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Abstract—With the development of smart grid, energy
management becomes critical for reliable and efficient operation
of power systems. In this paper, we develop a chance-constrained
energy management model for an islanded microgrid, which
includes distributed generators, energy storage system (ESS), and
renewable generation, such as wind power. The objective func-
tion of this model consists of generation cost, emission cost, and
ESS degradation cost. To capture the uncertainty of renewable
generation, a novel ambiguity set is introduced without knowing
its probability distribution or exact moment information. Based
on the ambiguity set, the chance constraint can be processed
with distributionally robust optimization method and the energy
management problem is reformulated as a tractable second-order
conic programming problem. The proposed approach is tested
with a case study and simulation results indicate that it is effec-
tive and reliable. Moreover, the comparison with the method
based on known moment information and some other meth-
ods is also conducted to show the performance of the proposed
method.

Index Terms—Ambiguity set, chance-constrained energy man-
agement, distributionally robust optimization (DRO), microgrid,
renewable energy.

NOMENCLATURE

The main notations used in this paper are listed below for
quick reference.

Indices and Numbers

i, Ndg Index and number of conventional generators.
j, Ness Index and number of energy storage system

(ESS).
k, Ndef Index and number of deferrable loads.
t Index of time slot.

Manuscript received September 22, 2017; revised December 7, 2017;
accepted January 9, 2018. Date of publication January 11, 2018; date of cur-
rent version February 18, 2019. This work was supported by the Natural
Science and Engineering Research Council of Canada. The work of Z. Shi
and S. Huang was supported by China Scholarship Council. Paper no.
TSG-01377-2017. (Corresponding author: Zhichao Shi.)

Z. Shi is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB T6G 2V4, Canada, and also
with the College of Information System and Management, National
University of Defense Technology, Changsha 410073, China (e-mail:
zhichao1@ualberta.ca).

H. Liang, S. Huang, and V. Dinavahi are with the Department of
Electrical and Computer Engineering, University of Alberta, Edmonton,
AB T6G 2V4, Canada (e-mail: hao2@ualberta.ca; shengjun@ualberta.ca;
dinavahi@ualberta.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSG.2018.2792322

Decision Variables

Pi,t The output power of generator i at time slot t
[kW].

Pch
j,t Charging power of ESS j at time slot t [kW].

Pdch
j,t Discharging power of ESS j at time slot t [kW].

Pdef
k,t Demand of deferrable load k at time slot t [kW].

xt General representation of decision variables.
x Set of decision variables.

Parameters and Auxiliary Variables

Pmin
i Minimum output power of generator i [kW].

Pmax
i Maximum output power of generator i [kW].

Rup
i , Rdn

i Ramp-up and ramp-down limits of generator i
[kW].

ai Quadratic coefficient of cost function of generator
i [$/kWh2].

bi Linear coefficient of cost function of generator i
[$/kWh].

ci Constant term of cost function of generator i
[$/h].

CGi,t Generation cost of generator i at time slot t [$].
di Quadratic coefficient of emission function of

generator i [kg/kWh2].
ei Linear coefficient of emission function of gener-

ator i [kg/kWh].
fi Constant term of emission function of generator

i [kg/h].
Emi,t Emission of generator i at time slot t [kg].
CEi,t Emission cost of generator i at time slot t [$].
cemis Emission cost coefficient [$/kg].
Ej,t Energy storage of ESS j at time slot t [kWh].
Pch,max

j Maximum charging power of ESS j [kW].

Pdch,max
j Maximum discharging power of ESS j [kW].

Emin
j Minimum energy storage of ESS j [kWh].

Emax
j Maximum energy storage of ESS j [kWh].

ηch
j , ηdch

j Charging and discharging efficiency of ESS j.
�t Absolute time between two adjacent time

steps [h].
CSj,t Degradation cost of ESS j at time slot t [$].
cess Degradation cost efficient of ESS [$/kWh].
Lt Critical load at time slot t [kW].
Pdef

k Total demand of deferrable load k over the spec-
ified time interval [kW].

Ta
k , Tb

k Start time and end time to serve deferrable load k.
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Pdef ,min
k Minimum serving rate for deferrable load k [kW].

Pdef ,max
k Maximum serving rate for deferrable load k [kW].

wt Uncertain wind power at time slot t [kW].
ε Violation probability of power balance constraint.
P0

t The set of all the probability distributions of
random variables.

P1
t ,P2

t The ambiguity set of the probability distribution
of wind power.

Pt Distribution of random variable wt.
EPt Expectation under distribution Pt.
μt Mean value of random variable wt.
σ 2

t Variance of random variable wt.
μt, μt Lower and upper bounds of μt.

σ 2
t , σ 2

t Lower and upper bounds of σ 2
t .

h0(xt) Auxiliary functions of xt.
h(xt) Auxiliary coefficient functions of xt.
β, v, τ , Auxiliary variables in the second-order conic
z, s, η1, constraint formulation.
η2, r, ξ

Abbreviations

CC Chance-constrained.
CCP Chance-constrained programming.
CVaR Conditional value-at-risk.
DG Distributed generator.
DRO Distributionally robust optimization.
ESS Energy storage system.
SDP Semidefinite programming.
SOCP Second-order conic programming.

