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Abstract

Height models, that are general and flexible are needed. The main concept of height modeling here is
to look upon height models as multidimensional spaces, cross sections of which can represent different
types of the traditional height models: such as the ST based vs. the intercept based models; or the
total age based vs. the breast height age based models. A complete height space is considered to be,
at minimum, five-dimensional with individual dirzensions described by the following five components:
1) predicted height; 2) prediction age; 3) reference-height (S7); 4) base- age (age of SI); and 5) base-
height (the height at which the prediction age and the base-age start their counts). The predicted
height is always the dependent varjable and all the other components are the independent variables.
Every step of increase in the model dimensionality involves a considerable increase in the model’s
algebraic complexity, and the five dimensional model is at the stage beyond which it cannot be
further advanced through any algebraic reformulations. Thus, to include algebraically a varicble
density or a crowding component into this model, one variable has to be eliminated. However, the
most advanced height space described in this thesis is defined by an infinite-dimensional, dynamic,
variable density height growth model in which the high dimensionality is achieved through iterations
of an annual increment prediction equation with dynamically changing variable density or a crowding
component.



Acknowledgements Preface

Acknowledgements
I am grateful to prof. V.J. Lieffers for, that he agreed to supervise me and for his help and encour-
agements.

Also, 1 am gratcful to the comity members: prof. J.A. Beck for his constructive input into my
study; prof. W. Krawcewicz, Dep. of Math., for help in some mathematical aspects of my thesis;
prof. H.E. Burkhart, Dep. of For., Virginia Polytechnic Institute and State University, for serving
as external examiner and for his input into the final draft of the thesis; and prof. A.W. Anderson
and prof. P.M. Woodard for reviewing the final draft of the thesis.

I’'m deeply indebted to my wife Barbara and my two sons Rene and Peter for their understanding
and acceptance of, that I did never have the time for them during the years of this study.

The Alberia Forestry Service and the Canadian Forestry Service provided the permanent sample

plots data.
The C. radian Forestry Service supported my study and paved all the tuition fees.



Contents

1 Background and Problem Definition 1
1.1 Imtroduction . . ... . ... . . .., 1
1.2 Literature Overview . . . . . . . .. .. L 2

1.2.1 ST Height Models for Lodgepole Pine In Alberta . . . .. ... ... .. .. 2
1.2.2  Other Nonlinear ST Height Models . . . . . . . .. . ... ... ....... 3
1.2.3  Intercept Height Models for Juvenile Stands . . . . . ... ... ... . ... 3
1.3  Problem Definition . . . . . .. . ... e 5
1.4 lLiterature Cited . . . . . . . . . . . . . e 9

2 Four-Dimensional Height Spaces with Two Adjustable Measurement Components—
A New Methodology for Derivation of Variable Base-Age S Height Models 12

2.1 Intreduction . . . . . . . L e e e e 12
2.2 Background . . . . .. ... e 13
2.3  Models Using Any Age-Height Measurements . . . . .. .. ... .......... 13
2.3.1 Model Coefficient Oriented Techniques . . . . . . ... ... ... ....... 15
2.3.2 Model Coeflicient/Variable Oriented Approach . . . . ... ... ... ... .. 16
2.3.3 The New, Model Variable Oriented Apprcach . . . . . ... ... ....... 17
2.4 DISCUSSION . . .« . Lt i it e e e e e e e e e e e e 18
2.4.1  Advantages of The New Technique Compared to The Traditional Techniques 20
2.42 A Reference Variable In Height Models . . . . . . ... .. ... ....... 21
243 Model Fitting . . . . . . . . . . .. e e 21
2.44 Numerical Considerations . . . .. ... . ... ... ... . ... ..., 22
2.5 Summary and Conclusion . . . . . . . .. ... ... 23
2.6 Literature Cited . . . . . . . .. . . ... e 24
3 Five-Dimensional Height Spaces with Three Adjustable Measurement Components—-
An Ageless Height Model, and A Static Density Height Model 20
3.1 A General Model—An Introduction and Framework . . . . ... ... ... ... . 26
3.1.1  Development of Model Dimensionality and its Flexibility . . .. . ... ... 27
3.1.2 Expanding Into the Fifth Dimension . . .. ... .. ... ... ....... 31
3.2 Adjustable SI, Base-age and Base-height Components — The Ageless Height Model 33
3.2.1  The Definition of Prediction-Age for Different Base-heights . . . . . B X
3.2.2  The Definition of Base-Age for Different Base-heights . . . . . .. ... ... 33
3.2.3 Implementation and Interpretation of The Variable Base-Height . . . . . . . 34
324 Data .. ... . e e e e e e e 35
3.2.5 Model Development and Calibration . . . ... ... ... ....... ... 36
3.3 Adjustable ST, Base-age and Density Measure—A Static Density Height Model . . 40
3.4 Discussion . . . . .. Lol e e e e e e e e e e e 41

3.5 Literature Cited . . . . . . . . . . e e e e e e e e . 44



Table of Content

4 Infinite-Dimensional Height Spaces with Three Adjustable Measurement Components—

=]

A Dynamic Variable-Density Height Growth Model

4.1 Introduction . . . . .. L
4.2 Model Derivation . . . ... .. L
4.2.1 Base Model Selection . . . .. ... ... ...
4.22 Adding Crowding Effects . . . . . . . . . .. . ... ... .. ... .. ....
4.23 Height Dynamic Equation Derivation . . . . . ... ... . ... .......
4.3 Data Sources and Processing . . . . .. . ... ... ..
4.4 Model Calibration and Testing . . . . . . . . . . . . ...
4.5  Application of The Model to Thinning Evaluation . . . .. ... . ... .......
4.5.1 Growth at Current Density . . . . .. . .. . ... .. .. .. .. .. ...
452 Post-thinning Growth . . . . . .. .. ... ... L L
4.53 CompariSon8 . . . . . ... e e e e e e
4.6 Adjusting Lodgepole Pine ST for Density Related Height Growth Reduction
4.6.1 Estimating SI Adjustment . . . . . .. . ... ... ... ... ... ...
4.6.2  Practical Application . . . .. ... ... ...
4.6.3 Equations . . . ... ... .. L,
4.7 Discussion and Conclusions . . . .. .. . ...
4.8 Literature Cited . . . . . . . .. ..

General Discussion and Conclusions

Computer Implementation of The Variable Density Height Growth Model
A.1  An Example of a FORTRAN Program for Computing a Variable Density Height

Growth Predictions . . . . . .. ...
A.2  An Example of a Spreadsheet for Computing Variable Density Height Growth Pre-

dictions . . . . L L,

Preface

47



List of Tables

2.1

2.2

2.3

3.1

4.1

4.2

4.3

4.4

4.5
4.6

Al

Examples of height/S] models and base equations found in the forestry literature,
and those newly formulated (¥). H(t,SI) denotes height as a function of age (¢) and
a fixed base-age SI; «,0,...regression coefficients. . . . . . . . ... ... ... ...
Coefficients o', 8, and v (c4. (6)) for major Lake States tree species (Lundgren and
Dolid 1970), computed o' (z = 50), and heights (in m) at age 50 (H (50, S1)) for three
ST classes, 1.e.,10,15,and20m. . . . . . . .. . . . L Lo e
Coefficients o/, 3, and v (eq. (6)) for major British Columbia tree species (Ilegyi 1981),
computed o' (2 = 50), and heights (in m) at age 50 (H (50, ST)) for three SI classes,
ie.,10,15,and 20 m. . . . . ... L e
Height models using directly any height-age measurements (instead of a fixed base-
age SI) derived in this study from models in Table 1, and the eliminated coeflicients
{a,B,...here are not consistent with a,83,...in Table 2.1. . . ... ... ... ...

The variable-base-height model coefficients (a', a”, #’ and B”’), and standard errors
of predictions for the two modifying functions. . . . . ... ... ... ... ... .

Regression statistics of future over current crowding measures over timic in 70-ycar
and older stands (n=268). . . . . .. ... ...
Summary statistics for natural and spaced stands, with SI base-age 50 years breast
height (estimated from Cieszewski and Bella 1989). For the spacing trials below 50
years, Si values were extrapolated using the samemodel. . . . . . ... . ... ...
Model coefficients (o', o', §', and B”), autocorrellation coef. (p), crror (SE), log
likelihood function (LLF), final prediction error (FPE), Akaike (1973) information
criterion (AIC), Schwarz (1978) Criterion (SC), and the log likelihood ratio test (LLR)
(Judge et al. 1988) with corresponding x? values at 5% level, for exploratory runs of
the linear form modifying functions. . . . . . . . . .. ... Lo oL
Model coefficients (¢!, a”, 8’ and 8”), autocorrelation coefficient (p), and other sum-
mary statistics of the height-growth model fitted to all datan=946. . ... .. ..
Estimation of potential SI from suppressed SI, CI, and ages of reaching maximum CJ
Potential SI values for three sites of observed SI and four assumed ages of reaching
maximum CL. . . . . . . ... e

Example LOTUS 1-2-3 spreadsheet—a comparison of two lodgepole pine stand den-
sities on a good site: a) no thinning; b) with thinning to 1200 trees/ha. . . .. . ..

14

14

16

18

39

49

53



List of Figures

1.1
1.2

1.3
14

2.1

2.2

2.3

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8

3.9

3.10

3.12
3.13

3.14

Simple two-dimensional heght over ze curves: a) monotonically decreasing slope;
b) sigmoidal growth; ¢) multiple curves for different stands. . . . . ... ... . ...
Three-dimensional anamorphic ST height curves: a) discrete; and b) continuous.

Three-dimensional polymorphic ST height curves: a) discrete; and b) continuous. . .
Four-dimensional variable age ST height curves: a) discrete over site-index and base-
age; b) continuous over SI and discrete over base-age. . .. . ... ... .......

Differences between SI and H(50,tsy) in eq. (2.5) for all three sets of parameters
(Biging 1985) (8 = 0.024, § = 0.89); a) SI, H(50,tss), and SI — H(50,ts;) as a
function of S7 (in feet); b) H(¢,100), H(50,100) and ST = 100 (in feet). ... ...
Curves generated by a height model using any direct height-age measurements: a) ST
as a function of height by specified age classes; b) SI as a function of age by height
classes; ¢) height as a function of age by ST classes; d) height as a function of ST by
ageclasses. . . . ... e
Height curves (eq. (2.5) and (2.13)) for all three sets of parameters (Biging 1985)(3 =
0.024, 6 = 0.89): a) eq. (2.5) and (2.13) using ST 40, 80, and 120°; b) eq. (2.5) using
adjusted ST (Fig. 2.2) andeq. (2.13)asina). . ... .. ... ... ... .......

Simple monotonic two dimensional heighi as a function of age. . . ... .. ... ..
An inflected two dimensional height growth as a functions of age. . ... ... ...
A three-dimensional, anamorphic SI height space (multiple asymptotes). . .. . ..
A three-dimensional, polymorphic ST height space with a single asymptote common
forall STvalues. . . . .. . . . . . .
A three-dimensional, polymorphic ST height space with multiple asymptotes varying
with ST. . . e
A four-dimensional, variable-base-age SI, height-growth space. . . .. ... ... ..
Shapes of height trends on medium site for varying base-heights: a) starting at base-
height; b) shifted toorigin. . . . . . . .. .. .. ... .
Heights for 3 sites (Cieszewski and Bella 1989), for ages 0 to 300 years base-heights:
a)1.3,b)8andc)16m. . . . . . ...
Height patterns above the base-heights, shifted to origin of the system of coordinates
to easier illustrate differences in slopes of curves. Broken lines are for base-height
1.3m and solid lines are for base-height 16m. . ... .. ... ... ... .......
Values of the modifying functions of the variable-base-height height-growth model, at
different base-heights: a) fi(ks,) for a; b) fo(hy ) for 8. . . ... ... .. .....
Observed and predicted relative values of the ageless height model parameters as
functions of the base-heights: a) fi(hs_) for a; and b) fo(hs ) for . . . . ... ...
Height shapes corresponding to different crowding levels. . . . .. .. ... ... ..

A five-dimensional, variable-base-height and variable-base-age S1, height-growth space.

42
Shifted to origin height patterns for three reference-heights and two base-heights, for:
a) base-age 50 years of either base-height; b) base-age 5 years of either base-height.

15

19

22

27
28
28
29

29
30

32

37

38

38

39
41

43



Table of Figures

Preface

4.1

4.2

43

4.4

4.6

4.7

Residuals over lag residuals (Judge 1985) from two regressions: a) not corrected for
autocorrelation; and b) corrected for autocorrelation (Pegan 1974, White 1978) . . .
Height growth curves for two sites (SI 10 and 25) from the height/SI model (solid
lines; Cieszewski and Bella 1991) and that from the new density-height growth model
(broken lines) for: a) two initial density levels; and b) two crowding levels (CI 20
and 140). NC, MID and HID denote: no crowding, and medium, and high initial
density/crowding; “a”, “b”, “c” different stages of crowding development. . . . . . .
Suppressed (5, 10, 15m) and potential (5 to 28m) Sl values for different stands as
functions of maximum Cls (20 to 180) and onset of tYese maximum Cls (IMC = 10,
20, 30, and 40 years), i.e., ages at which these ClIs were reached by the stands.

Iustration of different stages of stand development relating to height growth sup-
pression from crowding: “a” the stand has just reached maximum crowding; “b” the
stand has been growing at maximum crowding for son:e time; and “¢” the stand before
reaching maximum crowding. . . . .. . .. ... L L.
Diagram of suppressed and potential SI values (5 to 30m) for stands of different
maximum Cls (20~180) and initial densities as indicated by the ages of reaching these
Cls (10, 20,30, and 40 years). . . . . . . . . . . . . .
Simulated height trajectories for different density levels on (a) poor, (b) medium and
(c) goodsites. . . . ...,
Simulated height trajectories for different crowding levels on (a) poor, (b) medium
and (¢} goodsites. . . . ... ... ... L






Notation and Conventions Preface

Notation and Conventions

The studies presented in this thesis discuss various height models with particular attention to their
theoretical foundations. To facilitate understanding, height model components are described below
by names which will be used throughout the thesis:

¢ prediction-age (¢) is the age for which a height is predicted;
¢ prediction-height at age t (H(t)) is the height at age ¢t predicted by a model;
o reference-height () is the height used as site-index (SI), but at a variable base-age (z);

o base-age (z) is a variable age used to define the reference-height as a height at this age; it is
denoted as Age,; when it is constant and used to define S7;

¢ basc-height (k) is the height at which the age begins to count, e.g, base-height for total age
is 0.0m (germination height), for stump age is 0.3m (stump height), for breast height age is
1.3m (breast height), and for an age base-height 2m, is 2m; and

¢ age-base-height-rm, (f,) is the age counted from the time when the tree reached a height of
r meters, e.g., age-base-height-1.3m (2, 3) is the breast height age, while age-base-height-0.3m
(10.3) is the stump age.

A height model is a mathematical formula relating the above components. These components
are either variables, if they are explicit and adjustable, e.g., z; or they are constants if they are
implicit or can represent only one preset value, e.g., Age,;. Furthermore, the variables can be either
measurable, e.g., hy, or they can be arbitrary, e.g., t. Finally, a variable is either an input variable,
e.g., he, or an output variable, e.g., H(t).

In addition to the above concepts the following symbols will be used in this thesis:

o PSP are permanent sample plots;

¢ ADA stands for algebraic difference approach;
¢ MC stands {cr model conditioning;

e In is the natural logarithm;

® e is base of the natural logarithm;

® a,b... A, B...are model coefficients of the mcdels different than those proposed in this thesis;
and

e a, §...are coeflicients of models proposed in this thesis.

All coefficients of the proposed models represent signs of the intended values of the coefficients.
Signs of the coefficients of the models cited from other publications are usually consistent with the
original publications. The terms growth, any height or SI, in accord with the above, will imply
values above base-height, unless stated otherwise.

Solvability will be understood within practical ramifications of forestry applications, i.e., only
closed form solutions or very quickly converging series will be acceptable. If a root of an equations
does not have a closed form solution, or a series solution that converges ve:y quickly the equation
will be considered unsolvable.



Chapter 1

Background and Problem
Definition

1.1 Introduction

Height growth, particularly that of dominant and co-dominant trees (or a fixed number of the largest
trees per unit area (TH)) is generally the most stable directly measured stand growth statistic. For
most tree species it is independent of the number of trees per unit area within a large range of stand
densities and it is often used as a measure of site productivity (Monserud 1984, Alemdag 1988).

Since unbiased and accurate height prediction is essential in almost every aspect of forest man-
agement, it is important to develop unbiased and accurate height models. Borders et al. (1984) list
desirable height model] characteristics as: height at age zero equal zero; height at base-age equals
SI; curves that are unaffected by a choice of base-age; and increasing asymptotes (if any) with
increasing site indexes.

In some situations, even some models meeting the above criteria might not be very useful. A
model may not be useful if it is not flexible enough to describe a certain type of growth polymorphism,
if stand age cannot be estimated with acceptable accuracy, or if the height growth varies with density.
These limitations may apply to a wide range of situations in inventory as well as in estimation of
height growth in juvenile stands.

Traditional height-age functions can be difficult to implement when aerial inventory is applied
and one can precisely measure current heights and density in even age stands, but cannot estimate
age of trees. In juvenile stands in particular, any errors in age estimation will have a great influence
on height predictions, because even small errors will be proportionally large in comparison to the
small ages. For this reason, researchers have long been searching for alternative solutions to this
problem of juvenile height modeling and have proposed a variety of models based on growth.

Problems with height predictions may occur even when the stand age is known, but the stand
had undergone a period of slow height growth due to external factors, such as crowding, insect or
disease damage, severe thinning or changes in site conditions (site devastation, meliorations, climate
changes, acid rain, etc.)

Lodgepole pine (Pinus concorta var. latifolia Engelrs.) (IP) is particularly sensitive to stand
density and its height growth is highly affected by it; although, it is not known precisely at what
densities its height growth becomes reduced. Smithers (1961) suggests that even in fairly open
stands (500 trees/ha at age 90 years) the height growth of lodgepole pine may be affected.

In a simplified approach to modeling height of mature, fire origin, dense lodgepole pine, S/ may
be assumed to be a measure of IP height growth, which implicitly includes soil fertility, moisture,
elevation, and density affects on height growth. This simplified approach cannot be used for situa-
tions of dynamically changing stand densities or crowding in managed stand growth ci.nulation with
arbitrary density levels. In predicting height of second growth lodgepole pine stands, additional dif-
ficulty results from the density influence on the height growth of this species. In situations of varying
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stand conditions, and generally for managed stands, one needs a height model that will explicitly
address density influence on lodgepole pine height growth, and can dynamically simulate the height
growth responses to changing stand conditions. Models based on difference or differential equations
simulating the height growth in one year increments are potentially useful for such simulations.
Height models have usr»'ly ber .. developed on either cross-sectional or stem analysis data (Biging
1985). Stem analysis dat. .~ r .erred since they provide continuous record of tree growth. Stem
analysis data also allows .. . : interpolation, or approximation of SI with reasonable accuracy
(Newnham 1988). The r _.ematical models used for height modelling can be linear or nonlinear.
Linear models, which are less flexible, usually require more terms (or parameters) for satisfactory
fit to the data. This may lead to model over-parametrization and unreasonable predictions outside
of the range of the deta on wrich the model was calibrated. Linear models with many parameters
are likely to become atypical in shape and difficult to support biologically. Nonlinear models are
more flexible, more likely to be biologically sound, and usually behave well outside of the data range

(Pienaar and Turnbul] 1973).

1.2 Literature Overview

1.2.1 S] Height Models for Lodgepole Pine In Alberta

The earliest height model for Alberta lodgepole pine is Kirby (1975) which proposes the following
linear form: s—ﬁ—o = a + bt + ct® where: Slz is SI base-age 70 years stump age (base-age is an
implicit constant equal 70); ¢ is a stump age with implicit base height 0.3m.

Johnstone (1976) published variable density yield tables for IP in Aiberta. The tables were
based on a system of equations derived from stepwise regressions on permanent sample plot data.
The input variables consisted of productivity index (PI), basal area of 100 largest trees per acre
(BAj00). The linear dominant height growth model is H(t, T, PI) = a + bt + $+ ,—31 + fPI+
gDI+iDI% 4+ jtDI + E% where: 1) [H(t, DI, PI)} is total height of dominant trees at stump at age
tin a stand with a specified DJ and PI; 2) [DI] is development index, calculated from the BA;q0
and ¢ (Johnstone 1976); 3) _.’I] productivity index, calculated from TH, stand age and density as
a ratio of the TH observed (THo) to the TH expected (THE). Johnstone (1976) calculated TH
from a separate model as a function of stand age and density.

Most height models in forestry are based on a ST concept and therefore this model is not typical
for a height model and cannot be directly compared with other height models.

In 1982, Dempster and Assoc. (Anon. 1985) developed, on stem analysis data, a polymerphic
site-height model for Alberta lodgepole pine H(t,SI) = Slfﬁ%% with 50 as an explicit
constant of base-age.

