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“Stability is an absolutely universal attribute o f nature and therefore it has 

to be reflected in the basis laws o f nature. I f  the knowledge can be constructed 

on the basis o f small perturbations then scientific thinking could be based 

on some type o f Lyapunov function. In any case this function always exists 

from postulate o f stability.”

Chetaev, 1936
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A bstract

Part 1 of this thesis contains our contribution to m athem atical methodology. We 

introduce a new approach to the m ethod of global Lyapunov functions using graph 

theory, and dem onstrate the approach through two heterogenous epidemic models: 

a multi-group SEIR model and a multi-stage model. The uniqueness and global 

stability of endemic equilibria of the n-group SEIR model has been a well-known open 

problem in m athem atical epidemiology. This open problem is completely resolved in 

the thesis (Theorem 2.3, p36) for the first time. More and more research activities 

in m athem atical epidemiology are directed at heterogeneity in disease transmission 

dynamics. We expect th a t the graph-theoretical approach described in the thesis will 

see a much wider range of applications.

In Part 2, we investigate the transmission dynamics of tuberculosis (TB) using 

m athem atical models. TB is an old infectious disease th a t saw an alarming global 

resurgence since the 1990s. Many factors have contributed to the comeback of TB and 

they have been well studied in the literature. In this thesis, we focus on the issue of 

global spread of TB through population migration, and investigate the impact of the 

immigration from developing countries on the TB incidence of developed countries. 

We propose a multi-group model to investigate the TB transmission dynamics among 

a population in a high TB incidence country, a population of immigrants and a local- 

born population in a developed country. Such a model is new in the literature, and 

the global dynamics are completely established (Theorem 5.3).
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We carry out two case studies using our model to analyze TB da ta  from Canada 

and the UK. We dem onstrate th a t the cross-infection from immigrants to local-born 

can be a significant factor for the TB incidence in the local-born population. The 

effects of such a cross-infection may not be obvious when the TB incidence among the 

immigrants is low, as in the case of Canada. However, we show that, if the TB incidence 

among immigrants is sufficiently high, as in the case of the UK, the cross-infection can 

significantly change the TB trend in the local-born population. Our analysis on the 

recent TB trend in the UK confirms a hypothesis raised in a UK government TB report 

[64]. Im pact of other im portant factors on the TB dynamics such as latency and loss 

of immunity are also investigated in the thesis.
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C hapter 0. In troduction  and T hesis  

Sum m ary

The impact of infectious diseases on human, animal and wildlife is enormous, both in 

terms of suffering and in terms of social and economic consequences. From well-known 

diseases like plague, cholera, tuberculosis, pneumonia, gonorrhea, smallpox, malaria, 

measles to recent West Nile virus (1937), Lyme disease (1975), HIV/AIDS (1981), 

hepatitis C (1989), hepatitis E (1990), avian influenza( 1990s), hantavirus (1993), SARS 

(2003) etc, there are no exceptions tha t they caused huge morbidity and mortality. 

Although great advances have been made in vaccination and medical treatm ent since 

the last century, emerging and reemerging infectious diseases still present an increasing 

risk on a global scale, see [2, 17, 69].

According to the transmission agents of infectious diseases there are several 

classes of transmission types [2], One is th a t diseases are transm itted  by viruses, 

such as influenza, measles, rubella, chickenpox, usually conferring immunity against 

reinfection. Another is th a t diseases are transm itted  by bacteria, such as tuberculosis, 

meningitis and gonorrhea, conferring no immunity against reinfection. O ther agents 

are protozoa, helminths and prions [69]. It is evident th a t prions are the main causes 

of bovine spongiform encephalopathy (BSE), Creutzfeldt-Jakob disease (CJD). A more 

severe situation now facing humans is tha t the infectious diseases are transm itted  from 

animals to humans. SARS, avian influenza and monkeypox have jum ped from animals 

into human populations. This led to a great challenge in understanding and controlling 

infectious diseases. The following graph provides an illustration of cross-interactions 

among human, wildlife and domestic animals diseases (see Figure 0.1).

1
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Figure 0.1: Interactions between human, wildlife and domestic animals emerging 

infectious diseases (EID). Source: Daszak et al Science 2000.

M athem atical epidemiology concerns with modeling the spread of infectious diseases 

in host populations. One of main goals of m athem atical epidemiology is to understand 

how to  control and eradicate diseases.

Earlier in the 18th century, Daniel Bernoulli made one of the first m athem atical

[11, 69, 109]. Since Bernoulli, more and more m athem aticians and scientists have 

joined in and offered many practical insights into infectious diseases control. The first 

contribution to modern m athem atical epidemiology are due to P. D. E n’ko between 

1873 and 1894 [38]. In 1906, Hamer developed a discrete model to study the recurrence 

of measles and mass-action principle was introduced for the first tim e [61, 109]. Ross 

in 1911 formulated a differential equation model of malaria [69]. Beginning in 1927, 

Kermack and McKendrick studied compartm ental models of disease transmission in 

their three famous papers and they first derived out the well-known threshold behavior 

for epidemic models th a t the density of susceptibles must exceed a critical value in 

order for an epidemic outbreak to occur [69, 82],

Since the Kermack and McKendrick’s deterministic com partm ental models of 

communicable diseases described by ordinary differential equations (ODEs), the 

mathem atical tools used in epidemiology modeling have evolved into a more broad field

0.1 M athem atical epidem iology

contributions to infectious diseases control by developing a model of smallpox

2
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of mathematics. The models described by ODEs usually assume th a t the time spent in 

compartm ent is exponentially distributed. For many diseases, hosts spend a fixed time 

in a compartm ent. This gives rise to a differential-difference equation model. Moreover, 

an arbitrary  distribution can be assumed of time spent in a compartm ent, leading to 

integral equation or integro-differential equations [17]. Epidemiological models with 

spatial structures have been used to describe the spatial heterogeneity and the spatial 

spread of infectious diseases by diffusion-type partial differential equations (PDEs). 

One of such examples is the study of fox rabies [2 , 69]. Spatial models with dispersal- 

kernels are formulated by integral equations with kernels describing daily contacts of 

infectives with their neighbors. Described often by integral-differential equations, age- 

structured epidemiology models with either continuous age or discrete age groups are 

used to  model the age-related mixing behaviors of infectious diseases such as measles 

and HIV/AIDS (see survey paper [69]).

In contrast with deterministic epidemic models, stochastic epidemic models 

including, discrete time, continuous tim e Markov chain models and stochastic 

differential equation models are brought forward in the last several decades [5]. Other 

related m ethods have chain binomial epidemic processes and branching epidemic 

processes [1]. Stochastic models are generally more difficult to analyze than their 

deterministic counterparts. A more detailed discussion on the advantages and 

limitations of different types of epidemic models is given in [71].

More recently, a new strategy of modeling heterogeneity of contact patterns of 

infectiousness, contact network epidemiology appeared with ideas different from 

conventional methods. In modeling more complex contact patterns of infectious 

diseases, new strategy is based on contact network involving with the ideas from graph 

theory (see survey paper [109]).

For many infectious diseases, the epidemic models can be very complicated and 

this usually leads to the study of m athem atical models with heterogeneous features. 

Heterogeneity exists in many aspects of disease transmission processes: heterogeneous 

spatial distribution of host populations, heterogeneous susceptibility among age groups, 

heterogeneous social behaviors among groups for sexually transm itted  diseases, and 

multi-hosts for many diseases such as West Nile virus and Avian flu. Heterogeneity 

produces complexity in the transmission processes of diseases. It has been a prime 

subject of m athem atical modeling in the past two decades, and the research has

3
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intensified in recent years. Due to the extremely large scales of the resulting models, 

rigorously establishing their global dynamics poses a great m athem atical challenge.

M athem atical modeling is an im portant tool in studying a diverse range of infectious 

diseases, and has proven successful in investigating disease transmission dynamics to 

gain better qualitative and quantitative understanding of the mechanisms of disease 

transmission processes. Such an improved understanding can help public health 

authorities to make more reliable predictions and to better evaluate disease prevention 

and control strategies (see [69, 2] for details).

In this thesis we deal with the transmission dynamics of infectious diseases in 

heterogeneous populations described by deterministic models using ordinary differential 

equations.

0.2 Com partm ental m odels

The spread of infectious diseases in a population can be described mathematically 

using compartm ental models. Disease transmission is a dynamical process driven by 

the interaction between the susceptible and the infective. In com partm ental models, 

the to tal population is divided into distinct compartm ents according to the disease 

status such as susceptible (S'), exposed (latent) (E),  infectious (I) and recovered (R ) 

compartments, as shown in Figure 0.2. The to tal host population is N  — S  + E  + I  + R.  

All newborns or immigrants are assumed to be susceptible. W hen there is an adequate 

contact between a susceptible and an infective so th a t transmission occurs, then the 

susceptible enters the exposed class with a waiting time -  latent period. After the 

latent period ends, the individual enters the class of infectives, who are infectious in 

the sense th a t they are capable of transm itting the infection. W hen the infection period 

ends, the individual enters the recovered class with perm anent or tem porary immunity 

[6 8 , 69].

The transfer terms eE,  7 1 , 6R,  correspond to exponentially distributed waiting times 

in the corresponding compartments. So, 1/e is the mean latent period, I / 7  is the mean 

infectious period, 1/(5 is the mean immune period. The recruitment term  of births or 

immigration 7r maybe be either a constant or a function of to tal population. The 

natural death or emigration appears in all groups and an extra death rate is necessary 

if the disease is death-related.

4
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Figure 0.2: Flow diagram of an SEIR model.

The horizontal incidence term  A is the infection rate of susceptible individuals 

through their contacts with infectives. Two commonly used incidence forms are simple 

mass action form, (3SI, also called bilinear incidence, and standard incidence form, 

/3 S I / N , also called proportionate mixing incidence. If (3 is the average number of 

adequate contacts (i.e., contacts sufficient for transmission) of a person per unit time, 

then (31 / N  is the average number of contacts with infectives per unit time of one 

susceptible, and ((31 / N ) S  is the number of new cases per unit time due to the S  

susceptibles. This formulation leads to standard incidence forms [69]. For simple 

mass action law (3SI, it is assumed th a t the average number of contacts capable of 

transm itting the disease th a t an individual makes with infectious individuals per unit 

time, is proportional to the number of infectives. Here (3 reflects the likelihood th a t an 

infectious case will successfully transm it the infection to a susceptible individual. For 

the difference between these two incidence forms, we refer the reader to [6 8 , 69, 106].

Based on this basic SEIR model and flow patterns between different compartments, 

many other related models can be derived out such as SEIRS, SEI, SEIS, SIR, SIRS, 

SIS, SI models depending on the characteristics of the particular disease being modeled 

and the purpose of the model. For example, SEIRS model is suitable for influenza and 

SEIR model for measles.

Many possible forms of the incidence, demographic structures and epidemiological- 

demographic interactions can be added into the epidemic models. So the 

epidemiological compartm ent structures vary from very simple to quite complicated. 

For instance, the epidemic models can include vertical transmission, age-dependent 

or age-specific disease transmission, infection class age, variable infectivity, cross 

immunity, intercohort transmission, short infectious period, optimal vaccination 

patterns, heterogeneity and structured mixing etc (see survey paper [5, 69]).

5
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0.3 Threshold - the basic reproduction number

A primary goal of public heath is to bring disease from above an epidemic threshold 

value to  below the threshold value, thereby eliminating the threat of a large-scale 

epidemic. This can be achieved through interventions th a t either directly impact the 

transmission of the pathogen (transmission reducing), modify patterns of interaction 

so th a t the pathogen can not easily spread through the population (contact reducing), 

or immunization segments of the population (immunizing) [109].

The threshold for many deterministic epidemiological models is the basic 

reproduction number, which is defined as the average number of secondary infections 

produced when one infected individual is introduced into a host population where 

everyone is susceptible [2]. The basic reproduction number is also called the basic 

reproduction ratio denoted by R 0. An infection can start in a fully susceptible 

population if and only if the R q is greater than one. In this sense, the basic reproduction 

number is often considered as the threshold quantity which determines when an 

infection can invade and persist in a new host population. A detailed explanation 

can be found in [2, 69, 135].

In Section 0.2, we consider a standard SEIR model with bilinear incidence rate (3SI, 

constant birth  rate 7r and death rate d. The model has the basic reproduction number

d + t d + 7

where (3 is the average number of effective contacts by a single infective per unit time 

in an entirely susceptible population. The fraction t / ( d  +  e) is the probability of an 

infected to survive the latent period. The last part l / ( d + 7 ) is mean infectious period of 

individual in the infective class and alive. So for the SEIR model, if R q > 1, the disease 

will invade the population. If R 0 <  1, the disease will die out in the population. In 

other words, if R q >  1 , then each infected individual will transm it disease to  a t least one 

other individual during the infectious period, and the model predicts th a t disease will 

spread through the population. If not, then the disease is expected to fizzle out before 

reaching a substantial fraction of the population. Thus R q is a critical epidemiological 

value. For most epidemic models, the threshold value exists and the following criteria 
is stated in [37].

T h reshold  Q uantity: The disease can invade population i f  Rq > 1, while it can 

not i f  R 0 < 1.

6
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Threshold criteria says tha t if R q > 1, then the disease can invade in population 

and after a long tim e period, the infective individuals or the infective fraction in the 

whole population keeps constant. This situation is called endemic and in m athem atical 

epidemiology it is described by endemic equilibrium. In contrast th a t if Rq <  1, the 

disease can not invade in population. This means th a t all the infective individuals will 

be extinct and the whole population is susceptible; the disease dies out finally in the 

population.

While for some epidemic models with extra immigration fraction into latent class 

E  or infectious class I , the threshold behavior doesn’t exist [16, 104]. In the case 

of presence of backward bifurcation in the model, multiple equilibrium situations 

are possible and thus the disease can persist in the population even if R q < 1 

[4, 54, 104, 134].

Mathematically, the basic reproduction number can be derived by several methods. 

The most general m ethod is by linearization at the disease-free equilibrium, based 

on the local stability of disease-free equilibrium. Other ways are based on the 

existence of endemic equilibrium and local stability of endemic equilibrium. For many 

epidemic models of infectious diseases with features of heterogeneity such as multi

group transmission, m ulti-strain infectivity, proportionate mixing, age structure etc, 

the next generation operator approach has also been used to derive out the basic 

reproduction number, which is defined as the spectral radius of a next generation 

m atrix th a t is related to the Jacobian m atrix at the disease-free equilibrium. For the 

general theory and derivation of next generation m atrix approach, we refer to [37, 135]. 

In Chapter 2 and Chapter 3, a similar way is used to find out the basic reproduction 

numbers for a class of multi-group models and a general class of multi-stage progression 

models.

Although it is worthy to note th a t threshold behavior determines not only 

when the local stability of the disease-free equilibrium switches, but also when the 

endemic equilibrium persists in the population, the global behavior of the disease-free 

equilibrium or endemic equilibrium requires further analysis to determine.

7
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0.4 Global stability

Consider the nonlinear system

x' = f ( x )  (0.1)

where x  6  E , an open subset of M" and /  : E  —> M" is C 1. Let x(i; x 0) be the solution 

to (0.1) satisfying the initial condition x(0) =  xo and <j)t : E  —► M" be the flow of 

(0.1) denoted by 0t(xo) =  x (f;x 0). A point x  is called an equilibrium point or critical 

point of (0.1) if f ( x )  = 0. A point p  6  E  is called an uj-limit point of x(t\ xo) of (0.1) 

if there is a sequence {tn} such th a t lim „_0Of„ =  oo and lim ^.* , x(fn; xo) =  p ■ All 

cu-limit points of the solution x (f;x 0) is denoted by a set w(xo), which always tell the 

long-term behavior of the solution through x0.

An equilibrium point x  6  E  of (0.1) is said to be locally stable or simply stable if, for 

each neighborhood U of x,  there exits a neighborhood V  of x  such th a t x ( t , V )  C U 

for all t > 0. The local stability of an equilibrium point x  can be routinely verified by 

definition or by linearizing (0.1) at x  and using Routh-Hurwitz Criteria.

An equilibrium point x £ E  of (0.1) is said to  attract points in a neighborhood 

W  if x(f;xo) —»• x  as t —> oo for each xo 6  W . An equilibrium point x  is said 

to be asymptotically stable if it is stable and a ttrac ts  a neighborhood. The basin o f 

attraction of x  is the union of all points which it a ttracts. An equilibrium point x  is 

said to be globally asymptotically stable or simply globally stable with respect to an 

open set D  C  R" , if it is asymptotically stable and its basin of attraction contains D  

(see [94]). Note th a t if x  is globally stable with respect to D , then x  is necessarily the 

only equilibrium in D. The proof of global stability is nontrivial m athematically and 

difficult in practice.

In the study of epidemiology, an im portant aspect under consideration is to 

investigate the long-time behavior of the system. It is desirable to determine whether 

the disease goes to a steady state (disease-free or endemic), whether periodic oscillations 

appear or whether there is other behaviors [101]. So for the simple case, i.e., if 

iu(xo) =  {p}, then cu-limit set contains only one equilibrium point p, then we can 

make a conclusion th a t the disease will eventually go to the steady state, a t the same 

time, ruling out the existence of periodic behaviors.

There are several ways to rule out periodic solutions in the cu-limit set of the 

systems in the literature. The well-known Poincare-Bendixson’s theorem combined 

with Bendixson’s Criteria or Dulac’s Criteria are the classical results for the planar

8
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systems [53, 116]. In [18], a new condition is proposed based on the application of 

Stokes theorem for 3-dimension system. Due to Hirsch [73], Sm ith[123] and Muldowney 

[111], the Bendixson’s criteria was generalized to  higher dimensions. This was further 

developed and the generalized Dulac Criteria are derived for higher dimensions systems 

in [90, 91, 94, 96]. This m ethod is also called Li and Muldowney geometric approach 

and has been used to solve the global stability problems in several classes of epidemic 

models [54, 92, 93, 94, 95, 101, 104],

An alternative method, the Lyapunov second m ethod dating back to the 1890s, is 

also commonly used in proving stability in high dimensional systems. In next section, 

we will introduce this m ethod in detail.

0.5 Lyapunov functions

The Lyapunov second m ethod have been a standard tool in the analysis of nonlinear 

differential equations and dynamical systems. The following definitions follow th a t in 

[116],

Let /  G C l (E),  V  G C 1(E),  E  c  KB be an open set and let <ft denote the flow of the 

differential equation (0.1). Then, for i G f i ,  the derivative of the function V(x)  along 

the solution <j>t {x) is

V{x)  = ^ v i M x ))\t=o = W ( x )  • f ( x ) ,

where W ( x )  is the gradient of V . If V(x)  is negative in E  then V{x)  decreases along 

the solution (j)t {x0) through x 0 G E.

L yapunov Theorem : Let E  be an open subset o f M" containing x. Let f  G C l (E) and 

f ( x )  = 0. Suppose there exists a real-valued function V  G C l ( E ) satisfying V(x)  = 0 

and V(x)  > 0 i f  x  G E  and x  ^  x.  Then

(i) I f V ( x )  < 0 for all x  G E,  x  is stable.

(ii) I f V ( x )  <  0 for all x  G E  — {x},  x  is asymptotically stable.

(Hi) I f V ( x )  > 0 for all x  G E  — {x}, x is unstable.

A function V  : K” —► R satisfying hypothesis (1) of the above Lyapunov theorem is

called a Lyapunov function. Lyapunov’s theorem was further extended as the LaSalle’s

9
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Invariance Principle [89]: if this only requires V  <  0 in E , then all omega limit sets of 

(0.1) are contained in the maximal compact invariant subset K  of {x 6  E  : V(x)  = 0}. 

In particular, if E  is positively invariant and K  = {x}, then x(t, x0) —► x as t —> oo. 

We note th a t this also implies the local stability of x, since otherwise K  would contain 

a non-constant full orbit.

Global Lyapunov functions are extremely useful especially in n-dimensional systems 

(>  3) when they exist. It is known th a t Lyapunov functions are often difficult to 

construct since there are no general approaches for their construction.

Lotka-Volterra systems are widely studied in both ecology and other fields and many 

types of Lyapunov functions related are proposed (see review paper [118]). B. S. Goh 

in 1977 [51, 52] constructed a special form of global Lyapunov functions when studying 

global-stability problem for a generalized Lotka-Volterra systems [8 ]. Goh constructed 

the following Lyapunov function:

v (x)  =  ^ 2 ci ( x t  -  x* -  x* In  , (0 .2 )
< = l  V X i '

where x t > 0  is the i-th  variable and x* >  0  (i =  1 , • • ■ ,n ) are positive constants 

and usually they are coordinates of equilibria, c* are positive coefficients and can be 

determined by a linear system. Thus V(x)  >  0 if x  ^  x* and V(x)  = 0 iff x  =  x*. The 

time derivative along a solution of system (0 .1 ) is

1/(1) = X>. ( i -  ! )  4
1 = 1  k  * /

In com partm ental epidemic models, x, denotes the f-th disease status of host individual. 

x* denotes the i-th  component of the equilibrium point.

We remark th a t this class of global Lyapunov functions are very general and 

contains the Lyapunov function for global stability of disease-free equilibrium (DFE), 

Po =  (%i,X2, • • • , xn) =  (1, 0, • • • , 0). Substituting P0 and ci =  0 into (0.2), we see tha t

n

v(p0) = y^cjXj
i=2

since limx._+0+ x* lnx ,/x*  =  0 .

This Lyapunov function has been successfully and widely used in ecological models 

[48, 51, 52, 75] and epidemic models [8 , 22]. It is named the Volterra-Goh Lyapunov

1 0
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function (see [8 ] for more detail). For higher dimensional models, Goh, Capasso, 

Beretta etc used m atrix theory to derive sufficient conditions for the global stability.

Recently, Lyapunov functions of this type were revisited (e.g. [85, 8 6 ]) and

successfully applied to the study of several classes of epidemiological models [55, 56, 

57, 58, 59],

In this thesis, we will further explore the potential of this im portant Lyapunov 

function. We have developed a graph-theoretical approach, which allows us to apply 

this Lyapunov function to several im portant classes of large-scale epidemic models, 

and completely resolve the global stability problem for endemic equilibrium for these 

models.

0.6 Thesis sum m ary

The theme of the m athem atical research in this thesis is the investigation of the 

transmission dynamics of infectious diseases in heterogenous host populations, using 

mathem atical modeling. The thesis is divided into two parts. Part 1 is m athem atical 

methodology. P art 2 is m athem atical modeling of tuberculosis.

Lyapunov functions are widely used in modern theories of differential equations and 

dynamical systems. One reason is their easy application without much discussion and 

direct consequence of global stability for nonlinear systems. Due to  the difficulty in 

constructing global Lyapunov functions, the application in high dimensional systems 

has many restrictions. Because of the increased complexity, the derivative of Lyapunov 

functions are quite complicated. Thus a general and unified m ethod to  deal with this 

difficulty for a large class of nonlinear systems is necessary. In Chapter 1 , we introduce 

a new graph-theoretic approach to the m ethod of global Lyapunov functions using 

graph theory and dem onstrate in detail how our graph-theoretical approach can be 

used to  completely resolve the global stability of endemic equilibria.

In Chapters 2 and 3, the graph-theoretical approach is dem onstrated through two 

classes of large-scale heterogenous epidemic models: a multi-group SEIR model and a 

multi-stage (MS) model. For the first time, we completely prove the uniqueness and 

global stability of the endemic equilibria of the n-group SEIR models, which have been a 

well-known open problem in m athem atical epidemiology. In the mean time, a complete 

framework of our graph-theoretical approach to the m ethod of Lyapunov functions is
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presented to be applied to prove the global stability of endemic equilibria for more 

complicated high-dimensional epidemic models. The multi-stage model is a generic 

generalization of several endemic models with multiple stages. The global stability 

of the endemic equilibria for a high-dimensional MS model with bilinear incidence is 

resolved for the first time.

In Chapter 4, a basic introduction of tuberculosis (TB) is given and previous 

m athem atical compartm ental modeling of tuberculosis is reviewed.

In Chapter 5, we focus on the global spread of TB through population migration 

from developing countries to developed countries to  investigate the impact of the 

immigration from high TB incidence countries on the TB incidence rate of developed 

countries (low TB incidence country). We propose a m ulti-population model to 

investigate the TB transmission dynamics among three populations: a population in 

a high TB incidence country, a population of immigrants from high TB incidence 

countries and a local-born population within an immigration country. The global 

dynamics of the full model is completely established.

In Chapter 6 , based on the 2-population model of TB transmission in an immigration 

country in Chapter 5, we investigate the impact of cross-infection from foreign-borns 

to local-borns on the TB incidence rate of local-born population, and the effect of new 

immigrants with latent TB on TB incidence rate of foreign-born population. Cases 

studies in two countries, Canada and the UK, are carried out using real TB da ta  from 

these countries. Our simulation results establish th a t cross-infection from foreign-born 

population to local-born population plays a key role in the TB incidence of local-born 

population: when the TB incidence of the immigrant population is relatively low, as in 

the case of Canada, TB incidence in local-born population may m aintain its declining 

trend; when the TB incidence in the immigrant population is sufficiently high, as is 

the case of the UK, the TB incidence in the local-born population remains constant, 

or even be on the rise. This result confirms a hypothesis in a government report from 

the UK.

Our studies provide an answer to a public health issue raised in earlier TB studies: 

should Canada continue to commit resources on TB screening of new immigrants, given 

th a t the TB problem in immigrant population has little impact on the TB incidence 

of Canadian-born population? Our studies in Chapter 6  show th a t the cross-infection 

from immigrants to local-born populations can not be ignored. If Canada is to loosen
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the TB screening of new immigrants, especially those from high TB incidence countries, 

then the current scenario in the UK may happen in Canada: not only TB incidence in 

the immigrant population will shoot up, the TB incidence in the local-born population 

will change from declining to going steady, even to  growing.

In Chapter 7, a four-dimensional TB model with new immigrants who have high or 

low risk to develop active TB is proposed to investigate the impact of new immigrants 

in early latent or late latent stage on TB incidence of foreign-born population in 

immigration countries using real TB data  from Canada.

In Chapter 8 , a TB model with partial immunity and relapses is proposed to 

investigate the effects of loss of immunity on basic reproduction number and TB 

incidence rate in a high TB incidence country. Simulations are carried out using real 

TB data  from South Africa.

13
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Part 1 

A  G raph-T heoretical A pproach to  

th e M ethod  o f G lobal Lyapunov  

Functions
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M athem atical models for infectious diseases in heterogenous population typically 

consist of a large number of equations: an n-group SEIR model is a system of 3n 

nonlinear differential equations, where n  is an integer. To establish the global stability 

of disease-free and endemic equilibria of such a system, the only feasible general m ethod 

has been the m ethod of global Lyapunov functions. In applying this method, one needs 

to  determine the sign of the derivative of the Lyapunov function, which is the sum of 

a huge number of signed terms (of the order n n). This turns out to be a very difficult 

task. In the literature of m athem atical epidemiology, the global stability results for 

heterogenous models are few, and m ajority of the existing results are only partial 

results.

In this part, we present a new approach to the m ethod of Lyapunov functions, 

particularly tailored for large scale systems. We show that how results from graph 

theory can be used to characterize the patterns of the term s in the derivative V' 

of the Lyapunov function. Such a pattern  characterization leads to  the most natural 

grouping of terms and the determination of the sign of V ' . For many classes of epidemic 

models, this approach leads to  complete resolution of the global stability of the endemic 

equilibrium. We choose to dem onstrate our approach using two typical and very general 

classes heterogenous models: multi-group models (Chapter 2) and multi-stage models 

(Chapter 3).
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C hapter 1. R esu lts from  Graph  

T heory

In this chapter, some materials from graph theory are presented, they will be the basis 

for our graph-theoretical approach for global stability of endemic equilibrium of general 

compartm ental models for disease transmission. In Section 1.1, basic concepts of graphs 

and directed trees are given. Section 1.2 describes the relationship between square 

matrices and the associated directed graphs. In Section 1.3, we give an im portant result 

from graph theory th a t describes solutions of a linear algebraic system using directed 

rooted trees. In Section 1.4, we describe unicyclic graphs and their weights. We also 

show how unicyclic graphs can be constructed from directed rooted trees by adding a 

directed arc, and their relation to certain products th a t will occur in applications in 

later chapters.

Graph theory has a long history and has been a very powerful tool in applications to 

many different fields arising from science, engineering, even sociology. Recently, more 

and more methods originating from graph theory are applied to epidemiological and 

biological research fields. Keeling and Eames [81] reviewed the relationships between 

networks and epidemic models and some of the ideas of modeling infectious diseases 

come from graph theory directly. In [115], a graph-theoretical approach was used to 

find to patterns among many factors in genomic medicine. In modeling gene networks, 

combinatorial skills help to explore the structures in directed graphs on a n-hypercube 

[40]. Solimano and Beretta [124] used some basic graph ideas to derive global stability 

in predator-prey systems. B. L. Clarke used graph techniques to study the chemical 

reaction networks [30]. In [120], applications of graph theory and combinatorics to 

problems from biological and social sciences were presented. In [119], graph theory 

was used to  simplify and analyze the control problems from industry. In [36], a graph- 

reduction m ethod was used to compute net reproductive value for discrete m atrix
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models. The book of Chen [26] provided a comprehensive and easy-to-use techniques 

for analyzing electrical circuits using graph theory.

1.1 Basic definitions of graphs

Graph theory provides a useful tool to tackle complicated problems occurring in 

completely different fields. In this section the basic vocabulary of graph theory is 

outlined. The definitions and concepts introduced here are needed for the approach 

developed in this chapter. We refer the reader to [26, 110, 119] for more detailed studies 

of graph theory.