I. INTRODUCTION

AS IMPORTANT parts of the future smart grid, microgrids
have attracted much attention and have been widely stud-

ied over the last decade. A microgrid is usually integrated
with distributed energy resources (DERs) such as distributed
generators (DGs), energy storage systems (ESS) and control-
lable loads [1]. It can either operate in grid-connected mode or
islanded mode and the energy schedule can be handled by an
energy management system (EMS). With advanced technolo-
gies, renewable energy generation such as wind power and
solar power increasingly penetrating into the microgrid, the
microgrid energy management problem has become complex
and uncertain.

To deal with the uncertainty caused by renewable energy
generation in microgrid energy management, various meth-
ods have been investigated including robust optimization,
stochastic programming and chance constrained program-
ming. Among these methods, the application of robust
optimization [2] in microgrid energy management has been
extensively explored recently. For example, the energy man-
agement for a grid-connected microgrid with high penetration
of wind power and demand-side management is studied in [3].
The formulated robust optimization problem is solved by a dis-
tributed algorithm to minimize the system net cost. Similarly, a
scenario-based robust energy management method for a grid-
connected microgrid is proposed to deal with the uncertain

renewable generation and load in [4]. By exploring the worst-
case scenario, a robust energy management solution for the
proposed model could be obtained. In [5], a two-stage adaptive
robust optimization method is studied for microgrid energy
management which considers the uncertainties of renewable
generation and grid-connection condition. The uncertainties
are controlled by the “budget of uncertainty” parameters in
this work.

Stochastic programming is another common approach to
handle the uncertainty in microgrid operation and energy
scheduling. With this method, the uncertainties associated
with renewable generation and load are usually represented
by certain distributions such as normal distribution [6], [7].
Although not so many as the research on robust and stochastic
optimization model, chance constrained programming (CCP)
method is also investigated in microgrid energy manage-
ment [8]. For instance, in [9], two CCP problems are formu-
lated for grid-connected microgrids energy management and
the problems are solved by a linear programming transfor-
mation. Also, a grid-connected microgrid based on combined
heat and power (CHP) system is studied in [10]. The CCP
method is employed to describe the uncertainty of renew-
able generation and load and the optimal schedule problem
is solved by a particle swarm optimization (PSO) based algo-
rithm. In [11], chance constrained optimization is employed to
solve the demand response problem for a home energy man-
agement system and the chance constraint is used to describe
the variable power interaction between the household and the
utility grid due to uncertain load demand. In addition, the CCP
method has also been studied for other power system prob-
lems such as transmission expansion planning problem with
load and wind uncertainties [12].

Although the microgrid energy management has been
widely studied, most of the research focuses on the grid-
connected microgrids with uncertainties compared with few
research works on islanded microgrids [13], [14]. In addition,
the constraints with uncertainties have not been sufficiently
studied which mostly concentrate on the balance of gen-
eration and load demand [9]. However, for real islanded
microgrids integrated with renewable energy, the power bal-
ance may not always be satisfied due to the uncertainty of
renewable generation which will lead to a reliability problem.
To ensure the system reliability, in this paper, we propose
a chance-constrained (CC) problem for islanded microgrids
energy management involving the uncertain renewable gener-
ation. The uncertainty of renewable generation is represented
by a new box-type ambiguity set, based on which the CC
problem can be solved by distributionally robust optimization
(DRO) method.

The DRO method is an intermediate approach between
stochastic programming and robust optimization which was
first introduced by Scarf in 1958 [15]. Instead of making
an assumption of a certain distribution, the DRO method
optimizes the expected objective over a set of unknown dis-
tributions sharing certain statistical characteristics such as
moment information. Recently, this idea has been applied
to power system optimization such as unit commitment
problem [15], [16], energy reserve and scheduling [17], [18]
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and optimal power flow [19]. In addition, DRO method has
also been applied to power system planning problem [20],
distributed generation capacity assessment of active distri-
bution networks [21], optimal bidding problem of electric-
ity markets [22], transmission line congestion management
problem [23] and so on. A general framework of these works
is that an ambiguity set is proposed first based on the assump-
tion of the research problem and a tractable reformulation is
then derived based on dual and approximation techniques.

Although DRO method has become a hot topic recently,
its application to CC problems is still not so sufficient. For
distributionally robust CC model, it has been mostly stud-
ied in optimal power flow problems so far [19], [24], [25].
However, research on CC microgrid energy management with
DRO approach has not been reported, to the best of our knowl-
edge. In this study, we try to achieve optimal robust energy
management for islanded microgrids by utilizing the DRO
method, i.e., we formulate a distributionally robust CC model
that accounts for the uncertain renewable generation with a
new ambiguity set.

The main contributions of this work are summarized as
follows:

1) A CC energy management problem is formulated for
an islanded microgrid considering DGs, ESS, renew-
able generation and various load demand. Unlike the
previous chance constraints in the literature, the common
power balance is presented in a probabilistic version for
islanded microgrids in this work. The objective of the
proposed model is to minimize the total system cost
including the generation cost and emission cost of DGs
and degradation cost of ESS where the consideration of
emission cost is necessary in practice with increasing
attention of environment problem;

2) A novel ambiguity set is proposed to describe the uncer-
tain probability distribution of renewable generation. In
particular, we use the box-type ambiguity set to cap-
ture the uncertain moment information (e.g., mean and
variance) of renewable generation. This ambiguity set
has not been studied previously for microgrid energy
management problem with uncertainty. Based on the
ambiguity set, the DRO method is utilized to solve the
microgrid energy management problem by transform-
ing the CC problem into a tractable second-order conic
programming (SOCP) problem which can be solved by
off-the-shelf solvers efficiently;

3) A case study with real datasets to verify the effectiveness
of the proposed method is presented. The comparison
with the DRO method with known moment informa-
tion is also carried out to show the robustness of the
approach. In addition, sample average approximation
(SAA) and stochastic optimization with normal distri-
bution method, which are two common methods to deal
with chance constraint, are also applied to solve the
problem for comparison purpose.

