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ABSTRACT 

 

Efforts linked to connected and autonomous vehicles (CAVs) have exploded in the last several 

years, and they are already beginning to impact people's daily lives. A growing number of 

businesses and academic institutions have made public announcements about their CAV efforts, 

and a few have even begun conducting field experiments. Governments all around the globe have 

also put rules in place to help hasten the adoption of CAV technology. CAV cyber security has 

emerged as a major concern, adding significantly to the difficulties of implementing CAV. 

However, there is no globally accepted or acknowledged paradigm for CAV cyber security. A 

UML-based CAV cyber security framework is proposed in this research according to UK CAV 

cyber security standards. It is based on this framework that possible CAV vulnerabilities are 

classified. Based on the highly tested KDD99 benchmark data set, a new CAV cyber-attack data 

set (called CAV-K99) is created. Communication-based cyberattacks against CAVs are the focus 

of this data set. Two machine learning techniques, Decision Tree and Naive Bayes, are used to 

create two classification models based on the CAV-K99 training data set. Comparisons are made 

regarding the models' accuracy, precision, and runtime for each sort of communication-based 

attack. The Decision Tree model has been proven to be better suitable for detecting CAV 

communication attacks and has a shorter runtime. 
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1. Introduction 

 

1.1 A new study area, connected and autonomous vehicles (CAVs), has recently gained much 

attention [1]. CAVs are becoming increasingly popular in both study and experimentation. In 2015 

[2], the government of the United Kingdom established a government centre known as the "Centre 

for Connected and Autonomous Vehicles”. In 2018 [3], this centre produced a report on research 

and development efforts involving connected and autonomous vehicles.  In 2017 [4], the House of 

Lords produced a study titled "Connected and Autonomous Vehicles: The Future". The British 

Standard Institution (BSI), including many other enterprises, in the United Kingdom, produced a 

standard strategy report on CAVs in 2017 [5].  

“Connected and ‘Automated’ Vehicles” has also been used in several publications. The Transport 

Systems Catapult [6], a UK-based innovation hub, uses the word ‘Automated’ on its website. CAV 

naming is inconsistent in the literature because it is still a growing paradigm. As a result, we use 

the phrase 'Connected and Autonomous Vehicle' in this report, which is synonymous with 

'Connected and Automated Vehicles' in the literature . 

1.2 Wireless communication and automation are the main attributes that CAVs are said to have. 

To plan their routes and interact with nearby vehicles within a linked network, they rely on data 

from other vehicles or infrastructure. The term "full automation" refers to a vehicle's ability to 

perform all dynamic driving operations and emergency procedures automatically, in real-time, 

without the need for the driver's involvement [7]. 

The Society of Automotive Engineers (SAE) [8] has categorized vehicle automation into six levels 

based on a variety of factors, including the capacity to perform lateral and longitudinal driving 

tasks at the same time, the potential to perceive and respond to objects and events, the ability to 

bounce back from a system failure, and the operational design domain constraint. The driver's and 

CAV system's responsibilities vary depending on the level of automation. The table below 

summarizes the details of level zero to level five automation. 

 

Table 1: Automation Levels defined by the Society of Automotive Engineers (SAE) [8] 

Level 0 No Driving 

Automation 

 The driver performs all vehicle motion control functions.  

 The driver is in charge of keeping an eye on the surroundings 

and reacting to them. 

 If a system failure occurs, it is the driver's responsibility to 

restore it.  

 At this level of automation, the operational design domain does 

not exist. 



Level 1 Driver 

Assistance 

 The driver and the system work together to complete the driving 

task. The system can only regulate motion in one of two 

directions: longitudinal or lateral.  

 The driver is in charge of keeping an eye on the surrounding 

objects and events.  

 If a system failure occurs, it is the driver's responsibility to 

recover. 

 At this automation level, the operational design domain is 

constrained. 

Level 2 Partial 

Driving 

Automation 

 The system can control both longitudinal and lateral motion at 

the same time. 

 The driver is responsible for keeping an eye on all of the items 

and occurrences in their direct proximity.  

 If a system failure occurs, it is the driver's responsibility to 

ensure that the system is restored.  

 At this degree of automation, there is a restricted operational 

design domain to work with. 

Level 3 Conditional 

Driving 

Automation 

 The system can control both longitudinal and lateral motion at 

the same time.  

 The system keeps track of the objects and events in its direct 

proximity and responds to them.  

 In the event of a system breakdown, the driver must be prepared 

to respond to system requests or even take over direct control 

of the cars.  

 At this degree of automation, there is a restricted operational 

design domain to work with. 

Level 4 High 

Driving 

Automation 

 The system can control both longitudinal and lateral motion at 

the same time.  

 The system keeps track of the objects and events in its direct 

proximity and responds to them.  

 If a system failure occurs, it is the system's responsibility to 

recover from the failure.  

 At this degree of automation, there is a restricted operational 

design domain to work with. 



Level 5 Full Driving 

Automation 

 The system can control both longitudinal and lateral motion at 

the same time. 

 The system keeps track of the objects and events in its direct 

proximity and responds to them.  

 If a breakdown occurs, it is the system's responsibility to 

recover from the failure.  

 At this level of automation, the operational design domain is 

virtually limitless. 

 

However, because of the unique characteristics of connectivity and autonomy, CAVs might be a 

little more sensitive to cyber-attacks and, therefore, more vulnerable while communicating 

information with their surroundings and other cars on the road [9]. Cyber security protects a 

computer system's functionality from cyber-attacks, especially harm to its infrastructure, 

programming, and data [10]. Cyber security in CAVs ensures the safety of the CAV system against 

cyber-attacks that damage the CAV's functionalities. 

Furthermore, cyber-attacks on CAVs might be carried out both physically and remotely in order 

to steal, change, or destroy data. CAVs, which are expected to be the biggest portable devices in 

the near future, may have severe repercussions in people's lives, including the loss of sensitive data 

and the risk for catastrophic physical damages. In early 2018, an Uber autonomous car collided 

with a biker during road testing [11]. 

Tesla vehicles have also been linked to deadly accidents in the United States  [12] and China [13]. 

According to Tesla, the driver's hands weren't detected on the steering wheel for six seconds just 

before collision in the United States. Even though the autopilot system was already activated, the 

automobiles should be characterized as a driver aid system rather than a completely autonomous 

system, as per automation levels defined in Table 1. 

White-hat hackers in the United States have already successfully targeted the Grand Cherokee, 

gained control of the car and manipulated its windows [14]. As a result, even in the early phases 

of development, there is a strong need to explore CAV cyber security vulnerabilities. The CAV 

Standard Report has rated cyber security dangers as 'Very High,' [15] and the UK government 

issued the CAV Cyber Security Principles [16] in August 2017. Because of the substantial 

influence of CAVs on people's everyday life, CAV cyber security should be given top priority and 

addressed as soon as possible. These issues fueled the investigation into the CAV cyber security 

framework presented in this study.  

