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A computational study is performed to analyze oxygen transport in dry and wet stochastically reconstructed catalyst layers (CLs).
CL stochastic reconstructions are generated using random penetrating spheres of a given particle size that agree with the statistical
correlation functions of a reference 3D FIB-SEM reconstruction. A nucleation-based full morphology approach is used to partially
flood the CLs from within the structure in an attempt to reproduce the conditions in an operating fuel cell. In order to validate the
3D numerical model and reconstruction method, the dry effective diffusivity of CLs and its variation with porosity are obtained and
shown to be in agreement with reported literature data. Simulations are then performed for CLs with varying porosity and saturation.
Statistical analysis is used to estimate an expression for effective Knudsen radius as a function of porosity and particle size, and then
the computed dry effective diffusivities are used to develop a generalized percolation-based correlation function to estimate dry and
wet effective diffusivities. The effective diffusivity of CLs with different pore size distribution are also obtained from 3D simulations
and using the proposed correlation function and shown to differ by less than 10% for porosities in the range of 0.4-0.7.
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Water management remains critical to the operation of proton ex-
change membrane fuel cells (PEMFCs). Low water content in the
membrane electrode assembly (MEA) leads to drying of the polymer
membrane, thereby leading to a decrease in the protonic conductiv-
ity and increase in ohmic losses.1,2 High water content in the MEA
can lead to condensation of liquid water in the channels, gas diffusion
layer (GDL), micro-porous layer (MPL) and catalyst layer (CL), caus-
ing water accumulation in the porous media. Under these conditions,
the gas transport in the MEA is severely hindered and a significant drop
in the cell performance is observed.3,4 Optimizing the water balance to
maintain the electrolyte hydrated while removing excess water from
the MEA and channels is crucial to improving the performance of the
PEMFC at high current densities,5,6 particularly when the PEMFC is
operating at a high relative humidity.

To describe the two-phase characteristics of the PEMFC operation
several macro-homogeneous numerical models have been proposed in
literature. These models are either based on the solution of a satura-
tion equation derived from the Darcy’s law7,8 or the solution of gas and
liquid mass and momentum equations using a closure equation based
on the porous media structure such as pore size distribution.9–11 While
these models provide valuable insight into the macroscopic effects
of the two-phase flow in the PEMFCs, they rely on volume-averaged
microstructural information of the porous media and thus, cannot de-
scribe some microscale effects, such as loss of pore connectivity on
transport and cell performance, as water accumulates in the diffusion
media.

Microstructural models can be used to complement the macro-
homogeneous models by developing correlations to describe the effec-
tive transport properties for the porous media as a function of morphol-
ogy and local saturation. Several methods, such as pore network model
(PNM),12–15 lattice Boltzmann method (LBM)16–19 and full morphol-
ogy (FM) or morphological image opening (MIO),18–22 have been
proposed in literature to study the liquid water intrusion in the mi-
crostructures of the fuel cell porous media. The most commonly used
method is the pore network model (PNM). Pore network models rely
on generation of an abstract network of pores and throats with certain
radii. These networks can be generated from the real microstructure
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images obtained using microscopy techniques such as X-ray micro-
computed tomography12 or by using a random network13–15,18 which is
calibrated with the experimental data such as porosity profiles,15 mer-
cury intrusion porosimetry data or saturation-pressure profiles. PNM
offers a fast and accurate way to study the effect of localized water
effects on the effective transport properties of the porous media.12–15

However, generation of the abstract network leads to the loss of the
microstructural information such as pore morphology and tortuosity.

Lattice Boltzmann method is a physics based method which has
also been employed to study the water transport16–19 in porous media.
The major advantage of the LBM over the other methods is the ability
to identify intricate dynamics of the liquid water and water droplets
within the porous media while the other techniques assume a quasi-
static water front movement through the porous media. This however,
comes at an extremely large computational cost.19

Full morphology (FM) or morphological image opening (MIO)
models describe the water invasion into the porous media, like most
PNM, using the Young-Laplace equation.18–22 The advantage of this
technique over the PNM is that it can be used on the real microstructure
of the porous media and therefore, further transport and electrochem-
ical simulations can be performed in the partially saturated porous
media without any simplifications. It offers a trade-off between the
simplicity of PNM and computational cost of LBM. Sabharwal et al.22

recently showed that this approach can successfully predict water ac-
cumulation and effective diffusivities in a GDL sample.

Each of the methods described above has been used to study fuel
cell porous media such as gas diffusion layer (GDL)12–18,23,24 and mi-
croporous layer (MPL).20,25–27 However, there are very limited number
of studies on the fuel cell catalyst layers (CLs). Hutzenlaub et al.28 ob-
tained a CL microstructure using focus ion beam-scanning electron
microscopy (FIBSEM) and studied liquid water accumulation on this
structure using a PSD based method, where the pores were filled in
ascending order corresponding to a hydrophilic (HI) substrate and de-
scending order for the hydrophobic (HO) case. The method of water
accumulation proposed in Ref. 28 is questionable, as the advancement
of the liquid water front is independent of the liquid capillary pressure.
Mukherjee et al.16 studied the two-phase flow in stochastically gener-
ated CL microstructure using LBM and found that at low saturations
discrete water clusters are formed which interconnect as the saturation
increases. They did not investigate the effect of local saturation on the
transport properties and performance. Hannach et al.29,30 employed
PNM to study the two-phase characteristics in the CL. They allowed

http://jes.ecsdl.org/content/166/7.toc
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1149/2.0081907jes
http://jes.ecsdl.org/content/166/7.toc
mailto:secanell@ualberta.ca
http://ecsdl.org/site/terms_use


F3066 Journal of The Electrochemical Society, 166 (7) F3065-F3080 (2019)

for water generation from randomly chosen “active agglomerates” in
their network and tracked the water interface movement through the
porous network and computed the effect of the local saturation on the
effective transport properties and performance. Zheng and Kim31 used
LBM to simulate water intrusion based on water production from ac-
tive ORR sites in a stochastically generated CL microstructure. Zheng
and Kim31 then studied the effective diffusivity of the CL as a function
of saturation. However, Zheng et al.31 only used a single microstructure
to study the effective diffusivity at different saturations therefore, sta-
tistical variability of microstructures at same and different porosities
was not considered. Fathi et al.32 simulated liquid water intrusion into a
stochastic CL reconstruction using a volume of fluid (VOF) approach.
Although they computed effective diffusivity for CL reconstructions
with different porosities, saturation and domain sizes, the method used
in their work to predict the Knudsen effects has previously been shown
to underpredict the Knudsen resistance.31 Thus far, none of the stud-
ies have used a FM approach such as the one recently proposed and
validated by Sabharwal et al.22 Further, all of the previous numerical
studies16,29–32 used stochastically generated CL structures which were
not compared to a real CL microstructure, therefore it is not clear that
they are representative of a real CL.

In the present work, an overlapping sphere based algorithm is used
to generate stochastic reconstructions of CLs to study the effective dif-
fusivity as a function of porosity and saturation. A method to assess the
morphological equivalence of the stochastic reconstructions to a real
CL microstructure obtained using focused ion beam-scanning electron
microscopy (FIBSEM) is discussed that uses various statistical func-
tions as a measure of its representativeness. Liquid water intrusion is
simulated in the CL using a novel nucleation based full morphology
algorithm. Voxel based meshes were generated for the dry and wet
CL microstructures by extraction of the percolating gas network. The
meshes were then used for gas transport simulations that account for
both molecular and Knudsen diffusion. Details of the stochastic recon-
struction algorithm, water intrusion algorithm, numerical gas diffusion
model and statistical functions are provided in Theory section. The
results for the comparison of the stochastic reconstructions to FIB-
SEM reconstruction and gas transport simulation results are shown
in Results and Discussion section. The effective diffusivity was com-
puted for the stochastic reconstructions with different porosities and
at different saturations and a correlation for the effective diffusivity
is proposed. The simulated values were compared to prior numerical
and experimental studies in literature.

