate between two populations
is zero, increasing (,; from 0 to 3 x 1078, the TB incidence rate for UK-born changes
gradually, first declining then increasing, see Figure 6.6.

Case 2: If (21 = 0, namely, one way cross-infection rate between two populations

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TB incidence, beta21=0.0"e-8

T8 incidence, beta21=1.0"e-8

15 15
5 —1--- UK-bom s | _— | UK-bom
2 k=]
5 / nationwide = nationwide
3 3
g 10 210
[« (<%
o o
] S
[=] o
S 5 % 5
8 N
S | S

0 0

0 50 100 150 0 50 100 150
Year Year
TB incidence, beta21=2.0%*¢-8 TB incidence, beta21=3.0%¢-8

20 20
s -+ UK-bomn s | | UK-bom | |
g 15 ] nationwide [ % 15 P nationwide
Q ~ Q
g g
2 10 S 10
e S
8 S
g s st
- @ Tl
(5] (8]

0 0

0 50 100 150 0 50 100 150
Year Year

Figure 6.6: TB incidence rates for UK-born and whole country with cross-infection.

is zero, the situation is different. Increasing B1, from 0 to 3 x 1078, the TB incidence

rate for UK-born population is always decreasing, see Figure 6.7.

6.2.4 Conclusions

The simulations done for two populations in the UK show that the rate of cross-infection
between non-UK born and UK-born populations is evident from Figure 6.6. Also the
cross-infection rate (o has a bigger impact than (19, indicating that infections mainly
occur in one way, from the non-UK born to the UK-born. When the TB incidence for

non-UK born is sufficiently high (100 per 100,000 persons per year), the cross-infection

could be an important factor for the TB incidence of UK-born and national average.
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Figure 6.7: TB incidence rates for UK-born and whole country with cross-infection.
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6.3 Comparison between Canada and the UK

trends

Simulations of the two-population TB model describe quantitatively the TB
transmission dynamics between foreign-born and local-born populations using the data
from Canada and the UK.

By comparing the different TB trends in Canada and the UK, our simulations
establish that cross-infection from foreign-born population to local-born population
plays a key role in the TB incidence of local-born population: when the TB incidence
of immigrant population is relatively low, as is the case of Canada, TB incidence in
local-born population may maintain its declining trend; when the TB incidence in the
immigrant population is sufficiently high, as is the case of the UK, the TB incidence in
the local-born population can remain of a constant level, or even be on the rise. This
confirms an earlier hypothesis given in a UK government study [64].

As an implication for Canadian public health, it is important to maintain a strict
medical screening of TB for all new immigrants. Failing this, more imported latent TB
cases can cause a rise in TB incidence among Canadian-born population, a case of UK

scenario.

6.4 Summary

With the global dynamics of the two-population TB model (6.1) rigorously established
in the previous chapter (Theorem 5.2), we carry out numerical simulations in this
chapter to investigate the impact of new immigrants with latent TB on the TB incidence
of the foreign-born population and the effects of cross-infection from the foreign-born
to the local-born, using data from Canada and the UK.

Our results reveal that when the TB incidence rate of foreign-born population is low,
as is the case of Canada, the effects of cross-infection are negligible. The influx of latent
TB cases from new immigrants has no impact on the TB incidence rate of the local-
born population. This agrees with findings in studies based on DNA fingerprinting
technology in Canada [62] and Denmark [97]. When the TB incidence rate of the
foreign-born population is sufficiently high, the cross-infection can not be neglected, as

is the case of the UK. The impact of cross-infection on the TB incidence of local-born

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



population is significant. This agrees with epidemiological studies of TB in the UK
[64, 63] and Spain [78].

The significance in this chapter is that we demonstrate quantitatively that TB
cross-infection from foreign-born to local-born populations could happen under the
condition that foreign-born population maintain a high TB incidence rate. Annual
new immigrants with latent TB are directly responsible for the high TB incidence rate
in the foreign-born population. If the proportion of new immigrants with latent TB is
high, TB incidence rate in the foreign-born population can be very high and this can
lead to significant cross-infection to the local-born population.

Through two epidemiologically distinct case studies in Canada and the UK, we
arrived at the following conclusion: maintaining strict screening of new immigrants for
active and latent TB can substantially lower the TB incidence rate in the foreign-born
population in immigration countries, which in turn reduces the risk of cross-infection of
TB from foreign-born to local-born populations. Failing this will not only allow the TB
incidence among the foreign-born to creep up, but also change the TB trend among the
local-born, as we have observed in the UK data. However, a more fundamental long-
term solution to control TB in immigration countries may be to increase our efforts for

controlling TB in developing countries [107].
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Chapter 7. Importance of Early
and Late Latency

The proportion of active TB cases contributed by foreign-born population has an
increasing trend in most developed countries. To investigate the impact of latent
TB cases among new immigrants on TB incidence of foreign-born population in
immigration countries, we propose a four-dimensional TB model with early and late
stage latent TB infection (LTBI). The purpose of the investigation is to compare the
difference contributed by different proportion of latently-infected new immigrants who
have a high or low risk to develop active TB after arrival.

In Section 7.1, we present the model formulation. In Section 7.2, we establish
the global dynamics of the model. The proof of the global stability of the endemic
equilibrium is given in Appendix B in detail. In Section 7.3, numerical simulations are
carried out for different epidemiological scenarios using data from Canada.

Our simulations show that early latent TB has a bigger impact than late latent TB on
incidence rate of immigrant population in developed countries. More specifically, early
latent TB drives the TB incidence up quickly with a small change of percentage, while
late latent TB drives TB incidence up slowly even with a big increase on percentage.
Within a short period of time, controlling early LTBI can have a bigger effect than
controlling late LTBIL. These studies have potential benefits for policy-makers and

public health authorities in developed countries with immigration policy.

7.1 A TB model with early and late latency

As presented in Chapter 5 and Chapter 6, most immigration countries experienced
increasing percentage of active TB cases contributed by foreign-born population.

Though strict immigration medical checks are carried out in several countries like
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Canada and the UK, a sharp proportion of annual new immigrants were screened to be
latently infected, indicating the infection before entry. Thus a reasonable assumption is
that a proportion of annual new immigrants are latently infected but a small percentage
of them are in the highest risk to develop TB after arrival.

The model incorporates fast and slow route to TB, early and late stage LTBI [143].
New feature of our model is that new immigrants have a different percentage of high or
low risk to develop TB within the first two years after arrival. Using a compartmental
approach, the total foreign-born population within a immigration country can be
partitioned into four compartments: susceptible individuals (X), early latent stage
(E) and late latent stage (L) individuals, and individuals with active TB (T"). Only
individuals in compartment 7' are infectious, and new infections result from contacts
between a susceptible and an infectious individual within the immigrant population,
with an incidence rate SX (¢)T'(t). Here X (¢), E(t), L(t), and T'(¢t) denote the number of
persons in the four corresponding compartments at time ¢. Once infected, individuals
have to progress through the early latent stage with an average rate w within the
first two years. A fraction p, 0 < p < 1, of these individuals progress directly to
the active TB stage, and the remaining 1 — p fraction progresses to the late latent
stage. Once there, the rate of slow progression to active TB due to reactivation is at
a lower rate v. The inputs to the susceptible S, early latent stage F and late latent
stage L compartments are (1 — g, — ¢2)7, qi7 and gom, respectively. Here 7 is average
number of annual new immigrants and gy, g, are percentages of new immigrants who
are in early latent (high risk) or late latent stages (low risk) to develop TB. Due to
strict immigration policies of immigration countries, we assume that there are no new
immigrants with active TB before entry. The removal rates for the four compartments
X,E, LT are dx, dg, d, dr, respectively. « is the removal rate due to TB-caused
death and treatment. The dynamical transfer among the four compartments is depicted
in Figure 7.1. Here all parameters are assumed to be nonnegative. The model is
described by the following ODE system:

X' =01-q—@)r—-pXT-dxX,
E' =qnr+ XT — (dg + w)FE,

L' =gnr+ (1 —pwE —(dp +v)L,
T =pwE +vL — (dr + a)T.

(7.1)

For ¢; = ¢» = 0, model (7.1) reduces to that in [143] and its global dynamics were
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Figure 7.1: Transfer diagram for the 4-D TB model (7.1) with new immigrants in early

or late latent stage.

established in [57]. If ¢i,q2 # 0, the model is called immigration model and its

dynamical behavior is relatively simple (see [16, 104]).