This model gave good predictions as tested on stem analyses and PSP data, while it could not
be reformulated for S, to estimate SI from heights. For this purpose a separate multi-regression
model was developed, SI(h;.z) = a + bh; — cIn?(z) + dz In(z) + f2 — gh.In(h;).. The prediction
error of the S model, was within a range of measurement errors. Although this model! gave a
reasonably good accuracy for SI predictions, it proved to be incompatible with it’s height model
for the extremes, i.e., good and poor sites. To solve this problem, numerical searches were used to
find compatible S7 estimates numerically. Zakrzewski? formulated® an anamcrphic height model

2
for Alberta IP based on the 1822 Hossfzid's model H(t) = ('a_-:ﬁ) (Borowski 1979) as H(¢,SI) =

2
S1I (Th??) with the SI model SI(h;,z) = h, (f +B)2. He calibrated the model on average
growth of eleven trees selected from a large data set that reached the greatest height at 50 years of
breast height age—an approach developed for height modeling uneven aged Norway spruce stands
in Poland (Zakrzewski 1983, 1986).

! Two separate models were formulated to use with a stump age and with a breast height age.
2Vojtek Zakrzewski, PhD, post-doctoral fellow with CFS-NoFC from 1985 to 1990.
3Personal communication
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The most recent height model for lodgepole pine in Alberta is a polymorphic SI height model
based on a modified half-saturation function (Cieszewski and Bella 1989): H(t) = Jt To create
a set of anamorphic curves, the authors solved the model for A as a function of a known height
at a known age, and reformulated the base model (using algebraic differences approach) by substi-
tuting the solution for A in place of A in the original equation. To account for IP height growth
polimorphism the authors modified B and reformulated the model to a variable basc-age S form:

0.5(h, +8+1/(h;=4)7+805h,v=1~=)
H(t, he, 2) = =
1+4o,s[(h,-6+s/(h.-6)’+som,s-'-")t‘* ]
base-age z and any age can be assign to z.

17, where kg can be considered as a SI at the

1.2.2 Other Nonlinear SI Height Models

Various other nonlinear models are in use. Some of the we]l known basic models are: Hossfald
from 1822 (Borowski 1979; Zakrzewski 1983) H(¢) = ('ﬂ"ﬁ) , Logistic (Robertson 1923), H(t) =

A/(1 + e~ %), Schumacher (1939), H(t) = Ae~*/*, Gompertz (Medawar 1940), H(t) = Ae=* "',
Chapman-Richards (CR) (Richards 1959), H(t) = A(1—e "') modified Weibull (Yang at al.
1978), H(t) = A (1-e~*"), and Bailey (1980) H(z) = A (1 - -a")

There are also many modifications of these base models providing either anamorphic or polymor-
phic height curves such as the modification of the Chapman Richard’s function by, Ek (1971) and
Payandeh (1974) H(t,SI) = aSI*(1—e=)**$"" avd Biging (1985) H(t,SI) = aSI*(1 — e=)°,
and the modification of the logistic function by Monserud (1984) H(t,SI) = l—gm%%’)—;-,-ﬁ—(m
Curves generated by the last equatlon do not go through the appropriate heights at base—age For
this reason, Dempster and Assoc. in 1982 constrained it to pass through those heights using Burkhart
and Tennant (1977) technique for the Chapman Richard’s model.

Some of the modified models became so complicated during the process of their modifications
toward a better fit, that they became unsolvable for ST as a function of a height and age. Part of
the problem is that these models require a prior knowledge of the SI. The SI usually is calculated
from a height at any age. To do this, separate models had to be developed for S7 as a function of
the height at any age, while S7 is just a height at a specified fixed age. Models for height and S/
that are derived separately (model for height at age 50 separately from model of height at ages 49 or
51), may prove incompatible and cannot easily be used for further modifications such as including
adjustable measurement components.

In general, most. models, that are considered for growth modeling in forestry can be classified
as either exponential function based models, or fractional functions based models. The fractional
function based models are easier modifiable for the purpose of inclussion of any of their implicit
solutions. In this study mostly fractional function based models will be used for further modifications
and new derivations.

1.2.3 Intercept Height Models for Juvenile Stands

Since the traditional use of base-heights in definition of prediction-ages and base-ages has not been
very useful for juvenile height modeling and site-indexing, Wakeley proposed the development of
a new type of height models based on growth intercepts, i.e., a fixed number of height growth
internodes measured close to breast height, instead of a SJ (Wakeley 1954, Zahner 1954, Warrack
and Fraser 1955, Wakeley and Marrero 1958, Ferree em et al. 1958, Day et al. 1960, Brown and
Stires 1981, Carmean 1975). Ferree* suggested essentially the same measure in 1951 by Wylie (1951)
independently developed a similar method and used it to approximate a 100 year ST of Douglas-fir
through multiplying an average length of yearly height increments above breast height by six (Smith
and Ker 1956).

4 Ferree, M.J. Comparison of close spaced and wide spaced plantations. Unpublished report presented at the 1952
summer meeting of New York Section, Society of American Foresters. College of Farestry, State University of New
York, Syracuse, N. Y. 1952.
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In general, the intercept models are based on measurements of a few (usually five) height incre-
ments starting at various heights below or above breast height, usually close to breast height and
more often above breast height rather than below breast height. For some species, e.g., red pine,
height increments at breast height represent the maximum height increment, or are very close to
it (Bull 1931, McCormack 1956, Ferree et al. 1958). Wakeley and Marrero (1958) tested different
lengths of intercepts from three to seven years, starting with a last internode below breast height
and concluded that the five years intercept was optimal. Ferree ef al. (1958) applied the five year
intercept, starting at first internode above breast height, of dominant and codominant red pine trees
on a wide range of sites. They then constructed ST curves, using breast height age SI, following
the procedure described by Bruce and Schumacher (1950), and compared the curves with those
developed by Bull (1931).

Ferree et al. (1958) concluded that the intercept method gave reliable height predictions for
15 to 20 years. They also stated that even though the intercept method was not quite reliable
for increment extrapolation on sites affected by a "site disease” (Stone ef al. 1954), it was more
reliable for that purpose than the traditional height SI models in other situations following growth
disturbances or changes in tree SI (Heiberg and White 1956). When using the intercept method,
such anomalies can be easily spotted and evaluated. Ferree et al. (1958) also conducted preliminary
studies which suggested that the intercept method should be suitable for modeling the growth of
such other species as white pine, Norway spruce and Scotch pine.

Day et al. (1960), similarly to Ferree ef al. (1958) and Richards et al. (1962), studied the 5-year
growth intercept, beginning with the first internode above breast height. Their data were collected
from at least 20-year-old, healthy stands, on uniformly undisturbed sites. Only dominant and
codominant red pine trees were measured. They found the 5-year intercept to be highly correlated
with traditional SI, and thus concluded that for the sake of measurement ccnvenience this method
is superior to the traditional height over age relationships. On the other hand, as Husch (1956),
Ferree et al. (1958), Wakeley and Marrero (1958), Alban (1972) and Brown and Stires (1981) found
that the age at which a tree reaches breast height is not correlated with site; providing a strong
argument against using total age in modeling of height-age relationships for site evaluation purposes
in juvenile stands.

Beck (1971) applied the intercept method to stands less than fifieen years old and found that
the predictions were at least as accurate as estimates by polymorphic ST curves. He found that the
predictions from 5-year intercepts were only slightly less accurate than the predictions from 3-year
intercepts. Warrack and Fraser (1955) found that both the 3- and 5-year length intercepts above
breast height are significantly correlated with the 100 year ST of Douglas-fir. Smith and Ker (1956)
and Schallau and Miller (1966) found no significant differences between the predictions of SI from 1-
to 5-year intercepts. Similarly, Oliver (1972) tested 1- to 6-year intercepts above breast height and
found that no significant improvements could be obtained through using more than 4-year intercepts.
Wilde (1964, 1965) found for red pine that the ratio of total height to the 5-year intercept was a
useful indicator of soil and site conditions for estimating the soil potential productivity.

Brown and Stires (1981), modified the growth intercept method, by measuring the length of
5-year growth intercepts starting two years above breast height. This method was tested on white
pine trees from mixed species stands on different soils. They found that this approach was more
reliable than the one used by Wakeley and Marrero (1958). They also explored the inclusion of
some soil and topographic factors into a modified intercept method. They found that the growth
intercept method can be significantly improved by inclusion of information on slope position and/or
total soil depth.

Alban (1972 and 1979) further explored the intercept method by applying it at 8, 10 and 15
feet above the ground. He discovered, that such modifications significantly improve predictions
of height. Both Alban (1972 and 1979) and Brown and Stires (1981) experimented with growth
intercept modifications by starting the measurement of the growth intercept at different internodes
above breast height from first to fifth. Hagglund (1976) similarly as Alban (1979) found that the
intercept method measuring the growth of 5-year intercept at 2.5 meters gave better results for white
pine, red pine, Scots pine, Norway spruce, and Sitka spruce than when measuring the intercept at
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breast height. Blyth (1974) got similar results for measurements at 3 meters. The growth intercept
system developed by Alban (1972) for the Lake States worked well also for other locations of red pine
stands (Alban 1985). Browr: and Stires (1981) tested 3, 5 and 10 years intercepts at various starting
heights. They found no significant improvement in moving the starting height of the intercept
measurements above the two years above breast height level.

Gunter (1968) further extended the research on the growth intercept modeling by applying 5-
year growth intercept to stands released from suppression. This author measured the intercepts
beginning one year after release of these stands by intermediate cuttings.

1.3 Problem Definition

Height modeling has been evolving over time. First, curves were hand drawn as single lines through
clusters of plotted height measurements (Grochowski 1973). Hand drawing was later replaced with
mathematical equations having parameters determined through statistical procedures. The first at-
tempt to express growth in the form of mathematical models tock place in the 18th century and the
first half of the 19th century, and they were those of Spath in 1797, Hossfeld i 1822, and Smalian in
1837 (Borowski 1979). Parameters for the mathematicu! models weve either approximated or esti-
mated through linear, and only recently, nonlinear regressions. With these equations becoming n ~re
and more complex, containing new added variables such as §I and base-age, the generated curve=, or
rather multi-dimensional height spaces, made gains on biological soundness (polymorphism, increas-
ing asymptotes with site productivity). At the same time with increased sophistication in analysis
used to determine model parameters, the model simu!atious become more exacting.

The changes in the approaches to height modeling have nsually progressed toward increasing
model functionality. Historically, the model functionality was attributed primarily to model alge-
braization, generalization, and lack of bias. At present, virtually all height models are in algebraic
forms, and the main feature increasing height model functionality is probably model generalization
and increases in biological soundness. The generalization may be improved by replacing the model’s
explicit and/or implicit constants by explicit variables. This means, automatically, expanding model
dimensionality.

The earliest efforts in height modeling concentrated on two dimensional models (height over age).
Both hand drawn curves (fig. 1.1a), and the earliest equations tiat were capable of consistently
generating more intricate shapes (fig. 1.1b), approximated two dimensional relations. To enhance
the applications of these two dimensional relations they could, at times, be developed separately for
different sites or even individually for different stands (fig. 1.1c).

For some applications, generic curves were anamorphically adjusted for individual stands by
simple means of manual multiplication of a curve by a ratio of observed to predicted height at an
arbitrary age so that the new generated curve would pass through this known height and age. In a
geometrical sense the collections of curves developed separately for different sites or stands could be
classified today as a discrete collection of two dimensional polymorphic non-disjoint (Clutter et al.
1983) height curves.

This collection would usually be in forms of graphs, or tables that were developed for a dis-
crete collection of sites, or stands. They represented a four dimensional height space in which the
dimensions were: reference-height (discrete); age of reference-height (continuous); prediction age
(continuous); and prediction height (continuous). The reference-height was discretized because not
all possible height at any age could be matched with existing curves—only a finite number of models
can be developed to contribute to any collection of models.

Even though compromising model correctness, the method of adjusting a single generic model to
specific situations/stands by scaling it up or down, could be considered an algebraic improvement
over multiple models, because it reduces the number of models involved in the prediction system.
This method also extends the discrete reference-height to a continuous reference-height through an
explicit but simple multiplication. As it requires less work in preparation and applications, this
method is more functional, and in principle, similar to current systems of SI height curves (Fig. 1.2
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Figure 1.1: Simple two-dimensional height over age curves: a) monotonically decreasing slope;
b) sigmoidal growth; c¢) multiple curves for different stands.
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and 1.3). " The Kalman Filter Approach to Localizing Height-Age Equations” (Walters et al. 1991)
could be considered as a modern application of such method.
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Figure 1.2: Three-dimensional anamorphic SI height curves: a) discrete; and b) continuous.
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Figure 1.3: Three-dimensional polymorphic S7 height curves: a) discrete; and b) continuous.

Newer approaches to height modelling involve almost exclusively three (Fig. 1.2 and 1.3) and
four dimensions (Fig. 1.4), by adding to basic height over age models additional explicit variables
of ST (third dimension) and ST base-age (fourth dimension). An early algebraic inclusion of a site
variable (ST) to simple anamorphic models was followed by increased model complexity necessary to
describe heigh. growth polymorphism and other desirable model characteristics, i.e., passing through
the origin, increasing asymptotes with site productivity, and height-SI equality at base-age.

Total age, stump age, and breast height age, are all variations of one measurable variable. The
different names refer to different fixed base-heights; at which measurements of age begin to count,
e.g., 0.0, 0.3, 1.3 m. In that respect, these ages at different fixed base-heights, are similar to
site indexes at different fixed base-ages, such as 25, 50, 100 years. The main similarities here are
that both age and SI are input variables, they both describe growth features, and their numerical
interpretation functionally depends on corresponding specific constants that constitute for each
of these variables a fixed base; the measurement variables cannot be interpreted without their
corresponding measurement constants. For example, 20 years at base-height 0.0 m (total age) could
be equivalent to 10 years at base-height 1.3 m (breast height age), and SI 20 m at base-age 100 years
could be equivalent to SI 10 m at base-age 25 years.

Just like age and SI, the two constants base-age and base-height, are analogous. The fixed base-
height defines age measurements in terms of height at which the age is measured, e.g., 0.0, 0.3, 1.3
m. This is functionally comparable with the SI fixed base-age, e.g., 25, 50, 100 years, that defines
the age at which the height is used for potential growth, or productivity determination. Both of
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Figure 1.4: Four-dimensional variable age SI height curves: a) discrete over site-index and base-age;
b) continuous over SI and discrete over base-age.

these constants, base-age and base-height, contribute to description of the growth and the growth
features.

Enabling the measurement constants, i.e., base-age and base-height, to be variable would gener-
alize the height model into an all variable measurement components model with broadened applica-
tiona. Some variable SI height models derived using the ADA (Bailey and Clutter 1974) are already
available in the forestry literature. Unfortunately, their selection is rather limited and the available
technology for deriving such models has serious shortcomings. Their major limitation to model for-
mulation is that the resulting models are limited to only one parameter response tc different sites.
For example, the models derived through the ADA cannot be both polymorphic and have variable
asymptotes.

A height model with all measurement components, including the SI variable-base-age and the
variable-base-height for the age definition, being described by variables rather than constants, could
be a solution to most of the height prediction problems associated with periodic growth irregularity
due to both inter and intraspecific competition from density, or growth disruptions, and age ambi-
guity, e.g., juvenile height modeling. This would permit the use of incomplete growth data following
periods of irregularity and growth suppression. Such a model would flexibly use height increments
from any number of years, similarly as height intercept models use height intercepts.

In summary, an important direction in the evolution of the modern height modeling is toward
increased model generalization and flexibility. The first is expressed through increasing the dimen-
sionality of mathematical forms of the growth models, while the second is expressed through deriving
models capable of simulating complex forms of growth polymorphism and variable asymptotes. The
main objective of this project is to advance height modeling along this same frontier, by developing
the following new technologies:

e a general methodology for derivation of four-dimensional variable-age-SI height models with
the adjustable measurement component of SI base-age, and with such desirable growth char-
acteristics as growth polymorphism and variable asymptotes;

¢ a general height model, that would extend a four dimensional height model to five dimensions
by applying modifying functions on its coefficients;

¢ a five-dimensional application of the above rnodel with a variable base-height, making the
model effectively age-free;

e an infinite-dimensional application of the above model with variable density components.

This new multidimensional height growth model will be formulated in a dynamic form allowing
predictions of any point (z3,y2) from any other point (z;,y;). Such a form of an equation is often
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described as a difference equation, and it can be used as an integral model for the implementation
of the variable base-height, and as an increment model for density height growth modeling; this
form of an equation can be used as a yearly increment model. The last property of the model is
very important because stand density and/or crowding are results of dynamic processes that change
from one year to another and the height growth model with adjustable measurement components of
S1 base-age and density should be formulated in a differential (or yearly increment difference) form
o that it can be used in yearly iterations. Since the first model should be integral and the second
differential, they will be formulated as two separate models.
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Chapter 2

Four—Dimensional Height Spaces
with T'wo Adjustable
Measurement Components—A
New Methodology for Derivation
of Variable Base-Age SI Height
Models

2.1 Introduction

'Height growth, particularly that of dominant and codominant trees (or a fixed number of the
largest trees per unit area), is one of the most stable, directly measured stand growth statistics. It is
strongly related to site productivity, and for most tree species, is independent of number of trees per
unit area over a wide range of densities (Monserud 1984; Al-mdag 1988). To facilitate productivity
comparisons on different sites, and for planning stand management activities, one estimates, from
an available age and height, S/—an average height of crown class(es), or of an “n” number of tallest
or largest trees at a fixed reference age of 25, 50, 75, or 100 years.

Traditional height models use ST as a fixed base-age height input variable. For example, to
estimate heights of a 30-year-old stand at say age 20, one usually calculates the stand SI, likely
at age 50, from the height at age 30, and then uses this height (at age 50) to calculate height at
age 20. This procedure is rather awkward. One should formulate height models that use directly
any age-height measurements as input, instead of a fixed base-age SI. Furthermore, it is suggested
to use directly any age-height measurements in all other height model applications.

Earlier approaches with the potential of deriving models using directly height at any age instead
of a fixed age SI, have been used to force height predictions at base-age to be equal SI, e.g.,
MC (Burkhart and Tennant 1977), and for fitting purposes, e.g., the ADA (ADA) (Bailey and
Clutter 1974; Clutter et al. 1983; Clutter et al. 1984; Borders et al. 1984). A common characteristic
of the earlier techniques is that when modifying the source model, they use a solution for a model
coefficient; whiie the present approach uses a solution for a model variable for the same purpose.
This gives more flexibility than the earlier techniques. It will be shown by examples that the
present approach is useful in any modelling situation that involves self-referencing functions, i.e.,
functions that use a point on a curve as a parameter determining which curve should be generated

1A version of this chapter has been submitted for publication in Forest Science.
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(Northway 1985).

This chapter starts with a brief review of a customary approach to a fixed-age SI height model
formulation, and of the earlier techniques capable of deriving SI-free height models. Then a new
approach is presented and its advantages discussed.

2.2 Background

In modeling practices used to describe height-age data, a researcher needs to choose an appropriate
mathematical model. There are many models available in the literature. Ricker (1979) reviews the
salient literature on basic growth models while Cieszewski and Bella (1989) list the more renowned
mathematical models used to model height in forestry.

From the chosen base model, one may also want to derive a new model. Generally, height models
can be derived from linear or nonlinear base equations with or without asymptotes. Although asymp-
totic growth is sometimes questioned in the forestry literature (Bredenkamp and Gregoire 1988,
Smith 1984) and elsewhere (Knight 1968, Ricker 1979, Schnute 1981), nonlinear asymptotic models
are intuitively appealing. They can be formulated to calculate the asymptotes through an implicit
expression, or to include an estimable proportionality constant that determines the asymptotic value.
Such an asymptotic model with an estimable proportionality constant can be derived, for example,
from the Chapman-Richards function (Richards 1959) which has been often applied to growth mod-
els in its basic and various modified forms (Carmean 1971, 1972; Monserud and Ek, 1976; Krumland
and Wensel 1977; Biging 1985). Since its introduction to the North American forestry literature
(Pienaar and Turnbull 1973), it has become the most commonly used function (Bredenkamp and Gre-
goire 1988). Its basic form has zero-intercept, and three coefficients, i.e., H(t) = a(1 — e~?*)” where
H(t) is tree height at age ¢, « is the asymptote, and 8 and v are shape coefficients.

If the coeflicient « is replaced by o’ST , the result is an anamorphic height/ST model (eq. (2.1),
Table 2.1) with proportionality constant a’ determining the values of the asymptotes, where /{1, S1)
is tree height at age t for a given SI. This model has been applied to many species, e.g., by
Hegyi (1981), Lundgren and Dolid (1970), Monserud and Ek (1976) and others. Four important
characteristics of models like eq. (2.1) are:

(1) a fixed base-age SI;
(2) a proportionality constant (a') to adjust asymptotes;

(3) SI # height at the base-age (Table 2.2, col. 6-8 and Fig. 2.2), or o' is a function of other
coefficients (Table 2.3, col. 6-8, and 2 vs. 3);

(4) redundant coefficients.

