: I*\ NationaI-'Libraf)."

of. Canada . du Canada” \

Canadian Theses Service

.~ '©ffawa; Canada
K1A ON4

f - . T - » . -
). CANADIAN THESES -

“ NOTICE

T,he quality of this microfiche is heavily dependent upon the
quality of the original thesis submitted for microfilming. Every
éffor_t has been made to ensure the highest quality of reproduc-
tion possible. '

if pagés are missing, contact the university which granted the
' degree. ' '

" Some pages' may have indistinct print especially if.the originaf '
pages were typed with a poor typewriter ribbon or if the univer-

~ sity sent us-an inferior photocopy. -

Previously copyrighted materials (journal articles, published
" tests, etc.) are not filmed. :

Reprodlfction in full or in part of this film is governed by the
Canadian Copyright Act, R.S.C. 1970, ¢. C-30.

1

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED .

]

e

NL-339(r.86/06)

Bibliothéque nationale -

i v
Serviges des théses ca

- ~ '

nadiennes

.

THESES CANADIENNES—

e

AVIS °*
La qualité de cette microfiche dépend grandement dela quélité

de la thése soumise au microfilmage. Nous avons tout fait pour
assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec 'univer-
sité qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylographiées
a raide d'un ruban usé ou si I'université nous a fait parvenir
une photocopie de qualité inférieure.

Les documénts qui font déja I'objet d'un droit d'auteur (articles

- . de revue, examens publiés, etc.) ne sont pas microfimés..

La reprodu_chon, méme partielle,\dé ce microfilm est soumise
3 la Loi canadienne sur le droit d'auteur, SRC-1970, c. C-30.

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

| Canadﬁ |

The Uhiversity of Alberta
B v {

- v

. . .
An Execution Model for some Parallel Logic Programming Languages

\
by

A

LAW, Chung Sea

» | — :

ocF

, A thesis-

submitted to the Faculty of Graduate Studies and Research
- in partial fulfillment of the requirements for the dégree
of Master of Science .

\

Department of Computing Science

__/
=
/

N 4 . :
S - Edmontom, Alberta)
p ' Spring, 1987

a

Permisgsion has been granted
to the“National Library of
“anada to microfilm this
thesis and to lend or sell
. copies of the film.

s The autﬂzr (copyright owner)
has reserved other
publication rights,. and
neither the thesis nor
extensive extracts from it

may be printed or otherwise

reproduced - without his/her
written permission.

{

"d'auteur) ‘
‘autres droits de publication;

'L“autorisation a &té accordée

Y

4 la Bibliothéque nationale
du Canada de microfilmer
cette . thése et de préter ou
de vendre des exemplaires du

- film. . :

-

L' auteur (titulaire du droit
"'se reéeserve' les

'ni la thése ni de longs
extraits de ¢celle-ci ne
doivent @étre imprimés ou

autrement,reproduits Sans son-
autorisation écrite. -

-

IsBN 0-315-37769-0

> o ‘ . . .
. o THE UI\\WERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: LAW, Chung Sea

TITLE OF THESIS: An Exccution Model for some Parallel Logic Programming Languages
‘ \

DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Science

———

“YEAR THIS DEGREE GRANTED: 1987

~ Permission is hereby granted to The University of Alberta Library to
reproduce single copies of this thesis and to lend or sell such coples for private,
* scholarly orscientific research purposes only.” :

The author reserves other publication rights, and nenther the thesis nor .
_, extensive extracts from it may be pnnted or otherwise reproduced without the

author's written permission.

L]

. (Signed) . (:\/ﬁ‘l,)é/

~ Permanent Address:
. S 18, 4th Floor, Block B,
© 237A To Kwa Wan Road

Kowloon, ’
Hong Kong.

