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Abstract

Planning and goal-conditioned reinforcement learning aim to create more e�cient

and scalable methods for complex, long-horizon tasks. These approaches break

tasks into manageable subgoals and leverage prior knowledge to guide learning.

However, learned models may predict inaccurate next states and have compound-

ing errors over long-horizon predictions. This often makes background planning

with learned models worse than model-free alternatives, even though the former

uses significantly more memory and computation. Methods that plan in an ab-

stract space, such as Goal-Space Planning, avoid these typical problems of models

by background planning with models that are abstract in state and time. This

thesis shows how potential-based reward shaping can propagate value and speed

up learning with local, subgoal-conditioned models. We demonstrate the e↵ec-

tiveness of this approach in tabular, linear, and deep value-based learners, and

study its sensitivity to changes in environment dynamics and the chosen subgoals.
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Preface

The majority of this thesis is based on two co-authored publications: a workshop

paper (Roice et al., 2024), and a journal paper (Lo et al., 2024). The work was

done in collaboration with Parham Mohammad Panahi, Scott Jordan, Adam

White, and Martha White.

The experiments were ran by Parham and myself. Scott provided technical

guidance and suggested the use of potential-based reward shaping. Adam and

Martha helped with several rounds of iteration on the empirical design and pro-

vided invaluable feedback on the results and writing. The theoretical results were

a product of discussions between Scott and myself. This thesis and any mistakes

in it are my own fault.
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“We are stories, contained within the twenty complicated centimeters behind our

eyes.”

– Carlo Rovelli

“This too shall pass.”

– King Solomon
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Tania Gardašević, Adam Gillett, Andrea Biju, and Scott Ward for keeping me
sane despite the distance (and time).

Most importantly, I could not make it through the last 23 years of life without
Amma, Appa, Caroline, Ryan, and God.

v



Contents

Abstract ii

Preface iii

Acknowledgements v

List of Tables ix

List of Figures x

List of Algorithms xiv

1 Introduction 1

1.1 Planning in Reinforcement Learning . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 The Agent-Environment Problem Formulation . . . . . . . 7

2.1.2 The Value Function . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Learning and Approximating the Value Function . . . . . 9

vi



2.1.4 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Abstracting State . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Abstracting Time . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Reward Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Reward Shaping in Computational RL . . . . . . . . . . . 14

2.3.2 Potential Based Reward Shaping . . . . . . . . . . . . . . 15

3 Goal-Space Planning 17

3.1 Subgoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Planning Abstractly . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Goal Space Planning . . . . . . . . . . . . . . . . . . . . . 22

4 Goal Space Planning with Reward Shaping 26

4.1 Problems with naively using vg? . . . . . . . . . . . . . . . . . . . 27

4.2 vg? as a Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Shaping and Q-initialization Equivalence . . . . . . . . . . 30

4.3.2 Shaping with v? . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Experiments 36

5.1 Tabular Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Linear Function Approximation Results . . . . . . . . . . . . . . . 39

5.3 Deep Reinforcement Learning Results . . . . . . . . . . . . . . . . 42

5.4 Robustness to Accuracy of the Learned Models . . . . . . . . . . 44

5.5 The Role of Subgoal Selection . . . . . . . . . . . . . . . . . . . . 45

vii



5.6 Subgoal Placement and the Region of Attraction . . . . . . . . . . 50

5.7 Comparison with other Potentials . . . . . . . . . . . . . . . . . . 53

6 Conclusions and Future Works 55

References 57

Appendix 65

A Learning the Option Policies . . . . . . . . . . . . . . . . . . . . . 65

B Learning the Subgoal Models . . . . . . . . . . . . . . . . . . . . 66

C Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . 72

C.1 GSP Pseudocode . . . . . . . . . . . . . . . . . . . . . . . 74

C.2 Optimizations for GSP using Fixed Models . . . . . . . . . 76

D An Alternative way of using vg? . . . . . . . . . . . . . . . . . . . 76

E Errors in Learned Subgoal Models . . . . . . . . . . . . . . . . . . 78

F Hyperparameter Sweeps . . . . . . . . . . . . . . . . . . . . . . . 79

viii



List of Tables

1 Mean squared error across state-to-subgoal models used in PinBall. 79

ix



List of Figures

2.1 A schematic of the agent-environment interaction loop. At timestep

t, the agent (left) takes action At = a, and the environment (right)

in turn returns the next state and reward St+1 = s0 and Rt+1 = r

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Computing the potential di↵erence used to shape the reward signal

Rt ! R̃t. The potential function � must assign a real value to all

states in S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Using a subgoal structure in the PinBall domain (Konidaris and

Barto, 2009), as done by Lo et al.. The agent begins with a set of

subgoals (denoted in teal) and learns a set of subgoal-conditioned

models. (Abstraction) Using these models, the agent forms an

abstract MDP where the states are subgoals with options to reach

each subgoal as actions. (Planning) The agent plans in this ab-

stract MDP to quickly learn the values of these subgoals. (Projec-

tion) Using learned subgoal values, the agent obtains approximate

values of states based on nearby subgoals and their values. These

quickly updated approximate values are then used to speed up

learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Original and abstract state spaces, taken from Lo et al. (2022). . . 23

x



5.1 The FourRooms domain. The blue square is the initial state, green

square the goal state, and red boxes the subgoals. A subgoal’s

initiation set contains the states in any room connected to that

subgoal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 These four plots show the action values after a single episode of

updates for Sarsa with and without GSP and eligibility traces, i.e.,

� = 0.9. Each algorithm’s update is simulated from the same data

collected from a uniform random policy. Each state (square) is

made up of four triangles representing each of the four available

actions. White squares represent states not visited in the episode. 38

5.3 This plot shows the average number of steps to goal smoothed over

five episodes in the FourRooms domain. Shaded region represents

1 standard error across 100 runs. . . . . . . . . . . . . . . . . . . 39

5.4 Obstacles and subgoals for GridBall and PinBall. The larger circles

show the initiation set boundaries. Subgoals are defined in position

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 The tile-coded value function after one episode in GridBall. Like

Figure 5.2, the gray regions show the visited states that were not

updated. The red circle is the main goal. . . . . . . . . . . . . . . 42

5.6 Five episode moving average of return in the GridBall over 200

episodes (left) and PinBall over 500 episodes (right). We per-

formed 30 runs, and showed 1 standard error in the shaded region.

All learners used linear value function approximation on their tile-

coded features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7 Investigating the behavior of GSP in the deep reinforcement learn-

ing setting in PinBall. (a) Following the format of Figure 5.6, we

show the 20 episode moving average of steps to the main goal in

PinBall. (b) Five episode moving average of steps to goal in Pin-

Ball for GSP with models trained with di↵ering numbers of epochs. 44

xi



5.8 Di↵erent subgoal configurations in the FourRooms environment

with a lava pool. The purple square is the learner’s starting loca-

tion, the gray squares the walls, the orange squares the location

of the lava pool, and the green square the goal location. The only

di↵erence between these figures are the red boxes, which indicate

the states that are subgoals for that configuration. . . . . . . . . 47

5.9 This figure shows the average return (left) and average probability

the agent will take the alternative path (right) from each episode.

Shaded regions represent (0.05,0.9)-tolerance intervals (Patterson

et al., 2020) over 200 trials. . . . . . . . . . . . . . . . . . . . . . 48

5.10 The top row of this figure shows the value of vg? for each state

before the lava pool, for each subgoal configuration. The second

and third rows show the change in vg? after the first and 100th

episode, after the lava pool is introduced. . . . . . . . . . . . . . . 49

5.11 This figure shows the time the agent spends per episode in the

bottom left and top right rooms. The lines convey the average %

of time the agent spend and the shaded lines represent (0.05, 0.9)

tolerance intervals computed from 100 trials. . . . . . . . . . . . . 51

5.12 Five episode moving average of steps to goal in PinBall with dif-

ferent potential functions for �(s). We follow the format of Figure

5.7a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.1 Evaluation of PinBall option policies by average trajectory length.

Policies were saved once they were able to reach their respective

subgoal in undeer 50 steps, averaged across 100 trajectories. Sub-

goal 2 was the hardest to learn an option policy for, due to its

proximity to obstacles. . . . . . . . . . . . . . . . . . . . . . . . . 66

B.1 State-to-Subgoal models learnt by neural models after 100 epochs. 68

B.2 Learning and using pre-trained models for GSP. . . . . . . . . . . 73

D.1 Five episode moving average of return in FourRooms, GridBall

and PinBall. Curves are averaged over 30 runs where the shaded

region is one standard error. . . . . . . . . . . . . . . . . . . . . . 78

xii



E.1 Model errors in State-to-Subgoal models used in GridBall. . . . . 78

F.1 Left Column: learning curves for five di↵erent step sizes, ↵, av-

eraged over 30 runs. Right Column: sensitivity to di↵erent step

sizes. Each dot represents the steps to goal averaged over 30 runs

and 1000 episodes. The error bars show one standard error. The

refresh rate ⌧ increases with each row. . . . . . . . . . . . . . . . 81

xiii



List of Algorithms

1 Goal Space Planning for Episodic Problems . . . . . . . . . . . 25

2 Planning() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Goal Space Planning with Reward Shaping on DDQN . . . . . 29

4 MainPolicyUpdate(s, a, s0, r, �, a0) . . . . . . . . . . . . . . . . . . 74

5 Update Models(s, a, s0, r, �) . . . . . . . . . . . . . . . . . . . . . . 74

6 Update GSP Models(s, a, s0, r, �) . . . . . . . . . . . . . . . . . . . 75

xiv



Chapter 1

Introduction

Imagine planning your vacation in terms of individual footsteps from your sofa

to your destination and back. Or a driver who forgets how to drive every time

they enter a new vehicle. It is not unusual for today’s artificial intelligence to

come up with absurd scenarios like this. This thesis addresses problems of this

nature.

1.1 Planning in Reinforcement Learning

Reinforcement learning (RL) is a branch of artificial intelligence that studies

how a learner can interact with their environment to find a behavior that maxi-

mizes the reward it accumulates. Model-based RL (MBRL) uses the concept of

planning : the learner imagines how the environment would respond to di↵erent

actions using a predictive model that it constructs and updates. These predictive

models can either output the next possible state of the environment (a transi-

tion model) or some probability distribution over states (a distribution model).

MBRL has achieved remarkable feats (Schrittwieser et al., 2020; Hafner et al.,
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2023), but RL systems still encounter di�culties when the agent plans in the

background over long horizons.

Planning with learned models in RL has the potential to improve the sample

e�ciency of learning. Planning provides a mechanism for the agent to imagine

experiences, in the background as it interacts with the world. This lets it im-

prove value estimates while making good use of each interaction sampled from

the world. This hypothetical experience provides a stand-in for the real world;

the agent can generate many experiences (transitions) in its head (via a model)

and learn from those experiences. Dyna (Sutton, 1991) is a classic example of

background planning: on each step, the agent generates several transitions ac-

cording to its model, and updates its behavior with those transitions as if they

were real experience.

Background planning allows learners to both adapt to the non-stationarity

and exploit things that remain constant. In many interesting environments, like

the real world or multi-agent games, the agents cannot learn or even represent

the optimal way of behaving (a.k.a. the optimal policy). The agent can overcome

this limitation, however, by using a model to rapidly update its value function

(an estimate of how good each state is toward maximizing reward). Continually

updating the agent’s model of the world and re-planning allows it to adapt to

changes in the world, helping its current decision-making. A model can capture

stationary facts and adapt to non-stationaries in how the world works; planning

can be used to reason about how the world works to produce better policies.

The promise of background planning is that we can learn and adapt value

estimates e�ciently, but many open problems remain to make it more widely

useful. These include:

1. rolling out one-step predictions from transition models could lead the agent

2



to imagine invalid states,

2. distribution models can be complex, especially for learning probabilities in

high-dimensional tasks,

3. planning itself can be computationally expensive for large state spaces.

One way to overcome these issues is to construct an abstract model of the

environment and plan at a higher level of abstraction. In this thesis, we present

a technique to plan abstractly that can help certain learners achieve their goals

faster. A temporally-abstract model allows the agent to jump between states

potentially alleviating the need to generate long rollouts. It also predicts the

rewards it receives and the probabilities of where it ends up after such a jump.

However, there are issues with abstract models. Though planning can be

shown to be provably more e�cient (Mann et al., 2015), the resulting policy is

sub-optimal, restricted to going between landmark states. This sub-optimality

issue forces a trade-o↵ between increasing the size of the abstract problem (to

increase the policy’s expressivity) and increasing the computational cost to up-

date the value function. In this thesis, we investigate an abstract model-based

planning method that can quickly propagate changes over the entire state space,

and do not limit the optimality of learned policy.

The alternative strategy, which we shall explore, is to use the policy computed

from the abstract problem to guide the learning process in solving the original

problem. More specifically, the purpose of the abstract problem is to propagate

value quickly over an abstract state space and then transfer that information to

a value function estimate in the original problem. This approach has two main

benefits: i) the smaller, abstract space can propagate value quicker and with a

smaller computational cost than if we used the original space, and, ii) the learned
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policy is not limited to the abstract space. Overall, this approach increases the

agent’s ability to learn and adapt to changes in the environment quickly.