Theory

Catalyst layer microstructure reconstruction.—Image based
reconstruction.—A thin, low loading CL prepared using inkjet
printing,33 having a platinum loading of 0.025 mg/cm2 and 30% wt.
Nafion loading, was previously imaged using focus ion beam- scan-
ning electron microscopy (FIBSEM) in our earlier work34 and is used
as a reference. The obtained images were used to generate a 3D re-
construction of the CL section with dimensions 848 nm × 447 nm ×
1220 nm (424 × 176 × 61 pixels) and a porosity of 39.7%. A detailed
description of the image acquisition and image processing algorithms
to reconstruct the CL microstructure has been described in our earlier
work.34

Stochastic reconstruction.—Stochastic reconstructions were gen-
erated using a random overlapping sphere based algorithm similar to
that described in Reference 35. The steps for the overlapping sphere
based microstructure reconstructions are as follows:

1. An empty domain (�) corresponding to a porosity of 100% is
generated as a 3D array with user defined dimensions of l × l
× l . Building blocks for the solid phase, i.e., spheres of a user-
defined radius rd , are generated as local maps using a 3D array
(�map) with dimensions 2rd × 2rd × 2rd .

2. A random location is chosen in � as a center for �map.

Figure 1. Illustration of the different steps used for generation of a CL mi-
crostructure based on overlapping spheres.

3. �map is inserted into the domain by placing its center at the chosen
center in the previous step.

4. The process is repeated to choose new centers and insert spheres.
5. As the spheres are continually placed they might start overlapping.

The amount of overlap is controlled in this algorithm using a
penetration parameter (ψ) which is used to calculate the region
of pixels around the solid sphere in � which cannot be used as
centers. For 0 ≤ ψ ≤ 1, all pixels within ψrd distance from the
surface of the sphere are removed, thereby allowing a penetration
of 1-ψ. Therefore, ψ = 0 would allow free penetration of spheres
and ψ = 1 would allow no penetration of spheres.

6. Once the desired porosity (εV ) is reached the algorithm ends.

Figure 1 shows a schematic of the different steps described above.
As described above, the inputs to the algorithm are the domain size
(l), sphere radius (rd ) and porosity (εV ) of the microstructure. Since
the primary objective of this work is to study the gas diffusion in the
CL microstructures, the spheres are treated as solid particles without
distinguishing between carbon, platinum and ionomer. This is different
from the reconstructions in Reference 35 where the spherical particles
were treated as carbon particles which were then coated by uniform
ionomer films.

Statistical correlation functions.—Two-point correlation
function.—The two-point correlation function (S j

2 (r)) is defined as the
probability of finding two points at a distance r in the phase j.36,37 For
a digitized porous media, the two-point correlation is computed by
traversing a line of length r through the porous media and recording
the number of times the ends of the line fall in the same phase.
These are then normalized by the total number of traversals. Thus,
the two-point correlation function for phase j at r = 0 equals the
volume fraction of the phase and the slope of the function is related
to the specific interfacial area (interfacial area per unit volume) as
follows:38

s j = − β
d

dr
S( j)

2 (r)

∣∣∣∣
r=0

, [1]

where s j is the specific interphase area, and β is 4 for 2-D, and 6 for
3D images, respectively.39

Chord length function.—The chord length function (C j (r)) is de-
fined as the probability of finding a line in phase j of length r con-
necting two interfaces. Therefore, the chord length function provides
information about the separation between the phase interfaces. When
computed for the void phase in the CL reconstructions, it is repre-
sentative of the pore size distribution. The chord length function is
computed by selecting an interfacial pixel and recording the length of
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the chord through the phase j in a given direction to another interfa-
cial pixel. The process is repeated for all interfacial pixels. C j (r) is
computed by dividing the number of occurrences of a chord of length
r by the total number of occurrences. For this study, the chord lengths
are evaluated in the Cartesian directions similar to our earlier work.34

Chord lengths however, can be evaluated in any direction as shown in
Reference 23.

Pore size distribution.—The pore size distribution for the CL mi-
crostructures was computed using the sphere fitting algorithm de-
scribed in Reference 34. To compute the pore sizes, the Euclidean
distance transform, i.e., minimum distance of a pore voxel to a solid
voxel, is first computed for every pore voxel. The distance transform
indicates the radius of the largest sphere that can be placed with the
pore voxel as center. The next step is to systematically increase the
pore radius rp from the minimum to the maximum value in the distance
transform map. For every rp, all pore voxels with distance transform
value greater than rp are found. These are treated as the centers for
the spheres with neighboring voxels within a distance of rp all being
assigned a value of rp. Therefore, every voxel is either the center of a
sphere with the radius equal to its distance transform value or part of
a larger sphere. Details of the algorithm and implementation can be
found in Reference 34.

Algorithm 1 Cluster based full morphology algorithm for water
intrusion.22a

Read original input microstructure �0;
Define the nucleation points, contact angle (θ) and number of steps
(n);
Compute pc for every pore pixel in �0 using Equation 2
Initialize pin as the minimum liquid pressure to start water intrusion
at each nucleation point
Initialize �l = nucleation points
(�l has a value of 1 at the locations where water is present.)
Compute �p = max(pc )−pin

n
while s<1 do

procedure IDENTIFY LIQUID WATER CLUSTERS
Obtain the set of voxels � where pc < pin

Cluster connected voxels in � and store in � with each cluster
denoted by a unique integer j
Identify cluster indices ( j) in � connected to �l and store in
array u

end procedure
procedure INTRUDE WATER INTO CLUSTERS

for i = [values in u] do
Find locations x, y, z where �[x, y, z] == i
Set �l [x, y, z] = 1

end for
Compute saturation (s) using Equation 4
Record �l for mesh generation
Increment pin = pin + �p

end procedure
end while

aAll capital Greek symbols denote 3D arrays with dimensions of input microstructure.

Water intrusion algorithm.—To study the effect of liquid wa-
ter on the gas transport in the CL microstructure, a quasi-static wa-
ter intrusion algorithm derived from the full morphology model was
developed.21 The cluster based full morphology (CFM) algorithm used
in this study has previously been validated with μ-CT reconstructions
of partially saturated GDL reconstructions.22

However, unlike the GDL where the water was intruded from a
single boundary, the liquid water in the CL is intruded using the nu-
cleation mode shown in Figure 2. This is similar to the approach used in
the pore network models in References 29,30 where random agglom-

Figure 2. Illustration of the nucleation mode of water injection used in this
study. Red indicates the nucleation sites and blue arrows indicate water
movement.

erates were activated in the CL to produce water which then intrudes
the pores in the CL.

In the CL, the ORR takes place on the Pt surface where water
molecules would be produced which might form small clusters. Once
these clusters exceed the critical diameter given by the Kelvin equation
for the local supersaturation they would continue to grow into bulk
liquid. It is expected that such a phenomenon might be occurring in
the CL where high local supersaturation might exist especially in the
small nano-pores. Therefore, this mode of water injection is deemed
to be representative of the water intrusion in the CL. In the present
study, pores having 2 nm radius were treated as nucleation sites and
provided as input to the algorithm.

The computational implementation for the CFM algorithm is pre-
sented in Algorithm 1.22 A detailed discussion on the algorithm is
provided in Reference 22. The key steps are described below:

1. Calculate the pore size distribution for the original microstruc-
ture �0 using the sphere fitting algorithm described in Pore size
distribution section.

