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Abstract

The increase in the ageing population worldwide poses a severe challenge in assisting older individuals to live independently,
including the provision of mobility assistance and support in daily activities. In this paper, a practical robotic system is developed
to provide intelligent support for older persons using a wheeled mobile manipulator (WMM), consisting of an omnidirectional
mobile platform and a robotic arm. We focus on two critical needs: 1) mobility assistance, and 2) object manipulation support. The
tasks are not executed simultaneously and each uses a task-dependent end-effector. Learning from demonstration, or kinesthetic
teaching, is adopted to help the WMM to learn an elderly or disabled user’s walking pattern or an able-bodied person’s object
manipulation skill. The robotic system can assist the user in conducting a number of daily operations. For mobility assistance,
the WMM is reconfigured into a smart walker, where a novel variable admittance control is adopted to detect the user’s walking
intention. A learning approach based on dynamic movement primitives is implemented to capture and adapt the WMM to the user’s
walking pattern. For object manipulation support, a demonstrator first collaborates with an elderly user to conduct the task, and then
the WMM takes the role of the demonstrator to assist the user. The Gaussian mixture model and Gaussian mixture regression are
used to learn and reproduce the demonstrator’s experience, respectively. The advantages and effectiveness of the proposed approach
are experimentally demonstrated with a four-wheel omnidirectional WMM.

Keywords: Wheeled mobile manipulator (WMM), mobility assistance, human-robot collaboration (HRC), compliance control,
learning from demonstration (LfD).

1. Introduction

Seniors or adults with chronic conditions who have motor
disabilities often use assistive devices to walk and to perform
activities of daily living [1, 2]. The desirable movement
capability of mobile robots is drawing a lot of attention [3], es-
pecially wheeled mobile manipulator (WMM)-based assistive
devices that are widely studied and used due to their desirable
movement capability on flat ground as well as their operational
capability [4, 5, 6]. Employing a robotic assistance system
may reduce the dependence on caregivers, reduce costs of
health care, and ensure timely support during the performance
of activities of daily living [7]. Moreover, due to the impact
of the COVID-19 pandemic, robotic assistance devices have
found many applications as a means of reducing the chances
of infection of their users [8]. However, the traditional assistive
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equipment has some drawbacks, including the need for consid-
erable forces to activate the devices and the lack of adaptation to
the user’s motion. A practical robotic system is urgently needed
to assist older persons in their daily lives by conducting multiple
daily tasks.

Muscle weakness, joint stiffness, and physical impairments
often experienced by older adults make their independent living
needs challenging. Implementing a robotic assistance system
may be able to address these needs [9]. Two major kinds of
applications can be considered. One is to rely on the robot to
serve the user completely, such as robotic clothing assistance
and cup fetching [10, 11]. The other is to view the robot
as a collaborator to cooperate with the user to accomplish
various tasks such as moving a table or furniture [12, 13]. The
latter is more complicated than the former since it requires
taking the human-robot interaction (HRI) into account, which
is one of the main foci of the work described in this study.
Mobility assistance and human-robot collaboration (HRC) for
object manipulation are two everyday tasks in the daily life of
older adults; thus, they are selected as the targets for robotic
assistance to be provided via one WMM.

Two commonly utilized devices for mobility assistance are
robotic canes (single-hand operation) and intelligent walkers
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(dual-hand operation) [6, 14]. Most of the mobility assistance-
related work has focused on developing novel compliant inter-
action approaches (considering user-applied horizontal inter-
action forces) to ensure user safety and improve their experi-
ence. Examples include variable admittance control (VAC) and
adaptive impedance control, which may also integrate modern
learning techniques to train the control parameters [15].

The deployment of mobile manipulators in HRC has at-
tracted many researchers in recent years [13, 16, 17, 18]. The
exploitation of WMMs can ease the kinematic and dynamic
limitations of robotic systems. For instance, the WMM has an
unlimited workspace in the horizontal plane. Also, redundancy
in the WMM system (availability of more degrees of freedom
than the task minimally needs) can enhance some required
features for a task with null-space control [19].

The challenge for an intelligent assistance device is learning
and adapting to the user’s motion pattern. Learning-based
approaches have the advantage of intuitively transferring a
human’s knowledge of how to perform a task to a robot
using methods such as Gaussian mixture regression (GMR) and
Gaussian process regression (GPR) [12]. Gaussian mixture
model (GMM) combined with GMR can provide additional
motion information for robots while they are learning from
multiple demonstrations compared with other learning methods
[20]. Dynamic movement primitives (DMPs) have also found
many applications, especially in learning a trajectory where
human-robot interaction forces are considered [21]. DMPs use
a single demonstration, have spatial and temporal scalability
and can guarantee convergence to a goal position, giving
DMPs an advantage over methods based on statistical machine
learning [22].

This paper aims to provide an intelligent assistance sys-
tem employing a WMM with task-appropriate end-effectors to
tackle mobility assistance and object co-manipulation. The
two tasks are accomplished separately by the WMM with a
task-dependent end-effector. Although some problems are still
unsolved, such as how to exchange the end-effectors automati-
cally, this paper provides a beneficial attempt to facilitate older
persons’ lives by helping them conduct multiple tasks with one
robotic device.

The main contributions of the paper are as follows: (1)
A robotic system employing a WMM to assist older adults in
conducting multiple daily activities with task-dependent end-
effectors is proposed; (2) for mobility assistance, an intelligent
strategy is developed to learn any user-specified walking pattern
over one gait cycle by employing novel cooperative DMPs for
mobility assistance, where a novel VAC approach is designed to
detect and respond to the user’s intention and the coupled term
in the proposed cooperative DMPs is implemented to handle
emergency conditions (e.g., large unintended force or fall); (3)
for heavy object manipulation support, a stiffness estimation
method and a GMR technique, based on GMM, are adopted to
reproduce the user’s impedance-based behavior in the vertical
direction, and realize the compliant motion demand in the
horizontal plane, respectively. A configuration optimization
approach is provided to enhance the WMM’s force exertion
capability in a predefined direction to deal with heavy loads.

The remainder of this paper is organized as follows. State
of the art and open challenges of intelligent assistance are
described in Section 2. Section 3 presents a motivation demon-
stration of this research. Section 4 provides the kinematic
modeling and admittance control-based control scheme for the
WMM. In Section 5, the locomotion pattern learning and per-
sonalization methods for mobility assistance via the proposed
cooperative DMPs are presented. In Section 6, the learning
and reproduction approaches from human demonstration for
HRC are illustrated. Experiments that illustrate the validity and
advantages of the proposed approach are shown in Section 7.
Section 8 summarizes the approach and its outcomes.