1.2 Contributions

This work studies an enhancement of an existing abstract planning algorithm,

named Goal-Space Planning (GSP) (Lo et al., 2022). We analyze the properties

of this algorithm on a much wider set of learners and environments and find that

modifying it to use a technique called reward shaping improves the number of

instances where the algorithm can be used.

Specifically, in this thesis we:

1. introduce and analyze Goal-Space Planning with Reward Shaping, a back-

ground planning formalism for the general online RL setting,

2. carefully study its benefits in terms of value propagation, and in what

instances it speeds up learning,

3. measure the robustness of this method to model accuracy. We report rela-

tively fewer epochs of training is needed to reap the benefits of Goal Space

Planning,

4. we find reward shaping to be a much more e↵ective approach to incorpo-

rating this abstract model into a learner, making the algorithm amenable

to a wider variety of learners than before.
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1.3 Thesis Structure

The next chapter of this thesis will overview the relevant background needed

to understand Goal-Space Planning with Reward Shaping: namely the problem

setting we use to model agent-environment interactions, learning, and planning

techniques. Next, Chapter 3 overviews the vanilla Goal-Space Planning algo-

rithm. Then Chapter 4 introduces the modifications we make to this algorithm

and their implications. Chapter 5 empirically examines Goal-Space Planning

with Reward Shaping to identify and better understand what components of the

algorithm are crucial for the speed-up in learning and value propagation. Finally,

the last chapter concludes this work and highlights avenues for future works to

build upon.
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Chapter 2

Background

This chapter will provide the necessary background to understand the context

and motivation for Goal-Space Planning with Reward Shaping. We first cover

some of the fundamental concepts of the reinforcement learning setting. We then

move on to the more general notion of abstraction, emphasizing its importance

in simplifying complex problems and enabling e�cient learning. Following this,

we focus on planning and how it can help the decision-making processes. Finally,

we touch upon the concept of shaping and its applications to facilitate learning.

This sets the stage for the reward-shaping variant of Goal-Space Planning which

we analyse in our experiments.

2.1 Reinforcement Learning

There are many ways to model the sequential decision-making problem; we will

overview reinforcement learning (RL), the problem-setting we will use throughout

this work.
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Figure 2.1: A schematic of the agent-environment interaction loop. At timestep t,
the agent (left) takes action At = a, and the environment (right) in turn returns
the next state and reward St+1 = s0 and Rt+1 = r respectively.

2.1.1 The Agent-Environment Problem Formulation

We consider the setting where an agent can interact with its environment by

taking actions and receiving observations.

We model the environment as a discrete-time, finite Markov Decision Process

(MDP) (Puterman, 2014). An MDP is formalised as a 4-tuple hS,A,R,Pi. S is

the state space and A is the action space. The reward function, R : S⇥A⇥S 7!

R, and the transition probability, P : S ⇥A⇥ S 7! �(S), describe the expected

reward and probability of transitioning to a next state, for a given state and

action. On each discrete timestep t, the agent selects an action At in state St,

the environment transitions to a new state St+1 and emits a scalar reward Rt+1

1. We visualize this interaction loop in Figure 2.1. We describe a behavior using

1Throughout this work, we will use capitalized italic letters to represent random variables.
These typically have a time index in the subscript. Lowercase letters are used to indicate the
values a random variable can take. For example, s and s0 in Figure 2.1 are the specific states
that are the outcomes of St and St+1.
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a policy ⇡ : S ⇥A 7! �(A). The agent’s objective is to find a policy that maxi-

mizes expected return, the future discounted sum of reward Gt
.
= Rt+1 + �Gt+1,

for some constant discount factor � 2 [0, 1].

2.1.2 The Value Function

Since the goal of the agent is to find a policy that maximizes its return in expec-

tation, it is crucial to evaluate how good each state or state-action pair is in terms

of future rewards. The agent needs a way to reason about how ‘valuable’ it is

to be in some state, in terms of accumulating future reward. The value function

encodes this.

For some given policy ⇡, its value function v⇡ : S 7! R, is defined as the

expected, discounted sum of rewards the agent would get if it followed policy ⇡

from some state s,

v⇡(s)
.
= E⇡[Gt|St = s], (2.1)

8 s 2 S. The expectation operator E⇡[·] is important. Agents reason in terms

of expected return due to stochasticity (randomness) in the environment or even

in the agent’s decision-making itself, as we shall later see. Once the agent is in

some state, it must also be able to reason about what action is favorable in terms

of return. To do so, value functions can also be defined over the joint state and

action space. We call this the action-value function q⇡ : S ⇥A 7! R,

q⇡(s, a)
.
= E⇡[Gt|St = s, At = a]. (2.2)
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2.1.3 Learning and Approximating the Value Function

The process of computing a value function to evaluate how good a given policy

is referred to as the prediction problem.

For finite state spaces, if we know the transition dynamics p 2 P of the

MDP, we can use dynamic programming (DP) techniques like value iteration to

iteratively improve the value function and policy and eventually converge to v?

(Bertsekas, 1987). However, since we usually do not know p (the exact model of

the environment), we use each experience from interacting with the environment

hSt, At, Rt+1, St+1, �t+1i 2 to learn Q(s, a)3, an estimate of q⇡ from Equation 2.2.

For example, the Q-learning algorithm (Watkins, 1989) learns q? by applying the

Bellman optimality equation in the update rule,

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �t+1 max

a2A
Q(St+1, a)�Q(St, At)

i
.

There are two things to notice about this method. Firstly, it does not rely on any

model of the environment – it is a model-free method. Secondly, the update rule

moves the Q(St, At) estimate in the direction of the term in the square brack-

ets by some scalar stepsize ↵. We can get di↵erent algorithms by swapping out

the term in the square brackets. The Sarsa algorithm (Rummery and Niranjan,

1994) moves action-value estimates in the direction
h
Rt+1 + �t+1Q(St+1, At+1)�

Q(St, At)
i
. These square-bracketed terms are known as temporal di↵erence er-

rors, and these algorithms are called temporal di↵erence (TD) learning algo-

rithms, as we use a future state’s value estimate to update the current state’s

estimate (a process referred to as bootstrapping).

2Following the convention of White (2017), we include the discount factor, �t+1, in each
transition to serve two roles: discounting and episode termination, if any.

3Somewhat abusing notion, Q is a table that stores action-value estimates for each state-
action pair.

9



Since the state and/or action spaces are often too large to enumerate as a table

of estimates, value estimates are typically maintained using some function approx-

imator, q̂⇡. In RL, this is almost always a parameterized function q̂⇡(·, ·;w)4, like

a linear model or an artificial neural network. In the parameterized setting we

use w to denote the parameters of our function approximation. A linear action-

value function approximation would take the form q̂⇡(s, a;w) = w>�(s, a), where

�(s, a) is a feature vector used to represent a state-action pair.

Most TD learning algorithms have semi-gradient counterparts for the param-

eterized setting.5 For example, semi-gradient Sarsa:

w w+ ↵
h
Rt+1 + �t+1q̂⇡(St+1, At+1;w)� q̂⇡(St, At;w)

i
rwq̂⇡(St, At;w).

2.1.4 Planning

In the field of artificial intelligence, agents that learn and plan using some model

of the world are referred to as model-based learners. In the RL setting, planning

refers to any computational process that uses a model to improve the agent’s

policy (Sutton and Barto, 2018).

The TD learning algorithms described in the previous section learn using

experience directly from the environment. These model-free learning algorithms

have no direct estimate of the environment transition dynamics p(s0|s, a). DP

methods are model-based, as they require the true dynamics for their convergence

guarantees.

4We use the semi-colon (;) to separate a function’s arguments from its parameters. The
parameters appear on the right of the ;. We will denote vectors with lower-case boldface letters
throughout this thesis.

5We call these semi -gradient methods as we do not fully apply the chain rule when di↵er-
entiating the least squares error (Barnard, 1993). See Sutton and Barto (2018) for an in-depth
overview of ignoring the e↵ect of our parameters on the target.
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Other model-based approaches either try to learn or are given an approxi-

mation of how the environment works. There are many ways this can be done.

The simplest is a state-transition model, which predicts St+1 given some St = s.

Models can either be given to an agent, or learned from its own experience of

what happens after being in state s.

Dyna (Sutton, 1991) is a family of MBRL algorithms that use real-world ex-

periences to learn both value estimates and estimates of the world dynamics (i.e.

a world model), while also carrying out background planning with the learned

model.

Besides transition models, some models can also make reward predictions.

These models answer questions like: given the agent is in state s and ends up in

state s0, how much return can it expect to receive? Notice how such models would

act on arbitrary time scales: s and s0 could be really close, or really far away in

time under the behavior policy. Such models are amenable to abstractions in

time, which we will review in Section 3.2.2.

2.2 Abstractions

In complex environments like the real world, managing the granularity of both

states and actions is crucial for e�cient decision-making and learning. The world

is much bigger and more complex than the agent (Javed and Sutton, 2024).

Reasoning in terms of individual states and timesteps, as in Figure 2.1, becomes

cumbersome for our computationally bounded agent. Abstraction is essential

for an intelligent system to transform raw observations into more useful and

interpretable constructs for decision-making.
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2.2.1 Abstracting State

In an MDP, the state is su�cient to fully describe the configuration of the en-

vironment. Depending on how complex the environment is, this often results in

the state carrying a lot of information – most of which may be redundant to our

decision-making agent seeking to maximize return. Consider Atari 2600 games

— a common benchmark for deep reinforcement learning algorithms (Bellemare

et al., 2013). Each second, an agent playing these games would receive 60 frames

of 210⇥160 pixels that can each take on 128 possible colors. That totals to over 6

million scalars each second. These raw pixel values along with the internal state

of the simulator are often far too unstructured to reason with – decision-making

becomes intractable. A very rewarding state and a very bad state may have

nearly identical pixel values. It becomes very di�cult to reason about actions

and have a value function defined at this level of granularity.

Determining what information to keep and what to ignore is an open problem

in the field of representation learning – the theory of which is beyond the scope of

this thesis 6. In many cases, we can define a value function over a more abstract

space than S. The simplest way to do so is state aggregation: treating similar

states to be the same. Tile coding (Sutton and Barto, 2018) takes this one step

further by partitioning S into non-overlapping tiles, to form a tiling. Multiple of

these tilings are o↵set and stacked on top of each other, and used to represent

a state7. Artifical neural networks can also be used for state abstraction, as is

commonly done in deep RL. We tested Goal-Space Planning with each of these

forms of state abstraction in this thesis.
6Refer to Abel (2022) for a more detailed study on the theory of state abstraction.
7Kumaraswamy (2022) provides an excellent description of how tiling coding is set up.
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2.2.2 Abstracting Time

Instead of having to reason about what action to take at every single time step,

there are many situations where an agent would want to perform a routine of

actions spanning multiple timesteps.

One way to represent such temporal abstractions is using the options frame-

work (Sutton et al., 1999). Formally, these are defined as a policy, ⇡!, coupled

with some initiation set I! ✓ S, and termination probability �! : S 7! [0, 1]. We

represent options with the triple ! = hI!, ⇡!, �!i, and ⌦ denotes the space of pos-

sible options. Options are a generalization of single timestep actions (sometimes

called primitive actions). They can be thought of as executing a temporally ex-

tended action ⇡! from some state s 2 I!. For all timesteps this option is active,

we sample actions according to the option policy ⇡!. This allows the agent to

“jump” between two states that may be distant in time (Wan and Sutton, 2022).

These could encode skills such as a robot arm lifting a cup, or a person travelling

to Italy, while abstracting away the lower-level actions like the robot’s voltage

signals or human muscle twitches. Our usual learning algorithms can be run on

an augmented space of primitive actions and useful options, A [ ⌦.

Instead of simply executing options8, their true power becomes apparent when

the agent uses them to reason in time. We can construct option models to do

so. This is e↵ective for long-horizon planning, and reasoning about goals in the

distant future, as we shall see in the next section. Most recently Sutton et al.

(2023) showed how options that respect the reward from the environment can be

useful for planning. The discovery and use of such options for planning has been

referred to as the STOMP progression (SubTask, Option, Model, Planning), and

this thesis can be regarded as one instance of this framework. This “temporally-

8Sometimes called the call-and-return execution model of options (Veeriah, 2022).
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abstract cognitive structure” made with the options framework facilitates reason-

ing at a higher level of abstraction (Sutton et al., 2023). When computation is

limited, this allows the agent to reason and compose more intricate and reusable

behaviors than if we were to reason in terms of primitive actions.

2.3 Reward Shaping

Shaping is a form of operant conditioning, a type of learning where the reinforcing

signal depends on the learner’s behavior (Sutton and Barto, 2018). The causality

between action and reward in operant conditioning provides a core component in

how many reinforcement learning algorithms learn good policies.