7.2 Model analysis

From the first equation of (7.1), in the absence of disease, we have
X' <(1-q—q)m—dxX,
1—gqg —

and thus lim sup X(t) < M

t—o0 dX
population size in (7.1) satisfies

along each solution to (7.1). The total

N =(X+E+L+T) <m—dN —aT,
where d = min{dx, dg, d,dr} and N(t) is varying over time ¢ and thus

lim sup N(t) < %

t—oo

Therefore the model (7.1) can be studied in the feasible region

(1-q —q)

P={X.ELT)eR, |0<X< W,0§X+E+L+TS%},

X

where R denotes the non-negative cone of R* including its lower dimensional faces.
It can be verified that [ is positively invariant with respect to (7.1). We denote by I’
and I01 the closure and the interior of I in R%, respectively. An equilibrium of system
(7.1) satisfies the following equations
0=(1—q —q)m—BXT —dxX,
0=qn+0XT - (dg +w)E,
0=gm+ (1l —pwE — (dp +v)L,
0=pwE+vL— (dr + a)T.
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Solve X from the first equation in (7.2), we obtain

_(l-a- g2)m
X = W (7.3)

Substitute the last equation into the third equation in (7.2) to cancel L term, we have
g + (pdp + V)wE = (dp +v)(dr + a)T. (7.4)

Combine (7.4) with the second equation in (7.2), canceling E, we get

(pdr + v)wlm + BXT) + gerv(dg + w) = (dg + w)(dr + v)(dr + )T (7.5)
Substitute X in (7.3) into (7.5), we get

(1 —q1— Q2)7T

dy +v)+ dg +w) + (pdr + v)wpT
qlmu(p L l/) Q27TV( E w) (p L )wﬂ ,BT+dX (76)

= (dE + w)(dL + I/)(dT + a)T.

Then we get a quadratic equation about T
f(T) = AT*+ BT +C =0,
where
A = —ﬁ(dE + W)(dL + I/)(dT + Ol) < 0,
C = dxn|qw(pdy + v) + qav(dg +w)] > 0,
B = 3(1 — g)7(pdy, + v) + Beemv(dg + w) — dx|[(dg + w)(dL + v)(dr + &))].

The quadratic equation f(7') always has a positive solution

. B+VB?—4AC
T = o > 0.

in . Let P* = (X, E*, L*, T*) be the endemic equilibrium for system (7.2) in f‘, then

we have the following result.

Theorem 7.1. Global dynamics of system (7.1) are described as follows:

Case 1. g =q2=0. ([57])
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If Ry < 1, system (7.1) always has a disease-free equilibrium which s globally
asymptotically stable. TB will die out eventually in the immigrant population.
If Ry > 1, system (7.1) has a unique endemic equilibrium which is globally
asymptotically stable in f‘ TB will persist in the immigrant population

irrespective of any initial condition.
Case 2. g, > 0 or g2 > 0 or both.

System (7.1) always has a unique endemic equilibrium P* which is globally
asymptotically stable in T'. All solutions with positive initial conditions will be
persistent and converge to the unique endemic equilibrium P*. Any initial TB

epidemics become endemic in the population.

The proof of Case 2 of Theorem 7.1 is given in Appendix B.

7.3 Case study: TB in immigrant population in
Canada

Simulations of model (7.1) are carried out in this section using data from Canada. First,
we investigate the impact of early or late latent stage immigrants on TB incidence in

Canada. Then the effects of annual new immigrant level are considered.

7.3.1 Parameter estimation

As in Chapter 7, we assume that the removal rates for all compartments of immigrants
are the same, dx = dg = d, = dr = 0.039. ¢, and ¢ are the percentage of total
number of annual new immigrants with early latent TB (g;7) and late latent TB (go7),
respectively. We always assume that ¢; < ¢. Table 7.1 lists the parameter values used
in the simulations of our model (7.1).

We choose the initial value for immigrant population in Canada as
[Xo, Eo, Lo, To] = [4431746,9784,1196551, 1094].

The above data indicates that latently infected immigrants constitute 21.4% of total

immigrant population within Canada.
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B=1x10"® transmission rate within immigrant population in Canada.

dx =0.039 removal rate from immigrant population.

p=0.05 5% high-risk LTBI immigrants develop TB in the first 2 years.

v = 0.0002 1% low-risk latently-infected immigrants develop TB in next 50 years.
w = 0.40 All LTBI immigrants pass through in the first 2.5 years.

a = 0.86 removal rate (TB-reduced death 6%+ treatment 80%).

m = 223,840 average annual new immigrants to Canada.

Table 7.1: Parameter values for simulations of the 4-D TB model (7.1) with early or

late latently-infected immigrants.
7.3.2 Effects of early and late latency

Study 1: Suppose all new immigrants to Canada are susceptible (¢; = g2 = 0).
Then Case 1 of Theorem 7.1 applies and TB will die out in immigrant population
eventually, see Figure 7.2. This situation is similar to that of local-born population in
Canada presented in last chapter. With no infected importation of new immigrants,

TB incidence of immigrant population experiences a steady decline.

Study 2: Suppose that all latently-infected new immigrants to Canada have a high
risk to develop TB within the first two years, ¢; > 0, go = 0. Then Case 2 of Theorem
7.1 applies and TB will persist in the immigrant population. Increasing ¢; from 3% to
12%, the TB incidence rate increases from 7 (per 100,000 persons) to 26.5, see Figure
7.3.

Study 3: Suppose that all latently-infected new immigrants who have a low risk to
develop TB in their lifetime in Canada, g» > 0, g; = 0. Then Case 2 of Theorem 7.1
applies and TB will persist in the immigrant population. Increasing ¢y from 20% to

50%, the TB incidence rate increased from 4.3 to 11, see Figure 7.4.

Study 4: Suppose ¢; > 0,¢g2 > 0. Then Case 2 of Theorem 7.1 applies and TB will
persist in the immigrant population. We fix ¢; = 3% and increase g, from 20% to 50%,
the TB incidence rate increases from 17.6 to 24.1, see Figure 7.5. Fix g = 30% and
increase q; from 3% to 12%, the TB incidence rate increases from 13 to 33.1, see Figure
7.6.
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Figure 7.2: TB incidence rate in foreign-born population declines to zero without

latently-infected new immigrants to Canada.
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Figure 7.3: Correlation between TB incidence in foreign-born population and

percentage of new immigrants in early latent stage.
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Figure 7.4: Correlation between TB incidence in foreign-born population and

percentage of new immigrants in late latent stage.
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Figure 7.5: Correlation between TB incidence rate in foreign-born population and

percentage of new immigrants in late latent stage.
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Figure 7.6: Correlation between TB incidence rate in foreign-born population and

percentage of new immigrants in early latent stage.

7.3.3 Effects of annual new immigrant level

Study 5: Set g;,¢go in a reasonable level and increase or decrease annual level
of new immigrants to Canada n. We fix ¢ = 3%, ¢ = 37% and let = =
111920, 223840, 447680, respectively. Figure 7.7 shows that TB incidence rate for

immigrant population changes little after a long time.

7.3.4 Conclusions

From the above figures, we observed that early LTBI immigrants have a bigger effect
than late LTBI immigrants on the TB incidence in a long run. In a short term,
the increase due to early LTBI immigrants is sharper than that due to late LTBI
immigrants. Early LTBI is most likely to drive the TB incidence up fast while late LTBI
TB increases TB incidence slowly. Doubling or halving annual new immigrant level
do not change the TB incidence in the long run. But during short period, increasing
annual new immigrant level sharply increases TB incidence rate. This confirms an

hypothesis in an annual TB report from Health Protection Agency in the UK [64].
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Figure 7.7: Correlation between TB incidence rate in foreign-born population and the

annual new immigrant level.

7.4 Summary

In this chapter, we study a TB model with immigration to investigate the impact of
early or late LTBI new immigrants on TB incidence rate of foreign-born population.
We compare TB incidence rates of the foreign-born population according to different
proportions of annual new immigrants with early or late stage LTBI, and the annual
new immigrant levels.

Global dynamics of the model are established rigorously in Section 7.2. Our model
(7.1) always has a unique endemic equilibrium P* and it is globally asymptotically
stable in the interior of feasible region I' (Theorem 7.1). The proof of the global
stability of the endemic equilibrium is given in Appendix B.

Our results show that early LTBI new immigrants drive the TB incidence fast and
high. It is of a high priority to treat new immigrants with early stage LTBI. In the
mean time, new immigrants with late stage LTBI would drive the TB incidence up
slowly. Treatment of new immigrants with late LTBI is of a lower priority compared
to those with early LTBI.
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Chapter 8. Effects of Tuberculosis

Immunity

It is known that acquired immunity of TB is only temporary. Recurrence of TB
due to reinfection or relapse is common in some regions or countreis with high TB
incidence and/or HIV epidemic [80, 88]. Most of the TB models in the literature
assume permanent removals after recovery from TB. In this chapter, a TB model with
partial immunity and relapses is proposed to investigate the potential impacts on TB
incidence rate and the basic reproduction number in a high TB incidence setting -
South Africa.

In Section 8.1, the biological background of partial immunity and relapses of TB
is given and the model formulation is presented. Global dynamical behaviors of the
proposed four dimensional TB model are established in Section 8.2, and a detailed
proof for global stability of endemic equilibrium is given in Appendix B. In Section
8.3, numerical simulations for different scenarios of the loss of immunity and relapses
of the model are carried out using realistic data from South Africa.