A graph is a m athem atical structure which consists of two sets: vertex-set, the 

set of vertices (or nodes, points), and edge-set, the set of edges (or arcs) whose two 

endpoints are vertices. Often a graph is denoted by G, the vertex-set and the edge-set 

by V  = { v i ,v 2, • • • , vn, ■ ■ ■ } and E  =  {e^ e2, ■ ■ ■ , e„, ■ ■ ■ }, respectively. If both V  and 

E  are finite sets, then the graph is called a finite graph. In this thesis only finite graphs 

are considered. The following diagram is a graph with 4 vertices and 3 edges. The 

vertex-set is V  — { S , E , I , R }  and edge-set is E  — {ei, e2, 6 3 }, see Figure 1.1.

s — ^  E e2 » I —    » R

Figure 1.1: A finite graph with 4 vertices and 3 edges.

Any edge may be specified by the vertices th a t it connects. These vertices are called 

end-vertices of the edge under consideration. A self-loop is an edge whose end-vertices 

coincide. Any edge is said to be incident with its end-vertices and two vertices are 

adjacent if they are connected by an edge. The degree of a vertex is the number of 

edges incident with it. An end-vertex of a graph is a vertex of degree one.

By removing some edges and /o r vertices of a given graph G, one obtains a subgraph 

G of G, denoted by G' C  G. The removal of a vertex implies the removal of every 

edge incident with it. The removal of edges, however, does not imply the removal of 

its end vertices.

For the purpose of practical application, it is necessary to consider the graph with 

orientation (labeled graphs). A graph whose every edge is equipped with a direction (or 

orientation) is called a directed graph, for short, digraph. Then each edge has an initial
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vertex and final vertex. It is often useful to assign a number to  each edge of a digraph 

and to call it edge weight. The weight of each edge can also be literal. In this thesis, 

only literal weight is used. Then a digraph augmented in this way is called a weighted 

digraph. A directed graph or digraph is illustrated in Figure 1.2.

S -----£!-► E —  ■ » I — R

t £1 I
Figure 1.2: A digraph or directed graph.

Im portant classes of (sub-) digraph with special structures are paths, cycles and 

trees. A directed path is a sequence of edges {e^e^, ■ ■ • } such th a t the initial vertex 

of the succeeding edge is the final vertex of the preceding edge. The number of edges 

contained in the sequence {e*, e^, • • • } is called the length of the path. A path  is called 

simple if one reaches no vertex more than  once, going along the path  from its initial 

to its final vertex no vertex more than  once. In Figure 1.2, the path  {e i,e 2 ,e 3 } is a 

directed path  with length 3 and is a simple path.

A closed path is a path  whose initial and final vertices are the same. A closed path 

is called a cycle if one reaches no vertex along the path, other than the initial-final 

vertex, more than once. The number of edges contained in a cycle defines the length 

of this cycle. Cycles of length 1 are called self-cycles. Figure 1.3 contains a self-cycle 

{ex} and closed path  {e2, e3, e4, e5} with length 4, see Figure 1.3.

ei

Q
S  ^  E 63 > I e4  ► R

t »_______ |
Figure 1.3: A digraph with a self-loop and a closed path.

A tree is a connected graph tha t has no cycles. A tree with n vertices is usually 

denoted as Tn. A  spanning tree (complete tree) of a connected graph G is a subgraph 

which is a tree th a t involves all the vertices of G. A digraph is said to have a root r  if 

r  is a vertex and, for every other vertex v, there is a path  which starts  in r and ends in 

v. A digraph G is called a rooted tree if G has a root from which there is a unique path 

to every other vertex. The following figure 1.4 is a list of trees with up to  6  vertices.
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Vertices 2 3 4 5

Trees

11

I
1 iy iT r

i

Vertices 6

Trees

\

Figure 1.4: Table of trees with n  vertices (2 <  n < 6 ).

An im portant result of trees in graph theory is the Cayley formula (1889), which 

will be used later in this thesis. For its origin and proof, we refer the reader to [110].

P ro p o s it io n  1.1. (Cayley  formula):  Let T (n)  denote the total number of tree Tn 

with n labeled vertices, for any n, then

T(n) — n n~2. (1 .1 )

A graph is connected if every pair of vertices is joined by a path. A digraph, is 

strongly connected if any two distinct vertices are joined by an oriented path  between 

them.

1.2 A ssociation betw een digraphs and square 

m atrices

The analysis of a general linear system reduces ultim ately to  the solution of a 

simultaneous linear algebraic equations. Directed-Graph Approach is an alternative 
m ethod to conventional algebraic methods of solving the system, by considering the 

properties of certain directed graphs associated with the system. The unknown 

variables of the equations correspond to the vertices of the graph, while the linear
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relations between them  appear in the form of directed edges connecting the vertices 

[26].
The basic idea of associating a directed graph with a linear algebraic system of linear 

equations was first introduced by MASON in 1953 and the graph is called a signal-flow 

graph. Later in 1959 C o a t e s  used flow graph to  represent alternatively the equations 

as a directed graph. The idea of the correspondence between the terms in the expansion 

of a determ inant of a m atrix and the corresponding subgraphs in an associated directed 

graph G(A)  dates back to 1916. Konig first applied a graph-theoretic approach to  the 

evaluations of a determ inant. We refer the reader to [26, 119] for more comprehensive 

studies.

Let A  = (aij) be a square m atrix with order of n. The directed graph G (A ) associated 

with A is a digraph of n  vertices, 1 , 2 , ■ ■ • , n, such th a t there exists an arc (j , k ) leading 

from j  to  k if and only if ^  0. For i j, is the weight of directed arc from 

vertex j  to vertex i, and an is the weight of the self-loop from vertex i to itself, see 

Figure 1.5.

an an an
A = a21 Ctj3 ►

_a3l #32 a33
a.23

Figure 1.5: A square m atrix A  and its associated directed graph G(A).

For n  >  1, an n  x n  m atrix A  is reducible if, for some perm utation m atrix P ,

r p  A\  0
P A P  =

A 2 A3

and A 1 ; A3 are square matrices. Otherwise, A is irreducible. Irreducibility has 

relationship with strongly connected digraphs. Then the following proposition is 
im portant and useful.

P ro p o s it io n  1.2. Square matrix A  is irreducible i f  and only i f  G(A) is strongly 

connected.
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For proof, we refer the reader to [10]. In Figure 1.6, two examples are given to 

illustrate Proposition 1.2.

B =
(1  0 0 ) 

2 3 4 

5 6  7

f \ 2 0^ 

0 3 4

J\ 5 6  7

B is reducible G(B) is not strongly connected

G(B) is strongly connectedB is irreducible

Figure 1.6: Examples of reducible and irreducible matrices and their associated directed 

graphs.

1.3 D irected rooted trees and solutions to  linear 

algebraic system s

Consider a linear algebraic system

where

B  =

B v  = 0,

Y I ltLI P l l  - P 21

~Pl2 Pu

~ P n l

~ P n  2

( 1 .2 )

(1.3)

‘ P lr , 'P2r> P n l
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with /3ij > 0, and v — ( f i , - - -  ,v n)T is a column vector. We have the following 

proposition.

P rop osition  1.3. Assume that the matrix ((3ij)nxn is irreducible and n  >  2. Then the 

followings hold.

(1) The solution space of system  (1.2) has dimension 1.

(2) A basis of the solution space is given by

(V l ,V 2 , • • • , vn) =  (Cn, C22, ■ ■ ■ , Cnn), (1.4)

where Ckk denotes the cofactor of the k-th diagonal entry of B ,  1 <  k < n.

(3) For all 1 <  k < n,

ckk=Y, n (i.5)
T e Tk (j ,h )e E (T )

where Tfc is the set of all directed n-trees rooted at the k-th vertex, and E { T ) 

denotes the set of arcs in a directed tree T.

(4) For all 1 <  k <  n,

Ckk > 0 .

Proof. Since the sum of each column in B  equals zero, we have

Cjk = Cik, l < j , k , l < n ,  (1 .6 )

where Cjfc denotes the cofactor of the (j, k) entry of B. Since B  is singular, we know that 

(0 1 1 , 0 -12, • • •, Cin) is a solution of system (1 .2 ). Therefore, by (1.6), (C n, C22, • • •, Cnn) 

is also a solution of system (1 .2 ).

For 1 <  k < n, in the fc-th column of B, the diagonal entry, equals the

negative of the sum of nondiagonal entries. By a result on directed graphs in [110, p.

47, Theorem 5.5], we obtain

Ckk=Y: n @ih-
TeT* (j,h )eE (T )

2 2
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Since (0ij) is irreducible, its associated directed graph is strongly connected, by 

Proposition 1.2. Thus, for each k, at least one term  in ^  n  0jh is positive.
T gT fc (j ,h )e E (T ) _

Therefore, Ckk > 0 for k = 1, 2 , . . . ,  n. Since C n  is a n  — 1 minor of B, we know 

rank(B) =  n — 1 , and the solution space of (1 .2 ) has dimension 1 , completing the proof 

of Proposition 1.3. ■

We give an illustration of (1.5), for the case n — 3. Then (1.2) becomes

(1.7)

012 +  013 —021 —031 Vl 0

— 012 021 +  023 —032 V2 = 0

— 013 —023 031 +  032 V3 0

By (1.4), we have

vi = Cn =

V2 = C22 =  

^ 3  =  C33 —

0 2 1  +  02 3 —0 3 2

0 2 3 031  +  032

0 1 2  +  0 1 3 031

— 0 1 3 031  +  03 2

0 1 2  +  ^13 — 021

— 0 1 2 021  +  0 2 3

— 0 3 2 0 2 1  +  0 3 1 0 2 1  +  0 2 3 0 3 1

— 0 1 2 0 3 1  +  (312032 +  0 1 3 0 3 2 ,

— 0 1 2 0 2 3  +  0 1 3 0 2 1  +  0 1 3 0 2 3  ■

Let T fc be the set of all directed trees rooted at the vertex k  in the directed graph 

associated with m atrix B, k = 1 ,2,3, see Figure 1.7. Then, T x =  (T)1, T f ,  X)3}, 

T 2 =  { T l T l T i h  T 3 =  { T l T l T i }, and

E {T l)  =  {(3, 2), (2,1)}, E {T l)  =  { (2 ,1 ), (3,1)}, E(T?)  -  {(2, 3), (3,1)}.

£7(7*) =  {(3,1), (1, 2)}, E{T%) = {(3, 2), (1,2)}, £7(7?) =  {(1, 3), (3,2)}.

E {T l)  =  {(2,1), (1, 3)}, E {T l)  = {(1, 2), (2, 3)}, £7(7f) =  {(1, 3), (2, 3)}.

Therefore,

e  n 0 j h  ~  0 3 2 0 2 1  +  0 2 1 0 3 1  +  0 2 3 0 3 1  ~  C \

T*eTi (j,h)fEE(Ti)

e  n 0 j h  — 0 3 1 0 1 2  +  0 3 2 0 1 2  +  0 1 3 0 3 2  ~  C 22 ,
r 2*6T2 0',h)6E (T 2i )

e  n 0 j h  ~  0 2 1 0 1 3  +  0 1 2 0 2 3  +  0 1 3 0 2 3  ~  C 3,
T3 ( j ,h )€ E (T ‘)

=  C n, (1 .8 )

=  C22, (1.9)

=  C33- (1 .1 0 )
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_  1  

P n P i  i

T2

T 1l 2

3
f

1
f

_ 2
P m P h

T 2

V :
_2_
P n P n

'1  

3
f

2
A 3A 2

T3

'1 
f
2

t
4 3

P n  Pz23

'V
_3_
P \ iP l3

♦ 2

'1
f

_  3
A A

Figure 1.7: All directed rooted 3-trees and their weights.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.4 U nicyclic digraphs and their weights

Let

Vk ^   ̂ 1 fijhl k 1 ? 7 ^7
r e T fc (j , h ) e E ( T )

be the solution basis to system (1.2). We know that

n ft*
U , h ) e E ( T )

can be regarded as the weight of a directed tree T  rooted at vertex k. In our application 

of Lyapunov function in later chapters, we will be dealing with products of form

V k P k j ,  =  1 , • • ■ , 7 1 ,

which are sum of products of n Ppg’s. Each of these products is the weight of a unicyclic 

n-digraph, formed from the directed tree T  e  T fc by adding a directed edge from the 

root k  to vertex j .  In Figures 1.8 -  1.10, we have illustrated all the products in VkPkj, 

and their unicyclic graphs for the case n = 3.

A closer examination of Figures 1.8 -  1.10 reveals th a t not all the unicyclic graphs 

are distinct. For instance, the unicyclic graphs {(2, 3), (3,1), (1, 3)} appears twice 

in different configurations, see Figure 1.11. The two corresponding weights, though 

w ritten in different orders since P23P31P13 appears in Vi$i3 and P13P23P31 appears in 

V3P31, are equal.

Similarly, the unicyclic graph {(1, 2), (2, 3), (3,1)} appears three times in three 

different configurations, see Figure 1.12. The three corresponding weights, appearing 

in V1P12, V2P23 and respectively, are all equal.

The following patterns can be summarized:

1. Products in Figure 1.8 - 1.10 th a t correspond to the same unicyclic graph are 

all equal.

2. The number of products in Figure 1.8 - 1.10 tha t correspond to the same 

unicyclic graph Q is equal to the length of the cycle in Q. For instance, the 

unicyclic graph {(2,3), (3,1), (1, 3)} in Figure 1.11 has a 2-cycle, and the unicyclic 

graph {(1 , 2), (2, 3), (3,1)} in Figure 1.12 has a 3-cycle.
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V l A l  _  P 1 2 P 2 1 P 1 I  +  P l \ P ' s \ P \ \  +  P l i P ^ l P u

3
t

2

&

V©
A 1A 1A 1

>2

■3

A 3A 1A 1

Vl A 2 =  ^32 A ,  # 2  +  A .  A  A  +  /?23 A l  A 12

(J!
P*lp2\P\1

V ’
1

P 1 2 P 2 1 P 3 1 P i A A x12

v , A 3 =  P n P n P n  +  P ixP u P h +  P -n P i\P \i  

2 .  . 33 

2

_ _ 1_ 
P n P u P n

\ 5
_  1  _  

PllPlXpli

" 2

4
P 21P3A 3

Figure 1.8: Unicyclic graphs representing products in v\(3\j,j = 1,2,
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V 2 ^ 2 i  — A 1 A 2 A ]  A 2 A 2 A 1  A 3 A 2 A 2 1  

3 1
VK  > f3 /  ' '

3

A A A ,  A 2 A 2 A 1  A A A ,

V 2 f i l l  ~  A 1 A 2 A 2  +  A 2 A 2 A 2  +  P u P z i P l l

3

1 v 3 * 3

1

_ ( J _  _ a
A 1 A 2 A 2  A 2 A 2 A 2  A 3 A 2 A 2  

^2021  ~  A 1 A 2  A . 1  A 2  A 2 A 3  A 3 A 2  A 3

'1

’ ’ \ 5 ’ ( i>  
2 2 ^ -* 2

A 1 A 2 A 3  A 2 A 2 A 3  A 3 A 2 A 3

Figure 1.9: Unicyclic graphs representing products in V2P2j , j  = 1,2.
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V s A l  -  A 2  A 3 A 1  +  A 3  A 3 A 1  +  A i A 3 A 3 1

’(V:
A  2 A 3 A 1 A  3 A 3  A

<»2

4
A A n A31

V 3A 32 -  A 2 A 2 3 A 2  +  A 3 A 3 A 2  +  A 1 A 3 A 2

l: 'vi d4.3 3 N*

1

A 2 A 3  A 2  A  3 A 3  A 32

3

A 1 A 3 A 2

V3^33 “  A 2A23A 3 + A 3A23A33 + A 1A 3A33

O’
v:(I

A  2 A 3  A : ,  A 3 A 2 3 A 3

_0 _
A 1 A 3 A :

Figure 1.10: Unicyclic graphs representing products in u3A p J  =  1,2,3.

1

A 3A 31A 3

<y
A 3A 3 A 31

Figure 1.11: Two configurations of a unicyclic graph with a 2-cycle.
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P n P n P n  P u P u P a  P n P i s P n

Figure 1.12: Three configurations of a unicyclic graph with a 3-cycle.

3. The to ta l number of products in Figure 1.8 - 1.10 is 33. The number of 

distinct products can be counted using distinct unicyclic graphs. Let 19(3,r) be 

the number of unicyclic 3-graphs with a r-cycle, r = 1, 2, 3. Then

£>(3,1) =  9, D{3,2) =  6 , D (3,3) =  2.

The relation between D (3,r)  and the number of all the products is

D{3,1) • 1 +  D (3,2) • 2 +  L>(3,3) ■ 3 =  33.

4. In general, for k , j  — 1 ,n , there are n n products in all expression of 

Vkfikj, each represented as the weight of a unicyclic n-digraph. The products 

represented by the same unicyclic graph are the same. A unicyclic graph with a 

r-cycle represents r  products.

5. Let D(n, r ) be the number of unicyclic n-digraph with a r-cycle, 1 < r < n. 

Then the following relations are well-known in graph theory (see e.g. [9, Chapter 

2]).

D (n ,r )  = ( ^ j n u~T~l r\, (1-11)

n

nn =  D(n, r) r. (1-12)
;=i

Patterns summarized here and relations (1.11) and (1.12) will be extremely useful 

in Chapter 2 and Chapter 3, for the proof of the global stability of the endemic 

equilibrium, using the m ethod of global Lyapunov functions. They allow us to 

group terms in the derivative of the Lyapunov function by unicyclic graphs.
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C hapter 2. G lobal D ynam ics o f a 

Class o f M ulti-G roup SEIR  M odels

Multi-group models have been proposed in the literature to describe the transmission 

dynamics of infectious diseases in heterogeneous host populations. Heterogeneity in 

host population can be the result of many factors. Individual hosts can be divided 

into groups according to different contact patterns such as those among children and 

adults for Measles and Mumps, or as distinct number of sexual partners for sexually 

transm itted diseases and HIV/AIDS. Groups can be geographical such as communities, 

cities, and countries, or epidemiological, to incorporate differential infectivity or co- 

infection of multiple strains of the disease agent. M ulti-group models can also be used 

to  investigate infectious diseases with multiple hosts such as West-Nile virus and vector 

borne diseases such as Malaria. For a recent survey of multi-group models, we refer 

the reader to [131].

In this chapter, the global dynamics for a class of multi-group SEIR models with 

varying group sizes are completely determined by the basic reproduction number R 0. 

In particular, we prove th a t when R 0 <  1, the disease-free equilibrium is globally 

stable in the feasible region. W hen R 0 >  1, the unique endemic equilibrium is globally 

asymptotically stable in the interior of feasible region. The uniqueness and global 

stability of the endemic equilibrium of the n-group SEIR models have been a well- 

known open problem in m athem atical epidemiology. We completely resolve this open 

problem using the graph-theoretical approach proposed in Chapter 1 . The whole 

procedure of the proof of global stability of endemic equilibrium illustrates our graph- 

theoretical approach in detail.

In Section 2.1, we formulate the multi-group SEIR model and recall the history of 

multi-group models. The basic reproduction number is calculated and compared with 

those in the literature in Section 2.2. The detailed proof of the main theorem in this
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chapter is shown in Section 2.3 (Theorem 2.3).

2.1 M odeling infectious diseases in heterogenous 

populations

A multi-group (n-group, n > 2) model is, in general, formulated by dividing the 

population of size N (t)  into n  distinct groups. For 1 <  k < n, the fc-th group is further 

partitioned into four compartments: the susceptible, infected but not infectious (latent 

or exposed), infectious, and recovered, whose numbers of individuals a t time t are 

denoted by Sk(t), Ek{t), Ik{t), and Rk{t), respectively. For 1 <  k , j  <  n, the disease 

transmission coefficient between compartm ents Sk and Ij  is denoted by fikj > so th a t the 

new infection occurred in the fc-th group is given by

n

J 2 P kjSkI3. (2 .1 )
J = 1

The form of incidence in (2.1) is bilinear. O ther incidence forms have been used in 

the literature, depending on the assumptions made about the mixing among different 

groups. The m atrix B  = ((3kj)nxn is the contact matrix, where (3kj >  0- W ithin the k -th 

group, it is assumed th a t natural death occurs in 5*,, E k ,h ,  and Rk compartm ents with 

rate constants and d{?, respectively. Individuals in Ek becomes infectious

with rate constant e*,. The influx of individuals into the A;-th group is given by a 

constant Afc. We assume that individuals in I k suffer an additional death due to 

disease with rate constant 6k and recover with a rate constant 7 k, once recovered they 

remain perm anently immuned for the disease . Based on these assumptions, a n-group 

epidemic models of SEIR type with bilinear incidence, is described by the following 

system of differential equations

r n

S ^ A k - d Z S k - ^ f a j S k l j ,
3=1

n

< PkjSklj — (dk + f-k)Ek, k = 1 , 2 , ■ ■ ■ ,n . (2.2)
3 =1

I'k — ekEk — {dk +  7 k + ek)Ik, 

R'k = Ikdk — dkRk-
\
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The param eters in the model are summarized in the following list:

dSk i d k , 4 , dk

A/t

Ik

&k

transmission coefficient between compartm ents Sk and Ij. 
natural death rates of S ,E ,  I, R  compartments in the fc-th 

group, respectively.

influx of individuals into the fc-th group, 

rate of becoming infectious after latent period, 

recovery rate of infectious individuals in the A;-th group, 

disease-caused death rate in the £;-th group.

All param eter values are assumed to be nonnegative and dk, dk , dk, d§, A*, >  0 for all 

k. We also assume th a t ek > 0 and d*k > 0 where d*k =  min{d^, dk , dk +  9k}. For other 

detailed discussions of the model and interpretations of parameters, we refer the reader 

to  [131].

Observe th a t the variable R k does not appear in the first three equations of (2.2). 

This allows us to consider first the following reduced system for Sk, Ek and Ik

s; = Afc- d £ s fc-
3=1

rk*)Ek, (2.3)
E ’k = Y ,P k i S k I j - ( d ]  

l=i

I'k = tkE k — {dk +  7fc +  0k)Ik- 

For each k, adding the three equations in (2.2) gives

(S k + E k +  I k)' =  Afc — dkS k — dk E k — (dl +  9k)Ik 

<  Afc -  dk(Sk + E k + A),

where d* is defined as above. Hence l im s u p ^ 00(5fc + E k + I k) < Ak/d*k. Similarly, 

from the Sk equation we obtain l im s u p ^ ^  S k < Ak/d k . Therefore, omega limit sets of 

system (2.3) are contained in the following bounded region in the non-negative cone of

r — ^(*5*1, Ei,Ii, • • • , Sn, En, In) G M̂_n | Sk < -jj , S'* + Ek +  Ik < -Jy, 1 <  k < n | .

(2.4)

Behaviors of R k can then be determined from the last equation in (2.3). It can be 

verified th a t region T is positively invariant.

At.
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System (2.3) always has the disease-free equilibrium PQ — (5°, 0,0, ••• ,5 ° , 0,0) 

on the boundary of T, where =  1 ,■■■ ,n. An equilibrium P* =

(S i , E{, I{, ■■■ ,S*, E*, I*) in the interior T, of F, namely, S£, E*k, I*k > 0, 1 <  k < n, is 

called an endemic equilibrium. The param eter Pkj >  0 is the transmission coefficient 

between compartm ents S*, and Ij, and Pkj — 0 if there is no transmission of the disease 

between the two compartments. The m atrix B  = (Pkj) encodes the patterns of contact 

and transmission among groups th a t are built into the model.

One of the earliest work on multigroup models is the seminal paper by Lajmanovich 

and Yorke [87] on a class of SIS multigroup models for the transmission dynamics 

of Gonorrhea. A complete analysis of the global dynamics is established. The global 

stability of the unique endemic equilibrium is proved using a quadratic global Lyapunov 

function. Global stability results also exist for other types of multi-group models, 

see e.g., [8, 67, 70, 99, 130]. Due to the large scale and complexity of multigroup 

models, progresses in the m athem atical analysis of their global dynamics have been 

slow. In particular, the question of uniqueness and global stability of the endemic 

equilibrium, when the basic reproduction number R 0 is greater than  1, has largely 

been open. Hethcote [67] proved global stability of the endemic equilibrium for 

multigroup SIR model without vital dynamics. Beretta and Capasso [7] derived 

sufficient conditions for global stability of the endemic equilibrium for multigroup SIR 

model with constant population in each group. Thieme [130] proved global stability of 

the endemic equilibrium of multigroup SEIRS models under certain restrictions. The 

most recent result on global stability is given by Lin and So [99] for a class of SIRS 

models with constant group sizes, in which they proved tha t the endemic equilibrium 

is globally asymptotically stable if the cross-group contact rates are small or if the 

recovery rates in each group are small. The complete resolution of the global stability 

of endemic equilibrium when the basic reproduction number exceeds one has been a 

well-known open problem in m athem atical epidemiology. On the other hand, results 

in the opposite direction also exist in the literature. For a class of n-group SIR models 

with proportional incidence, uniqueness of endemic equilibria may not hold when the 

basic reproduction number is greater than 1 (see [76, 131]). In light of these results, 

complete determ ination of the global dynamics of these models is essential for their 

application and further development. It is also crucial to determine how incidence 

forms or other epidemiological factors influence the uniqueness and global stability of
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endemic equilibria (see [60]).

2.2 The basic reproduction number and 

prelim inary analysis

Throughout this chapter, we assume th a t B  is irreducible (see Section 1.2 for 

definition). Biologically, this is equivalent to assuming tha t any two groups S, and 

Ij  have a direct or indirect route of transmission. Let

Ro — p{M0),

denote the spectral radius of the m atrix

PifrS?

(2.5)

M 0 =
_(df +  ti){d{ +  7 i + 9i)y x<itj<n 

The param eter R 0 is referred to  as the basic reproduction number. In [59], we have 

derived our threshold param eter

(

Ro = p

A i d  S° A n d  S° \
(d f  +  d )(d (  +  7i +  A)

P n l  t n S ° n

(d f  + ei )(d( +  71  +  9i)

R f  S0 hJnnz-nun
\

(2 .6)

- {df + en)(dn +  7n +  #n) (d f  +  £„) (d^ + 7„ +  9n) .

from the stability analysis of the disease-free equilibrium P0 using the m ethod of 

Lyapunov functions. We have shown th a t R 0 plays the role expected of the basic 

reproduction number, namely, if R 0 < 1 the disease always dies out, and if R 0 > 1 

the disease persists. In [135], a m ethod of deriving the basic reproduction number for 

epidemic models in heterogeneous populations is proposed. Apply the m ethod of [135] 

to our model (2.3), we can derive the basic reproduction number as

Ro — P

f r f t id S ? (dmtiSl 1 \
(d f +  ei)(d( +  71  +  9i) (d f  + en)(dIn + 7 „ +  0 „)

PnltnS'l fdnn̂ -nRji
\ - (d f  +  ei)(d[ +  7i +  9\) ( d f +  en)(dIn + 'yn + 9n) J /

(2.7)

where the m atrix ^ dE+^ kf^ i Ŝ1+e ^j  is called the next generation m atrix in [37] (see 

Example 4.2 in [135]). Biological interpretation of R q in (2.7) as the basic reproduction
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number is given in [37, 131, 135]. It is straightforward to  verify th a t two expressions 

of Ro in (2.6) and (2.7) are equivalent.
o

System (2.3) is said to be uniformly persistent in T if there exists constant c >  0 

such tha t

liminfSfc(t) >  c, lim inf £*,(£) >  c, and lim inf Ik{t) > c,
t—>OQ t—>DO t—►DO

where k =  1, • • ■ ,n ,  provided (S'i(O), Ei(0), h (0 ) ,  • ■ • , Sn(0), E n(0), /„(0)) e  T.

The following result for system (2.3) is known in the literature, a t least for some 

special classes of system (2.3), and its proof is standard (see [70, 130, 135]).

P rop osition  2.1. Assume B  — (Pij) is irreducible. Then followings statements hold.

(1) I f  Ro <  1, then P0 is the unique equilibrium and it is globally stable in T.
O

(2) I f  Rq > 1, then P0 is unstable and system  (2.3) is uniformly persistent in T.

For the proof, we refer the reader to [59, section 4] for detail.
O

Uniform persistence of (2.3), together with uniform boundedness of solutions in T,
O

implies the existence of an equilibrium of (2.3) in T (see Theorem D.3 in [122] or 

Theorem 2.8.6 in [12]).

C orollary 2.2. Assume B  = (fdij) is irreducible. I f  R q  > 1, then (2.3) has at least 

one endemic equilibrium.

2.3 Global asym ptotical stability  o f the endem ic 

equilibrium

A long-standing open question in m athem atical epidemiology is th a t whether a multi

group model such as system (2.3) has a unique endemic equilibrium P* when R 0 >  1, 

and if so, whether P* is globally stable when it is unique [131].

Denote an endemic equilibrium by

P *   /  c *  J7'* T * C *  Z?* T* Q *  Z?* T * \

SI > 0, E l  and I I  > 0 for k =  1 , 2 , . . . ,  n. The following main result on the uniqueness 

and global stability of P* when R 0 > 1 is established. Choose

j3i:i =  fiijS*I*, 1 < i , j < n ,  n >  2, (2.8)
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then we get the n x n m atrix B  as given in (1.3). If B  — (flij) is assumed to  be 

irreducible, then m atrix {Pif) is irreducible. Let {rq, • ■ • ,vn}, vk >  0, be a basis for 

system (1.2), B v  = 0, as described in Proposition 1.3. We have the following main 

result.

T h e o re m  2.3. Under the assumption that B = {(3^) is irreducible, i f  Ro > I, then 

there exists a unique endemic equilibrium P*, and P* is globally asymptotically stable

The proof of Theorem 2.3 is given in the Subsections 2.3.1 - 2.3.3.