At the same time, without any loss of model flexibility, eq. (2.1) and many other height and S/
models can be formulated in such a way that they:

(1) use any age-height measurements directly instead of the fixed base-age S1I;
(2) may have variable asymptotes without proportionality constants;
(3) predict appropriate heights at base-age;

(4) do not contain redundant coefficients.

2.3 Models Using Any Age-Height Measurements

The first step in formulating a height-SI model is to choose a base model with desirable functional
characteristics as noted above. Such a model may have the following form:

H{) = f(t,pr-pn-1,Pn) (2.23)
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Table 2.1: Examples of height/S] models and base equations found in the forestry literature, and
those newly formulated (*). H(t,ST) denotes height as a function of age (¢) and a fixed base-age
SI; a,p,. .. regression coefficients.

Eq. No. Author Date Equation
(2.1) Hegyi 1981
Lundgren and Dolid 1870
Monserud and Ek 1976 H(t,SI) = o'SI (1 ~ e=#t)"
(22)  Schumacher 1939 InH(t,SI)=WnSI+8InSI(1/50 - 1/¢)
(2.3)  Cieszewski and Bella * InH(t,SI) = InSI + o' — (8' - A InSI)/t
(24)  Cieszewski and Bella . InH(t,SI) = o' + a"InSI + (6""In ST - §')/t
(2.5)  Biging 1985  H(1,S1) = aSI*(1 — e~8%)7
(2.8) Graney and Bower 1871 H(1,SI) = aSIt + Bt + ~t3 + 6195
(27)  Curtis et ol. 1974b  H(1,51) = SI/ (a4 & ++v1* + &)
(28)  Wiley (afier King 1968) 1078 H(1,S]) = prsrreagilonices s s
(2.9) Johnson and Worthington 1963 SI(t,H:) = H, (a + £ )
(2.10)  Curtis et ql. 19748 H(t,S1) = (SI)/ (o + Bt + +12)
(2.11)  Kirby 1975 H(t,SIrw) = Sho(a + Bt +~13)
(2.12)  Zakreewski 1986  H(1,SI) = SI(t/ (a + Bt™))*

Table 2.2: Coefficients o', 8, and v (eq. (6)) for major Lake States tree species (Lundgren and
Dolid 1970), computed o' (z = 50), and heights (in m) at age 50 (H(50, SI)) for three ST classes,
i.e., 10, 15, and 20 m.

SPECIES (1—e"P-1 o 8 vy H(50,10) H(50,15) H(50,20)
Red pine 1.9074 1.890 0.0198 1.3892  9.91 14.86 19.82
Jack pine 1.6365 1.633 0.0223 1.2419  9.98 14.97 19.96
White pine 1.9724 1.966 0.0240 1.8942  9.97 14.95 19.93
Balsam fir 1.4400 1437 0.0227 09381  9.93 14.97 19.96
White Spruce 1.6611 1.637 0.0254 15403 ¢ o 14.78 19.71
Black Spruce 1.7517 1.762  0.0201 1.2307  1u.N3 15.09 20.12
Tamarack 1.547 0.0225 1.1129 14.68 19.97

1.5495

9.92
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Figure 2.1: Differences between SI and H(50,tss) in eq. (2.5) for all three sets of parameters
(Biging 1985) (8 = 0.024, § = 0.89); a) SI, H(50,tss), and ST — H(50,1ss) as a function of S7 (in
feet); b) H(¢,100), H(50,100) and SJ = 100 (in feet).

where p;...pn are regression coefficients. The base model (2.23) can then be expanded into a family
of anamorphic or polymorphic curves with additional independent variable(s) changing the curves
for different sites. Usually, this variable is a fixed base-age SI, but techniques exist that can result in
models using any age-height measurements. These techniques may be based on solving model (2.23)
for a coefficient (ADA and MC), a coefficient and a variable (Cieszewski and Bella 1989), or just a
variable (the new proposed technique).

2.3.1 Model Coefficient Oriented Techniques

The ADA to model derivation (Bailey and Clutter 1974; Clutter et al. 1983; Clutter ef al. 1984;
Borders et al. 1984; Ramirez el al. 1987) consists of solving eq. (2.23) for one coefficient as a function
of a known value of the equation and other coefficients, and replacing that coefficient by its algebraic
form solution. It can be applied to any base model to reformulate it into either an anamorphic or
polymorphic height model.

For anamorphic curves, eq. (2.23) can be rewritten as H(t) = paf(t,p1...pn-1) 8o that for any
height h, base-age z, hy = pn f(Z, p1...pn-1). The coeflicient p, (asymptote) is replaced by a function
of h, and z. This reduces the number of base model coefficients by one (p, = he/f(2,p1.-.£n-1))
and the family -»f anamorphic height curves becomes: H(t,z,h;) = h,% where H(t,z,h;)
defines height as a function of the prediction age t, and any other tree age z with corresponding
height k. For example, In H(t) = a— £/t (Schumacher 1939) has the solution for the proportionality
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Table 2.3: Coeflicients o, §, and ¥ (eq. (6)) for major British Columbia tree species (Hegyi 1981),
computed o (z = 50), and heights (in m) at. age 50 (H(50,S7)) for three SI classes, i.e., 10, 15,

and _20.m.

SPECIES (1 — e~P%)-v o' 8 o H(50,10) H(50,18) H(50,20)
Balsam (coast) 1.9306 1.8306 0.0236 1.7918 10.00 15.00 20.00
Balsam (interior) 2.3154 2.3154 0.0155 1.3507 10.00 15.00 20.00
Broadleal maple 1.0457 1.0457 0.0088 6.2294 10.00 15.00 20.00
Red alder 1.1302 1.1302  0.0421 0.9422 10.00 15.00 20.00
Common paper birch 1.5137 1.5137 0.0175 0.7687 10.00 15.00 20.00
Yellow cedar 1.6317 1.6317 0.0263 1.5662 10.00 15.00 20.00

Larch 1.6672 1.6672 0.0215 1.2243 10.00 15.00 20.00

constant « = In h, + B/2; so the anamorphic height model is In H(1,z,h;) = Inh, + B(1/z — 1/t)
(Bailey and Clutter 1974, and Borders ef al 1984).

For polymorphic curves, the right hand side (RHS) of a solution for a different (than the propor-
tionality constant) coefficient pn,, is used in place of py,. Thus if: pm = g(2, he,py1...Pm-1) Where pp,
could be an exponential coefficient of eq. (2.23), and H(¢,z,h) = f(t, P1--Pm-1,9(x, he, pl...pm_l))
For example, the solution for the slope coefficient for the Schumacher’s (1939) model is 8 = z(a ~
In h;), s0 the polymorphic height model (with a single asymptote) isIn H(¢, 2, h.) = a+(ln h.—a)z/t
(Bailey and Clutter 1974, and Borders et al 1984).

Although MC is used only to assure predictions of appropriate heights at the base-age, it can
also sometimes result in models using any age-height measurements. It is similar to ADA in that
it uses a solution for a coefficient to replace the coefficient; while it is different from ADA in that
it is applied to models already containing S7 as a variable. Not all models can use any age-height
measurements directly through MC, e.g., models containing SI in more than one entry. An example
of using MC for deriving SI-free madels is a conditioning of eq. (2.1) over o’. This results in a two
coeflicient model (2.13) that does not contain the proportionality constant but governs asymptotes
by an implicit expression hz(1 — e~7)””, where z and h; refer to any age-height measurements.

2.3.2 Model Coefficient/Variable Oriented Approach

Cieszewski and Bella (1989} derived an SI-free model from the half-saturation function (Tait et
al. 1988). Their approach consists of:

e 1) identification of a suitable base-height model with biologically interpretable coefficients;

o 2) formulation of biologically meaningful hypotheses of growth in terms of functional relations
between model coefficients and site productivity;

¢ 3) applying MC to the model;

o 4) replacing SI with an algebraic form of a solution for SI as a function of the model coefficients
and any tree age-height measurements? and

¢ 5) revision of the model.

At steps 2) and 3) this approach uses SI temporarily in functional relations with model co-
efficients (Cieszewski and Bella 1989). At step 3) MC does not result in a model that uses any

3This should not be considered MC because the model has already been conditioned in 3) and, by definition, it
goes through an appropriate height at S base-age.
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age-height directly, and the fixed-age SI is not ruled out until after step 4). An cxample of this
approach applied to the Schumacher (1939) function is, at step 2), formulation of a hypothesis that
the slope is proportional toIn S/, ie., A= fInSI,sothath H(t) = a— 5'—';—5—1 Then, at step 3) MC
givesa=InSI+ ﬁlsﬂ,i and eq. (2.2). At step 4) the RHS of the solution for In S7 = m'ﬁ-—gf-ﬂ; is
substituted in place of InSI, and after revision at step §) the new model (2.14) uses directly any
age and height instead of S/, is polymorphic and has variable asymptotes.

2.3.3 The New, Model Variable Oriented Approach

This new approach is a generalization of that described above by Cieszewski and Bella (1989).
It is a variable oriented approach that instead of using solutions for any model coeflicients, relies
exclusively on the solution for a model variable. The new approach is more flexible and gives a
better insight into model derivation by letting the researcher decide about the functional relations
in the analyzed model. For example, one can test if the model asymptotes are proportional, linearly
related, or curvilinearly related to S/, and still have polymorphic height models that use any age-
height measurements directly instead of a fixed base-age S1I.

To put the new approach in an algebraic form, one defines p, as a function of S7 and any number
k of new coeflicients, viz., pn = gn(SI, pn, ...pn, ). Then the base mode] (2.23) can be changed into:

H(t,51) = §(t.p1--Pm1, ST, Py Py )Gl ST, Py P (2.24)

where H(1,SI) is a function of {, SI, and m+ k + [ — 1 coefficients.
If an equation A, = f(z,pl...p,,,_l,gm(SI,pm,...pm,)...g,,(SI,p,,,...p,,,)) can be solved for S1,
then the RHS of the solution for SI:

SI = u(z,he,p1...pn,) (2.25)

can be substituted in eq. (2.24) in place of S7 so the height model changes to:

H(t,z,hs) = f(t,p,...p,,,,u(z,h,, pl...p,.,)) (2.26)
After reformulations and elimination of redundant coefficients it becomes:
H(t,z,he)= f(t,z,hs,p1...pu) (2.27)

where w < m+ k+{—1; in other words, the final SI-free model (2.27) has smaller or equal number
of coefficients than the initial fixed base-age SI model (2.24).

For example, using the new proposed technique for the Schumacher (1939) function, one does
not have to compromise using o = Inh; + B/z for anamorphic curves, or f = (o — Inh,)z for
polymorphic curves with a single asymptote, as ADA would suggest (Bailey and Clutter 1974).
Instead, one can define o = In ST + o' where o’ is a new coefficient, and 8 = ' — A,;In S] where 3
is another new coefficient independent of o’. This leads to eq. (2.3)—a polymorphic height model
with variable asymptotes. In this model, the amount of variation in the asymptotes is unaflected
by the amount of variation in the slopes, and vice versa. One can go further and define the model
asymptote and slope as linear functions of InSI, ie., «a = o' + a”’InSI and f = B - f”’InSI.
This results in eq. (2.4). Solving eq. (2.4) for SI gives InSI = (Inh; —a' 4+ #'/z) /(" + p"[2)
Thus, the new height model using any age-height measurements directly, is eq. (2.15), which can be
equivalent to eq. (2.3) if &’ = 1 and 8" = A,;. One may then test the significance of any of the
model coefficients on real data.

All base models, or fixed-age SI/height models listed in Table 2.1 could be reformulated into
height models using direct age-height (z and k;) measurements (Table 2.4) instead of a fixed base-
age SI. The new models have up to two coeflicients fewer than their original models (Table 2.1),
while retaining identical flexibility as their respective source models.
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Table 2.4: Height models using directly any height-age measurements (instead of a fixed base-age
S7) derived in this study from models in Table 1, and the eliminated coefficients (a,3,. .. here are
not consistent with a,4,...in Table 2.1.

Source Eliminated
Eq. Eq. Coefficient(s
No. No. a. ist Derived Equation

(2.13)  (2.1)i(28) 12 a'ia6 H(t,z,hs) =hs (5;5)7

(2.14) (2:2) 0 n/a  InH(t.z,hs) = Inhy JFE020=0/
(2.15) (2.4) a"  InH(t,z,hs) = bemedfle (14 1) 4o 8

-

(2.20)  (2.0) H(t,z,hs) = h,’,—'&%—}f;(i)?
(221)  (211) H(tz,hs) = by JEEES

']
(2.22) (2.12) 1 a H(t,z,hs) = hy (%%-ﬁ%’?:%)

(2.18) (2.6) 2 a8 H( o he) =t (!‘;‘ +9(t-2)+8 (t‘°"’ - z‘°‘5))
Shell ¢ )3 §z)/h.
(2.17) @.7) 1 o Hit o he) = 0.5hs (1+vs* +/(1473%)3 4 ¢(A+6s4) /b,
1476438480}/ (he (14 v 4 /(A 735°)44(A+62%) [ h;

(2.18) (2.8) 8 Hhohs) = gramsatteThe e ey S QT G553 55)
(2.19) (2.9) o H(t,z,he) = he 3502

[+ 4

o

LT B = Y

2.4 Discussion

Fixed base-age SI, although traditionally used in height models, is often an unnecessary model
limitation. Given a model for a family of height curves, usually any point (z,h;) on a height curve
can unequivocally define that curve.

As z can assume any value, k. should not be considered a fixed-age SI. Equation (2.27) rep-
resents an anamorphic or polymorphic height model that uses directly any age and height mea-
surements, and compared to the base model (2.24), has usually fewer coefficients. Furthermore,
eq. (2.27) defines a tree height (H;) at age () as a function of another age (z) and height (k) at
that age (z). At ¢ =25,50,75,100, H; can be interpreted as SI; the model can generate ST curves:
(i) as a function of height in specified age classes (if z is fixed and h, varies, Fig. 2.4a), or (ii) as
a function of age in height classes (if h. is fixed and z varies, Fig. 2.4b). If 2 = 50, h. can be
interpreted as SI; the model will generate height curves: (i) as a function of age in SI classes (if
S1 is fixed and t varies, Fig. 2.4c), or (ii) as a function of SI in age classes (if ¢ is fixed and ST
varies, Fig. 2.4d). Because SI is just a height at a base-age, no model reformulation is necessary to
calculate S7 from height; SI and any other heights are calculated from one common equation.

The ADA was applied successfully by Bailey and Clutter (1974); Clutter et al. (1983); Clutter
et al. (1984); Borders et al. (1984); Ramirez et al (1987); to various forestry modelling problems.
Bailey and Clutter (1974) used it to modify Schumacher’s (1939) model to predict appropriate
heights at the base-age, while Clutter et al (1983), Clutter et al. (1984) and Borders et al. (1984)
additionally applied it to model fitting.

The above uses notwithstanding, no one has taken full advantage of the height models derived by
ADA in their post-fitting applications. Instead of presenting only one equation that could estimate
any height from any other height—be it a forward or back-in-time estimation—once the fitting was
done, all authors suggested the customary use of separate equations for SI and height estimations.
For example, Clutter et al. (1983; p. 50) present: H(t,SI) = SI (;l_‘T‘_—,;:—' 7 and state “...For
prediction of SI from height g.nd age the above equation is algebraically rearranged to ...” followed
by: SI(H,t)=H (%1) Another example is in Clutter ef al. (1984; p. 27), where the authors

actually recalculate their height model coefficients to absorb the ST base-age to make it permanently
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Figure 2.2: Curves generated by a height model using any direct height-age measurements: a) ST as
a function of height by specified age classes; b) SI as a function of age by height classes; c) height
as a function of age by SI classes; d) height as a function of ST by age classes.
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unchangeable, and force the user to use two different equations for SJ and for height estimations.

The present approach for height model formulation leads to base-age invariant anamorphic, or
simple or complex polymorphic height models that at the same time can have varying asymptotes
with site productivity. In addition, the models can also have other desirable properties such as:
zero height at age zero, height at base-age equal S/, biological interpretations, and easily estimable
coefficients.

The approach allows for the development of complex models incorporating several growth hy-
potheses and/or empirical correlations between productivity potential and different model coeffi-
cients. The number of altered coefficients is limited only by the formulated model’s solvability for
SI. In a limiting case, when applied with one varying coeflicient, the method might be equivalent
to ADA or to MC, e.g., eq. (2.1), although in general it is not.

2.4.1 Advantages of The New Technique Compared to The Traditional
Techniques

MC is somewhat ambiguous about which coefficient should be replaced, e.g., eq. (2.6) conditioned
over a or A may result in the two coeflicient S/-free model (2.16), but if conditioned over v or § it
may not. Biging (1985, footnote 5) did not condition eq. (2.5) over o, and in consequence, he did
not notice that eq. (2.5) had as many as two redundant coefficients estimated in regression analysis.
Moreover, had he used MC to condition eq. (2.5) over a, he might still have not noticed that the
resulting model was SI-free, as one generally does not associate MC with such models.

MC is mainly associated with changing the models’ predictions rather than the models’ struc-
tures, and even models that potentially are able to use directly any age-height measurements are
usually changed into fixed base-age models. For example, Graney and Bower (1971) conditioned
their model: “...Inserting the condition that height at age 50 is SJ...” and arrived at the four coef-
ficient fixed base-age model (2.6) (altered in this study into the two coefficient SI-free model (2.16)).
Such models as eq. (2.6) to (2.12), normally would not even be considered for this technique because
they predict appropriate heights at their respective base-ages.

Using ADA one can predetermine the future model’s behaviour by an appropriate choice of
only one coefficient to be replaced. Choosing a scaler coefficient results in an anamorphic model
with varying (if any) asymptotes with productivity levels (SI). Choosing an exponential coefficient
results in a polymorphic model with a fixed (if any) asymptote for all productivity levels, e.g.,
Bailey and Clutter (1974). Thus, one has to sacrifice polymorphism for varying asymptotes or
varying asymptotes for polymorphism. Meanwhile, a researcher may wish to develop an asymptotic
polymorphic height mode] with variable asymptotes.

The approach presented by Cieszewski and Bella (1989) replaces one coefficient (step 3) with
a solution for the coefficient. Then it replaces the model variable (SI) (step 4) with a solution
for that variable. Hence, it combines both the coefficient and the variable oriented techniques. As
site productivity can be associated with more than one arbitrary coefficient in the initial stage of
model formulation, this approach provides more control over the final model’s properties than the
coeflicient oriented techniques. It can lead to a polymorphic model with asymptotes changing as
required. However, the coefficient oriented part (step 3) of this approach somewhat limits its intrinsic
flexibility. The solution for a model asymptotic coefficient predetermines the behaviour of the future
model’s asymptotes in accordance with the present model’s structure. Again, the outcome may not
suit the researcher’s purposes, or the data trends.

This drawback is common to all coefficient oriented techniques, e.g., for Schumacher’s (1939)
function, i.e., In H(t) = a— A/t, ADA inflexibly forces a = In h, + /z for anamorphic curves, where
B is the slope coefficient; or # = (a —Inh;)z, for polymorphic curves, where a is a logarithm of the
asymptote. Thus, the functional relations that govern asymptotes of anamorphic curves or slopes
of polymorphic curves depend on one original model coefficient and the base model’s assumptions,
and are therefore inflexible; in a sense, using ADA, one attempts to prove that the base model is
applicable to the data rather than to find the true trend.

Using ADA Bailey and Clutter (1974) derived, from the Schumacher’s (1939) function, a poly-
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morphic height model with one common asymptote for all SJ values and commented: *... Whether
or not the latter property has biological significance is not important....” (Bailey and Clutter 1974,
p. 157). In contrast, one can use the new variable oriented approach to derive a polymorphic height
model that not only has asymptotes varying with different SI values, but additionally, the degree
of the asymptotic variation is determined by the data rather than by the limited flexibility and an
arbitrary shape of the base model.

2.4.2 A Reference Variable In Height Models

Incompatibility between input SI and height predictions at base-age (Fig. 2.2) causes height model
inaccuracy and inconsistency near the base-age. This may be a minor problem with amall differ-
ences, but a major one with large differences. More importantly, this incompatibility precludes the
development of base-age invariant height models.