Our simulations show that the loss of immunity can be a very important factor for
the TB transmission dynamics in countries or regions with a high TB incidence and/or
HIV epidemic. Ignoring the loss of immunity in TB data analysis may substantially

underestimate the basic reproduction number and the TB incidence rate.

8.1 A TB model with partial immunity and

relapses

Active tuberculosis recurs in 2-7% of patients with drug-susceptible isolates treated

with current standard short-course chemotherapy [32, 33]. With DNA fingerprinting
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technology, cases of recurrent TB can be categorized as being due to relapse of the
original infecting strain or reinfection with a new strain of M. tuberculosis [80]. The
importance of reinfection and relapse as causes for recurrence of tuberculosis is unclear
and has potential public health implications [88].

Several studies have shown that reinfection can be an increasingly common cause of
recurrent tuberculosis as TB incidence rates increase. In a low-to moderate-incidence
countries (i.e. TB case rates < 50 per 100,000 persons per year), studies have found the
percentage of reinfection ranging from 10% in Switzerland to 33% in Spain and 16% in
Italy [6, 49, 127]. In patients from low-incidence countries such as United States and
Canada, the vast majority (96%) of recurrent positive cultures are due to treatment
failure or relapse rather than reinfection [80].

While studies in high-burden countries (i.e. TB case rates > 200 per 100,000 persons
per year), reinfection was common, ranging from 23% in Uganda [47] to 60% in a
township in Cape Town, South Africa [88], with a remarkably high rate of tuberculosis
(> 1,000 per 100,000 persons per year). Results of these studies suggest that reinfection
occurs more often in high-incidence countries due to more frequent exposure to M.
tuberculosis.

Motivated by the data presented above, we propose a TB model to investigate
the impact of the loss of immunity. The total population is partitioned into four
compartments: susceptible individuals (X), early latent stage (E) and late latent
stage individuals (L), and individuals with active TB disease (T). The input to the
susceptible compartment is 7. The removal rates due to natural death or treatment
for the four compartments X, E, L, T are dx, dg, dr., dr, respectively. « is the removal
rate due to TB death and treatment. § is rate of the loss of immunity and + is the rate
of relapses. The dynamical transfer among the four compartments is depicted in Figure

8.1. Here all parameters are assumed to be nonnegative. The model is described by a

pwE
y
E} X PBXT E (l—p)(oE: L vl o T |2
A
ax¥] dEv yT V4L a1

oT

Figure 8.1: Transfer diagram for the 4-D TB model (8.1) with loss of immunity.
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system of ODE
X' =7 — BXT — dx X + 4T,
E' =08XT +~T — (dg +w)E,
L'=(1-pwE — (d+v)L,
T = pwE +vL — (dp +a+ 6+ 7)T.
If § = v = 0, model (8.1) reduces to a model in [57].

(8.1)

8.2 Model analysis

From the first equation of (8.1), in the absence of disease, we have
X' <7m-dxX,

and thus lim sup X (¢) < dl along each solution to (8.1). The total population size in
t—o0 X

(8.1) satisfies
N =(X+E+L+T) <r—dN -aT,

where d = min{dx, dg,dr, dr} and N(¢) is varying over time ¢ and thus

lim sup N(t) <

t—o0

ISHTR]

Therefore the model can be studied in the feasible region
X

where R% denotes the non-negative cone of R* including its lower dimensional faces. It
can be verified that I' is positively invariant with respect to system (8.1). We denote
by I and fo‘ the closure and the interior of I' in R?, respectively.

System (8.1) has a disease-free equilibrium Py = (X, 0,0, 0) with Xy = 7/dx and an
endemic equilibrium P* = (X*, E* L*,T*). The basic reproduction number is defined

as
s

Ry = ——
0 dXX*,

(8.2)
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where

xr = G+ 1)ds +w)(dr + ot 0 +7) — ywipdy +v)
(pdy + v)Bw ’
« T ClxX*
= BX*—¢"’ 83)
oo Q-pldrtativy), ., '
pdy + v ’
B (dL+l/)(dT+a+6+7)T*
(pdr + v)w '

The above argument naturally leads to the following result.

Theorem 8.1. If Ry < 1, the disease-free equilibrium By is the only equilibrium and
is global asymptotically stable in T. TB dies out from the population irrespective of the
wnitial incidence. If Ry > 1, a unique endemic equilibrium P* exists in f‘, and is globally
asymptotically stable in Io‘ All solutions with positive initial conditions converge to P*.

Any initial TB epidemic becomes endemic in the population.

The proof of GAS for disease-free equilibrium is standard. The proof of GAS for

endemic equilibrium P* is given in Appendix B.

Interpretation of Ry in (8.2)

Let
poo .  (-pw v
l_dE—I—w dg+w dp+v’
Y
hy= ———, .
YT dr+a+d+r (84)
1

T hTariey
where h, is the fraction of both early latent (F) and latent period (L) individuals
progressing to active TB class T". hg is the fraction of infectious individuals re-entering
compartment E. 7 is the standard infectious period. So the basic reproduction number

can be rewritten as
Br hy
=— T
dx 11— hihy

Following [135], we can explain the second part of Ry as follows. A fraction h; of

Ry

individuals pass through compartment T at least once, a fraction h?h, pass through at

least twice, and a fraction h¥h5™! pass through at least k times, spending an average
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of 7 time units in compartment T on each pass. Thus, an individual introduced into

compartment F spends, on average,

7(hy +h2hy + -+ REYRE 4+ )

= thi(1+hiha + - (hah2)* + ) (8.5)
1

=Th ——8 M
T T g

time units in compartment T over its expected lifetime. Multiplying right hand side
in (8.5) by Bn/dx gives Ry.

8.3 Case study: TB in South Africa

Due to loss of immunity, reinfection, relapse or multiple infections are possible within
TB-endemic community [136], which causes the potential burden of disease prevention
and control. In a high TB prevalence country like South Africa, this can be of quite
importance for TB dynamics driven by HIV epidemic. In this section, the impact of
the loss of immunity and relapses on basic reproduction number Ry and TB incidence

are investigated quantitatively.

8.3.1 Parameter estimation

We assume that the removal rate in each compartment equals and let d = dx = dg =
d;, = dy. Parameter estimations for vital dynamics are available from census data or
annual population estimation from Statistics South Africa [126]. Parameter values in

Table 8.1 are used in our simulations.

8.3.2 Impact of the loss of immunity on the basic reproduction

number
From (8.2) and (8.3), we have

_ B (pdy, + v)w ’ (8.6)

Ry =
T dx (dp +v)(dg + w)(dr +a+ 3+ ) — y(pd, + v)w

where « is the removal rate due to TB-caused death and treatment.
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Parameters definition the value we use reference
p fraction of fast TB 10% [13]
v reactivation rate 0.005 3]
B transmission rate 2x1078 (13]
w progression rate 0.5 [13]
« removal rate (TB death+treatment) 0.135 — 0.635 WHO
é rate of partial immunity 0-0.50 estimate
v rate of relapses 0-0.50 estimate
s recruitment rate 1,082,000 Stat SA
d removal rate 1/46 year—1 Stat SA
N(0) initial total population 43,586,097 Stat SA
T(0) initial TB cases 227,320 Stat SA

Table 8.1: Parameter values for simulations of the 4-D TB model with loss of immunity.
Stat SA: Statistics South Africa.

Assume that total removal rate (except dr) from compartment T' in model (8.1) is
a constant C, i.e. a+ 6+ v = C. We investigate the impact of the loss of immunity
on the basic reproduction number and TB incidence rate.

Keeping v fixed and increasing §, we see from (8.6) that Ry does not change. If
we fix § and increase v, we see from (8.6) that Ry increases. This shows that loss of
immunity has no effects on the basic reproduction number Ry, while relapses do change
Ry.

Ignoring v may underestimate the basic reproduction number Ry. In Figure 8.2, we
observe that when v increases from 10% to 30%, the basic reproduction number R,
increases from 2.49 to 3.27, increased by 31%. When 7 increases from 30% to 50%, the

basic reproduction number Ry increases from 3.27 to 4.86, increased by 48%.

8.3.3 Effects of the loss of immunity on TB incidence

In this section, we focus on the impact of the loss of immunity on the TB incidence
rate. Simulations are carried out for the effects of partial immunity and relapses,

respectively.
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Figure 8.2: Dependence of Ry on the rate of relapses 7.