: D)ated’ jm /02/ /7/? ' . _ -

. ' N

THE UNIVERSITY OF ALBERTA.
_ G
FACULTY OF GRADUATE STUDIES AND RESEARCH
~ ""'

P

¥ The undersigned certify that they have read, and rccommend to the
& N . B

Faculty of Graduate Studies and Rescarch, for acceptance, 2 thesis cutitled An
Execution Model for some Parallel Logic Programming Languages submitted

b_\'ﬁLA\V, Chung Sea in partial fullillment of the requircments for the degree of

Master of Science.

Datcj@n /2, /7;; | o

To My Parents

L~

.- .
v ABSTRACT ‘
A . ‘
The exploitation of parallelism in logic programs has recently been an active
. . St . . ’;l' . . . : 4 .
research topgg in logic programming, especially after tl}c announcement of the

Japanese Fifth Generation Project. The research includes two areas: the development

N 4

s

of parallel logic programming languages, and the design and ;r}.é.'gljzlation of parallel e‘xc-
cution models for loéic progr:;ms. This thesis ‘studieswh'ef pfxraliel logic programming
languages Coucurrelﬁt Prolog, PARLOG and Guarded ng; Clauses (GHC), and some
of Lhé most récently proposcd parallel execution models fo?logi(é programs. An execu-
tion model for those languages, conceptratg(l on the control of parallel activities, is
proposed. The model is targeted for implementation on a shared memory architecture,

where moderate parallelism is exploited. The emphasis of the design is on ease of real-

ization and low overheads.

ACKNOWLEDGEMENTS

,| wish to express my' sincere grat_itude to my su/pervisor, Prof. T. A. nx,'iarsland,-l'orO
" his guidance, assistance, cg}i‘ticisms and encompagement throughout the !research and .
preparation of this thesis: _a

[am grateful for the careful readi’ng. and useful comme’ntﬁ provided by the
" members of my examination committee: Dr? J.-H. You, Dr. P. Rudnicki and Mr. W.
Joerg.

-Financial support frc;m NSERC and the'DeP‘fr_?m???x_;f Computing Scieﬁc%in the

A}

. Nl o g
form of teaching and research assistantships wfe Krascim ‘acknowledged.

e g
. . - N ’ 2 4 “ f *': kl
Special thanks to all my friends, especially C. A. Wang and Larry Wa ;
k 3
_ their encouragements during my stay here in Edmonton. (\
L
i
~

vi

i
i

Table of Contents

Chapter : Page
Chapter 1: lnt'rodl.xction‘ T R OO PUTRTURRO VTSP SRSV PSSP 1
1.1.Motivation and Oéjeétives ettt 1
111, MOUIVAUIOD coovvrvo.ferorescovee o cene e esrciesennianens e e 1
1.1.2. Objectives AT ORI SPPUTOP TR 2
1.2.-Logic Programmiﬁg,’ e [3
" 1.2.1. Syntax TR S U U OO P VPSP UORO PSP PUOPPPPPI 3
1.2.2 . SCIMABIMUICS «evvreeeite i n it s e et b e er e et e ren e te et e e e e e e e e et r s et ta e e e s 5
1.2.3. Unification i fa e ieee e e eee oo e e e tre b b e nteeranneas e 0
1.2.4. Computation Madel ... JUUTUTUTTURTOTR e 6
1.2.5. Non-determinisSmoooveinnnnnnnsnd 2O VTR 8
1.2.8. The Logical Variable ... 8
1.2.7. /:fND-OR TTOE oo eetiins et sttt 8
1.3, PROFOE cveeeieieeeii e eeie et frrteneeeeeees 9
1.3.1. CUb e, DT RTIE [T 10
1.3.2° Other Built-in Predicatesccoooiiiiiiiiii. TR ST 11
1.3.3. Négation As Failure ... TR PSP OO P PP PPPRON 11
‘1.:1-.Su’r'ninary e e 12
Chabtcr 92: Parallel Logic Programming Languages ..., 13
2.1. Parallelism in Logic Programsc.....on. e, 13
D L. AND-PAralleliSIi eoueersoeereeooseeeeeeeeee st .13
2.1.2. OR-Parallelismcooivmvireeviiraeanicaenaennn, SUURUUU PR UPTPRRTR e 1 15
2.1.3. Stream Parallelism e SRRSO } 16
2.1.4. Search Parallelismiccoi e .18
9.2. Some Parallel Logic Programming Languages ... 17
2.9.1. Concurrent Prolog .. oo 18
2.2, 1.1 SYDUAX cerverrrerieeeeeeneeiaiee e e JER TS UUT RO ORI 19
.) ' S
2 0" 1.2, SCIMADEICS «verreeeviseees eeeae ot e e et e e et 19
902 PARLOG oo oo oo oottt 22
2.2.2.1. SYDLAX wovvvererenre e e e 22
2.2.2.2. Semantics ... R e SRR PR SUTUR 23
.98, GHOC oo oo ettt B 25
20231, SYIMUAX eueiermaiite o ie e s e ebe s D 25
0.9 .3.2. SEIIAIMELICS «eveneueresereeseeeie e st e eeeeaae e e naas e meee e e e e e e e e e e e 26
2.2.4. COMPATiSODBS .sueovviiiieiiniriieeicrieneaes e 27
2.2.4.1. Comparison among the Three Languages 27
2.2.4.2. Comparison with Parallel Prolog ... e 28