The remainder of this paper is organized as follows. The
problem formulation of islanded microgrid energy manage-
ment is presented in Section II. Section III proposes the
solution method to reformulate the distributionally robust

chance constraint to be second-order conic constraints so that
the complete problem can be solved as an SOCP problem. In
Section IV, a case study with real datasets is carried out and
the conclusions are finally drawn in Section V.

II. PROBLEM FORMULATION

A typical islanded microgrid is composed of conventional
generators, ESS, renewable generation and different kinds of
load. It is usually assumed that the microgrid energy man-
agement is controlled by an EMS in a centralized mode. In
this section, we introduce different components of the stud-
ied microgrid system and formulate the corresponding energy
management problem.

A. Distributed Generation

Distributed generation in a microgrid usually includes
micro-turbines, diesel generators, fuel cells and renewable gen-
eration such as uncertain wind power which is introduced in
the next section. The conventional generation units are impor-
tant components of a microgrid and they are dispatchable to
meet the load demand. In this study, we mainly focus on diesel
generators which burn fossil fuel to generate electricity. The
output power of generators is restricted by the maximum and
minimum limits as follows:

Pmin
i ≤ Pi,t ≤ Pmax

i ,∀i, t. (1)

In addition, the DG units should satisfy the ramping up/down
constraints:

Pi,t+1 − Pi,t ≤ Rup
i ,∀i, t (2)

Pi,t − Pi,t+1 ≤ Rdn
i ,∀i, t. (3)

Note that the generators are assumed to have on status over a
finite time horizon in the energy management [3]. If the unit
commitment problem is considered in an extended model, then
the start-up and shut-down constraints should also be included.

Generally, the operation cost of generators is mainly the fuel
consumption cost or generation cost which can be expressed
as a quadratic model [13] as follows:

CGi,t =
(

aiP
2
i,t�t + biPi,t + ci

)
�t. (4)

The linear cost model [5] is included in this quadratic model.
In order to achieve environmentally friendly microgrid energy
management, the emission effect should also be considered.
In this study, we assume that only diesel generators produce
emission and the emission model is also represented as a
quadratic function [26], [27]. Then the emission cost model
can be expressed as follows:

Emi,t =
(

diP
2
i,t�t + eiPi,t + fi

)
�t (5)

CEi,t = cemis ∗ Emi,t (6)

where cemis is the emission cost coefficient.
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B. Energy Storage System

In a microgrid integrated with renewable generation, the
ESS plays a critical role in mitigating the system uncertainties
and maintaining the power balance. Considering a battery ESS,
we have the following dynamic model and constraints:

Ej,t+1 = Ej,t + ηch
j Pch

j,t�t − Pdch
j,t �t/ηdch

j ,∀j, t (7)

0 ≤ Pch
j,t ≤ Pch,max

j ,∀j, t (8)

0 ≤ Pdch
j,t ≤ Pdch,max

j ,∀j, t (9)

Emin
j ≤ Ej,t ≤ Emax

j , Ej,T = Ej,0,∀j, t (10)

where constraint (7) represents the dynamics of the stored
energy; constraints (8) and (9) are used to limit the charging
and discharging power. In constraint (10), the ESS capacity
is restrained by a lower and upper bound to avoid overcharg-
ing and deep discharging. In addition, the final stored energy
is assumed to be equal to its initial energy level. Note that
the complementary constraint Pch

j,tP
dch
j,t = 0 is usually used to

avoid simultaneous charging and discharging which results in
a mixed integer linear programming (MILP) model for ESS
in some references [7], [13]. Actually, this constraint is redun-
dant when charging and discharging efficiency are considered
as in this work and the MILP model can be exactly relaxed to
a linear model to reduce the computational burden [28], [29].

The ESS will degrade with frequent charging and discharg-
ing process. Therefore, the ESS degradation cost should be
considered in energy management. In this work, we adopt a
linear model to calculate the ESS degradation cost [5] for
simplicity as follows:

CSj,t = cess
j

(
ηch

j Pch
j,t�t + Pdch

j,t �t/ηdch
j

)
(11)

where cess is the degradation cost coefficient.

C. Load Demand

The load demand in a microgrid can be classified into
two groups: critical loads and deferrable loads. Critical loads
are non-dispatchable and must be satisfied in highest priority
such as the hospital load demand. In this study we use Lt to
represent the critical load at each time slot.