Effects of partial immunity

Note d
T —dxX*
T = T XT :
BX*—05 &7
where
y— (et V)dp+w)(dr+a+6+7) - ywipd +v) (8.8)

(pdr + v)Bw
Suppose that a + 6 + v is a constant C, setting v = 0, (8.8) becomes

dr +v)(dg +w)C

(pdy, + v)Bw
Increasing 6, X* doesn’t change but T* increases. In simulation shown in Figure 8.3, §
increases from 10%, 30% to 50%, TB incidence rate T* increases from 665, 723 to 790,
respectively, approximated by 9%.

o |

Effects of relapses

Suppose that o + v+ = C and let 6 = 0. (8.7) becomes
m—dxX* _ m  dx
pX* pxX B

Increasing v, X* decreases thus T increase.

T =
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Figure 8.3: Correlation between TB incidence and the rate of partial immunity 6.

In simulation shown in Figure 8.4, we see that as v increases from 10%, 30% to 50%,

TB incidence rate increases from 670, 752 to 845, respectively, an increase of 12%.

8.3.4 Conclusions

The loss of immunity can be a very important factor for the TB dynamics [47]. Our
simulations show that: Ry does not change with the rate of loss of immunity 6. While
increasing the rate of relapses v will increases Ry. Thus ignoring the loss of immunity
may underestimate Ry. Increasing both v and 6 lead to an increase of the TB incidence

rate T*. Ignoring § and v may underestimate the TB incidence rate.

8.4 Summary

Earlier TB models (see e.g. [27, 44]) do not consider the loss of immunity; individuals
recovered from TB are assumed to be permanently removed, and will not return to the

susceptible class.

In this chapter, we propose a class of TB models with partial immunity to investigate
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Figure 8.4: Correlation between TB incidence and the rate of relapses ~.

the potential impacts of loss of immunity on the TB incidence rate and the basic
reproduction number. Our results reveal that ignoring the loss of immunity of
TB may substantially underestimate the TB incidence and the basic reproduction
number. The interpretation of basic reproduction number is explained following [135].
Mathematically, we established the global stability of the endemic equilibrium for this

new class of models.
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Appendix A. Proof of Theorem (5.2)
for the two-population TB model

In the subsequent proof, we use Aj, \; instead of Ag, Ag as that in (5.3). We also
incorporate another parameter o into the model, which can be explained as the fraction
of susceptible immigrants who visit a TB endemic country and catch TB infection

before returning to the host country. Then the model (5.3) becomes

,

S1 =M — BiSily — BraSily — (dy + ) 5h,

El =X+ (1 —p)6iSihi + (1 —p1)Bi2S1ls + 081 — (di + 1) Ex,
IL = p1BiS1 L+ p1BiaSida + viEy — (dy + aa) ]y,

Sé =7 — (252l — B1 5211 — d253,

Ey = (1 = p2)B2Sala + (1 — p2) B SoTh — (da + v2) B,

L I = po2Saly + p2fa1Sali + voEy — (d + ) L.

Let the endemic equilibrium of system (A.1) denoted by P* = (S}, EY, I}, S5, E3, I3)

whose coordinates satisfy the following equation

(A1)

(N = BiS{I; + BuoS; I3 + (dy + o)},

0= g+ (1 = p)BSI + (1 — p1)BraSi Ly + oS — (dy + 1) ES,
0 =p1B1STI} + pifi2STLy + B — (di + an)If,

= (oS515 + B S5 1T + d2 S5,

0= (1=p2)BaSs 15 + (1 — p2)Bar S5 T — (do + 12) E3,

| 0 = paf2Ss1s + pafar S5 It + 1o B — (do + )13,

(A.2)

Combine the second and third equations in (A.2) and cancel the £} term, we have
ViAg + (p1d1 + Vl)ﬁls’f]f + (p1d1 + Vl)ﬁleflg + 1/105'1‘ = (d1 —+ Vl)(dl =+ OL1)II. (A3)
Combine the last two equations in (A.2) and cancel the E3 term, we have

(pgdz + 1/2),625;[; + (p2d2 + 1/2),3215;]; = (dz + U2)(d2 + 02)15. (A4)
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We prove the following result, which contains Theorem 5.2 as a special case (o = 0).

Theorem A.l. The endemic equilibrium P* is globally asymptotically stable in the

intertor of I'.

Proof. Set z = (S}, Ey, 1, So, Ea, I5) € I' C R{. Consider a Lyapunov function V

Vig) = kl[Al(Sl—S’f—Slln%)+B1(E1—E1 Eln gl)
+C1([1 I 1*1n[—)]
1
+ kz{A2(52—S* S*lng*)+B2(E2_E2 E3In 532)

+02(12 I I_)]

where z* = P* = (S}, E}, I}, S5, E3, I;) and
= A28 S5 17, Ay =pidy + v, By =1, O = dy + v,

= A16125115, Ao = pada + 1y, By = 1y, Oy = dy + 1.

We note that V(z) > 0, for z € T, the interior of I, and V(z) = 0 <= = = z*.
So function V is positive definite with respect to the endemic equilibrium z* = P*.

Compute the derivative of V along solutions of system (A.1), we obtain

dv ST Er
¥ =k {Al(l 1S, + Bi(1 — —L)E + C1(1 - ——)Il}
1 E,

d S
“ o i (A.6)
+ko {A2(1 - 5—2)5 + Bo(1 — ——)E Co(1 - 12)12} -
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Using (A.1) we have

St
(1- 5—1)51

S* * *
= A1 — A5 = B12Sily — (di +0)S1 — >\1§1— + B1STh + 128112 + (dy + 0)S]
1

== [ﬁlsi‘]f + ,6125;[; + (d1 + O')Sﬂ — ,6151.[1 — 61251[2 - (d1 + O')Sl
S* * *
— 618} + BraSi I + (dy + 0) S]] S—l + By SiIL + BaS I, + (dy +0)S;
1

d 5*2 * *
it ) ~ hS1hi — BreSily + B1ST L + BiaSi Lo
1

*2 *

S * Tk * Tk S
+ [205; ~oSi ok ] F RS + BuSIL] — [BiSIT; + BiuSi Iy =L
1

51
*2
ey

= <2d15;‘ —dySi —

< —BSuly — PraSils + BiSi 11 + PraSi I + [205; — 8,
ST

+ [B1ST I} + BraST L] = [BiSTIT + B12S7 1] S,

(A7)

since

*2 S S*
(2d15‘f —diS, — dlsll ) = d,S? (2 - S_l —~ S_i) <0.
1

In the second step of the above derivation, we substituted A, by the first identity of
(A.2). Similarly, using (A.1), we obtain

Er.
- E_I)E1 =X+ (1 —-p)BiSih + (1 —p1)f12S1la + 081 — (di + 1) Ex
1
E* E* E* E*
- /\QE_i - (1- pl)ﬁlS}[lE—i - (1- pl)lnglIZ'Ei‘ - USIE_i (A-8)

+ (dy + 1) E7,

(

I
(1= )4 = Pl + pibiaSils + B — (& + el
It 5

—p1BSUIT - P151251]21—11 - V1E171— + (di + al)[f-

d 5*2 S S*
(2@5; — dySy — 2522 ) = d,S} (2 - S_z - S_Z) <0,

Noting
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and substituting 7 by the right hand side of the fourth identity of (A.2), we have

S5\ o S5 * * *
(1- S_2)32 =7 — 325315 — Ba1S2]y — da Sy — W—‘S% + 325515 + Ba1S311 + daS;
2
= 825315 + Ba1 S5 I} + daS3) — BaSals — P Saly — daSs
S3

— (825515 + B SoIT + daS5| == + B255 15 + Ba1 S5 11 + da S

Sa
* dZSéd * *
= | 2d2S55 — d2S2 — S — B9Saly — Bo1Sody + 525515 + B Sy 1y
2
* Tk * Tx * T S*
+ (828515 + B S3I7] — [BeS3 15 + ﬂ215211]§z‘
< —BaSaly — Ba1Sofy + 325515 + B S5y
* T * Tk S*
+ (825515 + B2 S5 17| — (628515 + 521521115_2-
(A.10)
Similarly, using (A.1), we obtain
E; '
(1— =)E, = (1 — p2)B2Sala + (1 — p2) 21 SoT1 — (dy + 1) Eo
E,
B B (A.ll)
-(1- P2)5252[2E—2 -1~ P2)ﬂ2152T1E—2 + (dg + v2)E3,
2 2
I* '
(1- 1—2)[2 = pof2Saly + P21 Soli + o Ey — (dg + ao)lz — pa52Saly
’ Is s (A.12)
- p2/6213211—2 — vyEy—=+ (dy + a2)I;.
I I,

Simple calculation from (A.5) leads to the following identities:

A =piCr + (1= p1)B,
Az = paCa + (1 = p2) By,
(di +v1) By =1y,
(da 4+ v2) By = 1,Ch.
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Substituting (A.7)-(A.12) into (B.26), we have

av S ST * T * T ST
= S kl{Al [(,8181[1 + B12Si L) +057(2 - Si* - S—i) + (B1STI] + Br2ST ) (1 — S*i)]
EY EY g E*
+ B [/\2 408 —Ag—— (1 - 101)515111—1 -(1- p1)51251[2 — 08—
E, E, E

+ (dy + m) B

* *

I I .
+C (di + an) 1 — p1Bi ST — 1015125112j[L - VlEliII + (d1 + 041)[1] }
1

E; E3
(1 —po) ,325212— -(1- P2)52152T1E— + (d2 + o) ]

E,
I3 I .