CAV developers encounter complex cyber security problems as they create their products. For 

starters, the peculiarities of CAV cyber security make it difficult to anticipate all possible attacks 

before they occur. All developers and users must be aware that they must continually react to 

unexpected threats, as attack patterns are always changing. Hackers only need to discover one 

vulnerability flaw to execute an attack, but defenders must analyze all possible threats to protect 

CAVs. Second, CAVs are made up of various components and functionalities. Even if one of them 



fails, the system as a whole can fail. Vulnerability testing is challenging given the multiple 

functions that operate together in a dynamic CAV system. Third, the many sensors in 

CAVs, capture massive volumes of data, which is challenging to handle, leave alone the aspect 

that the data is collected in various formats. To make data processing easier, the format and 

structure of the data input should be compliant with CAV protocols. Finally, CAVs connect via 

Wifi, Dedicated Short-Range Communications (DSRC), and Bluetooth, among other wireless 

communication networks. As a result, preventing CAV cyber security attacks is more challenging 

than preventing problems in wired networks. 

There have been considerations of possible cyber security concerns in CAVs in the 

existing literature and attempts to design applicable frameworks to handle them. Nevertheless, 

there is still a need for a generally adopted structured methodology in which all sorts and areas of 

CAV cyber-attacks can be reliably identified and characterized and efficiently prevented. I will be 

presenting a brief description of the current state of CAV cyber security progress in this research 

and will design a UML-based framework for CAV relying on the principles [16] of UK CAV cyber 

security. 

The new approach allows for more in-depth evaluation of cyber security concerns in CAV systems. 

In addition, the intrusion detection standard data set KDD99 [17] yields a new data set 

named CAV-K99. The attacks that are not relevant to CAV and duplicated in KDD99 have been 

eliminated from this new data set. The CAV-K99 data set includes 14 communication-based sub-

attacks in CAV. Two machine learning algorithms, Decision Tree and Naive Bayes, are examined 

on the new data set and their efficiency, precision, and runtime is compared. Both methods are 

found to have equal accuracy, with Decision Tree having a faster runtime. Both systems, however, 

perform badly when it comes to identifying threats that aren't visible. 

This is an intriguing topic for further research. The rest of this research is laid out as follows: A 

brief review of the relevant work on CAV cyber security is presented in Section 2. Section 3 uses 

UML to establish the interactions between elements in the CAV framework, and every class is 

explained in depth. Based on the latest CAV cyber security UML architecture, potential attack 

areas for CAVs are also described. In Section 4, the overlapping sorts of cyber-attacks in the 

benchmark data set, KDD99, are eliminated according to the new CAV framework. Section 5 

statistically analyses the newly generated data set, named CAV-K99, predicated on that CAV 

framework. Two classification models are created using machine learning methods, and their 

performance in diagnosing CAV cyber-attacks is evaluated in terms of latency, accuracy, and 

precision. Section 6 brings the discussion to a conclusion by outlining my suggestions for further 

research.  

 

 

 

 



2. Associated Cyber Security Work on CAV 

 

As CAV’s, being a relatively new study area, have lately garnered considerable attention 

throughout the world. Governments, businesses, research institutes, the media, and the general 

public have all been emphasizing on the development of CAVs, and some breakthrough has 

already been achieved. Some states in the USA have already enacted legislation permitting CAV 

road tests. [18] 

Google [19] began developing self-driving cars in 2009, formed its subsidiary firm Waymo in 

2016, and began a pilot program in Phoenix in 2018 to allow a small number of users to request 

driverless trips (where there is still a supervising driver in the vehicle for safety). Tesla [20] has 

been testing self-driving car technology on the road and commercializing it. Many papers have 

been published by colleges and universities in the United States, including the University of 

Michigan [21], with a Mcity test zone nearby. 

Traditional leading automobile manufacturers in Europe, including BMW, Audi, and Mercedes 

Benz, have all made significant investments in CAV development [22]. Shanghai [23] was the 

location of the very first CAV test field in China. Baidu's Apollo CAV platform has been created, 

to produce Level 3 autonomous cars by 2019 [24]. Changan, BYD, Guangzhou Automobile Group, 

and Shanghai Automotive Industry Corp, all traditional automobile companies, have declared their 

CAV development ambitions [25]. 

Every year, a communication platform for the practical application of CAVs is offered at a CAV 

competition between universities [19] in China, on which the drawbacks and strengths of CAV 

may be identified, thereby adding to CAV research. Alibaba [26] and Didi Chuxing [27], both IT 

businesses, have entered this competitive arena. Furthermore, every day, the public 

witnesses scientific progress posted on websites and newspapers. People are eager to try and buy 

CAVs with 55 percent saying they would want to ride in a fully autonomous CAV as analyzed 

through a survey [28] conducted by the Boston Consulting Group. The vast majority of them would 

be willing to pay more than five thousand dollars on CAV functionalities in their vehicles.  

Despite the significant efforts and resources made in the study and development of CAVs, there 

has been a disproportionately small amount of attention paid to the confidentiality and protection 

of CAV data. CAV cyber security is a subject with just a few books in the literature that are 

particularly related with it. Some preliminary efforts have been made to consider the possible 

attacks against CAVs, but they have been unsuccessful. A list of potential CAV cyber-attacks is 

provided in [29]. GNSS spoofing and the injecting of fraudulent messages were found amongst 

the most hazardous cyber risks, according to the analysis. 

Potential cyber-attacks were divided into two categories in [30], passive and active. Active attacks, 

such as modification and spoofing, are easy to recognize but difficult to defend against because 

attackers can modify or fake the messages in the data transmission. Passive attacks, such as 

eavesdropping and information release, are challenging to detect but easy to defend against 

because the attackers do not interact with the data. 



The authors of [31] pointed out that the present automotive safety standard ISO26262 does not 

take security into account to prevent both unintended and planned assaults. There is no common 

security or safety standard in place for CAVs at the moment. The development of CAVs would 

benefit greatly from a systematic specification of attacks and attack analysis tools. Other studies 

have explored particular assaults on CAVs, to suggest viable remedies utilising artificial 

intelligence, in addition to considerations of hypothetical attacks on CAVs. The authors of [32] 

conducted a thorough study of existing adversarial assaults on CAVs utilizing machine learning 

methods. 