2. Related Work

Intelligent assistance devices are commonly designed to
provide support for one specific task [23]. A common exam-
ple is the walker, historical overviews of smart walkers are
available in [1, 14, 24]. The primary focus in this area has
been on designing more user-friendly interaction compliance
approaches, considering only the user-applied horizontal forces
as an indication of the user’s intention to move in a particular
direction [5, 25]. The FriWalk robotic walker, developed by
the EU Research project ACANTO, provided the user with
several physical and cognitive support options for navigation in
a complex environment [26, 27]. The FriWalk had solid sensing
and computing capabilities to generate suitable trajectories
for the user. Moreover, practical functions, such as obstacle
avoidance and corridor following, were also incorporated [28].

Jiménez et al. [29] presented an admittance controller for
a smart walker, which could generate haptic signals to help
the tracking of a predetermined path. When deviating from
the path, the walker adjusted the user’s direction by varying
the damping parameter of the controller through a spatial
modulation technique. Itadera et al. [5] designed a robotic
assistive device with an admittance controlled mobile base to
provide walking assistance for older adults through predictive
optimization of gait assistive force. An optimization algorithm
based on a model predictive control approach was presented to
offer desirable assistive forces to reduce the risk associated with
immobility, such as disuse syndrome. Despite the extensive
work in this area, to the best of our knowledge, incorporation
of the vertical interaction between the user and the mobility as-
sistance device to better detect the user’s intention has not been
investigated, nor has the use of learning-based approaches to
learn the user’s walking pattern for personalizing the assistance
to the user. These two approaches are addressed in this paper.

In terms of object manipulation through HRC, the challenge
is in the system’s understanding of the user’s intention. This,
however, can be addressed through learning from demonstra-
tion (LfD) by intuitively transferring a human’s knowledge
of a task to a robot through demonstrations [30]. Fong et
al. [7] utilized GMM and GMR to learn an object lifting
motion with rehabilitation robots. Rozo et al.[12] put forward
a task-parameterized version of GMM (TP-GMM) to encode
the demonstrations, and used GMR to reproduce the learned
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results. This method has been effectively implemented in HRC
transportation and assembly missions.

Al-Yacoub et al. [31] presented an LfD approach for object
co-manipulation that combined a machine learning algorithm –
i.e., Random Forest – with stochastic regression, using haptic
information captured from human demonstration. Gienger et
al. [32] provided a system for cooperatively manipulating
large objects between a human and a robot, which was able
to handle, transport, or manipulate large objects of different
shapes in cooperation with a human, even including contact
changes. More overviews investigating HRC issues can be
found in [33, 34].

To date, the existing research has only focused on one
single portion of the mission, such as moving an object [12]
and handing over an object [35]. Moreover, previous work
has not addressed the problem of the robotic system’s limited
force exertion capability for heavy object manipulation, which
may be a limitation for a robot to assist the user in conducting
collaboration tasks. These are aspects that are investigated in
this study.

3. Main Concept and Approach

In the existing mobility assistance devices, the users com-
monly need to apply an adequate horizontal force to activate
them. These devices are mostly not “smart” enough to detect
how to respond to the users’ walking pattern [5, 36]. Fig. 1
presents a general diagram of human mobility assistance with a
WMM. The robot only bears a vertical force ( fz) from the user
at the start state (Fig. 1a). When the user wants to move towards
a direction, they will apply a considerable horizontal force ( fx)
in the direction indicating their walking intention (Fig. 1b). The
user then generates a small horizontal force as they continue
their motion (Fig. 1c). Here, we consider both the user-applied
horizontal and vertical force components to detect the user’s
locomotion intention. A large vertical force applied by the user
causes a small horizontal motion to achieve better support. An
LfD technique is employed to learn the users’ walking pattern
to improve their comfort and reduce their energy expenditure.

An HRC for object manipulation with a WMM is presented
as an example to illustrate robotic assistance in completing
daily tasks; part of this work has been presented in [37]. With
the WMM support, the user can complete some tasks with less
energy. Fig. 2 shows the general diagram of manipulating
an object using LfD, which can be divided into three steps:
lifting, carrying, and lowering. Fig. 2a shows the demonstration
phase, where a demonstrator/helper teaches the WMM how
to handle the task with the user. The WMM then learns the
demonstrator’s task skills and completes the task independently
with the user, as shown in Fig. 2b. The lifting and lowering
steps contain considerable force output in the vertical direction
during movement. Thus, the interaction force between the hu-
man and the object should be learned in addition to the motion
between them. The carrying step involves only the desirable
compliant movement in the horizontal plane. Therefore, only
the kinematic motion is learned and reproduced. This is, to
the best of our knowledge, the first time the LfD technique

is implemented to imitate the human’s action for an object
manipulation task considering all three steps [12, 38].

4. Kinematics and Compliance Control of WMMs

In this section, the forward kinematics at the velocity level
for WMMs are presented. A task-space admittance control
scheme to achieve compliance and a null-space optimization
algorithm to realize force exertion capability enhancement are
also provided.

4.1. Kinematics of WMMs

The kinematic model of a mobile platform without slippage
or skidding can be expressed as q̇p = G(qp)vp, where q̇p ∈

Rnp represents the generalized coordinate vector of the mobile
platform and vp ∈ Rp is the input velocity vector of the wheels.
G(qp) ∈ Rnp×p denotes the constraint matrix of the platform
(holonomic or nonholonomic). The generalized velocity vector
of the manipulator q̇m ∈ Rm can be assigned arbitrarily at
any manipulator configuration. Here, we specify q̇m = vm,
where vm ∈ Rm denotes the joint velocity input vector for the
manipulator.

The generalized coordinate vector and velocity input vector
of the WMM are defined as q = [qT

p , q
T
m]T ∈ Rnp+m and v =

[vT
p , v

T
m]T ∈ Rn, respectively, where n = p+m. Then, its forward

kinematics at velocity level can be calculated as

ẋ =
[
Jp(q), Jm(q)

] [q̇p

q̇m

]
=

[
Jb(q)G(qp), Jm(q)

] [vp

vm

]
= J(q)v,

(1)
where ẋ ∈ Rr is the task-space velocity vector of the end-
effector in the world frame Σw with its dimension being r,
Jp(q) ∈ Rr×np and Jm(q) ∈ Rr×m denote the Jacobians of the
mobile platform and the manipulator, respectively, and J(q) ∈
Rr×n represents the Jacobian of the WMM.