(d2 + a2)Iy — paBaSalsy — p2ﬁ215’211— — B2 + (dy + 042)12] }

(A.13)

2

*

-

k{42 (B30 + B S310) + (BaS3s + Bn ST - D)
B~
[~

+ C; A

(A.13) can be rewritten as

av

i {k‘1A1(5151[1 + 5125712) — kiCy(dy + o)1y + koA2(B2S515 + B215511)

— k202(d2 + CXQ)IQ}
+ {klAl(ﬁlsikIf + ,8125;]5) + lel/\Q + lel(dl + Vl)EI + klcl(dl + a1)1f
-+ leAla'Sf + k2A2(,82S;I; + ,821551;) + kng(dg + I/Q)E; + k)gCg(dg + 062)15}

S;St . oy Ot
+{k1A1[—0 L — (61571} + B2t 12)5 )]

S1
I*
+k101[ nBSi1Iy —plﬂlzsllz— -1k 1}
E* E; E
+ ki 1{ )\2—— 1—P1)515111E——(1—P1)ﬂ125112 —051El]
+k2 2|: ,82S2[2 +,62152[1) 2:|
E3 E;
+ ky 2[ (1 —p2 ﬁz&%hf — (1 = p2) B SoTh E, ]
I3 I3
+ k202{ p202Saly — 1025215211— — VzEz—} klpldlasl}

“Vi+ Vet Vs
(A.14)
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Now we simplify V;. Note that V; in (A.14) could be rewritten as

Vi = (k1416157 + k2 Ay 1S5 — kiCi(d1 + o)1

(A.15)
+ [kaA2B255 + k1 A1512ST — k2Co(da + aa)|ly,
and identities in (A.3) could be rewritten, according to (A.5)
STl Ao oSt
AlﬂlS’f + Alﬁm *1 zZ_ Cl(dl + 041) =-B—=-5B *1,
I I I;
1S (A.16)
AoBaSy + Ag——7— 21 — Ca(de +ag) =0.
I3
Thus V; becomes
Vi = k1[A151ST — Ci(dy + an)| 11 + ko AafBn S5 1y
+ ka[A25255 — Co(da + ag)[la + k1 A1 512112
)\ oSt StI3
— kl[ 7 B [fl]ll - klAlﬂw[l 2 1 kyAgfr Si1,
S* *
ko P L 4 168t (A7)
2
A oSt Stl;
= kl[ B [2 1*1]11 + [k2A2ﬁ2155 klAlﬁu o 2]11
1 1 1
. S
+ {klAlﬁuSl _ kQAzﬁ“If 1]12.
2
For simplicity, we denote
B = BiSTIT, Ba=B2S315, Pz = BraStI3, Ba1 = B S31;.
Thus V; becomes
Vi=k|—-B L
b [ Yy I; ]
" B - _
n [ 2A2521 — ki A 1512}]1 " {klz‘hﬁn - szzﬂm]I? (A.18)
1 2
A oSt
k| - 31—2—31 1*1]11,

since klAle — k2A2521 = 0 from (A5)
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Next we need to simplify V5. By (A.2) and (A.5), we have

Vs = k[ Au(Br + fro) + Buda + By(ds + ) Bf + Colds + )T} +2A105]
+ ko [A2(62 + Ba1) + Ba(da + 1) Ej + Ca(da + a2)15]
= kl [2141(61 + 612) + 2B1>\2 + BlchI + Cll/lE; + 2A10’SI]

+ ko [2142(,52 + Ba1) + Cov B

=k [(2A1 + (1= p1)B1) (61 + Brz) + 3Bz + 2(By + Al)as;] (A.19)

+ k2(245 + (1 = p2) Ba) (B2 + Ba1)

= k1 [2p,C) + 3(1 — p1) B1]B1 + 3k1 Bz + 2k (211 + prd1)o ST
+ kg [2p;Ca + 3(1 — p2) Ba|Ba + k1 [2p1Ch + 3(1 — p1) Bi]Bra
+ k2[2p2C2 + 3(1 — po) Ba}Ba,

since A1 = pldl + v = plCl -+ (1 — pl)Bl and A2 = p202 + (1 — pz)Bz.

Based on partition of unity, we define

1 Ch (1 —-p1)By
== 0 T eee—————
A Z 0 Ay

peCo (1 —p9)Bs

> 0, Zzz——A——>0, 21+ 29=1, (AQO)
2

>0, pi+y2=1,

v
All , c1+c=1.

From (A.5), we have ky = Ayfa, ko = A0, thus the two terms in (A.19) becomes
k112p1C1 + 3(1 — p1) B1Bra + k2[2p2Cs + 3(1 — p2) Ba| B
= Aof[z2 + 21201 C1 + 3(1 — p1) B1]Bra
+ Aifizly1 + 2] 20:C2 + 3(1 — p2) Bo| B
= [p2C2 + (1 — p2) B2][2p1C1 + 3(1 — p1) B ) Br2fBon (A.21)
+ [P0y + (1 = p1) B [2p:C2 + 3(1 — p2) Ba] 821 Bra
= Br2Bn {6(1 = p1)(1 = p2) B1 By + 4p1p2ChiCe + 5(1 — p1)pa B1C

+5(1 - p2)plBZCl] .
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Substitute (A.21) into (A.19), we get
Vo = k1[2p1C1 + 3(1 — p1) B1] By + 3k BiAg + 2k (prdy + 201)0' ST
+ ka[2p2Ca + 3(1 — p2) Ba)Ba
+ Br2Be1 |6(1 — p1)(1 — p2) By Bz + 4p1p2C1C2 + 5(1 — p1)pe B1Cy

+ 5(1 - p2)p1BQCl .

(A.22)

Using (A.20), we can combine (A.18) and V3 and separate them into 11 groups based

on partition of unity:

Va+ W
S*Z 3 _ 8
=kA|—-0o 51 — (B + 512)S~1)]
- I* I*
+ kG| — piAiSuly — p151251121——1/151 ]
. 1 I
E} E} E} E7
+ k1B1 o /\2E—1 —(1- Pl)ﬂlSJlE— -(1- p1)51251[2E—1 — 051 El]
E3 E3
+ szz — (B2 + Pa1) ] + szz[ (1- Pz)ﬁzSﬂzE— — (1 = p2)Ba1Saly E—Z]
2
Iy
+ k2Cs [ — pafaSaly P252152[1 = -k, [2J
2
Aol St
+ [— k1p1d1051 lel ; L lelal* 1]
1 1
0,5*2 2 S*
= k1A [ —(c1+c2) L (y1 + y2)ﬂ — (121 + Y122 + yozr + y222)612 1]
Sl Sl Sl
. Sl NEI;
+ k1Ch [ —p1BiSily — pi(z1 + 22)@11—21 — (a1 +az + az + aq) . 11 1]
1 1
I /\2Ef ﬁlslflEf ﬂ125112Ef 051Ef
kB | — (1) (g -
+ Ky 1 E, ( p1) A ( p1)(21 + 22) E, E ]
- 2 S* 2 S*
+ ko Az | — (21 + 22)/82 2 — (121 + Y122 + Yor1 + y222)ﬁ2~ 2]
. 2 2
r SolL B SolEZ
kB — (1 —p) 22 yQ)M]
L EQ E2
: . Soly I3 vaBy
+ koCo | — p232S2ly — pa(tn + y2)[321_121_2 — (by + ba) 2 I2 2]
] 2 2
Aol oSyI
+k1[‘P1d1051 k1B1—— 22 ~ kB 1* 1]
I I;
11
i=1
(A.23)
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Note from the second and fifth identities in (A.2), we define parameters

- = 4
1-p)B B BioS5} 1-p)B
a; = ( pl) ’:,61, g = 172 ) az = 19 1*, aq = ———( pl) 1":612, E a; = 1,
C1B1 E; C1 B E; Ci1BE} C1B,Ej Py
e ( ) B2 (1 - p2)Baf3
1 — p2) B2 — P2) D221
YT T GByEy Y C.B,E; T

Applying the inequality

k n N
k1+ 2+ +T Zm’ (l’i_>_0,2=172a"'7n)a

n

and the fractions of y;, 2;, a;, b;, ¢;, we obtain the following group of inequalities.