2.3, SUIMIAEY .ooeeoeiesetisse i e e oL 29

vi

Chapter 3: Parallel Execution Models of Logic Programs e, 30
3.1. The Communicating-Processes Approach ... 30
3.1.1. Execution Models Employing Homogeneous Processes e 31
*3.1.2. Execution Models Employing Heterogeneous Processes 33
3.1.3. Evaluapion of the Approachcoooveriivicvviiiiiiennnn, Bt 360
3.26 The Work-Poot Approach ...l 36 .
3.9.1. The OR-Parallel Token Machine Model ... 36
« 3.2.2. The Goal Rewriting Modelcooiiiiiiiiiiiiiiiiii i 38
-3.2.3. Evaluation of the Approach ... 10
3.3. The Reconciliation Approach ..o s 11
3.3.1. Evaluation of the Approachooooiiiiiii 42
3.4. The Dataflow-Based Approach T e e 43
3.4.1. Evaluation of the Approach PP VO e, 40
3.5. The Reduction-Based Approach ' ST T ISR 47
3.5.1. Evaluation of the Approachc. oo 19
3.0, SUMMATY .eovreiieieainiiieni e esnaiicennineen SRRUR SRRSO PP URUP PP PPPOPUUPPIURPRRPPI 1
Chapter 4: Proposal of an Execution Model ... e, 50
4.1. Architectural Assumptionscco.oeeeee e, e 50
4.2, Overview of the Model ... e 51
3.3, Data SUPUCLUES o.ovoveirimeeeieeteete s caee et eeemee e e et e e e 55
4.3.1. Goal Record ..o s 55
4.3.2. Clause SLALUS ..ovveiviriiiiiiiriii e s e SRPT e 56
£.3.3..GUard TUPle .ooeiiii it SURPRO 57
4.3.4. Suspension List TSROV SRR e ‘% 57
4035, L0CKS +oeee oo i, 58
4.4, Algorithm .. —ns LSOO PSP UPRPRRUPPR 59
A] TIIATIZBEION ettt e 59
4.4.2. P3eudo Code oovipeiiiiiiiii 60
4.4.2.1. Getting Stzﬂ-«é ... 61
1.4.2.2. Head Unification T RITIERIT 63
£.4.2.3. GUARd SPAWDIRE «oovvietieei ittt 85
1.4.2.4. Commitment NI e 66
4.4.2.5. Body SPAWDIIE .ooiiiiiiiiiiiiiiiii it e 68
4.4.2.6. Subroutines,.... Fereeerenaees B 69
4.5. Summary .. et U TR ST ST e 72
Chapter 5: Analysis of the Proposed Execution Model e LT
5.1. Correctness Verificationl....oooieiiiiiiiiiiniiie e e [E!
§5.1.1. Deadlock AVOIdADNCE ...ooiiiiiiniiii i 75
5.1.2. Enforcing Exclusive Access and Protecting Critical Actions 75
5.1.3. Uniqueness of Committed Clausecccooiiiiiiininiiniiini .78
5.1.4. Correctness of the Goal Suspension/Re-activation Scheme 76