Unlike critical loads, deferrable loads are dispatchable and
can be scheduled according to the real-time power supply and
demand. For these kind of loads, using the electrical vehicle as
an example, their load only needs to be satisfied over a spec-
ified time horizon. Hence, the deferrable load demand model
can be expressed as follows [3]:

Tb
k∑

t=Ta
k

Pdef
k,t = Pdef

k ,∀k, t ∈
[
Ta

k , Tb
k

]
(12)

Pdef ,min
k ≤ Pdef

k,t ≤ Pdef ,max
k ,∀k, t ∈

[
Ta

k , Tb
k

]
(13)

Pdef
k,t = 0,∀k, t /∈

[
Ta

k , Tb
k

]
. (14)

D. Chance Constraint for Power Balance

For power balance constraint, most of the existing research
focuses on the strict balance of power generation and load

demand. However, in an islanded microgrid, the power demand
may not always be satisfied due to the uncertain renewable
generation, or the strict power balance will result in high cost.
To deal with this problem, CCP can be used to allow the
solutions to violate the constraint with no more than a small
specified probability, i.e., the constraint should be met with
a certain confidence level [30]. Consequently, we propose a
chance constraint for power supply and demand in this study
which can be represented as follows:

Pr

⎧⎨
⎩

Ndg∑
i=1

Pi,t +
Ness∑
j=1

(
Pdch

j,t − Pch
j,t

)
+ wt ≥ Lt +

Ndef∑
k=1

Pdef
k,t

⎫
⎬
⎭

≥ 1 − ε (15)

where wt is the aggregated random renewable power output
and the uncertainty set of its probability distribution is intro-
duced in the next section, ε is a predefined small probability
index.

Based on the above notations, we can get the objective
function of the microgrid energy management, i.e., the total
operation cost of the microgrid, which includes the genera-
tion cost and emission cost of diesel generators and the ESS
degradation cost as shown below:

Ctot =
T∑

t=1

⎡
⎣

Ndg∑
i=1

(
CGi,t + CEi,t

)+
Ness∑

j

CSj,t

⎤
⎦. (16)

Thus, the complete chance constrained microgrid energy
management problem is formulated as follows:

min
x

{(16) : (1) − (3), (7) − (10), (12) − (15)}
where x denotes the set of decision variables.

The objective of the proposed chance constraint in the
system model is to maximize the system reliability, i.e., the
load demand should be satisfied with a high probability.
Therefore, the dumping load can be added to absorb the excess
power supply in practical system operation to keep the power
balance [31]. In addition, the proposed energy management
model is a single-stage one as the unit commitment (UC)
problem is not considered here. We assume that the UC deci-
sion has been done. The integration of UC problem which
elicits a two-stage energy management model is left for future
research. In practice, the optimal solution can provide the
decision maker a preliminary and robust dispatch plan when
the uncertainties are unknown and the proposed microgrid
model may be applied in some remote islands where real-time
dispatch is not so convenient.

III. SOLUTION METHODOLOGY

The microgrid energy management problem formulated
above is difficult to solve directly due to the chance con-
straint and the uncertain renewable generation. To handle this
problem, in this section, we first introduce a novel ambigu-
ity set to describe the uncertain probability distribution of
renewable power output. Then, based on this ambiguity set,
we apply the DRO method to process the chance constraint
and the problem is reformulated as a tractable SOCP problem.
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A. An Ambiguity Set for Wind Power Output

In the power balance chance constraint, the renewable
generation wt is a random variable. In this work, without
loss of generality, we consider wind power as the renew-
able generation. To describe the uncertainty of wind power
output, different methods have been studied in the litera-
ture, e.g., the polyhedral and ellipsoid uncertain set in robust
optimization method [3], [32], a particular probability dis-
tribution in stochastic optimization [7]. Unlike the robust
optimization and stochastic optimization method, the DRO
method handles the uncertain wind power with an ambigu-
ity set. The ambiguity set is described as the family of all
distributions that have the same moment information such as
mean, variance and covariance and structural properties [33].
Different kinds of ambiguity sets have been researched on
DRO in the literature including Markov ambiguity set [34],
Chebyshev ambiguity set [35] and so on.

Among various ambiguity sets, the ambiguity sets with
known moment information are widely studied on uncertainty
quantification [35], [36] and they have been adopted to handle
the random wind power [17]. The typical moment ambigu-
ity set with known mean and variance can be expressed as
follows:

P1
t =

⎧⎨
⎩Pt ∈ P0

t (Wt)

∣∣∣∣∣∣
P{wt ∈ Wt} = 1
EPt{wt} = μt

EPt

{
(wt − μt)

2} = σ 2
t

⎫⎬
⎭ (17)

where μt and σ 2
t represent the mean and variance which can

be obtained from historical data. P0
t (Wt) denotes the family

of all the probability distributions on the support of Wt and Pt

is the probability distribution of wt.
Although the mean and variance of wind power can be esti-

mated from abundant historical data, their actual values are
hard to know in reality and the estimation may not be accurate.
In other words, it is difficult to determine the exact moment
values. To tackle the uncertain moment information, the ambi-
guity set with bounded moment such as ellipsoid and conic
bound [19] is studied in uncertainty description. Inspired by
the polyhedral uncertain set in robust optimization, we design a
box-type ambiguity set to capture the uncertain moment infor-
mation (mean and variance) in this work [37]. In such a set as
shown below, the moments are assumed to lie in a box region
specified by upper and lower bounds [38]:

P2
t =

⎧
⎪⎨
⎪⎩

Pt ∈ P0
t (Wt)

∣∣∣∣∣∣∣

Pt{wt ∈ Wt} = 1, EPt {wt} = μt

EPt

{
(wt − μt)

2} = σ 2
t

μt ≤ μt ≤ μt, σ
2
t ≤ σ 2

t ≤ σ 2
t

⎫
⎪⎬
⎪⎭

(18)

where the first and second row in (18) have the same definition
with those in (17), and the third row is used to describe the
estimated intervals of unknown mean and variance. Note that
μt and σ 2

t in (18) are just mathematical symbols and they are
unknown compared with those in (17).