5 g
L=k {—y2A1ﬁ; L
1

— Bi(1-p1)

ﬁlslllEik lllEllf
E1 010,1 11

< =3k, \3/1/2141615; -Bi1(1 = p)BiE} - Crayn I}
= 3k (/B2 (1 - p)BL? - C\ By B
= —3/91(1 - pl)B161-

5. gr
L=k {—ylAIIB‘lsll - Clplﬁlslff}

< =2k \/ylAIBPS’f -Cip Bl = —2k1\/y1A16f -Cipy (A.25)

= —2k1\/ B} - (Cip1)? = —2k1p1 C1 By

(A.24)

B2 S BaSala E5 Vool
L=k | —2A CBy(1 - pp) 220202 _ oy
3 2 { 293 A 2( Pz) E, Coby A
< =3k, {/ZZAZIBTS'; - Ba(1 — pa) Ba 5 - Cobiva I
3/ 5 A2
= —3k'2 ,6% . [B2(1 — p2)]2 . blcngE§ ( 6)

= —3k; \3/522 - [Ba(1 = p2)]2 - (1 — p2)Baf3s
= —3ky(1 — p2)Bafa.

Sx
I4 = /{)2 {—ZlAzﬁg 2

- C2P2ﬂ252[5}

— = A2
< —2kor/ 214206255 - CopaPals = —2kar/ 03 - (p2C5)? (A.27)

= —2k2p20252.
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El )\2 VlEllf
15 = kl { Bl)\2F1 - Blfl—.[l C1a2 Il

S —3/{21 VBIAZET . BlAz . Claglll
== —3k1 \B/(Bl)\2)2 . agclBlEf
= —31431 v (Bl/\2)2 . B1>\2 = _3k1B1/\2-

*2

S
Is = kl {—Alcla ! _ p1d1051}
St

_<_ —2k1 AlclaS*Z . p1d10
1

= ——2]{71 (O'SI*)2 ' (p1d1)2 = —Zklpldlosf.

5*2 Ex I* 0'51
17 = kl {*AICQCT Sl - 31051— — Cla3U1E [ [1

S —4](11 </21CQOSI2 . BlaEf . Clagl/l . BlUSI
= —4k1 VAICQ(USI):S . (31)2 . ClagBlEI
= —4k1 \4/ Bl(O'Sf)s . (B1)2 ' BIO'Sik = —4]€1B10'Sf.

Iy = { — ki — kiz:Cip 1——L — koy1Capo

Sl 11 12
82153
— koy1214, S, }

(125} BreS110} Ba1 521115

< —4(4/]612/1211416125{ k21 Cip fra - kot Copafor I3 - kay121A2B21 55

= 43/ (k)2 (1120)* AL (Br2)? - PLC1poCr - (ko) Aol B )?

= —4%A2521)2(y121)3A1(512)2 - p1C1p2Cs + (A112)? Aa(Bn)?

— —43/(A)(1:20)3(Br2)* - P1CipaCl - (A1) (B

= —44/ (A22151.41)?(B21)*(B12)* - p1C112C2

= 43/ (p2Cop1CL¥ (B ) (Bre)* - prCupaCl = —4paCiapr s s o
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(A.28)

(A.29)

(A.30)

(A.31)



S, I* L
S5 k12201171§12—12—1 — koy1b2Carn By =2
S I I

< 5\/ nza)2y1 Ay (Bra)? - prCa - baCora B - (1 — p) Ba - (Ko )22 An(Bar )2

= —5¢/ (k122)*51 A1($12)? - p1Cy - (1 — p2) Bl - (1 — p2) B - (katn)*22A2(0m )?
- —5J k122)20 A (Br)? - iCo - (1= p2) Bal? - (ka2 Az (B )?

= 59/ (k1) (22)2 A1 (12)2 (1) Ax (Br2)? - 71 Cr - (1= po) B2 - (B )?

= 59/ (Aafn)A(22)P A1 (A1 12 (32) A2 (Brz)? - iCr - (1 = p2) Baf? - (Ban)?

= —5{/ (422 (A4 (Br2)* - ;iCr - (1 = p2) Ba? - (Br)?

— —58/((1 — p) Baf (010 (Biz)® - piCi - (1 — po) B - (Bor)?

= —5p1C1(1 ~ p2) B2Sr2 a1

= —kiy12241 ﬁ

(A.32)
P25t Br12S11 By I
Iy = { — T1yy2214; 1;1 L — k2B (1 - pl)—El_l - k1z1C1a41/1E1H
Sl Iy By Sk
- k2y202p2M — kaya2z142 B3 }
Ig S2

< =53/ (k121)%92 A% - (1= p)By - CLBiE} - paC - (kayo) 21 AsfFy

= =5/ (k)2 (k2)2(21)4(32)* A1 AoB5aB3: - (1 = p1) By 32Ca - (1= p1) Buf (A.33)
= =5/ (A2 (A1Bro)*(20) (92 A xR - (1~ p)BLJ? - 1oCo

= 5/ (Ba1)3(Br)* (s} (Ar)* - [(1 = p1) B2 poC

= —561512v/ (p2C2)4[(1 — p1) B1J® - [(1 — p1) B1]2 - p2C
= —5p,Co(1 — p1) B1B21 Bra-
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Sy S L EY nb Iy

111 = —k1y222A1ﬁ12 L _ k122B1(1 —pl)/Bl_2 kit k12201(14 Sl
E, L

vo b I3 Soh B3 33153

— T2yy2Coby catie kay2 Ba(1 “P2)M - kzyzzzAzﬁm 2

by
< —6¢/(kka)? (222)* A1 Ao (B Br2)? - 4,Cui B - baCora B - (1= pr) Ba(1 — o) By
_ —6f/(A2A1B21512)3(22y2)4A1A2(521512)3 (1= p)BiP[(1 — p2) ByJ?

= ~6¢/(AomAup)*  (Burro) - [(1 = p)BI(L - po) Bal?

= —63/[(1 = p)Ba(L = p)BiJ* - (BuBa)® - (1 = p) B2(L ~ 1) Bul?

= —6(1 — p2)B2(1 — p1) By fa1 Pra-

(A.34)
Substitute (A.24)-(A.34) into (A.23) and combine (A.22) and (A.14), we get

dVv
E?SV1+V2+V3§0-

Furthermore, % = 0 if and only if S; = S}(i = 1,2) and equalities hold in (A.24)-
(A.34). Thus it implies

EizaE;, I,—zalf, 7:21,2,

where a is an arbitrary positive number. Substitute S; = S}, E; = aE], I; = ol into
the first equation of (A.1)

0= A1 —a[BiSTI] + Bi12S713] — (dv +0)ST. (A.35)

By (A.2), we know that (A.35) holds iff a = 1, namely at P*. Therefore, the only
compact invariant subset of the set where V = 0 is the singleton {P*}. By the
LaSalle Invariance Principle, P* is globally stable in f‘ This completes the proof
of Theorem 5.2.

Remark:

The above proof is complicated. A simple proof can be done using the similar procedure

as later part in Appendix B.
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Appendix B. Two proofs of GAS of
P* for Theorem 7.1 and Theorem

8.1

In the subsequent proof, we use notations , A, Ay instead of (1 — ¢, — g2)7, 17, gom
as appeared in model (7.1). We also incorporate terms 67" and vI" of model (8.1) in
our unified proof for the GAS of endemic equilibrium P* of both models. Thus the
combined model of (7.1) and (8.1) is

X' =7n—BXT —dxX + T,

E' =\ +BXT +~T — (dg +w)E,
L'=X+(1-pwE~(d,+v)L,

T = pwE +vL— (dr+a+6+v)T.

(B.1)

Preliminary: Let X = S + /3, the first equation in (B.1) becomes,

S =X =r—PB(S+8/8)T —dx(S+6/8)+ 6T
= (r — dx6/8) — BST — dxS.