2.3.1 Global Lyapunov function

Let P* be any endemic equilibrium, whose existence is assured by Corollary 2.2. We 

will prove th a t P* is globally asymptotically stable. The global stability of P* also 

implies its uniqueness. The global stability of P* is proved by considering a global 

Lyapunov function

where vk are chosen as th a t in Proposition 1.3. Differentiating V  along solutions to

(2.3) and using the equilibrium equations

O
in T.

P  =  v fc[(S* -  SI  In S k) + (Ek -  E l  In E k) + ^ ^ ( I k -  Pk In I k) 1, (2.9)
L efe j

n

(2 . 10)

n

and

(2 .12 )
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which follows the last of (2.11), we obtain

V  = Y ^ k=1Vk ~ dk S k ~  E " = l  PkjSklj ~  A fc| ^  +  d f S l  +  E " =  l  PkjSfclj

"b (d f "b ek)Ek —

E'kSkIj
'kj

( d f  "b ek){d{ +  7fc +  ®k) - - , I t E j

+  E * = i  PkjSklj -  (d f +  tk)Ek — E L i  Pkj- E k
+  ( d f  +  £*,)££

+
(df + efe) (df + 7fc + 0*;)

-Ik — (d f  +  £*,)■

— ^ 2 k=iVk dkSk(% si s i )  +  ( ^ 2 j =iPkjS*kIj
( d f  +  £fe)(dfc +  7* +  0fe)

k)
+

=  1 L \  ° k J \   J —  - ■* - £ f c  J

( 3  e ; . i  / w ;  -  e ? = i  a , / ; ¥  -  £ 7 .  -  ( 4 + « * )« * £ )

- E*.,”* (E,=iAjArj ( d f  +  £fc)(dfc +  7fc +  dfc)

£fc 0
+ ( 3  E ” = ,  A ,  A / ;  -  E ” = l  A , / ; ¥  -  E ” „  A , A / , f  -  ( 4  +  < * & % )

(2.13)

The inequality in (2.13) holds because S ^ /S k + Sk/ S l  >  2, and the last equal sign holds 

if and only if Sk = Sk . In the above derivation, we have substituted the two incidences 

of Afc in V  using (2.10). Next, we show

n n

E “‘ [ E a ^
( d f  +  £fe)(dfe +  7k +  Bk)

ek
Ik

k= 1 j = 1

for all (11, ■•• , / „)  G R " . To see this, we note tha t

(2.14)

n n n n

E ̂  E / W; = E ̂  E = E (E
fc=i j=i j = 1 fc=i fe=i j= 1

(2.15)

It suffices to show
n

E a*s;>
j=l

( d f  +  £fc)(d( +  7fc +  dfc)

£fc
■Vfc, (2.16)

In fact, from Bu =  0 in (1.2) and (2.8), using and (2.12), we have

'  A iS ? /?  ■ ■ • 0n l s * i i ' V\
’  E ? = i / W >  ’

(< * f+ e i) ( d f+ 7 i )  j * v

_ PlnS*I* /3nnS * K _
.  V n  . _ E " = l  P n jW jV n  _

( d £ + e „ ) ( d ' + 7„) r,
L e„ J
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and this leads to (2.16). Using inequality (2.13) and identity (2.14) and (d f  + ek)E k = 

i PkjS£I*, we have

V
n n n n

< E^(3E /w ;  -  E /w ;  f k - e  / w ; gfc/j E l  
3 s : i * E k-C/i*

f c = l  .7=1 .7=1 7 = 1  J

1k ‘
n  C *  H C  T TP* ft z r  r*  K

e - ( 3 E ^ - e ^ | - e a )| | | - e & j | | )
fc = l  j = l  ^ = 1  j = l  *  J j — l  *•

V '  R ( ‘\ _ ^ k  _  $kIj E k _  E k lk \E  *M St £./J-

(2.17)

Denote
n ^ -n  (*-^17 -^ 1 7  -^1 ; 7 ^  n  7 n  7 ^ n  )

/? (n Sk SkI>E 'k EkIk \  (2-18)
k%  3V S k SkI*Ek E l h ) ■

o
In the following, we show Hn < 0 for all (Si, E\, I\,  ■ ■ ■ , Sn, E n, In) e  T. The key to 

our proof is a complete description of the patterns exhibited in the expressions of vkj3kj 

as described in Sections 1.3 and 1.4.

2.3.2 Application of graph theory

To show Hn <  0, we need to substitute the expression for vk

Vk = E  II Pih' k = l , - - - , n ,  (2.19)
T e T k (j ,h )e E (T )

into (2.18), and expand the sums in

v A j ,  k , j  = l , - - , n .  (2.20)

The expression
5 1 S kI3E*k E kI l

3  k   *_k (2 .2 1 )
Q  Q *  T* TP TP* T '  'bk o kl j n k &ki k

will be kept intact, since the subindices in the expression are the same as in the (3k3 

term  of vk/3kj.

We first dem onstrate the proof for the case n = 3, and show how term s in H 3 are 

regrouped according to the unicyclic graphs representing each coefficient.
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From (2.18), we know

h 3 = Y  ^ ( s -
k,j= 1

Sfc* Ski  j El  EkI*k
Sk S*kI*Ek E*kIk

SI S J y E l  E J l
Si S W E x E i h
S{ S i I2E{ Ex I t
Si S{ I  $ Ei E i h .
s 2* S2hE*2 e 2i 2
S2 s 2i *e 2 E i h
s 2* S2I2EI e 2i 2
s 2 S2I2E2 E*2 12
s 2* S2I3EZ e 2i 2
S2 c* r* ip 02-/3-C/2 E*2I2
s 3* S3I1EI E3II
S3 S*$I*E:i E ^ h
S3 S3I3E; S3/3

S{ S xh E [  E J ln ( n  Sy  O l h E 1 _L R ( r  —
Vl l n  V S\ S{L*2E 1 E i h )  3 '  S i S t^ E x  E { h

R  { r  _  ̂ 2 .  —  ‘~)'2^ 1'^ 2  _  E 2 I 2 \
2> V s 2 Sr2I l E 2 E?2I2)

R ( r  — ^  _  S 2 E E 2  E 2 12 \
^ 2 h 2 2  I o  Q *  T *  FP FP* T  /

\  O 9  U n l r t t L / O  H / o  J 9  /

)

(2 .22 )

.. 5 y  s 3* 5 3 / ^ 3* ^  * y  s -  s 3/ 2e ;  ^ 3 /3

"3/?3113 -  -  5 * 7 ^ 3  "  ^ T s )  + V3/332 y3 -  s~3
, - a U  SI SsIsES £ 3 / 3  A

3 3 V S3 S3* / * £ 3 E * l J ’

O *  T* TP IP *  T
0 3 1 2 &  3

where
^1 =  @32021 +  @ 21031 +  @ 23031,

v 2 =  @31012 +  @ 32012 +  @ 13032, (2.23)

^3 =  @ 21013 +  @12 0 2 3  +  @ 13023-

Each product in vk is the weight of a directed 3-tree, rooted at vertex k, k =  1, 2,3, as

shown in Figure 1.7.

Expanding vk@kj, k, j  =  1, 2, 3, we have

V1011 =  @32021011 +  @21031011 +  023031011,

Vl@ 12 =  @ 32021012  +  @ 21031012 +  @23@31@12,

Vl@ 13 — @ 32021013  +  @ 21031013  +  @ 23031013',

V 2021  =  @ 31012021 +  @ 32012021 +  @ 13032021 ,

V2 0 2 2  =  @ 31012022  +  @32@12@22 +  @ 13032022 , (2.24)

V2 0 2 3  =  @ 31012023 +  @32@12@23 +  @13@32@23',

V 3031  =  @ 21013031 +  @ 12023031 +  @13@23@31,

V3@32 =  @ 21013032  +  @ 12023032 +  @13@23@32,

V3@33 =  @2 1 0 1 3 0 3 3  +  @ 12023033  +  @13@23@33-

As we have seen in Section 1.4, each product in vk@kj is the weight of a unicyclic graph, 

all of which are shown in Figures 1.8 - 1.10.
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As we have described in Section 1.4, the 33 products in (2.24) can be divided into 

three groups, according to the unicyclic graphs representing them.

G roup I: Unicyclic graphs with a 1-cycle, 9 in to tal as shown in Figure 2.1.

'3
t

2

f _

P ^ P n P u  

3
f

1
 ̂r

<y
P 21P 12P 22 

1 

2

P n P i A  3

V3
©

A A A i

V3
1

P n P n P n

V!
©

a

'1

> f

P n P r A :33

f tuP il f t22 

2
f 

'1 
•  3

_ o _
P l\P \iP i2

Figure 2.1: Unicyclic 3-digraphs with a 1-cycle and their weights.

Each unicyclic graph in Figure 2.1 represents one product in v if tu , V2P22, ^3/^33 of

(2.24).

G roup II: Unicyclic graphs with a 2-cycle. There are 6 distinct unicyclic 2-digraphs 

with a 2-cycle, by (1.11). Each has two different configurations, leading to two different 

expressions of the same weight product, as we have pointed out in Section 1.4. This is 

again illustrated in Figure 2.2.

G roup III: Unicyclic graphs with a 3-cycle. There are 2 distinct unicyclic 3-digraphs, 

each has three configurations, leading to three expressions of the same weight (product), 

see Figure 2.3.

According to the above grouping of products in (2.24), we can re-arrange the terms
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P n  P i \P \ i

P i A A 31

P n P r A 32

P n P n P :21

P u P u P t t

P n P n P zs

<>3
> f

d:
T 2d;
T 1d;
T 3

d
T 2d:
(►1
> /

e

v 3
2

2 3

V>
1

V
2

V3
1

v:

P u P n P :21

P i A A i

P yiP i i P ii

P i x P i A 12

P iy P \iP y \

PnPjiPhi

Figure 2.2: Each unicyclic 3-digraphs with a 2-cycle, has two configurations, producing 

two expressions of the same weight.
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3

f in fin f in

1
finfiixfin fin f in  fin

finfinfi: f i M n finfinfii .

Figure 2.3: Each unicyclic 3-digraphs with a 3-cycle, has three configurations,

producing three expressions of the same weight.

in H-\ as follows

H*

+

+

+

+

[ 0 3 2 0 2 1 0 1 1  +  0 2 1 0 3 1 0 1 1  +  0 2 3 0 3 1 0 1 1 J  

+  { 0 3 1 0 1 2 0 2 2  +  0 3 2 0 1 2 0 2 2  +  0 1 3 0 3 2 0 2 2 )  

( 0 2 1 0 1 3 0 3 3  +  0 1 2 0 2 3 0 3 3  +  0 1 3 0 2 3 0 3 3 ^  

( 0 3 2 0 2 1 0 1 2  +  0 1 2 0 2 1 0 3 1 ^  6  

( '0 2 1 0 3 1 0 1 3  +  023031013^ )

( 0 2 3 0 3 2 0 1 2  +  0 1 3 0 3 2 0 2 3 ^

( 0 1 2 0 2 3 0 3 1 ^

[3 Si SihEi

* i—t

s;i;Ei E ih
'3 ^

S2I2EI E2I2
- s 2 Q *  T* TP

^ 2  2 2 Eih-

'3
S3I3EI E 3I I]
s i i *3e 3 E lh i

S i I 2E{ E J l  S* S 2I i E *2 E 2I*i

6 -

Si
Si
Si
SI2
5 2

S l ISEi  
S i h E j  
S* I3 Ei
S2I3EZ
Q* T* TP

E i h
E i i ;
E i h
E-Jl
E*2I '2

5 2
0 1

5 3
s i

s *2i ; e 2
S 3I 1EI
s i i ; e 3
s 3i 2e ;

e *2i 2.
£ 3 / 3*1

E i h
E 3II

s i  S i h E i  E j i

E i h
9 -  _ L -

Si

( 0 1 3 0 3 2 0 2 1 ^

S i h E i  
S 3h E l
s i i ; e 3 

S i h E j  
Si S l  I I  Ei

SI  S 3I2E l  
S 3

SI

9  -h

E 3II
E i h

E i h
E ; h

s i
S 2

51
5 2

S 2I3EI
Q* T* TP 

2 3  2

S2h E l
Q* T* TP 
O  2-/1 -C/2

S3 S I I I E 3
e 2i ;

E i h

E i h

E 2II
E i h

£ 3 / 3*1

s i i ; e 3 E i h -3 3
(2.25)

It can be verified th a t expressions in each pair of parenthesis are non positive, by the
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inequality

aq +  a2 +  • • ■ +  a„ >  n,  if a, >  0 and a \  ■ a 2  an — 1.

For instance, since

St S J i E t  E J l  s *2 s 2hE*2 e 2i ;  1

S ! ' SUZEl  ' E t h  ' s2 ' S*2I { E 2 ' E*2I 2

we have

5, S t l ^ E i  E t h  S 2 S?2i ; E 2 E t h  -
We have thus shown

H3 < 0,

for all nonnegative (Si, E\ ,  h , S 2, E 2,12, S 3, E :i, / 3).

For the general n,  the same procedure as illustrated for n  = 3 applies. We regroup 

the n n products in v k0 kj ,  k , j  = 1 ,■■■ , n,  according to the cycle lengths of their 

corresponding unicyclic n-graphs.

For 1 <  n,  let I))(n, /) be the set of all unicyclic n-digraphs with a /-cycle. For each 

Q 6 D(n, /) with the /-cycle CQ  =  {r1; • ■ ■ , r ;} whose edge set is

We know th a t there are / products in the expansions of vk0kj th a t are all equal to the 

weight of Q, w q . Therefore, the /-terms in H n with these / products as coefficients can 

be combined as

E(CQ)  = { ( r i , r 2), (r2, r 3), ■ • • , (n _ i,n ) ,  ( n .n )} .

H n , Q  = W Q  (

(;P , q ) e E { C Q )

= WQ
(;p , q ) e E ( C Q )

We can verify tha t

( p , q ) e E ( C Q )
/*

( p , q ) e E ( C Q )  1

J T*
n  — = 1
1 ^Q̂ P

here CQ  is a cycle. Therefore,

(.p , q ) e E ( C Q )
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and thus H„tQ < 0, and

s :  s vl e : e j :

H' ^ ° ^ f r 4 ¥ r ^ ; - M€ElCQ)- (226)
This implies th a t

n

# "  =  E  E  Hn , Q < 0 - (2-27)
(=1 Q eD (n , l )

There are I terms in each H n Q, so the to tal number of terms contained in the sum of 

(2.27) is
n

Y ^ D { n , l ) l  =  nn 
i=i

by (1.12). Therefore all n n term s in Hn are accounted for in our regrouping (2.27).

2.3.3 LaSalle’s Invariance Principle
o

We have shown th a t V  <  0 for all (Si, E \ , I \ ,  - ■ ■ , S n, E n, /„) e  T, and th a t V  = 0 iff

Sk = SI  and Hn = 0. We claim that if Sk = S£, 1 <  k < n, then

Hn = 0 <?=* E k = aE'k , I k = a l l  *: =  1,2, • • • ,n , (2.28)

where a is an arbitrary positive number. It suffices to  show th a t E k/ E £ = E r/E*  =  

h / I k  =  Ir/ I*  when (3kr 7̂  0- By the irreducibility of (/%), (fc,r) 6 E(CQ)  for a /-cycle 

CQ  contained in a unicyclic graph Q 6 D(n, /) such th a t /3jh ^  0. Therefore,
U,h)eE(CQ)

from (2.26), we know E k/E*k =  E r/E*  =  I k/ I k = I r/ I*  if Hn = 0.

From (2.13) and (2.28), we know th a t V  = 0 iff S k = S £ ,E k = aE£ ,I k =  a l£ ,k  —

1,2, •• • , n. Substituting Sk = Sk , E k =  aEk, and I k =  alk into the first equation of 

system (2.3), we obtain

n

0  =  A k - d sk S*k - a J 2 P kjS*kI*- (2.29)
3=1

Since the right-hand-side of (2.29) is strictly decreasing in a, we know, by (2.10), tha t 

(2.29) holds iff a = 1, namely at P*. Therefore, the only compact invariant subset of 

the set where V  =  0 is the singleton {-P*}. By the LaSalle Invariance Principle, P* is
O

globally stable in T if R 0 > 1. This completes the proof of Theorem 2.3.
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2.4 Sum mary

In this chapter, we study a class of heterogenous epidemic models -  multi-group SEIR 

models with varying subpopulations. Starting with the seminal work by Lajmanovich 

and Yorke on a multi-group SIS model of Gonorrhea [87], progresses have been achieved 

slowly in investigating the dynamical behaviors of multi-group models during the past 

several decades. However, the questions of uniqueness and global stability of the 

endemic equilibria when the basic reproduction number is greater than  1, remain an 

open problem [22, 131]. In addition, most of the multi-group models in the literature are 

assumed to have constant subpopulations and which are not appropriate for modeling 

the fatal infectious diseases (e.g. HIV/AIDS). Here the population size in each group 

is varying.

We rigorously establish the global dynamics of the multi-group SEIR model with 

bilinear incidence by the graph-theoretical approach (Proposition 2.1 and Theorem 2.3). 

In particular, we prove the global stability of the endemic equilibrium P* when the 

basic reproduction number is greater than  1 w ithout any restriction. Biologically, our 

results imply that, if R q <  1, then the disease always dies out from all groups; if R q >  1, 

then the disease always persists a t the unique endemic equilibrium level in all groups, 

irrespective of the initial conditions.

We note th a t other incidence forms have been used in the literature for multi-group 

models. The question of global stability and uniqueness of endemic equilibria for multi

group models with other forms of incidence remains open. We also point out that, for 

multi-group models with standard incidence, earlier results have shown [76, 131] tha t 

multiple endemic equilibria can exist when R 0 > 1, and hence general results on the 

uniqueness and global stability for standard incidence may not be expected.

The significance of this chapter is the successful use of our graph-theoretical approach 

to the proof of global stability of endemic equilibrium for a class of multi-group 

SEIR models with bilinear incidence rate. Thus a complete framework of our graph- 

theoretical approach is presented and illustrated by the multi-group SEIR model. At 

the same time, a long open problem about global stability of endemic equilibrium is 

resolved completely. In the next chapter, we will show another application of our 

graph-theoretical approach to the proof of global stability of endemic equilibrium for a 

class of heterogenous models: multi-stage models which is distinct from the multi-group 

model.
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C hapter 3. G lobal D ynam ics o f a 

Class o f M ulti-S tage (M S) M odels

For endemic models with long infectious period or latent period, it is reasonable to 

divide the long period of infectiousness or latent period into multiple stages. In 

this chapter, we propose a new class of heterogenous endemic m odel- multi-stage 

compartm ental models to describe the transmission dynamics of infectious diseases 

with long infectiousness or latent period. We rigorously establish the global dynamics 

of the MS model using the graph-theoretical approach developed in Chapter 1.

In Section 3.1, the biological background of the multi-stage model is presented and 

some basic results of ilf-m atrix  are provided. In Section 3.2, the threshold quantity 

is calculated and the uniqueness of endemic equilibrium is shown strictly. In Section

3.3, the global stability of disease-free equilibrium is established rigorously using a 

Lyapunov function. The globally asymptotical stability of the endemic equilibrium 

when the basic reproduction number is greater than  1 is resolved completely using the 

graph-theoretical approach to the m ethod of global Lyapunov functions in Section 3.4.

3.1 M odeling disease progression and am elioration  

through discrete stages

For infectious diseases tha t progress through a long infectious period, infectivity or 

infectiousness can vary greatly in time. The progression of a typical HIV infection can 

take eight to ten years before the clinical syndrome (AIDS) occurs, and the progression 

goes through several distinct stages, marked by drastically different CD4+ T-cell counts 

and viral RNA levels. HIV-infected individuals are highly infectious in the first few 

weeks after infection, then remain in an asymptomatic stage of low infectiousness for
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many years, and become gradually more infectious as their immune system becomes 

compromised and they progress to AIDS. Variability of infectiousness in time has been 

modeled in the literature by Markov chain models, or staged-progression (SP) models 

(see e.g. [56, 66, 72, 77, 83, 84, 100, 102, 129, 132]).

A deterministic Stage Progression (SP) model with amelioration was proposed and 

analyzed in [102, 58], i.e. allowing for infectives moving from more advanced stages 

of infection to less advantaged stages of infection. Thus current treatm ent can lead 

to both prolonging patients’ lives and to increased available time for the transmission 

of HIV. Due to the recent HAART drug therapy advances, it is possible for infectives 

to move from advanced stages back to far earlier stages [102], Also it is possible for 

an HIV patient to become deteriorated due to the disease development and the HIV 

patients could accelerate to proceed to far next stages. Based on this description about 

HIV patients moving in multi stages, a general multi-stage (MS) model is formulated 

to  investigate the global dynamics in this section.

To formulate a MS model, the to tal host population is partitioned into the following 

compartments: the susceptible compartm ent x\,  the infectious compartm ent Xi(i > 2) 

whose members are in the i-th  stage of the disease progression, where i =  2, • • • , n, and 

the term inal compartm ent T. Let be the mean rate of movement or transfer from 

the j- th  stage to the i-th  stage, for i , j  = 2, • • • , n, and 5„+i i7l the mean progression rate 

from the ra-th stage to the stage of active disease. W hen i > j ,  5ij represents disease 

progression rate; when i < j ,  Sij represents disease amelioration rate. We assume 

th a t hosts in the term inal compartm ent are non-infectious due to  inactivity. In fact, 

in the case of AIDS, the term inal compartm ent consists of people with active AIDS. 

AIDS patients typically either become sexually inactive or isolated from the infection 

process, and their infectivity is negligible. We also assume th a t there is no recovery 

from the disease, and thus the only exit from the compartm ent T  is death. Let Pi 

be the transmission coefficient for the infection of a susceptible from an infectious in 

the class x it which takes into account of average number of contact and probability 

of infection for each contact, then the to tal incidence is given by J™=i Pix ix i f i N ), 

where N  =  X)"=1 Xi is the total active population. Here we assume th a t the density 

dependence of the incidence is given by a function f ( N )  which will be specified later. 

A class of special interest is f ( N )  = N ~ a, 0 <  a  < 1, the resulting incidence term  

includes two of the most common incidence forms: the standard incidence form (a = 1)
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and the bilinear incidence (a = 0). Average death rate for susceptible compartm ent is 

di, for the com partm ent x t is du which may include death due to infection, and for the 

active disease compartm ent is dr- We assume the inflow to susceptible com partm ent is 

a constant A. The population transfer among compartments is schematically depicted 

in the Figure 3.1. All param eters in the model are assumed to be nonnegative.

A , X,
/(A 0£/?(X,.y

T
dxx  |

8-q X-,
?-

  ----   d4x4
2̂4̂ 4

Figure 3.1: Flow diagram of a multi-stage (MS) model (3.1).

Based on our assumptions and the transfer diagram, the following system of 

differential equations can be derived for the multi-stage model

dxi(t )
=  24. -  iq x q  -  J ( 1 \ )

2 = 2

=  A -  diXi -  f ( N )  Y ^ P i x ix u

dx2{t)
dt

dxj(t)
dt

dxn(t) 
dt

f (N)
i =2 r —3

y  ̂  $irxr j di -f- y  ̂ Sri j Xj,
r=2,r^z \  r=2,r^i /

n /  n —1

y   ̂ $nr% r  I ^ n ^ ( n + l ) n  ^   ̂ ^
r = 2 , r ^ n  \

d2 +  #r-2 J 2:2 +  S2rx r ,
r —3

(i =  3, - • ■ ,n  — l)
(3.1)

dC-m

and
dT(t)

dt

r = 2

x n -  drT.

The incidence form is density dependent. We assume th a t the function f ( N )  satisfies 

the following assumptions, for N  > 0,

(H) /(IV) > 0 ,  /'(IV ) < 0 ,  { N f ( N ) ) '  > 0.

The assumptions th a t f ( N ) >  0 and f ' ( N )  <  0 are biologically motivated. As the 

to tal population N  increases, the probability of a contact with a susceptible decreases, 

and thus the force of infection is expected to be a decreasing function of N.  The other 

condition we impose on /  is needed for our analysis. It can be verified tha t the class
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f ( N )  — N ~ a, 0 <  a  < 1, satisfies (H). This class contains the standard incidence 

(a  =  1) and the bilinear incidence (a = 0).

Let dn +  5(„+i)„ =  dn in the n-th  equation of (3.1). Also note th a t the ‘T” equations 

in doesn’t appear in other equations, we only need to consider the following reduced 

system

dxi(t)
A -  dxxi  -  f ( N ) ^ 2  Pix ix i.

i = 2

dx2{t)
dt

dxi( t) 
dt

f ( N ) @iXiX 1 “  d2 +  X X 2 X2 +  X ]  s2rXr
i = 2 r —3 r = 3

^   ̂ diTXr
r= 2 , r ^ i

dt T  ^   ̂ Sr
\  r —2,r^ i

X i , (* — 3, • ■ ■ ,n)

Adding up the n  equations in (3.2) we obtain

(3.2)

N  = A — d i x i — d2x 2 — • • • — dnx n < A — dN.

where d =  min{di, ■ • • dn}. ft follows th a t lim sup N( t )  <  —. Similarly, from the first
t—>oo d

equation of (3.2) we obtain x\  <  A — d\X\,  and thus lim supaq(f) <  — . The feasible
t^ o o  d\

region for (3.2) can be chosen as the closed set

T =  {(aq, ■ • ■ , i „ ) e R "  : 0 <  aq <  0 <  aq-H----- +  x n < ^ } ,
&\ U,

which can be verified to be positively invariant with respect to (3.2). An equilibrium 

(x\, x 2, ■ ■ ■ , x n) of (3.2) satisfies

0 =  A -  dixi  -  f ( N ) X)"=2 AxjXi,

0 =  f ( N ) Er=2 PiXiX 1 “  ( 'd2 +  E  ^  X2 +  52rXr
r = 3

0 ^3 SirXr | di T  ^3 ^ri J x i,
r —2,r^ i  y  r=2,r^=i 1

r = 3

(* =  3,

(3.3)

The disease-free equilibrium P0 =  (A /d i,0 , ,0) exists for all positive param eter

values. Next we consider the existence of endemic equilibria P* = (a;*, xjj, • • ■ ,x*),  
x* >  0, i = 1, ••■ , n.
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For the purpose of notation simplification, we let

— <$23

$32
-A =

d>2 +  Yj ^r2
r=2,r^2

^3 +  Y2  r̂3
r = 2 , r ^3

n2 n  3

~ ^ 2n 

~  ̂ 3n

dn y ] $rn
r = 2, r ^ n

(3.4)

The following definition and properties of M -m atrices are used in our analysis. They 

can be found in most of the textbooks on m atrix theory, see e.g. [74],

D efin ition  o f M -M atrix: B nxn is a M -m atrix if

(1) Off-diagonal entries of B  are non-positive, and

(2) B  is positively stable, namely, all eigenvalues of B  have positive real parts. 

P rop osition  3.1. Properties of M-matrices:

(1) B  = a l  — P, P  > 0, a  > p(P), the spectral radius of P.

(2) B  is nonsingular and B ~ x > 0.

(3) There exists (5 > 0 such that B ~ lx  > f i x  for x  >  0.

Then the following properties of the m atrix A  follow from the Proposition 3.1.

P rop osition  3.2. The following holds for the matrix A  defined in (3.4).

(1) —A  is a M-matrix.

(2)  —A -1 exists and is a non-negative matrix.

(3) There exists a  > 0 such that — A ~ lx  > a x  for x  > 0.

By Proposition 3.2, we know that

A = - ( & , - • ■  ,Pn)A -1

1

0

0

>  0 , (3.5)

which would be used to define the basic reproduction number later.
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3.2 The basic reproduction number and 

prelim inaries

Define

(3.6)
do J \ d o / '

which is the basic reproduction number of model (3.2). We will see this clearly in 

Section 3.2 and Section 3.3. If Ro < 1, the disease dies out irrespective of the initial 

number of cases. If Ro > 1, then the disease persists in the feasible region and there 

is a unique endemic equilibrium. Such a role of threshold param eter is expected of 

the basic reproduction number, the average number of infections caused by a single 

infective in a population at the disease-free equilibrium. For the interpretation of Ro, 

we refer the reader to [102].

Our derivation of R 0 is based on the stability analysis of the disease-free equilibrium 

PQ using a Lyapunov function. Other methods of deriving Ro exist in the literature, 

among them  are the m ethod of second generation m atrix in [37], which was later 

modified in [135], and the derivation based on the linear stability analysis of Pq (see 

[69]). The following Theorem 3.3 and Theorem 3.4 establish Ro as a sharp threshold 

param eter. Firstly we have the following result on the number of equilibria.

T h e o re m  3.3 . Assume that f  satisfies (H ). I f  Ro <  1, then P0 is the only equilibrium 

in T. I f  Ro > 1, then a unique endemic equilibrium P* exists in the interior ofT .