Based on this ambiguity set, we can obtain the distribution-
ally robust (DR) variant of chance constraint (15):

Pt

⎧⎨
⎩

Ndg∑
i=1

Pt
i +

Ness∑
j=1

(
Pdch

j,t − Pch
j,t

)
+ wt ≥ Lt +

Ndef∑
k=1

Pdef
k,t

⎫⎬
⎭

≥ 1 − ε,∀Pt ∈ P2
t . (19)

Then we have the following DR chance constrained (CC)
problem:

min
x

{(16) : (1) − (3), (7) − (10), (12) − (14), (19)}.

B. Problem Reformulation

Despite the fact that chance constrained problems with
moment ambiguity sets have been investigated by a few works,
they mainly concentrate on theoretical derivation and the study
on DR-CC problem is still limited. To the best of our knowl-
edge, this is the first application of this method to islanded
microgrid energy management with uncertain wind power out-
put. In this section, we handle the chance constraint with
a conservative approximation, i.e., we first derive the suffi-
cient condition of the constraint, which is, then, analyzed and
processed based on our ambiguity set.

To solve the DR-CC problem introduced above, we
first cope with the DR chance constraint with worst-case
Conditional Value-at-Risk (CVaR) approximation and then it
can be transformed into a tractable SOCP constraint. For con-
venience, we consider the DR chance constraint (19) in a
general form

Pt

{
h0(xt) + h(xt)wt ≤ 0

}
≥ 1 − ε,∀Pt ∈ P2

t , xt ∈ x. (20)

Note that we drop the index t of decision variables xt and
other auxiliary variables in the following for simplicity. It has
been demonstrated that [35], [39]:

sup
Pt∈P2

t

Pt-CVaRε

(
h0(x) + h(x)wt

)
≤ 0

⇒ inf
Pt∈P2

t

Pt

{
h0(x) + h(x)wt ≤ 0

}
≥ 1 − ε (21)

where the CVaR at level ε with respect to probability distri-
bution Pt is defined as follows [40]:

Pt-CVaRε

(
h0(x) + h(x)wt

)

= inf
β∈R

{
β + 1

ε
EPt

[(
h0(x) + h(x)wt − β

)+]}
(22)

where (θ)+ = max{θ, 0}. Therefore, according to (21), we can
consider the following conservative approximation which is a
sufficient condition to derive (20):

sup
Pt∈P2

t

Pt-CVaRε

(
h0(x) + h(x)wt

)
≤ 0. (23)

Then we can investigate the above worst-case CVaR approx-
imation and the problem solution based on this constraint is
also feasible for the original problem. First, the left side of
constraint (23) can be processed equivalently as follows:

sup
Pt∈P2

t

inf
β∈R

{
β + 1

ε
EPt

[(
h0(x) + h(x)wt − β

)+]}

= inf
β∈R

{
β + 1

ε
sup

Pt∈P2
t

EPt

[(
h0(x) + h(x)wt − β

)+]}
(24)

where the interchange of sup and inf is based on the stochastic
saddle point theorem [41]. By introducing another uncertainty
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set Q = {(μt, σ
2
t ) : μt ≤ μt ≤ μt, σ

2
t ≤ σ 2

t ≤ σ 2
t }, we can

reformulate the inner maximization problem in (24) as follows:

sup
Q

sup
Pt∈P1

t

EPt

[(
h0(x) + h(x)wt − β

)+]
. (25)

Further, let r = h(x)wt, then the mean and variance of
r are h(x)μt and (h(x))2σ 2

t , respectively. Thus the inner
maximization problem of (25) can be represented equivalently
in integral form:

sup
ξ∈M

∫

R

((
h0(x) + h(x)wt − β

)+)
ξ(dr) (26)

s.t.
∫

R

ξ(dr) = 1,

∫

R

rξ(dr) = h(x)μt (27)
∫

R

r2ξ(dr) = h2(x)σ 2
t + (h(x)μt)

2 (28)

where M is the cone of nonnegative Borel measures on R

including the decision variable ξ . Based on duality theory and
using change of variables, the problem above is transformed
into the following equivalent problem [37] (see Appendix):

inf
v,τ,z,s

v + s (29a)

s.t. 4zs ≥ τ 2 + (h(x))2σ 2
t (29b)

v − h0(x) + β + τ − h(x)μt − z > 0 (29c)

z > 0, v ≥ 0. (29d)

Considering the outer uncertainty set Q, the constraint (25)
is thus equivalent to

inf
v,τ,z,s

v + s (30a)

s.t. 4zs ≥ τ 2 + max
σ 2

t

(h(x))2σ 2
t (30b)

v − h0(x) + β + τ − max
μt

h(x)μt − z > 0 (30c)

z > 0, v ≥ 0 (30d)

μt ≤ μt ≤ μt, σ
2
t ≤ σ 2

t ≤ σ 2
t . (30e)

Since σ 2
t ≥ 0 in (30b), we can easily get that max(h(x))2σ 2

t =
(h(x))2σ 2

t . For the maximization problem in (30c), it has the
following dual form:

min η1μt − η2μt : s.t. h(x) = η1 − η2, η1, η2 ≥ 0. (31)

Therefore, combining all the equations above, we can get the
equivalent version of constraint (23) as follows:

inf
β,v,τ,z,s,η1,η2

β + 1

ε
(v + s) ≤ 0 (32a)

s.t. 4zs ≥ τ 2 + (h(x))2σ 2
t , h(x) = η1 − η2 (32b)

v − h0(x) + β + τ −
(
η1μt − η2μt

)
− z > 0

(32c)

z > 0, v ≥ 0, η1 ≥ 0, η2 ≥ 0. (32d)

Note that the constraint (32b) is a rotated SOCP constraint
which can be transformed into a tractable standard SOCP con-
straint [38]. In summary, the chance constraint (19) in the
original energy management model is transformed into the

SOCP constraint (32) for which we only need to determine
the auxiliary functions h0(x) and h(x) with respect to decision
variables from (19).