Then, with the WMM velocity vector defined as v, the
inverse kinematics of the WMM can be expressed as

v = J† ẋ, (2)

where J† = WJT(JWJT)−1 is the weighted pseudoinverse of
J with W ∈ Rn×n being a symmetric and positive-definite
weighting matrix.

4.2. Compliance Rendered by an Admittance-Based Control
Scheme

To achieve robot learning by human demonstration, the
WMM should be compliant with the human or environment’s
external force. Thus, an admittance control scheme is adopted
here with the transfer function at velocity level expressed as

ẋ f (s)
fh(s)

= G(s) =
s

Λs2 + Υs + Γ
, (3)

where s denotes the Laplace operator, fh ∈ Rr denotes the user-
applied force vector, and ẋ f ∈ Rr represents the resultant end-
effector velocity vector. Λ ∈ Rr×r, Υ ∈ Rr×r, and Γ ∈ Rr×r are
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Figure 1: Illustration of mobility assistance with a WMM.
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Figure 2: Illustration of LfD procedure for object manipulation via HRC.

diagonal matrices representing the desired task-space inertial,
damping, and stiffness, respectively.

The admittance controller (3) is designed to achieve com-
pliance in any r-dimensional space, which is not suitable
for a mobility assistance device since the vertical motion is
not required. A novel admittance controller is proposed to
detect the user’s walking intention, and the WMM for mobility
assistance is also called a smart walker thereafter. Unlike the
previous research considering only the horizontal forces [39],
we also include the vertical force to detect the user’s intention.
The smart walker here is programmed to slow down when the
user applies a large vertical force. A large vertical force aims to
simulate the user’s falling incident. When the user uses a large
horizontal force, the robotic walker is controlled to speed up to
provide mobility assistance.

To further improve the performance of mobility assistance,
a custom-built variable admittance controller for the walker is
designed as

ẋ f x

ẋ f y

ẋtz

 =
Gxx 0 Gxz 0

0 Gyy Gyz 0
0 0 0 Gzz




fx

fy
fz
τz

 (4)

with

Gii =
1

Λis + Υi
, G jz =

−1
Λ jzs + Υ jz

sign( f j),

where i ∈ {x, y, z}, j ∈ {x, y}. ẋ f x, ẋ f y, and ẋtz represent the
velocity component of ẋ f caused by the user-applied wrench.
τz denotes the user’s z direction torque, and fx, fy, and fz
denote the user’s interaction forces in x, y, and z directions,

respectively. Λ jz and Υ jz represent the desired constant inertial
and damping, which relate the vertical force ( fz) with the
horizontal velocities (ẋ f x and ẋ f y). This scheme reduces
the walker’s horizontal motion when a large vertical force
is exerted. Λi and Υi are the desired variable inertial and
damping relating the user’s wrench with its corresponding
velocity/angular velocity, which is expressed as

Υx( fx) = Υx0 − α | fx| , Λx =
Λx0Υx( fx)
Υx0

,

Υy( fy) = Υy0 − β
∣∣∣ fy∣∣∣ , Λy =

Λy0Υy( fy)
Υy0

,

Υz(τz) = Υz0 − γ |τz| , Λz =
Λz0Υz(τz)
Υz0
.

(5)

Here, α, β, and γ are positive gains. Eq. (5) tries to decrease the
damping of the walker to make it move faster when a significant
force or torque is applied in the corresponding direction and
maintains the stability of the control system by keeping the ratio
between the inertia and the damping.

4.3. Null-Space Control Scheme to Realize Force Enhancement

For a reference end-effector velocity vector defined as ẋr(t),
unlike (2), the kinematic controller of a redundant WMM with
null-space control considered can be expressed as

vr = J† ẋr + (I − J†J)vN , (6)

where vr ∈ Rn represents the reference WMM’s joint velocity
vector, I represents an n × n identity matrix, I − J†J is the null-
space of J, and vN ∈ Rn is the null-space velocity vector for
configuration optimization.

For heavy object manipulation tasks via HRC, the required
force to counteract the object weight may be large. Due to
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the limited manipulator joint torque output, some heavy objects
cannot be lifted. Hence, the null-space control is implemented
to enhance the end-effector’s force exertion capability via
kinematic reconfiguration.

A scalar cost function is defined as

σ1 =
[
uT(JmWτWτJT

m)u
]−1

(7)

to maximize the end-effector’s force exertion ability in the
predefined direction, where u ∈ Rr is a unit vector denoting the

optimization direction. Wτ = diag
[

1
τm lim1

· · · 1
τm limm

]
denotes a

scaling matrix to normalize the joint torques with τm limi being
the torque limit of the ith joint. To eliminate the influence of
manipulator’s gravity, another cost function is specified as

σ2 = f T
g fg/ϱ, (8)

where fg = J-T
m τg with τg ∈ Rm being the joint torque vector

caused by the manipulator gravity and ϱ is a positive scalar gain,
which makes targets σ1 and σ2 on the same order of magnitude.
Combining (7) and (8), the cost function for the null-space
controller can be defined as σ = w1σ1 − w2σ2, where w1 and
w2 are two constant gains with w1 + w2 = 1. By calculating the
partial derivative of σ to qm, denoting as ▽qmσ, we can obtain
the null-space joint velocity vector for (6) as

vN = kN

[
0p×1

(▽qmσ)T

]
(9)

with kN being a constant gain.

5. Locomotion Pattern Learning and Personalization via
Cooperative DMPs

In this section, the proposed cooperative DMPs to learn
the human’s walking pattern will be presented. Section 5.1
introduces the concept of the proposed method. Section 5.2
illustrates how to train the learning system. Implementing the
method for assisting bipedal mobility is presented in Section
5.3.

5.1. Cooperative Dynamic Movement Primitives
The classical DMPs were first proposed by Ijspeert et al.

[21], which can be divided into two categories, one is discrete
DMPs for point-to-point motions, and the other is rhythmic
DMPs for periodical patterns. For point-to-point movement,
which is suitable for this research, the discrete DMPs can be
written as [21]

τṅ = αn(βn(g − m) − n) + f (κ), (10)

τṁ = n, (11)

τκ̇ = −ακκ, (12)

and forcing the term f (κ) to be a linear combination of radial
basis functions to learn the motion pattern

f (κ) =
∑N

i=1 wiΨi(κ)∑N
i=1Ψi(κ)

κ, (13)

Ψi(κ) = exp(−(κ − ci)2/(2σ2
i )), (14)

where i = 1, 2, · · · ,N with N denoting the number of the
basis functions, m denotes a single degree of freedom (DOF)
trajectory, g denotes the attractor point of the trajectory, n and
κ are two internal states, αn, βn, ακ are three positive numbers,
τ > 0 determines the duration of the trajectory. wi denotes the
Gaussian kernel weights, which will be determined later. σi

and ci are constants to regulate the basis functions’ widths and
centers, respectively.