Despite the name, shaping in psychology 9 is distinct from reward shaping in

RL. This section will describe a form of reward shaping, which we later show to

be invaluable to improving GSP.

2.3.1 Reward Shaping in Computational RL

While good shaping can be a powerful technique for learning systems (Peterson,

2004), it became apparent that ill-defined shaping terms can lead to very unde-

sirable policies. Shaping was first investigated in computational reinforcement

learning by Randløv and Alstrøm (1998) when training an agent to ride a bicycle

in a simulator. In this setting, an agent drove a bicycle and tried to reach a fixed

goal state. There was a reward of -1 per step, but the designers chose to add

a positive bonus every time the agent moved towards the goal. Amusingly, the

agent found that it would get much more return per episode if it moved in a circle

of the right size, so the positive reward of moving towards the goal outweighed

9We refer the reader to Skinner (1958) for an in-depth treatment of shaping in psychology.
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the -1 per step. Clearly, unconstrained additions to the reward signal can lead to

behaviors far from desirable. In Randløv and Alstrøm’s case, the optimal policy

changed. We call this the policy variance problem (Behboudian et al., 2022) -

the transformation we applied to the reward signal changed the optimal policy

in the new MDP.

2.3.2 Potential Based Reward Shaping

This problem was fixed a year later, with a concept called Potential Based

Reward Shaping (PBRS) (Ng et al., 1999). The motivation was to find a way to

constrain the shaping term we add to the reward, to preserve the optimal policy

and rankings of policies. PBRS constrains what we can add to the reward signal.

This aims to address the policy variance issue we saw in the bicycle example. In

order to do this, we first need to have a potential function � : S 7! R over the

entire state space. � can be any function that assigns a real value to every state

in the state space - creating a landscape over the state space that encodes some

domain knowledge. For example, the value functions can be potential functions.

This shaping constraint can be understood by considering potential energy

from classical mechanics, as the name suggests. If we have an object in 3D space,

and we move it through some closed loop such that it exactly returns to its initial

state (position and velocity), it should not have gained any energy. This prevents

situations like Randløv and Alstrøm’s problem of getting infinite return.

� is used to shape the reward signal as follows:

1. When the agent transition from state St�1 to St, we call � at each of these

states.

2. We discount the potential of the next state, and add the di↵erence ��(St)�
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Figure 2.2: Computing the potential di↵erence used to shape the reward signal
Rt ! R̃t. The potential function � must assign a real value to all states in S.

�(St�1) to the reward signal.

In this thesis, we exploit this reward transformation in the context of model-

based reinforcement learning. Specifically, we set �, to be a learned model of

the environment’s reward and transition dynamics, and analyze how the policy

invariance10 properties of shaping can help a larger variety of learners (tabular,

linear function approximation, and deep RL algorithms) to use the local models

of GSP.

10Refer to Theorem 1 of Ng et al. (1999) for a proof of how such a reward transformation
preserves the optimal policy.
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Chapter 3

Goal-Space Planning

This chapter sets the groundwork for the Goal-Space Planning algorithm. We

first formalize the notion of subgoals in a state space, and then move on to using

this structure to create an abstract MDP to plan with. We then give an overview

of abstract planning techniques before directing our attention to the vanilla Goal-

Space Planning (GSP) algorithm (Lo et al., 2022).

3.1 Subgoals

Finding a subgoal structure to an underlying problem involves a combination

of state and time abstractions described in Section 2.2. While discovery is a

fascinating problem in itself, this thesis will focus on algorithms to leverage given

subgoal structures.

In this work, we formalize this subgoal structure by defining a goal-space,

G. Despite its name, we treat G as a finite, discrete set of subgoals, G =

{g1, g2, . . . , gn}.
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Similar to options (Sutton et al., 1999), each subgoal has two components: a

set of goal states, and a set of initiation states. These two sets are defined by the

indicator functions

m(s, g) = 1s2g,

d(s, g) = 1s2Ig ,

with m specifying the states in the subgoal (this could be something as simple as

state aggregation), and d specifying states in the subgoal’s initiation set. We say

that a state s is a member of subgoal g if m(s, g) = 1, and we only reason about

reaching a subgoal g from states s in its initiation set Ig (such that d(s, g) = 1).

This constraint is key for locality: to learn and reason about a subset of states

for a subgoal. We assume the existence of a (learned) initiation function d to

indicate when the agent is su�ciently close in terms of reachability. We discuss

some approaches to learning this initiation function in Appendix B.

We expect a complete, general-purpose agent to discover these subgoals on

its own, including how to represent these subgoals to facilitate generalization and

planning. As mentioned before, in this thesis, we first focus on how the agent

can leverage reasonably well-specified subgoals.

While subgoals could represent a single state, they can also describe more

complex conditions that are common to a group of states. For example, g could

correspond to a situation where both the front and side distance sensors of a

robot report low readings—what a person would call being in a corner 1. As an-

other example, in the Abstraction step of Figure 3.1, we simply aggregate certain

states into nine subgoals—which correspond to regions with a small radius. For

1For the curious reader, the idea of identifying subgoals as states where certain observation
signals or features are high is a concept called feature attainment. Sutton et al. (2023) first
formally coined this term in the reinforcement learning setting.
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Figure 3.1: Using a subgoal structure in the PinBall domain (Konidaris and
Barto, 2009), as done by Lo et al.. The agent begins with a set of subgoals
(denoted in teal) and learns a set of subgoal-conditioned models. (Abstrac-
tion) Using these models, the agent forms an abstract MDP where the states
are subgoals with options to reach each subgoal as actions. (Planning) The
agent plans in this abstract MDP to quickly learn the values of these subgoals.
(Projection) Using learned subgoal values, the agent obtains approximate val-
ues of states based on nearby subgoals and their values. These quickly updated
approximate values are then used to speed up learning.

a concrete example, we visualize subgoals for our experiments in Figures 5.1 and

5.4. Essentially, our subgoals define a new state space in an abstract MDP, and

these new abstract states (subgoals) can be represented in di↵erent ways, just

like in regular MDPs.

In practical model-based reinforcement learning, it is often unnecessary to cap-

ture every detail of the environment (Arumugam and Van Roy, 2022; Rodriguez-

Sanchez and Konidaris, 2024). Instead, designing smaller, abstract MDPs that

focus on essential behaviors can facilitate e↵ective planning while respecting the

computational limitations of the agent.
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3.2 Planning Abstractly

Using transition models that make one-step predictions can be problematic.

These models have several issues. Transition models may predict invalid states.

Errors in one-step models can compound over time when rolling out the model for

long-horizon predictions. A variety of approaches have been developed to handle

issues with learning and iterating one-step models. Several papers have shown

that using forward model simulations can produce simulated states that result in

catastrophically misleading values (Ja↵erjee et al., 2020; van Hasselt et al., 2019;

Lambert et al., 2022).

3.2.1 Related Works

An emerging trend is to avoid approximating the true transition dynamics, and

instead learn dynamics tailored to predicting values on the next step correctly

(Farahmand et al., 2017; Farahmand, 2018; Ayoub et al., 2020). This trend is

also implicit in the variety of techniques that encode the planning procedure into

neural network architectures that can then be trained end-to-end (Tamar et al.,

2016; Silver et al., 2017; Oh et al., 2017; Weber et al., 2017; Farquhar et al., 2018;

Schrittwieser et al., 2020). We similarly attempt to avoid issues with iterating

models, but do so by considering a di↵erent type of model.

Current deep model-based RL techniques plan in a lower-dimensional abstract

space where the relevant features from the original high-dimensional experience

are preserved, often referred to as a latent space. MuZero (Schrittwieser et al.,

2020), for example, embeds the history of observations to then use predictive

models of values, policies, and one-step rewards. Using these three predictive

models in the latent space guides MuZero’s Monte Carlo Tree Search without
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the need for a perfect simulator of the environment. Most recently, DreamerV3

demonstrated the capabilities of a discrete latent world model in a range of pixel-

based environments (Hafner et al., 2023). There is growing evidence that it is

easier to learn accurate models in a latent space.

Temporal abstraction has also been considered to make planning more e�-

cient, through the use of hierarchical RL and/or options. MAXQ (Dietterich,

2000) introduced the idea of learning hierarchical policies with multiple levels,

breaking up the problem into multiple subgoals. A large literature followed, fo-

cused on e�cient planning with hierarchical policies (Diuk et al., 2006) and using

a hierarchy of MDPs with state abstraction and macro-actions (Bakker et al.,

2005; Konidaris et al., 2014; Konidaris, 2016; Rodriguez-Sanchez and Konidaris,

2024). 2

There has been some work using options for planning using only one level

of abstraction and restricting planning to the abstract MDP. Hauskrecht et al.

(2013) proposed to plan only in the abstract MDP with macro-actions (options)

and abstract states corresponding to the boundaries of the regions spanned by

the options, which is like restricting abstract states to subgoals. Bagaria et al.

(2021) discover skills to construct discrete graph abstractions of continuous state

and action spaces with subgoal nodes and option policy edges. The most similar

to our work is LAVI, which restricts value iteration to a small subset of landmark

states (Mann et al., 2015).3 These methods also have similar flavors to using a

hierarchy of MDPs, in that they focus planning in a smaller space and (mostly)

avoid planning at the lowest level, obtaining significant computational speed-ups.

2See Gopalan et al. (2017) for an excellent summary.
3A similar idea to landmark states has been considered in more classical AI approaches,

under the term bi-level planning (Wolfe et al., 2010; Hogg et al., 2010; Chitnis et al., 2022).
These techniques are quite di↵erent from Dyna-style planning—updating values with (stochas-
tic) dynamic programming updates—and so we do not consider them further here.
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3.2.2 Goal Space Planning

One such approach for planning with an abstract model of the environment is

Goal-Space Planning (GSP) (Lo et al., 2022), which this thesis will build upon. In

this section, we will first outline the technical definitions of subgoal-conditioned

models, and then overview how they are used in vanilla GSP.

For planning and acting to operate in two di↵erent spaces, Lo et al. (2022)

defined four models: two used in planning over subgoals (subgoal-to-subgoal)

and two used to project these subgoal values back into the underlying state space

(state-to-subgoal). Figure 3.2 visualizes these two spaces.

The state-to-subgoal models are r� : S⇥ Ḡ ! R and � : S⇥ Ḡ ! [0, 1], where

Ḡ = G [ {s?} if there is a terminal state, s?, (episodic problems) and otherwise

Ḡ = G.

An option policy ⇡g : S ⇥ A 7! �(A) for subgoal g starts from any s in its

initiation set, and terminates in g — in s̃ where m(s̃, g) = 1. The reward-model

r�(s, g) is the discounted rewards under option policy ⇡g:

r�(s, g) = E⇡g

" 1X

k=0

 
kY

k0=0

�t+k0+1

!
Rt+k+1

���St = s

#
, (3.1)

where the discount is zero upon reaching subgoal g.

The discount-model �(s, g) reflects the discounted probability of reaching sub-

goal g starting from s, in expectation under option policy ⇡g

�(s, g) = E⇡g

" 1X

k=0

 
kY

k0=0

�t+k0+1

!
m(St+1, g)

���St = s

#
. (3.2)
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Figure 3.2: Original and abstract state
spaces, taken from Lo et al. (2022).

These state-to-subgoal models will

only be queried for (s, g) where

d(s, g) > 0: they are local models.

Notice how Equation 3.1 and Equa-

tion 3.2 have an analogous form to the

value function defined in Equation 2.1.

When we generalize the value function

to look at discounted sums of scalars

which are not just the reward signal, they become general value functions (GVFs)

(Sutton et al., 2011). They can still be learned using the usual value function

learning algorithms, like TD learning.

The state-to-subgoal models are used to define subgoal-to-subgoal models,

r̃� : G ⇥ Ḡ 7! R and �̃ : G ⇥ Ḡ 7! [0, 1]. 4 For each subgoal g 2 G, we average

r�(s, g0) for all s where m(s, g) = 1.

r̃�(g, g
0)

.
=

1

z(g)

X

s:m(s,g)=1

r�(s, g
0) and �̃(g, g0)

.
=

1

z(g)

X

s:m(s,g)=1

�(s, g0) (3.3)

for normalizer z(g)
.
=
P

s:m(s,g)=1 m(s, g). In words, the subgoal-to-subgoal mod-

els take an average of the state-to-subgoal models, where the starting state is a

member of a subgoal.

Planning involves learning ṽ(g): the value for di↵erent subgoals. This can be

achieved using an update similar to value iteration, for all g 2 G,

ṽ(g) = max
g02Ḡ:d̃(g,g0)>0

r̃�(g, g
0) + �̃(g, g0)ṽ(g0). (3.4)

The value of reaching g0 from g is the discounted rewards along the way, r̃�(g, g0),

4The first input is any g 2 G, the second is g0 2 Ḡ, which includes s?. We need to reason
about reaching any subgoal or s?. We do not reason about starting from it to reach subgoals.
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plus the discounted value in g0. If �̃(g, g0) is very small, it is di�cult to reach g0

from g—or takes many steps—and so the value in g0 is discounted by more. With

a relatively small number of subgoals, we can sweep through them all to quickly

compute ṽ(g). With a larger set of subgoals, we can instead do as many updates

possible, in the background on each step, by stochastically sampling g.