Thus, based on the CVaR approximation of the DR
chance constraint, the islanded microgrid energy management
problem is reformulated as follows:

min
x,


{(16) : (1) − (3), (7) − (10), (12) − (14), (32)}.
where 
 is the set of auxiliary variables including
β, v, τ, z, s, η1 and η2 which are introduced in the above
reformulation process. Despite the conservatism of CVaR con-
straint, this approximation is advantageous since the original
problem can be reformulated as a tractable SOCP problem.
Note that the CVaR approximation in (21) is actually equiv-
alent when the chance constraint function is concave in
wt [35], [37].

C. Including Unimodality Information

DRO method intends to find the optimal solution of the
problem considering the worst-case distribution in the ambi-
guity set. However, the worst-case distribution which usually
consists of some discrete points [42] is rarely encountered in
practice. Thus, only considering the moment information in
the ambiguity set will lead to a very conservative solution.
In this regard, the unimodality information or strengthened
supports can be investigated to reduce the conservatism [43].
In this work, the inclusion of α-unimodality is further stud-
ied [44], i.e., the unimodality information of random variable
is assumed to be known except for the moment information
in the ambiguity set.

The α-unimodality is defined as follows [45]: for any
fixed positive α, a random variable ω is said to have
an α-unimodal distribution with mode 0 if qα

E[g(qω)]
is nondecreasing in q > 0 for every bounded, non-
negative, Borel measurable function g on R

n. Based
on the moment and unimodality information, let μ̃t =
α+1
α

μt, S̃t = α+2
α

σ 2
t , we have the following inequation

according to [44]:

sup
Pt∈P1

t

EPt

[(
h0(x) + h(x)wt − β

)+]

≥ sup
Pt∈P1

t (μ̃t ,̃St)

EPt

[
(L(wt) − β)+

]
(33)

where P1
t (μ̃t, S̃t) is defined similarly as P1

t in (17) with the
mean μ̃t and variance S̃t, and L(wt) = h0(x) + ( α

α+1 )h(x)wt.
Combining (33) with (24) and (25), we can derive the
following constraint from (23):

inf
β∈R

⎧
⎨
⎩β + 1

ε
sup
Q

sup
Pt∈P1

t (μ̃t ,̃St)

EPt

[
(L(wt) − β)+

]
⎫
⎬
⎭ ≤ 0. (34)

With the same reformulation method introduced in III.B, the
equivalent version of (34) can be attained similarly as (32),
given by:

inf
β,v,τ,z,s,η1,η2

β + 1

ε
(v + s) ≤ 0 (35a)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 18,2022 at 18:55:08 UTC from IEEE Xplore.  Restrictions apply. 

READ O
NLY



2240 IEEE TRANSACTIONS ON SMART GRID, VOL. 10, NO. 2, MARCH 2019

TABLE I
PARAMETERS OF CONVENTIONAL GENERATORS

s.t. 4zs ≥ τ 2 + α + 2

α
(h(x))2σ 2

t , h(x) = η1 − η2

(35b)

v − h0(x) + β + α

α + 1
τ

−
(
η1μt − η2μt

)
−
(

α

α + 1

)2

z > 0 (35c)

z > 0, v ≥ 0, η1 ≥ 0, η2 ≥ 0. (35d)

Note that α is set to 1 in this study considering the wind power
characteristic and the nesting property of α-unimodality [46].
Thus, the DR-CC microgrid energy management problem
based on the moment and unimodality assumption is refor-
mulated as follows:

min
x,


{(16) : (1) − (3), (7) − (10), (12) − (14), (35)}.
The inclusion of unimodality information is expected to induce
a less conservative solution theoretically.

IV. CASE STUDY

In this section, a case study is conducted to evaluate the
proposed DRO method in solving the CC islanded microgrid
energy management. We first describe the studied microgrid
configuration and relevant datasets. Then the simulation results
and discussion are presented. The microgrid energy manage-
ment is implemented over a finite time horizon (e.g., T = 24
hours) in this study and the time step is set to be 1 hour. All
the experiments are performed in MATLAB with the modeling
tool YALMIP [47] and CPLEX 12.71 solver on a desktop with
an Intel Core i7-6700 CPU 3.40 GHz and 8 GB of RAM.

A. Description of Microgrid

In this work, we consider a microgrid composed of three
conventional generators, an ESS, a wind turbine, a critical
load and a deferrable load [5]. For the three generators, their
parameters are given in Table I which are collected and mod-
ified from [3] and [26]. The same emission coefficients are
used here and the emission cost coefficient is 1 $/kg. In addi-
tion, an ESS with storage capacity of 200 kWh is deployed in
the microgrid whose parameters are summarized in Table II.
The initial and final energy levels of ESS are set to be
half of its capacity and the degradation cost coefficient is
0.0035 $/kWh [5].

As for wind power, we only need the upper and lower
bounds of the mean and variance. Based on the estimated mean
and variance taken from [36], the upper and lower bounds can
be obtained by deviating 10% from the rated values. The mean
values of wind power are illustrated in Fig. 1 as an example.