The present approach will help to prevent confusing the adjustable parameter, SI, with a model
coefficient. The direct use of age-height measurements is more reasonable than the use of SJ.
Thus, if the height curves pass through appropriate heights at reference age, the coefficient o' in
eq. (2.1) is redundant. If desired for any reason its value can be calculated for any base-age =z
(Table 2.3, col. 2). Any deviation from the calculated value of o’ would indicate that the height
curves miss the appropriate heights at reference age. For example, in the British Columbia height
curves (Hegyi 1981), all of the calculated a'-s (Table 2.3; col. 2) are identical to the published
values of a' (col. 3). Thus, all heights computed for the SI base-age for three different S7 classes
(col. 6-8) are identical with the SI class values. In other words, the curves go through appropriate
heights at the reference age and therefore, o' is redundant. In the Lake States curves (Lundgren and
Dolid 1970), the values of computed a' (Table 2.2; col. 2) are different from the published o’ values
(col. 3). Consequently, the heights computed for the SI base-age for the three different SJ classes in
Table 2.2 are incorrect; these height curves do not go through appropriate heights at the base-age.
Other models may have similar disparity problems. For example, eq. (2.5) will not generate curves
that unconditionally go through appropriate heights at reference age (Fig. 2.2 and 2.4.2) unless
coefficients @ = o' (Table 2.3, col. 2), and 6§ = 1. By setting H(50,51) = S7 I may be able to
calculate, for any o and any é # 1, one unique SI value for which a height curve may in fact go
through an appropriate height at reference age as S = [o (1 - e""s')v]’_h. Using eq. (2.5) as
an example and reformulating it to eq. (2.13) results in curves with identical shapes as eq. (2.5),
but with two fewer coeflicients. In addition, the curves generated by eq. (2.13) pass unconditionally
through appropriate heights at any reference age that can be arbitrarily chosen by the model user.

2.4.3 Model Fitting

Estimation of coefficients, techniques used in regression analysis, data requirements, and possible
other problems associated with the use of models presented here are independent from their method
of derivation. Fitting these models, one may use any coefficient estimation technique suitable to
one’s specific analysis, as one would do in fitting any traditional height-SI model. However, the
present models offer more flexibility in data requirements and handling. In this respect, the models
are similar to those derived by ADA they can use any base-age for reference points, and therefore
can be base-age invariant. Their coefficients may be estimated on any height over age data, whether
from stem analysis or from permanent sample plots (PSP-s). As Borders et al. (1984) state, such a
model can be fitted to no overlapping measurement periods, i.e., fitting H(n) = f(tn,tn-1,hn-1)
on (tl) hl; t2, h2)y (t21 h2;t31 ha)) (tsy hs;t4: h4)s' ..data.

Although rigorous statistical treatments may be used to fit SI-free height models—the implica-
tions of which are beyond the scope of this chapter—it is easy to see that a flexible base-age, while
retaining the model’s sophistication, lends further flexibility to model analysis. If one treated the
S1-free height models as fixed base-age height/ST models to help dynamically estimate average SI
values between subsequent iterations of a nonlinear regression (Northway 1985), one can simply set
z to a constant. Otherwise one may follow the proponents of ADA, or try other approaches like
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Figure 2.3: Height curves (eq. (2.5) and (2.13)) for all three sets of parameters (Biging 1985)(8 =
0.024, 6 = 0.89): a) eq. (2.5) and (2.13) using S7 40, 80, and 120’; b) eq. (2.5) using adjusted S7
(Fig. 2.2) and eq. (2.13) as in a).

using heights at random ages as reference points, heights at maximum ages, or else heights at all
decadel ages (a multi-SI estimation).

2.4.4 Numerical Considerations

Concise models, even if apparently more complex, should be favoured over those with more numerous
coefficients, as inclusion of coefficients that cause height deviations at base-age violate the principle
of parsimony (William of Occam 14th century®, Larimore and Mehra 1985). Models with more
coefficients may lead to difficulties in nonlinear regression fitting because of the dimensionality
problem, and often strong correlation between coefficients.

If the proposed method is used in a modeling situation with only one independent variable, the
parameter h; can be treated as an estimable (through a regression analysis) model coefficient and
z as an arbitrary constant (Schnute 1981). One important advantage of coefficient h; over any
other coefficient to be replaced is that A, corresponds to actual data and therefore has smaller error.
In fact, in preliminary regression analysis of complex models, h; can be set arbitrarily to a value
obtained from averaging data points (observations of the dependent variable) at the z value (the
independent variable). Since h; refers directly to data, its estimation by regression, if required, is
trivial (initial value is easy to estimate and has a narrow range). This is unlike the estimation of

SWilliam of Occam, 14th century, Occam's Razor being, entis non sunt meltiplicanda praeter necessitatem, i.c.,
parsimony. — things ought not be mu'tiplied except out of necessity, i.e., parsimony.
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asymptote coefficients, e.g., @’ in eq. (2.1), which may often tend towards very high values. From a
computational point of view, models containing an asymptotic proportionality constant are inferior
because of possible difficulties with estimation (e.g., floating point overflow for very high asymptotes).
Some researchers using such models have found poor convergence in nonlinear regression fitting
because of a lack of clearly defined asymptotic trends in the data (Biging 1985, Goudie 198494,
Anon. 1985, Bredenkamp and Gregoire 1988, Schnute 1981). In addition, computational problems
may occur because of the limited resolution of computers. Thus, for example, due to an inconsistency
in computer computations, i.e., (4/C)B # A(B/C), the three coefficient eq. (2.1) is in fact a limiting
case of the two coefficient eq. (2.13). While (1 — e=#*)/(1 — e=#%) can usually be computed easily,

1/(1 - ¢75%) may not. Accordingly, he(12£55;)", i.c., the RHS of eq. (2.13), can be computed

e

safer than 1/ (1 —e=#%)" SI (1~ e~#*)", or 4SI{1 - e~*)", i.e., RHS of eq. (2.1).

2.5 Summary and Conclusion

A fixed-age SI may be useful in many situations, but height modeling is seldom one of them. The
direct use of age-L:eight measurements for this purpose is more advantageous. It eliminates one
unnecessary step in height estimation, i.e., the calculation of SI, and simplifies model calibration.
In regression analysis, a height model formulated to use directly any age and height measurements,
despite the more complex appearance, contain fewer coefficients that are more robust and statistically
stable.

The main benefits of using the present approach (compare Tables 2.1 and 2.4) are

¢ a direct use of age-height measurements and concomitant height-age base-age invariance;
o absence of an explicit coefficient describing an asymptote (though it may be calculated);
¢ usuaily reduced number of coefficients;

e associations of numerous model coefficients with site productivity (SI), e.g., variable asymp-
totes in addition to polymorphism; and

e consistency of mathematical models with biological theory.

In all, instead of the conventional coefficient oriented approaches such as ADA or MC, | recom-
mend the present variable oriented approach to model derivation in five steps:

1) identify a base model with easily interpretable coefficients (eq. (2.23));

2) modify the base model using, as an independent parameter, a value of the dependent variable
at a fixed reference point, i.e., S1, (eq. (2.24));

3) solve the modified model for the independent parameter (e.g., SI) as a function of direct
measurements and model coefficients (eq. (2.25));

4) substitute the solution obtained in place of the independent parameter (eq. (2.26));

5) revise the model and eliminate redundant coefficients (eq. (2.27)).

4James W. Goudie. 1984. Height and S/ curves for lodgepole pine and white spruce and interim managed stand
yield tables for lodgepole pine in British Columbia. Internal report, FY-1983-84, Submitted to Research Branch,

British Columbia Ministry of Forests.
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Chapter 3

Five—Dimensional Height Spaces
with Three Adjustable
Measurement Components—An
Ageless Height Model, and A
Static Density Height Model

3.1 A General Model—An Introduction and Framework

The evolution of height models has been strongly stimulated by a general increase in statistical liter-
acy and a rapid development of computer technologies. Nevertheless, new model advancements have
always depended on an approach to mode] derivation and associated with it, limitations of algebraic
solutions. Until the year 1989, the advancement of the height models to the fourth dimension of
the variable-base-age S7, height models were somewhat limited. They were either polymorphic, but
with only one common asymptote for all sites, or had variable asymptotes but anamorphic slopes,
because all such efforts were based on the ADA (Bailey and Clutter 1974, Clutter et al. 1983, Borders
el al. 1984, Ramirez et al. 1987). Such model derivation was limited to solving equations for only
ne model coefficient. In addition, the only polymorphic variable-base-age SI height model with
variable asymptotes (Cieszewsk’: and Bella 1989, 1991) was developed through a process that was
not readily applicable to other base models.

Generalization of models has always been an attractive idea that in a simplistic version could
be paraphrased as developing fewer models that can describe more situations. Diverse examples of
model generalization exist in the forestry literature. One example is an application of a simple general
height over age growth function and the localizing of its parameters using Kalman filters (Walters
et al. 1991). In this example, the authors avoid model complexity by using one simple regional
equation combined with local stand data.

Zeide (1978) proposed a height model generalization based on using two reference-heights at two
base-ages instead of one reference-height at one base-age. The additional reference point in height
measurements added to the model flexibility and made it possible for this model to actually simulate
growth trends from several disparate equations. Follow up applications included implementation of
this system into a stand growth siinulation model (Arney 1985) and development of general multi-
species height equations (Milner 1987, Hoyer and Chawes 1980, Hoyer and Swanzy 1986). A potential
two point principle equation is also the Schnute’s (1981) function and its modified form (Cieszewski
and Bella 1991).

26
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3.1.1 Development of Model Dimensionality and its Flexibility

The generalized technology described in Chapter 2 provides a new possibility of deriving the variable-
base-age SI height models from many different base models. The resulting equations contain a
variable measurement component of base-age instead of «. fixed one, that in many models was implicit.
After such a change the resulting models contain two explicit variable measurement components:
reference-height and variable-base-age; and one arbitrary input variable: prediction-age.

Since each step to increase a model’s dimensionality involves considerable algebraic complication,
the variable-base-age SI height models are usually very complex and cannot be further modified
through any substitutions of their implicit solutions. Figures 1.1- 1.4 in Section 1.3 represent a
process of increasing model dimensionality through three general distinct steps, in the evolution of the
height models, i.e., 1) generating two dimensional models of height over age; 2) extending the models
to three dimensions over fixed base-age ST; and 3) adding the fourth dimension of variable base-age.
At each step of increasing a height model dimensionality and/or its sophistication/flexibility, e.g.,
extending a model from anamorphic to polymorphic, the window of applicable algebraic solutions
in the newly created equations is drastically reduced. The described process can be illustrated
by mathematical forms that are associated with different steps of the model modification towards
increasing model dimensionality and flexibility using as a starting point a very simple half-saturation
function:

_ A
T 148/t

where: t is the age; H(t) is the height as a function of age; A is the asymptote; and 4 is a half-
saturation coefficient.

While eq. (3.1) can generate a simple monotonically increasing curve, e.g., Fig. [3.1], this equation
has to be slightly modified to generate a single biologically sound two-dimensional height curve, e.g.,
Fig. [3.2], that has an inflection point, i.e., a curve that has a sigmoidal shape, e.g., Fig. [3.2). The
modified half-saturation function generating sigmoidal curves will then have the following form:

H() (3.1)

Height {m]

o 20 40 60 80 100 120
Age bh. [years]

Figure 3.1: Simple monotonic two dimensional height as a function of age.

A
14 8/t
where: A, 3, and a are estimable model coeflicients; ¢ is prediction age; and H is the predicted
height.

H(t) = (3.2)
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o 20 40 60 80 100 120
Age bh. [years]

Figure 3.2: An inflected two dimensional height growth as a functions of age.

This equation is a simple form of describing a basic, biologically sound, sigmoidal height over age
(Fig. 1.2 and 1.3), of a single tree or stand, and it can be referred to as a base model. Base models
are used as a root for derivation of more complex three-dimensional height models describing families
of growth curves across ranges of other variables such as site expressed by SI (Fig. 3.2, Section 1.3).
There are few different ways to derive a three dimensional ST height model from the base model (3.2).
Each way may result in a different model with specific properties. The simplest anamorphic model
(Fig. (3.3]) can be derived from this base model by applying to it the ADA and solving the equation
for A as a function of SI (SI) and its base-age, e.g., 50, and then replacing the parameter A by this
solution in place of A. The resulting model will have the following form:

60 80 100 120
Age [years])

(-]
g.
&

Figure 3.3: A three-dimensional, anamorphic ST height space (multivle asymptotes).

1+ B/50°
W (3.3)

Since anamorphic models are not considered to be satisfactory for mest species and applications,

H(t)=SI
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the model should be modified to be flexible enough to simulate growth polymorphism. The ADA
can lead to a polymorphic model derived from eq. (3.2) if the equation is solved for 2 instead of A,
and as before, the solution is substituted for 5. Now the resulting model would be polymorphic, but
have only one asymptote common for all sites (Fig. [3.4]):

]

Yo 20 40 60 80 100 120
Age bh. [years)

Figure 3.4: A three-dimensional, polymorphic ST height space with a single asymptote common for
all ST values.

A
1+ 457
A simple fixed-base-age SI height model, that is polymorphic and has variable asymptotes

(Fig. [3.5]) can be derived froin eq. (3.2) following Cieszewski and Bella (1989), while the resulting
equation would have a somewhat more complex form:

H() = (3.4)
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Figure 3.5: A three-dimeunsional, polymorphic ST height space with multiple asymptotes varying
with SI.
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SI+ A/50°
1+ 6] (STi7) (3.5)

Equation (3.5) describes relatively simple, though biologically sound, polymorphic growth pat-
terns (Fig. [3.5]), according to a hypothesis that the half-saturation parameter § would be inversely
proportional to SJ (8 o« SI-!). While seemingly still relatively simple, this equations defines just
about the limit to a complexity of modifications that can be performed on a height model to increase
its flexibility in simulating different patterns of multidimensional growth. To achieve more complex
height growth polymorphism would require further modification of this equation or more flexible
initial assumptions about the growth polymorphism (Cieszewski and Bella 1989). Unfortunately,
any further increase in complexity of these equations may not be very useful for increasing the model
dimensionality to four dimensions (Fig. [3.6]) and deriving variable-base-age height-growth model,
as it could preclude the equation’s solvability for SI (see Chapter 2). Thus, at this point one faces
a dilemma whether to compromise the polymorphism or the dimensionality.

H() =

Figure 3.6: A four-dimensional, variable-base-age S7, height-growth space.

If a decision is made in favour of increasing the complexity of the growth polymorphism, an addi-
tional parameter could be added to model (3.5) to make the polymorphic height growth hypothesis
more flexible. Assuming that B = SSI~!*7, the model will be either polymorphic according to
original assumption (v = 0), or anamorphic (v = 1), or else (0 # v 7# 1) polymorphic in a different
fashion than originally assumed. With the extra parameter, model (3.5) would become more general,
though, it would not have a closed solution for SI and could noi be reformulated to variable-base-age
ST height model:

SI+BSI" [Agel,
1+ 8SI7-1/t=

If a decision is made in favour of increasing the model dimensionality, then the mode! has to
remain in the form of eq. (3.5). Even in its present relatively simple form, this equation is solvable for
ST only under certain assumptions and within a limited range of the model parameter values. Any
further modification can easily make the model unsuitable for further advancement, i.e., a derivation
of a variable-base-age SI height model (Fig. [3.6]). Since the main objective of this chapter is to
demonstrate a development of a five-dimensional height model, the further development here will
be based on eq. (3.5).

In biological terms, eq. (3.5) means that the potential growth of a single tree can be defined
by a simple half saturation function (3.1) and that, comparable to potential height growth, trees

H(t,SI) = (3.6)




o Fi . . 311 Jucti T

in stands with usual conditions will demonstrate an extra height growth reduction over time (12te,
where a > 0) as the stand canopy closes and intra specific competition increases (Cieszewski and
Bella 1989). In the same terms the model means also that S7 differences, that arise between tree
growth due to sites, occur in two ways. The upper limit of the height growth is proportional to the
S1, and the initial growth rate increases! with S7 in such a way that the age at which the tree will
reach half of its maximum height is inversely proportional to SI.

The complexity of any fixed-base-age SI height model has to increase considerably after refor-
mulation to a variable-base-age form that represents a four-dimensional height space. After deriving
equations describing the four dimensional height spaces with polymorphic growth patterns and vari-
able asymptotes (Fig. [3.6]) any further solutions for implicit or explicit constants are practically
impossible due to the complexity of these equations. For example, eq. (3.5) describes height growth
in terms of SI which allowed for easier interpretation of the underlying biological principles gov-
erning the relation between the height growth polymorphism and site productivity. A height model
would be convenient if formulated to use height at any age. Solving Equation (3.5) for S/ as a
function of height h; at age z results in:

SI(hs,z) = 0.5 [(h, - B/50%) + \/(hy — B/50%)? + 4ﬂh,/a°] (3.7)

where only positive roots are considered.
Substituting right side of eq. (3.7) in place of SI in eq. (3.5) gives the Variable-age-S7 height
model as:

_ he + B/50% + /(h, — B/50°)% + 4(h, [z°
- 2+ 48/t
hc-ﬂ/50’+\/(hs-5/50")7"’419":/"

H(t, hs,2) (3.8)

wherc:
o and 3 are estimable coefficients;
h; is a tree reference-height;
z is the tree base-age, or the age of A,; and
t is the prediction-age for the computed height.

Using eq. (3.5) to derive a variable-base-age S height model results in the model (3.8) that
cannot be further modified through using a closed form solution to any of its elements.

3.1.2 Expanding Into the Fifth Dimension

The variable-base-age SI height models do not contain any explicit fixed measurement components.
However, just like all other height over age height models, the variable-base-age SI height models
also contain various implicit fixed components, other than the base-age. Some of those components
are: a base-height (defining the beginning of the age count), density, elevation, average temperature,
pollution level, etc. These implicit mode] components and their eflects on height predictions depend
on the species growth characteristics and a sensitivity of its height growth to each of these elements.

Specific values of model implicit components should usually depend on data used to calibrate the
height models. These values would likely affect the shape of the curves distinctly for each component,
be it base-height (Fig. [3.7]) or density (Fig. [3.12]). Depending on which of those components is
the most important (either base-height or a density measure) in a model application, it might be
advantageous to choose one of the implicit fixed components and provide for it by an inclusion of
an explicit variable measurement component.

Since the variable-base-age ST height models cannot be further modified through algebraic refor-
mulations, other possibilities have to be explored. Shapes and patterns resulting from diverse values

11t increases until the half saturation point, then decreases past the time.
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Figure 3.7: Shapes of height trends on medium site for varying base-heights: a) starting at base-
height; b) shifted to origin.

of the implicit components (Fig. [3.7]) can be modeled individually using different mndels. Given
an adequately flexible equation, the above changes in height patterns could be expressed by a single
mode] with different sets of coefficients. It is reasonable to assume that if the same equation with
different coefficient values could describe different height patterns, resulting from changes in values
of an implicit fixed measurement component, the changes in the coefficient values would be in some
sort of functional relation with the changes in the measurement components, i.e., the coefficient val-
ues would be changing consistently and continuously over a range of the measurement component
values. Consequently, the model can be modified to replace an implicit fixed growth component, e.g.,
base-height or density, with an explicit variable measurement component, i.e., base-height or den-
sity, by replacing this model’s coefficients with appropriate modifying functions of that measurement
component, i.e., base-height or the density.

The new technology for deriving variable-base-age SI height models (Chapter 2) can be applied
to most basic equations to derive biologically sound polymorphic variable-base-age ST height models
with variable asymptotes. These models can in turn be modified by imposing modifying functions on
their coeflicients, without changing their basic structure, as the variable-base-age SI height models,
just like all other models, generate shape patterns that depend on the model coefficients. Using
model (3.8) for that purpose would give a new expanded model with three adjustable measurement
components of reference-height and its age, and base-height, or density/crowding measure, that
would have the following form:

he + mz,'u. + \/(h, - iﬁ%‘%)? + 4f2(ho)hy [2]1(Be)

4f3(hy)/t13(%s)

+
b= R+ [ RS+ 412 000R) 21 00)

Applying the tecknology from Chapter 2 to the base model (3.2) would result in a model more
complex than model (3.8) with three estimable parameters. This would add to the model flexibility
but it could make a further application of this model more difficult while not contributing to the
demonstration purposes. However, this option will exist should raodel (3.8) prove to be insufficiently
flexible.

This study describes an example of a modification of a variable-base-age SI height model that
replaces implicit fixed input components of base-height by an explicit variable measurement com-
ponent. The relevant model modifications will be performed on a variable-base-age SI height
model (3.8) (see Chapter 2). The example is broadly applicable to virtually any height model,
and it deals with the implicit input component of the base-height, i.e., the height defining the be-
ginning of an age count. This base-height usually is equal to 1.3 m above ground and is referred to
as the breast height, while the age beginning at this height is the breast height age.

(3.9)

H(t, he,2) =
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Another example is mentioned in this section while treated in detail in the next section. This
second example might not be broadly applicable for many models or species, but it is very important
for lodgepole pine and it deals with the implicit fixed density input in height models developed for
lodgepole pine—a species of exceptional sensitivity to stand density. Both of the examples follow
a similar conceptual process of model development mentioned above, i.e., developing height models
with coefficients expanded to modifying functions of the variable measurement components.