This update can be interpretted as the standard value iteration update in a

new MDP, where the set of states is G, and the actions from g 2 G are state-

dependent, corresponding to choosing which g0 2 Ḡ to go to in the set where

d̃(g, g0) > 0. The rewards are r̃� and the discounted transition probabilities are �̃.

5 Under this correspondence, Lo et al. (2022) showed that the above converges

to the optimal values in this new Goal-Space MDP. This idea of approximate

value iteration over a more abstract MDP is not novel (Sutton et al., 1999), and

the GSP framework can be regarded as an instance of the STOMP progression

(Sutton et al., 2023).

Now let us examine how to use ṽ(g) to update our main policy. The simplest

way to decide how to behave from a state is to cycle through the subgoals, and

pick the one with the highest value. In other words, we can set

vg?(s)
.
=

8
>><

>>:

max
g2Ḡ:d(s,g)>0

r�(s, g) + �(s, g)ṽ(g) if 9 g 2 Ḡ : d(s, g) > 0, (projection step)

undefined otherwise,

(3.5)

and take action a that corresponds to the action given by ⇡g for this maximizing g.

Note that some states may not have any subgoals nearby. vg?(s) is undefined for

that state. We show the vanilla GSP algorithm in Algorithm 1. For conciseness,

we refer the reader to Appendix C.1 for the full pseudocode from Lo et al. (2022).

5The transition probabilities are typically separate from the discount, but it is equivalent to
consider the discounted transition probabilities.
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Algorithm 1 Goal Space Planning for Episodic Problems

Assume given subgoals G and relevance function d
Initialize base learner (e.g. w, z = 0,0 for Sarsa(�)6), model parameters ✓ =

(✓r,✓�,✓⇡), ✓̃ = (✓̃
r
, ✓̃

�
)

Sample initial state s0 from the environment
for t 2 0, 1, 2, ... do

Take action at using q (e.g., ✏-greedy), observe st+1, rt+1, �t+1

Choose a0 from st+1 using q (e.g. ✏-greedy)
Update Models(st, at, st+1, rt+1, �t+1) (see Algorithm 5)
Planning() (see Algorithm 2)
MainPolicyUpdate(st, at, st+1, rt+1, �t+1, a0) (see Algorithm 4)

Algorithm 2 Planning()

for n iterations, for each g 2 G do

ṽ(g) maxg02Ḡ:d(g,g0)>0 r̃�(g, g
0; ✓̃

r
) + �̃(g, g0; ✓̃

�
)ṽ(g0)

6Sarsa(�) has two sets of parameters to initialize: its action-value function weights w, and
its eligibility trace vector z (Rummery, 1995).
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Chapter 4

Goal Space Planning with

Reward Shaping

We consider three desiderata for when a model-based approach should be e↵ec-

tive:

1. The model should be feasible to learn: we can get it to a su�cient level of

accuracy that makes it beneficial to plan with that model.

2. Planning should be computationally e�cient, so that the agent’s values can

be quickly updated.

3. Finally, the model should be modular—composed of several local models or

those that model a small part of the space—so that the model can quickly

adapt to small changes in the environment. These small changes might still

result in large changes in the value function; planning can quickly propagate

these small changes, potentially changing the value function significantly.

At a high level, the vanilla GSP algorithm focuses planning over a given set of
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abstract subgoals to provide quickly updated, approximate values to speed up

learning to address these desiderata. In order to do so, the agent first learns a set

of subgoal-conditioned models. These models then form a temporally abstract

MDP, with subgoals as states, and options to reach each subgoal as actions.

Finally, the agent updates its policy by mixing these subgoal values into the TD

target to speed up learning. Namely, vanilla GSP used a TD error of

�t = Rt+1 + �t+1(�vg?(St+1) + (1� �)q̂(St+1, At+1;w))� q̂(St, At;w),

where � 2 [0, 1] was a hyper-parameter.1 In this thesis, we instead use vg? as

a potential, and find that it can extend the vanilla GSP to a wider range of

value-based learning algorithms. PBRS with vg? was found to outperform vanilla

GSP. This chapter outlines some issues with vanilla GSP outlines two theoretical

properties of using GSP with Reward Shaping, relevant to the empirical results

in the following chapter.

4.1 Problems with naively using vg?

There are two other critical issues with this approach. Policies are restricted to

go through subgoals, which might result in suboptimal policies. From a given

state s, the set of relevant subgoals g may not be on the optimal path. This

limitation is expressly one we early mentioned we wished to avoid, and is a key

limitation of Landmark Value Iteration (LAVI) developed for the setting where

models are given (Mann et al., 2015). Second, the learned models themselves may

have inaccuracies, or planning may not have been completed in the background,

1The target of this TD error resembles the Mixed Monte Carlo update (Ostrovski et al.,
2017), however instead of mixing in a multi-step return, we mix in a projection of the subgoal’s
value.
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resulting in ṽ(g) that are not yet fully accurate.

4.2 vg? as a Potential

When incorporating vg? into the learning process, we want to ensure the optimal

policy remains unchanged and that vg? guides the agent by helping evaluate the

quality of its decisions. A simple way to satisfy these requirements is to use

potential-based reward shaping (Ng et al., 1999). PBRS defines a new MDP

with a modified reward function where the agent receives the reward R̃t+1 =

Rt+1 + ��(St+1)� �(St), where � : S ! R is any state-dependent function. Ng

et al. show that such a reward transformation preserves the optimal policy from

the original MDP. We propose using � = vg? to modify any TD learning algorithm

to be compatible with GSP. For example, in the Sarsa(�) algorithm, the update

for the weights of the action-value function q̂ would use the TD-error

�t
.
= Rt+1 + �t+1vg?(St+1)� vg?(St)| {z }

R̃t+1

+ �t+1q̂(St+1, At+1;w)� q̂(St, At;w). (4.1)

This modified TD error can also be incorporated into more complex value-

based learning algorithms. We show how GSP with PBRS can be layered onto

Double DQN (a popular value-based learning algorithm that uses non-linear value

function approximation) in Algorithm 3.

PBRS rewards the agent for selecting actions that result in a state transition

that increase �. Consider the case when � represents the negative distance to

a goal state. When �(St+1) > �(St), then the agent has made progress towards

getting to the goal, and it receives a positive addition to the reward. When �

is an estimate of the value function, one can interpret the additive reward as
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Algorithm 3 Goal Space Planning with Reward Shaping on DDQN

Initialize base learner parameters w,wtarg = w0, nupdates = 0, target refresh
rate ⌧ ,
set of subgoals Ḡ, relevance function d, model parameters ✓ = (✓r,✓�,✓⇡), ✓̃ =

(✓̃
r
, ✓̃

�
)

Sample initial state s0 from the environment
for t 2 0, 1, 2, ... do

Take action at using q (e.g., ✏-greedy), observe st+1, rt+1, �t+1

Add experience (st, at, rt+1, st+1, �t+1) to replay bu↵er D
Update GSP Models() (see Algorithm 6)
Planning() (see Algorithm 2)
for n mini-batches do

Sample batch B = {(s, a, r, s0, �)} from D
if d(s, ·), d(s0, ·) > 0 then

vg?(s) = maxg2Ḡ:d(s,g)>0 r�(s, g;✓
r) + �(s, g;✓�)ṽ(g)

vg?(s0) = maxg2Ḡ:d(s0,g)>0 r�(s
0, g;✓r) + �(s0, g;✓�)ṽ(g)

r̃ = r + �vg?(s0)� vg?(s)
else

r̃ = r
Y (s, a, r, s0, �) = r̃ + �q(s0, argmaxa0 q(s

0, a0;w);wtarg)
L = 1

|B|
P

(s,a,r,s0,�)2B(Y (s, a, r, s0, �)� q(s, a;w))2

w w � ↵rwL
if nupdates%⌧ == 0 then

wtarg  w

nupdates = nupdates + 1

rewarding the agent for taking actions that increase the value function estimate

and penalizes actions that decrease the value. In this way, using � = vg? , the

agent can leverage immediate feedback on the quality of its actions using the

information from the abstract value function about what an optimal policy might

look like.

For intuition as to why potential-based reward shaping does not bias the

optimal policy, notice that
P1

t=0 �
t (��(St+1)� �(St)) = ��(S0), which means

the relative values of each action remain the same.2

2It should be noted that the cancellations of these intermediate terms mean that algorithms
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It is important to note that if vg? can help improve learning, it can also make

learning harder if its guidance makes it less likely for an agent to sample optimal

actions. This increase in di�culty is likely if the models used to construct the

abstract MDP and vg? have substantial errors. In this case, the agent has to

learn to overcome the bad “advice” provided by vg? . We investigate this further

with inaccurate models and non-stationary environments in Sections 5.4 and 5.6

respectively.

4.3 Theoretical Results

4.3.1 Shaping and Q-initialization Equivalence

In the tabular setting, it is known that using PBRS is equivalent to initialising

Q to � and then performing updates on the same set of experience (Wiewiora,

2003). While Wiewiora explicitly showed this for tabular Q-learning and stated it

extends to all TD learners, in this thesis we explicitly show it for tabular Sarsa(�),

as we use it in our experiments.

Proposition 1. Given the same sequence of experience, performing TD(�) up-

dates with potential-based reward shaping is equivalent to adding the potential to

the learner’s initial action values and updating using the unshaped rewards, in the

tabular setting.

Proof. We first explicitly show this result for Sarsa(�), one of the algorithms we

use to empirically analyze GSP with shaping, and then show how it extends to

all TD learners.

like REINFORCE (Williams, 1992) or Proximal Policy Optimization (Schulman et al., 2017)
will see little benefit when combined with PBRS (as they use the discount sum of all rewards
to update the policy).
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We start with two Sarsa(�) learners L and L0, with Q-tables Qt and Q0
t. L will

perform Sarsa(�) updates with PBRS, whereas L0 will have its Q-table initialized

as Q0
0(s, a) = Q0(s, a) +�(s) and it will use unshaped rewards. � : S 7! R is the

potential function.

Our experiences are stored as a list of 5-tuplesD = {hSi, Ai, Ri+1, Si+1, �i+1i}n�1
i=0 .

Both learners will use this same list of experiences.

For tabular Sarsa(�), the update rule for an experience hs, a, r, s0, �i is:

zt(s, a) = 1 (replacing trace)

Qt+1(s, a) Qt(s, a) + ↵�tzt

zt+1  ��zt,

and we use

�t = r + ��(s0)� �(s) + �Qt(s
0, a0)�Qt(s, a),

�0t = r + �Q0
t(s

0, a0)�Q0
t(s, a)

as the TD errors for L, and L0 respectively. zt 2 R|S|⇥|A| is the eligibility trace

vector 3. We denote the change in the Q-tables after k updates from initialization

as �Qk =
Pk�1

t=0 ↵�tzt and �Q0
k =

Pk�1
t=0 ↵�

0
tzt. Since both learners use the same

list of experience, � and �, they would have the same eligibility trace vector zt 8 t.

We initialise z�1 = 0.

For the theorem to be true, we require

�Qt = �Q0
t 8 t.

3It is a memory mechanism that, on each learning update, gives a decaying amount of credit
for state-action pairs that occurred previously. The � in Sarsa(�) determines the rate of this
decay with time Sutton and Barto (2018).
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We show this using a proof by induction.

Base Case: When t = 1,

�Q1 = ↵�0z0

= ↵

2

4 R1 + ��(St+1)� �(St)

+�Q(St+1, At+1)�Q(St, At)

3

5 z0,

�Q0
1 = ↵�00z0

= ↵[R1 + �Q0(St+1, At+1)�Q0(St, At)]z0

= ↵

2

6664

R1

+�(Q(St+1, At+1) + �(St+1))

�(Q(St, At) + �(St))

3

7775
z0

= ↵

2

4 R1 + ��(St+1)� �(St)

+�Q(St+1, At+1)�Q(St, At)

3

5 z0

= �Q1.

The changes to the Q tables are equivalent after 1 update.

Assumption : 9 k 2 N s.t. �Qk = �Q0
k.

Inductive Step: When t = k + 1, the learner L updates with experience
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hs, a, r, s0, �i.