Equations (10) and (11) are the transformation system, (12)
is the canonical system, and the phase variable κ is introduced
to avoid dependence of f (κ) on time. It is worth mentioning that
f (κ) in (10) will effectively vanish when g is reached to ensure
the stability of the DMPs system. For a system with more than
one DOF, the movement in each DOF will be represented with
its own transformation system, and the entire robotic system
will then be synchronized using the same canonical system.

The traditional DMPs (10)-(14) do not possess the ability to
react to unpredictable events from the environment, but this is
reasonably necessary for a smart walker controller. Fortunately,
DMPs can be modulated online to incorporate a straightforward
repulsive force to deal with emergencies [40]. Inspired by
the concept of DMPs and [41], a cooperative DMPs used for
mobility assistance in this paper are designed as

τṅ = αn(βn(g(ẋ f ) − m) − n) + f (κ) + δȦ, (15)

τṁ = n + A, (16)

g(ẋ f ) =
∫ t

0
(ṁave + ẋ f ) dτ, (17)

A = −
1

η(mL − m)3 , (18)

τκ̇ = −
ακexp[(ακ/δt)(τT − t)]{

1 + exp[(ακ/δt)(τT − t)]
}2 . (19)

Here, (17) realizes the adaptation to the user intention, where
g(ẋ f ) is a dynamical attractor trajectory to guide the user’s
walking, ṁave represents the average user demonstration ve-
locity in one gait and ẋ f denotes the velocity resulted from
the VAC. The term A is added to circumvent the walker’s
motion by setting a manual limit mL, where δ and η are two
positive constants, and this term will only take effect when a
big unintended force is applied (indicating the user’s instability
or falling). The sigmoidal decay equation (19) is selected
instead of exponential decay equation (12) to avoid the rapid
vanishment of f (κ) [42], where δt is the sampling time and T is
the duration of the trajectory. Here, the initial condition of κ is
selected as κ(0) = 1.

The procedure of implementing this approach will be shown
in Section 5.3 later.

5.2. Locomotion Learning from Demonstrated Walking Gait
The term f (κ) in (13) is the crucial term to learn the user’s

walking pattern. The advantage is that f (κ) is designed to be
linear with respect to wi, which allows us to use many methods
to fit wi.

Two phases are included in this framework. The learning
phase learns the user’s walking pattern, and the personalization
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phase clones the learned walking skills and also adapts to the
motion variations. During the learning phase, the walker is first
activated employing an admittance controller to make it flexible
enough for the user. Then, the walker’s position, velocity,
and acceleration are recorded (assuming they are the user’s
locomotion information) as the user pushes the admittance-
controlled walker for trajectory learning. The term A in (18)
is omitted and the attractor point g(ẋ f ) in (17) is defined as
the final point of the demonstrated trajectory to learn the user’s
normal walking pattern. It should be noted that only one gait
of the user’s motion will be learned; thus, the recorded data are
cut into several bipedal walking gaits, and the average period of
the gaits will also be identified.

After preprocessing the data obtained during the demon-
stration phase, the demonstrated user trajectory in one gait is
denoted as mdemo(t), where t ∈ [1, 2, · · · , P]T with P = Tdemo/δt
and Tdemo representing the identified gait period. Its first
time derivative and second time derivative are represented as
ṁdemo(t) and m̈demo(t), respectively, and the attractor point in
each cycle is gdemo. According to (15), the approximation of
the term fdemo(t) can be expressed as

fdemo = τ
2m̈demo − αn(βn(gdemo − mdemo) − τṁdemo). (20)

Thus, the problem is reduced to implementing a method that
makes f (κ) as close as possible to fdemo(t).

Here, Locally Weighted Regression (LWR) [41] is selected
to update these weights wi in (13). Collecting each fdemo(t) and
wi into the vectors F = [ fdemo(1), fdemo(2), · · · , fdemo(P)]T and
W = [w1,w2, · · · ,wN]T, one derives

ΦW = F (21)

with

Φ =


Ψ1(κ1)∑N
i=1 Ψi(κ1)

κ1 · · ·
ΨN (κ1)∑N
i=1 Ψi(κ1)

κ1
...

. . .
...

Ψ1(κP)∑N
i=1 Ψi(κP)

κP · · ·
ΨN (κP)∑N
i=1 Ψi(κP)

κP

 .
Then, the weights vectorW is updated in a least-square sense
as

W = (ΦTΦ)−1ΦTF . (22)

5.3. Locomotion Pattern Personalization with User Intention
Considered

Unlike classical learning methods, wherein the reproduc-
tion phase the robotic system tries to reproduce the same
trajectory it has learned [7], the locomotion pattern person-
alization phase in this paper regards the learned trajectory as
an initial reference to assist the user’s walking. For mobility
assistance, the final position (attractor point) of a motion cannot
be determined in advance; thus, only the walking pattern in
one gait is learned, and it will be cloned cyclically in the
personalization phase to adapt to variations.

Besides copying the learned motion, the attractor point in
each gait g(ẋ f ) will also be updated considering the interaction

force-related motion ẋ f (determined in (4)). The circumvention
term A will be added to stop the walker’s motion when a large
abnormal force is exerted (implying the user’s possible falling
or instability).

Human User

Smart Walker

Variable Admittance 

Controller (4)-(5)

Inverse 

Kinematics (2)

Cooperative DMPs 

(13)-(19)

fh

Interaction

v

MOBILITY ASSISTANCE CONTROL SYSTEM 

m

m

fx

Figure 3: Block diagram of the mobility assistance control system.

Algorithm 1 Learning phase for mobility assistance via DMPs.

Prerequisite: τ, αn, βn, ακ, ci, σi, δt.
Steps:

1: Admittance control the walker to derive the normal user’s walking
trajectories including mdemo, ṁdemo, and m̈demo;

2: Manually divide the trajectories into several gaits, determine the
average velocity of the gaits ṁave and find the gait period Tdemo;

3: Resample the preprocessed gait data with the same length P;
4: Calculate approximated fdemo(t) via (20);
5: Develop vector F and matrix Φ via (21);
6: Derive and record weights vectorW via (22).