2. Compute the capillary pressure (pc) required to intrude each pore
using the Young-Laplace equation,

pc = 2γ cos θ

rp
[2]

where γ is the surface tension of water, θ is the contact angle and
rp is the computed local pore radius. For computational imple-
mentation, capillary pressure is defined as,

pc = pl − pg [3]

where pl and pg are liquid and gas pressures respectively. There-
fore, for implementation purposes hydrophilic pores have a neg-
ative capillary pressure and hydrophobic pores have a positive
capillary pressure. It is assumed that pg is zero.

3. Liquid pressure is then increased using �p increments. At each
pressure, all pores having capillary pressure less than the liquid
pressure are identified as feasible locations where liquid water
could exist.

4. A subset of feasible pores is then identified consisting of all pores
connected to the liquid water front by clustering the feasible pores
and performing a logical AND operation with the liquid water
network (�l ). These pores are then intruded with water and the
locations are updated in �l .

5. The saturation is obtained using,

s = ε(�l )

εV
[4]

where ε(�l ) denotes the volume fraction of voxels with liquid
water and εV denotes the porosity of the microstructure. �l is
recorded for mesh generation to study the gas transport.

6. Steps 3–5 are repeated until the layer is fully saturated.
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The meshes for partially saturated CL reconstructions were ob-
tained by direct conversion of voxels to cells in the mesh. Therefore,
the cell size for the mesh was equal to the voxel size. To improve com-
putational efficiency, only the percolating gas network (pores not filled
with liquid water) was extracted and used for transport simulations.

Gas transport in CLs.—The gas transport model was described in
depth in our earlier study.34 An overview of the assumptions and key
steps is described here.

Oxygen transport in the CL is assumed to be steady state and gov-
erned by Fick’s law,

∇ · (Dctot∇xO2 ) = 0, [5]

where D is the overall oxygen diffusivity, ctot is the total gas con-
centration (assumed constant), and xO2 is the oxygen molar fraction.
Equation 5 assumes that there is no reaction happening in the domain.
This assumption is made in order to study the effect of CL geometry
on the effective diffusivity. The overall diffusivity, D, is computed by
evaluating the Bosanquet equation40 at every cell,

1

D
= 1

Dmolecular
+ 1

DKn
, [6]

where Dmolecular is the molecular oxygen diffusivity and DKn is the
Knudsen diffusivity. The Knudsen diffusion coefficient is calculated
using,35,41,42

DKn = 2

3
rp

√
8RT

πMO2

, [7]

where rp is the local pore radius obtained using the sphere fitted pore
size distribution34 and therefore, changes in every cell, R is the univer-
sal gas constant, T is the absolute temperature of the gas and MO2 is
the molecular weight of oxygen. For pores filled with liquid water the
diffusion coefficient was assumed to be zero because of the four or-
ders of magnitude difference between the molecular oxygen diffusion
coefficient in air and water.43

The boundary conditions used to simulate the oxygen transport in
the microstructure are,

xO2 = xin
O2

on �1,

xO2 = xout
O2

on �2, and

(Dctot∇xO2 ) · n = 0 everywhere else,

[8]

where �1 is the inlet plane and �2 is the outlet plane opposite to the
inlet plane. The effective diffusion coefficient (De f f ) of the porous
media was computed using

De f f = Ṅout
O2

L

A
(
cin

O2
− cout

O2

) , [9]

where Ṅout
O2

is the total molar flow rate of oxygen at the outlet plane �2,
L is the shortest distance separating inlet and outlet planes, A is the
cross-section area and, cin

O2
and cout

O2
are the concentrations of oxygen

at the inlet and outlet boundary faces, respectively.
The effective diffusion coefficient calculated from Equation 9 ig-

nores the reaction in porous media. Several volume averaging studies
have shown that the diffusion coefficient can be affected by the hetero-
geneous reaction.44–46 In order to account for the reaction, a volume-
average model such as the one proposed by Whitaker45 for first-order
heterogeneous reactions in porous media would have to be developed.
For heterogeneous reactions, as is the case for fuel cell CLs, Whitaker45

showed that, assuming a first-order, constant reaction rate reaction, the
reaction term leads to a similar equation, with an effective diffusion
coefficient that is purely geometrical in nature, similar to the value
estimated in this article, and an additional term, due to the reaction,
which manifests itself as a convective transport term in the volume
averaging.44,45 The latter term is however challenging to evaluate in
fuel cells. Whitaker’s analysis45 assumed a constant effective reaction
rate, however this is not the case for the electrochemical reaction in fuel

cells as the reaction rate is a function of the overpotential. Additional
work is therefore required to derive a volume averaged expression to
express reactive gas transport in fuel cell CLs as the expressions used
in the porous media community44–49 cannot be used directly. For first
and second-order reactions, the convective term has been shown to be
significant only at high Thiele modulus.44–46

Results and Discussion

Stochastic reconstructions.—The overlapping sphere based al-
gorithm described in Stochastic reconstruction section was used to
generate multiple stochastic reconstructions to study the gas diffusiv-
ity as a function of porosity and saturation. However, it is important to
determine the statistical equivalence of the stochastic reconstructions
compared to the structure of a real CL. Statistical correlation func-
tions such as pore size distribution, two-point correlation function in
the void phase (Sv

2(r)) and chord length function in the void phase
(Cv(r)) were used as parameters to quantify the representativeness of
the stochastic reconstructions compared to the real CL microstructure
obtained from FIBSEM.

For the comparison, stochastic reconstructions with a porosity of
40% similar to the porosity of 39.7% from the FIBSEM microstruc-
ture were used. A domain size of 600 nm × 600 nm × 600 nm with a
voxel resolution of 2 nm in every direction was used. The domain size
was calculated based on the findings from our previous work34 where
a domain size of nearly 500 nm in every direction was found to pro-
vide a representative elementary volume for gas transport. Since the
particle radius for the spherical particles used to generate the stochas-
tic reconstructions was not known, a parametric study was performed
on the spherical particle radius to determine the value that would bet-
ter represent the real CL structure. The spherical particle radius was
varied between 20–50 nm (10–25 voxels), based on the reported size
of a primary carbon particle50 and 10 reconstructions were generated
for each set of parameters to ensure statistical significance of the re-
sults. In the current study, the particle size for each reconstruction was
considered constant even though in reality the carbon particles would
have a particle size distribution.50 The effect of multiple particle sizes
will be evaluated in a future study. For this study, the penetration pa-
rameter (ψ) was set to zero allowing free penetration of the spheres
so that only the particle radius was the unknown parameter. Although
not shown here, limiting the degree of penetration, i.e., reducing the
amount of overlap permitted between spheres, results in a decrease in
the pore sizes. Statistical functions were computed for each of the re-
constructions with different rd values and compared to those obtained
from the FIBSEM dataset.

Figures 3a–3d shows a stochastic reconstruction with 40% porosity
using particles with a radius of 20 nm, 30 nm, 40 nm and 50 nm
respectively as well as the local pore size. The local pore radius is
computed using the pore size distribution algorithm described in Pore
size distribution section and is used to account for Knudsen effects in
the gas diffusion simulations. Figure 4 shows the pore size distribution
(PSD) for the stochastic reconstructions. Since Figure 4 shows the
pore size distribution as a probability distribution function, the area
under the curve for the four figures is 1. For all the cases, the smallest
pore size is determined by the voxel resolution, i.e., 2 nm. The largest
pore radius increases with an increase in the particle size. For the
reconstructions shown in Figure 3, the largest pore radius increases
from 38 nm to 55, 67 and 90 nm as the particle radius is increased from
20 nm to 50 nm. The increase in pore size becomes more evident when
analyzing the pore size distribution for the 10 different reconstructions
for each of the particle sizes. Further, the probability of finding pores
larger than 100 nm in diameter is 0 for particle radius of 20 nm but
increases to 1%, 7% and 20% for increasing particle radius.