�Qk+1 = �Qk + ↵�kzk

= �Qk + ↵[r + ��(s0)� �(s) + �Qk(s
0, a0)�Qk(s, a)]zk

= �Qk + ↵

2

6664

r + ��(s0)� �(s)

+�(Q0(s0, a0) +�Qk(s0, a0))

�Q0(s, a)��Qk(s, a)

3

7775
zk. (3.2)

The third line was possible because Qk = Q0 +
Pk�1

t=0 ↵�tzt (i.e. Qk is the inital-

ization plus k � 1 updates). Whereas learner L0 updates as:

�Q0
k+1 = �Q0

k + ↵�0kz
0
k

= �Q0
k + ↵[r + �Q0

k(s
0, a0)�Q0

k(s, a)]z
0
k

= �Q0
k + ↵

2

6664

r

+�(Q0(s0, a0) + �(s0) +�Q0
k(s

0, a0))

�Q0(s, a)� �(s)��Q0
k(s, a)

3

7775
z0k

= �Q0
k + ↵

2

6664

r + ��(s0)� �(s)

+�(Q0(s0, a0) +�Q0
k(s

0, a0))

�Q0(s, a)��Q0
k(s, a)

3

7775
z0k. (3.3)

By our assumption, �Qk = �Q0
k. Furthermore as zk = z0k, we see that (3.2) =

(3.3).

=) �Qk+1 = �Q0
k+1.

So if �Qk = �Q0
k, we have shown that �Qk+1 = �Q0

k+1. Since we have shown

that �Q0 = �Q0
0, by induction �Qt = �Q0

t 8 t 2 N.
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More generally, this holds for any TD-learner. This can be seen if we consider

the TD errors,

�t = r + ��(s0)� �(s) + �CQt(s
0, ·)�Qt(s, a) and

�0t = r + �CQt(s
0, ·)�Q0

t(s, a)

Where CQt(s0, ·) =
P

a02A ↵a0Qt(s0, a0) denotes a convex combination over actions.

This includes learners like Expected Sarsa, ↵a0 = Pr(At+1 = a0), (John, 1994) and

Q-learning, ↵a0 =

8
><

>:

1 a0 2 argmaxa2A Q(s0, a),

0 otherwise.

4.3.2 Shaping with v?

Using vg? as a potential can help quickly identify ⇡?. Specifically, when vg? is

v?, and the value function is constant, e.g., initialized to 0, it only takes one

application of the Bellman operator in each state to find the optimal policy. We

formalize this in the proposition below.

Proposition 2. For vg? = v? and v0 = c, for c 2 R, then the policy, ⇡1 derived

after a single Bellman update at all states will be optimal, i.e.,

⇡1(s) 2 argmax
a

q?(s, a) 8 s 2 S.

Proof. Let the q estimate for the kth iteration be

qk(s, a) = R(s, a) +
X

s0

P (s, a, s0) (�vg?(s
0)� vg?(s) + �vk�1(s

0)) .

The value function for iteration k is vk = maxa qk(s, a) and the policy for the kth
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iteration is ⇡k(s) 2 argmaxa qk(s, a). The value of q1 is

q1(s, a) = R(s, a) +
X

s0

P (s, a, s0) (�cvg?(s
0)� vg?(s) + �v0(s

0))

= R(s, a) +
X

s0

P (s, a, s0) (�v?(s0)� v?(s) + �v0(s
0))

= R(s, a) +
X

s0

P (s, a, s0)�v?(s0)

| {z }
=q?(s,a)

+
X

s0

P (s, a, s0)�v0(s
0)

| {z }
=�c

�v?(s)

= q?(s, a) + �c� v?(s)

where the last line follows because v0(s0) = c for all s0. Then plugging this

expression into ⇡1 yields

⇡1(·|s) 2 argmax
a

q?(s, a) + �c� v?(s) = argmax
a

q?(s, a).

While having vg? = v? is not realistic, Proposition 2 means that the policy

will quickly align with what is preferable under vg? before finding what is optimal

for the MDP without the shaping reward.

35



Chapter 5

Experiments

This chapter empirically studies our GSP with Reward Shaping algorithm in

di↵erent settings. Since GSP plays a key role in helping the agent learn its

value function, we first analyse the e↵ects of GSP on a tabular value function

before moving on to common linear and non-linear value function approximation

techniques. We then look at how much the e↵ect of GSP depends on its three

core components: the models (in Section 5.4), the Goal-Space (in Section 5.5),

and lastly the potential (in Section 5.7).

We do so using value-based learners in three domains: FourRooms, PinBall

(Konidaris and Barto, 2009) and GridBall (a version of PinBall without velocities)

1. Unless otherwise stated, all learning curves are averaged over 30 runs, with

shaded regions representing one standard error.

1The PinBall configuration that we used is based on the easy configuration found at
https://github.com/DecisionMakingAI/BenchmarkEnvironments.jl, which was released
under the MIT license. We have modified the environment to support additional features
such as GridBall, changing terminations, visualizing subgoals, and various bug fixes.
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5.1 Tabular Results

A central hypothesis of this work is that GSP can accelerate value propagation.

By using information from local models in our updates, our belief is that GSP

will have a larger change in value to more states, leading to policy changes over

larger regions of the state space.

Hypothesis 1. GSP changes the value for more states with the same set of

experience, compared to a model-free learner.

Figure 5.1: The Four-
Rooms domain. The
blue square is the initial
state, green square the
goal state, and red boxes
the subgoals. A sub-
goal’s initiation set con-
tains the states in any
room connected to that
subgoal.

In order to verify whether GSP helps to quickly

propagate value, we first test this hypothesis in a sim-

ple grid world environment: the FourRooms domain.

The agent can choose from one of 4 actions in a dis-

crete action space A = {up, down, left, right}. All

state transitions are deterministic. The grey squares

in Figure 5.1 indicate walls, and the state remains un-

changed if the agent takes an action that leads into a

wall. This is an episodic task, where the base learner

has a fixed start state and must navigate to a fixed goal

state where the episode terminates. Episodes can also

terminate by timeout after 1000 timesteps.

In this domain, we test the e↵ect of using GSP with

pre-trained models on a Sarsa(�) base learner in the tabular setting (i.e. no

function approximation for the value function). Full details on using GSP with

this temporal di↵erence (TD) learner can be found in Algorithm 4. We set the

four hallway states plus the goal state as subgoals, with their initiation sets being

the two rooms they connect. Full details of option policy learning can be found
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in the appendix E.

Figure 5.2 shows the base learner’s action-value function after a single episode

using four di↵erent algorithms: Sarsa(0), Sarsa(�), Sarsa(0) + GSP, and Sarsa(�)

+ GSP. In Figure 5.2, the Sarsa(0) learner updates the value of the state-action

pair that immediately preceded the +1 reward at the goal state. The plot for

Sarsa(�) shows a decaying trail of updates made at the end of the episode, to

assign credit to the state-action pairs that led to the +1 reward. The plots

for the GSP variants show that all state-action pairs sampled receive instant

feedback on the quality of their actions. The updates with GSP can be both

positive or negative based on if the agent makes progress towards the goal state

or not. This direction of update comes from the potential-based reward shaping

rewards/penalizes transitions based on whether �t+1vg?(St+1) > vg?(St). It is

clear that projecting subgoal values from the abstract MDP leads to action-

value updates over more of the visited states, even without credit assignment

mechanisms such as eligibility traces.

0.00

0.90
Sarsa(0)

0.00

1.48
Sarsa(𝜆)

-0.06

0.00

0.03
GSP+Sarsa(0)

-0.29

0.00

0.47
GSP+Sarsa(𝜆)

Figure 5.2: These four plots show the action values after a single episode of
updates for Sarsa with and without GSP and eligibility traces, i.e., � = 0.9.
Each algorithm’s update is simulated from the same data collected from a uniform
random policy. Each state (square) is made up of four triangles representing each
of the four available actions. White squares represent states not visited in the
episode.

It is evident from these updates over a single episode that the resulting policy

from GSP updates should be more likely to go to the goal. We would like to
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quantify how much faster this propagated value can help our base learner over

multiple episodes of experience. More specifically, we want to test the following

hypothesis.

Hypothesis 2. GSP enables a TD base-learner to learn faster.

We expect GSP to improve a base learner’s performance on a task within

fewer environment interactions. We shall test whether the value propagation

over the state-action space as seen in Figure 5.2 makes this the case over the

course of several episodes (i.e. we are now testing the e↵ect of value propagation

over time). Figure 5.3 shows the performance of a Sarsa(�) base learner with and

without GSP in the FourRooms domain with a reward of -1 per step.

0 25 50 75 100 125 150 175 200

Episode

0

100

200

300

400

500

600

S
te

p
s

to
G

oa
l

Sarsa(�)

GSP shortest
path

Figure 5.3: This plot shows the average number of steps to goal smoothed over
five episodes in the FourRooms domain. Shaded region represents 1 standard
error across 100 runs.

5.2 Linear Function Approximation Results

Many real-world applications of RL involve large and/or continuous state spaces.

Besides making it unfeasible to maintain a look-up table of the value of each
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state, current planning techniques struggle with such state spaces. This motivates

an investigation into how well Hypotheses 1 and 2 hold when GSP is used in

such environments (e.g. the PinBall domain). To better analyze GSP and its

value propagation across state space, we also created an intermediate environment

between FourRooms and PinBall called GridBall.

Figure 5.4: Obstacles
and subgoals for Grid-
Ball and PinBall. The
larger circles show the
initiation set bound-
aries. Subgoals are
defined in position
space.

PinBall is a continuous state domain where the

agent navigates a ball through a set of obstacles

to reach the main goal. This domain uses a four-

dimensional state representation of positions and ve-

locities, (x, y, ẋ, ẏ) 2 [0, 1] ⇥ [0, 1] ⇥ [�2, 2] ⇥ [�2, 2].

The agent chooses from one of five actions at each

timestep. A = {up, down, left, right, no op}, where

the no op action adds no change to the ball’s veloc-

ity, and the other actions each add an impulse force in

one of the four cardinal directions. In all our experi-

ments, the agent is initialized with zero velocity at a

fixed start position at the beginning of every episode.

All collisions are elastic and we use a drag coe�cient of 0.995. This is an episodic

task with a fixed starting state and main goal. An episode ends when the agent

reaches the main goal or after 1,000 time steps. It should be noted that, unlike in

the FourRooms environment, there exist states which are not in the initiation set

of any subgoal - a common occurrence when deploying GSP in the state spaces

of real-world applications.

GridBall is like PinBall, but changed to be more like a grid world to facilitate

visualization. The velocity components of the state are removed, meaning the

state only consists of (x, y) locations, and the action space is changed to displace

the ball by a fixed amount in each cardinal dimension. We keep the same obstacle
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collision mechanics and calculations from PinBall. Since GridBall does not have

any velocity components, we can plot heatmaps of value propagation without

having to consider the velocity at which the agent arrived at a given position.

For Hypothesis 1, we repeat the experiments on GridBall with base learners

that use tile-coded features (Sutton and Barto, 2018), and linear value function

approximation. We use the same subgoal configuration as Figure 5.4. Full details

on the option policies and subgoal models used for this are outlined in shown in

Appendices A and B. Like in the FourRooms experiment, we set the reward to

be 0 at all states and +1 once the agent reaches any state in the main goal, in

order to show value propagation. We collect a single episode of experience from

the Sarsa(0)+GSP learner and use its trajectory to perform a batch update on

all learners. This controls for any variability in trajectories between learners, so

we can isolate and study the change in value propagation.

Figure 5.5 compares the state value function (averaged over the action value

estimates) of Sarsa(0), Sarsa(�), Sarsa(0)+GSP, and Sarsa(�)+GSP learners af-

ter a single episode of interaction with the environment. The results are similar

to those on FourRooms. The Sarsa(0) algorithm only updates the value of the

tiles activated by the state preceding the goal. Sarsa(�) has a decaying trail of

updates to the tiles activated preceding the goal, and the GSP learners update

values at all states in the initiation set of a subgoal.

To examine how GSP translates to faster learning (Hypothesis 2), we measure

the performance (steps to goal) over time for each algorithm in both GridBall and

PinBall domains. Figure 5.6 shows that GSP significantly improves the rate of

learning in these larger domains too, with the base learner able to reach near its

top performance within 75 and 100 episodes in GridBall and PinBall respectively.

All runs can find a similar length path to the goal. As the size of the state space
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(a) Sarsa(0) (b) Sarsa(�) (c) GSP+Sarsa(0) (d) GSP+Sarsa(�)

Figure 5.5: The tile-coded value function after one episode in GridBall. Like
Figure 5.2, the gray regions show the visited states that were not updated. The
red circle is the main goal.

increases, the benefit of using local models in the GSP updates still holds.

Similar to the previous domains, the Sarsa(�) learner using GSP is able to

reach a good policy much faster than the base learner without GSP. In both

domains, the GSP and non-GSP Sarsa(�) learners plateau at the same average

steps to the goal. Even though the obstacles remain unchanged from GridBall, it

takes roughly 50 episodes longer for even the GSP variant to reach a good policy

in PinBall. This is likely due to the continuous 4-dimensional state space making

the task harder.

5.3 Deep Reinforcement Learning Results

The previous results shed light on the dynamics of value propagation with GSP

when a learner is given a representation of its environment (a look-up table or a

tile coding). A natural next step is to look at whether the reward and transition

dynamics learned with GSP can still propagate value (Hypothesis 2) in the deep

RL setting, where the learner must also learn a representation of its environment.