3.2 Adjustable SI, Base-age and Base-height Components
— The Ageless Height Model

8.2.1 The Definition of Prediction-Age for Different Base-heights

Most height models are developed as time series whereby height is a function of time. For simplifi-
cation, any seasonal variation in growth is ignored and different measures of time are in use. Most
of the time measures are referred to as ages of different base-height, and they describe the time
needed by a tree or stand to reach a specified height since the time when the tree, or stand, has been
"base-height” high. If the base-height is variable, i.e., it can be arbitrarily changed by the user, the
model can be effectively considered age-free, or ageless. An example of such ageless growth model is
Von Bertallanfy’s (1938) (Turnbull and Pienarr 1973) differential growth function: 8V = nV™ —kV
where: 8 is a slope of V; n is anabolic constant; m photosynthesis exponent; and & is the catabolic
constant.

In most of the integral height models, the ages of different base-heights are given adjective names
added to the word “age” that describe a common definition of the the base-heights used for the age
definition. There are three prevalent ages and associated with these heights: 1) Total age, at base-
height 0 usually equivalent to the length of time since the germination of the tree or stand; 2) stump
age, defined by stump height 0.3 m; and 3) breast height age, defined by breast height 1.3 r. Other
ages can also be used to denote either a prediction time or a time definition of a height reference
measure, i.e., an age of the reference-height.

The most traditional age used for development of height models was the total age, and great many
models have been developed using this age (Frothingham 1914, Gevorkiantz 1930, 1957, Vimmerstedt
1962, Lundgren and Dolid 1970; Carmean 1972, Payandeh 1974a, 1974b, Monserud and Ek 1876,
Burkhart and Tennant 1977, Bruce 1981, Borders el al. 1984, Bailey and Clutter 1974). However,
since there is a great amount of variation in height growth in an early life stanza of trees and stands
before they reach 1.3 m of height, due to a variety of causes from weed competition to animal grazing;
some authors (Husch 1956, McCormack 1956) argued that one should use the breast height age for
height modeling. Following these, many modern height models have been formulated as functions of
breast height age using either a fixed age SI (Barrett 1978, Monserud 1984, 1985, Curtis ef al. 1974,
and Newnham 1988), or a variable-base-age SI (Clutter ef al. 1983, Cieszewski and Rella 1089).

3.2.2 The Definition of Base-Age for Different Base-heights

The age consideration and associated errora are especially important in juvenile height modeling.
Any errors resulting from early growth irregularities have a relatively high impact on growth pre-
dictions for juvenile stands due to relatively low ages in those stands. The considered errors in this
situation are most important if they are contained in the age of reference-height, or SI, used to
describe a site productivity. Thus, the traditional height models, using total age and a fixed age S7,
are generally considered unsuitable for juvenile height modeling (Wakeley and Marrero 1958, Ferree
el al. 1958, Day et al. 1960, Brown and Stires 1981, Carmean 1975).

The fixed age S7 is also unsuitable for application in juvenile stand height modeling. Measur-
ing of reference-heights in close spacing presents many practical difficulties. On the other hand,
counting only several internodes above the breast height should be casy whenever the internodes are
regular (Baldwin 1931, Brewster 1918, Pearson 1918). Exceptions from that could apply to southern
pines that are multinodal (Shaw 1914) and produce multiple annual internodes and branch whorls
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(Reed 1939). Despite those exceptions, most researchers agree that for juvenile height modeling
the definition of SI and the base-height used for measuring the SI height and its age should be
altered to give more flexibility towards being able to define growth potential using a variable time
length growth measured at heights convenient to access. On these premises, a whole class of inter-
cept based height models have been developed for different juvenile height growth applications (See
Sub-section 1.2.3).

The intercept height models, using height growth intercepts starting at breast height, are princi-
pally not much different from the fixed age S7 height models with a relatively small base-age, e.g.,
6 years. They also use a reference-height above breast height at a fixed base of breast height age.
In fact, they could be considered as special cases of the variable-base-age SI height models with the
base-age set to the number of internodes measured above breast height used to compose the growth
intercept.

Other intercept height models, using intercepts starting further up the stem above breast height,
are quite unique in their class. However, the uniqueness can be viewed as limited to different base-
heights used to define the age of the reference-height. It is somewhat erroneous that such models
use inconsistently two different base-heights for definition of the two ages used in the height models,
i.e., the prediction-age and the base-age, even though the base-age is usually implicit. Also, it
can likely "e error prone that such models use inconsistently the base-height in definition of the
beginning of the reference-hcight or intercept; as this beginning is usually defined in terms of a
number of internodes above breast height. Thus, the height at which the intercept is measured will
vary between trees with the usual variation in growth.

Summarizing the above, one can see that many efforts in height modeling concentrate on exploring
the possibility of substituting for site-indexing different lengths of height growth measured at different
heights. Both an operational forester and a researcher could use it whenever they run into situations
where it is best to measure growth intercepts on various heights on different trees. To achieve such
model flexibility, one needs to extend a variable-base-age SI height model to a fifth dimension with

a variable base-height.

3.2.3 Implementation and Interpretation of The Variable Base-Height

Equation (3.9) is a generalized representation of five-dimensional height space above the base-height.
To make this equation applicable for variable base-height implementation, the modifying functions
have to describe functional relations between the coefficients changes and the base-height, while the
base-height has to be extracted from the element of the variable growth patterns in a form of an
intercept. With these changes the equation will take the following form:

h fa(h) Y2 | a(ha)(hsey)
h:. + 5021 .. + \/(hz. - 5031 .. ) + "—]‘_(rr.‘: : >
H(t, heyyz,hp) = . YA IR + hy (3.10)

+
Ja(dp) J2(8p) Y3, 43(hy)(Mgy)
h"_sojlhﬁ +\/(h"‘-aoildﬁ) + :7:1‘55‘

where:
t is the prediction age;
hy is variable base-height;
z is the base-age of the reference-height (SI) h, measured from ground up; and

hs, i= a difference between total reference-height at base-age z and the base-height hy, i.e., g, =
hy — hy.

The above model can simulate changes in height patterns above any base-height. Below the base-
height the model is assumed to be constant and cannot describe any patterns; model (3.9) cannot
be used to estimate height below the base-height. This is similar with all other height models—just
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like any breast height age based height model cannot estimate heights or ages below 1.3 m. The
interpretation of ages at variable base-height is similar to the interpretation of stump age and the
breast height age, i.e., an age base-height h; is a number of years since the tree, or stand, had
reached the height h,. For example, when a tree is 1.3 m high its breast height age is zero, and when
it is 5 m high its base-height 5 m age is zero as well. Consequently, a tree that has 15 internodes
starting at and above 2 m would be 15 years old base-height 2 m and the model could simulate the
tree’s height growth pattern between the 2 m height and the top of the tree. If the 15 internodes
had total length of 8 m, the tree could be described as reference-height 10 m at base-age 15 years,
base-height 2 m. This could be equivalent to reference-height 10 m at breast height age 17 years if
it had taken the tree 2 years to grow from 1.3 m to 2 m, or it could be equivalent to reference-height
10 m at total age 25 years if it took the tree a total of 10 years to grow from the ground level to 2
m height.

It was implied above that the measure of the tree reference-height would not be affected by the
changes in base-height. A tree of reference-height 15 m should always be reference-height 16 m
regardless what base-height is used to describe the growth of this tree. However, this would not be
praciical if such SI were applied directly for height prediction. If a tree growth is disturbed during
life, the total height over age relation may be drastically changed and it may no longer reflect actual
site potential. For this reason it is an important advantage of model (3.9) that it actually applies
only the portion of the reference-height that is above the base-height for defining the future growth.
For example, a ST 10 m at base-age 5 years and base-height 8 m means that only the last 2 m of
growth during last 5 years will be defining the future growth pattern. Even though a total growth
of the tree or stand during last 25 years could be only 3 m, the fact that it grew 2 m in the last §
years would take precedence over the disturbance.

As any variable base-age ST height model, model {3.9) uses any height at any age as SI. At the
same time the age of the reference-height can be measured from any base-height and therefore, the
model gives virtually unrestricted flexibility in what part of a tree/stand growth is used as input,
i.e., the model is effectively ageless in reference input and it can predict future height from any time
length height increment measured at any height.

3.2.4 Data

Model (3.9) can be calibrated on the same data as any other height over age model, disregarding the
implicit conditions that the data may represent, e.g., an average density. Moreover, the model could
also be calibrated on many of the data that is normally rejected in a process of data screening due to
such problems as early growth suppression, broken tops, and different periodic growth disturbances
from insects and diseases. When computing statistical analyses, cne should be aware that the
number of observations for any age class will be usually decreasing with age for all continuous time
series. Consequently, the model may have different statistical properties for different age classes.
Broad cross sectional representation of time series from different age periods may help to remedy
this problem if different site classes are well represented.

Advanced statistical treatment of the model and investigation of its properties and implications
from different fitting techniques were beyond the scope of this study. Also, no attempt was made to
actually calibrate this model on actual data from Alberta and test its performance in comparison
to other models. The sole intent of this study was to present the theoretical potential of the model
application for prediction of height, with limited information on the growth, potential reference such
as a periodic growth increment with any height at which it occurred, without actual age information.

The purpose of this research was to demonstrate the algebraic capability of the ageless height
model to simulate periodic growth patterns using only height increments measured at different
base-heights. The model (3.9) was test calibrated on artificial data generated by a polymorphic
variable-base-age SI height model for lodgepole pine in Alberta (Cieszewski and Belia 1989).

The data consisted of predictions of height for 32 ages (0.01, 5, 10, 20,..., 290, and 300 years),
seven base-heights, and five site classes of 5, 10, 15, 20, and 25 m SJ at base-age of 50 years breast
height (Fig. [3.8) a—c). The total number of observations was 32 x 7 x § = 1120. There were seven
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time series of 32 observations for each site class and five series per each base-height. The ages at
different base-heights were calculated as breast height age of a predicted height minus breast height
age at the new base-height.

One might notice that some of the 300 years ages at higher base-heights and lower sites would
imply unreasonably high total ages to be biologically justified because lodgepole pine lives only
about 400 years from germination. On a low site (5 m S/ base-age 50 years breast height), it takes
260 years for a 1.3 m high tree to reach 16 m height (Fig. [3.8)a). By this time the tree is over 270
years of its physiological age. After adding another 300 years of growth above the 16 m (Fig. [3.8]f)
the tree would have to be §70 years old, which biologically is impossible. However, this fact does
not preclude experimental questions on the model application and its calibration on such data for
theoretical purposes.

While in this study the biological significance of the model was not important for a real ap-
plication of an ageless model, since the total age of similar predictions might be constrained to a
maximum total age of 400, or less. In using real data this problem would not occur, as no such data
would exist, therefore it is of no practiical concern.

For the purpose of the model calibration, all of the generated height values and ages at different
base-heights have been shifted to the origin of the coordinate system. There was no advantage in
calibration of the model with its intercepts above zero because any changes in coefficients would
affect only shapes of the part of the curves above the intercepts. It was more effective to calibrate
€q. (3.9) rather than eq. (3.10) as a simpler equation; model (3.10) can be formulated by just adding
the intercept term of base-height to the calibrated curvature equation (3.9).

After shifting all the height series to the origin (Fig. [3.9])) new SI values had to be calculated
appropriately for each base-height by subtracting the base-height from the original SI values used
to generate the series. This was needed because the new series had reflected height as a function of
ages at changed base-heights, and had different slopes then the original series (Fig. [3.9]). The higher
the base-height of an age, the lower the SI that the height will reach on a given site, which was
defined by the original site indexes used to generate the series; increase in the base-height reduces
growth potential as a functions of age and its new S/.

The final data for five sites and seven base-heights included: 1) base-heights; 2) base-height ages;
3) heights above base-height; and 4) SI above base-height at 50 years base-height.

The original site indexes at 50 years breast height were not needed in the data set even though
all the sites were represented, because this representation became implicit to the new explicit site
indexes at 50 years of different base-heights. The new site indexes above base-height represented an
extended range of values between 0.88 m, for the lowest site and greatest base-height (16 m), to 25
m for the highest site and smallest base-height (1.3 m). The highest SI at base-height 16 m was
14.3 m above the base-height (16 m), i.e., total height of 30.3 m, and it was reached at 72 years
breast height.

3.2.5 Model Development and Calibration

Individual Parameter Fitting

Since eq. (3.9) describes a very complex nonlinear system that is difficult to fit and may have many
local minimums, initially a simpler model (3.8) was fitted to the above described data individually
for each set of heights computed for one base-height. This method, known in forest biometrics as
a parameter prediction method, greatly simplified the process, giving point parameter estimates for
discrete values of the base-heights. Estimates obtained through the parameter prediction method
are particularly reliable for the type of data sets as used in this study, that were generated from
another model and typically do not contain any appreciable variation.

Estimates of the parameters a and £ in model (3.8) were to be used for modeling the modifying
functions f1(hy) and f3(hy) in model (3.9), as functions of the independent variable base-height (hy).
Given the high regularity of the pattern changes in simulated data, the obtained point estimates
at different values of the base-height, in model (3.9), can be used to define functional forms of the
modifying functions to be imposed on the original model coefficients.
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1.3, b) 8, and ¢) 16m.
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Formulation of The Modifying Functions

The values of both parameters o and 8, obtained from the above fitting, were decreasing with
increasing values of base-height (Fig. [3.10]a,b). This would suggest nonlinear functional relations
between the parameter values and the base-height values. The degree of the decline in the parameter
values, with the increasing base-heights, was different for a than it was for @ and therefore two
separate models had to be found for the parameter modifying functions.
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Figure 3.10: Values of the modifying functions of the variable-base-height height-growth model, at
different base-heights: a) f1(hs,) for a; b) f,(hy,) for 5.

After exploratory analysis of reciprocal trends, log and exponential functions, fractional functions,
and combinations of all the above, two relatively simple equations were developed that very closely
described the changes in the model coefficients with changing base-heights
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where:

J1(hs) and f>(hy) denote the modifying functions of mode! (3.9) that can be used in place of
parameters of model (3.8) calibrated for different base-height ages;

o', a", §', and B" are parameters of the parameter modifying functions in model (3.9);

a’ and g’ are upper limits of the parameters o and § in model (3.8) that can be reached when the
base-height is zero, i.e., the model describes height as a function of a total age;

hy is base-height that can assume any positive value.

The modifying functions (3.11) and (3.12) give good fit to the parameter values that are changing
with base-heights (Fig. [3.11]), and have well defined and stable coefficients (Table [3.1])). The
deviations in predictions of the coefficient values were within a normal range of the "coefficient
standard errors” in estimation of height models (Cieszewski and Bella 1989). The a parameter's
standard error of the estimate was some 30% lower than the standard error of estimate of the
model calibrated on stem analysis data. The B parameter’s standard error was 300% lower than
the standard error of § estimate for the model calibrated on stem analysis data (see Cieszewski and
Bella 1989, Table 2.4.)
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Figure 3.11: Observed and predicted relative values of the ageless height model parameters as
functions of the base-heights: a) fi(hs,) for a; and b) fa(h,,) for 8.

Table 3.1: The variable-base-height model coefficients (o, o”, 8’ and 8"), and standard errors of
predictions for the two modifying functions.

Coefficient  Estim. SE t-ratio  Res.SD
e 1.4879 0.0095576 155.68
a' .18947 0.0041626 45.517 0.005184
p 213.35 2.6160 81.558

g’ .80161  0.014585 54.961 1.287556
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The Final Form of The Ageless Height Model

After applying to eq. (3.10) the functional forms of eq. (3.11) and (3.12) and the coefficient values
listed in Table [3.1], the ageless lodgepole pine height models for Alberta will have the following

form:

2
' (14n8" 81 (1+48") 48'h,
hey + ——7'—)- + (h - T + -y
b 50 ;7 o 50 l-‘-c”.?b. (l+h:“)t l+a”;7bt

ivallJuy \
H{t, h,,2) = — +h 3.13
( i 2) 94 4pl‘—o’/(l#¢"\/.—0)(1+h: ) ! b ( )
bey-

o(1408" . (h I’I(HA:")) + 188,
t 7% L4 1.4
sotta’’Vvay sot+a’\/oy (l+l:")t 14al Ay
where a’, a”, (', and 8" are the model estimable coeflicients and h,, is the reference-height above
the base-height (ks — hs).

Global Fitting

When calibrating the modifying functions (3.11) and (3.12) separately from the complete model (3.10),
using the parameter prediction approach, one may expect some statistical inconsistencies resulting
from the fact that the coefficients will have elliptical confidence intervals. Problems associated with
these inconsistencies may be easily avoided by refitting the whole model (3.13) directly to height
growth data, or even to the coefficient values of a and A. The current functional forms of the mod-
ifying functions would most likely stay the same, while the coefficient values of o', o'/, ', and "
would provide excellent initial coefficient values for the nonlinear regression on this complex model.

Any problems with the coefficient elliptical confidence intervals would be more likely to have
significant implications with real growth data, and these would likely depend on the amount of
variation in height growth. When calibrating one model on simulated values obtained fromn another
model, such statistical inconsistencies are not likely to have much influence on the model. Further-
more, the purpose of this study is to demonstrate the conceptual development of an ageless height
model, which has been achieved, with the present model (3.13).

3.3 Adjustable SI, Base-age and Density Measure—A Static
Density Height Model

Similarly as the implicit height measurement component of base-height can be changed from a
constant to a variable, any other implicit height measurement component (density, elevation, etc.),
inherent in a height model, can also be changed to a variable. An example of this is an implicit
density or a crowding measure. When changing values, a crowding measure would affect the model
predictions resulting in different height shapes (Fig. [3.12]).

The implicit fixed density component is usually some average density represented by the sample
data, and therefore an equation calibrated on two separate samples of height growth data from two
different density levels would produce two different height patterns (Fig. [3.12]). This variation in
growth patterns resulting from using different values of an implicit fixed density component is similar
in principle to changes that occur as a result of changing the base-height—an equation calibrated on
two similar data sets, one using total age, and the other using breast height age, will produce \wo
different height patterns (Fig. [3.8]). This means that a variable density height model could follow
a similar general development framework as any other five dimensional height model whereby the
coefficients of model (3.8) are altered by modifying functions of an explicit variable. Thus, given
that a static density or crowd’~g measure is described by a crowding index CI, the conceptual static
variable density height mod.! could have the following form:
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Figure 3.12: Height shapes corresponding to different crowding levels.
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91(CI) and go(CI) are coefficient modifying functions of the variable CI; and

(3.14)

all other symbols are the same as in previous equations.

In the presented form, model (3.14) can represent only static variable density scenarios in which
density, or at least some sort of crowding measure, does not change over time. Construction of a
suitable, relatively stable over time crowding index is a challenge in itself. Furthermore, eq. (3.14)
represents only a basic conceptual form of a variable density height model. The complete develop-
ment of this model would require exploratory analysis towards identification of the actual algebraic
forms of the modifying functions g,(CI) and g,(C1I), and extensive analysis towards calibration of
the model.

3.4 Discussion
General Comments
Model (3.13) represents five-dimensional height space (Fig. [3.13]), where the dimensions are:
e prediction height H¢;
o reference-height h;
o base-height hy;
e prediction age t;,, base-height h;; and
e reference age z5, base-height h;.

The presence of the base-height, h;, in this model introduces an unprecedented flexibility in the
model’s applications. The model can be considered practically age free, because the definition of age
is so flexible that any time length of the tree growth/increment starting at any time and finishing
at any other time can be interpreted as age of a given base-height.
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Figure 3.13: A five-dimensional, variable-base-height and variable-base-age S7, height-growth space.

Advantages in Operational Applications

In applications to remeasured plots, the model can be used to model future growth of trees or stands
based on subsequent measurements without knowledge of the actual age of the trees or stands. In
juvenile stands, the model can be used as an intercept model of any base, i.e., any number of
internodes starting at any height can be used as SI, driving the model’s future predictions. In fact,
model (3.13) constitutes a general platform, unifying all existing intercept models in terms of the
flexibility of the length of growth intercept and its location on the stem. It can also likely improve
on some existing models by making them more precise, because the intercept models that define a
beginning of intercept with an internode above or below a breast height, will actually use a growth
intercept located on a different height for virtually every tree.

Depending on the chosen base-height, the proposed model simulates different height patterns for
the same lengths of the active reference-heights (Fig. [3.14]). These growth patterns have diminishing
slopes with increasing base-height. They are unique for each base-height that is corresponding to the
specific growth characteristics associated with the given base-height defining the age. The variable
base-height model (3.13) resolves the arguments, with respect to age and S1, on modeling strategies
for height predictions, e.g., Husch (1956) and McCormack (1956).