The red dashed line in Figure 4 shows the pore size distribution
of the reference CL reconstruction obtained using FIBSEM. It can be
seen from Figure 4 that the stochastic reconstructions with particle
sizes of 20 nm and 30 nm overpredict the fraction of small pore sizes
compared to the FIBSEM reconstruction. Stochastic reconstructions
with particle size 40 nm show similar pore size distributions to that of

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 129.128.46.162Downloaded on 2019-06-11 to IP 

http://ecsdl.org/site/terms_use


Journal of The Electrochemical Society, 166 (7) F3065-F3080 (2019) F3069

Figure 3. Pore phase of one of the CL reconstructions with a porosity of 40% with spherical particle radius of a) 20 nm, b) 30 nm, c) 40 nm and d) 50 nm. The
pores are colored according to their radius in cm.

Figure 4. Pore size distribution for stochastic reconstructions with spherical particle radius of a) 20 nm, b) 30 nm, c) 40 nm and d) 50 nm. Vp is the pore volume
and dp is the pore diameter. The red dashed line is the pore size distribution obtained from the reference FIBSEM CL reconstruction.
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Figure 5. Two-point correlation in the void phase in: a) x and b) y direction for stochastic reconstructions with particle radius of 20 nm; c) x and d) y direction for
stochastic reconstructions with particle radius of 30 nm; e) x and f) y direction for stochastic reconstructions with particle radius of 40 nm; g) x and h) y direction
for stochastic reconstructions with particle radius of 50 nm.

the FIBSEM reconstructions. They even show some of the extremely
large pores with diameter greater than 150 nm. With a further increase
in the particle radius to 50 nm, the pore sizes become much larger
than those observed in the FIBSEM reconstructions with some pores
becoming as large as 230 nm in diameter.

Figure 5 shows the two-point correlation function in the void phase
(Sv

2(r)) in the x and y directions for stochastic reconstructions with
spherical particle radius of 20 nm to 50 nm. The red dashed line in
Figures 5a–5h shows the two-point correlation for the FIBSEM mi-

crostructure. The two-point correlations in the x and y directions for
reconstructions with particle size of 40 nm are similar to those ob-
tained from the FIBSEM microstructure in the x and y direction. For
reconstructions with particle radius of 20 nm and 30 nm, the two-point
correlation function is underpredicted for r < 100 nm. For reconstruc-
tions with particle radius of 50 nm, the two-point correlation shows
slightly higher values in the x direction but similar values in the y di-
rection. It must be noted that the two-point correlation function in the z
direction is not used for comparison because of the artificial anisotropy
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Table I. Average specific solid-void interface area and the mean
chord length for the stochastic reconstructions with different
particle radius (rd ) and FIBSEM reconstruction.

Specific interface area (m2/m3 × 10−6) Mean chord

Case XY YZ ZX Total length (nm)

FIBSEM 10.30 16.91 14.64 41.85 54.0
rd = 20 nm 26.26 26.26 26.25 78.76 28.3
rd = 30 nm 17.29 17.33 17.28 51.90 41.3
rd = 40 nm 12.96 12.94 12.98 38.88 53.2
rd = 50 nm 10.18 10.13 10.16 30.47 65.6

of the FIBSEM microstructure in the FIB slicing direction. Due to a
lower resolution of nearly 20 nm in the FIB slicing direction (z) there
is loss of information in the z direction of the CL microstructure which
results in the artificial anisotropy. This has been discussed in detail in
our previous work.34

As discussed in Two-point correlation function section, the slope
of the two-point correlation function at r = 0 is proportional to the in-
terfacial area between the solid and pores. From Figures 5a–5d, it can
be seen that the slopes of the stochastic reconstructions with particle
radius of 20 nm and 30 nm are steeper than the FIBSEM reconstruc-
tion. This indicates that the specific interfacial area between the solid
and void phase for these reconstructions would be higher than that
observed in the FIBSEM reconstruction. However, the slope of the
two-point correlation function for reconstructions with particle radius
of 40 nm are very similar to those from the FIBSEM reconstructions
as seen from Figures 5e and 5f. The slope of the two-point correla-
tion function for reconstructions with particle radius of 50 nm appears
lower than the slope of the FIBSEM. The average specific interfa-
cial area for the 10 reconstructions for each particle radius are shown
in Table I. The stochastic reconstructions with particle radius of 20
nm and 30 nm overestimate the total specific interfacial area by 88%
and 24% respectively. This can be explained by the higher fraction of
smaller pores in these reconstructions compared to the FIBSEM re-
construction. The average total specific interfacial area for stochastic
reconstructions with particle radius of 40 nm is much closer to the
FIBSEM reconstruction with a difference of only 7%. With a further
increase in the particle radius to 50 nm, the average total specific inter-
facial area decreases further due to increase in the pore sizes as shown
in Figure 4.

Figure 6 shows the chord length function in the void phase (Cv(r))
for stochastic reconstructions with particle radius of 20 to 50 nm.
The chord length function for stochastic reconstructions with particle
radius of 40 and 50 nm closely resembles the functions from the FIB-
SEM data. For stochastic reconstructions with particle radius of 20
and 30 nm, the chord length function has a higher value for smaller r
compared to the FIBSEM data. Table I shows the average mean chord
length (λ) for the reconstructions calculated using,

λ =
∫ ∞

0
rCv(r)dr. [10]

The mean chord length for the reconstructions with particle radius of
40 nm are nearly identical to those from the FIBSEM whereas the
mean chord lengths for the reconstructions with rd of 20 and 30 nm
are significantly smaller. Although the chord length function appears
to be similar between the reconstructions with particle radius of 50 nm
and the FIBSEM reconstruction, the mean chord length for this case
is 65.6 nm which is nearly 20% higher than the mean chord length
of the FIBSEM data. This is likely due to a higher probability of the
longer chords due to the larger pore sizes as seen in Figure 4d.

The correlation functions and pore size distributions for the dif-
ferent reconstructions with the same particle radius are also similar
thereby, indicating that the reconstructions can be considered as REVs.

Comparison of the statistical functions of the stochastic reconstruc-
tions to those obtained from the FIBSEM reconstructions shows that:

a) selecting the appropriate particle size in reconstructions is critical
to achieve a statistically equivalent structure to a real CL; and b) in
this case, the stochastic reconstructions with particle radius of 40 nm
are statistically equivalent to the FIBSEM microstructure of the CL
used in this study. Therefore, reconstructions with a particle size of
40 nm are used for analysis of diffusion as a function of porosity and
local saturation in the CL.

CLs gas diffusivity under dry conditions.—Effect of porosity.—To
determine a correlation for the effective diffusivity of CLs, the effect
of porosity on the effective diffusivity is analyzed. The overlapping
sphere based algorithm described in Stochastic reconstruction section
was used to generate multiple reconstructions with varying porosities
and rd = 40 nm. The domain size for each reconstruction was 600 nm
× 600 nm × 600 nm with a voxel resolution of 2 nm in every direc-
tion. The porosity of the reconstructions was varied between 1–10%
in increments of 1% and from 10–100% in increments of 10%. 10
reconstructions were generated for each porosity value to provide sta-
tistically significant results. To simulate gas diffusion in the generated
stochastic reconstructions the percolating pore network is extracted.

Reconstructions with porosities below 6% did not contain a per-
colating pore network in at least one or more Cartesian directions.
Therefore, a porosity of 5% is chosen as the percolation threshold
(εth), which is the porosity above which a percolating pore network
exists. Similarly, it must be noted that the stochastic reconstructions
with porosity higher than 70% were found to have no percolating solid
network thereby, indicating that such a structure might be infeasible.
Therefore, the effective diffusivity was only computed for stochastic
reconstructions with porosities upto 70%.