 

Potential attacks were further classified as the application layer, network layer, system-level, 

privacy breaches, sensor assaults, and so on. The authors of [32] stressed the need of intrusion 

detection in CAV development. The authors of [33] developed a system to forecast the location 

and identify the jamming attacks using the machine learning technique CatBoost and a Morsel 

supple filter. 

The efficiency of vehicular communication has increased with maximum contribution from the 

anti-jamming method, which has improved accuracy and reduced packet loss ratio. The machine 

learning-based technique was shown to be successful in defending the CAV site from jamming 

assaults. CAV cyber-attacks might inflict physical harm to users, according to the preceding 

literature, unlike cyber security in other domains such as mobile devices. According to a University 

of Michigan poll [34], the public is more worried about the physical damage done by CAVs than 

the loss of sensitive data. However, there isn't enough relevant study on CAV cyber security, 

according to the findings. The European Space Agency (ESA) has issued a request for ideas for 

CAV cyber security systems that use artificial intelligence [35]. 

The following is a summary of the present research's discovered gap:  

To begin with, there is no way to systematically analyze CAV vulnerabilities. Most of the research 

has been on specific attacks on CAVs, such as location spoofing or adversarial attacks on CAV 

algorithms. 

It's also worth mentioning that there aren't many CAV cyber security data sets available because 

most studies have concentrated on theoretical elements, leaving detection tools in the dark. A 

systematic strategy for defining possible threats and establishing CAV cyber security data sets is 

required to address this vital research area in both business and academia.  

 

In this study, a UML-based CAV framework is developed to analyse possible cyber security risks 

to CAVs, based on the UK CAV cyber security framework, to aid in the creation of a systematic 

approach for safeguarding CAV systems and data exchanged. A new data set, CAV-K99, was 

created for CAV cyber security detection. In order to assess their effectiveness in identifying CAV 

cyber security threats, two machine learning models based on Decision Tree and Naive Bayes are 

created. 

 



3. UML-Based CAV Cyber Security Framework 

 

The UK government issued a paper titled "Key Principles of Vehicle Cyber Security for Connected 

and Automated Vehicles" [16] in June 2017. The UK government issued eight CAV cyber security 

principles in this paper, which cover the whole life cycle of CAVs and provide protective 

guidelines to subcontractors, suppliers, and possible third parties in terms of hardware, software, 

and data. These eight principles, whose structure is seen in Figure 1, are summarised and 

categorized in this research.  

Figure 1: Framework of cyber security guidelines for connected and autonomous vehicles (CAVs) based 

in the UK. [16] 

 

 



Principle 1 is the most significant, as shown in Figure 1 since it outlines the top-level design criteria 

for CAV cyber security. Principle 1.4 (which analyses security program design) is an important 

step toward comprehensive protection, in combination with Principles 1.2 and 1.3, including 

human elements. In terms of the security program, Principle 1.1 splits the protection procedure 

into three stages:  

1. Before the occurrence of the attacks: Relevant organizations, and manufacturers must specify 

the types of attacks that might occur, as well as the strategies for mitigating them.  

2. When assaults occur: The system should keep an eye on the whole CAV and identify attacks as 

quickly as feasible. The system must also be able to withstand assaults.  

3. After an attack occurs: The system should respond correctly to attacks and be able to recuperate 

from them.  

There is no generally adopted framework for CAV cyber security [36] in the literature, which may 

be used to define attack points and build effectivdefense solutions. The essential parts of CAV 

cyber security, according to the UK CAV cyber security principles we defined in Figure 1, are the 

defense-in-depth strategy, which covers physical, technical, and admin controls (Principle 5), 

software (Principle 6) and data (Principle 7). The risks of the CAV system may be specified, 

analyzed, and addressed before cyber security threats occur (Principles 2.1 and 2.3). Monitoring 

the CAV system during operations can assist in maintaining security throughout its lifespan 

(Principles 3.1 and 3.3). Following an assault, the CAV system may respond to and assist 

successful responses (Principles 3.2 and 8).  

As a result, CAV cyber security may be separated into three categories: hardware, software, and 

data. CAVs create hardware, software, and data, but they are nevertheless connected to the outside 

world via data exchanges with other cars, infrastructure, and pedestrians, making the 

communication channel a vulnerability as well. The connections between these elements must also 

be specified. 

In software engineering, the Unified Modelling Language (UML) is frequently used to create and 

represent system architectures [37]. A class diagram is used in UML to design a system's 

conceptual structure, displaying both the system's core components and their interactions with 

other components.  

 



Figure 2: A CAV framework based on the Unified Modeling Language (UML). [37] 

 

 

The suggested UML-based CAV cyber security framework, as illustrated in Figure 2, is designed 

to specify the interactions between each component and architecture in the CAV, including 

hardware, software, and their produced data, in order to aid the vehicle's proper operation. 

Different sorts and points of possible CAV cyber-attacks may be analysed and classified using the 

framework. Vehicle Data, Data Processor, and Vehicle Functions are the key classes in this UML-

based CAV system.  

 

3.1. Vehicle Data 

In Cav's, Vehicle Data use data to make judgments and perform appropriate vehicle functionalities. 

As a result, Vehicle Data is the most important part of the CAV system. The information in the 

Vehicle Data class may be separated into two categories: local data and external data. The Vehicle 

Data class relates to Figure 1's Principles 5–7.  



In the CAV framework, Local Data contains two sub-classes: hardware data and software data. 

These two sub-classes comprise not just data created by hardware and software, but also data about 

the hardware and software's functioning conditions. The HardwareData class contains sensor data 

acquired from the vehicle's surroundings by different CAV sensors, such as radar, GNSS, and 

camera [38]; for instance, GNSS and image data used to identify a CAV's current position. The 

VehicleID class also holds data that identifies the car, such as the license plate number (a unique 

registration number or letters assigned by the government).  Since CAVs transfer data and 

information with several other entities, such as other CAVs, infrastructure and services, and 

pedestrians, VehicleID also contains a special pair, the public and private keys, used to encode and 

decode messages and check vehicle identification [39]. Hardware's operation condition data is 

stored in the HOPcondition class.  

Local Data acquired by software in CAVs, such as the onboard entertainment system, is stored in 

the SoftwareData class. CAVs will very certainly become a popular smart mobile gadget in the 

future [40]. They not only offer decision-making assistance or solutions, such as the quickest 

driving route from point A to point B, but also cater to users' preferences, such as 'the most scenic 

route' or 'the peaceful route.' The UserPreference class holds user preference data, which CAVs 

take into account when making the optimal decision for individual users. The ServiceAgreement 

class specifies the conventions that the programme must follow, such as privacy protection and 

other service protocols. The SOPcondition class holds information about the software's operating 

conditions.  