Relevance to Traditional Height Models

Model (3.13) can be used as a traditional height model using a total age (Frothingham 1914,
Gevorkiantz 1957, Gevorkiantz and Zon 1930, Vimmerstedt 1962, Lundgren and Dolid 1970, Carmean
1972, Payandeh 1974a and 1974b, Monserud and Ek 1976, Burkhart and Tennant 1977, Bruce 1981,
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Figure 3.14: Shifted to origin height patterns for three reference-heights and two base-heights, for:
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Borders et al. 1984, Bailey and Clutter 1974), if hy = 0; or as the newer type height model using
breast height age (Barrett 1978, Monserud 1984, Curtis ef al. 1974, Newnham 1988) if i, = 1.3;
or as a stump age if &, = 0.3; or even as any type of intercept mode} (Wakeley and Marrero 1958,
Ferree et al. 1958, Day et al. 1960, Brown and Stires 1981, Carmean 1975) if hy equals the exact
height at which the internodes start being measured. In principle, the model (3.13) unifies all of’
the above outlined types of models into a common general model of five-dimensional height space.
Different crossections of this space can represent any one of these models individually, as a special
case corresponding to the model particular limited parameter values.

In juvenile stands where estimation of a fixed age S/ is not possible due to close spacing (Wakeley
and Marrero 1958, Day ef al. 1960) the model can be used with measurements of variable number
of internodes, whenever they are regular (Baldwin 1931, Brewster 1918, Pearson 1918), and these
in addition can be taken at a different height for every tree. Any height of the beginning of ihe
measured internodes, whether below or above breast height, can be assigned to hy. At the same
time, z can be any number of internodes, while any upper height limit of the measured internodes
can be assigned to h,, or any summed length of the yearly height increments can be assigned to hy, .

Advantages in Data Handling

In a traditional process of data screening for development of the traditional height models, all data
from trees showing early growth suppression, leader damage, or some periodic growth suppres-
sion/disturbances from disease or animal grazing, or missing breast height, or total ages, have to be
omitted. In traditional height modeling with limited data at times, some risky decisions may have to
be made whether to retain some of the tree measurements of questionable value, e.g., those showing
periodic growth disturbances, because a rigorous screening would not leave sufficient amount and/or
ranges of data. If the former is the limiting factor, one may be forced to sacrifice some data quality
for data quantity. While data collection cost can easily exceed budgets, a too tolerant data screening
may seriously bias the model fit.

The traditional height models, whether based on site indexes or intercepts, do not offer much
flexibility in data handling and selection of best growth intervals. The model presented in this
study offers a new possibility in data screening and selection of best parts of height growth. Taken
to an extreme, the model could be calibrated on data that should normally be rejected due to
any number of reasons, by simply taking the healthy unsuppressed growth sections of the tree and
their respective variable-base-height ages. In a more moderate approach, ore could use somewhat
more rigorous screening criteria that rejects all disturbed growth sections while retaining the ”good”
growth sections, even if both of these sections are part of the same tree. Using the variable-base-
height model there is no need to give up data from trees with missing breast height or total ages, or
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with signs of early suppression, or any other periodic irregularities, as long as certain parts of the
tree can qualify for contribution to the height modeling.

Computer Implementation

Despite the complex appearance of model (3.13) the implementation of this model is relatively
simple. In a computer application written in FORTRAN, a basic code for this model could consist
of only a few lines:

F1 = 1.4879/(1+0.18947+SQRT(HDL))

F2 = 213.356/(1+Hbe+0,.80161)%20

hR = hx-Hb+SQRT((hx-Hb-F2/60¢sF1)ee2+4sF2¢(hx-Hb)/xesF1)
! (hR+F2/50%¢F1)/(2+4¢F2/tesF1/(hR-F2/60%sF1))

]

where:
F1, F2, and hR are intermediate variables;
Hb is the base-height, or a height at the beginning of intercept;
hx is the reference-height, or a height of the end of intercept;
x is the base-age—base-height Hb, or a time period of intercept;
t is the prediction-age-base-height Hb, or the number of years for growth prediction above Hb;

A similar code can be written in any spreadsheet using only one column for the actual height
prediction as a function of prediction-age and just three cells for the intermediate computations for

given reference-height, base-age, and base-height.
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Chapter 4

Infinite-Dimensional Height
Spaces with Three Adjustable
Measurement Components—A
Dynamic Variable-Density Height
Growth Model

4.1 Introduction

!For many timber species, height of dominant and codominant trees (of a certain number of the
largest trees per unit area, like Top Height — TH) is assumed to be independent of stand density
over a wide range and is often used as a measure of site productivity. In a |P stand, however,
density has a strong influence on all growth characteristics, although it is not known at what density
this influence begins; height growth of IP may be reduced even in stands with 500 trees/ha at 90
years (Smithers 1961). This growth reduction can be dramatic in dense stands, although the height
pattern in these stands is similar to that of open stands on less productive sites (R. Dempster,
Personal communication, Edmonton, Alberta Jan. 1989). Thus, the height-based S7 in IP stands is
confounded by stand density.

Height models are often developed from stem analysis data (Biging 1985) because they provide a
continuous record of tree height growth. Such data allow for either interpolation, or approximation
of SI with reasonable accuracy (Newnham 1988). The underlying mathematical models can be either
linear, or nonlinear. Nonlinear models are flexible, usually behave reasonably outside the data range,
and are more likely to be biologically meaningful (Pienaar and Turnbuli 1973).

Previous attempts to model density effect on 1P height produced empirical, linear, static (integral
form) models (Alexander et al. 1967, Johnstone 1976) with intrinsic problems. Some of these
problems arise from the fact that the underlying height growth—density relationship is a dynamic
process that changes during the life of the stand, although it may be negligible in very young stands
before crown closure. Density effects increase in importance in young and intermediate aged stands
as crowding intensifies until it reaches certain stability in mature stands. Although, traditionally, SI
models have been used to describe height growth processes, such models are not suitable to account
for density influence.

Height-growth prediction is essential in growth and yield estimations, and should be based on an
unbiased and accurate height-growth model. A model of height growth response of 1P to different
densities, sites, and silvicultural treatments should be based on repeated measurements of permanent

1 A version of this chapter has been published. Cieszewski & Bella 1993. Can. J. For. Res. 23: 2499-2506.
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sample plots (PSP) representing various stand densities, ages and sites. An important feature of
such a model, which was lacking in previous attempts (Alexander et al. 1967, Johnstone 1976),
would be the ability to mimic diminishing effects of density on height growth below certain density
thresholds.

The main objective here was to develop a relatively simple, theoretically based, difference model
of IP height growth as affected by density.

This chapter presents a new approach to modeling such relationships in |P stands, based on an
extension of Czarnowski’s(1961) stand dynamics theory of height growth-density relationships. The
model predicts annual height growth from the current year’s height, age, and density. Simulating the
dynamic interactions between height growth and density over time, that would require a mortality
model estimating changes of densities with height growth and site conditions, was beyond the scope
of this study.

4.2 Model Derivation
4.2.1 Base Model Selection

A new 1P height model derived from a generic base equation by Cieszewski and Bella (1989) was
selected for further modification to investigate density influence on IP height growth. This mode), a
dynamic equation, predicts a height growth at any age ¢, using as a reference a height h, at any age z
and thus, it is a variable age SI height growth model. Other characteristics of this model are that the
curves always pass through S/ at any base-age, the model is polymorphic with variable asymptotes,
and it contains only two coefficients — the age exponent a and the half saturation coefficient 8 that
is an approximate age when tree height reaches half of its potential maximum.

The age exponent o reduces height growth when it is positive, or it enhances height growth when
it is negative. For a > 0, larger o indicates slower height growth.

Decreases in # lowers future growth predictions, while an increase in 8 would enhance it. In-
cluding a reference point in the half-saturation function with an added age exponent (Cieszewski
and Bella 1989) is, in a sense, a scaling of the curves up or down to pass through such a point. To
illustrate this, one can construct two curves with two different § values, then scale down the higher
curve with a smaller 3 so that it crosses the lower curve with a larger 3 at a reference point. Then,
past the reference point the scaled down curve with smaller 8 should fall below the second curve

with higher 8.

4.2.2 Adding Crowding Effects

To model density-related height growth relationships one needs a suitable measure of crowding, or
crowding index (CI), that unlike commun measures of density, such as number of trees per ha, is
independent of time and tree size. This index then needs to be incorporated into the base model.

Selecting a Crowding Index

In this study, the main criteria in choosing a crowding measure were: (i) simplicity of input require-
ments and algebraic expression; and if possible (ii) reasonable stability of the measure over time in
fully stocked stands.

Potentially useful crowding measures (CM) can be adopted from the literature, e.g., crown
competition factor - CCF (Krajicek et al. 1961), or derived from size (growth) and number of
trees (NT) self-limiting relationships, viz., Yoda’s et al. (1963) —3/2 power law, Reineke’s (1933)
density-quadratic mean diameter relationship, and Czarnowski’s (1947) height-related stand dy-
namics theory, e.g.,, CM; = InNTSize'!P* CM; = Constant — InSize*’P* — nNT CMs =
In NT/ (Constant — In size®'°P¢).

The height growth related Czarnowski’s (1947, 1961, 1978) stand dynamics theory with regard to
height growth states that, in fully stocked stands, the product of squared stand height and number
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of tiees per unit area remains constant during the stand’s life. This product, after replacing stand
height with TH, was chosen as the mast convenient measure of crowding because of its algebraic
simplicity, moderate input requirements, direct relation to height, and relative stability over time
(Czarnowski 1947, 1961, 1978):

CI=TH*x NT x10~* 4.1)

where 104 converts hectares into square meters.

Table 4.1: Regression statistics of future over current crowding measures over time in 70-year and
older stands (n=268).

Bases of Regression Statistics
Ineasure Slope SE t-ratio

Height (CI) 1.0078 0.0077 1.0
Volume 1.0521 0.0067 7.7
Diameter 1.0473 0.0066 7.2
Crown (CCF) 1.0334 0.0064 5.2

To compare the stability and utility of eq. (4.1) with those of other crowding measures, i.e, volume
and diameter based measures derived from the self-limiting relationships and CCF (Krajicek et al.
1961), simple linear regressions without constants were fitted on fully stocked stands, future Cls
over current Cls (Tables 4.1 and 4.2). To ensure that the selected stands were at or near their
maximum crowding levels, a subset of PSP data containing stands that were at least 70 years old
(268 observations) was taken. These comparisons showed that eq. (4.1) provided the most stable
crowding measure, based on the slope and its t-ratio (Table 4.1). This test had to be performed
on stands that have most likely reached their maximum crowding levels. Lacking clear criteria
when younger stands had reached this maximum crowding, only age criteria could be used to avoid
including understocked stands in these tests.

The top height based CI used here is relatively stable in highly crowded stands (Czarnowski
1947, 1961, 1978; see also Table 4.1), although it may vary between stands, and it may be increasing
or decreasing at any particulary time due to irregular mortality. In young plantations and spaced or
thinned stands, CI will be increasing until the stand reaches its maximum crowding level, because
these stands clearly must be below their maximum crowding level. CI maximum value for any
particular stand may also be influenced by initial stand conditions and/or treatments. Testing Cl
stability in young natural stands would be inconclusive because of the uncertainty about the stand’s
position in relation to its maximum achievable crowding. However, one can expect that, on average,
CI would be increasing in such stands, because even a small number of understocked stands in the
sample might influence the results. Thus young stands were excluded from these CI stability tests.

Incorporating Crowding Index Into The Model

After selecting the crowding index, it was incorporated into the base-height growth model (Cieszewski
and Bella 1989). This was done by replacing both @ and 8 with suitable modifying functions to
simulate the changes in height growth at different crowding levels.

In general, with increased crowding, i.e., CI, growth should decrease. To describe such growth
response, « should also increase with CI. Thus, the modifying function of this measure, which
replaces « in the half-saturation function with added age exponent (Cieszewski and Bella 1989),
would likely have a positive first derivative.

Because increased crowding generally reduces growth, it may be considered in this context as a
growth-delaying factor. To allow for a growth delay in the half-saturation function, 4 would have
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to increase with crowding. This density influence on height growth in the half-saturation function
can be included by substituting 8 with a modifying function of CI with a posiuve slope.

In the S7 height growth model (Cieszewski and Bella 1989), the functional interpretation of
how crowding influences the model’s predictions is changed by SI as a height-age reference point.
Crowding and site quality have a direct but opposite influence on IP height growth; growth declines
with increased crowding but increases with increaced SI. This means that if crowding were used as
the only variable to describe site in a height growth model—as, for example, in the half-saturation
function with added age exponent—then a function of crowding with a positive slope should be
used in place of « and G to predict greater height growth. Because SI is already in the S7 height
growth model, (modifying the asymptote and the half-saturation coefficient 8), the interpretation
of the modifying functions is reversed. Stands with higher crowding would indicate a better site
than stands of the same height and age at lower crowding. In other words, to reach the same height
at higher crowding, despite the density-related height growth suppression, the stand would have to
grow on a better site. Likewise, the biological interpretation of crowding effect on height growth is
reversed for the ST height growth model when compared to the half-saturation function. Since the
coefficients in the ST height growth model have a different effect on height grov.:h predictions due
to SI, the modifying functions of CI that replace o and g would likely have negative slopes.

When both coefficients are replaced by decreasing functions of CI, and if actual crowding is
reduced—for example by thinning—the values of o and § will increase, resulting in higher future
growth predictions. When the decreasing functions of CI describing o and 3 are denoted as f,(CI)
and f3(CT), the new density—Sl-height growth model will have the following form:

SI+ 20£,(CI)JtL4ED (4.2)

H(t,SI) = 1+ 20£2(CI)/ (SI11+5:(CD)

where all symbols are as previously defined.

Final forms of the modifying functions f,(C1I) and f,(CI) in eq. (4.2) are not predefined because
of the difficulty in anticipating the shapes necessary to have a suitable affect on the function’s perfor-
mance throughout the range of Cl. Because the relationships between crowding and the coefficients
o and S are unknown, the modifying functions should be flexible enough to assume a wide variety of
shapes—from simple to complex—with robust conversions between different shape patterns. Thus,
J1 and f; were initially defined by the modified Schnute’s (1981, 1990) function (Cieszewski and
Bella 1992):

( —elCi—ryjc )1/
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where: a, b, ¢, y1, and y; are estimable coefficients; 7, and 7, are arbitrary constants that can be
set to subsequently lowest and highest value of CI observed in the data; and |z| defines an absolute
value of z.

This function can assume a variety of shapes, from linear nonasymptotic, to nonlinear asymptotic,
and has been obtained from, and thus has similar properties to, Schnute (1981) function. The
submodels, whether simple linear or complex nonlinear equations, can be identified during regression
analysis through the significance of the final model coefficients t, 410 = ﬁ”:o{—! and a replacement of

the model by a simpler form can be tested with an F-test, as in Schnute (1981).
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4.2.3 Height Dynamic Equation Derivation

As stated before, a dynamic difference equation is needed to simulate height growth of trees at differ-
ent crowding levels. Such an equation can be derived from eq. (4.2) if crowding is assumed constant
for the growth trajectory. This assumption is reasonable either for fully stocked stands, or for short
time periods during which crowding is practically constant. In this analysis, crowding value during
any one year was assumed to be constant, even though it may be increasing in young, fast growing,
understocked stands with virtually no mortality, as wel! as in stands that have recently undergone a
considerable reduction in density. It may be decreasing in stands at the time of undergoing a drastic
reductions in density.

If crowding is assumed constant, f; and f; can also be treated as a constants even though the
values of the modifying functions will vary between different stands. Therefore, the solution for SI,
which is required to derive a dynamic difference equation from eq. (4.2), can be derived as from the
ST height growth model (Cieszewski and Bella 1989), and will have the following form:

SI(he,t) =05 [h, —8+\/(h - 6) +Ch,/t‘J (4.4)

where: h; is an observed top height at breast height age t; § = 20[2(01)/t§7!'(0”; ¢ = 80f3(C1I);
and ¢ = 1+ f1{CI).

To ensure that eq. (4.4) is biclogically sound and will generate only positive SI values, only
the pasitive roots were considered. Once the solution for SI is available, the right hand side of
eq. (refeq:root) can be substituted for SI in eq. (4.2), and—after appropriate reformulation—the
dynamic difference equation that predicts next year height from current year height, breast height
age, and stand crowding can be written as:

hi+6+ \/(ht - 6)% 4 ¢hyftt

2+¢/(t+1) [ht -6+ \,/(ht - 5)24-(:’11/“]_1

H(+l(hlat)CI) = (45)

where: Hyyy(he,t,CI) is height at age t + 1, predicted as a function of current height (), breast
height age (t), and CI.

If any understocked stands are included in the calibration data for model [4.5], the calibration
should be performed on one-year increments because eq. (4.5) has been derived using an assumption
of constant crowding. The modifying functions, fi and f2, are expected to be identified from
eq. (4.3) as simpler nonlinear, or even linear functions with a reduced number of estimable coefficients
(Schnute 1981). The calibration of eq. (4.5) on one-year increments does not preclude the future use
of the model for the simulation of dynamic systems in multiple one-year iterations, with a mortality
model predicting changes in crowding.

4.3 Data Sources and Processing

In this analysis, two kinds of long-term growth data were used from a total of 402 PSPs (Table 4.2).
First, data from essentijally pure, natural, {ully stocked stands that had at least 80% of IP by basal
area. This data was collected by the Alberta Forest Service (AFS) and the Canadian Forest Service
(CFS). The plots were located in the foothills of western Alberta, Sections B.19a and B.19¢ of the
Boreal Forest Region (Rowe 1972), between Rocky Mountain House in the south, and Grand Prairie
in the north. At plot examination, stand age varied between 19 and 152 years, and S/ between 4.6
and 29 m (base-age 50 years breast height age; Cieszewski and Bella 1989) (Table 4.2). The AFS
data contained up to two, and the CFSdata contained three remeasurements in intervals varying
from five to 20 years.

The second data set came from CFS spacing trials in two locations; Gregg Burn (south of Hinton)
and Teepee Pole Creek (northwest of Sundre). Both experiments had the same spacing design; plots
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at establishment had 100 trees each, and were replicated twice on three different sites of low, medium,
and high productivity.

The Gregg Burn stands, originating after fire in 1956, were spaced to five density levels at age 7.
This data set provided two to three remeasurements (Table 4.2), depending on early height growth,
i.e., the time trees reached breast height. The Teepee Pole stands, also of fire origin, were spaced at
age 25. These plots all had four remeasurements.

The measurements in the natural stands included diameter tally by species, and up to 30 heights
per plot. In the spaced stands, all trees were measured for diameter and height, and their health
status was noted. Stand densities and crowding levels were conputed using all trees of all species
that grew on plots counting the other species as |P.

The data processing included computations of the number of trees per hectare, top height,
quadratic mean diameter, and various crowding measures computed from densities that were based
on all trees on a plot, approximation of SI, and annual height growth of top height by height curve
slope estimation at measurement times. Tree heights not measured were estimated from height-
diameter curves for each plot. To approximate yearly top height increments at the times of initial
measurements, individual nonlinear height over age curves were fitted to the top height values for
each plot. Annual top height increments were computed from the individual curves at the points
of measurement, as yearly increments following initial measurement of each period between two
measurements. Hence, each plot contributed as many observations in the final data set as there
were remeasurements on that plot. These annual increments were then added to the actual height
measurements, thus approximating the following year height growth. Actual height measurements
and the estimated heights in the following years were used to calibrate a yearly increment height
growth model. In this model, the actual height measurements from each plot at ¢, ...ty_;—where ¢
is stand age and 7 is number of all measurements on the plot—are used as the independent variable
hy in eq. (4.5), and the estimated next year heights at ¢; + 1...¢7_; +1, are the dependent variable
Heg1(he,t,CI) in the same equation.

4.4 Model Calibration and Testing

In fitting this annual increment density height growth model, two parallel procedures were used;
(i) trend initiation through average guide points; and (ii) trend detection through a progressive
expansion. Both procedures used maximum likelihood procedure for nonlinear regression estimation
(White 1978) of height models predicting annual height growth increments explicitly by subtracting
heights at age ¢ from heights at age ¢ + 1 with eq. (4.5), i.e., dH(t,hy,CI) = Hyyy — hy (the error
terms in this model were assumed to be normally distributed).

In the first procedure, a SI height growth model (Cieszewski and Bella 1989) was fitted to
separate subsamples of data representing 30 plots with the highest, medium, and lowest CI values.
The coefficients so obtained provided three approximate values of a and 3 to predefine the modifying
functions f; (from as) and f (from fs) through the three classes of Cls for the SI height growth
model. These coefficient values were then used in an interactive spreadsheet simulation to define
the most suitable modifying functions f; and f,. The coefficients of these functions were to then
be used as initial points for the final fit of eq. (4.5) with the main data set. Threshold values of
these coefficients, allowing the reductions of the function to a simpler form, can be recognised from
their t-ratios, then with the help of F-test, one can replace the generic model by a simpler function
(Schnute 1981). Although this fitting began with coefficients that defined eq. (4.3) as asymptotic
nonlinear modifying functions, after convergence the final coefficients a, b, and ¢ were close enough
(Judging from their relative standard errors) to values of 0, 1, and 1 respectively, so that they could
be fixed to these values without appreciable loss in accuracy. Thus, the two modifying functions,
witha =0, b = 1, and ¢ = 1, turned out to be linear: f(CI) = g + (y2 — 1) CI with 7, = 0, and
T = 1.