Proof. The last n  — 1 equations of (3.3) can be written in the form

X2

X3
—

- f i N )
i=2 
0 , or

x2
X3

= - A ^ f i N )

n
X) PiXiXx
i=2

0

Xn 0 0

Multiplying both sides of (3.7) by the row vector (/32, • • • ,Pn), we have

71

^ 2  PiXi =  ( / ? 2 ,  ’ ' ' ,Pn)

X2
x 3

-  ( P2, • '

71
X )  PiXiX 1i=2

0

i=2

0

■ (3-7)
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Since Y^= 2  7  ̂ 0, we obtain

— £ 1  f { N )  A. (3.8)

Also, by (3.7),

X2 1

(I , - --  ,1)
X3

=  -(!,■■■ ,1 )A~l
0 71

x i f { N ) ^ 2 l 3 i X i
i=2

%n 0
i= 2

(3.9)

where, by Proposition 3.2,

p =  - (1 ,  ■ • • , 1)A-1 > 0 . (3.10)

From the first equation of (3.3) we get
n

X i f ( N )  ^ P i X i  = A — d i x i ,
i=2

which, together with (3.9), implies
n

^ X i  =  p(A -  diXi),
i=2

and thus
n

N  = aq =  aq +  p( A — dixj)  =  pA +  (1 — pdi)x\ . (3.11)
i=1

Substitute (3.11) into (3.8), we obtain the equation for an endemic equilibrium 

(aq, X2, ■ ■ ■ , x n) to exist

X i f ( p A +  (1 - p d i ) x i )  =
1
A'

(3.12)

We will show th a t equation (3.12) has a unique positive solution in the interval 

(0, A /d0) when R 0 >  1. Let

g(x  1) =  aq /(pA  +  (1 -  pdi)aq).
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Then <?(()) =  0, and

Furthermore, by our assumption (H) on function f ( N ) ,

g'ixx) =  f{pA  +  (1 -  vdi)xi)  +  (1 -  p d ^ x i f i p A  +  (1 -  pdjxf i )

=  f  (N)  +  N  f ' { N )  — p A  f { N )  >  0,

where N  = pA  +  (1 — pd{)xi. Thus the function y = g(x i) is strictly monotonically 

increasing, and its graph has a t most one intersection with the line y = 1/A. Such an 

intersection exists for aq 6 (0, A/dfi) if and only if g(A/d\)  > 1/A, namely, Ro > 1. 

This completes the proof of Theorem 3.3. ■

3.3 Global asym ptotical stability  of disease-free 

equilibrium

T h e o re m  3.4. Assume that f  satisfies (H). I f  R 0 < 1, then Po is globally 

asymptotically stable in T.  I f  R q >  1, then P q is unstable, and system (3.2) is uniformly 

persistent with respect to T.

Proof. The last (n — 2) equations in (3.2) can be rewritten as

n
x '2

i=2
X2

x '3
= 0 + A

X3

X'n 0 %Tl

where A  is given as in (3.4). Multiplying a row vector (c2,c3,--- ,c„) to the above 

equation, we obtain

x '2 X2

(02) j Gi)
x '3 71

= c2f ( N )  ^ 2  f i i X i X x  +  (c2, c3, • • ■ , cn)A
Xo

i=2

X 'n x n
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Choose

C3, ) (/̂ 2j /^3j 7 Pn)A

Since —A-1 is nonnegative, we know c*, >  0, fc =  2, ■ • ■ , n. In particular,

(3.13)

-1 A >  0.

For the choice of c* in (3.13), define a Lyapunov function

n

L  =
fc=2

Then, using assumption (H) we obtain, along a solution of (3.2)

n n n

L' = c2f { N ) x 1 ^ 2 p ix i - ^ 2 p ix i = (c2f { N ) x i - 1 ) ^ / 3 ,
i = 2 i= 2 i=2

(A/(A^)xi -  1 ) ^ / ? * ^  <  (A /(x i)x! -  1 ) ^ 2  Pf
i=i i= 2

<

Furthermore, L' =  0 if and only if either (a) x 2 = x 3 =  • • ■ =  x n =  0 or (b) Rq =  1 and 

xi  = K/d i  are satisfied. In either case, the largest compact invariant subset of the set

G = { { x i , x 2, • • ■ , x n) E T : L' — 0}

is the singleton {.Po}- To see this, let K  be the largest compact invariant subset of G. 

In case (a), each solution in K  satisfies equation x\ = A — d\X\, and the only solution 

th a t is bounded for t G (—oo,+oo) is xi  =  A/di .  In case (b), x\  = A /d \  satisfies 

equation
n

x[ = A -  dxxi  -  [ f (N)  ^ 2  PkXk]xi,
k = 2

n
which implies Y  PkXk = 0, i.e., x 2 = x 3 = ■ • • =  x n = 0. Therefore, all solutions in T

k= 2
converge to P0, by LaSalle’s Invariance Principle (see [89]). The global attractiv ity  of 

P0 and the Lyapunov function L  imply th a t P0 is also locally stable, since otherwise P0

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



will have a homoclinic orbit th a t is entirely contained in G, contradicting the fact tha t 

the largest compact invariant set in G is {Po}- This establishes the global stability of 

P0 when Po < 1.

If Po > 1, L' > 0 for xi  sufficiently close to A/<p, and thus solutions in T sufficiently 

close to P0 move away from P0, except those on the invariant iq-axis, along which 

solutions converge to P0. Therefore, Po is unstable. Furthermore, {Po} is the only 

compact invariant set on the boundary of F and is isolated. The local dynamics near 

Po and the boundary of T imply th a t system (3.2) is uniformly persistent (see [19]) 

with respect to T, when P 0 >  1. The proof of uniform persistence of (3.2) is similar to 

tha t of Proposition 3.3 in [92],

3.4 Global asym ptotical stability  of endem ic  

equilibrium

In this section, for f ( N )  =  1, we prove the global stability of the endemic equilibrium 

P* when Pq >  1 using the global Lyapunov function and the graph-theoretical approach 

we developed earlier. Again we dem onstrate th a t the use of graph-theoretical approach 

can greatly simplify the proof for high-dimensional systems.

T h e o re m  3.5. Assume that f ( N )  = 1 and Po >  1. Then the endemic equilibrium P* 

is globally asymptotically stable in the interior o fT .

The endemic equilibrium equations are

(  71 
0 =  A — dix\  — ^ 2  /3iX*xl,

i = 2
n /  n \  n

< Q = ^ 2 P i x i x * - i d2 +  ^ 2  ^ 2 ) ^ 2 +  ^ 2  62rX*’ (3.14)
i = 2 V r= 2 ,r^ 2  /  r=2 ,r^2

0 =  ^ 2  hrX* ~  (di  +
 ̂ r=2,r^z \  t

Let x  = {xi, x 2, ■ ■ ■ , x n). Consider a global Lyapunov function

V ( x ) = i>2Vi ( X i ~ X i -  

5 5

^ 2  5 n ) x i ’ (f =  3, • • • , n)
=2,r=£i )
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where Vi are positive constants which would be specified later, and x* is the component

of endemic equilibrium P*. The derivative of V(x)  along the solution x(t)  is

dV{x)  - A  /  x * \ d Xi
—  = P - 15>

i = l  x '

n
Using A =  dix\  +  ^  Pix l x h  the first endemic equilibrium equation, we have 

i = 2

*  \  7 71 *  71
x ,  \  d x i \  ^  . X . v '

1  1 —  =  A -  dixi  -  2_, PiXiXi -  A  b dlx l +  2 ^  PiXiXt
X l /  d t  i= 2  X l  i=2

(
* \  71 71

2 -  -  — ) -  V ] P i X ^  + V '

+  X )  P i x i x * -  Y ^ f 3 i x \ x * —  (3.16)
i= 2  i= 2  X l

n n  /  *

<  ^  P i X l X i ~  ^ 2  P i X ' X i +  d ±X l
i= 2  i = 2 '  3:1 3:1

71 71 jj.

+ ^ 2J pix \ x * -  Y ] P i x i x i — -tz tz
Similarly we have

r x ^ \  dx2
x 2 J  dt

P j X j X j  — I d2 +  2̂ dr2 j X 2 +  2̂ d 2 r X r

i = 2 \  r = 2 , r / 2  /  r = 2 ,r /2

'^2 f}iXiXi —  + ( d2 +  ^2 dr2 j x2 2̂ d 2 r x r ~ -

i —2 X2  \  r —2,r^2 )  r= 2 ,r ^ 2  X2

For i = 3, ■ • • , n, we obtain

,r*\ " n
1 _ xL) "df i =  ^  5irx r - ( d i  + Y 2  $ri)Xi

* r = 2 , r ^ i  r —2,r^ i
n * 71

^   ̂ $ir%r ' t- (^i “f" ^   ̂ ■
r = 2 , r ^ i  i r = 2 ,r ^ i

(3.17)

(3.18)
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Substitute (3.16), (3.17) and (3.18) into (3.15), we obtain 

dV(x)
(v2 - v l ) ^ 2 l (3ix lx i + vl 's} 2 l (3ixX

i—2 i —2

Xi

n /  n n

-j- ^   ̂vz I ^   ̂ 8irx r ijii -\- ^   ̂ 5ri)x{
i —2 \ r = 2 , r ^ i  r = 2 , r ^ i

n

+  V l  ^ P i X l x *  +  ' Y ^ V i ( d i +  Y h  S r i ) x *  ( 3 - 1 9 )

i —2 i —2 r —2 , r / i

- V l Y & i X l X i —  ~ V l Y P i X l X i ~  i t ,  5i r X r  —
U  U  ^  U  r= W i

Xi x*
+  Vi dxx\  2

V x l  x i

We choose so th a t the following holds

(v2 ~ vi) = 0,
n n /  n n \

Vi ^   ̂PiX^Xj 4" ^   ̂Vj I ^  ) 5irx r (dj ^  ) 8ri)Xi j 0,
z=2 i —2 \ r —2 ,r^ i  r= 2 . r ^ i  /

(3.20)

for all nonnegative values of x*, i — 1, ■ • • , n. This is equivalent to the following linear 

system
(■v2 -  ui) =  0,

n —1 /  n \

P2X*lVl + Y  5i2Vi “  d2 +  Y  Sr2 ) V2 =  0>
1=2,17^2 \  r=2,r/ 2

(3.21)

(3n X ]V \ H- ^  ^ 8in Vi I dn ^  ^ 8rn  j vn 0.
i = 2 ti^ n  \  r = 2 , r ^ n  /

Multiplying the i-th  equation by x*{i =  2, • • ■ , n), we obtain
n

{■v2 -  V J Y M  x i = 0,
i —2

Vi p 2x t2x*1 4- Y  Vi^ x 2 =  v 2 (  d 2 4- Y  ^ 2  )  x 2 >

i= 2 , i^ 2  \  z=2,z^2 /  (3.22)

Ul/?nx ;x t  4- ^  Ui^„X* =  I dn + Y  S«
i=2,i^n \  i=2,i^n
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For the last N  — 1 equations in (3.14), multiply v2, u3, ■ • ■ ,vn both sides, we get

V2 ^  PiX*x\ +  V2 ^ 2  S2rX* = v2 I d2 +  ^ 2  Sr2) x 2’
i= 2  r= 2 ,r ^ 2  \  r= 2 ,r ^ 2  }

n  /  n \

V3 ^  6srXr = V3 I ^3 +  ^ 2  5r3 ) X3>
r = 2 , r / 3  \  r = 2 , r / 3  / (3.23)

vn ^   ̂ 5nrx r vn I dn +  ^   ̂ <̂r
r= 2 ,r ^ n  \  r= 2 , r ^ n

Substituting (3.23) into (3.22), we obtain

n

(u2 -  Wi) ^ 2 PiX* x\  =  0,
i = 2

n n n

u2 +  w2 ^  52rx*r = Vi/32x*2x \  + ^
1=2 r=2,r^2 i=2,î 2

n n

^ 3  X ]  ^3rX* =  vi î3%3>
r = 2 , r ^ 3  7 = 2 ,  7 ^ 3

(3.24)

Vn ^ 2  ^rX* = Vi(3nX*nx\  +  ^  Vt5h
r = 2 ,r ^ n  7=2,7^71

Rewriting above system about variables tq, v2, ■ ■ ■ vn , we get a linear system

Y,PiX*xl  - J 2 Pix *x i
i=2 i=2

/32x*2x\  J 2  P i x i x l  +  ^ 2  S 2 r X * ~ 5 ^2 X 2
i = 2 r —2 

r/2

- fo x l xX

~PnXnX i - $ 2nXt

E «
r=2
r^3

37’3? r

^3nX„

0

7̂i2*̂ 2

n̂3>̂ 3

E 5"
r=2
r^n

^1 ' 0 "

V2 0

V3 = 0

vn _ 0 _

(3.25)
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Let

P \2  =  YL P ix i x \ i  Pi t  =  0 ;  i  =  3,  ■ ■ ■ , n ,
i= 2 ( o . z o j

Pil  —  Pix i x \) i  =  2 ,  - ■ ■ ,71, Pij  8j i x i j b  j  2, • • • , 71, % ^  j .

Thus all Pij >  0 and there is a relationship

n

P n  =  Y &  I '  ( 3 ‘2 7 )
t = 2

The linear algebraic system (3.25) is converted to the standard form of (1.2). The 

coefficient m atrix is irreducible and has the property tha t the sum of each column 

equals to  zero. By Proposition 1.3, the solution space of system (3.25) has dimension 

1 and a basis of the solution space is given by

Vfc ^   ̂ 1 1  Pjh  ^  ^  1 ) ’ ’ ’

TeTfc ( j , h ) £ E ( T )

where T fc is the set of all directed n-trees rooted at the k-ih  vertex, and E(T )  denotes

the set of directed arcs in a directed n-tree T.  W ith Vk determined in this way, (3.20)

always holds and (3.19) reduces to

dV{x)
n  n  n

<  V i  Y  P i x i x * +  Y V i ( d i  +  Y  :

^  1=2 1=2 r = 2 , r / i  ^  ^

- V i ^ P i X l x ^ - V i ^ P i X & i ^ - ^ V i  J 2  8* X r

i=2 X l  i=2 X2  i = 2 r = 2 , r &  1

since v id \x \  (2  — — — ) <  0. From the first equation in (3.22) we know that
\  X\ J

V\ = v2. Sum up all equations in (3.23), we get

n

V 2

i—2 i = 2 r —2 , r ^ i  i = 2 r = 2 , r^ i

n  n  n  n  n

. ^ P i X l x l  +  ^ V i  Y  8 i r x *r =  Y Vi( d i+  8 r i ) X i -  (3'29)

Substituting (3.29) into (3.28), we obtain 

dV(x)
<  V 2 Y , P i X \ X *i -  V l Y h  P i X XX *i ~  +  V 1 Y , P i X X X i ~  V \ Y . P i X ^ X i —

d t  i=2  i —2 X l  i=2 i = 2 X2
n  n  n  n  *

X *

Y V i Y 8 i r X * ~  ^  v i Y <  8 i r x r ~j~ - 
i = 2 r = 2 i = 2 r = 2 1

r^i r^i
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Using the definition in (3.26) and (3.27), we have 

dV(x)
dt i=2 Xl i=2 1 * »=2 r—2 V X' - X , /

r^i

r^2 r^i

\ xl xi x2J

+ ^ - S + - i > 0 - g

O o  ^ r  ^ i  '1—6 r—2 '
r^i

(3.31)

Define

z=3 r=2
r^i

where x = (x\, ■ ■ ■ , x n). It remains to prove tha t Hn < 0.

Observe that, as in the case of multigroup models, v*, satisfies system (1.2), and 

thus expansions of VkPjk in (3.32) have products represented by unicyclic n-digraphs. 

Re-grouping the terms in Hn(x ) according the unicyclic graphs, as in Section 2.3.2, we 

can show H n(x) < 0 for all nonnegative values of x.

The set {x  6 T | Hn{x) = 0} can be similarly characterized to show th a t it has {-P*} 

as the largest compact invariant set. Therefore the global stability of P* follows from 

the LaSalle’s Invariance Principle.
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3.5 Sum mary

In this chapter, we consider a multi-stage endemic model with amelioration and 

rigorously establish its global dynamics. The proof of the global stability of the endemic 

equilibrium uses our graph-theoretical approach to the m ethod of global Lyapunov 

functions developed in Chapter 1.

Models for the spread of HIV/AIDS often incorporate staged progression where an 

individual may proceed through several distinct infective stages before developing full 

AIDS [77, 98]. Sometimes these stages are meant to correspond to T4 cell count ranges 

[71, 98]. W ith recent advances in drug therapies (HAART), it is necessary to consider 

amelioration where individuals may move from more advanced stages of infection to 

less advanced stages. It is also reasonable to incorporate HIV infection deterioration 

due to  other causes. Thus the multi-stage model containing all these considerations is 

appropriate to  be used to study the transmission dynamics of disease progression in a 

host population, for example HIV infection.

Actually, the multi-stage (MS) model (3.1) is a generalization of many epidemic 

models with multiple stages in the literature: including a stage-progression model in 

[77], and a stage-progression model with amelioration in [102], The MS model (3.1) 

also contains the classical SEIR and SIR models when n  =  3 and 2, respectively. In 

such cases, a latent class can be regarded as an infectious stage with infection coefficient 

equals to 0. In [103], a S E i E 2 ■ ■ ■ E n_2I R  model was proposed to  model the long latent 

period. The model is a special case of our MS model with /% =  0, i =  2, • • • , n  — 1. 

Our results of the MS model contain those established in [56, 58]. However, it is an 

impossible task to prove the global stability of endemic equilibrium of our MS model 

using the technique, partition of unity.

The significance of this chapter is th a t our graph-theoretical approach can be used 

to  prove the global stability of the endemic equilibrium P* when R 0 > 1 for a class 

of heterogenous endemic multi-stage models. Thus it is expected th a t our graph- 

theoretical approach has a wide applicability to deal with the global stability of endemic 

equilibria for a large-scale class of epidemic models with bilinear incidence.
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Part 2. M athem atical M odeling o f  

Transm ission D ynam ics o f  

Mycobacter ium  Tuberculosis
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Tuberculosis (TB) is an ancient infectious disease and continues to  be a m ajor global 

th reat to public health today. According to the 2007 WHO TB Report [140], an 

estim ated 1.6 million people died of TB and 8.8 million new TB cases occurred in 

2005, of which 7.4 million in Asia and sub-Saharan Africa. It is estim ated th a t one- 

third of the world’s population (2 billion) are infected with TB [141], most of which 

occur in developing countries in sub-Sahara Africa and south-east Asia. After HIV, 

TB is the greatest infectious killer of youth and adults in the world today.

Over the past several decades, there has been a sharp reduction in the incidence rate 

and death rate of TB in most developed countries [62, 63, 64, 79, 128]. Such countries 

include, for example, Australia, Canada, Denmark, Netherlands, New Zealand, Norway, 

Sweden, the United States and the UK etc. In most of these immigration countries, the 

foreign-born population has contributed most of active TB cases and m aintained a high 

TB incidence rate. The TB incidence rate of local-born population has maintained a 

declining trend and at a lower level. D ata from the UK [63, 64], however, is showing a 

different trend: the local-born population maintains a constant TB incidence rate and 

the foreign-born has a increasing trend for the TB incidence rate.

In Chapter 5, we propose a three-population TB model to investigate the impact 

of cross-infection on TB incidence of local-born population in immigration countries, 

and the effects of foreign-born population on overall TB incidence in an immigration 

country. After establishing the qualitative behaviors, we investigate quantitatively the 

detailed impact of those factors on TB incidence in Chapter 6 by two case studies in 

Canada and the UK. Our model can explain both countries’ TB trends.

Since early and late latent TB have high and low risk to develop active TB, we 

investigate the impact of annual new immigrants with early and late latent TB on 

the incidence rate in immigration countries in Chapter 7. TB doesn’t have perm anent 

immunity, we study the effects of partial immunity and relapses of TB on the basic 

reproduction number and TB incidence in a high TB incidence country -  South Africa 

in Chapter 8.
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C hapter 4. In troduction

In this chapter, we first give a brief history of TB, followed by a brief introduction 

to  basic epidemiology of TB. We will also discuss previous TB studies using 

compartm ental models.

4.1 A brief history of Tuberculosis

Evidence of tuberculosis in humans dates back to a t least 8,000 B.C., documented in 

prehistoric skeletal remains in Germany and Peru. The disease has also been found in 

ancient Egyptian mummies [31]. Due to the high fatality, tuberculosis had been known 

historically as “consumption” and “white plague” . TB was responsible for at least one 

billion deaths during the nineteenth and early twentieth century [24].

For centuries, it was not clear how TB was transm itted  until the German scientist 

Robert Koch, discovered the causative agent (organism) - tubercle bacillus in 1882. In 

1952, Isoniazid (INH) was first used to treat TB patients which indicated the beginning 

of chemotherapy using antibiotics. Most countries have undergone sharp decreases in 

both active TB cases and TB deaths since 1950s until this trend halted during late 

1990s in United States and other countries [114].

Tuberculosis was declared a ‘global emergency’ by the World Health Organization 

(WHO) in 1993. In 1995, a comprehensive plan -  Directly Observed Therapy and 

short course (DOTS) plan to stop tuberculosis spread globally was launched by WHO. 

By 2005, DOTS plan has been implemented in 187 countries and an estimated 60% 

of new smear-positive cases were treated  under DOTS [140]. Though great progress 

has been made under the DOTS plan in TB control globally, new factors continue to 

challenge the current control measures. International migration accelerates the global 

spread of TB from high TB incidence countries to  low TB incidence countries and 

changes the transmission dynamics in developed countries ultim ately [62, 79, 128].
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Other continuing challenges of TB control are: inadequate diagnostics and treatm ent; 

limited access to  DOTS program; M ulti-drug resistant TB (MDR-TB) and HIV co- 

infection and global spread of TB [114]. The Global Plan to Stop TB (2006 -  2015) is 

implemented to achieve the target: to reduce TB incidence, TB prevalence and death 

rates by 50% (relative to 1990) by 2015.

4.2 Basic epidem iology of TB and earlier works on  

m athem atical m odeling

Tuberculosis is caused by Mycobacterium tuberculosis. It spreads from person to  person 

by inhalation of droplets containing the tubercle bacillus, expelled by infectious persons 

with active tuberculosis when they coughs, sneezes or talks. TB usually infects the 

lungs but can affect other organs of the body, such as the lymph nodes, the bones and 

(rarely) the brain. The disease in the lungs is called pulmonary tuberculosis and those 

not in the lungs are called extra pulmonary tuberculosis [42], Only individuals with 

pulmonary TB are infectious and those with extra pulmonary TB are not infectious.

M athem atical models have been developed to study TB relatively late compared to 

other diseases (possibly since TB is curable due to available chemotherapy) [24]. The 

first TB transmission model was proposed by Waaler et al in 1962 [138] using discrete 

equations for TB in India. After th a t many other TB models have been proposed and 

most of which are statistical models (see recent survey [24] for m athem atical modeling 

of TB). Blower et al [13, 14, 117] considered the intrinsic transmission dynamics of 

tuberculosis using m athem atical models with two routes to active TB -  fast route and 

slow route, which are typical characters of TB progression. They used these models to 

investigate the historical decline of TB incidence and deaths in Europe and the United 

States before the antibiotics.

Infection with M. tuberculosis does not necessarily lead to tuberculosis. Most people 

who are infected with TB carry the bacterium  without showing any symptom and are 

said to be in latent stage. The latency is variable from a couple of months to  many 

years. People with latent TB are not infectious and cannot transm it tuberculosis. 

Approximately 10% of people with latent TB who are not given preventive therapy 

will develop active TB disease. Half will become ill within the first 2 years of infection, 

while the other half will develop active TB at some point later in their lives. Feng
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et al considered the effects of long and variable latent period to the TB dynamics in 

[46]. In [143], a TB model with early and late latent stage TB was explored to assess 

the effects of different treatm ent strategies for treatm ent of patients with early or late 

latent TB. Castillo-Chavez and Song [125] considered the fast and slow dynamics due 

to the different epidemiological time scales, short TB infectiousness period and long 

and slow TB period of progression. Changes from environmental, demographic and 

social conditions would also lead to alter the dynamics of evolution of TB strains [3]. 

Most cases of active TB are the result of reactivation of an endogenous infection. Left 

untreated, each person with active TB disease will infect on average between 10 and 15 

people every year [140]. In [137], Vynnycky et al used a partial differential equations 

model to explore the effects of endogenous reactivation, exogenous reinfection and BCG 

vaccination.

Inconsistent or partial treatm ent has resulted in multi-drug resistant tuberculosis 

(MDR-TB) which is defined to be resistant to at least isoniazid and rifampicin [140]. 

Though MDR-TB is generally treatable, the drug regime is quite expensive and toxic 

[114, 140]. Castillo-Chavez and Feng [23, 45] considered one or two-strain TB models 

to study the mechanisms of survival and spread of naturally resistant strains of TB 

and antibiotic-generated resistant strains of TB. Due to  the partial (incomplete or 

tem porary) immunity of TB, exogenous reinfection or relapses of TB are not rare in high 

TB incidence areas. The impact of exogenous reinfection of TB is investigated by both 

Feng et al [44] and Chiang et al [27, 44], In this thesis, we will investigate the impact of 

partial immunity and relapses on the TB incidence rate and basic reproduction number 

in Chapter 7.

People infected with HIV are at a much higher risk of progressing to active TB than 

those without them. Thus co-infection with HIV may have significant impact on TB 

dynamics. Kirschner [83] studied the dynamics of co-infection with tuberculosis and 

HIV-1. Current research on this topic has been intensified not only on its dynamical 

behaviors but the potential benefits for TB-HIV control.

Two of the most im portant challenges for TB modeling raised in [24] are immigration 

and ethnicity. Murphy et al [112] compared the TB epidemic in demographically 

distinct heterogenous populations between India and USA to investigate the effects of 

host genetics. McCluskey and van den Driessche considered a TB model with latent 

and infective immigration to the population [104]. Global spread by migration and/or
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air travel from high TB incidence countries to low TB incidence countries poses a 

new challenge to TB control in developed countries. In [113], the author considered 

the dynamics of tuberculosis transmission among foreign-born people from a point of 

view of molecular epidemiology. To my best knowledge, there is no published works 

in the literature th a t investigate the effects of migration and cross-infection on the TB 

incidence rate using compartm ental models.

In the next chapter, we propose a three-population TB model to  investigate the 

impact of migration from developing countries to developed countries on the TB 

incidence in the developed countries. One population represents th a t of a developing 

country, the other two populations represent those of immigrant and local-born in 

a developed country. We assume that a fraction of immigrants from the developing 

country are latently infected with TB, so they will directly influence the TB incidence 

in the immigrant population. We also assume th a t there is cross-infection from the 

immigrant population to the local-born population, so the new immigrants with latent 

TB will also indirectly influence the TB incidence of the local-born population.

The model will be used to  evaluate the impacts of the fraction of the new immigrants 

who have latent TB, and the level of cross-infection from immigrant population to the 

local-born population. In Chapter 5, we rigorously establish the global dynamics of 

the three-population model and derive the basic reproduction number.

In Chapter 6, the model is used to explain the TB data  in Canada and the UK, 

using numerical simulations. Our analysis dem onstrate tha t, if the TB incidence 

rate in the immigrant population is low, as in the case of Canada (19.4 per 100,000 

population), then the cross-infection from immigrants to local-born population has 

little effect, and latent TB through new immigrant only affects the TB incidence of the 

immigrant population. However, if the TB incidence rate in the immigrant population 

is sufficiently high, as in the case of the UK (103.3 per 100,000), then the effects of 

cross-infection can be very serious, and latent TB brought in by new immigrants will 

not only increase the TB incidence rates among immigrants, but also alter the TB 

trend in the local-born population.

From a public health viewpoint, our results suggest th a t it is necessary for Canada to 

maintain the strict screening of TB among new immigrants, to  keep the TB incidence 

among immigrant population at a low level. This will reduce the damage caused by 

cross-infection from foreign-born to local-born population.
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In Chapters 7 and 8, we develop m athem atical models to investigate the effects of 

TB latency and TB immunity.
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C hapter 5. Im pact o f Im m igration  

on T B  Incidence

In a number of developed countries with substantial levels of immigration, foreign- 

born population becomes a m ajor force th a t increasingly contributes to the national 

TB incidence [62, 63, 64, 79]. A recent trend can be clearly observed in the TB data  

in most immigration countries: the overall TB incidence rates are on the decline, an 

increasingly greater proportion of the TB cases comes from the immigrant population. 

TB incidence of foreign-born population remains at a high constant level, and TB 

incidence of local-born population remains low and is on the decline. However the TB 

data  from the UK shows a different trend. Since 2000, TB incidence among non-UK 

borns keeps increasing, and TB incidence among UK-borns remains at a constant level 

[63, 64]. Why does the TB incidence rate of the UK-born population show a constant 

instead of a declining trend as in other immigration countries? It has been suggested in 

UK government studies [63, 64] th a t cross-infection from non-UK born to UK-born may 

be a key factor. The effects of cross-infection of TB from foreign-born population to 

local-born population have been investigated in several studies [62, 78, 97, 107, 113]. 

However, the results are mixed and far from conclusive. A study by Dasgupta and 

Menzies [35] has revealed that, among developed countries, the proportion of active 

TB cases among the local-born tha t can be a ttribu te  to transmission from the foreign- 

born ranges from as low as 2% to as high as 17%. Recent studies using DNA fingerprint 

techniques have confirmed significant cross-infection in Spain [78] and the Netherland 

[15], but not in Norway [34] and Denmark [97].

In this chapter, we propose a three-population TB model with immigration and 

cross-infection to describe the transmission dynamics due to global spread of TB from 

high TB incidence countries to low TB incidence countries. The main purpose of this 

chapter is to  rigorously establish the global dynamics of our model. This model will be
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used in Chapter 6 to investigate the impact of latent TB cases among new immigrants 

on the TB incidence of the foreign-born population, and the effects of cross-infection 

on the TB incidence rate of local-born population. Our TB model can explain both 

TB trends in the UK and other immigration countries.

In Sections 5.1 and 5.2, we present the TB data  and summarize the common trend 

and possible causes. In Section 5.3, we propose our TB model with migration and 

cross-infection. In Section 5.4, the strategy for model analysis for proof is explained. 

In Sections 5.5 -  5.7, we establish the global dynamics for the limiting subsystems and 

then global behaviors for our full model using the theory of asymptotically autonomous 

systems. The proof of global stability of endemic equilibrium is given in Appendix A.