The personalization phase is conducted as shown in (15)-
(18) with the learned f (κ) in (13)-(14). A control diagram of the
proposed mobility assistance method is shown in Fig. 3, where
the detailed learning and personalization phases are further
explained in Algorithm 1 and Algorithm 2, respectively. In
Algorithm 2, the forward walking motion in the x direction
will be presented as an example to show the personalization
approach. Here, Steps 2-6 are executed to ensure the learning
system is activated only when the user interacts with the walker
(indicating by an adequate vertical force); Steps 7-10 make sure
the stable stopping of the walker when an emergency occurs
(revealed via a considerable pushing force or vertical force).

6. Learning and Reproduction of Collaboration Skills from
Human Demonstrations via GMM and GMR

GMM and GMR are highly practical in learning and repro-
ducing a human’s desired behaviours from demonstration [7].
In this section, we will focus on how to teach the WMM the
human’s task-space behaviour for heavy object manipulation
through HRC. Also, the null-space control for force exertion
capacity enhancement is employed as presented in Section 4.3.
Here, GMM is employed to encode the robot trajectory in
the demonstration phase. In the lifting and lowering steps,
the trained GMM and stiffness estimation technique are used
to learn the demonstrator’s impedance-based behavior; and in
the carrying step, the trained GMM and GMR are adopted to
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Algorithm 2 Personalization phase for mobility assistance via
cooperative DMPs. (x motion as an example)

Prerequisite: Learned approximated fdemo; gait velocity ṁave; η; δ;
user’s forces fx and fz; desired admittance parameters Υx0, Λx0, α,
Υxz, and Λxz.

Steps:
1: Initialize two switch factors ∆1 = 0 and ∆2 = 0;
2: if fz ⩾ − f lim

z && fz ⩽ − f in
z && fx ⩽ f lim

x then
3: ∆1 = 1, ġ(ẋ f ) = ṁave + ẋ f ;
4: else
5: ∆1 = 0, ġ(ẋ f ) = 0;
6: end if
7: if fz < − f lim

z || fx > f lim
x then

8: ∆2 = 1, ġ(ẋ f ) = 0, calculate A via (18) with mL = g(ẋ f ) + δg

(δg is a small positive number);
9: else

10: ∆2 = 0;
11: end if
12: Personalize user’s motion using τṅ = αn(βn(g(ẋ f ) − m) − n) +
∆1 f (κ) + ∆2δȦ and (16)-(18);

13: Activate the walker via (2) with ṁ being the input ẋ.

encode and reproduce the WMM position trajectory taught by
the demonstrator.

6.1. Gaussian Mixture Model for Data Encoding

During the demonstration phase, the WMM and the demon-
strator are holding one end of the heavy object. The WMM is
made compliant via the admittance controller and completely
controlled by the demonstrator. The other end of the object is
grasped by the coagent to achieve the task. All recorded data
are divided into three portions corresponding to the three steps.
For each step, each demonstration l ∈ {1, 2, · · · , L} consists
of Ti,l data points creating a dataset of Ni data points {ξi,n}

Ni
n=1

with Ni =
∑L

l=1 Ti,l, where L represents the number of the
demonstrations and i = 1, 2, 3 denotes the manipulation step.
Each ξi,n ∈ RD is associated with the recorded data, including
the end-effector position, velocity, and external force with D
denoting the data point dimensionality.

Based on the demonstrations, the GMM is implemented to
encode the data, presenting a probabilistic representation of
the dynamics required to achieve the task. A GMM of Nk,i

components is expressed by a probability density function

p(ξi,n) =
Nk,i∑
k=1

p(k)p(ξi,n|k) (23)

with p(k) = πi,k being the priors and p(ξi,n|k) being the
conditional density functions. In which, {πi,k, µi,k,Σi,k} represent
the parameters of the kth Gaussian component of the ith step,
denoting the prior probabilities, mean vectors, and covariance
matrices, respectively.

The optimal estimation of the mixture parameters is carried
out iteratively implementing the Expectation-Maximization (EM)
algorithm until convergence [43] and k-means procedure is
used to initialize the model parameters. For the kth Gaussian

component of the ith step, the E-step (expectation step) is
expressed as

wi,n,k =
πi,kN(ξi,n|µi,k,Σi,k)∑Nk,i

k πi,kN(ξi,n|µi,k,Σi,k)
, (24)

which plays an important role in deriving the stiffness of the
virtual springs.

6.2. Demonstrator’s Impedance-Based Behavior Learning in
Lifting and Lowering Steps

During the lifting and lowering steps of the task, the human
and the robot should exert a sizable force to neutralize the
object’s weight in the vertical direction. Here, we utilize several
virtual spring models associated with each Gaussian component
k to simulate the impedance-based behavior exerted by the
demonstrator, which is expressed as

fs,i,n =

Nk,i∑
k=1

wi,n,k
[
Ki,k(µx

i,k − xi,n)
]
, (25)

where i = 1, 3 indicates the lifting and lowering steps, fs,i,n is
the demonstrator’s force at step n, Ki,k is a stiffness constant
affiliated with the kth Gaussian model, µx

i,k represents the po-
sitional component of the models’ mean vectors µi,k, and xi,n

denotes the current end-effector position at step n.
Estimating the model stiffness in this paper is performed

by implementing Least Squares (LS) estimation. After en-
coding the demonstration data via GMM, the observation ma-
trix is defined as Φi = [ϕi,1, ϕi,2, · · · , ϕi,Ni ]

T with ϕi,n =[
wi,n,1(µx

i,1− xi,n),wi,n,2(µx
i,2− xi,n), · · · ,wi,n,Nk,i (µ

x
i,Nk,i
− xi,n)

]
using

(24), and the demonstrator’s force vector is denoted as Fs,i =

[ fs,i,1, fs,i,2, · · · , fs,i,Ni ]
T. Then, the unknown stiffness vector

Ki = [Ki,1,Ki,2, · · · ,Ki,Nk,i ]
T for all Nk,i Gaussian models of the

ith step can be expressed as

Ki = (ΦT
i Φi)−1ΦT

i Fs,i. (26)

Combined with (26), during the reproduction phase, the
estimated demonstrator’s force fest,i,n can be generated using
(25) with the current end-effector’s position.

6.3. Gaussian Mixture Regression for Trajectory Learning in
the Carrying Step

During the carrying step, the heavy object will be moved
in the horizontal plane to the predefined destination, and no
extra force is required in the plane. Thus, only the kinematic
model will be learned and reproduced using the demonstrations.
With the GMM representation in Section 6.1, the reproduction
of the movement in the horizontal plane can be formulated
as a regression problem using GMR [12]. The GMR model
can retrieve the next actions on-the-fly relying on the Gaussian
conditioning theorem and linear combination properties of
Gaussian distributions.