Figure 7 shows the pore phase for one of the CL reconstructions
with porosity of 7%, 50% and 70%. An increase in porosity leads to
an increase in the pore sizes, with the largest pore radius increasing
from 35 nm at a porosity of 7% to 92 nm at a porosity of 50% and
108 nm at a porosity of 70%. Figure 8 shows the effective diffusivity
in the x, y and z directions as a function of porosity for the different
stochastic reconstructions. The effective diffusivities are computed
at a temperature of 80◦C using molecular oxygen diffusivity of 0.273
cm2/s. As expected, the effective diffusivity in the Cartesian directions
increases with an increase in porosity.

It can be seen from Figure 8 that for a given porosity the values
of the effective diffusivities in the three directions are nearly identical
indicating an isotropic structure. This is expected because the overlap-
ping sphere algorithm is not biased in any direction and the building
blocks are spheres which are also isotropic. Further, it can also be seen
that the effective diffusivities for the 10 reconstructions with the same
porosity show similar effective diffusivities with a standard deviation
of less than 3.5% about the mean value. This also ensures that the aver-
age diffusivities computed for each porosity using 10 reconstructions
is statistically representative.

The results from Figure 8 can be used to develop a functional depen-
dence of the effective diffusivity of the CL to its porosity. Macro-scale
MEA models9–11,51,52 rely on such semi-empirical relations to compute
the effective diffusivity in the fuel cell porous media. Recently, Zheng
and Kim31 and Shin et al.53 have proposed a tortuosity model given
by Equation 11 to estimate the effective diffusivities for the CLs,

De f f = εV

τ
D [11]

where the tortuosity factor (τ) in Equation 11 is related to the porosity
using a Bruggeman type correlation,

τ = ε−α
V [12]

where α is a fitting parameter which has a value of 0.5 for the Brugge-
man correlation. Zheng and Kim31 computed a value of 0.75 for α
and used D = 1.07Dmolecular to fit the effective diffusivity values.
Shin et al.53 computed the value of α to be 0.746 using the shape of
streaklines and used D = DKn

avg. However, a common problem with the
correlation of the form proposed in Equation 11 is the lack of infor-
mation about the connectivity of the pores, as the porous media will
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Figure 6. Chord length function in the void phase in: a) x and b) y direction for stochastic reconstructions with particle radius of 20 nm; c) x and d) y direction for
stochastic reconstructions with particle radius of 30 nm; e) x and f) y direction for stochastic reconstructions with particle radius of 40 nm; g) x and h) y direction
for stochastic reconstructions with particle radius of 50 nm.

continue to have a non-zero diffusivity even at extremely low porosi-
ties. A consequence of this can be found in the optimization study
by Secanell et al.51 where the optimal CL porosity was computed as
2.5%, whereas in reality such low porosities are likely to lead to a loss
of percolating pore network.

An alternate correlation to determine the effective diffusivity for
the CLs is based on percolation theory11,54–56 and given by,

De f f = Dpore

(
εV − εth

1 − εth

)μ

H(εV − εth ) [13]
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Figure 7. Pore phase of one of the CL reconstructions with a porosity of a) 7%, b) 50% and c) 70% using a particle radius of 40 nm. The pores are colored
according to their radius in cm.

where εth is the percolation threshold value and μ is a fitting parameter.
The Heaviside step function (H(εV −εth )) in Equation 13 is added to en-
force that, for porosities below the percolation threshold, the effective
diffusivity is zero because a percolating gas diffusion network would
not exist. This is a major distinguishing factor from the Bruggeman
correlation and previous correlation functions based on Equation 11
such as the work of Zheng and Kim31 and Shin et al.53 which could
predict non-zero effective diffusivities below the percolation thresh-
old.

The bulk diffusivity (Dpore) of the CL in Equation 13 is obtained
using the Bosanquet approximation given by Equation 6 where the
average Knudsen diffusion coefficient (DKn

avg) can be computed using
Equation 7 and the local pore radius (rp) must be replaced by a mean
pore radius (ravg). Equations 13 and 6 are fitted to the effective dif-
fusivities of the stochastic CL reconstructions shown in Figure 8 to
estimate exponent (μ).

The statistical reconstruction simulation results can also be used to
estimate the fitting parameters in Equation 13 and the most appropri-
ate Knudsen mean pore radius. In this case, εth is estimated by direct
analysis of the percolating pore network for the stochastic reconstruc-
tions. As mentioned earlier, for porosities below 6% there was loss of
percolating pore network in at least one or more Cartesian directions
for the reconstructions. Therefore, εth is chosen to be 0.05 which is
the value above which a percolating pore network exists.

To compute the average Knudsen diffusion coefficient (DKn
avg), an

average pore radius (ravg) must be computed. The average pore radius is
computed as the arithmetic mean of the pore radii for every pore,31,35,53

ravg =
[∫

i
ri

dXi

dr
dr

]
[14]

where dXi is the volume fraction of pores having radius ri. Since
the pore radius is directly proportional to the Knudsen diffusivity,

Figure 8. Effective diffusivity in the a) x, b) y and c) z direction as a function of the porosity. d) Average effective diffusivity for rd = 20 nm and rd = 40 nm as a
function of porosity. The best fit line is estimated based on Equation 13 with εth = 0.05 and μ = 1.90, which is the fitting parameter estimated using least square
fit, for the results for reconstructions with rd = 40 nm.
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Figure 9. Average Knudsen radius as a function of porosity for stochastic
reconstructions with particle radius of 20–40 nm. The dashed lines are the best
fit lines for average Knudsen radius as a function of rd and εV .

this method assumes that the average Knudsen radius is such that it
results in an average Knudsen diffusivity equivalent to the effective
Knudsen diffusivity obtained when transport through all pores occurs
in parallel. Figure 9 shows the average Knudsen radius computed using
the PSD of the stochastic reconstructions with rd = 20, 30 and 40
nm and Equation 14. As discussed earlier, for porosities below 6%
and higher than 70% there is a loss of percolating pore and solid
network respectively. Therefore, ravg for these porosities are not shown
in Figure 9 and not taken into account to determine the best fit curve.
The best fit curves in Figure 9 were estimated by minimizing the least-
square of the difference between ravg.

ravg = rd

(
1.66ε1.65

V + 0.289
)

[15]

For the coefficients given in Equation 15, the R2 value for the fit is
0.996.

Once εth and ravg have been obtained, the value of μ is obtained by
minimizing the least-square difference between the results in Figure 8
and Equation 13 with εth = 0.05. The optimal value of μ obtained for
all the cases is 1.90. The R2 values for the fit is 0.994 indicating a good
fit between the data and Equation 13 with εth = 0.05 and μ = 1.90. In
summary, Equation 13 with εth = 0.05, μ = 1.90 and Dpore obtained
using Equations 6, 7 and 15 provides an excellent prediction of gas
diffusivity for a statistically representative CL structure. Figures 8a–8c
show the best fit for effective diffusivity in the x, y and z directions as
a function of porosity. Figure 8d shows the best fit line for the average
effective diffusivity (De f f ) of the reconstructions with rd = 40 nm as
a function of porosity.

10 reconstructions with rd = 20 nm and porosities ranging from
0.06–0.7 were generated. The effective diffusivity for these reconstruc-
tions was computed as shown in Figure 8d. The effective diffusivity for
reconstructions with rd = 20 nm are smaller than the reconstructions
with rd = 40 nm due to the smaller pore sizes for the former case. This
was also shown earlier in Figure 4 for reconstructions with a porosity
of 0.4. To further assess the validity of the Equations 6, 7 and 15, they
were used to predict the effective diffusivity for reconstructions with
rd = 20. From Figure 8d it is clear that the correlation proposed by
Equations 6, 7 and 15 with μ = 1.90 and εth = 0.05 can accurately
predict the dry effective diffusivity even for reconstructions with a
different microstructure from those used to develop the correlations.