5.1 Introduction

Among the annual notified active TB cases from foreign-born, 20% more are discovered 

at arrival and many develop the disease several years of post-immigration [79]. It is 

reasonable to assume th a t a large proportion of immigrants have latent tuberculosis 

infection (LTBI) pre-immigration. Thus strategies for the control and elimination of TB 

among foreign-born population are at highest need in the public health sectors in these 

countries. From view point of molecular epidemiology, foreign-born people are more 

likely to be infected in their country of origin and then either primary disease develops 

shortly after immigration or the people remain at risk for reactivated disease for the 

rest of their lives [113]. It is also plausible th a t TB transmission within immigrant 

communities in the host country is common [63]. In [79, 113], it is estim ated th a t there 

is almost half of immigrants who got recent TB infection within community. Also the 

cross infection is not very rare between immigrants and their next generation or other 

local-born persons [63, 64, 79].

M igration from countries with high TB incidence and prevalence to  countries with 

low TB incidence and prevalence has increased during the last couple of decades and 

would continue to increase in the future. Most immigrants come from developing 

countries and it seems impossible to neglect the impact posed by immigrants in every 

im m ig r a t io n  co u n try . F ig u r e  5 .1  sh o w s  a  d ia g r a m  o f  m ig r a t io n  b e tw e e n  d e v e lo p e d  

countries and developing countries and interaction among populations in immigration 

countries. Among most developed countries with immigration policies, a recent trend
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Developing Countries

Developed 
Countries

Figure 5.1: M igration from developing countries to developed countries and interaction 

between immigrant and local-born populations in developed countries.

Groups 

in Australia

Proportion in 

to tal population

Proportion of 

TB Cases

Incidence rate 

cases per 100,000

Oversea-born 25.5% 82.3% 21.7

N on-indigenous 72.5% 13.98% 1.0

Indigenous 2% 3.72% 8.1

Total 20,111,300 1,076 5.4

Table 5.1: Australia 2005 TB data  summary.

can be clearly observed in the TB data: while the overall TB incidence rates are on the 

decline, an increasingly greater proportion of the TB cases comes from the immigrant 

population.

5.2 Trends in TB  data from developed countries

In Table 5.1, a summary of 2004 Australia TB data  is given [79]. The data  comes 

from “Tuberculosis notifications in Australia, 2005” , annual report of Communicable 

Diseases Network Australia. We see from the data  th a t the oversea-born population has 

a much higher TB incidence rate (21.7 per 100,000 persons per year) and contributes 

a m ajority (82.3%) of the overall TB cases in 2005.

In Canada, since 1970, a steady increase of the proportion of TB cases contributed
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Groups 

in Canada

Proportion in 

to tal population

Proportion in 

TB Cases

Incidence rate 

cases per 100,000

Foreign-born 19% 67% 19.4

Non-aboriginal 77% 16% 1.0

Aboriginal 4% 15% 23.3

Total 100% 98% 5.2

Table 5.2: Canada 2002 TB data  summary (PHAC).
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Figure 5.2: Percentage of TB cases by origin in Canada from 1982-2002 (PHAC).

by foreign-born population has been noted, see Figure 5.2 [62], TB incidence rate 

among the foreign-born population remains to  be high and relatively constant while 

the incidence rate among the Canadian-born population is on the decline, see Figure

5.3. Table 5.2 is a summary of Canada TB data  in 2002. D ata comes from annual 

report “Tuberculosis in Canada 2001” by Public Health Agency of Canada (PHAC).

In the Netherlands, the proportion of TB patients with a non-Dutch passport rose 

from approximately 35% in 1980 to almost 60% in 1997 [142]. In Norway, two thirds 

of the TB cases were discovered in immigrants [43]. In mid-1970’s, the proportion 

of immigrants in to tal population is 2.4% and TB cases contributed by immigrants 

constitutes 4%. In 2002, those two figures increase to 6.9% and 76%, respectively. In 

2002, TB incidence rate among Norway-born population is 1.4 (per 100,000 persons)
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Tuberculosis incidence bv origin -  C anada; 1992-2002
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Figure 5.3: TB incidence rate by origin in Canada from 1992-2002 (PHAC).

Groups Proportion in Proportion of Incidence rate

in the UK total population TB Cases cases per 100,000

Non-UK born 7.5% 72% 103.3

UK-born 92.5% 28% 4.2

Total 60,111,300 8,113 14.7

Table 5.3: The UK 2005 TB data  summary (HPA).

while it becomes 61.9 among immigrants.

In the United States, the proportion of TB cases for foreign-born is 21.6% in 1986, 

29.8% in 1993 and 41.6% in 1998 [50, 105, 128]. The TB incidence rate for foreign-born 

decreased from 34.1 in 1993 to  30.1 in 1998 [128]. The to tal TB cases contributed by 

foreign-born are 4925 in 1986, 7346 in 1993 to 7591 in 1998. The TB case rate  is 32.9 

for foreign-born and 5.8 for US-born [28, 139].

D ata in Table 5.3 is obtained from annual surveillance report of the Health Protection 

Agency (HPA) in UK ([63, 64, 65, 121]). The data  from the UK shows a somewhat 

different trend from those in other developed countries. The TB incidence rate among 

non-UK born population is on the rise, while the incidence rate among UK born 

population remains relatively constant, see Figure 5.4.

Comparing the situation between the UK and Canada, we found th a t TB incidence 

among non-UK born population is increasing all the time and th a t of foreign-born in
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Figure 5.4: TB incidence rate for UK-born and non-UK born populations from 2000- 

2005 (HPA).

Canada remains relatively constant. In the mean time, TB incidence among UK-born 

population remains constant and th a t of Canadian-born population is decreasing all 

the time. One common point is th a t proportion of active TB cases contributed by the 

foreign-born population increases annually.

Total population of the UK is double th a t of Canada and the number of active 

TB cases in the UK is around 5-fold th a t of Canada. Canada has more immigrants 

(6.5 million, 2005) than th a t of the UK (4.9 million, 2005). Two countries’ medical 

surveillance systems are similar and average life expectancy is close. Why there is a big 

difference on TB incidence between these two countries? W hat is the intrinsic dynamic 

mechanism which caused the difference?

It has been suggested in the UK [65] th a t cross-infection between non-UK born 

and UK-born population may explain the constant TB incidence rate in the UK- 

born population, while studies in Canada [108] cast doubts on the effects of such 

cross-infection. We propose a three-population TB model with migration and cross

infection among different groups to investigate qualitatively and quantitatively the 

intrinsic factors of the TB dynamics in Canada and the UK.

Over the past decade most of the 250,000 new immigrants who arrived in Canada 

annually are adults, and more than  80% of them  were from TB-endemic countries [29].
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Among the annual new immigrants, it was estimated th a t 40% of new immigrants 

are positive for tuberculin skin test [108]. This indicates th a t there are almost half 

of annual new immigrants with latent TB, some of them  will develop TB quickly 

after entry and a fraction of them  will develop TB during later time. Due to strict 

immigration medical checks before entry, new immigrants with active TB at arrival are 

rare (except for refugees [20]).

The percentage of new immigrants who develop TB after arrival is estimated in 

several studies. In 1998 [20], it was estim ated th a t 8% of foreign-born TB cases 

reported in Canada who developed TB within the first year arrival, 18% developed 

active TB within 2 years and 37% within five years. Another study from Australia 

is shown in Figure 5.5. Since most immigrants are adults and they are infected with

2 5 0  1

Year of arrival

Figure 5.5: 2005 TB notification numbers of immigrants who develop TB after arrival 

in Australia.

latent TB before entry, there is a highest risk to  develop active TB within the first 

few years’ arrival [62, 63, 64, 79]. A more detailed comparison of probability of new 

immigrants who develop active TB after arrival among the UK, Canada and Australia 

is given in Table 5.4.
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Groups

classification

Non-UK born 

2000-2005, the UK

Foreign-born 

2002, Canada

Overseas-born 

2005, Australia

within 2 years’ arrival 22% 25% 23%

3 or more years prior 78% 75% 74%

Total 100% 100% 100%

Table 5.4: Percentage of latently-infected immigrants who develop TB after entry in 

three different studies.

5.3 A three-population m odel for TB

The data  presented in the previous section clearly shows a common TB trend 

in immigration countries: steady increase in the proportion of reported TB cases 

contributed by the foreign-born population and a relative decline by local-born 

population as summarized in [41]. TB contributed by immigrants plays a critical role 

in the overall TB in immigration countries. Annual new immigrants with latent TB 

mostly from developing countries, contributed sustaining imported TB to the foreign- 

born population. Thus it is im portant to understand the impact of new immigrants 

with latent TB on the transmission dynamics of TB within foreign-born population in 

immigration countries, and to investigate effects of cross-infection between immigrants 

and local-born population within immigration countries.

Motivated by the TB data  presented in Section 5.1 in this chapter, especially 

Canada and the UK, we formulate a three-population TB model to describe the 

transmission dynamics of TB among the populations: population in a developing 

country, the foreign-born population and the local-born population in a developed 

country with immigration policy. This transmission route also describes the global 

spread of TB from developing countries (high TB incidence) to developed countries 

(low TB incidence). Each population can be further divided into three epidemiological 

subclasses: susceptible (Si), latent (exposed but not yet infectious) (Et) and infectious 

(Ii), (i = 0 ,1 ,2). Here subscripts 0 ,1 ,2  represent the populations in the developing 

country, the foreign-born population and the local-born population in the host country. 

Note th a t by foreign-born population, we mean all immigrants who are born outside of 

the host developed country. The next generation of foreign-born (immigrants) belongs 

to the local-born population (or local-born population).

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The population in the developing country is relatively closed and it is reasonable 

to assume th a t TB transmission between susceptible and infectious occurs only 

within the population. The susceptible or infected immigrants move from the So, E 0 

compartm ents in the developing country to the S i , E i  compartm ents in the foreign-born 

population in the host country with constant rates Xs A e , respectively. Susceptible 

individuals in the foreign-born population get TB infection from an infective individual 

not only within the foreign-born population but also get cross-infection from the 

local-born population [113]. Similarly, the susceptible individuals in the local-born 

population get TB infections not only from infective individual within population but 

also from the foreign-born population as well. Latently infected individuals among all 

three populations can develop TB within the first 2 years of infection or through a 

slower route by reactivation. The transfer diagram for the whole model is depicted in 

Figure 5.6. The top part (subscript ‘0’) of the figure describes the TB transmission
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Figure 5.6: TB transmission diagram among the population from a developing country, the 
foreign-born and local-born populations in an immigration country. Solid lines represent 
population transfer or removal among compartments. Dashed lines represent cross-infection 
among populations. Heavy solid lines represent immigration.
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7r0 : annual new births to the population in a developing country.

P i  : transmission coefficient between compartm ents S', and I i  ( i  =  0,1 ,2).

di : removal rate  in the i-th  population (z =  0 ,1 ,2).

Xk : immigration rate from a developing country (k = S ,E ) .

Ui : slow progression rate to active TB in the i-th  population {i = 0,1, 2).

Pi : proportion of newly infected who develop TB within two years (i = 0 ,1 ,2).

ao : removal rate (TB-caused death and treatm ent) in a developing country.

a k : removal rate (TB-caused death and treatm ent) in the fc-th population

in an immigration country (k = 1,2).

7r : annual new births to local-born population in an immigration country.

P12 : transmission coefficient from infective individuals (I2) in local-born

population to susceptible individuals (Si) in foreign-born population.

P21 ■ transmission coefficient from infective individuals ( / 1) in foreign-born

population to susceptible individuals (S2) in local-born population.

Table 5.5: Param eters in the three-population TB model.

within the population in a developing country. The part inside the dashed line box 

describes the TB transmission within the foreign-born population (subscript ‘1’) and 

the local-born population (subscript ‘2’) within an immigration country and the cross

infection between two populations (dashed red arrows). The param eters used in the 

three-population TB model are described in Table 5.5.
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The model is described by the following system of ordinary differential equations:

=  7To — PoSo{t)Io{t) — (do +  Xs)So(t),

=  (1 — po)0oSa(t)Io(t) — (do +  t'o +  ^E)Eo(t),

=  Pa(3oSo(t)Io(t) + u0E 0(t) — (d0 +  a 0)I0(t),

= Xs S0(t) -  P & W h i t )  -  P n S ^ h i t )  -  d A ( t ) ,

= XEE 0(t) + (1 — pi)[PiSi( t) Ii( t)  + Pi2Si( t) I2(t)] — (di + i/i)Ei(t),  (5.1)

=  PiPiSi{ t )h{t)  + PiPi2S\{t)I2{t) + vi E\( t )  — (di +  Q!i)/i(f),

=  7T — f o S i i t f h i t )  — /?2lS,2(t)d l(t) — d2S2(t),

=  (1 — P2)[P2S2(t)I2(t) +  /?2l5l2(t)dl(t)] — (d2 +  V2)E2(t),

=  P2/?2‘S'2(t)d2(0 +  P2^2lS2{t)Il{t)  +  V2E 2(t) — (d  ̂ +  0:2) ̂ 2 (^)-

Here (3% is transmission coefficient of the pathogen which reflects the likelihood th a t 

an infectious case will successfully transm it the infection to  a susceptible individual 

[13]. In our model (5.1), following those in [13, 14, 117, 143], bilinear incidence

forms of new infections are used. Other TB modeling used standard incidence forms

[23, 27, 44, 45, 46, 112]. Also the fast and slow transmission routes to active TB, 

typical characters of TB progression, are incorporated in the model (5.1).

The new features in our model (5.1) are the description of global spread of TB which 

allows immigrants with latent TB to move from a developing country to a developed 

country with immigration policy, and the possible cross-infections between foreign-born 

population and local-born population in an immigration country.

5.4 M odel reduction and strategy for m odel 

analysis

The qualitative analysis of model (5.1) with cross-infection and migration is difficult in 

both global behaviors and available m athem atical tools. To my knowledge, no one has 

proved a detailed analysis for a TB with migration and cross-infection in the literature. 

Our strategy for the m athem atical analysis of model (5.1) is as follows:
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' dS0{t 
dt 

dEo(t 
dt 

dlpjt
dt

dSi(t
dt

 ̂ dE i i t  
dt 

dli ( t  
dt 

dS2(t
dt

dE2(t
dt

d l2{t
dt
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Step  1. Because no infections on population ‘0’ are assumed to  come from populations 

‘1’ and ‘2’, we can first investigate the submodel for population ‘0’ independent of 

populations ‘1’ and !2’.

dS0(t)
dt 

dE0(t)
dt 

dl0(t)
dt

=  7r0 — PpSpIp — {do +  As)Sp ,

=  (1 — P o ) /W o  — (do +  z'o +  A e )Ep, 

=  PpfipSpIp +  vpEp — (do +  otp)Ip.

(5.2)

The global dynamics of system (5.2) are described in Section 5.5.

Step  2. From Section 5.5, we know th a t solutions to (5.2) converge to  an equilibrium 

as t —> oo. Using the theory of asymptotically autonomous systems [25, 131], we can 

replace Sp(t) and E 0(t) th a t appear in equations for populations ‘1’ and ‘2’ by their 

limits, and consider the following limiting system

' dSi(t)
dt

dEi(t)
dt

dh ( t )
dt

dS2{t)
dt

dE2(t)
dt

d l2(t)
dt

As — / W i  — P u S i h  — d\Si,

=  Ag +  (1 — p i ) P i S \ I i  +  (1 — P i ) P i 2 S i I 2 — (di +  tq ) E \ ,

=  P iP iS ih  + Pil3l2S i I 2 +  v\E \  — (di + a i ) / i ,  

=  7r — (32S2I2 — (32iS 2I\ — d2S2, 

=  (1 — p2)/32S2I2 +  (1 — P2)02\^2I\ ~  (d 2 +  v 2) E 2,

=  p 2f32S 2I 2 +  P2fd2iS2I i  +  v 2E 2 — (d2 + a 2) I 2 ,

(5.3)

where As  = As  lim Sp(t), Ae  = Ae lim E 0(t). The global dynamics of system (5.3) are
t —*oo t —*oo

described in Section 5.6.

Step  3. The global dynamics of (5.1) can be obtained from those of subsystem (5.2) 

and the limiting system (5.3). They are described in Section 5.7.

5.5 D ynam ics o f the one-population subm odel

Model (5.2) is same as th a t in [13] and its global dynamics are given in [55]. The 

feasible region is

r  =  {(So, Ep, Ip) G | Sp <  7Tq/(do +  Ag), Sp + Ep + Ip < 7Tq/ d},
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where d =  min{d0 +  As, d0 + v0 + \ E , d0+ a 0}. Model (5.2) has a disease-free equilibrium 

P0 =  (7r0/(d 0 +  Ag), 0,0) and a unique endemic equilibrium P* — (Sq, E q, I q) with

SX = --------—----- — , EX = ~  Po)A> V o ' , =  _ B JA  >
/3qIq +  do +  As do +  XE +  vq

where

A  = — /?o(do +  A# +  i/0)(d0 +  «o) < 0,

B  =  (Po(^o +  A e ) +  ^o)/?o7To — {do +  Ag +  r/o)(do +  ao)(^o +  As).

The basic reproduction number is given in [55]

_  A)[po(d0 +  Ae ) +  ^o]7r0_____
(d0 +  As) (d0 +  \ E +  l/o){<io +  c*o)

The following result was proved in [55].

T h e o re m  5.1. I f  Roi <  1, the disease-free equilibrium P0 is globally asymptotically 

stable in the feasible region T and the disease dies out from the population. I f  Roi >  1, 

the disease-free equilibrium is unstable and the endemic equilibrium P* is globally 

asymptotically stable in the interior ofT .  The disease always persists in the population.

5.6 D ynam ics of the tw o-population subm odel

The two-population model (5.3) describes the intrinsic transmission dynamics between 

foreign-born and local-born populations in immigration countries. Its transfer diagram 

is shown in Figure 5.7. The feasible region is defined as

T =  {{Si, Ei, I\, S2, E2,12) £ \ Si + Ei + Ii + S2 + E2 + I2 < (As +  Ae +  tt)/d},

where d =  min{di, d2}.

By Theorem 5.1, if Roi < 1, system (5.2) has a disease-free equilibrium which implies 

S 0(t) —► 7r0/(d 0 +  As), E 0{t) -> 0. Setting A5 =  As7r0/(d 0 +  As ), XE =  0, system (5.3)
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Figure 5.7: Transfer diagram for the two-population TB model (5.3).

becomes

' dSjjt )  
dt 

dEjjt )  
dt 

dl\{t)
dt 

dS2{t)
dt 

dE2{t)
dt 

d l2(t)
dt

= X s  — PiSi( t) I i{ t )  — P\2S i ( t ) I2(t) — diS'i(i),

— (1 — P i) f tS i( i ) / i( i)  +  (1 — P\)PnS\{ t)I2{t) — (d\ + vi)E\{t),  

=  PiPiSi{t )I i( t)  +  p\P\2S i ( t ) I2(t) + vi Ei(t )  — (di +  a i) / i( f ) ,

=  7r — P2S 2(t)I2(t) — P2iS 2(t)Ii(t) — d2S2(t),

=  (1 — p2)P2S 2(t)I2(t) +  (1 — p2)P2\ S 2{t)Ii(t) — [d2 +  v2)E2{t), 

= p2p2S2(t)I2(t) +  p2p2\ S 2{t)Ii{t) +  v2E 2{t) — (d2 + a 2)I2(t).

(5.4)

Model (5.4) has a disease-free equilibrium P0 — ( S f ,  0,0, S t ,  0,0) where S*  = 

Xs/dr, S+ = 7r/d2, and a basic reproduction number

R 02 = p ( F V ~ l ), (5.5)

where p denotes the spectral radius of m atrix

F V ~ l =

P iP iS t
di +  Ui

(1
d\ +  on 
P i P u S t

v iP iP iS t P i P u S t V2P1P12S 1
(di +  a i)(d i +  i'i ) 

i/i(l -  px )P iS t
(di +  ai)(o!i +  i'i)

_______  VlP2l32lS2
di +  ct! {d\ +  oq) (di +  up)

(1 - p 2)P2j S t  Vljl  P2)02lS<2
d\ +  oil (di +  o:i)(di +  v\)
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d2 +  a 2 (d2 +  ce2)(d2 +  i/2) 
(1 - p i ) P i 2 S t  t /2 ( l  - p i ) P i 2 S t  

(d2 +  a 2)(d2 + v2) 
v2p2p2S t

d2 +  0:2 

?2+P2@2St
d,2 ~\~ Oi2

(1  -  p2)P2S 2
(d2 +  a 2) (d2 +  v2) 

v2{l - P i j f c S t
d2 +  a 2 (d2 +  oc2)(d2 +  v2)
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Derivation of m atrix F V ~ l uses the m ethod of next generation m atrix (see [135]).

If Rm  <  1, disease-free equilibrium P0 is globally asymptotically stable in the feasible 

region I \  If R 02 > 1, system (5.4) has a unique endemic equilibrium P* which is globally 

asymptotically stable in the interior of feasible region T.

If R 0i > 1, So{t) —> Sq, E 0(t) —> E l  (as t —> oo) and model (5.3) becomes the case 

where

As = As So > 0, AE = Xe E l  > 0.

System (5.3) has a unique endemic equilibrium which is always globally asymptotically 

stable in the interior of feasible region T. In summary, we have the following theorem 

for model (5.3).

T h e o re m  5.2. The global dynamics of  (5.3) can be described as follows:

Case 1. Xe =  0.

(1) I f  R 02 <  1, system (5.3) has a disease-free equilibrium Po — ( S f  ,0,0,  S f  ,0,0),  

and P* is globally asymptotically stable in the feasible region T. TB dies out from 

the population in the developed country.

(2) I f  Rq2 >  1) system (5.3) has a unique endemic equilibrium P* = 

(SI, E l ,  I{, SI,  E l ,  II) ,  and P* is globally asymptotically stable in the interior 

of feasible region T. TB always persists in the population of  developed country.

Case 2. Xe > 0.

When XE > 0, there is no basic reproduction number or disease-free equilibrium. 

System (5.3) has a unique endemic equilibrium and it is globally asymptotically 

stable in the interior of  feasible region T. TB always persists in the population of  

developed country.

The detailed proof of Case 2 of Theorem 5.2 is given in Appendix A.

5.7 Global dynam ics of the full three-population  

m odel

Now we go back to study global dynamics of the full model (5.1). According to 

Section 5.5, if /?0i <  1, system (5.2) has a disease-free equilibrium and S 0(t) —>
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7To/(do +  As), PoW  —► 0. Thus Ae  — 0, Case 1 in Theorem 5.2 holds.

If P 0i >  1, S0(t) —> S q, E 0(t) —► ££, I0(t) —> I q (as t —> oo), and model (5.3) 

becomes the case where

As =  As S*0 > 0 , =  Ab E* >  0. (5.6)

Case 2 in Theorem 5.2 implies system (5.3) has a globally stable endemic equilibrium

p "  =  ( s r , E r ,  i t , s r ,  . o -  (5 -7 )

Thus for the full model (5.1), we have the following result, using the theory of 

asymptotically autonomous systems.

T h e o re m  5.3. The global dynamics of  system (5.1) are described as follows:

Case  1. I f  R q\ <  1, system (5.2) has a disease-free equilibrium. TB dies out in the 

population of  the developing country. So(t) —> n0/(d0 +  As), E 0(t) —> 0,lo{t) —> 0. 

System (5.3) becomes (5.4). Furthermore,

(a )  i f  Rq2 <  1, then solutions to system (5.4) satisfy

{S1( t ) ,E 1{t ) , I1( t ) ,S2{t ) ,E2{t) , I2{t)) -> (A s/d i,0 ,0 ,7 r/d2,0 ,0).

TB dies out in the populations of  the developed country.

(b) I f  Rq2 > 1, then solutions to system (5.4) satisfy

{Si{t), Ei(t ),  h i t ) ,  S2(t), E 2(t), I 2it)) -  iSi ,  E{, I T  S T  E T  IT)-

TB persists in the populations of  the developed country.

C ase  2. I f  R 01 >  1, system (5.2) has a unique endemic equilibrium. TB  

persists in the population of  the developing country. So(t) —*• S T  E 0(t) —>

E T  Io{t) —> I T  System (5.1) has a unique globally stable endemic equilibrium

{ST E T  I T  S T ,  E*T, I T ,  S T ,  E T ,  I T ) ,  where P** =  { S T ,E { T  S'**, E*2*, I T )  given
in (5.7). TB always persists in the populations of  the developed country.

This is a direct result using Theorem 5.2, Theorem 5.1 and the theory of asymptotical 

autonomous system.
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5.8 Sum mary

In this chapter, we propose a three-population TB model to describe the impact of 

migration from developing countries to  developed countries on the TB transmission 

dynamics. The population in a developing country does not pose TB transmission 

to the population in an immigration country. But the accumulated foreign-born 

population in immigration countries has a direct impact on the TB incidence and 

the potential of cross-infection to the local-born population in immigration countries.

Due to  the close transmission of TB within the population in a developing country, 

we focus on the TB transmission dynamics between foreign-born and local-born 

populations in an immigration country. According to  the theory of asymptotically 

autonomous systems proposed by H. R. Thieme et al [131], we can reduces the full 

three-population TB model (5.1) into a one-population model (5.2) and a limiting 

system (5.3). The global dynamics of system (5.2) were established in [55]. For the two- 

population subsystem (5.3), we rigorously establish its global dynamics in Section 5.6 

(Theorem 5.2). Then the dynamical behaviors of the full system (5.1) are established 

accordingly in Section 5.7 (Theorem 5.3). The proof of global stability of endemic 

equilibrium in Theorem 5.2 is given in Appendix A.

The significance of this chapter is as follows. The three-population model (5.1), 

describing the TB transmission dynamics of global spread from high TB incidence 

countries to low TB incidence countries, is proposed based on the TB trend in Canada 

and the UK. The global dynamics of the full TB model are established rigorously for 

the first time for a large endemic TB model in the literature. Our results show that 

when there are new immigrants with latent TB entering the developed country, the TB 

transmission dynamics in an immigration country have a unique endemic equilibrium 

and it is globally asymptotically stable. TB always persists in the developed countries.

Numerical simulations of our model will be carried out in the next chapter to 

investigate quantitatively the impact of immigrants on the TB incidence rate of foreign- 

born and effects of cross-infection on the TB incidence rate of local-born population in 

two case studies using realistic data  from Canada and the UK.
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C hapter 6. Case Studies: T B  in  

C anada and th e U K

In this chapter, based on the two-population TB model (5.3) proposed in Chapter 5, 

numerical simulations are carried out for different scenarios using da ta  from Canada 

and the UK. The purpose of our simulations is to investigate quantitatively the impact 

of latently-infected new immigrants on the TB incidence rate of the host immigration 

countries, and the importance of cross-infection between foreign-born and local-born 

populations in Canada and the UK.

In the simulations, we use the following model equations

dS\(t )
=  (1 — q){^s  +  ^ e ) ~  + @i2h{t)} — diS\(t ),

=  <?(As +  As) +  (1 — Pi)Si(t)[PiIi(t)  +  P12I 2 (f) j — (di +  vi)Ei(t ) ,

— PiSi(t)[f3ih(t)  +  @12 h{t)] +  ~  (^ 1  +  a i)h{t ) ,

dt 
dEi(t )  

dt 
dh{t )

d t  (6 .1)

— = 71 ~  S 2{t)\@2h ( t )  +  @21 h(t)} — c^S ^ t), dt
dE2{t)

dt
d l2{t)

— (1 — P2)S2{t)[@2h{t) +  @21 h{t)} — ( g?2 +  l/2)E2{t),

= P2S2{t)[@2h{t) + @2ih{t)\ + ^2^ 2 ( 0  — {d2 + 012) h i t ) ,dt

where q denotes the fraction of to tal number of new immigrants Ag +  A# with latent 

TB before entry to immigration countries. As +  As is estimated as the to tal number of 

annual new immigrants. Subscripts ‘1’ and ‘2’ denote the foreign-born population and 

local-born population in an immigration country, respectively. Terms 0i2, @21 represent 

the rates of cross-infection between two populations.

Our simulations show that, if the TB incidence rate  in the immigrant population 

is relatively low, as is the case of Canada, then the cross-infection to the local-born
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population is small and negligible. However, if the dynamics are such th a t the TB 

incidence in the immigrant population is sufficiently high, as is the case of the UK, then 

the effect of cross-infection is obvious and can significantly impact the TB incidence 

rate of the local-born population. The comparison of the TB dynamics between Canada 

and the UK offers an im portant public health lesson: m aintaining control of latent TB 

in new immigrants is im portant, and the TB incidence in the immigrant population 

is essential to control the overall TB problem in Canada. Failing this, the scenario 

currently in the UK may happen in Canada.

6.1 Sim ulations of Canada TB incidence

6.1.1 Parameter estim ation from data

In the 2002 census [21], to tal immigrants in Canada is 5,639,175 and to ta l new births are 

246,038 for Canadian-born population. Total active TB cases contributed by foreign- 

born is 1,094 in 2002 [62]. Annual average new immigrant number is 223,840, namely, 

As +  A# =  223, 840 [29]. We assume th a t 0 <  q <  50% [108]. Average life expectation 

in Canada is 80 years [21]. Mean age of new immigrants arriving in Canada is 30 years 

[29], We assume th a t the removal rate for Canadian-born population is di =  0.001, the 

removal rate for immigrant population is d\ = 0.039. The param eter values in Table

6.1 are used in the simulations of our model (6.1).

We choose the initial values for both populations as

[S?, E%, /?; S%, E°,  / 2°] =  [4431746, 1206335, 1094; 25481638, 388045, 576].

This corresponds to  13% of the to tal immigrants within Canada who have latent TB 

and 1.5% of to ta l Canadian-born people who have latent TB [62], respectively.