TABLE II
PARAMETERS OF ESS

Fig. 1. Wind power and critical load.

Moreover, the critical load demand from [48] is approximately
scaled and used as shown in Fig. 1. Note that only the real
power is considered here. The deferrable load is assumed to
have a total demand of 100 kWh which needs to be satisfied
between 13th and 18th time slot. The minimum and maxi-
mum serving rates for deferrable load are set to be 10 kW and
50 kW, respectively. The chance constraint confidence level is
set as 1 − ε = 95%.

B. Simulation Results

With the parameters and datasets introduced above, we solve
the DR-CC microgrid energy management problem in this
section. We first analyze the output power of conventional gen-
erators. The optimal energy schedule of the three generators
is shown in Fig. 2. As can be seen from this figure, the output
of three generators has great difference: the unit G3 has the
largest output, followed by the unit G1, while the unit G2 pro-
duces the least output power. This phenomenon is consistent
with the generation cost as we can find that unit G3 has the
smallest generation cost coefficients. However, the generation
cost coefficients of unit G2 are quite large. Additionally, the
emission cost only takes a small proportion compared with the
generation cost which will be introduced later.
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Fig. 2. Optimal power schedule of conventional generators.

Fig. 3. Optimal energy schedule of ESS and deferrable load.

ESS plays a significant role in microgrid energy manage-
ment which helps achieve peak load shifting. The energy
schedule of ESS including the stored energy level, the charg-
ing and discharging power is shown in Fig. 3. As we can see
from this figure, the ESS charges in the first few hours when
the load demand is low, it stays unchanged for several hours
when the maximum capacity is reached. As the load increases
later, the generators produce more power and the ESS starts
to discharge. It can also be found that the change of ESS state
is influenced by the load change most of the time. In addi-
tion, the energy schedule of deferrable load (e.g., EV) is also
presented in Fig. 3. The deferrable load is served almost at a
uniform rate over the specified time interval except the sud-
den increase in the 17th and 18th period. The total microgrid
energy management cost in this case is $9847.5.

For the method considering the unimodality information,
the energy management has a similar dispatch solution which
has been omitted here. However, the total system cost with
this method is $8381.5 which substantiates the improved
conservatism by incorporating the unimodality information.

Fig. 4. System cost with different ε.

C. Discussion

1) Reliability and Robustness of Our Method: The DRO
method solves the CC islanded microgrid energy manage-
ment with a worst-case CVaR approximation. To validate the
effectiveness of our solutions, we use Monte Carlo simulation
method to test the reliability and robustness of our approach.
Based on the estimated mean and variance values of wind
power, we randomly generate a million scenarios by assum-
ing a normal distribution. With these wind power samples,
our energy management solutions are checked. The percent-
age of the scenarios that satisfy the power balance constraint is
up to 99.99934%, which is higher than the setting confidence
level 95%. In addition, this probability value ensures that the
chance constraints violation probability in the total scheduling
horizon is very low. Similarly, the method with unimodal-
ity information can also be checked and the percentage is
about 99.9919%. Therefore, this result further verifies that our
method is reliable and robust against the unknown probability
distributions sharing the same moment information.

2) Influence of Different Parameter ε and Interval Size:
Various confidence levels will result in various solutions in
microgrid energy management. Moreover, the uncertainty of
microgrid system can be controlled by adjusting the confidence
level or the parameter ε. Although the confidence level 1 −
ε = 95% is mostly studied, we investigate the influence of
some other parameter settings in this study. The total system
cost with different parameter ε, including 0.01, 0.05, 0.1 and
0.15, are summarized in Fig. 4 and the corresponding energy
management solutions are omitted for simplicity.

As can be seen from this figure, the smaller the ε value,
the higher the total system cost. A small ε value represents a
high confidence level. In other words, we have to pay more
to achieve a more reliable system. In addition, comparing the
difference between the neighbouring system cost, we can find
that a dramatic decrease occurs when the parameter ε increases
from 0.01 to 0.05 which means that the marginal cost becomes
larger as the confidence level increases. Thus, we have to select
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Fig. 5. System cost with different interval size.

a proper confidence level in practice to avoid the extremely
high cost caused by a strict reliability constraint.

The critical feature of the proposed ambiguity set is the
inclusion of the interval for uncertain mean and variance.
To investigate the impacts of the interval on the simulation
results, the interval size is enlarged gradually. In this case
study, the intervals for mean and variance are attained as fol-
lows: (1 ± λ_μ)μt and (1 ± λ_var)σ 2

t , where the deviation
coefficients λ_μ and λ_var are increased from 0.1 to 0.4 with
a step size of 0.1. The corresponding results of total cost are
plotted in Fig. 5 with interpolation, from which we can see that
the system total cost increases as the intervals expand. Also,
the intervals for mean values have a larger impact on the cost
in this case caused by the larger nominal values. Therefore, to
reduce the total cost, the interval in the ambiguity set should
be shortened in practice. In this regard, different data-driven
techniques can be used to estimate the interval based on his-
torical dataset, such as the popular direct interval forecast
methods [49].

3) Comparison With Other Methods: In this part, we com-
pare our method denoted as M1 with the DRO method based
on known moment information (e.g., mean and variance),
sample average approximation (SAA) method and stochas-
tic optimization with normal distribution (SND) in solving
the CC microgrid energy management problem. The method
with known moment information is denoted as M2, where
the ambiguity set P1

t is used instead of P2
t and the other

constraints remain unchanged. In addition, the inclusion of
unimodality information in M1 and M2 is also studied, denoted
as Muni

1 and Muni
2 , respectively. In these methods, we set the

confidence level as 95%. Note that the CC problem is usu-
ally transformed into a semidefinite problem (SDP) with the
method M2 [35]. The SDP problem can be solved directly
by off-the-shelf solvers or we can use the same method in
Section III to further reformulate it as a tractable SOCP
problem.