Comparison to literature.—In order to assess the validity of the
diffusivities calculated using the stochastic reconstructions and used
to derive the correlation function above, the predicted diffusivities in
this article are compared to previously reported literature values. To
aid in this comparison the formation factor (F ) is used. The formation
factor is defined as,

F = De f f

Dmolecular
. [16]

Figure 10. Comparison of average formation factor (F avg) for the stochastic
reconstructions based on overlapping spheres with previously published studies
in literature. Lange et al.,35 Fathi et al.,32 Siddique and Liu,57 Zheng and
Kim31 and Shin et al.53 computed the effective diffusivities numerically using
stochastic reconstructions for CLs. Yu et al.58 and Inoue et al.59 experimentally
measured the effective diffusivity of CLs with different ionomer loadings.

The average formation factor value at a given porosity is deter-
mined by averaging the effective diffusivities in the three Cartesian
directions over the 10 reconstructions. The average formation fac-
tor for the stochastic reconstructions at a porosity of 40% (simi-
lar to the porosity of 39.7% for the FIBSEM CL) is 0.037 which
is similar to the average formation factor of 0.025 ± 0.010 (x and
y average and standard deviation) for the reference FIBSEM CL.
The standard deviation in the formation factor for the reference
FIBSEM CL is computed from the domain size study performed
in Reference 34. The z direction values for the FIBSEM recon-
struction are not considered due to the artificial anisotropy in the z
direction.34

Figure 10 provides a comparison of the obtained average over-
all formation factors obtained from the stochastic reconstructions to
those previously reported in literature.31,34,35,53,57–59 Yu et al.58 mea-
sured the effective diffusivities for CLs with platinum supported on
amorphous carbon and platinum supported on graphitized carbon with
different ionomer to carbon ratios (I/C) ranging from 0.5–1.5. The
porosity and pore size distribution was measured using mercury in-
trusion porosimetry (MIP). The formation factors obtained from the
stochastic reconstructions show good agreement with the predicted
effective diffusivities with an error of less than 25%. Figures 11a–
11c show the pore size distributions of the stochastic reconstructions
with porosities of 0.3–0.5 compared to those measured by Yu et al.58

for similar porosities. For all porosities, the PSDs from Yu et al.58

are shifted toward higher pore sizes compared to the stochastic re-
constructions. Further, the PSDs from Yu et al.58 did not consider
pore sizes less than 25 nm due to limitations of the equipment. This
resulted in the higher probability values for the larger pores com-
pared to the PSDs from the stochastic reconstructions. The discrep-
ancy in the formation factor values is likely due to the different mi-
crostructures for the CLs from the two studies as evident from the
PSDs.

Inoue et al.59 measured the effective diffusivity of CL samples with
ionomer to carbon ratios of 0.8–1.4. The formation factor values re-
ported by Inoue et al.59 are 3–4 times smaller than predicted effective
diffusivity values from the stochastic reconstructions with porosities
in the range of 0.4–0.6. For porosities higher than 0.6, the error reduces
to less than 40%. To identify the reason for discrepancy in the forma-
tion factor values, the pore size distributions reported by Inoue et al.59

using N2 adsorption are analyzed for ionomer to carbon ratio of 1 and
1.3 corresponding to a porosity of 0.5 and 0.6 respectively. Figures 11c
and 11d show the comparison of the PSDs from Inoue et al.59 to the
stochastic reconstructions. For εV = 0.5, the PSD from Inoue et al.59

are similar to the stochastic reconstructions with pore sizes as high
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Figure 11. Comparison of PSD of stochastic reconstructions with rd = 40 nm and porosity of a) 0.3, b) 0.4, c) 0.5 and d) 0.6, to experimentally measured PSDs
for CLs with different ionomer to carbon ratio.58,59 (∗Porosity was estimated based on the reported I/C ratio of the samples used for nitrogen adsorption and the
reported porosity values for the CLs with the same I/C ratio.)

as 213 nm. For εV = 0.6, the PSD from Inoue et al.59 shows a higher
probability for pore sizes less than 100 nm compared to the stochas-
tic reconstructions, which might lead to a lower effective diffusivity
observed by Inoue et al.59 Analysis of the two PSDs however, does
not provide any conclusive information to explain the high discrep-
ancy between the predicted formation factors in this study and those
obtained by Inoue et al.59 Further, the formation factor calculations on
FIBSEM reconstructions of the CLs performed by Inoue et al.59 also
overpredicted the formation factors by 2 times. Since Inoue et al.59 did
not report any of the statistical functions for their reconstructions it is
difficult to ascertain the reason for the overprediction of the diffusivity
values by the simulations.

Lange et al.35 numerically studied the effective diffusivity in
stochastic reconstructions generated using overlapping spheres simi-
lar to this work. The formation factor values from Lange et al.35 are
much higher than those obtained in this work. This is surprising be-
cause the particle diameter used by Lange et al.35 is 20 nm which is
smaller than the one used in this study and the effective diffusivity in-
creases with an increase in particle diameter.35 Further, Lange et al.35

also accounted for local Knudsen effects similar to this work. The dif-
ference between the effective diffusivity values could be attributed to
the method used to compute the local Knudsen effects. Lange et al.35

used an average length in the directions around a pore. This approach
underestimates the Knudsen resistance as shown by the Zheng and
Kim31 who compared the approach proposed by Lange et al.35 to re-
sults from erosion-dilation based pore radius (similar to this study)
and LBM.

Fathi et al.32 used an overlapping sphere based stochastic recon-
struction, similar to Lange et al.35 and this article, to study the effective
diffusivity as a function of porosity. As seen in Figure 10, the diffusiv-
ity values obtained by Fathi et al.32 are higher than those obtained in
the present study. This is again due to the underprediction of Knudsen
effects due to the use of an average length around the pore similar to
Lange et al.35

Siddique and Liu57 used a heuristic pixel based reconstruction
method to generate CL reconstructions with different porosities and
then performed numerical simulations on the reconstructions to ob-
tain the effective diffusivities. The results from this study are in good
agreement with those from Siddique and Liu57 as shown in Figure 10
with a discrepancy of less than 10% for porosities in the range of
0.4–0.6.

Zheng and Kim31 numerically computed the effective diffusiv-
ity for CL microstructures with different porosities generated using
a sphere based simulated annealing method. The effective diffusivi-
ties by Zheng and Kim31 were computed using continuum simulations
using a local Knudsen resistance with the pore radius computed us-
ing morphological image opening, similar to the spherical pore radius
used in this study. However, for the continuum simulations they used
a mean pore radius to estimate the Knudsen diffusivity and did not
account for the local Knudsen resistances. They also used LBM to
compute the effective diffusivities of the microstructures. The average
formation factor values from the stochastic reconstructions at differ-
ent porosities in this study are in good agreement with the formation
factor results from Zheng and Kim31 using LBM and erosion-dilation
approach with a maximum error less than 10% except for the forma-
tion factor computed at a porosity of 30% using the erosion-dilation
method where the error is 22%. This comparison also shows the ac-
curacy of continuum models that account for local Knudsen effects is
similar to that of LBM while being computationally efficient.