Thus the feasible region I' is reduced to [', which is defined as

A
Fr:{(S’EvL’T)ERiIOSSSL—Q,O§S+E+L+T§”—_+)‘1_+ 2 5}
dx 0 d 3

and endemic equilibrium P* becomes P* = (§* E*, L*, T*). Similarly

E' =M+6(8+6/8)T +~T — (dg +w)E
=M+0ST+ (0 +7)T — (dg +w)E.
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The other two equations don’t involve with variable X, so the original system (B.1)

becomes

S’=7r—dx5/ﬁ—ﬁST—dXS,
E' =M\+08ST+ (0+7)7T — (dg +w)E,

(B.2)
L'=X+(1—-pwE - (d,+v)L,
T' =pwE +vL — (dr + a+ 6+ )T,
and the endemic equilibrium satisfies the following equations
(m —dx6/B) = BS*T" + dx S,
A S*T* + (6 T* = (dg + w)E",

Az + (1 - plwE” = (dp +v) L7,

pwE* +vL* = (dr+a+ 6 +7)T"
Let P* = (S*, E*,L*,T*) be the endemic equilibrium of model (B.2). Then for the
endemic equilibrium P* of (B.2), we have the following result.
Theorem B.1. The system (B.2) always has a unique endemic equilibrium P =

(S*, E*, L*,T*) which is globally asymptotically stable in the reduced feasible region I',..
Proof: Set z(t) = (S(t), E(t), L(t),T(t)) € ', C R4. Consider the Lyapunov function

V(z) =V(S,E,L,T) = AS-S8" -S*In %) +B(E-E ~E'In E*)

L
+ O(L~L =Ll ) + D(T - T" = T*ln ),
where J
Amp= PV o gt (B.4)
dE'+Ld

are positive constants and (S*, E*, L*, T*) is the endemic equilibrium P*. We note that
the function V (z) is positive definite with respect to z* = P*. The derivative of V (t)
along the solution (S(t), E(t), L(t), T(t)) is

S* E* L T
f — A 4 _ 7 B / _ 4 / . 4 ! _ 7 . .
V= A(S' = 5S) + B(E = =E) + C(l = L)+ DT’ = =T (B.5)
Using system equations (B.2) and the first equation of (B.3), we could simplify

S — %s’ = (7 —dx8/B) — BST — dxS — (r — dxé'/ﬁ)% + BS*T + dx S*

*

S
= (BST" +dx5") ~ BST —dxS — (BS"T* + dxS*) - + BS"T +dx 5"

s S BS*T*S*
= T — 3ST «fo_ 2 2 o _ 2 7 Y
B8S*T) — BST + dxS (2 5 SS + B8S*T 5
< [ﬁS*T]—ﬂST+6S*T*—ﬁ———§ )

(B.6)
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*

since 2 — 55 < 0. Similarly, using (B.2), we have

S+ S
E*
E — EE’ =M +BST+ [0 +7)T) - (de+w)E
ME* BSTE® TE* .
— — - d E
L — —ELI = )\2 + [(1 - p)LUE - (dL + l/)L]
ApL* EL* . (B.7)
7 —(1-pw 7 + (dp + v)L",
T*
T — -T—T’ = [pwE + vL — (dy + a + 6 + )T
ET™ LT
—pw —v +(dr+a+d6+y)T".

T T
Substitute (B.6), (B.7) into (B.5) and use (B.4), V' is rearranged as

V' =[ABS* — A0 +v) — D(dr + a+v+6)[T
+ [AﬁS*T* + AM + A(ds + w)E* + Cha + C(dy, + v)L* + D(dp + a + v + 5)T*]

BS*I*S* M E* BSTE* (0 +~)TE”
+[—A e
Ao L* (1 -pwEL* pwET™ vLT*
—C ¢ L D=7 D=7 ]
=W+ Va+ Vs
(B.8)
Furthermore,
T
Vi=ABS*— A6 +v) — Dldr+a+v+0)|T = —[A\ + Aav] . (B.9)

T*
In fact we get it as follows. Combine the last two identities of (B.3) and cancel the L*
term
Av+ (pdp + V)WE™ = (dp + v)(dr + o+ 8 + )T, (B.10)

then combine (B.10) and the second equation of (B.3) and cancel the E* term, we have
(pds +v)wh +BS* T + (6 +7)T"|+ Av(dp+w) = (dp+w)(de +v)(dr +a+8+7)T".

Divided by (dg + w)T™ both sides and use notations, we have
(pde +v)w A+ BS*T* + (6 + )T N AoV

=(dL+v)dr+a+d+7),

(dE + w) T+ T+
which is
)\1 " )\21/
AF+AﬁS +A(6+7)+F=D(dT+a+6+7). (B.11)
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Rewrite (B.11) as
A\ C

ABS" + A8 +7) = D(dr +a+6+7) = -2 — 22

(B.12)

For (B.12), times variable T both sides, which gives V;.

Note that V, in (B.8) is a positive sum of constants. V3 is the sum of negative
nonlinear fraction term. Now we simplify the constant term V. Using (B.11) and the
second and third endemic equilibrium equations of (B.3) and C = v, D = di, + v, we

could simplify V, as

Vo = 2485*T* +2AM + A6 +4)T* 4+ 2CA + A(dg + w)E* + C(dy + v)L”
3ABS*T* + 3AM + 2A(0 +7)T* +2CAy + C(d, + v)L*
= 3ABS*T* + 3A\ +2A(6 +7)T* +3CA + (1 — p)CwEk™.

And note ) p
= S g )
_ p—ldL—Tp):A[ﬂS*T* A+ G+ )T,

by the definition of A. Define

p(dL+U) (]. —p)U
=" 7 b= , +b =1, , b . 1
a d+v 1 i+ ap 1 a >0 b >0 (B 3)

thus

Vo = 3ABS*T* + 3AN +2A(6 +7)T* + 3CAy + A0 [BS*T™ + A\ + (6 +7)T7]

Also note from the second endemic equilibrium equation of (B.3)

AL+ B8 + ((5 + ’Y)T* = (dE + W)E*,

we define \ ST (5 )
M g BT g 0T
ﬁl—(dE‘i‘W)E*, ﬁz_(dE+w)E*7ﬂ3_(dE+w)E*y (B14>
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thus B1 + B2+ B3 = 1and B; > 0, i = 1,2,3. From the second and third endemic

equilibrium equations of (B.3), canceling the E* term, we get

v(dy +v)L* = g(ld—;f-)T)P‘l +BS T + (6 + 7)T™] + Aav

(1-plv (pdg+v)w . (B.15)
e p (dE+w){1+ﬁ + 0+ 7T+ A
= DA + BS* T + (5 + )T + dov.
Define
b1 AN hABS T b AG+TT e (B.16)

S r ol P T vld e T A+ )L ™ v(d + )L
Here Zle m =1and n >0, i =1,2,3,4. Now regrouping V3 and V; in (B.9), we get

i+Vs
BS*T*S* M E* BSTE* (0 +v)TE* Ao L*
A= — 475 A—5 A—F C
(1 - p)wEL* pwET* vLT* MT AT
-C L D=7 b=—-4AF T+
S*T*S* ME* STE™
—A(a1+b1)@_s_—A(a1+b1) 1 —A(a1+b1)ﬁ E
O+ ) TE* A L* 1—-pwEL*
— A(a +b1)( Z?) -C2 B +ﬂ2+ﬁ3)(—pl)l—
ET* vLT™ MT AT
— DBy + o + Bs) —D(n1+n2+n3+774) 7~ Alay +b) o — -
ﬂS*T*S* BSTE" (1 - plwEL* vLT*
—-A — Ab — D
{ b 1 E CB, I N2 T
T* * * E'T*
+ Aa1 /BS 5 Aa1 IBSTE - Dﬂzpw
E T
+{ ta, OFNTE 5+7 TE _Dﬂspng }
TE* 1-— EL* LT*
+{ Abi(6+ ) —Cﬂs———( Pl ~ Dn” }
L T
A1 E* AT 1-— EL* LT
+{ —Ab g N g QT PWBLY v
T+ L T
A E* )\ T ET™
+ { Aa1 — A a) —— — D,Blpr }
T /\ L* LT*
{ & L D”“V T }
=h+ L+ L+ 1+ s+ 1+ 17
(B.17)
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Combine Vi, V5 and V3, we have

dV
A Va &+ Vi
o Va+V3+ V)

7
= (3a1 + 4b1)(ABS*T™ + ANy) + 3Che + (201 + 3b) A +7)T* + D I;
=1 (B.18)
= [4b1A,BS*T* + Il] + [3@1A,BS*T* + 12]

+ (201 A(0 + V)T™ + Is] + [301A(6 + )T + 1]
+ [4b1AA1 + [5] + [30,114/\1 + 16] + [30/\2 + I7]

Applying the inequality
L1+ Zyg+ -+ Tn

n

we want to show that V4 + V; + Va3 < 0. Using the definition of A, C, D, (B.13), (B.14),
(B.16), we obtain the following group of inequalities.

anl'Z'Z"'zna ($i207i=1727"'an),

4 ABS™T* + Iy
< 4byABS*T* — 4/ Ab BS*T*S* - Ab|BE* - CBa(1 — p)wL* - DnpvT™
= 4b ABS*T™ — 4/(Ab3S*T*)2 - (1 — p)Cw - B2 E* - DumpL*

(1 —p)v (pdy, +v) (B.19)

de+V dg +w

= 4b, ABS*T" — 4(/ (Ab,BS*T*)? “ Bs(dp +w)E* Dun,L*

= 4b ABS*T* — 4/(Ab,BS*T*)2 - by - A- BS*T* - by ABS*T™
= 0.

Similarly we have

BGIA,BS*T* + 12
< 30, ABS*T* — 33/ Aa,8S*T*S* - Aa,BE* - DBypwT*
= 3a,ABS*T* — 3Y/[Aa,BS*T*]? - pDw - B, E*

Pl +v) (pdy +v)w (B.20)
pdr +v dg +w
= 30, ABS*T* — 33/[Aa,BS*T*)? -a; - A- BS*T*

=0.