In conventional GMR, the query points are defined as
temporal values ξt, and the corresponding spatial values ξ̂s

can then be estimated via regression. For the kth Gaussian
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component in the GMM of the second step, the mean vector
and covariance matrix with consideration of input and output
parameters are expressed as [44]

µ2,k = {µ2,t,k, µ2,s,k}, Σ2,k =

(
Σ2,t,k Σ2,ts,k
Σ2,st,k Σ2,s,k

)
, (27)

respectively.
In this step, the query points are defined as the time-

independent end-effector positions, and the corresponding es-
timated parameters are the end-effector velocities. Thus, the
demonstrator’s behavior can be effectively imitated. The block
diagram of the control system for object manipulation is illus-
trated in Fig. 4.

7. Experimental Setup and Results

Several experiments were conducted to demonstrate the
effectiveness of the proposed approach. These included (A)
the verification of the mobility assistance approach with the
user intention taken into consideration, and (B) the validation
of the human-robot collaboration for object manipulation using
the LfD approach.

7.1. Experimental Setup

The experimental setup contained an omnidirectional WMM,
an Axia80-ZC22 F/T sensor (ATI Industrial Automation, Apex,
NC, USA), and a task-dependent end-effector. The WMM
comprised a custom-built mobile platform and a 7-DOF ultra-
lightweight robotic arm Kinova Gen3 (Kinova Robotics, Canada).
An F/T sensor was employed to obtain the user’s force and
the object weight exerted on the WMM during the mobility
assistance experiment and the HRC experiment, respectively.
Two different end-effectors were designed for the proposed
tasks. Fig. 5 shows the WMM prototypes, where an end-
effector with two handles was provided (Fig. 5a) to assist the
user, and a horizontal attachment was used (Fig. 5b) to fasten
the WMM and the object to be manipulated.

The task-space dimension of the WMM in HRC was defined
to be r = 6, considering both the position and orienta-
tion of the end-effector; however, only position compliance
was treated. For the orientation, a simple PD controller
was employed to maintain the end-effector’s orientation con-
stant. The joint torque limit vector was defined as τm lim =

[40, 40, 40, 40, 16, 16, 16]T Nm for the manipulator.
A video is attached with the manuscript to present the

experiments in this section.

7.2. Mobility Assistance with a WMM

Mobility assistance is an important component in support-
ing the users’ independent living. As shown in Fig. 1, only the
mobile platform needed to be controlled to assist the user for
mobility assistance; thus, we selected the weighting matrix in
J† of (2) as W = diag(I4×4, 07×7) to distribute no motion to the
manipulator (meaning the configuration of the manipulator is
constant as presupposed).

VAC is a practical method to detect the user’s walking
intention, which is realized by applying a force in the direction
that the user wants to move. In previous research studies,
only the horizontal forces were considered in the control of
robotic systems for mobility assistance. Here, the vertical force
was also taken into account to recognize the user’s intention;
specifically, a large vertical force demanded a small horizontal
velocity. The following experiments in this section compare the
performance of this new control method with the conventional
VAC approach, which only employs horizontal forces. The
participant in this experiment was a Ph.D. candidate (29 years
old, male, 173 cm, and 69 kg) who attempted to walk in a
manner that resembled the walking pattern of an older adult.

For this purpose, the admittance parameters implemented in
the experiments were set as Λx0 = 75 Ns2/m, Υx0 = 150 Ns/m,
α = 2 s/m, Λxz = 100 Ns2/m and Υxz = 200 Ns/m using
a trial-and-error method by optimizing the transient response
and enhancing user’s comfort in pushing the walker. These
parameters may not be optimal but they are practical; if one
wants to derive the optimal admittance parameters, the well-
known linear quadratic regulator (LQR) can be applied [45].
It should be noted that the Gxz term in (4) is excluded in
the traditional VAC approach by neglecting the vertical force.
The experimental results for the applied forces and generated
trajectories are shown in Fig. 6. With the conventional
variable admittance controller, the horizontal motion was only
dominated by the horizontal force ( fx). However, using the
proposed method, the horizontal motion was also affected by
the vertical force ( fz). When a larger vertical force was exerted
at about 9.8 s in Fig. 6a, the resultant horizontal motion became
slower due to Gxz. As shown in Fig. 6b, the tilt angle of the
trajectory before 9.8 s was noted as θa and after 9.8 s was θb.
With θa > θb, the speed of the smart walker was decreased. This
performance of the proposed method is expected to be more
suitable for older users who usually need the velocity to reduce
substantially when a large vertical force is exerted to support
their body weight.

The performance of the proposed cooperative DMPs in
realizing mobility assistance during human bipedal walking,
including emergency treatment for older users was tested.
During the learning phase, the walker was launched via ad-
mittance control with small inertial and damping parameters
(Λx = 40 Ns2/m and Υx = 80 Ns/m) to be compliant enough
for the user, allowing us to obtain the user’s normal walking
information. Three demonstrated trajectories were collected to
attain sufficient gait information for the training system to learn
the walking pattern in one gait cycle. The control parameters
used in the experiments are listed in Table 1, which include
both the learning and personalization parameters.

Fig. 7 shows the demonstrated trajectories (Fig. 7a) and the
pre-processed walking gait data for walking pattern learning
(Fig. 7b). As shown in Fig. 7b, five walking gaits were
collected for human walking pattern personalization, where
the gait period Tdemo = 2.25 s and the average gait velocity
ṁave = 0.1741 m/s. The learned stride (shown in red dotted
line) indicates the preferable learning performance of the DMP-
based approach.
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Figure 5: WMM prototypes during the two experiments. Σe denotes the
orientation of the end-effector, which is also the frame for the F/T sensor.

Table 1: Control parameters in the mobility assistance experiments.

Parameter Value Parameter Value
N 12 τ 1

αn (s−1) 4 βn (s−1) 1
ακ 0.05 η 104

δ 3 δg (m) 0.01
δt (s) 0.01

In the personalization phase, the walker followed the com-
bination of the learned trajectory (realized by ṁave) and the
generated trajectory in terms of the interaction force (achieved
by ẋ f ) based on Step 3 of Algorithm 2. The user’s mo-
tion intention detection and emergency handling method were
achieved using the wrist F/T sensor for user applied forces.