We test this by running a DDQN base learner (van Hasselt et al., 2016) in

the PinBall domain, with GSP layered on DDQN as in Algorithm 3. The base
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Figure 5.6: Five episode moving average of return in the GridBall over 200
episodes (left) and PinBall over 500 episodes (right). We performed 30 runs,
and showed 1 standard error in the shaded region. All learners used linear value
function approximation on their tile-coded features.

learner’s complete hyper-parameter specifications are in Appendix F.

Unlike the previous experiments, using GSP out of the box resulted in the

base learner converging to a sub-optimal policy. This is despite the fact that

we used the same vg? as the previous PinBall experiments. We investigated the

distribution of shaping terms added to the environment reward and observed

that they were occasionally an order of magnitude greater than the environment

reward. Though the linear and tabular methods handled these spikes in potential

di↵erence gracefully, these large displacements seemed to cause issues when using

neural networks and a DDQN base learner.

We tested two variants of GSP that better control the magnitudes of the raw

potential di↵erences (��(St+1) � �(St)). We adjusted for this by either clip-

ping or down-scaling the potential di↵erence added to the reward. The scaled

reward multiplies the potential di↵erence by 0.1. Clipped GSP clips the potential

di↵erence into the [�1, 1] interval. It should be noted that clipping the poten-
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(a) GSP modified for Deep RL
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(b) Robustness to model accuracy
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Figure 5.7: Investigating the behavior of GSP in the deep reinforcement learning
setting in PinBall. (a) Following the format of Figure 5.6, we show the 20 episode
moving average of steps to the main goal in PinBall. (b) Five episode moving
average of steps to goal in PinBall for GSP with models trained with di↵ering
numbers of epochs.

tial di↵erence no longer guarantees the optimal policy will be preserved. With

these basic magnitude controls, GSP again learns significantly faster than its base

learner, as shown in Figure 5.7a.

5.4 Robustness to Accuracy of the Learned Mod-

els

In this section, we investigate how robust GSP is to inaccuracy of its models.

When examining the accuracy of the learned models, we found the errors in r�

and � could be as high as 20% in some parts of the state space (see Appendix E

for more information). Despite this level of inaccuracy in some states, GSP still

learned e↵ectively, as seen in Sections 5.1, 5.2 and 5.3.
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We conducted a targeted experiment controlling the level of accuracy to better

understand this robustness and test the following hypothesis.

Hypothesis 3. GSP can learn faster with more accurate models, but can still

improve on the base learner even with partially learned models.

We varied the number of epochs to obtain models of varying accuracy. Our

models were fully connected artificial neural networks, and we learn the models for

each subgoal by performing mini-batch stochastic gradient descent on a dataset

of trajectories that end in a member state of that subgoal g. Full implementation

details for this mini-batch stochastic gradient descent can be found in Appendix

B.

As expected, Figure 5.7b shows that more epochs over the same dataset of

transitions improves how quickly the base learner reaches the main goal. Within

4 epochs of model training, the learner is able to reach a good policy to the main

goal. However, if the model is very inaccurate (2 epochs), the GSP update will

bias the base learner to a sub-optimal policy. There is a trend of diminishing

improvement when iterating over the same dataset of experience: doubling the

number of epochs from two to four results in a policy that reaches the main goal

10⇥ quicker, but a learner which used a further 16⇥ the number of epochs at-

tains a statistically identical episode length by episode 500. While more accurate

models lead to faster learning, relatively few epochs are required to propagate

enough value to help the learner reach a good policy.

5.5 The Role of Subgoal Selection

While the above experiments show that goal-space planning can speed up learning

and propagate value faster, it is crucial to understand how value propagation
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depends on the selection of subgoals. Specifically, we want to identify 1) how the

graphical structure of the subgoals impacts value propagation in vg? and 2) how

quickly the base learner can change their policy.

To answer these questions we consider a setting where the agent is presented

with new information that indicates it should change its behavior. We will then

update the state-to-subgoal and subgoal-to-subgoal models online and measure

how much vg? changes, along with how quickly the base learner can change its

policy on di↵erent subgoal configurations.

For this task, the agent has to decide between taking one of two paths to a

goal state. We initialize the agent to use an optimal policy so it takes the shorter

of the two paths. Then we introduce a lava pool along the optimal path that gives

the agent a large negative reward for entering it. This negative reward means

the initial path is no longer optimal and that the agent needs to switch to the

alternate, reward-respecting path.

The FourRooms environment uses �1 reward per step, and each state in the

lava pool has a reward of �20. The agent, initialized with q? for the original

FourRooms environment, is run for 100 episode in the new FourRooms environ-

ment with the lava pool. We run GSP with Sarsa in this tabular setting for all

subgoal configurations for 200 runs each.

We test the following hypothesis.

Hypothesis 4. The placement of subgoals along the initial and alternate optimal

paths are essential for fast adaptation.

To test this hypothesis, we will evaluate the following four subgoal configu-

rations. The first subgoal arrangement contains no subgoals near the goal state

and the goal state is not connected the other subgoals. The second contains a
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subgoal on the initial optimal path, but no subgoal on the alternate path. The

third is where there is subgoal on the alternate path but no subgoal on the initial

optimal path. The last is where there are subgoals on both paths. We illustrate

these subgoal configurations in Figure 5.8. Recall that a subgoal’s initiation set

is the states in the two adjacent rooms.

No Near On Initial On Alternate Both

Figure 5.8: Di↵erent subgoal configurations in the FourRooms environment with
a lava pool. The purple square is the learner’s starting location, the gray squares
the walls, the orange squares the location of the lava pool, and the green square
the goal location. The only di↵erence between these figures are the red boxes,
which indicate the states that are subgoals for that configuration.

For this experiment, the state-to-subgoal models and abstract MDP need to

be updated online. However, since only the reward function is changing, we only

need to update the reward models r� and r̃�. Furthermore, we can represent r�

using successor features so that the agent only needs to estimate the reward func-

tion (Barreto et al., 2017). Let  ⇡g(s) ⇡ E⇡g

hP1
k=0

Qk
k0=0 �t+k0�(St+k)|St = s

i
,

where �(St) 2 Rn is the feature vector at state St and actions are selected accord-

ing to option policy ⇡g. Then r�(s, g) = w> ⇡g(s), where w 2 Rn. The learner

can then update r� by estimating the reward function with stochastic gradient

descent, i.e., w w + ⌘[Rt �w>�(St)]�(St) for some scalar step size ⌘.

To understand how learning is impacted by the subgoal configuration we show

the return and probability the agent takes the alternative path in Figure 5.9.

The first thing that is apparent is that all configurations are able to change the

policy so that the probability of taking the alternative path increases. The main
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Figure 5.9: This figure shows the average return (left) and average probability
the agent will take the alternative path (right) from each episode. Shaded regions
represent (0.05,0.9)-tolerance intervals (Patterson et al., 2020) over 200 trials.

di↵erences come from how quickly, in expectation, each configuration is able to

change the policy to have a high probability of taking the alternate path. The

Both and On Alternate subgoal configurations have the quickest change in the

policy on average, while the other methods are slower. The No Near configuration

also seems to, on average, have the smallest increase in probability of taking the

alternate path. These results suggest that for GSP to be most impactful, there

needs to be a path through the subgoals that represents the desirable path.

To better understand these results, we look more closely at vg? for each con-

figuration. We measure how vg? changes over learning, i.e. vg?,t � vg?,0, where

vg?,i is the value of vg? after episode i. We first examine the values of vg? for each

subgoal configuration before the introduction of the lava pool (top row in Figure

5.10). For the No Near subgoals configuration, vg? has a disconnected graph, so

all but the room with the goal state has a large negative value.

For both On Initial and On Alternate configurations, vg? is the smallest in the

room that is furthest from the goal state according to the abstract MDP. This is

due to the structure of the abstract MDP only knowing about a single path to
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Figure 5.10: The top row of this figure shows the value of vg? for each state before
the lava pool, for each subgoal configuration. The second and third rows show the
change in vg? after the first and 100th episode, after the lava pool is introduced.

the goal state.

In the Both subgoal configuration vg? closely represents the optimal value

function in each state.

We then look at the change in vg? after the lava pool is introduced, after

one episode (middle row in Figure 5.10) and 100 episodes (bottom row in Figure

5.10). We notice that the change in vg? follows the same patterns as the value

representation. The value in the No Near subgoal configuration does not propa-

gate information from the lava pool to rooms outside the bottom left room. For

the On Initial configuration, the value decreases quickly in the top right room,

but also the other two rooms as well. After 100 episodes the value is decreased

in most states but the top right room sees the largest decrease. For the On Al-
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ternate configuration value is not quickly propagated after discovering the lava

pool because there is no connected region from the path the agent took to the

lava pool. However, small changes are propagated over time due to the small

probability of hitting the lava pool on the alternate path. With the Both subgoal

configuration, value is quickly decreased in the states that would take the initial

path, but not the alternate path. This indicates the desirable path through sub-

goals changes in the abstract MDP. Over time the decrease in value is largely

isolated to the top right room with the decreases in the other rooms coming from

small chances of hitting the lava pool on the alternate path.

Remark: We also examined the utility of these subgoals for learning before

the lava pool was introduced. Here we found that the On Alternate subgoal

placement actually caused the agent to learn a suboptimal policy, because it

biased it towards the alternate path initially. You can see a visualization of this

vg? in Figure 5.10 (top row, third column). The base learner does not use a smart

exploration strategy to overcome this initial bias, and so settles on a suboptimal

solution—namely, to take the slightly longer alternate path. See Appendix 5.6

for the full details and results for this experiment. Note that this suboptimality

did not arise in the above experiment, because the lava pool made one path

significantly worse than the other, pushing the agent.

5.6 Subgoal Placement and the Region of At-

traction

A counter intuitive observation from the experiments in Section 5.5 was that

the On Alternate path helped the agent quickly change its policy but vg? did

not quickly change. In this section, we investigate this reason and put forth the
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Figure 5.11: This figure shows the time the agent spends per episode in the
bottom left and top right rooms. The lines convey the average % of time the agent
spend and the shaded lines represent (0.05, 0.9) tolerance intervals computed from
100 trials.

following hypothesis:

Hypothesis 5. GSP creates a region of attraction so that the agent follows the

optimal path as determined by the abstract MDP.

That is to say, if a single chain of subgoals is represented in the abstract MDP,

then the learner will initially try and closely follow this path even if it is not the

optimal path. To test this hypothesis, we want to see that the agent will occupy

states similar to what is specified by the optimal path in the abstract MDP. For

this experiment, we ran GSP on FourRooms (without the lava pools) with each

subgoal configuration defined in the previous section. We measured how much

time the agent spends in the bottom left room and the top right room. The agent

should, as it learns about the environment, spend more time in the top right room

and less time in the bottom left room. We would expect all agents to follow this

trend, except for the one that is missing a subgoal to go through the top right

room. We show the results for each configuration and Sarsa(0) with no GSP in

Figure 5.11. The results in Figure 5.11 are clear. All methods learn to go through
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the top right room except for the subgoal configuration missing a subgoal on that

path to the goal state. This supports our hypothesis that the agent will learn

to follow the optimal path as specified by the abstract MDP. This also means

that while potential-based shaping (used to propagate value information from

the abstract MDP to the base learner) does not change the optimal policy, it can

make it harder for the learner to find the optimal policy.

Based on the experiments in Section 5.5 and this one, we can conclude a few

key points about GSP. The first is that vg? can only provide value information as

determined by the optimal value function through the abstract MDP, which may

not reflect the connectivity of the original MDP. Second, the learner’s exploration

through the state space will be highly impacted by the known subgoals. With

the basic ✏-greedy exploration policy that GSP currently uses, GSP will quickly

follow and refine the best policy found within the abstract MDP. If the optimal

policy is near to the policy found by the abstract MDP, then GSP will be able to

quickly discover it. However, if the optimal policy is very di↵erent than the one

found by the abstract MDP (for example, if the best abstract MDP policy follows

an alternate sub-optimal path), this will make the agent explore around its sub-

optimal policy, and thus possibly slowing down the discovery of the optimal policy,

because the basic ✏-greedy exploration policy centralizes exploration around the

current best policy known by the agent.

This is all to say that there is work to be done to improve GSP’s exploration

by incorporating more sophisticated exploration strategies. There are also oppor-

tunities to develop new exploration strategies that takes advantage of how GSP

learns with the knowledge of subgoals within the environment. For example,

one may consider leveraging an existing subgoal formulation for more directed

exploration by introducing reward bonuses at other subgoals, once we know the

environment has changed. Additional work to find new subgoals or refine the
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current subgoal configurations can also have a high impact in how well GSP can

explore and adapt to changes in the environment.

5.7 Comparison with other Potentials

Having shown several instances of vg? being used as a potential for reward shap-

ing, we shall now investigate how much of the GSP performance improvements

are due to vg? capturing useful information about the MDP, rather than just be-

ing a general consequence of using a good heuristic with potential-based reward

shaping.