The ExternalData class contains data received from other entities in the communication system, 

such as other CAVs and intelligence infrastructures. All data is received via communication 

channels like Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I), which are part of the 

Communication Channel class. Because each entity has its own ID stored in its local data, the 

external data also need this information to ensure data sender identification, while the eID class 

holds the sender's ID information. Following the identification of the sender ID, messages in the 

external data are classified as either private or general, in accordance with Principle 7.2, which 

stipulates that data should be maintained responsibly. Vehicles or infrastructures may be required 

to convey private data, such as user preferences, under certain instances, which is kept in the 

ePrivate class and can only be viewed by authorized users. The eGeneral class maintains data that 

is accessible to everyone, such as vehicle size and position.  

 

3.2. Data Processor 

CAVs deal with large volumes of data each day. Each CAV is said to create up to 4000 GB of data 

in only one hour of driving [41]. Furthermore, adding a V2V communication network to a vehicle 

may necessitate 10 messages per second [42], increasing the data processors' strain. Even more 

essential than how the data is acquired is how it is handled. A data processor is incorporated into 

CAVs to clean data and assist in making suitable decisions. Figure 1 shows how the Data Processor 

class relates to Principles 2.3, 3.1, and 3.3.  



The DataProcessor class has four fundamental data processing methods and is dependent on the 

Vehicle Data class. The Generator class collects data from several sources, necessitating the 

formats from numerous data sources to be controlled and fused in order to be processed. The 

Processor class cleans and annotates data in preparation for analysis. The Verification class 

contains components that ensure the data is safe, ensuring that the CAV system's cyber security 

standards are met. During these processing steps, the CAV system should be able to recognize 

aberrant circumstances in the hardware, software, and data.  The AnomalyDetection class in the 

CAV system identifies any such flaws and abnormalities.    

 

3.3. Vehicle Functions 

If the CAV system is not behaving abnormally, relevant data will be utilized to make choices using 

the Vehicle Functions class once it has been processed. Vehicle Functions class is connected to 

Figure 1's Principles 3.1, 3.2, 5, 6, and 8, and is defined accordingly as illustrated in Figure 2. In 

the CAV framework, the functions of CAVs may be split into Hardware and Software classes, as 

illustrated in Figure 2. 

The vehicle's dynamic driving activities and functions are classified into three categories with 

respect to SAE J3016 [8], namely operational functions, tactical functions, and strategic functions, 

with the former two falling under the Hardware category and the latter falling under the Software 

category. The standard vehicle motions, such as longitudinal and lateral movements, are included 

in operational functions. Tactical functions are in charge of monitoring the environment and the 

reactions that come with it and manoeuvre planning. There may be some overlap between 

operational and tactical tasks. Route planning is an important part of strategic operations. Strategic 

operations are excluded from the dynamic driving activities for now in the J3016 categories.  

When a CAV senses items in its environment, it responds by using operational functions. The 

Hardware class can be classified into Operational and Tactical classes based on SAE J3016. The 

Operational class is divided into two sub-classes: longitudinal and lateral. When the vehicle moves 

longitudinally or laterally, these two sub-classes incorporate important hardware functions. There 

are two sub-classes in the Tactical class: The Detection class is used to track nearby objects and 

events using sensors such as radar, LiDAR, and cameras. The Manoeuvre class is responsible for 

performing necessary motions such as turning on the indicators.  

Software features such as entertainment systems and mobile application capabilities and hardware 

functions are critical components of CAVs, which is why t he entertainment system and mobile 

apps are included in the Software class. The Communication class also includes support for all 

data receiving and transmitting capabilities. The Strategic class, which is described based on the 

strategic functions in SAE J3016, arranges the whole journey, including the optimum route, travel 

time, and destinations.  

The Response class, in combination to the Hardware and Software classes, performs appropriate 

actions depending on the data from the hardware and software. The Recovery class is used to 

ensure that CAVs are robust and fail-safe in the event of a system breakdown.  



 

3.4. Possible Attack Points 

Viruses, worms, buffer overflows, DoS attacks, network assaults, physical attacks, password 

attacks, and information collecting attacks are all categories of cyber-attacks in computer networks 

[43]. Attacks on the stereo system or smartphone devices, including attacks on the Controller Area 

Network (CAN), which is an interior vehicle communication network for microcontrollers and 

gadgets, have been classified into two categories in typical car vehicles [44]. The second form of 

assault is more serious than the first since the CAN is linked to all of the in-vehicle hardware 

components, including the brakes, air conditioning, steering, and wheels.  

CAVs, unlike computer networks and regular automobiles, are equipped with both physical and 

software pieces and linked to the whole transportation infrastructure. As a result, any of the 

previous attacks on automobiles might occur in a CAV. Furthermore, as the quantity of autonomy 

and networking functions grows, the number of vulnerabilities and attack opportunities will 

increase. CAV cyber security is required to defend the system from cyber-attacks that might 

damage its functioning remotely or physically. At an early stage, it is vital to identify, describe, 

and categorise probable forms of assaults against CAVs. The four categories of probable CAV 

assaults and sub-attacks are mentioned below, based on the UML-based CAV architecture shown 

in Figure 2. 

 

3.4.1. Physical components of the vehicle. 

The windshield, wheels, and even brakes are examples of CAV physical elements. Hackers have 

previously been claimed to be able to manipulate the brakes and air conditioners of Nissan [45] and 

JEEP automobiles. Due to this form of attack, JEEP recalled over 1.4 million cars to apply security 

fixes [46]. Attacks against hardware may be carried out either physically or remotely. The attack 

techniques include deceiving the hardware into making poor driving judgments or hacking into 

the hardware to listen in on conversations. They are enumerable attack points on the Cav's 

hardware. 

Cameras, Light Detection and Ranging (LiDAR), and radars are among the most common sensors 

found on CAVs, as shown in Table 2. All of these sensors might be physically or remotely targeted; 

for example, faked visuals could fool the cameras, and the radar transmission could be blocked. 

Attackers might even get access to the vehicle's camera system in order to watch its operations. 

Furthermore, the GNSS system might be targeted by skilled attackers. The GNSS system, for 

example, might be jammed, preventing the vehicle from receiving a GNSS signal for navigation 

or positioning. 

 



 

Table 2: Possible Attack Points 

Category Attack Points 

Physical Parts Sensors (LiDAR, Radar, Camera), GNSS device, vehicle system 

(OBD, CAN-bus, power system) and so on. 

Software Mobile applications installed on the vehicle, in-vehicle system 

(entertainment system), data processing system, decision making 

system and so on. 

Data Local data (vehicle ID, payment information, user´s personal 

information), Exchange data (Vehicle’s speed, brake status) and so 

on. 

Communication Channel Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V), Vehicle 

to Cloud (V2C) and Vehicle to Everything (V2X). 