6.1.2 Effects of imported latent TB among new immigrants

S tu d y  1: Suppose all new immigrants to Canada are susceptible, namely q = 0 in 

model (6.1). We assume th a t there is no cross-infection between two populations. 
Then Case 1 in Theorem 5.2 applies. If the basic reproduction number Rq2 is strictly 

less than 1, the TB incidences of local-born and foreign-born populations experience a 

decline and eventually die out, see Figure 6.1.
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Im m igrant P op u la tion

Pi =  i  x n r 8 transmission rate within immigrant population in Canada.

dx =  0.039 removal rate for immigrants in Canada.

Pi =  5% 5% high-risk LTBI immigrants develop TB in 2 years.

v i  =  0.00027 1.35% low-risk LTBI immigrants develop TB in 50 years.

on =  0.86 removal rate (TB-reduced death 6%+ treatm ent 80%.

+  AE 223,840, average annual new immigrants to Canada.

C anadian-born P op u lation

02 = 0.5 x 10-8 transmission rate within local-born population in Canada.

d2 = 0.001 removal rate for Canadian-born population.

P2 =  1% 1% high-risk LTBI Canadian-born develops TB in 2 years.

v -2 = 0.0001 0.8% low-risk LTBI Canadian-born develop TB in 80 years.

a 2 = 0.86 removal rate (TB-reduced death 6%+ treatm ent 80%).

7T =  246,038 average new births in Canada.

021 G [0,1 x 10-8] transmission rate between foreign-born and local-born.

012 G [0,0.5 x 10“ 8] transmission rate between local-born and foreign-born.

q G [0, 50%] % of to ta l number of annual new immigrants with LTBI.

Table 6.1: Param eter values for simulations of the two-population TB model for 

Canadian-born and foreign-born populations.
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TB in c id e n c e  fo r fo re ig n -b o rn , n a tiv e -b o rn  a n d  n atio n w id e  in C a n a d a  w ith q = 0%
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Figure 6.1: TB incidence rates in both foreign-born and Canadian-born populations 

decline if there is no latently-infected new immigrants to  Canada.

S tu d y  2: Suppose a percentage q(> 0) of to ta l number of all new immigrants 

are latently infected with TB before entry to Canada. Suppose th a t there is no 

cross-infection between Canadian-born and foreign-born populations. Then Case 2 

in Theorem 5.2 applies.

Increasing the percentage q of to tal number of latently-infected new immigrants 

from 20% to 50%, we observe th a t the TB incidence rate in Canadian-born population 

always decreases while the TB incidence rate in foreign-born population increases from

6.1 (per 100,000 population) to around 15, see Figure 6.2. The national average always 

decreases when q increases from 20% to 50%.

6.1.3 Effects of cross-infection

S tu d y  3: Fix q = 40%, change the rate of cross-infection. We assume th a t cross

infection rates between Canadian-born and foreign-born populations are /?12 >  0, /?2i > 

0. Then Case 2 in Theorem 5.2 applies. Increase /?2i from 0 to 1 x 10-8 , the same level 

as Pi. We observe th a t TB incidence rate for foreign-born population is around 12 (per 

100,000 persons per year) and TB incidence rates for Canadian-born population does 

not change, see Figure 6.3.
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TB incidence rate with q=20%
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Figure 6.2: TB incidence rates for foreign-born, Canadian-born and whole country 

with no cross-infection.

6.1.4 Conclusions

Our simulations show th a t latently-infected new immigrants have a big impact on the 

TB incidence of foreign-born population in Canada, while they have little impact on 

the TB incidence of the Canadian-born population due to cross-infection.

This seems to  suggest th a t TB is only a problem for the immigrant population, and 

the cross-infection to  the Canadian-born population can be ignored. However, we will 

see a very different picture in the simulation for the UK.
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TB incidence, beta21=0.0*e-8
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Figure 6.3: TB incidence rates for foreign-born, Canadian-born and whole country 

with cross-infection.

6.2 Sim ulation of the UK TB incidence

6.2.1 Parameter estim ation from data

The average life expectation in the UK is 79 years [133]. Mean age of new immigrants is 

around 30 years. We assume the removal rates for non-UK born, UK-born populations 

are di = 0.02, d2 = 0.01266, respectively. In the 2001 census, to tal immigrants in 

the UK is 4,301,230 [39] and to tal new birth  to UK-born population is 594,634 [133]. 

Total active TB cases in 2001 is 5,500 [64]. Annual average number of new immigrants 

is estim ated to be 220,000 [39]. The param eter values in Table 6.2 are used in the 

simulations of our models.
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N on -U K  born p op u lation

f t  =  8 x  10"s transmission rate within non-UK born population UK.

di =  0.02041 removal rate for non-UK born population.

Pi =  0.05 5% high-risk LTBI immigrants develop TB in 2 years.

Vi = 0.0021 8.4% low-risk LTBI immigrants develop TB in next 40 years.

oli = 0.86 removal rate (TB-reduced death 6%+ treatm ent 80%).

A s  +  A e 220, 000, estim ated annual new immigrants to the UK.

U K -born  popu lation

f t  =  7 x  10“ 8 transmission rate within UK-born population.

d2 = 0.0141 removal rate for UK-born population.

p2 =  0.03 3% high-risk LTBI UK-born develop TB in the first 2 years.

v2 =  0.00125 10% low-risk LTBI UK-born develop TB in future 80 years.

a 2 =  0.86 removal rate (TB-reduced death 6%+ treatm ent 80%).

7t -  594,634 average new births in UK.

021 G [0,2 x 10-8] transmission rate between non-UK born and UK-born.

/Ji2 6 [0,1 x 10~8] transmission rate between UK-born and non-UK born.

q G [0, 50%] % of to ta l number of annual new immigrants with LTBI.

Table 6.2: Param eter values for simulations of the two-population TB model for UK- 

born and non-UK born populations.
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TB incidence ra te s  for non-U K  bom , U K -bom  and total ave rage

Figure 6.4: TB incidence rates for both UK-born and non-UK born populations decline 

if there is no latently-infected immigrants to the UK.

We choose the initial values for both populations as 

[5?, £? , /?; S§, E l  / 2°] =  [2362053, 1935727, 3450; 48195679, 983626, 2050].

This da ta  indicates th a t 45% of the to tal non-UK born population have latent TB and 

2% of to ta l UK-born population have latent TB, respectively [64].

6.2.2 Effects of latent TB among new immigrants

S tu d y  1: Suppose all new immigrants to UK are susceptible, namely, assume q =  0 

in model (6.1). We assume th a t there is no cross-infection between non-UK born 

and UK-born populations. Then Case 1 in Theorem 5.2 applies. Thus if the basic 

reproduction number R 02 is strictly less than 1, TB incidence in the non-UK born 

population, UK-born population and whole country have a decline trend, see Figure

6.4.

S tu d y  2: Suppose a percentage q(> 0) of to tal number of all new immigrants are 

latently infected with TB before entry to the UK. Suppose th a t there is no cross

infection between two populations. Then Case 2 in Theorem 5.2 applies. Increasing the 

percentage q from 20% to 50%, we observe th a t TB incidence of UK-born population
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Figure 6.5: TB incidence rates for non-UK born, UK-born and whole country with 

increasing percentage of latently-infected new immigrants to the UK.

always decreases while the TB incidence rate of foreign-born population increases from 

30 (per 100,000 persons per year) to  116 and becomes constant in a high level after a 

long time, see Figure 6.5. The TB incidence for national average increases from 10 to

21 when q increases from 20% to 50%.

6.2.3 Effects of cross-infection

S tu d y  3 : Fix q =  30%, change the rate of cross-infection.

Case 1: If /?i2 =  0, namely, one way cross-infection rate between two populations
is zero, increasing /?2i from 0 to 3 x 10-8 , the TB incidence rate for UK-born changes 

gradually, first declining then increasing, see Figure 6.6.

Case 2: If /32i =  0, namely, one way cross-infection rate between two populations
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Figure 6.6: TB incidence rates for UK-born and whole country with cross-infection.

is zero, the situation is different. Increasing from 0 to 3 x 10-8 , the TB incidence 

rate for UK-born population is always decreasing, see Figure 6.7.

6.2.4 Conclusions

The simulations done for two populations in the UK show that the rate of cross-infection 

between non-UK born and UK-born populations is evident from Figure 6.6. Also the 

cross-infection rate (321 has a bigger impact than /f12, indicating th a t infections mainly 

occur in one way, from the non-UK born to the UK-born. W hen the TB incidence for 

non-UK born is sufficiently high (100 per 100,000 persons per year), the cross-infection 
could be an im portant factor for the TB incidence of UK-born and national average.
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Figure 6.7: TB incidence rates for UK-born and whole country with cross-infection.
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6.3 Com parison betw een Canada and the UK  

trends

Simulations of the two-population TB model describe quantitatively the TB 

transmission dynamics between foreign-born and local-born populations using the data  

from Canada and the UK.

By comparing the different TB trends in Canada and the UK, our simulations 

establish th a t cross-infection from foreign-born population to  local-born population 

plays a key role in the TB incidence of local-born population: when the TB incidence 

of immigrant population is relatively low, as is the case of Canada, TB incidence in 

local-born population may maintain its declining trend; when the TB incidence in the 

immigrant population is sufficiently high, as is the case of the UK, the TB incidence in 

the local-born population can remain of a constant level, or even be on the rise. This 

confirms an earlier hypothesis given in a UK government study [64].

As an implication for Canadian public health, it is im portant to m aintain a strict 

medical screening of TB for all new immigrants. Failing this, more imported latent TB 

cases can cause a rise in TB incidence among Canadian-born population, a case of UK 

scenario.

6.4 Sum mary

W ith the global dynamics of the two-population TB model (6.1) rigorously established 

in the previous chapter (Theorem 5.2), we carry out numerical simulations in this 

chapter to  investigate the impact of new immigrants with latent TB on the TB incidence 

of the foreign-born population and the effects of cross-infection from the foreign-born 

to the local-born, using data  from Canada and the UK.

Our results reveal th a t when the TB incidence rate of foreign-born population is low, 

as is the case of Canada, the effects of cross-infection are negligible. The influx of latent 

TB cases from new immigrants has no impact on the TB incidence rate  of the local- 

born population. This agrees with findings in studies based on DNA fingerprinting 

technology in Canada [62] and Denmark [97]. W hen the TB incidence rate of the 

foreign-born population is sufficiently high, the cross-infection can not be neglected, as 

is the case of the UK. The impact of cross-infection on the TB incidence of local-born
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population is significant. This agrees with epidemiological studies of TB in the UK 

[64, 63] and Spain [78].

The significance in this chapter is th a t we dem onstrate quantitatively th a t TB 

cross-infection from foreign-born to local-born populations could happen under the 

condition th a t foreign-born population m aintain a high TB incidence rate. Annual 

new immigrants with latent TB are directly responsible for the high TB incidence rate 

in the foreign-born population. If the proportion of new immigrants with latent TB is 

high, TB incidence rate in the foreign-born population can be very high and this can 

lead to significant cross-infection to  the local-born population.

Through two epidemiologically distinct case studies in Canada and the UK, we 

arrived at the following conclusion: maintaining strict screening of new immigrants for 

active and latent TB can substantially lower the TB incidence rate  in the foreign-born 

population in immigration countries, which in tu rn  reduces the risk of cross-infection of 

TB from foreign-born to local-born populations. Failing this will not only allow the TB 

incidence among the foreign-born to creep up, but also change the TB trend among the 

local-born, as we have observed in the UK data. However, a more fundamental long

term  solution to control TB in immigration countries may be to increase our efforts for 

controlling TB in developing countries [107].
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C hapter 7. Im portance o f Early  

and Late L atency

The proportion of active TB cases contributed by foreign-born population has an 

increasing trend in most developed countries. To investigate the impact of latent 

TB cases among new immigrants on TB incidence of foreign-born population in 

immigration countries, we propose a four-dimensional TB model with early and late 

stage latent TB infection (LTBI). The purpose of the investigation is to compare the 

difference contributed by different proportion of latently-infected new immigrants who 

have a high or low risk to develop active TB after arrival.

In Section 7.1, we present the model formulation. In Section 7.2, we establish 

the global dynamics of the model. The proof of the global stability of the endemic 

equilibrium is given in Appendix B in detail. In Section 7.3, numerical simulations are 

carried out for different epidemiological scenarios using data  from Canada.

Our simulations show th a t early latent TB has a bigger impact than late latent TB on 

incidence rate of immigrant population in developed countries. More specifically, early 

latent TB drives the TB incidence up quickly with a small change of percentage, while 

late latent TB drives TB incidence up slowly even with a big increase on percentage. 

W ithin a short period of time, controlling early LTBI can have a bigger effect than 

controlling late LTBI. These studies have potential benefits for policy-makers and 

public health authorities in developed countries with immigration policy.

7.1 A TB  m odel w ith early and late latency

As presented in Chapter 5 and Chapter 6 , most immigration countries experienced 

increasing percentage of active TB cases contributed by foreign-born population. 

Though strict immigration medical checks are carried out in several countries like
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Canada and the UK, a sharp proportion of annual new immigrants were screened to  be 

latently infected, indicating the infection before entry. Thus a reasonable assumption is 

th a t a proportion of annual new immigrants are latently infected but a small percentage 

of them  are in the highest risk to develop TB after arrival.

The model incorporates fast and slow route to TB, early and late stage LTBI [143]. 

New feature of our model is tha t new immigrants have a different percentage of high or 

low risk to  develop TB within the first two years after arrival. Using a compartm ental 

approach, the to tal foreign-born population within a immigration country can be 

partitioned into four compartments: susceptible individuals (X ), early latent stage 

(E ) and late latent stage (L) individuals, and individuals with active TB (T ). Only 

individuals in compartm ent T  are infectious, and new infections result from contacts 

between a susceptible and an infectious individual within the immigrant population, 

with an incidence rate (3X(t)T{t). Here X ( t) ,  E(t), L(t),  and T ( t ) denote the number of 

persons in the four corresponding compartm ents a t time t. Once infected, individuals 

have to  progress through the early latent stage with an average rate lo within the 

first two years. A fraction p, 0 <  p  <  1, of these individuals progress directly to 

the active TB stage, and the remaining 1 — p fraction progresses to the late latent 

stage. Once there, the rate of slow progression to active TB due to reactivation is at 

a lower rate  u. The inputs to the susceptible S, early latent stage E  and late latent 

stage L  compartm ents are (1 — qi — q2)n, q\-n and q27r, respectively. Here n  is average 

number of annual new immigrants and qi,q2 are percentages of new immigrants who 

are in early latent (high risk) or late latent stages (low risk) to develop TB. Due to 

strict immigration policies of immigration countries, we assume th a t there are no new 

immigrants with active TB before entry. The removal rates for the four compartments 

X , E , L , T  are dx , dE, dE, dr, respectively, a  is the removal rate due to TB-caused 

death and treatm ent. The dynamical transfer among the four compartm ents is depicted 

in Figure 7.1. Here all param eters are assumed to be nonnegative. The model is 

described by the following ODE system:

X '  = (I -  qi -  q2)n -  (3XT  -  dx X ,

E' = qi7r + ( 3 X T - ( d E + u )E ,
J L' =  q2-K +  (1 -  p)u)E -  (dL +  v)L,

[ T' = p u E  + uL — (dT + a)T.

For qi = q2 = 0, model (7.1) reduces to th a t in [143] and its global dynamics were
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Figure 7.1: Transfer diagram for the 4-D TB model (7.1) with new immigrants in early 

or late latent stage.

established in [57]. If qi,q2 /  0, the model is called immigration model and its 

dynamical behavior is relatively simple (see [16, 104]).

7.2 M odel analysis

From the first equation of (7.1), in the absence of disease, we have

X '  <  (1 -  qi -  q2)7T -  dx X ,

and thus l im su p X (i)  <  —— aiong solution to (7.1). The total
t->oo dx

population size in (7.1) satisfies

TV' =  {X  +  E  + L  +  T)'  <  7T -  d N  -  aT,

where d = min{c?x, g?l, dr} and N (t)  is varying over time t and thus

lim sup N (t)  <
t—>oo d

Therefore the model (7.1) can be studied in the feasible region

T =  { { X ,E ,L ,T )  e  R i  ] 0 <  X  < ^  ~ Q\ ~ g 2 ^ , 0  < X  + E  + L + T  <  - } ,
dx  d

where R4 denotes the non-negative cone of R4 including its lower dimensional faces. 

It can be verified th a t T is positively invariant with respect to (7.1). We denote by T
O

and T the closure and the interior of F in R4 , respectively. An equilibrium of system

(7.1) satisfies the following equations

'  0 =  (1 - q i - q 2) n - f 3 X T - d x X ,

0 =  q\K + (3XT  — (dE +  lo) E ,

0 =  q2ir + (1 -  p)u)E -  (dL + v)L,

0 =  pu)E +  vL  — (dT + a)T.
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Solve X  from the first equation in (7.2), we obtain

Substitute the last equation into the th ird  equation in (7.2) to  cancel L  term , we have

q2n v  +  (pdL +  v )u E  = (dL +  v)(dT + a)T .  (7.4)

Combine (7.4) with the second equation in (7.2), canceling E,  we get

(pdL + u)uj[qiTT + 0 X T ]  +  q2TTu(dE +  v )  = (dE +  uj)(dL +  v)(dT + a)T .  (7.5)

Substitute X  in (7.3) into (7.5), we get

qiirojipdL + u ) +  q2v:v{dE + u) + (pdL + u)u(3T  ̂  ^
PT  +  dx  (7.6)

=  (dE + Lu)(dL +  v)(dT + a)T.

Then we get a quadratic equation about T

f ( T )  =  A T 2 + B T  +  C  =  0,

where

A  = —f3(dE +  Lu)(dE +  r,)(d j' +  a) <  0,

C  =  dx-K[qiu{pdL + v ) +  q2v(dE +  w)] >  0,

B  = (3 (1 -  qi)-n(pdL + v) +  (3q2itv(dE + to) -  dx [(dE + u )(d L + v)(dT + a)}.

The quadratic equation f ( T )  always has a positive solution

B W B E 4 A C > 0
+ - 2  A

in T. Let P* = ( X *, E*,L*,T*)  be the endemic equilibrium for system (7.2) in T, then 

we have the following result.

T h e o re m  7.1. Global dynamics o f  system (7.1) are described as follows:

Case 1. q\ — q2 =  0. ([57])
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I f  Ro <  1; system, (7.1) always has a disease-free equilibrium which is globally 

asymptotically stable. TB will die out eventually in the immigrant population. 

I f  Ro > 1, system (7.1) has a unique endemic equilibrium which is globally
O

asymptotically stable in T. TB will persist in the immigrant population 

irrespective of any initial condition.

C ase  2. q\ >  0 or q2 >  0 or both.

System  (7.1) always has a unique endemic equilibrium P* which is globally
O

asymptotically stable in T. All solutions with positive initial conditions will be 

persistent and converge to the unique endemic equilibrium P*. Any initial TB  

epidemics become endemic in the population.

The proof of Case 2 of Theorem 7.1 is given in Appendix B.

7.3 Case study: TB in immigrant population in 

Canada

Simulations of model (7.1) are carried out in this section using data  from Canada. First, 

we investigate the impact of early or late latent stage immigrants on TB incidence in 

Canada. Then the effects of annual new immigrant level are considered.

7.3.1 Parameter estimation

As in Chapter 7, we assume th a t the removal rates for all compartm ents of immigrants 

are the same, dx  = d s  = d^ = dr = 0.039. q\ and q2 are the percentage of to tal 

number of annual new immigrants with early latent TB (</i7r) and late latent TB (q2n), 

respectively. We always assume th a t qi < q2. Table 7.1 lists the param eter values used 

in the simulations of our model (7.1).

We choose the initial value for immigrant population in Canada as

[Xo, E 0, Lo, To] =  [4431746, 9784,1196551,1094],

The above data  indicates th a t latently infected immigrants constitute 21.4% of to tal 

immigrant population within Canada.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0  =  1 x 1 0 ~ 8 transmission rate within immigrant population in Canada.

dx  = 0.039 removal rate from immigrant population.

p  =  0.05 5% high-risk LTBI immigrants develop TB in the first 2 years.

v =  0 . 0 0 0 2 1% low-risk latently-infected immigrants develop TB in next 50 years.

ui — 0.40 All LTBI immigrants pass through in the first 2.5 years.

a  =  0 . 8 6 removal rate (TB-reduced death 6 % + treatm ent 80%).

7T =  223,840 average annual new immigrants to Canada.

Table 7.1: Param eter values for simulations of the 4-D TB model (7.1) with early or 

late latently-infected immigrants.

7.3.2 Effects of early and late latency

S tu d y  1: Suppose all new immigrants to Canada are susceptible (qi = q2 = 0). 

Then Case 1 of Theorem 7.1 applies and TB will die out in immigrant population 

eventually, see Figure 7.2. This situation is similar to that of local-born population in 

Canada presented in last chapter. W ith no infected im portation of new immigrants, 

TB incidence of immigrant population experiences a steady decline.

S tu d y  2: Suppose th a t all latently-infected new immigrants to Canada have a high 

risk to develop TB within the first two years, qi > 0, q2 =  0. Then Case 2 of Theorem 

7.1 applies and TB will persist in the immigrant population. Increasing qi from 3% to 

12%, the TB incidence rate increases from 7 (per 100,000 persons) to  26.5, see Figure

7.3.

S tu d y  3: Suppose th a t all latently-infected new immigrants who have a low risk to 

develop TB in their lifetime in Canada, q2 >  0, qi = 0. Then Case 2 of Theorem 7.1 

applies and TB will persist in the immigrant population. Increasing q2 from 20% to 

50%, the TB incidence rate increased from 4.3 to  11, see Figure 7.4.

S tu d y  4: Suppose q\ > f),q2 > 0. Then Case 2 of Theorem 7.1 applies and TB will 

persist in the immigrant population. We fix ql = 3% and increase q2 from 20% to 50%, 

the TB incidence rate increases from 17.6 to 24.1, see Figure 7.5. Fix q2 = 30% and 

increase q\ from 3% to 12%, the TB incidence rate increases from 13 to  33.1, see Figure 
7.6.
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T8 incidence in immigrant population in Canada

n o  LTBI n e w  im m ig ra n ts ,  q 1 = q 2 = 0
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Figure 7.2: TB incidence rate in foreign-born population declines to zero without 

latently-infected new immigrants to Canada.
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Figure 7.3: Correlation between TB incidence in foreign-born population and

percentage of new immigrants in early latent stage.
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TB incidence in foreign-born in Canada
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Figure 7.4: Correlation between TB incidence in foreign-born population and

percentage of new immigrants in late latent stage.
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Figure 7.5: Correlation between TB incidence rate in foreign-born population and 

percentage of new immigrants in late latent stage.
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TB incidence in foreign-born in Canada
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Figure 7.6: Correlation between TB incidence rate in foreign-born population and 

percentage of new immigrants in early latent stage.

7.3.3 Effects of annual new immigrant level

S tu d y  5: Set qi,q2 in a reasonable level and increase or decrease annual level 

of new immigrants to Canada 7r. We fix qi = 3%, ?2 =  37% and let 7r =  

111920,223840,447680, respectively. Figure 7.7 shows th a t TB incidence rate for 

immigrant population changes little after a long time.

7.3.4 Conclusions

From the above figures, we observed th a t early LTBI immigrants have a bigger effect 

than late LTBI immigrants on the TB incidence in a long run. In a short term, 

the increase due to early LTBI immigrants is sharper than th a t due to  late LTBI 

immigrants. Early LTBI is most likely to drive the TB incidence up fast while late LTBI 

TB increases TB incidence slowly. Doubling or halving annual new immigrant level 

do not change the TB incidence in the long run. But during short period, increasing 

annual new immigrant level sharply increases TB incidence rate. This confirms an 

hypothesis in an annual TB report from Health Protection Agency in the UK [64].
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TB incidence in foreign-born in Canada
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Figure 7.7: Correlation between TB incidence rate in foreign-born population and the 

annual new immigrant level.

7.4 Summary

In this chapter, we study a TB model with immigration to investigate the impact of 

early or late LTBI new immigrants on TB incidence rate of foreign-born population. 

We compare TB incidence rates of the foreign-born population according to different 

proportions of annual new immigrants with early or late stage LTBI, and the annual 

new immigrant levels.

Global dynamics of the model are established rigorously in Section 7.2. Our model

(7.1) always has a unique endemic equilibrium P* and it is globally asymptotically 

stable in the interior of feasible region T (Theorem 7.1). The proof of the global 

stability of the endemic equilibrium is given in Appendix B.

Our results show th a t early LTBI new immigrants drive the TB incidence fast and 

high. It is of a high priority to trea t new immigrants with early stage LTBI. In the 

mean time, new immigrants with late stage LTBI would drive the TB incidence up 

slowly. Treatm ent of new immigrants with late LTBI is of a lower priority compared 

to those with early LTBI.
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C hapter 8. Effects o f Tuberculosis 

Im m unity

It is known th a t acquired immunity of TB is only temporary. Recurrence of TB 

due to reinfection or relapse is common in some regions or countreis with high TB 

incidence and /or HIV epidemic [80, 8 8 ]. Most of the TB models in the literature 

assume perm anent removals after recovery from TB. In this chapter, a TB model with 

partial immunity and relapses is proposed to investigate the potential impacts on TB 

incidence rate and the basic reproduction number in a high TB incidence setting -  

South Africa.

In Section 8.1, the biological background of partial immunity and relapses of TB 

is given and the model formulation is presented. Global dynamical behaviors of the 

proposed four dimensional TB model are established in Section 8.2, and a detailed 

proof for global stability of endemic equilibrium is given in Appendix B. In Section

8.3, numerical simulations for different scenarios of the loss of immunity and relapses 

of the model are carried out using realistic da ta  from South Africa.

Our simulations show th a t the loss of immunity can be a very im portant factor for 

the TB transmission dynamics in countries or regions with a high TB incidence and /or 

HIV epidemic. Ignoring the loss of immunity in TB data  analysis may substantially 

underestim ate the basic reproduction number and the TB incidence rate.

8.1 A TB m odel w ith  partial im m unity and 

relapses

Active tuberculosis recurs in 2-7% of patients with drug-susceptible isolates treated 

with current standard short-course chemotherapy [32, 33]. W ith DNA fingerprinting
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technology, cases of recurrent TB can be categorized as being due to  relapse of the 

original infecting strain or reinfection with a new strain of M. tuberculosis [80]. The 

importance of reinfection and relapse as causes for recurrence of tuberculosis is unclear 

and has potential public health implications [8 8 ].

Several studies have shown th a t reinfection can be an increasingly common cause of 

recurrent tuberculosis as TB incidence rates increase. In a low-to moderate-incidence 

countries (i.e. TB case rates <  50 per 100,000 persons per year), studies have found the 

percentage of reinfection ranging from 10% in Switzerland to 33% in Spain and 16% in 

Italy [6 , 49, 127]. In patients from low-incidence countries such as United States and 

Canada, the vast m ajority (96%) of recurrent positive cultures are due to treatm ent 

failure or relapse rather than  reinfection [80].

While studies in high-burden countries (i.e. TB case rates >  200 per 100,000 persons 

per year), reinfection was common, ranging from 23% in Uganda [47] to  60% in a 

township in Cape Town, South Africa [8 8 ], with a remarkably high rate of tuberculosis 

(>  1 , 000 per 100,000 persons per year). Results of these studies suggest th a t reinfection 

occurs more often in high-incidence countries due to more frequent exposure to  M. 

tuberculosis.

M otivated by the data  presented above, we propose a TB model to  investigate 

the impact of the loss of immunity. The to ta l population is partitioned into four 

compartments: susceptible individuals (A ), early latent stage (E)  and late latent 

stage individuals (L), and individuals with active TB disease (T). The input to  the 

susceptible compartm ent is 7r. The removal rates due to natural death or treatm ent 

for the four compartm ents X ,  E, L, T  are dx , dE, dL, dT , respectively, a  is the removal 

rate due to TB death and treatm ent. 5 is rate of the loss of immunity and 7  is the rate 

of relapses. The dynamical transfer among the four compartm ents is depicted in Figure 

8.1. Here all param eters are assumed to be nonnegative. The model is described by a

pcoE

ST

Figure 8.1: Transfer diagram for the 4-D TB model (8.1) with loss of immunity.
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system of ODE
' X '  = TV- (3 X T  -  dx X  + 6T, 

E ' = (3XT  +  7 r  -  (dE + u)E .  

L' =  (1 -  p )u E  -  (dL +  u)L,
(8 .1 )

k T '  — p u E  +  uL  — {dx +  oi +  5 +  "f)T.

If S = 7  =  0, model (8.1) reduces to a model in [57].

8.2 M odel analysis

From the first equation of (8.1), in the absence of disease, we have

X '  <  tv — dx X }

7r
and thus lim sup X ( t)  < —  along each solution to (8.1). The to ta l population size in

t-»oo dx
(8 .1 ) satisfies

can be verified th a t T is positively invariant with respect to system (8.1). We denote

by T and T the closure and the interior of T in M̂ _, respectively.

System (8.1) has a disease-free equilibrium P0 — (X q, 0, 0, 0) with X 0 — iv/dx  and an 

endemic equilibrium P* = (X*, E*,L*,T*).  The basic reproduction number is defined 

as

N '  =  {X  + E  +  L + T)' < tv -  d N  -  aT, 

where d = m in{dx, dE, dL, dT} and N (t)  is varying over time t  and thus

lim sup N (t)  <
t—*oo d

Therefore the model can be studied in the feasible region

T =  { { X ,E ,L ,T )  e R \ \ 0 < X  < ^ - , 0 < X  + E  + L  + T < ^ } ,
dx  dx

where denotes the non-negative cone of R 4 including its lower dimensional faces. It

O

(8 .2)
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where
(dL +  v){dE + u){dT + a  + 5 + 7 ) -  7 u{pdL + v) 

A  — -----------------------

T* =

(;pdL + v)f3u 
tt -  dx X*
(3X*- 5 '  , ,

{ I - p ) { d T + a  + 6 + 7 ) 
pdL +  v

E , =  (dL +  v){dr  +  a  +  S +  7 )
(pdL +  i/)w

The above argument naturally leads to the following result.