Hypothesis 6. Using any potential function that captures the relative importance

of a transition will increase the learning e�ciency of the base learner, but vg? that

is tailored to the MDP will allow for faster learning.

We test this by comparing vg? with two other potentials - an informative and

an uninformative one - in the PinBall domain. The first potential function is the

negative L2 distance in position space (scaled) to the main goal, (xg, yg)>,

�(St) = �100

������

0

@xg

yg

1

A�

0

@x(St)

y(St)

1

A

������
2

, (5.1)

where x(St) and y(St) are functions that return the x and y coordinates of the

agent’s state respectively. This potential function captures a measure of closeness

to the goal state, but does not consider obstacles or the velocity component. So

it should provide some learning benefit but should not be as helpful as vg? . We

scale this potential by a factor of 100 to make it comparable in magnitude to vg? .

Reward shaping with the unscaled L2 distance did not have any significant e↵ect

on the base learner.
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The second potential is created by randomly assigning a value for each state,

8s 2 S, �(s) U [�100, 0]. (5.2)

This potential does not encode any useful information about the environment

on average. It would make learning harder as it encourages the agent to take

sub-optimal actions.
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Figure 5.12: Five episode moving average of steps to goal in PinBall with di↵erent
potential functions for �(s). We follow the format of Figure 5.7a.

We compare the performance of a Sarsa(�) base learner using each of the three

potentials. We use the PinBall domain with the same subgoal configuration and

settings as in Section 5.2 and display the results in Figure 5.12. Using vg? for the

potential reaches the main goal fastest, though using L2 also resulted in significant

speed-ups over the base learner (No Potential). The L2 heuristic, however, is

specific to navigation environments, and finding general purpose heuristics is

di�cult. Using a subgoal formulation for the potential is more easily extensible

to other environments. The random potential harms performance, likely because

it skews the reward and impacts exploration negatively.
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Chapter 6

Conclusions and Future Works

Goal-Space Planning provides a new approach for using background planning

to improve value propagation with local models and computationally e�cient

planning. In this thesis, we showed and studied a new way to use the GSP

framework. We showed that with potential-based reward shaping, the informa-

tion from subgoal-conditioned models can be used to quickly propagate value

through state spaces of varying sizes. We find a consequent learning speed-up

on base learners with di↵erent types of value function approximation. Subgoal

selection was found to play a big role on the value function and policy the base

learner reaches. In particular, we see that GSP with Reward Shaping helps the

base learner find a path through the state space, based on the high-level path

found in the abstract MDP. We also verify that the performance improvement

observed in GSP is the result of vg? capturing the MDP dynamics, and not a

general consequence of potential-based reward shaping.

This work introduces a new formalism and many new technical questions along

with it. Our experiments learning the models online using successor representa-
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tions indicate that GSP can get similar learning speed boosts. Using a recency

bu↵er, however, accumulates transitions only along the optimal trajectory, some-

times causing the models to become inaccurate part-way through learning. An

important next step is to incorporate smarter model learning strategies. The

other critical open question is subgoal discovery. For this work, we relied on

hand-picked subgoals, but an intelligent agent should discover its subgoals. One

utility of this work is that it could help narrow the scope of the discovery ques-

tion, to that of finding abstract subgoals that help a learner plan more e�ciently.

Additionally, algorithms that use discounted sums of rewards from a trajectory to

update the policy (like REINFORCE (Williams, 1992) or the widely used Prox-

imal Policy Optimization (Schulman et al., 2017)) will see little benefit when

combined with our reward shaping techniques. In this setting we would need to

estimate a qg? to leverage trajectory-wise control variates. Lastly, it would be

interesting if the agent can control the level of abstraction it plans at. Namely

learning a value function in multiple abstract MDPs, and giving the agent the

option to choose what level it plans at before making decisions.
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Appendix

A Learning the Option Policies

In this section we detail the implementation of option learning which was used in

all the experiments presented in this thesis. This is followed by a brief description

of how these option policies could be learnt more generally across domains. Our

full procedure is summarised in Figure B.2.

In the simplest case, it is enough to learn ⇡g that makes r�(s, g) maximal for

every relevant s (i.e., 8 s 2 S s.t. d(s, g) > 0). For each subgoal g, we learn its

corresponding option model ⇡g by initialising the base learner in the initiation set

of g, and terminating the episode once the learner is in a state that is a member

of g. We used a reward of -1 per step and save the option policy once we reach

a 90% success rate, and the last 100 episodes are within some domain-dependent

cut o↵. This cut o↵ was 10 steps for FourRooms, and 50 steps for GridBall and

PinBall.

We could have also learned the action-value variant r�(s, a, g) using a Sarsa

update, and set ⇡g(s) = argmaxa2A r�(s, a, g), where we overloaded the defini-

tion of r�. We can then extract r�(s, g) = maxa2A r�(s, a, g), to use in all the

above updates and in planning. In our experiments, this strategy is su�cient for

learning ⇡g.
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Figure A.1: Evaluation of PinBall option policies by average trajectory length.
Policies were saved once they were able to reach their respective subgoal in undeer
50 steps, averaged across 100 trajectories. Subgoal 2 was the hardest to learn an
option policy for, due to its proximity to obstacles.

B Learning the Subgoal Models

Now we need a way to learn the state-to-subgoal models, r�(s, g) and �(s, g), still

following the progression in Figure B.2. These can both be expressed as General

Value Functions (GVFs) (Sutton et al., 2011),

�(s, g) = E⇡g

" 1X

k=0

 
kY

k0=0

�t+k0+1

!
m(St+1, g)

���St = s

#
, (1)

r�(s, g) = E⇡g

" 1X

k=0

 
kY

k0=0

�t+k0+1

!
Rt+k+1

���St = s

#
, (2)

and we leverage this form to use standard algorithms in RL to learn them.

In our experiments, the data is generated o✏ine according to each ⇡g. We

then use this episode dataset from each ⇡g to learn the subgoal models for that

subgoal g. This is done by ordinary least squares regression to fit a linear model

in four-room, and by stochastic gradient descent with neural network models in

GridBall and PinBall. Full experimental details for these methods are described
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in Appendix E.

O✏ine Model Update We first collect a dataset of n episodes leading to a

subgoal g, Dg = {hSi,1, Ai,1, Ri,1, Si,1, . . . , Si,Tii}ni=1. Si,t, Ai,t, Ri,t represent the

state, action and reward at timestep t of episode i. Ti is the length of episode

i. Si,0 is a randomised starting state within the initiation set of g, and Si,Ti is a

state that is a member of subgoal g. For each g, we use Dg to generate a matrix

of all visited states, X 2 Rl⇥|S|, and a vector of all reward model returns, gr 2 Rl,

and transition model returns g� 2 Rl,

X =

0

BBBBBB@

Si,1

Si,2

...

Sn,Tn

1

CCCCCCA
,gr =

0

BBBBBB@

Ri,2 + �r�(Si,3, g)

Ri,3 + �r�(Si,4, g)
...

Rn,Tn

1

CCCCCCA
,g� =

0

BBBBBB@

�T1�0

�T1�1

...

�Tn�Tn

1

CCCCCCA
,

where l =
Pn

i=1 Ti is the total number of visited states in Dg.

This creates a system of linear equations, whose weights we can solve for

numerically in the four-room domain,

X✓r = gr =) ✓r = X+gr,

X✓� = g� =) ✓� = X+g�,

where ✓r,✓� 2 R|S| and X+ is the Moore-Penrose pseudoinverse of X (Penrose,

1955).

For GridBall and PinBall, we used fully connected artificial neural networks

for r� and �, and performed mini-batch stochastic gradient descent to solve ✓r

and ✓� for that subgoal g. We use each mini-batch of m states, reward model
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returns and transition model returns to perform the update:

✓r  ✓r � ⌘r

mX

j=1

r✓r(✓r>Xj,: � gr,j)
2,

✓�  ✓� � ⌘�

mX

j=1

r✓�(✓�
>
Xj,: � g�,j)

2,

where ⌘r and ⌘� are the learning rates for the reward and discount models re-

spectively. Xj,: is the jth row of X. gr,j and g�,j are the jth entry of gr and g�

respectively. In our experiments, we had a fully connected artificial neural net-

work with two hidden layers of 128 units and ReLU activation for each subgoal.

The network took a state s = (x, y, ẋ, ẏ) as input and outputted both r�(s, g)

and �(s, g). All weights were initialised using Kaiming initialisation (He et al.,

2015). We use the Adam optimizer with ⌘ = 0.001 and the other parameters set

to the default (b1 = 0.9, b2 = 0.999, ✏ = 10�8), mini-batches of 1024 transitions

and 100 epochs.

(a) r�(s, g1) and �(s, g1) (b) r�(s, g2) and �(s, g2)

(c) r�(s, g3) and �(s, g3) (d) r�(s, g4) and �(s, g4)

Figure B.1: State-to-Subgoal models learnt by neural models after 100 epochs.

The data could also be generated o↵-policy—according to some behavior b

rather than from ⇡g. We can either use importance sampling or we can learn the
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action-value variants of these models to avoid importance sampling. We describe

both options here.

O↵-policy Model Update using Importance Sampling We can update

r�(·, g) with an importance-sampled temporal di↵erence (TD) learning update

⇢t�trr�(St, g) where ⇢t =
⇡g(a|St)
b(a|St)

and

�rt = Rt+1 + �g,t+1r�(St+1, g)� r�(St, g)

The discount model �(s, g) can be learned similarly, because it is also a GVF

with cumulant m(St+1, g)�t+1 and discount �g,t+1. The TD update is ⇢t��t where

��t = m(St+1, g)�t+1 + �g,t+1�(St+1, g)� �(St, g)

All of the above updates can be done using any o↵-policy GVF algorithm, in-

cluding those using clipping of IS ratios and gradient-based methods, and can

include replay.

O↵-policy Model Update without Importance Sampling Overloading

notation, let us define the action-value variants r�(s, a, g) and �(s, a, g). We get

similar updates to above, now redefining

�rt = Rt+1 + �g,t+1r�(St+1, ⇡g(St+1), g)� r�(St, At, g)

and using update �trr�(St, At, g). For � we have

��t = m(St+1, g)�t+1 + �g,t+1�(St+1, ⇡g(St+1), g)� �(St, At, g)
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We then define r�(s, g)
.
= r�(s, ⇡g(s), g) and �(s, g)

.
= �(s, ⇡g(s), g) as determin-

istic functions of these learned functions.

Restricting the Model Update to Relevant States Recall, however, that

we need only query these models where d(s, g) > 0. We can focus our function ap-

proximation resources on those states. This idea has previously been introduced

with an interest weighting for GVFs (Sutton et al., 2016), with connections made

between interest and initiation sets (White, 2017). For a large state space with

many subgoals, using goal-space planning significantly expands the models that

need to be learned, especially if we learn one model per subgoal. Even if we learn

a model that generalizes across subgoal vectors, we are requiring that model to

know a lot: values from all states to all subgoals. It is likely such a models would

be hard to learn, and constraining what we learn about with d(s, g) is likely key

for practical performance.

The modification to the update is simple: we simply do not update r�(s, g),�(s, g)

in states s where d(s, g) = 0.1For the action-value variant, we do not update for

state-action pairs (s, a) where d(s, g) = 0 and ⇡g(s) 6= a. The model will only

ever be queried in (s, a) where d(s, g) = 1 and ⇡g(s) = a.

Learning the relevance model d We assume in this work that we simply have

d(s, g), but we can at least consider ways that we could learn it. One approach is

to attempt to learn � for each g, to determine which are pertinent. Those with

�(s, g) closer to zero can have d(s, g) = 0. In fact, such an approach was taken

for discovering options (Khetarpal et al., 2020), where both options and such a

1More generally, we could use emphatic weightings (Sutton et al., 2016) that allow us to
incorporate such interest weightings d(s, g), without su↵ering from bootstrapping o↵ of inac-
curate values in states where d(s, g) = 0. Incorporating this algorithm would likely benefit the
whole system, but we keep things simpler for now and stick with a typical TD update.
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relevance function are learned jointly. For us, they could also be learned jointly,

where a larger set of goals start with d(s, g) = 1, then if �(s, g) remains small,

then these may be switched to d(s, g) = 0 and they will stop being learned in the

model updates.

Learning the Subgoal-to-Subgoal Models Finally, we need to extract the

subgoal-to-subgoal models r̃�, �̃ from r�,�. These models were defined as means

of the GVFs taken over member states of each subgoal, as specified in Equation

3.3. The strategy involves updating towards the state-to-subgoal models, when-

ever a state corresponds to a subgoal. In other words, for a given s, if m(s, g) = 1,

then for a given g0 (or iterating through all of them), we can update r̃� using

(r�(s, g
0)� r̃�(g, g

0))rr̃�(g, g0),

and update �̃ using

(�(s, g0)� �̃(g, g0))r�̃(g, g0).