= 30, ABS'T* — 3{/ [Aa, BS*T+)2 Bo(dp + w)E*
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20, A(5 +7)T" + I3

< 201 A(6 +)T* — 2/ Aa, (0 * . DFspwT*
=20, A(6 +)T* — 2v/Aa, (8 +7)T* - pDw - B3 E*
— 20, A(6 +7)T" — 2\/ Aay(6 + )T - p;ji j: Z) - (pjz : g W By(dp + w)E*
=20, A6 + T = 2/Aa, (6 +7)T*-ay - A- (6 + )T
=0.
(B.21)
36 A6 +7)T* + 1,
< 30, A(0 4+ )T™ — 3/ Ab (6 + )E* : Cﬁg(l — p)wL* - Dy T™
= 30, A(6 +)T* — 3/ Ab, (6 (1 —p)Cw - B3E* - D L*
= 30, A + )T — 3\/ Aby (5 + )T ; T +)V (pz : ’;)“’ Bs(dg +w)E*DunsL*

= 3b,A(6 + )T =3/ Aby (6 +7)T* by - A- (8 +7)T* - A(6 +7)T*

=0.
(B.22)
abyAXy + I

< 4bi AN — 4/ Ab M E* - Ab A, - Dy - CBi(1 — plwl®
= 4b, A\ — 43/ (Ab))2 - (1 — p)Cw - BLE* - DmyvL*

B.23)
1- dr, + v)w . . (
= 4b AN, —4</(Ablxl)2- ;d f): : (pd,;w) - Bi(dg + w)E* - mDvL

L

=4b AN — 4/ (AbA)2 by - AN - Ab
=0.

3a1AX + Ig
< 3a1AN — 33/ Aay M E* - Aay ), - DfBpw
= 3a1A)\1 - 3\3/(14611/\1)2 'pr . ,BlE*

p(dr +v) (pds +v)w (g + w)E" (B.24)
pdr, +v dg +w

= 3a1A/\1 — 3\3/(14(11)\1)2 s Ay A- )\1
=0.

= 3(11A)\1 — 3\3/(1401/\1)2 .
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3C\s + I; < 3CAy — 33/CAsL* - Ao - Dy
=3CAy — 3¢/ (Cr)? - myDvL*

(B.25)
=3CAy — 3¢/ (CAg)?2- CAy
=0.
Substitute (B.19)-(B.25) into (B.18), we obtain that V3 + V3 < 0 and thus
av
— =Vt VitV <0 (B.26)

Furthermore, Cil_‘t/ = 0 if and only if equalities hold in (B.19)-(B.25). Therefore % is
negative definite in Int I" with respect to the endemic equilibrium z* = P*. This implies
that the basin of attraction of P* contains the interior of I'. The positive definiteness
of V(z) with respect to P* implies that P* is also locally stable. This completes the

proof.

Another proof using the graph-theoretical approach

We can simplify the proof of GAS of P* using the graph-theoretical approach we
developed in Chapter 1.
From (B.3) we have
ABS*T* + BM + B0 +9)T*+ Che = D(dr + a+ 0 +v)T™, (B.27)

where A, B,C, D are defined in (B.4). From (B.6) and (B.7) we want the following
always hold:

0 [—A+ B|BST,
0 = [C(1-pw+ Dpw — B(dg +w)|E, (B.28)
0 = [Dv-C(d,+v)|L.
for all values of S, E, L, T. And it is also true for §*, E*, L*, T*. Then (B.28) becomes
ABS*T* = BpS*T*,
C(1 — p)wE* + DpwE* = B(dg+w)]E", (B.29)
DvL* = C(dp+v)L*
Multiply B, C, D both sides at the last three identities in (B.3), we have
BAy + BAS*T™* + B(6 + )T = B(dg + w)E",
Chy +C(1 — p)wE* = C(dr, + v)L*, (B.30)
DpwE* + DvL* = D(dr + o+ 6 + v)T™.
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Use (B.30), (B.28) and (B.29), we have

(

ABS'T* = BBS*T*,
BM\ + BBS*T" + B(6 +~)T" = C(1 — p)wE" + DpwE",

(B.31)
Ch+ C(1 — p)wE* = DvL*,
| ABS*T* + BM\; + B(6 +v)T* + CA\y = DpwE" + DvL*.
Consider A, B, C, D are variables, we get a linear system
Bs*T* —B5*T* 0 0 A
0 A+ 0S5 T*+ (6 +v)T* —(1 - pwkE* —pwE* B 0
0 0 Ay + (1 — plwE* —vL* Cc '
—BS*T* -\ — (0 +7)T* —Ag pwB* +vL* D
(B.32)
Solving (B.32), we have
A=pB5T-wE* [(1—p)pwE" + pAa+ (1 — p)vL7],
B = 35T - wE* - [(1 — p)pwE* + pAa + (1 — p)vL*],
[(1-p)p ph2+ (1 —pwl’] (B.33)

C = BS*T*-vL* - [\ + BS™T" + (6 + )T,
D =BS"T" - Ay + (1 — p)wE"|[A; + BS°T* + (6 + 7)T7].

Using (B.9), (B.8) becomes

V= [AﬁS*T* + AN + A(dp + w)E” + Chg + C(dy + V)L + D(dy + a + 7 + 6)T*

BS*T"S*  ME*  BSTE*  (5+7)TE" T
_ _A _ _ _ =
+[-a=g 5 4 E 4 & ANz
T I* (1-pwEL*  poBET*  vLT”
— MO -0 ot BRE R pre ]
(B.34)
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Use the last three identities in (B.3), (B.34) becomes

V' =2A4BS*T* + 2A\ + A(6 +9)T* + 2CAy + C(1 — p)wE™ + DpwE™ + DvL*

_ AﬂS*T*% - A)\l% - Ags*:r*%%% A+ 7)T*%% - A)\l%
- C)\Q% - cxz% _cq —p)wE*%% _ DpwE*—léi*g - DVL*%I%
_ ABST" (2_ %_ ;%%) b AN (2— EEi— %)
+AG+ )T (1 - %EE) + O (2 - % - Lf) + DvI* (1 _ L£T?>
+C(1 — p)wE” (1 — %Lf*—) + DpwE”™ (1 — g* ]%)
(B.35)

Note coefficients in each term in (B.35) can be regrouped as
A\ = BS™T* - pwE" - Ay - A2+ (1 — p)wE”]
+BS™T* - (1 —p)wE™ - Ay - VLY,
ABS*T* = (BS*T*)* - pwE™ - [Ay + (1 — pwE”]

(B.36)
+(BS T (1 = pwE" - v,
A6 +4)T* = BS*T* - pwE* - (6 +v)T* - [A2+ (1 — p)wE"]
+ 85T - (1 — p)wE" -vL* - (5 +7)T".
Chg =0BS*T* -vL* - Xg- M+ BS™T* + (6 +7)T7),
C(1 - p)wE* = (BS*T*)* - vL* - (1 — p)wE*
) ) ( ) (B.37)

+B8* T - vl - A - (1 — p)wE”
+ BS*T* -vL* - (6§ +y)T* - (1 - p)wE".
DvL* = B8*T* -vL* - Ay - [A + BS*T* + (6 + 7)T7]
+(BS*T*)? - vL” - (1 - p)wE”
+BS*T* - vL* - (1 — plwE* - N
+ 88T - wL* - (1 — p)wE” - (8 + )T, (B-38)
DpwE* = (88*T*)? - pwE* - [As + (1 — p)wE"]
+ BS*T* - pwE* - A\ - [Aa + (1 — p)wE”]
+ BS*T™ - pwE* - (6 +¥)T™ - [A2 + (1 — p)wE™].
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Then we can combine all terms with the same coefficients (expanded in (B.36), (B.37),

(B.38)) into one group
S+ STE* ET*
I< xrx\2 * _ * - - - -
V' < (BS*T*)* pwE* - Mg+ (1 p)wE](3 ST E E*T)
S*

S

STE LT* EL

S ST*E L*T E*L
T E* ET*)

+(BS*T*)?- (1 — p)wE* -vL* (4

+BS*T* - pwE* - (6 +7)T" - [A2 + (1 — p)wE”] (

2T E BT

E* T ET
+BS T - pwE* - Ay (Mo + (1 — pJwE” (3————*——*—)
[ ] E T~ ET (B.39)
Ex T LT EL*
* *2‘ _ * * e — — —
+(BS*T*)* - (1 —p)wE* -vL (4 T T E*L)
T L* LT
ST ULE A, - > T (3—m——— =
+ BS* T - vL* - Mg+ M+ BST* + (6 + ) ](3 ™I UT)

LT EL TE*)

+BST - (1 — p)wE* - vL* - (5 + )T (

<0,

by applying the inequality seven times

1+T2 4+ +Z > YTy Ty T,, (2;20,1=1,2,---

n

The results are same as that in (B.19)-(B.25).
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