 

 

3.4.2. Vehicle software. 

Boeing's new 787 dreamliners are equipped with just 6.5 million lines of code [47], while CAVs 

might be loaded with more than 100 million lines of code. As a result, CAVs have a greater number 

of vulnerabilities. The entertainment system, the mobile apps that have been loaded, and the audio 

system aboard all have the potential to be used as attack sites by cybercriminals. If software is 

taken control of, the data interchange might be tracked, and the hardware could even be damaged 

beyond repair. 

 

3.4.3. Data. 

The data held on CAVs is communicated amongst CAVs, to infrastructure, and to pedestrians and 

cyclists through wireless connections. Local auto data such as the vehicle ID containing the 

electronic plate or the vehicle model and personal data such as user preferences might be 

compromised in an attack, resulting in data leakage. Additional to this, since CAVs may be used 

to support payment services (for example, toll services), private data such as money transfers might 

be used as an attack vector against CAVs. Foreign data collected from other users within the 

communication range might include attack sites as well as internal data. Modification of 

communication data or the introduction of fraudulent messages may result in not just information 

leakage issues, but also traffic congestion and even accidents in certain cases. 

 

3.4.4. Communication channel. 

Potential assaults may also be directed against the routes of communication itself. V2V 

communication, Vehicle to Infrastructure (V2I) communication, Vehicle to Cloud (V2C) 

communication, and/or Vehicle to Everything (V2X) communication are all examples of attack 



targets. If an attacker sends a large number of messages at the same time, a communication channel 

may be readily blocked by the network's defenses. In addition, eavesdropping on communication 

lines might result in the release of sensitive information.  

These assessments have resulted in a list of probable attack areas for CAVs, which is shown in 

Table 2. Because the technologies used to combat CAVs are still in the early stages of 

development, the number of attack points will undoubtedly rise in the future. Nevertheless, since 

the attack sites are contained within the scope of physical components as well as software, data 

and communication routes, the framework may be expanded to accommodate and categorize new 

forms of assaults as they emerge.  

In this paper, the research focuses on structuring the United Kingdom Cyber Security Principles  

[16] in order to develop a CAV cyber security framework categorizing communication-based 

attacks made wirelessly through communication channels to CAVs, which is then used to build a 

CAV cyber security framework. The use of machine learning methods to categorize these cyber-

attacks is then illustrated. In Figure 3, the attack sites are shown, where CAVs share data [48] with 

their surrounding environments via V2V, V2I, and V2C communication channels.  

 

Figure 3: Sites of Attack (Attack Points) through Communication Channel. 

 

 

 

 

 

 



4. CAV-K99, the new CAV Cyber-Attack Data Set  

 

CAVs, which are still in the early stages of development, will not be able to drive safely on public 

roads until they have been completely developed. When searching for and obtaining well-

processed and labelled data sets on CAVs in the current literature, it might be problematic, 

particularly when searching for and obtaining data on CAV cyber-attacks. Specifically, I 

have adapted the widely used KDD99 benchmark data set on network intrusion detection  [49] and 

have created a CAV communication-based cyber-attack data set (named CAV-K99) depending on 

different types of CAV cyber-attacks as well as the UML-based CAV framework established in 

Section 3 to address CAV communication-based cyber attacks. 

 

4.1 The KDD99 Data Set 

When it comes to online intrusion or attack detection, the KDD99 data set is a well-known 

benchmark. Initially made accessible during the Third International Knowledge Discovery and 

Data Mining Tools Competition in 1999 [49], it has since gained widespread use. It comprises data 

from regular network connections as well as simulated attack or intrusion data collected in a 

military network environment (KDD99). For more than a decade, the data set has been the most 

extensively used intrusion detection data set in the scientific literature [50].  

KDD99 has roughly 5 million data records, each of which contains 42 characteristics. The 42nd 

attribute is a label that may be either normal or malicious in nature. To accommodate individuals 

who find the original data set to be too large for data processing, KDD99 additionally offers a ten 

percent data set consisting of around 500 thousand data records for training and testing.  

 

4.2. Attacks existing in KDD99 

The assaults in KDD99 are divided into four primary classes with a total of 39 sub-attacks [51], 

which are as follows [52]: 

4.2.1. PROBE, which is an abbreviation for Probing attacks. During this sort of attack, the system 

is being monitored or scanned for weaknesses in order to obtain data from the system. The sub-

attacks of PROBE in KDD99 contain ipsweep, mscan, nmap, portsweep, saint, and satan. 

4.2.2. DoS, which stands for Denial of Service, is another kind of assault. DoS attacks prevent 

normal usage or communication in a system from taking place by using all of the system's 

resources, resulting in the system or communication channel being unavailable for normal use or 

communication. A typical exploit would include sending a large volume of data in order to 

overwhelm the communication connection and system. DoS attacks in KDD99 comprise apache2, 

back, land, mailbomb, Neptune, pod, processtable, smurf, teardrop, and udpstorm, to name a few 

examples. DoS attacks in KDD99 comprise apache2, back, land, mailbomb, Neptune, pod, 

processtable, smurf, teardrop, and udpstorm, to name a few examples.  



4.2.3. The User-to-Root (U2R) attacks are carried out with the goal of gaining access to superuser 

accounts by the perpetrators. They find weaknesses in the system and then use those vulnerabilities 

to obtain access to the system's core. The U2R attacks in KDD99 include buffer overflow, 

httptunnel, loadmodule, perl, ps, rootkit, sqlattack, and xterm. 

4.2.4. R2L, abbreviated for Remote-to-Local attack. As the term implies, the attackers' goal is to 

obtain access to the system and transfer data packets over a remote connection to a local system. 

The attacker does not have access to a legitimate account in the system, but he or she may get local 

access to one by exploiting a vulnerability. This list includes ftp write, guess passwd, imap, 

multihop, named, phf, send mail, snmpgetattack, snmpguess, spy, warezclient and worm (in 

KDD99), as well as the command line options xlock and xsnoop (in XSnoop). 

It is noteworthy that there are 39 sub-attacks in the four primary attacks; yet, only 22 sub-attacks 

were included in training data set, indicating that the training data set is inadequate. The remaining 

17 assaults are only included in the testing set. By using these data sets to test and validate detection 

approaches, we may also determine the robustness of detection strategies, such as those proposed 

and tested in Section 5 (machine learning algorithms). 

KDD99 is a comprehensive data collection that covers a wide range of attack types that may be 

used against computer networks. Despite this, owing to the particular properties of CAVs noted 

above, the data set cannot be utilised directly for CAV cyber security in its current form. Sections 

3 and 4 of this study describe how we modified and processed the KDD99 data set by eliminating 

unnecessary attack types, using the CAV framework that was built as well as prospective attack 

locations found in Sections 3 and 4. Table 3 lists the many sorts of attacks that  exist in KDD99 

that could possibly occur in CAV. 