Shin et al.53 computed the effective diffusion coefficient for ran-
domly generated CL microstructures. Although the formation factor
values from Shin et al.53 are in good agreement with the results from
Zheng and Kim31 and this work, the numerical method used by Shin
et al.53 is questionable. Firstly, the voxel resolution was set to 20 nm
which would ignore the smaller pores in the CL which are seen in
the FIBSEM reconstruction34 as well as experimental PSDs.58,60,61

Coarsening the voxel resolution also leads to an increase in the effec-
tive diffusivity value as shown in our previous work.34 Secondly, the
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effective diffusivity is computed using,

De f f = εV

τ
DKn

avg [17]

where εV is the porosity, τ is the tortuosity factor computed from an
effective relation between the effective molecular diffusivity to the
bulk molecular diffusivity53 and DKn

avg is the average Knudsen diffu-
sivity computed from a mean pore size. This correlation ignores any
effect of the molecular diffusivity which is typically accounted for
using the Bosanquet equation.31,34,35 Further, local Knudsen effects
are ignored when using a mean pore diameter which would lead to
higher diffusivities.31,35 This is partially compensated by multiplying
the average Knudsen diffusivity by the ratio of εV

τ
.

Comparison of the average formation factors from the stochastic
reconstructions used in this work to previously reported numerical
and experimental data shows that the values are in good agreement.
Additionally, the previous numerical studies did not compare the sta-
tistical equivalence of the generated microstructures to an actual CL
morphology which was done for the stochastic reconstructions used in
this study. This provides good confidence in the predicted diffusivity
values to develop an effective diffusivity correlation for the CL.

CLs gas diffusivity under wet conditions.—To study the effect of
local saturation on the effective diffusivity, liquid water was intruded
into the reconstructions using the nucleation based water intrusion
method described in Water intrusion algorithm section. The smallest
pores, i.e., pores having a radius of 2 nm, were treated as nucleation
sites and assumed to be initially filled. The reason for treating these
pores as nucleation sites has been explained earlier in Water intrusion
algorithm section. Water intrusion was then carried out using the CFM
algorithm described in Algorithm 1 with n = 100 and a hydrophobic
contact angle (θ) of 93◦ was assumed based on the environment scan-
ning electron microscopy measurements reported in Reference 62.
Although a contact angle of 93◦ was assumed for this study, it was
shown in our previous work22 that the liquid water distribution using
the CFM algorithm does not change with contact angle as long as the
pore wettability (i.e., hydrophilicity or hydrophobicity) remains the
same. The contact angle only changes the value of the capillary pres-
sure required to intrude the pores. The liquid distributions, and hence
the effective diffusivity at a given saturation, does not change with
contact angle. Partially saturated CL reconstructions were recorded at
intervals of at least 5% saturation difference. The partially saturated
CL reconstructions were then converted to voxel based meshes by di-
rect conversion of voxels to mesh cells. The pores filled with liquid
water were assumed to be impervious to gas transport and therefore,
considered part of the solid region. The local pore radii were recom-
puted to account for the change in the Knudsen effects due to liquid
water intrusion. The effective pore networks, i.e., pores not flooded

Figure 13. Ratio of the average wet effective diffusivity to the average dry
effective diffusivity as a function of saturation. The best fit line is estimated
based on Equation 18 with a value of exponent γ shown in the graph, which is
the fitting parameter estimated using least square fit. Fathi et al.32 and Zheng
and Kim31 numerically computed the effective diffusivity for partially saturated
stochastic CL reconstructions.

with liquid water, were extracted and used for gas transport simula-
tions.

Effect of local saturation.—To study the effect of local saturation
on the effective diffusivity, stochastic reconstructions with rd = 40 nm
and porosities in the range of 0.3–0.6, typical for fuel cell CLs,58,63

were used. Figure 12 shows the liquid water distribution in one of the
CL reconstructions with a dry porosity of 0.5 at various saturations.

Figure 13 shows the ratio of average wet effective diffusivity to the
average dry effective diffusivity for stochastic reconstructions with
porosities in the range of 0.3-0.6. As shown earlier for the dry case,
the effective diffusivities in the three Cartesian directions were similar
therefore, only the average effective diffusivity is shown for the wet
case. The wet diffusivity of the CLs decreases with an increase in the
saturation as seen in Figure 13. Further it can be seen that for a given
saturation the ratio of the wet effective diffusivity to the dry effective
diffusivity is almost identical for all the stochastic reconstructions
irrespective of their porosity. This indicates that the ratio of the wet
effective diffusivity to the dry effective diffusivity is independent of
the dry porosity. The predicted effective diffusivities of the partially
saturated stochastic CL reconstructions are in good agreement with
the average (of x and y) wet diffusivities obtained from the FIBSEM
CL reconstruction with a maximum error of 18% for saturations below
45%.

Figure 12. Liquid water distribution in a partially saturated CL reconstruction with a dry porosity of 50% at a saturation of a) 29.7%, b) 55%, and c) 79.3%. Black
is solid phase, white is pore phase and blue is liquid water.
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Figure 14. Variation of a) threshold saturation and b) effective porosity at threshold saturation with porosity for the different stochastic reconstructions.

Similar to the dry case, the results in Figure 13 can be used to
estimate a correlation for the effective diffusivity of partially satu-
rated CLs. A power law is commonly used to describe the ratio of
wet effective diffusivity to dry effective diffusivity of fuel cell porous
media.23,31,32,64 Equation 18 shows the correlation used to estimate the
best fit curve in Figure 13, where De f f

dry is given by Equation 13, s is
the saturation and γ is an empirical coefficient estimated by minimiz-
ing the least square difference between the results in Figure 13 and
Equation 18,

De f f
wet = De f f

dry (1 − s)γ H(εV (1 − s) − εth ). [18]

The optimal value of γ estimated using a non-linear solver is 2.41
which gives a R2 value of 0.995 for the curve fit. To estimate the
functional form of the Heaviside step function in Equation 18, the
saturation threshold (sth), i.e., the saturation above which a percolating
gas network does not exist, is shown in Figure 14a. The saturation
threshold increases from 0.84 to 0.92 when the porosity increases from
0.3–0.6. Thus, a Heaviside step function of the form H(s− sth ) cannot
be used as sth depends on the porosity of the CL. However, a plot of
the effective porosity at the saturation threshold shown in Figure 14b,
is nearly constant at 0.047 except for the reconstructions with εV =
0.5, which is slightly higher at 0.056 due to outliers. Therefore, the
functional form of the Heaviside step function shown in Equation 18
is appropriate as it accounts for the loss of the percolating gas network
with an increase in saturation with the percolation threshold (εth) still
having a value of nearly 0.05.

Figure 13 also shows a comparison of the predicted wet effective
diffusivities from the present study to previous numerical studies.31,32

Fathi et al.32 intruded water into the stochastic CL reconstructions us-
ing a nucleation approach similar to this study. However, they used a
physics based volume of fluid (VOF) method to track the liquid intru-
sion as opposed to the image based CFM approach used in this study.
Fathi et al.32 proposed a correlation for the ratio of wet effective diffu-
sivity to dry effective diffusivity of the form shown in Figure 13. The
wet effective diffusivities obtained by Fathi et al.32 are higher than
those predicted from the current study. The higher values obtained by
Fathi et al.32 are likely due to the underprediction of the Knudsen ef-
fect as shown earlier for their dry effective diffusivities. Further, Fathi
et al.32 did not account for the change in Knudsen radius with satura-
tion which results in an overprediction of the effective diffusivities as
shown by Zheng and Kim.31

Zheng and Kim31 used LBM to intrude liquid water into a stochas-
tic CL reconstruction. They claimed to have simulated liquid water
generation due to the ORR in the CL however, this is difficult to
assess as the numerical details for the liquid water intrusion model
were not provided. The wet effective diffusivities computed using
LBM by Zheng and Kim31 and fitted to a power law, similar to this
study, are shown in Figure 13. The value of γ computed by Zheng and
Kim31 was 3.062 for a pressure of 1 atm and changed to 2.982 at a
pressure of 1.5 atm. Zheng and Kim31 also reported that when using

pore scale simulations without accounting for local Knudsen effects
the γ value reduced to 1.815. The value of γ obtained in the cur-
rent study is smaller than that predicted from the LBM simulations in
Reference 31.