The second procedure—progressive expansion—was started by fitting the variable age ST height
growth model (Cieszewski and Bella 1989) to all PSP data (Table 4.3), using coefficients reported
by Cieszewski and Bella (1989) as initial values. The next step used the results of this first fitting
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Table 4.2: Summary statistics for natural and spaced stands, with SI base-age 50 years breast height
(estimated from Cieszewski and Bella 1989). For the spacing trials below 50 years, Sl values were
extrapolated using the same model.

Characteristic  Statistics Source
Natural stands Spaced stands
AFS CFS CFS C/S™
Teepee Pole Gregg Burn
Plots No. 268 74 30 30
Observ. No. 521 222 120 83
Tree Avg 71.5 79.0 28.0 17.0
Age SD 22.8 27.2 7.1 5.4
at breast- Min 19.0 23.0 18.0 9.0
height Max 152.0 143.0 38.0 24.0
Avg 19.1 17.9 9.4 6.1
Top H Sb 3.7 4.2 2.2 2.3
(m) Min 8.8 5.9 4.5 2.1
Max 28.5 27.2 14.2 11.0
Avg 27479 2457.7 2743.2 25'5.0
Number SD 1841.5 1566.2 2386.9 2:298.5
of trees/ha Min 415.2  580.7 308.9 324.3
Max 12451.9 9834.8 7907.0 7907.0
Avg 85.8 66.2 24.0 9.3
Competition SD 29.7 21.6 22.0 10.7
Index Min 13.4 19.6 1.7 0.2
Max 202.1 139.2 99.2 50.2
Avg 15.0 13.1 12.9 11.9
Site-index SD 3.3 2.76 1.8 2.7
(m) Min 5.7 5.2 8.5 4.6
Max 29.0 18.4 16.8 16.8

as initial coefficient values in the initial fitting of eq. (4.2), which also included CI. The final fit in
this procedure produced identical linear modifying functions as the previous procedure. In symbolic
form these linear functions are: f1(CI) = o' + a”CI and f2(CI) = ' + B"CI where o' = g, and
a” = y, — y; in the modifying function describe a; and 8’ = gy, and 8" = y2 — y; in the modifying
function describe § (see Table 4.3 for coefficient values).

To test whether the addition of modifying functions f, and/or f; was needed, three additional
regression analyses were performed on model [4.5] with: i) no modifying functions; ii) only one mod-
ifying function describing changes in «; iii) only one modifying function describing changes in g; and
iv) the complete model with both modifying functions describing a and 8. To evaluate the resulting
models, in addition to usual fit statistics such as standard errors and log of likelihood function, four
model selection tests (see Judge et al. 1985, Judge et al. 1988, and White 1978) were applied. These
were: i) Akaike (1969) Final Prediction Error (FPE) also known as Amemiya Prediction Criterion
(PC);ii) Akaike (1973) Information Criterion (AIC); iii) Schwarz (1978) Criterion (SC); and iv) the
log likelihood ratio test using for comparisons x? at 5% level. All tests indicated that using two
modifying functions produced a better model than one modifying function, or no modifying function
{Table 4.3), while the first three tests indicated that using one modifying function produced a better
model then no modifying functions (the likelihood ratio test indicated that for a but not for 8). All
test indicated that between the two models with only one modifying function, either for o or 8, the
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Table 4.3: Model coefficients (o’, a”, #/, and 8"), autocorrellation coef. (p), error (SE), log likelihood
function (LLF), final prediction error (FPE), Akaike (1973) information criterion (AIC), Schwarz
(1978) Criterion (SC), and the log likelihood ratio test (LLR) (Judge et al. 1988) with corresponding
x? values at 5% level, for exploratory runs of the linear form modifying functions.

Run Coefficients estimates Model selection tests
No. o a” g 47 p SE LLF FPE AIC SC [LLR vs. x?

1 5 N/A 773 N/A 379 0671 1212 .00454 -5.39 -5.36 38 > 6.0
2 27 -.0029 666 N/A 390 .0663 1225 .00441 -542 -5.39 12>38
3 16 N/A 723 090 .383 .0671 1213 .00453 -5.39 -5.37 36 >38
4 37 -.0043 93.0 -36 .330 .0658 1231 .00435 -543 -5.41 N/A

former g-ve a better model.

Data from repeated measurements, such as used in this analysis, are prone to show autocorrela-
tion when used in regression analysis. To find out if indeed a significant autocorrelation was present
in the analysis, a simple linear regression was performed on the residuals over their respective lag
values, i.e., residuals from predictions for current over preceding measurements (Judge et al. 1985):
Residualy = v+ 8 Residualy_, where 7 is a subsequent measurement number, and 4 and § are linear
coeflicients. This indeed showed a significant positive autocorrelation (R? = 13%, see Fig. 4.1a). To
account for, or remove, the effect of this autocorrelation, the Pegan’s (1974) technique (White 1978)
was applied with nonlinear regression analysis to derive new corrected mcdel coefficients. The new
model so obtained resulted in residuals that did not show significant autocorrelation (Table 4.4 and
Fig. 4.1b), nor were these residuals correlated with either age or CL.

®) 0.2 b) 0.2
0.1 0.1

1] 1%
ot 0.1
5 %43

Figure 4.1: Residuals over lag residuals (Judge 1985) from two regressions: a) not corrected for
autocorrelation; and b) corrected for autocorrelation (Pegan 1974, White 1978)

In summary, both of the above approaches lead to the same final coefficient estimates (Table 4.4),
and there was no inherent advantage of one over the other. Nonlinear regression problems often
have more then one minimum, and their presence is easily overlooked. Depending where a “local”
minimum is in relation to the “global” minimum, one approach may be better than another, yet
may produce a false convergence to a local minimum. As a precaution, one fits nonlinear regressions
at least twice from two different initial coefficient values. Using the two above approaches is, in
essence, equivalent to such a practice. A common convergence from the two fittings would suggest
a global minimum, although it still is not an absolute proof.
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Table 4.4: Model coefficients (a’, a”, #' and 8”), autocorrelation coeflicient (p), and other sununary
statistics of the height-growth model fitted to all data n = 946.

Coeflicient Estim. SE t-ratio
o .37389 .055 6.8
o' -.004254 .0006 -6.5
Jid 92.960 10.5 8.9
Jid -.35966 .095 -3.8
p .33002 .038 8.7

Other Regression Statistics
Mean of Dependent Variable .33

Asymptotic Covariance matrix

g 109.72

g’  -.83618 .0089616

a 41474 -.0031920 .0029949

A" -.0017435 .00002946  -.00002369 42276 x 1076

p -.23140 .0016884 -.0010496 49809 x 107%  .0014399
g g o o' p

Autocorrelation Measures

DURBIN-WATSON STAT. 2.0936

VON NEUMAN RATIO 2.0959

R? (Rest = v + 6Rest-) 0.0001
Other Residual Analysis

RESIDUAL SUM 6.3651

RESIDUAL VARIANCE 0.0043

SUM OF ABSOL. ERRORS 49.963

R? (ANNUAL INCREMENT REGRESSION) 0.8978

4.5 Application of The Model to Thinning Evaluation

Three main steps are required to evaluate the effect of thinning on lodgepole pine growth: prediction
of height growth at current density from current age to rotation, prediction of potential height growth
at post-thinning densities in yearly iterations for the same period of time, and finally, comparison
of the two results.

4.5.1 Growth at Current Density

When predicting height growth at current density, CI is calculated first. The resulting CI is used
with current height and age to predict any future height growth from eq. (4.5). For untreated stands,
the CI is assumed to be constant (NTy x THf = NTy x THi? = ... = NT, x TH?) therefore, the
same value of CI can be used, either at any time, or over the whole growth period. In both cases
eq. (4.5) is used as a cumulative function.

4.5.2 Post-thinning Growth

Prediction of potential height growth after thinning requires three additional steps:
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1) calculation of CI with post thinning NT; and T Hy;
2) prediction of height (T'H4) for following year;
3) use of this height to calculate a new CI from NT; and THyyy;

Steps 1 to 3 should be repeated until the end of the desired period, ensuring that the CI used in
eq. (4.5) does not exceed the value before thinning.

4.5.3 Comparisons

Comparison of the above predicted results may require a creation of a spreadsheet. The LOTUS
1-2-3 program shown in Appendix A can be the basis for such a spreadsheet. In the spreadsheets
fllustrated in Table [A.1] the post-thinning density was set to a value that would result in a near
maximum height growth for this stand. The density height growth model developed in this study
indicates greatest height-growth reduction in young high-density stands. In older stands, changes in
density result in a more modest height-growth response. Neverthelcss, it should be noted that the
approach used above accounts for only crowding-related mortality based on a simplistic approach to
“constant” maximum crowding, that is known and specific to the stand under question. The user
is advised to allow for site-specific, competition-independent mortality, based on local information
and experience.

Application of a FORTRAN Program

The LOTUS 123 code presented in Appendix A can be used with other spreadsheets like SYM-
PHONY or Quatro Pro. If neither of these spreadsheets is available, the FORTRAN program,
PROGRAM HtDens, listed in Appendix A, can be used for the same purpose on any computer.
This interactive program predicts future top height from present height, breast height age, and
number of trees per hectare, and it si. es height-growth response to thinning using the same
assumptions as the LOTUS spreadsheets astrated in Table [A.1].

4.6 Adjusting Lodgepole Pine S7 for Density Related Height
Growth Reduction

‘The new model is sufficiently flexible to estimate density related height and SI reduction in stands
where a potential maximum crowding, and the age of reaching this crowding, can be approximated.
The basic premise for developing this model was to describe height growth in annual increments so
that a height growth curve could be generated in annual steps. The resulting model, a difference
equation, predicts P future height as a function of its present height, age, and CI. In the simplest
scenario, with constant crowding, the model can be used as a cumulative function, the same way
as the variable age Sl height growth model (Cieszewski and Bella 1989) that estimates a height at
any age in the future or past, from another height and age. In such a cumulative form, the model is
more convenient because it predicts a height value in one step, e.g., SI at age 50, and it can generate
complete height growth curves for specific CI values. Different CI values result in different height
growth trajectories and different amounts of height reduction (Fig 4.2).

This section presents a practical application of the new density-height growth model (described
in detail earlier) in the form of a dcusity-SI diagram, to adjust IP SI for stand density.

4.6.1 Estimating SI Adjustment

Maximum Crowding

For the estimation of Sl adjustment, one needs information about the stand’s potential maximum
crowding and the age of its commencement. This maximum crowding is generally reached after
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Figure 4.2: Height growth curves for two sites (SI 10 and 25) from the height/S] model (solid lines;
Cieszewski and Bella 1991) and that from the new density-height growth model (broken lines) for: a)
two initial density levels; and b) two crowding levels (CI 20 and 140). NC, MID and HID denote: no
crowding, and medium, and high initial density/crowding; “a”, “b”, “c” different stages of crowding
development.

crown closure in young or intermediate age fully stocked stands. In young stands, crowding is likely
to be below maximum and would generally increase with time. A rough estimation of this maximum
may be possible from site characteristics, because potential crowding is likely to be related to site
productivity, although it may be influenced by initial stand densities.

Estimating SI adjustment would generally require three steps: 1) estimating the height at the
age of reaching the maximum CI (Table 4.5) from current stand conditions, 2) estirnating SI from
previous height and age for this maximum CI and for the unsuppressed growth (Table 4.6), and
3) calculating the difference between these two Sl values.

Table 4.5: Estimation of potential SI from suppressed SI, CI, and ages of reaching maximum CI

Observed SI = § Observed SI = 10 Observed SI = 15

Tm/Cl 10 20 30 40 10 20 30 40 10 20 30 40
4] 19 26 35 43 3.0 5.1 7.0 86 4.6 8.1 11.0 133
20 1.9 27 35 43 3.1 52 70 86 4.7 R.1 10.9 13.2
40 20 28 35 4.3 3.2 52 70 86 4.8 8.1 10,9 131
60 2.1 2.9 3.6 4.3 3.4 5.4 7.1 8.6 5.0 8.3 10.9 13.1
80 22 30 3.7 44 36 55 7.2 87 53 8.5 11.0 13.2
100 23 3.1 38 44 39 58 74 88 5.7 8.8 11.2 133
120 2.4 3.2 39 45 4.2 6.1 76 89 6.2 9.2 11.5 13.4
140 26 3.4 40 4.5 46 64 78 90 6.9 9.7 11.8 1386
160 28 3.5 4.1 4.6 52 6.9 8.1 9.1 78 10.5 12.3 138
180 3.1 3.8 43 4.7 6.1 76 86 94 9.6 118 13.2 14.2
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Table 4.6: Potential SI values for three sites of observed SI and four assumed ages of reaching
maximum CI.

Observed S] = § Observed S] = 10 Observed S] = 15
zm /CI 10 20 30 40 10 20 a0 40 10 20 30 40

(4] 4.7 49 50 &0 9.8 102 102 1041 154 15.7 1566 153
20 5.0 50 &0 5.0 10.3 103 102 101 15.7 186 154 152
40 5.3 52 5. 5.0 10.7 104 103 103 16.1 15.7 154 15.2
60 5.7 54 52 5.1 11.4 10.7 104 10.1 168 159 154 18.2
80 6.2 56 53 5.1 121 11.0 10% 10.2 177 1863 156 15.2
100 6.8 59 5.5 5.2 13.1 11.5 107 103 189 168 158 153
120 7.4 62 66 53 142 120 11.0 104 203 175 16.2 154
140 8.1 68 b58 5.3 15.5 12.7 11.3 1105 221 183 166 1586
160 9.0 69 6.0 54 172 138 18 107 245 195 172 159
180 103 75 63 556 2301 148 124 110 288 216 183 163

Two Models

The firat step may require the use of either the new density height growth model in its cumulative
form, or a S] height growth model, e.g., Cieszewski and Bella (1991), depending on whether or not
the subject stand has reached maximum crowding. The second step requires the use of both models.

In the third step, one simply subtracts the appropriate suppressed SI from the corresponding
potential, unsuppressed SI. Figure 4.3 illustrates the relation between the suppressed and potential
SI values for three different sites and four different ages of the commencement of maximum crowding
as listed in Table 4.6.
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Figure 4.3: Suppressed (5, 10, 15m) and potential (5 to 28m) SI values for different stands as
functions of maximum Cls (20 to 180) and onset of these maximum Cls (IMC = 10, 20, 30, and 40
years), i.e., ages at which these ClIs were reached by the stands.

Three Stages of Stand Development

Depending on the development stage of the stand (Fig. 4.4), the estimation of SI reduction adjust-
ment for density varies in difficulties. The easiest situation is when it is established that the stand
has just reached its maximum crowding (Fig. 4.4 “a”). A certain equilibrium between mortality
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and growth would be indicative of this; so would an increase in mortality and a reduction in stand
diameter and height growth. Repeated observations of the stand, or examination of increment cores
and their comparisons with that of similar neighbouring stands, may also provide a good cluc about
reaching this stage. In that situation, one can estimate the expected suppressed SI from the stand’s
present age, height and CI, using the new density height growth model. The potential SI for the
same stand can be estimated from a height SI model. The SI adjustment is then simply the difference
between these two SI values.

70 _0

- - hdens —— VAS)

Figure 4.4: Illustration of different stages of stand development relating to height growth suppression
from crowding: “a” the stand has just reached maximum crowding; “b” the stand has been growing
at maximum crowding for some time; and “c” the stand before reaching maximum crowding.

Estimation of SI reduction for a stand that has already been growing at maximum crowding
(Fig. 4.4 “b”), or has not yet reached maximum crowding (Fig. 4.4 “c”), is more difficult. In the
former case, one has to estimate the age when the maximum crowding commenced. This may not be
easy, although an examination of historical records and/or increment cores might be helpful. Next,
one predicts height at this age from the present height, age and CI, using the new density height
growth model. From this height and age, one can predict the expected suppressed SI using again
the density height growth model, and the potential SI using a height SI model. The SI adjustment
again is simply the difference between these two S] values.

The mest difficult case to estimate SI adjustment is for a stand before it reaches maximum
crowding. Then, one first has to estimate the maximum CI and the age when it will be reached.
Again, examination of increment cores from the subject stand and assessment of the neighbouring
stands may be helpful. One then predicts height at this age from present height and age using a
Sl-height growth model. From this height and age, one can then predict the expected suppressed Sl
using the new density height growth model, and the potential SI using a height SI model. The S!
adjustment is again obtained as a difference.

In summary, to estimate density related height growth or Sl reduction one needs to know the
stand’s potential maximum crowding and the age and height when it is reached. Using these, one
can compute suppressed SI with the density height growth model and potential SI with a height/SI
model, and their difference will be the SI adjustment.

This approach disregards height growth reduction before maximum crowding is reached, as such

reduction would likely be relatively small. This reduction, however, may be estimated by yearly
simulations that would compute changes in crowding and their effect on height increment.
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4.6.2 Practical Application
A diagram (Fig. 4.5) was constructed using the two models (Cieszewski and Bella 1992) to facilitate
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Figure 4.5: Diagram of suppressed and potential SI values (5 to 30m) for stands of different maximum
Cls (20-180) and initial densities as indicated by the ages of reaching these Cls (10, 20, 30, and 40

years).

the field application of this approach for estimating density related SI reduction in IP. The diagram
requires a prior estimation of the observed suppressed SI in the crowded stand. Then, to use the
diagram one first needs to select a subset of four trajectories representing the suppressed SI, e.g.,
10 m. Then, one has to identify the trajectory within the subset that corresponds to the age when
the stand had reached its maximum CI, say 20 years, which is the second trajectory from the top
within that set. This trajectory will define a potential SI as a function of CI for this stand. Then
projecting along that trajectory to the desired CI value, say 150, one can read on the vertical axis
the corresponding potential unsuppressed SI, in this example about 12.5 m.

Conditions not represented by trajectories can be interpolated. Such conditions may include
interpolation between suppressed SI values, i.e., 5, 7.5, 10, m etc.; between the commencement age
of maximum ClI, i.e., 10, 20, 30, and 40 years; or between interpolated values of both.

For example, to estimate potential unsuppressed SI for a crowded stand with a suppressed SI
11.2 m that reached maximum CI 100 at age 20 years, one first finds on the diagram the sets
of trajectories for stands of suppressed SI 10 and 12.5 m, i.e., the third and fourth set from the
bottom of the diagram. Then one locates within these sets the trajectories that correspond to the
commencement of maximum crowding at 20 years, i.e., the second trajectory from the top in each
set. Projecting along these trajectories to the value of CI 100, one reads the potential SI values for
each trajectory. For a stand of suppressed SI 10 m that reached its maximum CI 100 at age 20 years,
the potential SI is 11.5 m. For a similar stand of suppressed SI 12.5 m, the potential SI is 14.2 m.
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Interpolating between 14.2 and 11.5 m gives 12.8 m, which is an approximate potential Sl for the
stand of suppressed SI 11.2 m and maximum CI 100 commenced at 20 years. By subtraction, one
can obtain density related SI reduction of 1.6 m for the stand examined. A similar interpolation can
be done with respect to the age of maximum crowding commencement.

Further, one can interpolate between potential SI values for diflerent ages of reaching maximum
crowding and suppressed SI values by drawing curves in two steps. First, one needs to draw two
curves, one for each of the closest available suppressed SI trajectory subsets. These curves are
interpolated between available trajectories that bracket the specified age, e.g., for SI 11.2 m and
crowding stabilization age 15 years it would be 10-and 20-year trajectories in the SI 10 and 12.6 m
subsets. Second, one has to draw a new interpolated trajectory between the above two just created
trajectories.

4.6.3 Equations

For operational use, the base density height growth model (4.5) can be written in the following form:

he +d+\[(hy — d)? + zh,té
H(i,h,CI) =13 = ! (hy — d)” + 2hy ~ (4.6)
2+ z(t + 1) [h, —-d+ \/(h, -d)?+ zh,t"]

where: H (1, hy, CI) is the height at age t + 1, predicted as a function of current age (t), height
(h¢), and CI; i = 0.004543C1 - 1.33124; d = 20b/50"; b = 91.468352 — 0.478853CI; and z = 80b.

When crowding is stable, e.g., in fully stocked mature stands, eq. (4.6) can also be used as a
cumulative function to predict height for a given density level, i.e.,

he +d+\[(hy — &) + zhoo

H(Age,hy,z,CI)~13= (4.7)

2 + z(Age)’ [hz -d+ \/(ht - d)2 + thzi] o

where H(Age,hy,z,CI) is a height at any age (Age), predicted as a function of any other height
above breast height (hs) at an age (x), and CI; other symbols are the same as in eq. (4.6).

For constant crowding, ec (4.7) predicts identical values to that accumulated by yearly simu-
lations of eq. (4.6). For predicting SI, a simpler equation (Cieszewski and Bella 1989) can also be
used:

SI(hy,z,CI) =13 = 0.5 [h, —d+\[(h — d)? + zh, 2 J (4.8)

where SI(hz,z,CI) is SI at. breast height base-age 50 years, predicted as a function of any
height above breast height (h;) at a breast height age =z, and a CI; other symbols are the same as
in eq. (4.6).