 

Table 3: Possible Sub-attacks on CAVs in KDD99 Data Set 

Attack Type Possibility Attack Type Possibility 

    

PROBE ipsweep H R2L ftp_write H 

mscan P guess_passwd H 

nmap H imap I 

portsweep P multihop P 

saint P named P 

satan P phf I 

DOS apache2 P sendmail P 

back P snmpgetattack P 

land P snmpguess P 

mailbomb H warezclient P 

neptune H warezmaster P 

pod H worm H 

processtable P xlock P 

smurf H xsnoop H 

teardrop H spy P 



udpstorm H  

U2R buffer_overflow H 

httptunnel H 

loadmodule I 

perl I 

ps I 

rootkit P 

sqlattack P 

xterm I 

 

Table 3 categorises the probable forms of CAV cyber-attacks into three categories: H stands for 

High, P for Possible, and I for Irrelevant. After the data was processed, the total amount of CAV 

attack types was decreased from 39 to 14, with 19 kinds of viable CAV attacks and 6 types of 

irrelevant attacks being identified as a result. The following are the reasons for data processing 

based on the sorts of attacks that have been identified: 

1. Some of the attacks lacked a clearly defined objective. Considering that the data comes from 

the KDD99 dataset, the definitions of assaults are based on the original descriptions of the attacks 

themselves. Data from the DARPA intrusion detection assessment data set, which was gathered 

by the MIT Lincoln Lab [53] was used to create the KDD99 data set, which was then retrieved and 

analyzed. In this section, all descriptions of the assaults are taken directly from the official 

description available on the MIT Lincoln Lab web site [54]. Some sub-attacks lacked precise 

definitions and, as a result, could not be categorised as type P cyber-attacks under the CAV 

classification system. The sort of attack they use might be altered if a clear description is 

established. 

2. Certain threats do not fall under the scope of the CAV cybersecurity framework. In Section 3, a 

CAV framework based on UML is developed to identify the various data types that are used in 

CAV communication and functions. KDD99, on the other hand, is a data set on computer and 

network security, and its protocols are distinct from those used by CAVs. The attack 'land,' for 

example, appears exclusively in earlier TCP/IP protocols and can only be discovered on an 

outdated Linux operating system known as SunOS 4.1, according to KDD99 . If the protocol and 

environment are no longer active, the potential of this attack may also be eliminated. These forms 

of attacks did not fit within the CAV framework and were thus deleted from consideration.  

3. Some attacks were incompatible with the CAV attack sites, which was a problem. Besides 

physically damaging a CAV system, attackers must first identify one of the susceptible areas (as 

stated by Section 3) in the system before launching their attack. It is possible that these attack spots 

are located in physical components, software, data, or communication channels.  

Some attacks in KDD99 can only take place under specified circumstances and on specific 

platforms, and as a result, they are not relevant to the CAV attack zones. The likelihood of these 

attacks occurring in CAV is quite limited; for example, the apache2 attack can only occur in an 

Apache Web Server environment. If a CAV does not make use of the Apache Web Server, the 

attack will be unable to be carried out. 



5. Experiments 

Anomaly detection plays a vital role in the CAV framework that was developed in Section 3. Using 

Weka [55], two machine learning algorithms were designed to generate two classification models, 

Naive Bayes and Decision Tree, in order to detect anomalous behaviour in the data. The 

experiments were performed using a machine with an Intel Core i3, 3.70GHz processor, and a 64-

bit Windows operating system. Weka is an open source data mining programme created by the 

University of Waikato that has been extensively used in business and research to perform analysis 

and construct machine learning models. It is available for free download from the Weka website.  

 

5.1. Data Preprocessing Using the CAV-K99 

The KDD99 data collection contains more than 4 million data records and is too large to be 

processed on a personal computer due to its large size. Particularly, the training data set, which 

included 10% of the KDD99 data set, was employed in this work. It was decided to create a new 

data set termed CAV-K99 after deleting duplicates and unnecessary attack types from the original 

data set. This data set was designed to be compatible with the new CAV cyber security framework, 

which was developed by CAV. Tables 4 and 5 show the quantity of normal data and attack data 

contained in both the training and testing data sets, respectively. 

 

Table 4: Quantity of normal and attack data in the training data sets. 

10% KDD99 Data CAV-K99 Data 

Attacks 396,743 54,485 

Normal 97,278 87,832 

Total 494,021 142,317 

 

Table 5: Quantity of normal and attack data in the testing data sets. 

10% KDD99 Data CAV-K99 Data 

Attacks 250,436 23,348 

Normal 60,593 47,913 

Total 311,029 71,261 

 

Also, Table 6 shows the quantity of each sub-attack category in the CAV-K99 training and testing 

sets. 

Table 6: Quantity of types of sub-attacks in KDD99 and CAV-K99 

 10% KDD99 

Training 

Data Set 

CAV-K99 

Training 

Data Set 

10% 

KDD99 

Testing 

Data Set 

CAV-K99 

Testing 

Data Set 



 0 NORMAL 97278 58716 60593 47913 

PROBE 1 ipsweep 

nmap 

1247 

231 

341 

158 

306 

84 

155 

80 2 

DOS 3 mailbomb 

neptune 

pod 

smurf 

teardrop 

udpstorm 

/ 

107201 

264 

280790 

979 

/ 

/ 

12281 

40 

199 

199 

/ 

5000 

58001 

87 

164091 

12 

2 

308 

20332 

45 

936 

12 

2 

4 

5 

6 

7 

8 

U2R 9 buffer_overflow 

httptunnel 

30 

/ 

5 

/ 

22 

158 

22 

146 10 

R2L 11 ftp_write 

guess_passwd 

worm 

xsnoop 

8 

53 

/ 

/ 

8 

53 

/ 

/ 

3 

4367 

2 

4 

3 

1302 

2 

4 

12 

13 

14 

 

 

5.1.1. Learning and Testing Weka Software 

Then, the CAV-K99 data was preprocessed in Weka using the following procedures: 

1. In Table 3, the standard assault and 14 sub-attacks were designated with numbers ranging from 

0 to 14. 

2. Because the data ranges of each characteristic in the CAV-K99 data set and its test dataset were 

distinct, certain continuous data, such as duration and src_bytes, were normalized to make them 

more similar. The normalization process was carried out using the Unsupervised-attribute-

normalize method in Weka, with the value range being set at 0 to 20. 