This process was able to provide walking pattern personal-
ization and user intention adaptation simultaneously. As shown
in Fig. 8, the actual motion of the walker behaved as though
it was pulled by two springs whose origins are located on two
different trajectories (generated by ṁave and ẋ f ). Snapshots of
this experiment during walking are shown in Fig. 9. Fig. 10
compares the experimental results of (1) implementing only
the proposed variable admittance controller and (2) using the
cooperative DMPs. As shown in Fig. 10a, the walker moved
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Figure 6: Applied forces and resultant trajectories with the proposed method
and the conventional method.

approximately 3.2 m with almost the same speed via the two
methods. The average traction force required for the VAC
method was 17.9 N, while this force was reduced to 7.6 N by
using cooperative DMPs, or 57.5%. This is because the DMPs
model generated the control signal automatically when the
human’s walking intention was detected. From the right side of
Fig. 10b, the maximum exerted power of the VAC method and
the cooperative DMPs was 5.63 W and 2.59 W, respectively,
resulting in a 54% improvement. The work exerted by the
user during the two conditions was calculated as the integral
of the applied power,

∫ t
0 px dτ, which was 69.8 J and 24.4 J,

respectively, also indicating the desirable performance of the
cooperative DMPs in terms of saving user’s energy.

Finally, the performance of the cooperative DMPs in han-
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Figure 8: Illustration of the cooperative DMPs in the personalization phase.

dling an emergency was tested and the results are shown in Fig.
11. As stated earlier, a user may accidentally apply a large
force, possibly caused by a probability of falling. This danger
could be avoided by our strategy using (18). Meanwhile, the
walker would not be activated if no force was detected using the
circumvention term (17). The force thresholds of the participant
were obtained by conducting some experimental tests. Here,
the force thresholds in Algorithm 2 are set as f lim

z = 40 N,
f in
z = 5 N, and f lim

x = 40 N. As illustrated in Fig. 11,
the user moved about 3.24 m. When a large vertical force
(approximately 52 N) was applied at 8.03 s, the walker stopped
(∆2 = 1) with a reaction time no longer than 150 ms. The
walker also gradually stopped at 18 s and 27.54 s after the user
stopped applying any force (∆1 = 0).

When the user stopped applying forces to the system, the
walker still moved about 10 cm. This phenomenon resulted
from the tracking error between the dynamic target g(ẋ f ) and

the actual walker position. Large control parameters αn and
βn can reduce this tracking error but will cause unsatisfactory
learning performance. However, the fast stoppage of the
walker is realized when an emergency happens by adopting the
additional term A in (15), (16), and (18), presented in Section
5.1.

7.3. Human-Robot Collaboration for Heavy Object Manipula-
tion

Some heavy objects are unable to be lifted by a robotic
system due to its limited joint torque output. With the im-
plementation of a WMM, its redundancy can augment the
system’s force exertion capability in the vertical direction. It is
noteworthy that this procedure is only for the null-space control
to obtain an optimal WMM configuration (without changing the
end-effector pose).

The control parameters in this experiment were set as
W = I11×11, Wτ = diag(1, 1, 1, 1, 2.5, 2.5, 2.5), kN = 0.07,
u = [0, 0, 1]T, ϱ = 600, w1 = 0.6, and w2 = 0.4. The evolution
of the WMM configuration is shown in the attached video, and
the initial and final WMM configurations are shown in Fig.
12. The optimal WMM configuration for augmenting its load-
carrying capability is shown in Fig. 12b. This is similar to how
humans change their configuration to resist disturbance from
the vertical direction.

The load-carrying ability of the WMM was compared in
the two configurations that are depicted in Fig. 12 by adding
known payloads to its end-effector. The results are shown
in Fig. 13. During the experiment, first, a payload of 1 kg
was added; and then, a weight of 3 kg was applied. Fig.
13a shows the manipulator joint torque output with the initial
WMM configuration. When the 1 kg payload was added during
time 5.40 – 21.05 s, all the joints could normally work with
the maximal joint torque output being 35.31 Nm (joint 2).
However, when the 3 kg weight was applied at time 31.38 s,
the task stopped at 32.5 s due to the saturation of joint 2.

The joint torque output with the final WMM configuration
is shown in Fig. 13b. With the 1 kg weight added during time
3.35 – 22.25 s, the joint with maximal torque output was joint
2, and the output was 26.24 Nm. When the payload of 3 kg
was applied during time 34.70 – 54.90 s, the WMM with this
configuration could also hold it, with the maximal joint output
being 37.22 Nm (joint 2).

The joint torque increment caused by the end-effector force
was investigated with a definition of weighted joint torque

∥τmw∥2 =

√∑7
i=1 Wτi τ

2
ei∑7

i=1 Wτi
, where Wτi denotes the ith diagonal el-

ement of Wτ and τei represents the torque of the ith manipulator
joint caused by the external force. When the payload of 1 kg
was applied, the weighted joint torque was reduced from 1.182
Nm to 0.869 Nm, about 26.5% of its previous value. With the
3 kg weight added on the WMM with the final configuration,
the weighted joint torque was 2.559 Nm. These experimental
results verified the effectiveness of the proposed method in
augmenting the force exertion ability of the end-effector.

The final WMM configuration in Fig. 12b was employed
to conduct the object manipulation task using HRC, and the
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Figure 11: Performance of the cooperative DMPs in handling an emergency.

null-space control was utilized. We selected three objects with
weights of 1 kg, 3 kg, and 5 kg to demonstrate the performance
of the LfD method in object manipulation. Two participants
were involved to simulate the collaboration of two older adults,
one human demonstrator (healthy, 29 years old, male, 173 cm,
and 69 kg) and one human user (healthy, 34 years old, 176 cm,
and 67 kg).

During the demonstration phase, the WMM was admittance-
controlled to follow the human demonstrator to complete the

Σw x

y
z

(a) Initial configuration

Σw x

y
z

(b) Final configuration

Figure 12: Initial and final WMM configurations with null-space control.
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Figure 13: Manipulator joint torque with two configurations.

object manipulation task with the user. The desired Cartesian
impedance parameters for the WMM system were defined as
Λ = diag(100, 100, 200) Ns2/m,Ψ = diag(200, 200, 400) Ns/m,
and Γ = diag(0, 0, 0) N/m. The desired Cartesian impedance
parameter Γ was set as zero to ensure that the robotic system
could be led by the demonstrator smoothly.

For each object, four demonstrations were conducted, and
snapshots of the demonstration phase are shown in Figs. 14a.
The object’s mass could be changed by adding or removing
known payloads to simulate manipulating different objects.