To predict unsuppressed SI, an equation similar to eq. (4.8) can be used:

SIy(hm,2m) — 1.3 =05 [h,,. —d, + \/(h,,, —dy)* + z,,h,,.z:':.J (4.9)

where:

SIy(hm,zm) denotes a potential SI at breast height base-age 50 years, predicted as a function
of the stand height above breast height (h,,) at breast height age (z,,) at the time when
the stand reached maximum crowding level CI; and i, = —1.20373434; d, = 20b, x 50;,;
b, = 97.37473618; and z, = 80b,.

To estimate SI reduction for a given density one needs to subtract predicted height at SI base-age
for that density from potential open-grown height at the same age: Slioys = f4(f2(zm,he,2,CI), 2m)—
fa(hz,z,CI) where f, denotes eq. (4.7) and is equivalent here to h,,, fa denotes eq. (4.8), and f4
denotes eq. (4.9).
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4.7 Discussion and Conclusions

The model developed here is a dynamic difference equation that simulates IP height growth over a
wide range of density conditions, sites, and ages. Thus, it represents a four dimensional space that
has been derived from two-dimensional observations of height over age data at different crowding
levels on different sites. It is a polymorphic model with nonlinearly entering coefficients. Its greatest
value lies in illustrating the changes of height growth patterns between different crowding levels on
different sites.

The model is designed to predict height growth in annual steps, thus providing the flexibility
required for use under dynamically changing stand conditions. To take full advantage of this capa-
bility, however, requires a complete stand growth simulation model that can predict stand crowding
and mortality.

The model is based on the simple half-saturation function, with its asymptotic and half-saturation
parameter modified by equations applying Czarnowski's (1947) stand dynamics theory with a simple
yet relatively stable crowding measure. This measure is based on the product of top height and
number of trees per unit area, which can be easily obtained from sample plot summaries, forestry
inventory information, or directly from aerial photographs.

To illustrate the magnitude of differences in height growth that can arise from differences in stand
density and crowding, the new model was used to simulate three separate sets of height trajectories
for good, medium, and poor growing sites (Figs. 4.6 and 4.7). These show that differences in height

0 0 4 6 8 10 120

Age [years])
Figure 4.6: Simulated height trajectories for different density levels on (a) poor, (b) medium and
(c) good sites.

growth as great as 50% can arise from excessive density, e.g., 40,000 trees/ha at age 60-70 years.
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As good sites produce faster tree growth and support larger trees, the reduction in height growth is
greater for the same increase in crowding on a4 good site than on a poor site.
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Figure 4.7: Simulated height trajectories for different crowding levels on (a) poor, (b) medium and
(¢) good sites.

Under open stand conditions, the values of the modifying functions replacing « and 3 approach
values of a and § in the IP SI-height-growth model developed {rom stem analysis of dominant and
codominant trees (Cieszewski and Bella 1989). The a values are closest at about C'J = 38.78, and
f values near CJ] = 21.14.

For decreasing values of the modifying functions, the model predicts diminished growth rates
before growth completely ceases. When the value of CI = —f'/3" = 258.47 the modifying function
replacing 8 takes on a zero value, and the model is reduced to a simple constant of Hyy (2, he) = hy.
This may be considered as state of stagnation. For crowding values over 258.47, # becomes negative
and meaningless, and the model estimates become unreasonable. Therefore, the model should not
be applied with crowding values of 258 and over.

One can expect the CI to increase with time in young and open stands until they reach their
maximum stocking level. After that CI stabilizes, irregular tree mortality may cause some variation.
The value of CI in fully stocked stands is likely to vary between sites. In fact, Czarnowski (1947)
used this expression as a measure of site productivity in fully stocked Scots pine (Pinus aylvestris
L.) stands.

As with SI, CI may combine the effect of site and the influence of density on height growth.
While SI in open stands adequately describes site productivity, CI may be a better descriptor in
fully stocked stands, where SI is strongly affected by density. Therefore, the most difficult site-
indexing problem is in the transitional stage before the stand reaches full stocking, yet is already




4.8 Literature Cited 4 Infinite Dimensions 64

showing density eflects on height growth. Under such conditions, CI can be only a competition
measure. For the above reasons, the combined use of SI and CI in a height-growth simulation model
provides both site and crowding information. The two major challenges are to find an appropriate
algebraic form for such a model, and to calibrate it.

The density-height growth model developed in this study provides a reasonable representation
and description of the height-density interrelationship for 1P stands with a minimal input of infor-
mation. This relationship is required for the prediction of reduced height growth trajectories as a
function of stand density. The relationship can also be useful in assisting evaluation of the outcome
of thinning treatment alternatives in |P and deriving thinning prescriptions.

The diagram (Fig. 4.5) presented here provides a means for estimation of height growth reduction
and SI adjustment for lodgepole pine stands. This approach is a first approximation for SI density
adjustment. The approach for the next approximation may be through detailed stem analysis
information that represents a range of site and crowding conditions.

If the new model is applied to open stand conditions, it gives predictions similar to the IP
height/SI model (Cieszewski and Bella 1991). At extreme crowding height growth and S! reduction
may exceed 50% (Fig. 4.5).
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Chapter 5

General Discussion and
Conclusions

The measurement components in the height growth modeling are the elements that need to be
measured on a tree or in a stand to contribute to the identification of the underlying growth trends
for this tree or stand. Given the traditionally explicit use of two independent variables (age and
SI) in height growth models, the concept of the implicit measurement components may pertain to
those elements of the height growth that are necessary to define meanings of such explicit variables
as the prediction age and SI. While prediction age and S can be considered a basic input in any
height model, they both are meaningless when dissociated from their respective co-variables: the
base-height and base-age.

This thesis contains a series of papers advancing mathematical height modeling towards unravel-
ling the traditionally “hidden” (implicit) height measurement components and implementing them
as explicit variables. The achievements of this thesis include a general methodology of derivation
of four-dimensional height growth models with explicit variable base-ages (Chapter 2) capable of
describing polymorphic height growth with variable asymptotes.

A further achievement of this thesis was in developing a concept of a variable base-height, five-
dimensional height model, (Chapter 3). As the base-height is a key element in definition of any
age, this new model is essentially age free. Through an adjustment of the base-height, the age
can be defined as starting at any arbitrary height. In addition to this property the new model also
contains all of the properties of the previous variable base-age four-dimensional height growth models
(Chapter 2), thus containing three variable measurement components of the reference-height, base-
age, and base-height, as independunt variables. The combination of these three variable measurement
components can describe any growth increment or growth intercept, that begins or ends at any
height and have any length. Hence, this variable base-height and base-age model constitutes a
general height growth platform that can unify all ST and intercept height models based either on
total age, or breast height age, or any other age.

The final achievement of this thesis is the development of the dynamic variable density height
growth model in Chapter 4 that predicts yearly height growth increments and can be iterated over
time with a dynamically changing element of density or crowding. After validation, the model should
be suitable for implementation into growth prediction systems, and simulations of height growth
responses to different thinning regimes. Since the density responses are entering the model in an
unrestricted way and can assume any values and any changes over time in these values, the resulting
variable density height growth system represents an infinite-dimensional height growth space, similar
in dimensionality to spaces defined by systems of simultaneous interacting differential equations with
continuous variables. At every step, when an implicit variable is implemented in an explicit form, the
model dimensionality increases by an additional dimension and the model mathematical equation
dramatically increases in complexity. Yet this infinite-dimensional dynamic variable density height
growth model is algebraically relatively simple and contains only four estimable coefficients. The
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great flexibility of this model is mainly due to its iterative approach and the fact that it is in the
form of a difference equation, that is iteratively simulating height growth in one year increments.
In summary, all objectives of this thesis have been achieved through the development of:

o the general methodology for derivation of four-dimensional variable-base-age polymorphic
height growth models with variable asymptotes (Chapter 2);

¢ the methodology of extending the above four dimensional height growth models to the fifth
dimension including the variable-base-height (Chapter 3); and

o the methodology of developing the infinite-dimensional, dynamic, variable-density height growth
model and its calibration for lodgepole pine data in Alberta (Chapter 4).

The above methodologies represent a journey towards an advancement of height growth modeling
that is consistent with a general trend in the history of increasing model flexibility and generality.
Individual parts of this journey built on the previous knowledge/chapters and expanded this knowl-
edge to new subsequently higher levels, e.g., the dynamic variable density height growth model
(Chapter 4), that uses coefficient modifying functions (Chapter 3) to implement a third explicit
measurement component of variable density, can be formulated as a dynamic equation only if it
already contains the explicit base-age as an independent variable (Chapter 2). The resuits of the
methodologies presented in this thesis aim towards, and achieve, a means of improving the under-
standing of the growth dynamics associated with a height growth model development in general.
The resulting new models are capable of better reflecting existing height growth patterns, while they
require the same or less demanding data for their development. At least in theory, the new models
should be:

¢ easier to use, e.g., direct use of measurable variables such as reference-height;

e easier to calibrate and collect data for, e.g., more flexible screening of the data with possibility
of using higher parts of the height growth (ageless model);

e more exacting, e.g., in juvenile height growth modeling a base of an intercept can be defined
with arbitrary precision as the base height; and

¢ more informative, e.g., predicting responses of height growth to different density levels.

The scope of this thesis includes no rigid statistical investigations associated with the devel-
oped models and their validations. These should be a next step in the relevant research following
this study. The models should be tested and validated on available permanent sample plot and
stem analysis data, and in real applications. As for the further research prospective it would be
desirable to investigate statistical properties of these multidimensional height growth models and
implications of diflerent ways in which they could be calibrated. Given that the implications of
different approaches to calibration of even the most popular, three-dimensional, fixed basc-age, S/
height growth models is unknown to date, it is not likely that much in depth will be known soon
about these more complex models. Despite this, one should not hesitate to use these advanced
multi-dimensional height growth models in applications in which they can be more useful then the
traditional height growth models, while the extent of use may depend on individual judgement and
relevant confirmation of the usefulness.



Appendix A

Computer Implementation of The
Variable Density Height Growth
Model

A.1 An Example of a FORTRAN Program for Computing
a Variable Density Height Growth Predictions

PROGRAM HtDens

IMPLICIT NONE

DOUBLE PRECISION Est_Ht, hx, pred, t, xi, switch, bh_age,
F CI, coef_a, coef b, gen_al, gen_a2, gen_bil, gen_b2, calc_ct,
no_trees, thin_trs, orig_CI

CHARACTER#1 cont, model, new_mdl

INTEGER i, count
parameter (gen_a1=0.33121384, gen_a2-=-0.004543, gen_b1=91.468352,

[ gon_b2=-0.478853)

WRITE (s,’(T256,34A/,2(T25,A/),T25,34A//,4,2(A/))?) (*-?,i=1,34),
| S LP Height Growth Estimator’,’ using Ht-Density Model’,
¢ (’-’,i=1,34)

1 switch = 0
WRITE (*,’(/A,A)’) ® Select (g)rowth model predictioms,’,
& ' or (t)hinning simulation (g/t)?’
READ (+,’(A1)’) model

10 IF ((model.EQ.’t’).OR.(model.EQ.’T’)) THEN
count = 0
svitch =
ENDIF
WRITE(%,’(/A,A)’) ’.Enter a known BH AGE and HT, eg., 50 15.0°

READ (»,s) x1, hx

WRITE(+,’(/A)’) ' Enter number of trees per ha at this age:’

READ (+,%) no_trees
CI = hx#*2 % no_trees / 10000
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IF (svitch.EQ.1) THEW
VRITE(®,’(/A)’) ' Enter number of trees per ha after thinning:’
READ (¢,¢) thin_trs

orig CI = CI
CI = hx#+2 ¢ thin_trs / 10000
ENDIF

coef_a = gen_al + gen_a2 « CI
coef_b = gen_bil + gen_b2 ¢ CI

* check for a realistic calculated SI (should be 6 < ht < 30 m at bh age 50)

pred = Est_Ht(60.0, coef_a, coef_b, x1, hx, switch)
IF (pred.LT.5.0) THEW

VRITE (»,s) * ¢ WARNING: Trees unusually short--future’,
4 ' ht predictions may be unreliable.’
ENDIF
IF (pred.GT.30.0) THENg~h)
WRITE (e,s) ' ¢ WARNING: Trees unusually tall--future’,
4 ' ht predictions may be unreliable.’
ENDIF

IF (switch.EQ.1) THEN
WRIVE(*,’(/4,F8.1,A)’) ’ After thinning to’,
4 thin_trs, ’ trees per ha . . .’

* do thinning simulation, calculating ht every year and using it as new hx

13 IF (x1.LE.100) THEN
t =x1 +1
pred = Est_Ht(t, coef_a, coef_b, x1, hx, switch)
count = count + 1
IF (count.EQ.10) THEN

count = 0

WRITE(%,15) ’At bh age’,t,’, ht will be’,pred,’ m.’
ENDIF
hx = pred

x1 = ¢
CI = hx##*2 % thin_trs / 10000
IF (CI.GT.oxig CI) CI = orig_CI

coef_a - gen_al + gen_a2 * CI
coef b = gen_bl + gen_b2 * CI
GOTO 13

ENDIF

ELSE
* predict heights every 10 years

t =x1 + 10.0
14 IF (t.LE.100) THEN
pred = Est_Ht(t, coef_a, coef_b, x1, hx, switch)
WRITE(*,15) ’At bh age’,t,’, ht will be’,pred,’ m.’
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16 FORMAT (31X, A, F6.1, A, F8.4, A)
t =t + 10.0
GOTO 14
ENDIF
ENDIF

WRITE (#,°(/A)’) ' Again (y/n)??
READ (¢,’(A1)’) cont
IF ((cont.NE.’N').AND.(cont.¥NE.’n’)) THEN
VRITE (¢,¢) 'Choose new model (y/n)?’
READ (¢,’(A1)?) nev_mdl
IF ((new_mdl.EQ.’Y’).0OR.(new_mdl.EQ.’y’)) GOTO 1
GATO 10
ENDIF
WRITE (+,’(/A)') ' Good-bye.’
END
DOUBLE PRECISION FUNCTION Est_Ht(t,coef_a,coef_b,xi,hx,svitch)

IMPLICIT NONE
DOUBLE PRECISION t,coef_a,coef_b,xi,hx,svitch,z,j,d, hxRoot

80 % coef_ b
- 1 - coef_a
20 ¢ coef b ¢ bdiesj

Hounon

J
d
hxRoot=(hx-1.3) + DSQRT(((hx~1.3)-d)s¢2 + z#(hx~1.3)¢xissj)
Est_Ht = ( hxRoot + d) / ( 2 + zet#sj/(hxRoot-d) ) + 1.3

RETURN
END

A.2 An Example of a Spreadsheet for Computing Variable
Density Height Growth Predictions

A basic code for LOTUS 123 spreadsheet for computation of density related height growth can
consist of the following listing:

Al: "Age
B1: "“TH1
Ci: "PresNT
D1: "CI

E1: "alpha
F1: "beta
G1l: "gama
Hi: "R

A2: 10

B2: (FO) 6

c2: (FO) 50000

D2: (F1) €MIN(C2/10000+#B2"2,183)

E2: "<== These are the initial conditiors
43 to H3: \=

A4: (FO) "Thin to=>

C4: (FO) 2000
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Table A.1: Example LOTUS 1-2-3 spreadsheet—a comparison of two lodgepole pine stand densities
on a good site: a) no thinning; b) with thinning to 1200 trees/ha.

a)

A B C D E F G- H I J
1 Age TR1 PresiT CI alpha Dbeta gama R TH2 VaASI
2 10 7.6 30980 180.0 <== Theae are the initial conditions
3 -t 2 2 22 2 2 22 2 F t + ¢t $ t £+ 3 1+ 2 2 + F £+ 4 F § £ 4
4 Thin to=> 30880 180.0
3 1 1.8
6 3 | VASI SI 24.00 | 3.1
7 6 | HTDE SI 12.21 | 4.8
8 8 S T T P T ] 6.2
] 10 7.62 309880 180.0 -0.513 421.99 14.1563 35.874 7.86 7.6
10 20 9.4b 20170 180 -0.513 421.99 14.1563 35.974 9.59 13.4
11 30 10.63 15928 180 -0.513 421.99 14.153 35.974 10.73 17.9
12 40 11.561 13586 180 -0.513 421.99 14.153 35.974 11.69 21.3
13 50 12.21 12073 180 -0.5613 421.99 14.163 35.974 12.27 24.0
14 60 12.79 11003 180 -0.513 421.99 14.153 35.974 12.84 26.1
15 70 13.28 10200 180 -0.513 421.99 14.153 35.974 13.33 27.9
16 80 13.71 9571 180 -0.513 421.99 14.163 35.974 13.7b 29.3
17 90 14.09 9064 180 -0.513 421.99 14.1563 35.974 14.13 30.4
18 100 14.43 8643 180 -0.513 421.99 14.163 35.974 14.46 31.4
b)

A B C D E F -G-——--- -~ I J
1 Age TH1 PresiT CI alpha Dbeta gama R TH2 VASI
2 10 7.6 30980 180.0 <== These are t*3 initial conditions
3 Ittt Sttt 3t 2ttt ST S it 4 S S S LT S S 2 T 2 2 T 3.
4 Thin to=> 1200 7.0
b 1 —_— _— 1.8
6 3 | VASI SI 24.00 | 3.1
7 6 i HTDE SI 23.07 | 4.6
8 8 I e PP 8."
9 10 7.62 1200 7.0 -1,299 7050.3 10.921 £3.836 8.28 7.6
10 20 13.3% 1200 21 -1.234 6498.0 13.005 56.131 13.83 13.4
11 30 17.50 1200 37 -1.164 5909.4 15.541 58.931 17.85 17.9
12 40 20.62 1200 b1 -1.099 b363.5 18.170 61.682 20.89 21.3
13 60 23.07 1200 64 —-1.040 4869.8 20.745 64.204 23.29 24.0
14 60 26.09 1200 76 -0.987 4423.2 23.180 66.718 25.27 26.1
16 70 26.79 1200 86 ~0.939 4017.3 25.416 68.957 26.96 27.9
16 80 28.26 1200 86 —-0.895 3646.6 27.399 70.8987 28.39 29.3
17 80 29.54 1200 106 -0.8565 3307.0 29.088 72.£18 28.66 30.4
18 100 30.66 1200 113 -0.818 2995.5 3C.444 74.400 30.77 31.4
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D4: (F1) +D6

A5: "Height grovwth as a function of age and density:
AB: +A2

B6: (F2) +B2

c6: (FO) +C4

D6: (F1) +C6/10000¢B6-2

E6: 0.004543%D6-1.33121384

F6: 7317.4681216-38.3082064¢D6

G6: +F6450°E6/4

H6: +B6-1.3+0SQRT((B6-1.3-GB) "2+F6¢(B6-1.3)¢A6"ES6)
AT: +A6+1

B7: (F2) (H6+G6)/(2+F6sAT ES/(H6-GS))+1.3

C7: (FO) CGIF(D7<$D$2,C6,$D$2+10000/B7"2)

D7: (FO) €MIN($D$2,C6/10000¢B7°2)

E7: 0.004543¢D7-1.33121384

F7: 7317.4681216-38.3082064+D7

G7: +F7+E0"E7/4

H7: +B7-1.3+0SQRT((B7-1.3-G7) "2+F7¢(B7-1.3)¢A7"E7)

An example of a basic spreadsheet based on the above code is the spreadsheet below for compu-
tation of density related height growth:

----- A----B C D E F G H--
Age TH PresNT CI alpha beta gama R
10 8 60000 180.0 <== These are the initial conditions

1
2

3

4 Thin to=> 2000 7.2

5 Height growth as a function of age and density:
6

7

8

9

12.888 47.950
13.147 48.223

15 19 10.16 2000 21 -1.237 €527.
16 20 10.56 2000 22 -1.229 6463.

10 6.00 2000 7.2 -1.298 7041.6 10.952 45.973
11 6.51 2000 8 -1.202 6993.1 11.124 46.135
12 7.00 2000 10 -1.286 6941.8 11.308 46.3156
13 7.49 2000 11 -1.280 6887.8 11.505 46.511
10 14 7.96 2000 13 -1.273 6831.7 11.712 46.7214
11 16 8.43 2000 14 -1.266 6773.6 11.930 46.945
12 16 8.88 2000 16 -1.269 6713.8 12.157 47.181
13 17 9.31 2000 17 ~1.252 6652.7 12.393 47.428
14 18 9.74 2000 19 -1.244 6590.3 12.637 47.684
0
0

Modified spreadsheets for computing height predictions for different thinning scenarios with the
possible results of a thinning can be compared to those of a no-thinning scenarios are included in
Table {A.1]. The two spreadsheets in this Table irmplement computations for two density scenarios
on a good site based on the code listed on the beginning of this section. By examining scveral of
such scenarios one can determine the density required to achieve near-maximum height growth.