The discrepancy between the γ value from Zheng and Kim31 and
the current study might be due to two reasons. Firstly, the higher order
LBM method is able to account for Knudsen effects more accurately
for water-air interfaces than the assumption of impermeable water in-
terface used in this study. The second reason could be the difference
in the microstructure of stochastic reconstructions. The mean pore
diameter for the reconstructions by Zheng and Kim31 ranges from 71–
154 nm for porosity range of 0.3–0.7 while for the present study the
mean pore diameter ranges from 50–100 nm for the same porosity
range. Statistical correlation functions were not provided by Zheng
and Kim31 for their structures therefore, the differences in the mor-
phology of the reconstructions cannot be analyzed. Further, Zheng and
Kim31 used only a single base structure to compute the wet effective
diffusivities so they did not account for any statistical variability in the
structures or effect of porosity. In the present study, the correlation is
derived based on nearly 450 data points from 40 reconstructions with
porosities in the range of 0.3–0.6. The value of γ computed from the
present results can range between 2.24–2.51 depending on the data
set used. Therefore, it is reasonable to assume that the wet effective
diffusivities predicted in the current study are within the bounds of
microstructure variation.

Thus far, the article has shown that using an effective porosity for
the wet samples defined as εe f f = εV (1 − s), resulted in a constant
saturation threshold. It is reasonable to ask if, instead of using Equa-
tion 18, which adds a new term and coefficient to Equation 13, the
latter could be used by simply replacing εV by εe f f in Equations 13
and 15. Thus, the following correlation,

De f f = Dpore

(
εV (1 − s) − εth

1 − εth

)μ

H(εV (1 − s) − εth ) [19]

is used withμ=1.90 and εth =0.05 to predict wet diffusivity. Figure 15
shows a comparison of the two correlations given by Equations 18
and 19 as a function of the effective porosity. For Equation 18, the
wet effective diffusivity depends on the dry effective diffusivity and
hence, the dry porosity therefore, the two extreme cases with porosi-
ties of 0.3 and 0.6 are shown in Figure 15. The expression given by
Equation 19 provides a R2 value of 0.986 compared to 0.995 when
using Equation 18. Therefore, Equation 19, although does not provide
as good of a fit as Equation 18, provides an excellent approximation
while removing the need for an extra parameter.

The correlation for the effective diffusivity proposed in this study
was developed by validating the statistical functions of the stochastic
reconstructions against an inkjet printed CL. Further, the predictions
of the dry diffusivity of the CLs with different porosities were found to
be consistent with experimental data which were for different CLs than
the one used in this study. Also, based on comparison of the predictions
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Figure 15. Comparison of wet effective diffusivity as a function of effective
porosity (εe f f ) using the two correlations (Equations 18 and 19) proposed in
this study.

for the reconstructions with a different rd (than the one used to develop
the correlation), as shown in Figure 8d, the correlation should be valid
for CLs with different particle sizes (rd ). In summary, Equation 19
combined with Equations 6, 7 and 15, with only two fitting parameters,
provides an accurate prediction of dry and wet diffusivities in CL and
is suitable for use in volume-average single cell models.

Liquid-vapor interfacial area in the CL.—The liquid-vapor in-
terfacial area variation with saturation is an important parameter used
to model the liquid water evaporation in the macro-homogeneous
models.11,65,66 Zhou et al.65,66 showed that under wet conditions evap-
oration of the liquid water in the CL becomes crucial to transport
liquid water out of the CL and MPL and prevent complete flooding.
Therefore, knowledge of the liquid-vapor interfacial area variation
with saturation from the micro-scale models can be used in the macro-
homogeneous models to accurately describe the evaporation process.

As described earlier in Effect of local saturation section, stochastic
reconstructions with rd = 40 nm and porosities ranging from 0.3 to
0.6 at different saturations were used. Figure 16 shows the specific
liquid-vapor interfacial area as a function of the saturation. The specific
interfacial area is defined as the liquid-vapor interfacial area per unit
volume of the CL. Since the total CL volume for all the reconstructions
irrespective of their porosity is the same, the specific interfacial area
is directly proportional to liquid-vapor interfacial area. The interfacial
area increases with saturation to a maximum at a saturation of nearly
75% and decreases to zero at 100% saturation. An increase in porosity
leads to an increase in the specific interfacial area at a given saturation.
The increase in the specific interfacial area becomes more prominent

Figure 16. Specific liquid-vapor interfacial area as a function of saturation (s)
for the stochastic reconstructions with rd = 40 nm and porosities ranging from
0.3 to 0.6.

around the maxima where the difference between the interfacial area
for reconstructions with porosity of 0.6 is nearly 30% larger than the
interfacial area for the reconstructions with porosity of 0.3.

It must be noted that the liquid-vapor interfacial area would depend
on the wettability of the pores and the pore sizes. Therefore, this prop-
erty would strongly depend on the type of CL used and the data should
be treated with care when trying to extrapolate to different CLs.

Conclusions

Numerical simulations on CL stochastic reconstructions, gener-
ated using an overlapping sphere algorithm, were used to determine a
general equation to estimate dry and wet effective diffusivity in CLs.
First, a representative CL microstructure was obtained by comparing
statistical correlation functions for the stochastic reconstructions to
those obtained from the FIBSEM reconstruction of a thin, low load-
ing CL. It was found that stochastic reconstructions with rd = 40 nm
had two-point correlation function, chord length function, pore size
distribution, specific interfacial area and mean chord length similar to
those from the FIBSEM reconstruction thereby, warranting the use of
these reconstructions to study the gas diffusivity in the CL. The de-
tailed comparison of the statistical functions also provides a method
to determine the representativeness of the stochastic reconstructions
for fuel cell porous media, which has largely been ignored in prior
numerical studies.

Then, gas diffusion was studied in the stochastic CL reconstruc-
tions with varying porosities under dry conditions. Analysis of the
percolating pore network at different porosities showed that for porosi-
ties below 6% there was a loss of percolating gas network in the CL
reconstructions. Effective diffusivity was isotropic for the stochastic
reconstructions and increased with an increase in the porosity. A cor-
relation for the effective diffusivity of the CL and its porosity was
developed based on percolation theory. An empirical correlation was
developed for the Knudsen radius based on the analysis of the pore size
distributions for the stochastic reconstructions and used to compute the
bulk diffusion coefficient in the pores which was used in the correla-
tion. The percolation threshold was computed from the analysis of the
percolating pore network and found to be 0.05 while the exponent for
the correlation was computed to be 1.90. The effective diffusivity pre-
dictions for the stochastic reconstructions under dry conditions were
also compared to experimental and numerical values from literature
and found to be in good agreement.

To study the impact of local saturation on the gas transport in the
CL, a novel nucleation based water intrusion algorithm is presented.
A cluster based full morphology algorithm is used to track the liquid
water interface. The liquid-vapor interfacial area which is critical to
estimate the evaporation rates in macro-homogeneous models was cal-
culated as a function of saturation for the different CL reconstructions.
The liquid-vapor interfacial area increased to a maximum up to a sat-
uration of nearly 75% and then decreased to zero at 100% saturation.
Gas diffusion simulations were carried out on the partially saturated
CL reconstructions with dry porosities in the range of 0.3–0.6. To ac-
count for the change in the pore morphology and Knudsen effects,
pore sizes were recalculated assuming liquid water to be impervious
to gas. The predicted effective diffusivity decreases with an increase
in saturation for all the reconstructions. At a given saturation, the ratio
of wet effective diffusivity to dry effective diffusivity were similar for
all reconstructions irrespective of their porosity. The predicted wet ef-
fective diffusivities were used to develop a correlation valid for both
dry and wet effective diffusivity in the CLs.
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