3. The data was then required to be discretized at this point. The normalized data was discretized 

using the unsupervised-attribute-discretize technique in the Weka programming language. The 

unsupervised-attribute-numerictonominal technique was used to classify additional category 

attribute data, such as protocol type and service. 

4. The properties with a single value were removed from the list of available attributes. The 

variables num outbound cmd and is host login were used. These characteristics have no effect on 

the detection since they have remained constant throughout the process. As a result, there were 39 

qualities remained in CAV-K99. 

 

5.2 Methods of Experimentation 

CAV cyber-attacks were classified and detected using the machine learning algorithms Naive 

Bayes and J48, which were developed at Weka and used to construct the two classification models 

Naive Bayes and Decision Tree to categorize and identify CAV cyber-attacks.  



 

5.2.1 Comparison of Machine Learning Algorithms 

One of the most often used categorization models, the Decision Tree, has a high degree of 

readability [56]. A tree of nodes and branches linked by unidirectional edges is one of the 

categorization models in use today. With each internal node (and each branch leading to child 

nodes) of the Decision Tree, each attribute represents a choice variable with regard to that attribute, 

and every branch reflects a decision made on that attribute, extending to the child nodes of various 

attribute values. The categorization is represented by the leaves of the tree (which does not have 

any branches or child nodes). 

The C4.5 approach is used by the J48 algorithm in Weka to construct the decision tree. C4.5 carries 

out the classification by computing the information gain ratio of every attribute and selecting the 

characteristics with the highest information gain ratio as the root node of the classification. If you 

want to get exact results while calculating the information gain ratio, you should first compute the 

amount of entropy transported by a data set with potential distribution values V using Equation 

(1), which is as follows [57]: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑉) =  − ∑ 𝑝𝑖. log (𝑝𝑖)𝑛
𝑖=1     (1) 

 

where n is the number of data set partitions (classification labels) and pi denotes the proportion of 

the ith partition. Hence, Equation (2) can be used to determine the information gain: 

 

𝐺𝑎𝑖𝑛 (𝑉, 𝑎) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑉) −  ∑
|𝑉𝑗|

|𝑉|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑉𝑗)

𝑗
𝑗=1    (2) 

 

where 𝑎 being the attribute, |𝑉𝑗| denotes the number of distributions in partition j, and |𝑉| denotes 

the number of distributions in partition 𝑉. Equation (3) can be used to obtain the information gain 

ratio, as follows: 

 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑉, 𝑎) =  
𝑔𝑎𝑖𝑛(𝑉,𝑎)

𝐼𝑉(𝑎)
      (3) 

 

where in Equation (4), the intrinsic value (IV) is computed as follows: 

 



𝐼𝑉(𝑎) =  − ∑
|𝑉𝑗|

|𝑉|

𝑗
𝑗=1  𝑙𝑜𝑔2 

|𝑉𝑗|

|𝑉|
.      (4) 

 

Once this tree is constructed, each value of the attribute is represented by a branch of the tree, and 

the data is divided into distinct classes or tree leaves. Until the information gain ratio hits the 

benchmark [58], which is set to 0.25 by default in this experiment, the procedure will be repeated.  

The probable distribution values for the CAV-K99 data set are represented by the 39 

characteristics. After computing the information gain of all the attributes, the attribute dst host srv 

serror, which had the maximum information gain, was selected as the root node of the hierarchy 

of attributes. 

The Bayesian probability model was used to construct the Naive Bayes algorithm. According to 

this assumption, all of the attributes in the information are independent, which means that each 

attribute has no influence on the other attributes [59]. When using the Naive Bayes model, the 

conditional probabilities of classes are calculated. The class with the greatest probability is the 

prediction result [60]. The equation of Naive Bayes is written as follows in Equation (5): [61]: 

 

𝑃(𝑐|𝑋) =  
𝑃(𝑋|𝑐)𝑃(𝑐)

𝑃(𝑋)
     (5) 

 

where P(c|X) is the posterior probability of class c underneath the predictor variable X, where X 

is the data set of attributes x1, x2,..., xn, P(X|c) is the conditional probability of class of predictor 

variable X, P(c) is the prior probability of class c, and P(X) is the prior probability of predictors 

X. In CAV-K99, c denotes the identifier of normal or attack data, and X denotes the data set of 39 

attributes that have been selected. The probability of each data point in the testing data set 

belonging to distinct labels are determined based on their properties in the testing data set. Each 

bit of information is then assigned to the label with the greatest probability. 

 

5.3. Results of Experiment 

As previously noted in Section 4, after analyzing the original KDD99 data, the amount of attack 

types in CAV-K99 was decreased to 14. For the detection models, we employed CAV-K99 to 

construct them, which were then examined on the CAV-K99 testing data set. In order to prevent 

the overfitting problem, the training data set is used to develop the model first, followed by 10-

folds validation. Then perhaps the machine learning model is tested against the CAV-K99 testing 

data set to ensure that it is accurate. Table 7 compares Decision Tree and Naive Bayes network 

models in terms of their overall accuracy, run time and precision. In this research, the accuracy is 

defined as the proportion of correctly categorised attacks in terms of total number of classification 

attempts. 



 

Table 7: Runtime and Accuracy of Naive Bayes and J48 

 Accuracy on 10-

Folds Validation 

(%) 

Accuracy on the 

Testing Data Set 

(%) 

Time to Build 

Model (s) 

Time on the 

Testing Data Set 

(s) 

Naïve Bayes 99.42 95.66 0.15 3.38 

J48 99.80 97.04 2.42 0.94 

 

 

As can be shown in Table 7, the Decision Tree model attained the highest accuracy of the two 

models tested, despite the fact that the runtime was variable. If you are driving in real time, 

particularly when CAVs are travelling at high speeds, time is of the essence, since a large distance 

of more than 30 metres can be covered in less than a second. Naive Bayes required more time to 

identify threats with almost the same accuracy as Decision Tree, and as a result, Decision Tree 

was more productive for CAV cyber security than Naive Bayes.  

Aside from that, because of the unique properties of CAVs, the rate of false positive (FP) attacks 

categorization is an important statistic to use in evaluating the effectiveness of the models. It is 

possible that, in real-world scenarios, a machine learning model would classify attack data as 

"normal data," which will have life-threatening effects. Table 8 shows the false positive rate 

calculated on the basis of this information. Additionally, as indicated in Table 8, the accuracy of 

each model developed using the following Equation (6) was evaluated as well.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (6) 

 

In this example, it can be observed that the false positive rate was significantly lower with 10-folds 

cross validation since all of the attack types had been examined and trained. This was in contrast 

to the false positive rate on the testing data set. On the testing data set, both models had a 

comparable false positive rate, and both models had an accuracy of more than 94 percent, which 

is excellent (94.84 percent and 94.64 percent, respectively). Based on these findings the false 

positive rate for both models was found to be acceptable. 