Note that these updates are not guaranteed to uniformly weight the states where

m(s, g) = 1. Instead, the implicit weighting is based on sampling s, such as

through which states are visited and in the replay bu↵er. We do not attempt to

correct this skew, as mentioned in the main body, we presume that this bias is

minimal. An important next step is to better understand if this lack of reweight-

ing causes convergence issues, and how to modify the algorithm to account for a

potentially changing state visitation.

Computing vg? In order to compute vg? , we first need a ṽ from our abstract

MDP to look up the subgoal values. We compute ṽ by value iteration in the
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abstract MDP with a tolerance of ✏ = 10�8 and maximum of 10,000 iterations.

The resulting ṽ from these subgoal models was used in the projection step to

obtain vg? , by iterating over relevant subgoals as described in Equation (3.5).

C Putting it all together

We summarize the above updates in pseudocode, specifying explicit parameters

and how they are updated. The algorithm is summarized in Algorithm 1. An

online update is used for the action-values for the main policy, without replay.

All background computation is used for model learning using a replay bu↵er and

for planning with those models. The pseudocode assumes a small set of subgoals,

and is for episodic problems. We provide extensions to the DDQN setting in

Section 4.2, including using a Double DQN update for the policy update. We

also discuss in-depth di↵erences to existing related ideas, including landmark

states and UVFAs.

Note that we overload the definitions of the subgoal models. We learn action-

value variants r�(s, a, g;✓
r), with parameters ✓r, to avoid importance sampling

corrections. We learn the option-policy using action-values q̃(s, a;✓⇡) with pa-

rameters ✓�, and so query the policy using ⇡g(s;✓
⇡)

.
= argmaxa2A q̃(s, a, g;✓⇡).

The policy ⇡g is not directly learned, but rather defined by q̃. Similarly, we do

not directly learn r�(s, g); instead, it is defined by r�(s, a, g;✓
r). Specifically,

for model parameters ✓ = (✓r,✓�,✓⇡), we set r�(s, g;✓)
.
= r�(s, ⇡g(s;✓

⇡), g;✓r)

and �(s, g;✓)
.
= �(s, ⇡g(s;✓

⇡), g;✓�). We query these derived functions in the

pseudocode.

Finally, we assume access to a given set of subgoals. But there have been

several natural ideas already proposed for option discovery, that nicely apply in
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Figure B.2: Learning and using pre-trained models for GSP.
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our more constrained setting. One idea was to use subgoals that are often visited

by the agent (Stolle and Precup, 2002). Such a simple idea is likely a reasonable

starting point to make a GSP algorithm that learns everything from scratch,

including subgoals. Other approaches have used bottleneck states (McGovern

and Barto, 2001).

C.1 GSP Pseudocode

This subsection shows the full pseudocode for vanilla GSP from Lo et al. (2022).

Algorithm 4 MainPolicyUpdate(s, a, s0, r, �, a0)

// For a Sarsa(�) base learner
vg?  maxg2Ḡ:d(s,g)>0 r�(s, g;✓) + �(s, g;✓)ṽ(g)
�  r + �vg?(s0)� vg?(s) + �q(s0, a0;w)� q(s, a;w)
w w + ↵�zrwq(s, a;w)
z ��z+rwq(s, a;w)

Algorithm 5 Update Models(s, a, s0, r, �)

Add new transition (s, a, s0, r, �) to bu↵er B
for g0 2 Ḡ, for multiple transitions (s, a, r, s0, �) sampled from B do

�g0  �(1�m(s0, g0))
// Update option policy - e.g. by Sarsa
a0  ⇡g0(s0;✓

⇡)
�⇡  1

2(r � 1) + �g0 q̃(s0, a0, g0;✓
⇡)� q̃(s, a, g0;✓⇡)

✓⇡  ✓⇡ + ↵⇡�⇡r✓⇡q(s, a, g0;✓⇡)
// Update reward model and discount model
�r  r + �g0r�(s0, a0, g0;✓

r)� r�(s, a, g0;✓
r)

��  m(s0, g)� + �g0�(s0, a0, g0;✓
�)� �(s, a, g0;✓�)

✓r  ✓r + ↵r�rr✓rr�(s, a, g0;✓
r)

✓�  ✓� + ↵���r✓��(s, a, g0;✓�)
// Update goal-to-goal models using state-to-goal models
for each g such that m(s, g) > 0 do
✓̃
r  ✓̃

r
+ ↵̃r(r�(s, g0;✓)� r̃�(g, g0; ✓̃

r
))r✓r r̃�(g, g0; ✓̃

r
)

✓̃
�  ✓̃

�
+ ↵̃�(�(s, g0;✓)� �̃(g, g0; ✓̃

r
))r✓��̃(g, g0; ✓̃

�
)
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It is simple to extend the above pseudocode for the main policy update and

the option policy update to use Double DQN (van Hasselt et al., 2016) updates

with neural networks. The changes from the above pseudocode are 1) the use

of a target network to stabilize learning with neural networks, 2) changing the

one-step bootstrap target to the DDQN equivalent, 3) adding a replay bu↵er

for learning the main policy, and 4) changing the update from using a single

sample to using a batch update. Because the number of subgoals is discrete, the

equations for learning ✓̃
r
and ✓̃

�
does not change. We previously summarized

these changes for learning the main policy in Algorithm 3 and now detail the

subgoal model learning in Algorithm 6.

Algorithm 6 Update GSP Models(s, a, s0, r, �)

Add new transition (s, a, s0, r, �) to bu↵er Dmodel

for g0 2 Ḡ do
for nmodel mini-batches do

Sample batch Bmodel = {(s, a, r, s0, �)} from Dmodel

�g0  �(1�m(s0, g0))
// Update option policy
a0  argmaxa02A q̃(s0, a0, g0;✓⇡)
�⇡(s, a, s0, r, �) 1

2(r � 1) + �g0 q̃(s0, a0, g0;✓
⇡
targ)� q(s, a, g0;✓⇡)

✓⇡  ✓⇡ � ↵⇡r✓⇡
1

|Bmodel|
P

(s,a,r,s0,�)2Bmodel
(�⇡)2

✓⇡targ  ⇢model✓
⇡ + (1� ⇢model)✓

⇡
targ

// Update reward model and discount model
�r(s, a, r, s0, �) r + �g0(�, s0)r�(s0, a0, g0;✓

r
targ)� r�(s, a, g0;✓

r)
��(s, a, r, s0, �) m(s0, g)� + �g0(�, s0)�(s0, a0, g0;✓

�
targ)� �(s, a, g0;✓�)

✓r  ✓r � ↵rr✓r
1

|Bmodel|
P

(s,a,r,s0,�)2Bmodel
(�r)2

✓�  ✓� � ↵�r✓�
1

|Bmodel|
P

(s,a,r,s0,�)2Bmodel
(��)2

if nupdates%⌧ == 0 then
✓rtarg  ✓r

✓�targ  ✓�

nupdates = nupdates + 1

// Update goal-to-goal models using state-to-goal models
. . . same as in prior pseudocode.
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C.2 Optimizations for GSP using Fixed Models

It is possible to reduce computation cost of GSP when learning with a fixed model.

When the subgoal models are fixed, vg? for an experience sample does not change

over time as all components that are used to calculate vg? are fixed. This means

that the agent can calculate vg? when it first receives the experience sample and

save it in the bu↵er, and use the same calculated vg? whenever this sample is used

for updating the main policy. When doing so, vg? only needs to be calculated

once per sample experienced, instead of with every update. This is beneficial

when training neural networks, where each sample is often used multiple times

to update network weights.

An additional optimization possible on top of caching of vg? in the replay

bu↵er is that we can batch the calculation of vg? for multiple samples together,

which can be more e�cient than calculating vg? for a single sample every step.

To do this, we create an intermediate bu↵er that stores up to some number of

samples. When the agent experiences a transition, it adds the sample to this

intermediate bu↵er rather than the main bu↵er. When this bu↵er is full, the

agent calculates vg? for all samples in this bu↵er at once and adds the samples

alongside vg? to the main bu↵er. This intermediate bu↵er is then emptied and

added to again every step. We set the maximum size for the intermediate bu↵er

to 1024 in our experiments.

D An Alternative way of using vg?

We used vg? through potential-based reward shaping, but other approaches are

possible. For example, another approach is to solely bootstrap o↵ of the predic-
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tion from vg? , instead of the base learner’s q estimate,

Rt+1 + �t+1vg?(St+1)� q(St, At;w). (3)

The update with this TD error is reminiscent of an algorithm called Landmark

Approximate Value Iteration (LAVI) (Mann et al., 2015). LAVI is designed for the

setting where a model, or simulator, is given. Similar to GSP, the algorithm plans

only over a set of landmarks (subgoals). They assume that they have options

that terminate near the landmarks, and do value iteration with the simulator by

executing options from only the landmarks. The greedy policy for a state uses the

computed values for landmark states by selecting the option that takes the agent

to the best landmark state, and using options to move only between landmark

states from there. The planning is much more e�cent, because the number of

landmark states is relatively small, but the policies are suboptimal.

We could similarly use vg? , by running the option to bring the agent to the

best nearby subgoal. However, a more direct comparison in our setting is to use

the modified TD error update above. We call this update Approximate LAVI,

to recognize the similarity to this elegant algorithm. In all environments, the

approximate LAVI learner either learns much slower or converges to a sub-optimal

policy instead.

In our preliminary experiments, we had investigated an update rule that par-

tially bootstraps o↵ vg? . Namely, we used a TD error of Rt+1+�t+1(�vg?(St+1)+

(1 � �)q(St+1, At+1)) � q(St, At), where � 2 [0, 1]. Potential based reward shap-

ing with vg? was found to outperform this technique. We discuss this more in

Appendix D.
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(a) FourRooms
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(b) GridBall
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(c) PinBall
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Figure D.1: Five episode moving average of return in FourRooms, GridBall and
PinBall. Curves are averaged over 30 runs where the shaded region is one stan-
dard error.

E Errors in Learned Subgoal Models

(a) Absolute error in r�(s, g) (b) Absolute error in �(s, g)

Figure E.1: Model errors in State-to-Subgoal models used in GridBall.

To better understand the accuracy of our learned subgoal models, we per-

formed roll-outs of the learned option policy at di↵erent (x, y) locations on Grid-

Ball and compared the true r� and � with the estimated values. Figure E.1

shows a heatmap of the absolute error of the model compared to the ground

truth, with the mapping of colors on the right. The error in each pixel was com-

puted by rolling out episodes from that state and logging the actual reward and

discounted probability of reaching the subgoal. The models tend to be more ac-
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curate in regions that are clear of obstacles, and less near these obstacles or near

the boundary of the initiation set. The distribution of error over the initiation

set is very similar for both r and � models. While the magnitudes of errors are

not unreasonable, they are also not very near zero. This results is encouraging

in that inaccuracies in the model do not prevent useful planning.

Epochs Mean Squared Error across models
2 0.608
4 0.464
10 0.334

Table 1: Mean squared error across state-to-subgoal models used in PinBall.

F Hyperparameter Sweeps

In FourRooms, we use Sarsa(0) and Sarsa(0.9) base learners with learning rate

↵ = 0.01, discount factor �c = 0.99 and an ✏ = 0.02 for its ✏-greedy policy. In

GridBall, we used Sarsa(0) and Sarsa(0.9) base learners with ↵ = 0.05, �c =

0.99 and ✏ = 0.1. ✏ is decayed by 0.5% each timestep. In the linear function

approximation setting, these learners use a tilecoder with 16 tiles and 4 tilings

across each of the both the GridBall dimensions. In PinBall, the Sarsa(0.9)

learner was tuned to ↵ = 0.1, �c = 0.99, ✏ = 0.1, decayed in the same manner as

in GridBall. The same tile coder was used on on the 4-dimensional state space

of PinBall. For the DDQN base learner, we use ↵ = 0.004, �c = 0.99, ✏ = 0.1, a

bu↵er that holds up to 10, 000 transitions a batch size of 32, and a target refresh

rate of every 100 steps. The Q-Network weights used Kaiming initialisation (He

et al., 2015).

For Sarsa(�), we swept it’s learning rate over [0.001, 0.01, 0.05 0.01, 0.5, 0.9].

0.01, 0.05 and 0.1 were found to be the best for FourRooms, GridBall and PinBall
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respectively. For DDQN, we swept its learning rate ↵ over [5⇥10�4, 1⇥10�3, 2⇥

10�3, 4 ⇥ 10�3, 5 ⇥ 10�3] and target refresh rate ⌧ over [1, 50, 100, 200, 1000] as

shown in Figure F.1.
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(a) ⌧ = 1

(b) ⌧ = 50

(c) ⌧ = 100

(d) ⌧ = 200

(e) ⌧ = 1000

Figure F.1: Left Column: learning curves for five di↵erent step sizes, ↵, averaged
over 30 runs. Right Column: sensitivity to di↵erent step sizes. Each dot repre-
sents the steps to goal averaged over 30 runs and 1000 episodes. The error bars
show one standard error. The refresh rate ⌧ increases with each row.
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