T h eorem  8.1. I f  Ro <  1, the disease-free equilibrium P0 is the only equilibrium and 

is global asymptotically stable in T. TB dies out from the population irrespective o f  the
O

initial incidence. I fR o  > 1, a unique endemic equilibrium P* exists in T, and is globally
o

asymptotically stable in T. All solutions with positive initial conditions converge to P*. 

Any initial TB  epidemic becomes endemic in the population.

The proof of GAS for disease-free equilibrium is standard. The proof of GAS for 

endemic equilibrium P* is given in Appendix B.

In terpretation  o f R 0 in (8.2)

Let
pu  ( 1  - p ) u  u 

a 1 =   ----------1-
dfi  u) dj£ +  to dfj ~h v

h2 = 3 --------^ - 7 ------ , (8.4)
d f  +  o l  T  5  +  7

1
dT +  a  +  5 +  7

where hi is the fraction of both early latent (E) and latent period (L) individuals 

progressing to active TB class T. h2 is the fraction of infectious individuals re-entering 

compartm ent E.  r  is the standard infectious period. So the basic reproduction number 

can be rew ritten as
o  = ( ? ! .  hl 

0 dx  1 - h i h 2 T’
Following [135], we can explain the second part of Ro as follows. A fraction hi of 

individuals pass through compartm ent T  a t least once, a fraction h \h 2 pass through at 

least twice, and a fraction h \h \~ l pass through at least k times, spending an average
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of t  tim e units in compartm ent T  on each pass. Thus, an individual introduced into 

com partm ent E  spends, on average,

time units in compartm ent T  over its expected lifetime. Multiplying right hand side 

in (8.5) by fdir/dx gives R q.

Due to loss of immunity, reinfection, relapse or multiple infections are possible within 

TB-endemic community [136], which causes the potential burden of disease prevention 

and control. In a high TB prevalence country like South Africa, this can be of quite 

importance for TB dynamics driven by HIV epidemic. In this section, the impact of 

the loss of immunity and relapses on basic reproduction number R q and TB incidence 

are investigated quantitatively.

8.3.1 Parameter estimation

We assume th a t the removal rate in each compartm ent equals and let d = dx  = dE = 

d-L =  dx- Param eter estimations for vital dynamics are available from census data  or 

annual population estimation from Statistics South Africa [126], Param eter values in 

Table 8.1 are used in our simulations.

8.3.2 Impact of the loss of immunity on the basic reproduction 

number

From (8.2) and (8.3), we have

t ( / i j  +  h \ h , 2  +  • • ■ +  +  • • ■)

=  r h i{ \  +  h\h% +  • • ■ (hih,2)k +  • ■ •) (8.5)

8.3 Case study: TB in South Africa

(pdL + v)to
( 8 .6 )

d x  (dL +  v)(dE +  u )(d r  +  a + 5 +  7 ) — "f{pdL +  v)u>

where a  is the removal rate due to TB-caused death and treatm ent.
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Param eters definition the value we use reference

P fraction of fast TB 1 0 % [13]

V reactivation rate 0.005 [13]

P transmission rate 2 x l 0 - 8 [13]

L l progression rate 0.5 [13]

a removal rate (TB death+treatrnent) 0.135 -  0.635 WHO

5 rate  of partial immunity 0-0.50 estimate

7 rate of relapses 0-0.50 estimate

7T recruitm ent rate 1,082,000 Stat SA

d removal rate 1/46 year- 1 Stat SA

N (  0) initial to tal population 43,586,097 Stat SA

T(0) initial TB cases 227,320 Stat SA

Table 8.1: Param eter values for simulations of the 4-D TB model with loss of immunity. 

S tat SA: Statistics South Africa.

Assume th a t to tal removal rate (except dx) from compartm ent T  in model (8.1) is 

a constant C, i.e. a  + 6 +  7  =  C. We investigate the impact of the loss of immunity 

on the basic reproduction number and TB incidence rate.

Keeping 7  fixed and increasing 5, we see from (8 .6 ) th a t Ro does not change. If 

we fix 5 and increase 7 , we see from (8 .6 ) tha t R 0 increases. This shows th a t loss of 

immunity has no effects on the basic reproduction number Ro, while relapses do change 

Ro-
Ignoring 7  may underestim ate the basic reproduction number R 0. In Figure 8.2, we 

observe th a t when 7  increases from 10% to 30%, the basic reproduction number Ro 

increases from 2.49 to 3.27, increased by 31%. When 7  increases from 30% to 50%, the 

basic reproduction number R 0 increases from 3.27 to 4.86, increased by 48%.

8.3.3 Effects of the loss of immunity on TB incidence

In this section, we focus on the impact of the loss of immunity on the TB incidence 

rate. Simulations are carried out for the effects of partial immunity and relapses, 

respectively.
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RO c u rv e  c h a n g e s  with in c re a s in g  g a m m a

RO in c re a s e s  with in c re a s in g  g a m m a

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
V a lu e s  of g a m m a

Figure 8.2: Dependence of R 0 on the rate of relapses 7 .

Effects o f  partia l im m unity

Note
7T -  dXX *

T  -  f x • - T  (8'7)

where
{dL + v)(dE + u){dT + a  + 5 + 7 ) - 'y u ( p d L + v)

x  ~  lpdL + »)iii,--------------------------• (88)

Suppose th a t a  + 5 +  7  is a constant C, setting 7  =  0, (8 .8 ) becomes

_  ( d L  +  v ) ( < 1 e  +  uj)C 
(.pdL +  v)f3u

Increasing 6 , X*  doesn’t change but T* increases. In simulation shown in Figure 8.3, 5 

increases from 10%, 30% to 50%, TB incidence rate  T* increases from 665, 723 to 790, 

respectively, approximated by 9%.

E ffects o f relapses

Suppose th a t a  +  7  +  5 — C  and let 5 — 0. (8.7) becomes

_  7r — dx X*  _  7r _  dx
p x *  ~  p x *  p '

Increasing 7 , X*  decreases thus T* increase.
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TB incidence in South Africa
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Figure 8.3: Correlation between TB incidence and the rate of partial immunity 5.

In simulation shown in Figure 8.4, we see th a t as 7  increases from 10%, 30% to 50%, 

TB incidence rate increases from 670, 752 to 845, respectively, an increase of 12%.

8.3.4 Conclusions

The loss of immunity can be a very im portant factor for the TB dynamics [47]. Our 

simulations show that: i?o does not change with the rate of loss of immunity S. While 

increasing the rate of relapses 7  will increases Ro- Thus ignoring the loss of immunity 

may underestim ate R q. Increasing both 7  and 5 lead to an increase of the TB incidence 

rate T*. Ignoring 5 and 7  may underestim ate the TB incidence rate.

8.4 Sum mary

Earlier TB models (see e.g. [27, 44]) do not consider the loss of immunity; individuals 

recovered from TB are assumed to be permanently removed, and will not return to the 

susceptible class.

In this chapter, we propose a class of TB models with partial immunity to investigate
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TB incidence in South Africa
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Figure 8.4: Correlation between TB incidence and the rate of relapses 7 .

the potential impacts of loss of immunity on the TB incidence rate and the basic 

reproduction number. Our results reveal th a t ignoring the loss of immunity of 

TB may substantially underestim ate the TB incidence and the basic reproduction 

number. The interpretation of basic reproduction number is explained following [135]. 

Mathematically, we established the global stability of the endemic equilibrium for this 

new class of models.
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A p pend ix  A . P ro o f o f T heorem  (5 .2) 

for th e  tw o-popu lation  T B  m odel

In the subsequent proof, we use Ai,A2 instead of Xs ,X e  as th a t in (5.3). We also

incorporate another param eter a  into the model, which can be explained as the fraction

of susceptible immigrants who visit a TB endemic country and catch TB infection 

before returning to the host country. Then the model (5.3) becomes

S[ — Ai — P1S 1I 1 — P12S 1I2 — (d\ + a  )S U 

E{ = A2 +  (1 — Pi)P iS\I\  +  (1 — Pi)P\2S\l2 + cjS\ — (d\ +

d[ — P iP iS ih  +  P iP n S ih  +  v \E \  — (d\ +  « i ) / i ,

S'2 =  7T — P 2 S 2 I 2 ~  P 2 1 S 2 I 1 ~  2̂5*2,

E 2 =  (1 — P2)/52‘SF2^2 +  (1 ~~ P 2 )P 2 1S 2E 1 ~  (c?2 +  u2 ) E 2 ,

I2 = P2P2S 2I 2 +  P2P21S 2I 1 +  ^2-^2 — {d2 +  (^2)l2- 

Let the endemic equilibrium of system (A .l) denoted by P* — {SI, E{, I{, S 2, E 2,12) 

whose coordinates satisfy the following equation

Ai =  Pi S m  +  P\2SlI2 +  (di +  cr)Sl,

0 =  A2 +  (1 — p i ) P i S m  +  (1  — pi )Pi 2S l I 2 +  cr Sl  — (di +  Vi)El,

0 =  P i P i S l I l  +  P 1 P 1 2 S I I I  +  i ' i E I  — ( d i  +  Qfi)/j ,

7r =  p 2 S 2 I 2 +  P 2 1 S I I I  +  d 2 S l ,

0 =  (1 — P2)P2SIII +  (1 — P2)P2lS2T^ — (g?2 +  V2)E2,

0 =  P2P2S I I I  + P2P21S I I I  + V2E2 — (d2 + ^ 2 ) -f 2 ■

Combine the second and th ird  equations in (A.2) and cancel the E l  term , we have 

V1X2 + (p\d\ +  V\)P\SIII  +  (pidi +  ^ i ) P n S l I 2 + v\(jSI =  (d\ +  vi){d\ +  an)/*. (A.3) 

Combine the last two equations in (A.2) and cancel the E 2 term , we have

(P2̂ 2 +  V2)P2SII2 + (P2<̂ 2 +  l*2)P2lS2Il — ( 2̂ + ^)(^2 +  £*2 ) 2̂ - (A-4)
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We prove the following result, which contains Theorem 5.2 as a special case (a = 0).

T h e o re m  A .I .  The endemic equilibrium P* is globally asymptotically stable in the 

interior o fT .

P ro o f. Set x  = (Si, Ei, h ,  S2, E 2, / 2) € T C  R ^. Consider a Lyapunov function V

S i \  , „  ( T-, 7-.* 77.*i._ -® i 'V(x)  =  k\

+  k2

Ai (Sr -  SI -  SI  In +  Bi ( E i -  E{ -  E{ In

A2 ( s 2 -  SI -  S2* In | ^ )  +  B 2 ( e 2 -  e ; -  E*2 In | ^ )

+  C'2 (^2 ~  I2 P i n %
I*2

where x* = P* = (SI, E*, I*, E*2, /*) and

ki = A 2(52iS2l[, A \  — p\d\ +  v\, B \  — iq, C\ — di +  iq, 

k2 = A iP i2S l l 2 , A 2 = p2d2 +  v2, B 2 = v2, C2 = d2 + v2.
(A.5)

x  =  xWe note th a t V (x)  > 0, for x  G T, the interior of T, and V (x)  =  0 <

So function V  is positive definite with respect to the endemic equilibrium x* =  P*. 

Compute the derivative of V  along solutions of system (A .l), we obtain

^  = h  1 ^ ( 1  -  + B i ( i -  ^ ) e [ +  e r a  - 1 ) / ;

+k2 U 2(i -  ^ ) s ' 2 +  b 2( i  -  ^ ) e '2 +  c 2(i - 1 ) / ; } .
(A.6)
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Using (A .l) we have

a  -  f i s ;
=  Ai — / W i  ~  P u S i h  ~  ( h  +  <j)S\ — A17A +  PiS^Ii +  (3\2S { h  +  (dx +  a )S* 

ox 

= [0i5*/* + 012s ; r 2 Hr {dx + <r)S*i] -  P x S x h  -  P n S x h  ~  {dx +  t r)Sx

— [0i5*/i +  012‘S'j' I 2 + (di +  <r)S'J‘]-^- +  f l x S l h  + PX2 S I I 2 + {dx + cr)*?*
01

=  (2dxSl -  dxSx -  -  PxSxh ~  P u S x h  + faS[Ix + f a S 'y h

+ 2a S {  ~  ctSx -  a § - l  +  [ f tS ^ *  +  0 i2Si*/2*] -  [ f tS ^ *  +  0 i2ST J2*] f -
Ox *1

(A.7)

3 * 2
<  —fixSxh ~  012*5*1-72 +  0 i*5*i/i +  0i2*5i/2 +  2crS{ — crSx — cr

I  O X

+  [0 is* /* + 0 i25*/*] -  [ a s w + 012^*/ 2* ] f .  
*~>1

since

'M i S I  -  dxSx -  =  dxSl ( 2  -  <  0.

In the second step of the above derivation, we substituted Ai by the first identity of 

(A.2). Similarly, using (A .l), we obtain

(1 — =  A2 +  (1 — p i)0 iS*i/i +  (1 — P i)0 i2*S*i/2  +  a Sx — {dx +  Vx)Ex

~  -  (1 -  P i ) 0 i S i h § -  -  (1 -  P i)0i25 i / 2 f :  -  a S x § -  (A -8)
t j\  H/\ sh 1

+ {dx +  vx)E\,

Noting

(1 — y - ) / i  — PiPiSxh  +  P iP n S xh  +  v\Ex — (dx +  « i ) / i  
11

— Pi0i 5*1 / 1  — Pi0i25i/2y- — v x E x y -  +  (dx + ai)A*.
h  h

(2d2s*2 -  d2s 2 -  = d2s; (2 -  ^  < 0,

(A.9)
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and substituting n  by the right hand side of the fourth identity of (A.2), we have 

(1 — T r ) ^  =  71 ~~ P2S 2I2 — P21S 2I 1 — d2S2 — ^TT +  P2S2I 2 +  Ih lSZ h  +  d2S2
J  2 *2

=  [/?2S2*/2* +  & iS 2*/j* +  d2S2*] -  P2S2I2 -  P21S2I1 -  d25 2

-  \p2s;r2 + P21 s*2n  + d2s*2\§- + p2s*2i2 + h i s ; h  + d2s;
02

= (2d2s; -  d2s 2 -  ~ fos2i2 -  P21S2I1 + Ih sih  + 02is*2h

+ \p2s*2i; + P21 s 2ii] -  [P2S2I2 + fa
02

<  -P2S2I2 -  P21S2I1 +  & s 2*/2 +  f o i s ; h

1 s2+ \p2s;i;  + p2is;in  -  \p2s*2r2 + P2iS*2rlS -

Similarly, using (A .l), we obtain

( 1 ----W~)d^2 = (1 — P2 )/?2 ‘S,2/ 2 +  (1 — V2)P2\ S 2T\ — (d2 + v2)E 2
E 2

— (1 — p2)/?2‘S,2-f2Tr" ~~ (1 ~  P2)P2lS2T l —ip +  (d2 +  v2)E2 ,
th2 Ji/2

J *  t
(1 — T")^2 =  P2P2S 2I 2 +  P2P21S 2I 1 + v2E 2 — (d2 + a 2) /2 — P2P2S 2I2 

h
I* I*

— P2P21S 2I 1Y —  v2E2-f- +  (d2 + a 2)I2.
h  •'2

Simple calculation from (A.5) leads to the following identities:

Ai =  pi Ci +  (1 — pi)B i ,

A 2 = P2C2 +  (1 — P2)E2,

(di +  vi)B i  =  J^iCi,

(d2 +  i22 )B 2 =  v2C2-

(A.10)

( A . l  1 )

(A.12)
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Substituting (A.7)-(A.12) into (B.26), we have 

dV  , , f . „ „ . rx . Si St
<  fci{Ai [ { f r S th  + P n S t h )  + v S t ( 2 - - ± - - ± )  + +  / ^ / ^ ( l  -  ^

A2 +  a S i  -  A2-=f -  (1 -  P i )P iS ih -= r  -  (1 -  P i j P n S i h y r  ~  g 'S i t t
£ / l  £ j \  E j \  £ j \

+ B X 

+  (d\ + v i)E t  

+ C, (di +  a i ) h  — p i f l iS i I t  — P i f l n S i h y —  v \ E \ y -  +  (di +  auK i j
l i  1 1 J >

+  k2{ A 2 [((32s ; i 2 + fo iS Z h )  +  (& s 2*/2* +  /?2iS * /n ( i  -

+  B 2 — (1 — p2)P2S2I2—p — (1 — p2)P2\S2T i --p + (d2 +  n2)Et
L -C/2 ^2 J

./* ./* 1 1
+  C2 — {d2 + a 2)I2 — p2f32S2I t  — P2(d2iS2I\-^~ — v2E 2-y~ + {d2 a.2) I t  f- 

L J 2 t 2 J J
(A.13)

(A.13) can be rew ritten as

—- <  { k iA i ( P iS th  +  P n S t h )  — k\C i(di  +  a \ ) I \  + k2A 2(p2S t h  +  /?2iS2/i)  
at I

— k2C2(d2 +  o:2) /2|- 

+  ^ k iA i{P \S t I i  +  P12S* I 2) +  k \ B \ \ 2 +  fci5i(di +  r'l)-®* +  fciCi(di +  ou)^i 

+  2 k iA ia S \  +  k2A 2(P2S t I 2 + +  k2B 2(d2 +  v2)E 2 +  k2C2(d2 + a 2)^2 |

+ -  ~  (PiSlBx + P u S t n ) ^ )

+  k\C\

+  k \B i

+  k2A 2 

+  k2B 2 

+  k2C2

=  Vi +  V2 +  V3 .

— p iP iS i I t  — P i P n S i h j -  — v iE iy -
h  11

M y r  — (1 — P i)P iS ih~y- — (1 — Pi)Pi2S\h-j^- — a S i y rE 1 E x E , \

[p2s*2r2 + (32ls*2i { )
ô2i

(1 — P2)/?2S2/ 2 ^ r  — (1 — P 2)P2\S2T l~  
£j 2 -^2

— p2p2S2I2 — p2p2\S2h  -J- — 1̂2E2 -J-
12 12 J

k x p id ia S ^

(A.14)
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Now we simplify Vi. Note th a t V\ in (A.14) could be rewritten as

Vi =  M rf tS i*  +  k2A 2(321S; -  + « i)]/i

+  4“ k\AiPi2^1 — ^2^2(^2 T a 2)]-̂ 2)

and identities in (A.3) could be rewritten, according to  (A.5)

, R q* , 4 P n S l I 2 r  / , s □ ^ 2  R o-S1!A i f t f t  +  A t—   Oifci! +  a i)  =  —B i —  ~  £>1 -y^r,
^1 J i O

A 2P2S 2 + A 2^ 21 2 1—  C2(d2 +  <̂ 2 ) =  0.

Thus 14 becomes

Vi =  fcif-AiftS1* — Ci(di +  cti)]/i +  k2A 2 P215*2

+  ^2  [A2f t  S1̂ — 0 2 ( ^ 2  +  ci2)]^2 +  h A r f n S l h

= f t

f t  A2^2'

f t  
f t i ^ f t

ft — f tA i^ 12rA- 2 +  k2A 2P2iS2hn
f t +  h A i P n S l h

f t o  a 2 o-  f t  — -  f t  —  
ft

ft

+ f t A ^ ^ *  — f t  A2/ M f t

f tA 2/ftiS,2 ~  k \A

f t .

f h i S i n
n

For simplicity, we denote

f t  =  fts;/;:, ft =  f t s 2*/2*, f t 2 =  f t 2 f t* /2*, f t i  =  f t i 5 2% *. 

Thus Vi becomes

1 1

r f tA 2/fti — ftA i/?12l r rftA i/f t2 — f t  A2/fti T 
+  ------------—------------  ft +  ------------^ 1 2

=  f t

f t *

o  A2 r  ^ 1’
ft ft

A,

since ftA i/3i2 — f tA 2/fti =  0 from (A.5).

123

(A.15)

(A.16)

(A.17)

(A.18)
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Next we need to simplify V2- By (A.2) and (A.5), we have

V> — k\ Ai(/?i +  P12) +  B1X2 +  Bi{d i  +  i>i ) E \  +  Ci{di  +  a i) I*  +  2A xa S x

+  ^2 A2IP2 +  P21) +  ^2(^2 +  ^2)^2 +  C2(^2 +  “ 2)^2 

=  k\ 2Ai{J3\ +  (312) +  2B 1X2 +  Bi&Si +  C\V\E^ +  2 A \g S x 

+  Â2 2 A 2(/?2 +  /^2l) 4~ C 2 V2 E 2 

=  &i (2 Ai +  (1 — +  ^12) +  3B1A2 +  2 (B i +  Ai)crS'J'

+  fc2(2A2 +  (1 — P2)B2){(32 +  /?21)

= k x[2PlCx + 3(1 -  Pi)^!]/?! +  3kxB xX2 + 2fc1(2i/1 +  Pidi)cr5*

+  fc2 [2p2C>2 +  3(1 — p 2)-B2]/32 +  fcl[2piC 'i +  3(1 — Pl)Bi } f3 i2  

+  ^2[2p2C2 +  3(1 — P2)B2]/?2i,

since A x =  pxdx +  vx =  piC i +  (1 — pi)-#i and A2 =  P2C2 +  (1 — ^ 2 ) ^ 2 - 

Based on partition of unity, we define

P lC 'l „ n  (1  - P l ) ^ l  ^ n ,y 1 =  ——  > 0 , y2 = ------ -̂------> 0 , yi +  y2 =  1 ,

Zl

C l

Ai
P2C2

A2
P i d i

>  0 , z2 =

Ai
(1 — P2)B2 

A2

Vi

> 0, Z\ +  Z2 — 1,

> 0, C2 — —  > 0 ,  Ci +  C2 — 1. 
A 1 A 1

(A.19)

(A .2 0 )

From (A.5), we have =  A 2P21, k2 =  Ai/?12, thus the two terms in (A.19) becomes

fci[2piCi +  3(1 — Pl)B l]/?12 +  ^ 2  [2p2^f2 +  3(1 — P2 )-®2] /^21 

=  A 2P21 \^2 +  2i][2piCi +  3(1 — pi)Bi]pi2 

+  A1/312[pi +  P2] [2p2^2 +  3(1 — P2)B2}p21 

= \p2C2 + (1 — P2)B-$2pxC x + 3(1 — Pi)Bi}$i2p2i (A.21)

+  [piCi +  (1 — Pl)Bi][2p2 C2 +  3(1 — P2 )B2]/?2l /?12 

=  P12P21 6(1 — P i)(l — P2)B xB 2 + 4p1p2C1C2 +  5(1 — px)p2B xC2 

+  5(1 -  p2 )piB2Ci .
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Substitute (A.21) into (A.19), we get

V2 =  &i[2piCi +  3(1 — +  3kiB iX 2 +  2ky(pidi +  2 i/PjcrS-x

+  k2 [2^2 +  3(1 — P2)B2\/32

+ P12P21 6(1 - P i ) ( l  ~ P 2) B iB 2 + Aplp2C1C2 +  5(1 - p i ) p 2B \C 2 

+  5(1 - p 2) p iB 2Cx .

(A.22)

Using (A.20), we can combine (A.18) and V3 and separate them into 11 groups based 

on partition of unity:

U3 +  Uj

=  k \A i  

+  k\Ci 

+  k \B \  

+  k2A 2 

+  k2C2

C *  2 C *

- ^ - - ( f t  +  f o ) ^ )

-  P1P1S J 1 -  p r f n S j S  -  Vie S
11 J

-  A2 -A- -  (1 -  pi)PiSiIi~A- — (1 -  p\)(3\2S \I2 — aSi-=r
h/\ h/\ h/\ h /\ .

- ( f t  +  f c i ) ^ 1
0 2

+  k2B 2 — (1 — P2 )@2*-*2A — (1 — P2)P2lS2I]
'E,

e ; i
Eo

— p2P2S 2E2 — P2P21S2I 1 -j- — v2E 2 -E
i 2 12J

7 , 0  I. D ^2 A , R 0'S* 11-  k ip id iab i -  k x B i— -----k iB x
I t

— k \A \  

+  k\C\  

+  k \B \  

+  k2A 2 

+  k2B 2 

+  k2C2

(ci +  c2)
a S t

5i

*2

{ y i  +  2 / 2 ) -  ( y i ^ i  +  y i z 2  +  V 2 Z i  +  y 2 z 2 ) ^ u S l
Si Si

-  p iP iS i I t  ~ P i ( z i  +  z2) ^ VlS~ 2lx -  (ai +  a2 +  a3 +  a ^ 1̂ 1
A A

A ^ *  ^  _ J A S J x E ;
-  (1 - P l ) -

J 2s t
E i

(1  - p i) ( ^ i  +  2 2 )
Pi2S J 2E t  a S iE t

Ex

-  (zi +  z2) ^ A  -  (yiZl +  y lZ2 +  y2zi +  y2z2) ^ nS2

Ei Ei

-  (1 - P 2 )

S 2
P2S2I2E t  t , ^P2iS2hE2

~  (1 - P 2)(yi +J/2) ----- 5 ------

+  A 

11

-  P 2 P 2 S 2 I 2  -  P 2 { y i  +  2/2) 

A2A— p id iaS i  — k iB i
I t ~ k i B

P21S 2I 1I -2

A
v S i h

(bi +  52)
v2E 2I2

I t

=  £ '< ■
i=i

(A.23)
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Note from the second and fifth identities in (A.2), we define param eters

(1 — _  B 1X2 _  B \a S {  ^ __ { l —pi)Bij3i2
fll "  C1B 1E*1 ’ “2 ~~ C \ B ,E \ '  “3 “  C \B xE l  ° 4 “  "  ’

and
u {^~P2)B202 u (1 -  P2)B2@2l u , u 1
61 =  C A E l  ' h = C2B2E 2 ' 6'  +  fe =  L 

Applying the inequality

k i  +  +  ' '  ’ +  x n  ^  n f j  ^  n  ■ 1 n  \
^  V ' 2 (̂ 2 ^  2- 1? 2, , 71 J,

n

and the fractions of yt , Zi, bt, Cj, we obtain the following group of inequalities. 

A = fcx -  B l ( l - p 1) PlSl^ - 1 -

<  — 3ki \J 112A1P1SI ■ Bi(l — pi)PiEl ■ CiaiV\I{
=  ■ [(1 - p x ) B l f  ■ a \ C \ B \ E {

= -3 fc i(l -p i)B i(3 i .

h  =  h  -  ClP l/ W r }

<  — 2 k i \ J y i A i ( 5 \ S \  ■ C \ p i f i i l [  =  — 2 k \ \ J y i A i ( 3 \  ■ C i p i  

= - 2 h y / $ l  ■ {Cipi)2 = -2kipxCij3i-

T 1 f  A u  c  ^ f a S l h E z  n  u  V 2 E 2 I 2
1$ — k 2 \  —Z2 A 2 — -^ 2( 1  — P2J  ^ ------------C ^ l  }----------------

E2

< 3fc2 Z2A 2I32S 2 ■ B 2 (1 — p2)/32_E2 ' ^2^1 ̂ 2 f2 

=  — 3fc2 1

(A.24)

(A.25)

, ^ 22 - [5 2( l - p 2)]2 .6iC'2i ? 2 ^  ( A ' 2 6 )

= -3A:2y42 • [i?2(l -p2)]2 ■ ( l-p2)B2j32 
=  — 3 / c 2 ( 1  - p 2 ) B 2 (32-

IA =  k 2 Z \ A 2 ^ ^  2 — C 2P 2 P 2 S 2 I 2 |

< -2k2\JZ1A2P2S2 ■ C2P2P2I2 = -2k2y /$  • (p2C2)2 (A‘27)

= —2fc2p2C2/32-
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r 7 f  n a r> ^  T r< ]h  =  ^1  4 — B 1X2 —---B 1 — I 1 ~  Cid2 J J

< —3 k \  \ J  13\ X 2E {  ■ 131 A2 ■ C \ d 2 l/i

=  ~ 3 k i y / (-B1 A2 ) 2 • CI2 C 1B 1E I

= - 3 kl l/{B1\ 2)2-B 1 \ 2  = —3 kiBiX2.

f  ‘S'*2 1h  =  h i  - A i C i c r - J  PidxaSi  j

<  — 2 k \ \ J A\CioS{2 ■ pid ia  

= —2ki\ /(c rS i)2 ■ (pidx)2 = -2fc1pidicrS'*.

f C*2 Tp* T* O* "j
I7 = k A  —AiC2a -A- -  B .a S .-A -  -  -  B 1- ± I l }

I. ^ 1  A A J

< —A k i ^ j A ^ a S l 2 ■ B\<j E \  ■ C\a^vi ■ BicrS{

= —4fcj\J A ic 2{crSlY • {BY,2 • C ^ B ^ E l

= - A h t / B ^ o S l Y  ■ (B i)2 ■ B ia S l  =  - 4 k ^ o S * .