SAA is an effective method to cope with CC problems and
a number of theoretical research can be found in previous lit-
erature [50], [51]. The basic idea is to approximate the true

distribution in chance constraint with an empirical distribu-
tion obtained from Monte Carlo sampling technique. For the
chance constraint Pr{h0(x) + h(x)wt > 0} ≤ ε in this work, it
can be approximated with SAA method as follows:

N−1
s

Ns∑
l=1

I(0,∞)

(
h0(x) + h(x)wl

t

)
≤ γ (36)

where I(0,∞) is the indicator function of (0,∞), i.e., I(y) = 1
if y > 0, otherwise, I(y) = 0; Ns is the number of samples and
γ is the risk level of the SAA chance constraint; wl

t represents
the sample of the random variable. According to [50], the
SAA chance constraint can be replaced with mixed-integer
constraints, thus the SAA problem is a mixed-integer quadratic
programming (MIQP) problem. In this case study, Ns and γ are
set to 500 and 0.05, respectively, and the samples are generated
from a normal distribution with nominal mean and variance.
More details about the SAA method can be found in relevant
references.

For the SND method, we assume that the uncertain wind
power follows a normal distribution with deterministic mean
and variance. With this assumption, the original chance con-
straint can be transformed into a deterministic constraint as
follows: {

Pr
{

h0(x) + h(x)wt ≤ 0
}

≥ 1 − ε
}

=
{

h(x)μt + h0(x) + |h(x)|σtzε ≤ 0
}

(37)

where zε = �−1(1 − ε) is the (1 − ε) quantile of standard
normal distribution. In this case, the mean and variance are
also set to the nominal values introduced before.

The system cost results of these different methods are sum-
marized in Table III. It can be seen that the cost of our method
(M1) is higher than that of M2 which implies that our method
with the ambiguity set P2

t is more conservative. However,
our method M1 is more reliable and robust than M2 whose
CC satisfaction percentage is 99.909% calculated from the
method discussed above. This comparison gives us an intu-
itive effect of the method M1 and the result is rational since
M1 assumes that less information is known about the uncer-
tain wind power compared with M2. Also, the inclusion of
unimodality information produces a less conservative solution
for both methods as expected. Additionally, we can also find
that the generation cost accounts for a considerable proportion
of the total system cost compared with the emission cost and
ESS degradation cost. This large difference is mainly caused
by the setting of different cost coefficients. This verifies the
analysis of different output power of conventional generators
in the simulation results.

As the SAA method is based on Monte Carlo sampling, the
system cost may vary for each run. Hence, we repeat the sim-
ulation for ten times and calculate the average cost as given in
Table III. As can be seen, the result of SAA is more conserva-
tive and its performance is not as good as M1 despite the fact
that the samples are generated from a normal distribution. For
SND method, we can see that the system cost is lower due to
the more certain information about the uncertain wind power
in the assumption.
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TABLE III
COMPARISON OF SYSTEM COST WITH DIFFERENT METHODS

V. CONCLUSION

Microgrid energy management is of great significance in
the future smart grid environment. In this study, we design
a CC energy management model for an islanded microgrid
which consists of conventional generators, ESS, wind turbines
and various load demand. In addition to the common genera-
tion cost in the objective function, the emission cost and ESS
degradation cost are also considered in our model. The uncer-
tainty of wind power is captured by a novel ambiguity set in
this work, based on which the individual chance constraint can
be tackled with the DRO method and the microgrid energy
management problem is reformulated as a tractable SOCP
problem. The proposed method has been analyzed through a
case study and the simulation results show its effectiveness
and reliability. Moreover, the comparison with the approach
with known moment information validates the robustness of
the proposed method, which is more applicable in practice.
The comparison with SAA and stochastic optimization method
also reveals the advantage of the proposed method.

APPENDIX

From (26)-(28), we can get the dual problem by introducing
corresponding dual variables θ0, θ1 and θ2 as follows:

inf
θ0,θ1,θ2

θ0 + θ1h(x)μt + θ2

[
h2(x)σ 2

t + (h(x)μt)
2
]

(38a)

s.t. θ0 + θ1r + θ2r2 ≥ 0 (38b)

θ0 + β − h0(x) + (θ1 − 1)r + θ2r2 ≥ 0. (38c)

It can be verified that strong duality holds as h2(x)σ 2
t is pos-

itive [35] and the dual problem has feasible solutions when
θ2 > 0. The constraints (38b) and (38c) can be transformed
into the following equivalent constraints by considering the
minimum value of the left hand side:

inf
θ0,θ1,θ2

θ0 + θ1h(x)μt + θ2

[
h2(x)σ 2

t + (h(x)μt)
2
]

(39a)

s.t. θ0 − θ2
1

4θ2
≥ 0, θ0 + β − h0(x) − (θ1 − 1)2

4θ2
≥ 0.

(39b)

Then using the following variables change with auxiliary
variables v, τ and z > 0, we can obtain the problem (29).

θ0 = v + (τ − h(x)μt)
2

4z
, θ1 = τ − h(x)μt

2z
, θ2 = 1

4z
.
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