 

Table 8: Rate of False Positive for Naive Bayes and J48 

 FP on 10-Folds Cross 

Validation (%) 

FP on the Testing Data 

Set (%) 

Precision on Testing 

Data Set (%) 

Naïve Bayes 0.1 5.2 94.84 

J48 0.1 5.6 94.64 

 



 

Table 9: Accuracy and False Positive rates of sub-attack types gained by Naive Bayes and J48 

 J48 Accuracy 

(%) 

J48 FP 

Rate (%) 

NB 

Accuracy 

(%) 

NB FP 

Rate (%) 

 0 NORMAL 99.7 8.3 98.2 7.6 

PROBE 1 ipsweep 

nmap 

96.1 

100 

0 

0 

97.4 

100 

0 

0.1 2 

DOS 3 mailbomb 

neptune 

pod 

smurf 

teardrop 

udpstorm 

0 

99.1 

88.9 

99.6 

100 

0 

0 

0.1 

0 

0 

0.1 

0 

0 

97.6 

93.3 

99.9 

91.7 

0 

0 

0 

0.1 

0.8 

0.1 

0 

4 

5 

6 

7 

8 

U2R 9 buffer_overflow 

httptunnel 

59.1 

0 

0 

0 

9.1 

0 

0.1 

0 10 

R2L 11 ftp_write 

guess_passwd 

worm 

xsnoop 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2.3 

0 

0 

0.3 

0.3 

0 

0 

12 

13 

14 

 

 

It can be shown in Table 9 that both machine learning classification models showed good accuracy 

when it came to recognizing CAV cyber-attacks, which is encouraging. The percentage of false 

positives was low across the board in all of the attack data. When it came to detecting the PROBE 

attacks, Naive Bayes performed exceptionally well, however Decision Tree did not perform as 

well when it came to identifying the ipsweep attacks. When it came to recognising Denial of 

Service (DoS) assaults, both models performed equally; however, when it came to detecting pod 

attacks, the performance of Decision Tree was significantly greater. Due to the fact that there were 

only a limited number of records of the U2R and R2L assaults in the training data sets, both models 

performed badly under these attacks. However, it can be shown that Naive Bayes was still capable 

of detecting 2.3 percent of guess passwd assaults, with an accuracy that was marginally greater 

than that of the Decision Tree model. 

It is important to note that both machine learning algorithms scored badly on attack types that were 

only included in the testing data set, such as mailbomb, udpstorm, httptunnel, worm, and xsnoop, 

and that this was consistent for both methods. There was a zero accuracy for the detection of these 

five attack types, which means that none of them are or will be detected.  This is owing to the fact 

that both, the Decision Tree and Naive Bayes models, are built using supervised learning and, as 

a result, are unable to detect previously undiscovered attack types when they are implemented. 

Further research about the development of classification models or clustering models for 

previously discovered sorts of attacks will continue to be a fascinating area of exploration for the 

future research.  



Based on the findings, it can be concluded that Decision Tree outperformed the competition when 

it came to communication-based threats in the CAV environment. The Decision Tree model 

demonstrated excellent accuracy and precision in detecting the attack in a short period of time. 

Although both models produced inadequate results when predicting previously unknown attacks, 

it should be noted that further research into this area is required in future studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6. Summary and Future Work 

 

CAV technologies have become more sophisticated and well-established at this point. CAVs are 

expected to be on the road for commercial purposes as early as 2025, according to current 

estimates. However, challenges in CAV cyber security have not received the attention they deserve 

in comparison to other CAV technologies, despite the fact that they are becoming increasingly 

vital and high priority in current CAV innovations. As a result of a cyber-attack on an autonomous 

vehicle (CAV), catastrophic repercussions may occur, including the exposure of personal 

information, as well as bodily injuries and even fatalities. The significance of CAV cyber security 

has indeed been emphasized repeatedly by enterprises and the government in the United Kingdom. 

On the basis of the UK CAV Cyber Security Principles, we conducted an analysis of several forms 

of CAV communication-based cyber security assaults and developed a UML-based CAV 

framework with various components. As a result of using this CAV framework as a guide, potential 

CAV attack areas were identified and classified. A new data set, termed CAV-K99, was created 

based on the benchmark data set KDD99, which contains 10 percent of the total data. Based on 

the suggested CAV cyber security framework, the irrelevant attacks and undefined threats were 

excluded from the original KDD99 data set, resulting in 14 categories of CAV cyber-attacks in the 

CAV-K99 data set. The original KDD99 data set had 39 different types of cyber-attacks. 

Furthermore, a significant quantity of duplicated normal and attack data was deleted from the 

original KDD99 data set as well. 

In order to determine the accuracy of CAV cyber-attack detection using the two classification 

models, the newly developed CAV-K99 data set was analyzed statistically using two machine 

learning techniques, namely the Naive Bayes and Decision Tree. When it came to recognizing 

PROBE attacks, Naive Bayes outperformed Decision Tree, whereas Decision Tree outperformed 

Naive Bayes when it came to identifying DoS attacks. When it came to identifying U2R and R2L 

assaults, both models performed mediocrely. However, both algorithms were equally accurate in 

detecting the 14 assaults, with Decision Tree taking somewhat less time to complete the task. 

Based on the findings, it was determined that the Decision Tree method was better suited for 

identifying CAV communication-based attacks. 

It was discovered that the classification techniques did not perform well on new forms of CAV 

cyber-attacks that had not previously been seen, i.e., those that had not been included in the training 

data set. Both models also fared badly in terms of recognising U2R and R2L attacks.   It is critical 

for CAVs to have high detection accuracy in order to operate safely on public roadway.  The usage 

of feature selection techniques and hybrid approaches can be employed in the future work in order 

to increase accuracy even more while simultaneously decreasing runtime. Additionally, the 

integration of supervised and unsupervised machine learning methods can be examined in order to 

increase the accuracy of recognizing previously unidentified attacks. It is also possible to increase 

the performance index of classification models when dealing with diverse forms of information. 

Furthermore, the attacks addressed in this study were all communication-based attacks, rather than 

physical ones. As a result, the CAV-K99 data collection does not contain all of the acknowledged 



attack types against CAV that have been identified. In addition, there is an imbalance between the 

different categories of data in the data set. Furthermore, the technology underlying CAVs are still 

in the early stages of development. When more powerful processing units are applied to CAVs, 

the computational capabilities may be boosted significantly. The detection and examination of 

physical cyber-attacks and new forms of abuses and the enhancement of detection machine 

learning techniques are all potential study subjects for CAVs in the future, and they represent other 

promising research directions. 
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