T f 1 4 P u S l , n  P12S 1I 2I 1 , ^h  = \ ~  h y i Z i A i —  h z i C i p i   ----------k2yiC2P2------ ;------
1 Oi 11 12

- k 2 y lZlA 2 ^ }

< - 4 ^ / fciyiZiAi/^S’!' • h z iC ip iP u I i  ■ k2y\C2p2S2\l2 ■ k2y iZ iA2P2iS2 

= ~ ± \ J (fci)2(yi2i)3Ai(/?i2)2 • P iCip2C2 ■ (fc2)2A2(/321 )2 

= (A2/321)2 (y1zi)3A1 ( /? 12) 2 ■ piCiPaCa • (Ai/?i2)2A2 (/32i ) 2

= —4 ^ (A2 )3 (y1z1)3 (^i2 ) 4 • P1C1P2 C2 ■ (AO3 ^ ! ) 4 

=  —4 ^ (A2 2 iyiA i)3 (/?2i)4 (/?i2 ) 4 ■ P1C1P2 C2

=  —4 - ^ (p 2Cl2p i C 1) 3 (/321) 4 (^ 12) 4 ■ P1C1P2 C2 =  —4 p 2C 2p iC i^ 2 i/3 i2 -

(A.28)

(A.29)

(A.30)

(A.31)
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T , A P n S i  ^  P u S i h h  , u ^  r  h  h  = - k i y i z 2A i —  k iz2Cipx   k2yib2C2u2E 2- -
Ol h  12

< " 5 V /X h z t f y x A x i P u ) 2 • PiCx • b2C2v2E*2 ■ (1 -  p 2)B 2 ■ {k2yi )3z2A 2(p21)2

=  - 5 v 1\ k i z 2)2yiAi((3i2)2 -p iC i  ■ (1 — p 2) B 2j32\ • (1 —p2) B 2 ■ (fc2y i)3z2A 2((32i )

=  - 5 $ k h z t f y x A x C ^ Y - P i C x  • [(1 - P 2 ) B 2?  ■ ( h y x f z 2A 2{$2lf

=  - 5 v l i h n z ^ A x ^ f i y x Y A ^ f - P i C x  • [(1 - p 2)B 2f  • (& 1 ) 3

=  - 5 $ / ( ^ i ) 2(«2)3A 1(A1/812)3(y1) M 2()012)2 - p i C i  • [(1 - P 2 ) B 2]2 • ( f t i  )3

=  - 5 V
/ (A222)3(^ iJ ' i )4( A 2)5 - PiCi  • [(1 - p 2)B 2]2 • (/?2i)5

=  - 5 V/[ ( l  - P 2 ) ^ 2 ] 3(Pi C'i )4(^12)5 ’ Pi Cl ■ [(1 - p 2) £ 2]2 • (/32l ) 5

—  ~  5 p i C i ( l  — P 2 ) B 2f3\2p 2 i .

( A .32)

r  f  a  /^ 1 2 ‘S 'i  , D  n  ^ 12S i I 2 E \  I {
h o  =  i  - X i y y - i Z x A i —  M i - B i U  -  P i )    f c i Z j C i a ^ i . E i  —

l  b \  h,  i 11

, 0 2 \ S 2 h I 2  , ,, ^21*5*2 )
k 2y2 C 2 P2  t k 2y 2z x A 2 — - —  >

12 ^2 J

<  —5 \ J (fci2i)3y2̂ i /3 i2 ■ (1 -  P i ) B i  ■ claC i B xE I  ■ p 2C 2 ■ {k2y2)2 z ^ A ^

=  - 5 ^ /( fc1) 3(fc2)2(2i ) 4(y2)3A 1A 2^ 2^ 1 • (1 - P l ) B i  - f t C a  • (1 - P i W 12 ( A .33) 

=  - 5 ^ ( A 2^ 21) 3 ( A 1A 2) 2 ( z 1)4 (y 2) 3 A 1A 2^ 24 21 • [(1 - p O ^ l ] 2 -P2C2  

=  - 5 ^ / (/02l)5 (^1 2 )5 ( ^ 2 Z l ) 4 ( A 1y 2) 3 ■ [(1 -  P l ) ^ l ] 2 • P 2 ^ 2  

= - 5 P 2 l P l 2 V ( P 2 C 2) i [ ( l ~ P x ) B 1}  ̂ ■ 1(1 -  P l ) B x Y  ■ p 2C 2 

= — 5 p 2C 2( l  — P i ) B i ( 3 2 l (3i2 .
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T , A P n S \  , D n  ^ f i i2 S ih E l 1 ^  V iE i^
I I I  =  —k i l ) 2 Z 2 A i —   k i Z 2 B i \ \  — P i ) --------—------------ k i Z 2 C i d 4 — -

£>i h/ \  11

V2E2I2  , D /1 „  \ P21E2EE2 , A /?21«?2
— £ 22/2/26262— ;-------- ^22/2-02(1 — P2 ) ------- 5;------------k2y 2 Z2 A 2 5

12 &  2 * 2

<  —6 \ J (^1/^2)3(^22/2)4'̂ ■1-̂ -2(^21^12)^ ’ ai Cii'iE^ ■ b2C2v2 E *2 • (1 — P i ) P i ( l  — ^ 2 )^ 2

= - d ^ / ( A 2A 1P2lPl2nZ2y2)i AiA2(P2lPl2)3 ■ [{I -  Pl)BiY{{\ -  P2)B2f  

=  - ^ ( A 2 Z 2Aiy2)i ■ ( M 12)6 ■ [(1 - P i )B i ] 2[ ( l - P2 ) B2}2 

= - 6 ^ ( 1  -  p2 )B2(l -  Pi)BiV • (P21P12T  • [(1 -  Pi)Bi}2[(l ~  P2 )B2]2 

=  —6(1 — p2)-S2(l — Pl)Bi^2lPl2-
(A.34)

Substitute (A.24)-(A.34) into (A.23) and combine (A.22) and (A.14), we get

——- <  Vi +  V2 +  V3 <  0 . 
at

Furthermore, =  0 if and only if S, =  5*(i =  1,2) and equalities hold in (A.24)- 

(A.34). Thus it implies

Ei = a E *, Ii = air, i  = 1,2,

where a is an arbitrary positive number. Substitute Si — S*, E t = aE*, Ii = ai* into 

the first equation of (A .l)

0 =  Ai — alP iS li;  + P n S l i; }  -  (di +  (7)5!*. (A.35)

By (A.2), we know th a t (A.35) holds iff a = 1, namely at P*. Therefore, the only 

compact invariant subset of the set where V  = 0 is the singleton {P*}. By the
O

LaSalle Invariance Principle, P* is globally stable in T. This completes the proof 

of Theorem 5.2.

Rem ark:

The above proof is complicated. A simple proof can be done using the similar procedure 

as later part in Appendix B.
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A p pend ix  B. Two proofs o f G A S of  

P* for T heorem  7.1 and T heorem  

8.1

In the subsequent proof, we use notations n, Ai, A2 instead of (1 — q\ — 5 2 ) ^ 1  Q2tt 

as appeared in model (7.1). We also incorporate terms ST  and 7 T  of model (8.1) in 

our unified proof for the GAS of endemic equilibrium P* of both models. Thus the 

combined model of (7.1) and (8.1) is

X '  = 1r -  (5X T  -  dx X  +  ST,

E ' — Ai +  (3XT  +  7  T  — (dE +  uj)E, 

L' =  A2 +  (1 -  p )u E  -  (dL +  v)L,

T ' = pu)E +  vL  — (dr +  a  +  5 +  7  )T.

(B .l)

P re lim in a ry :  Let X  = S  + 5/(3 , the first equation in (B .l) becomes,

S' = X '  = t t  - P { S  + S I P ) T - d x {S + 8IP) + ST  

=  (tt -  dx S/P) -  P S T  -  dx S.

Thus the feasible region T is reduced to Fr which is defined as

TT S „ . „ „  ,  „   ̂ 7T +  Ai +  A2 S
r r = \ { S , E , L , T )  e R i \ 0 < S  < T -  -  ~ , 0 < S  + E  + L + T  <

(, dx  p  d p

and endemic equilibrium P* becomes P* = (S* , E*, L*,T*). Similarly

E' = \ 1 + (J(S + 5 /P )T  + 1T - { d E + uj)E 
=  Aj + f3ST  +  (5 +  7  )T  — {dE +  u>)E.
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(B.2)

(B.3)

The other two equations don’t involve with variable X ,  so the original system (B .l) 

becomes
' S' = T r - d x 5 / ( 3 - p S T - d x S,

E' = Xi + (1ST + (5 +  7 )T  -  (dE + lo) E ,

L' = A2 +  (1 -  p ) ujE  -  (dL +  u)L,

T ' = ptoE +  vL  — (dx +  cn +  5 +  7  )T, 

and the endemic equilibrium satisfies the following equations 

'  (vr -  dx 5//3) =  (3S*T* + dx S *,

Ai +  (3S*T* +  (5 +  7 y r  =  (dE + u)E*,

X2 +  (1 — p)uiE* = (dx +  v )L *, 

puE*  +  vL* =  [dx +  (x +  5 +  7  )T*.

Let P* = (S * ,E * ,L * ,T *) be the endemic equilibrium of model (B.2). Then for the 

endemic equilibrium P* of (B.2), we have the following result.

T heorem  B . l .  The system (B.2) always has a unique endemic equilibrium P* = 

(S*, E *, L*,T*) which is globally asymptotically stable in the reduced feasible region Tr .

P ro o f: Set x(t) — (S(t), E[t), L ( t) ,T ( t) )  e T r C K+. Consider the Lyapunov function

V (x)  =  V ( S , E , L , T )  = A ( S - S ' - S * \ n ^ )  + B ( E - E * - E * \ n ^ )
L  T

+  C (L  — L* — L* In — ) +  D {T  — T* — T* In — ),

where

A  = B = +  C = u, D  = dL + v, 
dE +  oj

(B.4)

are positive constants and [S*, E*,L*,T*)  is the endemic equilibrium P*. We note tha t 

the function V{x)  is positive definite with respect to x* — P*. The derivative of V{t) 

along the solution (S(t), E ( t ) ,L ( t ) ,T ( t ) )  is
T* T *

(B.5)V ' = A{S ' -  ^ S ' )  +  B (E '  -  ^ E ' )  + C{L' -  - j -L ’) + D [ T  -  ^ T ) .  
o  h/ L  1

Using system equations (B.2) and the first equation of (B.3), we could simplify 

S' -  %-S' =  (tt -  d x S /p )  -  P S T  -  dx S  -  (tt -  dx 8/P)  ̂  +  (1S*T + dx S*
s *

=  (PS*T* + dx S*) -  (3ST -  dx S  -  (PS*T* + dx S*) —  +  (3S*T +  dx S*
/  ^  jQC*rr*o*

=  \PS*T\ -  (3ST +  dx S* f 2 — —  — —  J (3S*T* -  ^-----

<  [(3S*T\ -  (3ST + f3S*T* -
(3S*T*S*

(B.6)
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s  s*
since 2 — —  — — < 0. Similarly, using (B.2), we have

u O

E' -  - j r E ' =  Ai + /3 S T +  [(5 +  7)71 -  {dE + u ) E
AiE* (3STE* TE*—l — - ! L _ - ( s  + 'y)—  + (dE + u>)E*

E  -  ^ — E  = A2 +  [(1 -  p ) loE  -  (dL +  v)L\
A2 L* . . E E * \ t*

 ^  (1 — p ) u —- — I- {di + v)L  ,

T '  — — J 1* =  [pcoE +  vL  — (dx +  ol +  8 +  t)-^1
fprp* T rp*

-pw  — ------ V~ f ~  + (dT + a  + fi + 7 )r* .

Substitute {B.6), {B.7) into (B.5) and use (B.4), V'  is rearranged as

(B.7)

V' = [APS* -  A{8 +  7 ) -  D{dT + a + 7  +  5)}T

+

+

A/3S*T* +  A \ \  +  A{d,E +  to)E* CX2 +  C(dn v)L* +  Didj- +  ol +  7  +  E)T 

A PS*T*S* AX iE* APSTE* a {5 + 1 )TE*
— El-----    — El -  — El------  — El ~

E  
(1 — p )o jE E

E
vLT*

T

=  Fi +  F2 +  F3.

Furthermore,

(B.8 )

Vi = APS* -  A(5  +  7 ) -  D{dT + a  + j  + 6)}T = -[A X i  +  X2u}— . (B.9)

In fact we get it as follows. Combine the last two identities of (B.3) and cancel the L* 

term

X2v  +  (pdi, +  v)loE* = {di, +  i/)(dx +  ol +  S +  7  )T*, (B.10)

then combine (B.10) and the second equation of (B.3) and cancel the E* term , we have

(pdi, +  i,)u)[Xi PS*T* +  (5 +  y ’jT*] +  X2v(dE +  w) =  (d2j +  w)(d/, +  r')(dj’ +  Q! +  5 +  7)T1 ■

Divided by (ds + lo)T* both sides and use notations, we have

(pdL +  u ) u  X\ +  PS*T* +  (<!> +  7 )T* X2v tJ  , stJ , , ,  , ,
-W — )-------------------------F.-------------------- +  -  (<fe + - ) ( < * r  +  a  +  J +  7 ) ,

which is

A ^  + APS* + A(6 + j )  + ^  = D(dT + a  + 6 + 7 ). (B .l 1)
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Rewrite (B .ll)  as

Af3S* +  A(S +  7 ) -  D{dT +  a  +  8 +  7 ) =  (B.12)

For (B.12), times variable T  both sides, which gives Vj.

Note th a t V2 in (B.8 ) is a positive sum of constants. V3 is the sum of negative 

nonlinear fraction term. Now we simplify the constant term  V2. Using (B .ll)  and the 

second and third endemic equilibrium equations of (B.3) and C  = v, D  = dE +  v, we 

could simplify V2 as

V2 =  2 A(3S*T* +  2 A \ 1 + A(6  +  j )T *  + 2CX2 + A (dE +  u ) E * +  C{dL +  v)L*

= 3 Af3S*T* +  3AAt +  2 A(8 + j )T *  +  2CA2 +  C{dL + u)L*

=  3 A@S*T* +  3AAi +  2 A{5 +  7 )T* + 3CX2 +  (1 -  p)CuE*.

And note
{i - p )c u e - =  2 f S t f s ^ h { i E + w ) E -

pdL + u dE + oj

=  < 2 f ^ L A i iB  + w)E-
pdL +  v

= V - ~ d v A[(3S*T* +  Aj +  {5 +  7 )r* ] , 
pdL +  v

by the definition of A. Define

oi =  p (d L ± ' / \  bt = (1,~  P^ , or +  h  = 1, ai > 0, h  > 0. (B.13)
pdL +  v pdL + v

thus

V2 = 3A/3S*T* + 3AXi + 2 A{5 + 7 )T* +  3CA2 +  Abx [0 S * T * +  Ax +  (5 +  7 )1 ” ]

=  (3 +  bx)[ApS*T* +  AXi] +  (2 +  b J A t f  +  7  )T* +  3CA2 

=  (3ar +  461)[A/3S*T* +  AAi] +  (2ax +  3b1)A{8 + 7  )T* +  3CA2.

Also note from the second endemic equilibrium equation of (B.3)

Aj +  (3S*T* +  (8 +  7  )T* =  (dE +  w ) E \

we define

&  =  (A +  * &  =  ( d ^ ^ F * ’ & =  f f  t 7 )VF*> (B'14)(dE + u))E* (dE + u})E* (dE + u>)E*
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thus f t  +  f t  +  f t  =  1 and A >  0, % =  1,2,3. From the second and th ird  endemic 

equilibrium equations of (B.3), canceling the E * term , we get

v{dL +  v)L* =  [At +  P S * T  + (8 + 7 )r*] +  A2 z,
(dE +  f t

=  [A, +  P S ' T '  +  (J +  T)T-J +  A2,  I0 -15)
pdL + v  (dE + f t

= M [A r +  |0S*T* +  (5 +  7)7” ] +  A2za

Define
hAXx _  biA(3S*T* bjA(5 +  7 )r*  A2^

7?1 +  v)L* ’ u(dL +  ftL* ’ v(dL +  i/)L* ’ i/( f t +  ft-k*

Here £])4=1 77* =  1 and 77* > 0 ,  i =  1,2, 3,4. Now regrouping l/ 3 and Vi in (B.9), we get 

V\ +  V3

A /3S*T*S* A XiE* A (3STE* a {8 + j )T E *  ^ X  2L*
—  — J + --------  — / i  — ~ —  —   ------  — / I  —----------  Ls ~

E E  E L
^ (1  - P)tuEL* n pcuET* n v L T * A XxT  X2uT

L  ~  T  T  T *  T *

= —A(ox +  fri)^ 5 p g! _  A(fll +  bx) ^ ~  -  A{ai +

-  A{ai + b1) {S + 1} T E *- -  C -  C ( f t  +  f t  +  f t ) (1 ~  p)w£?i
£  L ^  7 L
. p o j E T *  , , u L T *  A, , .A rT A2z/T

-  D ( f t  +  f t  +  f t ) — — D ( r / i  +  772 +  773 +   A ( a i  +  f t ) -7^; j T f t

A1 (3S*T*S* A1 (3STE* „ a ( l - p ) u E L *  _ jaLT*
-4 f t  ---------------^ ---------------  7 ------------ Dp2^ -

+

+

+

+

+

+

„ (5S*T*S* A (3STE* n puET*  
- A a l h— ^ -------- Alai— - --------- D f t ^ A _ _

_ A a ( A ± 2 E ^ . D ^ r \
E  ^ T  J
.T £ *  rAQ{ l -p ) u jE L *  v L T

-Abi (8  + 7 )—  C f t   ------------D 773
E  L 10 T

a u X,E* a u X, T ^  (1 -p)u>EL* n «/L7”
- 4 f t - g ----- 4 f t  —  -  C f t    Drji- ^ r -

4 A^* , AXT n/3^ £ T * |
-  4 ai —  -  D f t  - r  |

A2 t/T A2L* i/LT*
— C — --------^^4"

T* L ' T

= A +  I 2 +  / 3 +  /4 +  1$ +  Iq +  I j .

(B.17)
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Combine Vi, V2 and V3, we have

^ r  = V2 + V3 + V! 
at

7

=  (3a! +  Abx){ApS*T* +  AAi) +  3CA2 +  (2 ax +  361)A(<5' +  7  )T* +  ^  A

2=1 (B.18)
=  [4M /?S*T* +  A] +  p a iA /JS T *  +  / 2]

+  [2a iA(5 +  7 )T* +  / 3] +  [36i A{5 +  7 )T* +  h] 

+  [46i AAi +  /s] +  [3aiAAi +  I q] +  [3CA2 +  ^7].

Applying the inequality

X\ + x 2 + ■ ■ ■ + x n   , . .
-------------------------- >  y x i  - x 2 - - - x n, [Xi > 0, 1 =  1, 2, ■ • • , n),

n

we want to show th a t V2 + V\ + V3 < 0. Using the definition of A, C, D, (B.13), (B.14), 

(B.16), we obtain the following group of inequalities.

A h A p S 'T *  +  h

<  4b iA pS 'T *  -  4 f / A b ^ S ' T ' S *  ■ A b ^ E *  ■ C(32{ 1 -  p)u)L* ■ Dr)2v T * 

=  AbxA/3S*T* -  A\J(AbiPS*T*)2 ■ (1 -  p)Cu> ■ f32E * ■ Dvr]2L *

=  4bxApS'T*  -  4 ( / {AbxPS*T*y (1 V^V + --^ /32(dg +  lu)E* Dvr]2V
y paL + v dE + u

=  4bxA(3S*T* -  Ay/(Abif3S*T*)2 ■ bx ■ A  ■ (3S*T* ■ bxApS'T*  

= 0. 

Similarly we have 

3 aiA(3S*T* + 12 

<  3oi A(3S*T* -  3y/AaiPS*T*S* ■ A ar fE *  ■ DfopuT*

= 3a iA(3S*T* -  3y/[AaiPS*T*}2 ■ pD u  • (32E*

= 3aiA(3S*T* -  3 ( / [AaipS*T*]2 • P^ L +  ^  +  ^  ■ p2{dE +  u)E*
y pdL + v dE + u)

= 3aiA(3S*T* -  3 f / [ A aipS*T*}2 ■ ax ■ A  • PS*T*

=  0 .
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2a\A(5  +  7  )T* +  h

< 2a\A(S + 7 )T* -  2 ^ /Aai(S  +  7 )E* ■ D fopuT*

=  2aiA(5 +  7 )T* -  2 y / Aai{5 +  7 )T* ■ pDuj ■ fcE*

=  2aiA(5 + 7 )T* -  2 -t/ Aai(<5 +  7 )r*  • P(j L ■ fa (dE +  u;)£*
y paL +  v dE + u

= 2a iA{5 + i ) T  -  2 y/ A a 1{8 +  7 )T* ■ ai ■ A  - (5 + j)T*

=  0. 
(B.21) 

3 M ( < *  +  7  )T ”  +  / 4 

<  3M ( < *  +  7 )T *  -  3 ^ 61(<5 +  7 ) £ *  • C / ^ l  - p ) w L *  ■ D r ^ v T *

=  361A (t5' +  7 ) 7 ”  -  3 ^ 6 1  (<5 +  7 ) 7”  ■ (1 -  p ) C w  ■ • D v q ^ L *

=  3 M ( «  +  7 )r*  -  3 t L b ^ S  +  7 )r*  (1,~ P)V ^  +- ^ P 3(dE +  uj)E*Dvrj3L*
y paL +  ^ ag +  UJ

=  3M(<5 +  7 )T *  -  Z t y A h i S  +  7 )T *  • 6X • A  ■ (<fr +  7 ) ^  ■ M ( *  +  7 )T *  

=  0. 
(B.22)

4f»iAAi +  /s

<  46i^A! — 4y/AbiXiE* ■ ^46iAi • Dtjiv ■ C7?x( 1 — p)uL*

= AbiAXi -  i y / ( A b i \ i ) 2 ■ (1  -  p)C u  • PiE* ■ D ^ v L *

= 461AA1 -  4 ( / ( A M 1 ) 2 • (1  ~  ■ f l ( d E +  ^ )£ *  ■ rjiDvL*
y pdL + 1/ dE + u

=  46xA \i  -  4 < /(A M i ) 2 • bi ■ A ■ Ax ■ A6 XAx

=  0.

3^1 v4 A1 -|- /g

<  3q-iAAi — 3 \ / A i £7̂  ■ A cl\Ai • D/3\puj 

= 3axAAi — 3 \/(A a iA x) 2 • pDuj ■ PiE*

=  S a ^ A , -  3 { l ( A a A r  ■ +  w)B- (B'24>
y pdL + v dE + uj

—  3 a iA A x — 3 \ / ( y l f l xA i ) 2 * dx • A  * Ax 

=  0.
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“i C X 2 ~\~ I7 3CA2 — 3 \ / CX2 L* • X2V • Dti^i

— 3CX2 — 3 \ J (CA2)2 ■ riiDvL* ^  ^

=  3CA2 -  3</(CA2)2 ■ CA2 

=  0.

Substitute (B.19)-(B.25) into (B.18), we obtain th a t F2 +  Vjj <  0 and thus

d̂  = Vl + V2 + V3 < 0 .  (B.26)
at

Furthermore, = 0 if and only if equalities hold in (B.19)-(B.25). Therefore —— is 
at _ at

negative definite in Int T with respect to the endemic equilibrium x* = P*. This implies

th a t the basin of attraction of P* contains the interior of T. The positive definiteness

of V (x) with respect to P* implies th a t P* is also locally stable. This completes the

proof.

A n other p roof using th e  graph-th eoretica l approach

We can simplify the proof of GAS of P* using the graph-theoretical approach we 

developed in Chapter 1.

From (B.3) we have

A p S 'T *  +  J3Ai +  B{5  +  7  )T* + CX2 = D{dT + a + 6 + 7 )r* , (B.27)

where A , B , C , D  are defined in (B.4). From (B.6) and (B.7) we want the following

always hold:
0 =  [- A  + B}(3ST,

0 =  [ C i l - v ^  + D p u - B i d E  + u ^ E ,  (B.28)

0 =  [Dv -  C{dL +  v)]L. 

for all values of S , E, L, T. And it is also true for S*, E*, L*,T*. Then (B.28) becomes

A(3S*T* = B f3S*T \

C(1 -  p )ujE* +  DptoE* = B (d E + u)]E*, (B.29)

DvL* =  C(dL +  u)L*.

Multiply B,  C, D  both sides at the last three identities in (B.3), we have

BXi  +  B(3S*T* +  B{5 + j)T *  = B (d E +  u)E*,

CX2 + C { 1 - p )ujE* = C{dL + v)L*, (B.3Q)

DpusE* +  D v L * = D(dT + a  + 5 +
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Use (B.30), (B.28) and (B.29), we have

A0S*T* = B(3S*T*,

BXi  +  B0S*T*  +  B{5 +  7 )T* =  C{1 -  p)u>E* +  DpuE*, 

CX2 + C { l - p ) u E *  = DvL*,

A0S*T* + BXi + B{5 + 7 )T* +  C \ 2 = DptoE* + DvL*.

Consider A, B , C, D  are variables, we get a linear system

Solving (B.32), we have

A  = 0S*T* • uE*  • [(1 -  p)puE*  +  p \ 2 +  (1 -  p)vL*],

B  = (3S*T* ■ uE* ■ [(1 -  p)puE* + pX2 + (1 -  p)vL*},

C  = f3S*T* ■ vL* • [Ax +  (5S*T* +  (5 +  j)T*],

D  = 0S*T*  • [A2 +  (1 -  P)ojE*] [Aj +  0S*T*  +  (tf +  7 )T*].

Using (B.9), (B.8) becomes

(B.31)

/3S*T* —0S*T*

1oo

' A  '

0 Xi +  0S*T* + (S + j)T * — (1 — p)(jjE* —p u E * B

0 0 A2 +  (1 — p ) ujE *  — v L* C

—0S*T* - X i - i S  + W —X2 pujE* +  vL* D

=  0 .

(B.32)

(B.33)

V' =  

+

A0S*T*  +  AXi + A(dE + lo)E* + CX2 +  C(dL + v)L* +  D{dT +  a  +  7 +  6)T*

(3S*T*S* Ai E* (3STE* (5 + j ) T E * T
— A  —------— A ——— — A  ~  — A  ~ ---------- — A a i  ——

S E E  E  T*
_ W L  _ c E E  _  c (L~r)“EL' _  Dv^EEL _  DE T l

T* L  L  T  T
(B.34)
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Use the last three identities in (B.3), (B.34) becomes

V ' = 2 A0S*T* + 2AXi + A{5 + j)T *  + 2CX2 + C{ 1 -  p ) u E * + DpuE* + DvL*
C *  TP* Q  T  TP* 7 1 TP* T

-  A(3S*T*b-  - A X ^ -  A 0 S * T * f - - -  A(S  +  l ) T * - ^  -  A X , -

T  I * E l *  E  T* L T*
-  CA2— -  c x 2— -  C{l -p)uE* —  — -  DpuE* —  —  -  Dl/L* J 7 Y

E  L * \  „  /  E  T*

(B.35)

(B.36)

+  £7(1 -  P)uE* \1  -  - T  j  + DptoE* ^1 -  - -

Note coefficients in each term  in (B.35) can be regrouped as

AXi = 0S*T* ■ puE* ■ Xx • [A2 +  (1 -  P)loE*]

+ 0S*T* • (1 - p ) u E *  ■ Xx ■ vL*,

A0S*T* = (/3S*T*)2 • puE*  • [A2 +  (1 -  p)uE*}

+ {(3S*T*)2 ■ (1 -  P)luE* ■ vL*,

A{5 + 7 )T* =  0S*T* ■ pojE* ■ {8 +  7 )T* • [A2 +  (1 -  p)uE*}

+  0S*T* ■ (1 -  p)uE* ■ vL* ■ (5 + 7 )r* .

CA2 =  0S*T* ■ vL* • A2 • [Ai +  0S*T* + {5 +  7 )T*],

£7(1 -  p)u;E* = (f3S*T*)2 ■ vL* • (1 -  p)uE*

+  0S*T* ■ vL* ■ Xx • (1 -  P)ujE*

+ 0S*T* ■ vL* ■ (8 +  j )T *  • (1 -  p )ujE*.

DvL* = (3S*T* ■ vL* • A2 • [Ar +  0S*T*  +  (5 +  j)T*]

+ {(3S*T*)2 ■ vL* ■ (1 -  P)loE*

+ 0S*T* -vL* • (1 - p )ujE* ■ Xx

+  0S*T* ■ vL* • (1 -  P)uE* ■ {8 + 7 )T*, (B.38)

DpcuE* =  (0S*T*)2 ■ ptvE* ■ [A2 +  (1 -  P)uE*\

+ 0S*T* ■ puE* ■ Xx • [A2 +  (1 -  p)uE*}

+  (3S*T* ■ ptoE* ■ {8 +  7 )T* • [A2 +  (1 -  p)uE*].

(B.37)
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Then we can combine all terms with the same coefficients (expanded in (B.36), (B.37), 

(B.38)) into one group

(  S* S  T  E* E  T* \
V '  <  (PS*T*)2 • puE*  • [A2 +  (1 - p)uE*} (3  -  -  -  -  — — J

+  (ps-rf ■ ( i  -vfrB' ■ vl- ( 4  -  |  -  ~  -  ~

+ /3ST- ■ jx̂ E* ■ (S + 7 )7" • [A2 + (1 -  plw fi’ l

+ PS'T* ■ pwE’ Ai • [A2 + (1 -  pVE*] (3 -  §  -  T  -  § £ )  (b m)

+ (/3ST-)2 ■ (i -  pm s- • p l- (4  -  f  -  T  -  _  | T

+  (3S*T* ■ v L * ■ A2 ■ [Ax +  PS*T* + (5 +  7 )T*] ~  ~  T  ~  W t )

(  L T *  E L *  T  E*
+  (3S*T* ■ (1 -  p)uE* ■ vL* ■ (5 +  i )T *  U - - - - - - - - -

< 0 ,

by applying the inequality seven times 

X\ +  x 2 H \-xn
n

>  {/aq ■ x 2 ■ ■ ■ x n, (xi > 0,i  =  1,2, • • ■ ,n ).

The results are same as th a t in (B.19)-(B.25).
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