The WMM trajectory and demonstrator’s force in the ver-
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Figure 14: Snapshots of demonstration and reproduction phases for object
manipulation via HRC.

tical direction in the 5 kg scenario are shown in Fig. 15 to
illustrate the performance of the proposed method. During the
demonstrations, the average motion distances of the WMM in
[x, y, z] were [0.908,−1.395, 0.167] m, [0.978,−1.412, 0.165] m,
and [1.013,−1.412, 0.157] m for 1 kg, 3 kg, and 5 kg payloads,
where the corresponding stable support forces were approxi-
mately 4.92 N, 12.32 N, and 18.39 N, respectively.

Then, we manually divided each demonstration data into
three steps: lifting, carrying, and lowering to perform data
encoding using GMM. Three models of ten components (Nk,1 =

10), twelve components (Nk,2 = 12), and ten components
(Nk,3 = 10) were selected to train the three steps with the
obtained demonstrations.
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Figure 15: Human demonstration for object manipulation with a 5 kg payload.

Fig. 16 shows the learning results for the lifting and
lowering steps of the 1 kg load. In the lifting step (Fig. 16a),
the demonstrator force was large enough to help the WMM
lift the object with the user, while in the lowering step (Fig.
16b), the force was smaller due to object gravity. The bottom
row of Fig. 16 presents the corresponding weighting matrices,
which play an essential role in imitating the demonstrator’s
impedance in the reproduction phase. The learned models of
the x axis and y axis in the carrying step of the 1 kg load are
presented in Fig. 17, where the trained center and covariance
matrix of each Gaussian model were employed to derive the
end-effector’s velocity according to its corresponding position
via GMR.

In the reproduction phase, the WMM cooperated with the
user to conduct the object manipulation task using the learned
demonstrator’s skills. Here, the admittance control was only
implemented in the vertical direction during the lifting and
lowering steps. The moment for step switching was detected
when the end-effector reached the corresponding targets, or the
number of iterations outstretched the demonstration samples’
length. Some snapshots of the reproduction procedure are
presented in Fig. 14b.

According to the demonstration data, we defined the motion
target for the lifting and lowering steps as 16 cm, and for the x
and y in the carrying step as 0.9 m and -1.35 m, respectively,
in all three scenarios. The end-effector trajectories for the
reproduction experiment are shown in Fig. 18. The learning
results of the demonstrator’s impedance in the lifting and
lowering steps are presented in Fig. 19, and the position-
velocity profiles (resulting from GMR) for x and y in the
carrying step are provided in Fig. 20.

Fig. 18 shows that in the reproduction phase, the WMM
can cooperate with the user to conduct the object manipulation
task. In scenarios of 1 kg and 3 kg, the object could be lifted 16
cm as we expected, and the desired horizontal displacement in
x reached 0.9 m. However, the displacement in y only arrived
at 1.26 m and 1.31 m for l kg and 3 kg payloads, respectively.
In the scenario of 5 kg, the motion displacements in x and z
were 0.848 m and 15.6 cm, but the destination in y was reached.
The reason for the inability to reach the destination in all three
directions is the tolerance of the learning approach. In order
to ensure accessibility, the algorithm should be modified to
include some limitations, or the destination may need to be
redesigned.

The reproduction results of the demonstrator’s force and
the horizontal velocity in Figs. 19 and 20 are similar to the
results in the demonstration phase. The maximum of the mean
absolute error (MAE) for the reproduced demonstrator’s force
relative to the mean of the demonstrated forces appeared in
the lifting step of the 5 kg scenario, which was about 2.84
N, accounting for 8.35% of the maximal support force. The
maximal MAE for the reproduced horizontal velocity was
approximately 0.57 cm/s in the x direction in the 1 kg scenario,
representing 12.1% of the maximal commanded velocity in the
corresponding direction. Both the WMM trajectory and the
reproduction results illustrate the effectiveness of the proposed
method in helping a user perform object manipulation tasks.
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Figure 16: Model learning for lifting and lowering steps in 1 kg scenario. Top row shows the learned GMM and bottom row presents the corresponding model
weights for demonstrator’s impedance imitation.
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Figure 17: Model learning for carrying step in 1 kg scenario.

8. Conclusions

This paper developed an intelligent assistance device with
a wheeled mobile manipulator (WMM) to tackle multiple
tasks via task-dependent end-effectors. Two central challenges
have been considered: mobility assistance and heavy object
manipulation.

In mobility assistance, the user’s walking intention was
identified using a variable admittance controller, which in-
terpreted the vertical and horizontal user-applied force com-
ponents. Cooperative DMPs were implemented to learn the
user’s walking pattern over one gait cycle. The learned motion
trajectory was then cloned for the next cycle to reduce the user’s
driving force while motion variations were adapted. Moreover,

emergencies could also be avoided by having an additional
coupled term in the cooperative DMPs.

In terms of heavy object manipulation, an HRC approach
via LfD was proposed. The redundancy of the WMM was
employed to enhance its end-effector’s force exertion ability
along the vertical direction to facilitate the carrying and trans-
port of heavy objects. The entire procedure of this task was
divided into three steps: lifting, carrying and lowering. GMM
and a stiffness estimation technique were adopted to learn the
demonstrator’s impedance behavior in the lifting and lowering
steps. GMM and GMR were implemented to reproduce the
WMM motion in the carrying step.

The effectiveness of the proposed approach was experimen-
tally verified. In terms of mobility assistance, the user would
save up to 54% of their power and 65% of their energy to walk
the same distance with the proposed strategy. The performance
of the emergency handling method was successfully verified
with a reaction time of less than 150 ms. For heavy object
manipulation, the required weighted joint torque of the WMM
for a 1 kg payload was reduced by 26.5% using the null-space
control-based force exertion capacity enhancement method.
Three loads with different masses were manipulated via LfD,
and in terms of target point tracking, the experimental results
showed that the reproduction error was no more than 7% of
the desired value. While no user study was conducted, the
technical validation confirmed the effectiveness of the proposed
approaches.

Our future work will focus on three aspects. The first is
integrating new sensory information (e.g., leg and foot posi-
tions) for more accurate user intention detection. The second is
designing automatic exchange devices for the task-dependent
end-effectors to facilitate the user. And the third is employing
online learning methods (e.g., reinforcement learning) to reduce
the tracking error for time-varying trajectories.
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Figure 18: End-effector trajectory in the reproduction phase.
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Figure 19: Reproduction results of the demonstrator’s impedance-based
behavior.
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