g ' viil

5.1.5. Correctness of the Failure/Abortion Propagation Scheme
5.9. Parallelism Potential §

........................

..

5.3. Architectural lssucs

5.4. Considerations in Supporting the Target Languages ...
5.4.1. Supporting Concurrent Prol‘og ..
5.4.2. Supporting PARLOG ... ITU U PP PSP IUTUPIPRUR
5.4.3. Supporting GHC

5.5. Justification

6.2. The Management of Binding Environments ...l
6.3. Future Work

RCTE P OICO8 et e e e e et e

Al: Example Programs

A2: Levy's Execution Model

A3: Run-Time Structures in the Proposed Execution Model

/

~

A}
N

List of Figures

Y e

-

Figure

1.1
1.2
1.3
2.1
2.2

3.1

3.2
3.3
34
3.5
3.6
3.7
3.8
3.9

A Sample Logic Program T PO PP RUP PP PRIt
A Resolution Proof SURT T PP PRSPPI
A Sample AND-OR Tree ..o A AN
Parallel Computational Concepts and Their Counterparts ...
A Typical Goal Reduction SLep overveieeceicreneee. EUUOTR TSR e,
Process Structure of Bowen's Model ...
A Sample AND/OR Process Tree ...
A Sample Process Structure in Port Prolog [RTTTTTIRRTROTRS
The OR-Parallel Token Machine Model ...
A Goalframe and its Reduced FOrmocoooiiiii
The Goal Rewriting Modelon PIE P P UUURPRUPROS
The Generated Bindings in an AND/OR Tree ...
A Simple Computation Step in the Dataflow Model ...
Halim's Data-Driven Modelcooooiiioiii S

3.10 The Structure of a Rewritable Packet in ALICE ... ST

4.1
1.2
4.3
44
4.5
1.6

4.7

An AND-OR Tree Partitioned into Computation Units ...
Computations in a Specific Goal Reduction ...
The Structure of a Goal Record FUTTTUTIUTO PP SO TP
The Structure of a Guard Tuple ... R e
The Structure of a Suspension ROCOTA oo,
A SuSPension LIST .o oo
Data Structures for the Top Level Goal ...

35

Chapter 1

Introduction \

This chapter is primarily a description of the motivation and objectives of the
research, and an overview of the basic concepts in logic programming and the program-
ming language Prolog. Since there are many good references to the above topics but
they contain a slight variance in terminologies, the overview is only briefly provided to‘
allow the thesis ta be self-contained. Interested readers are referred to
[(,71'1‘82.Kow7-1.l(ow79:1,l,|08-1] for details in logic programming, and

[Che84,CIM81,Fer81, War77] for details in Prolog. Further references will be quoted

when appropriate.

-

1.1. Motivation and Objectives

° v

1.1.1. Motivation

Being based on symbol logic which was originally devised to clarify human
thoughts, logic programming languages are claimed to be particularly human-oriented.
Their once un-popularity Emy be attributed to their low »,\p‘erformancc on coaventional
computers, and the beavy‘invcstmcntvin and established programming style of existing
programming languages. However, this situ'atio;x hat drastic@lly been changed ‘b'y thé
Japa;lcac Fifth Generation Project where one of Lhe: objecti;}és ‘s the building of an
innovative\l}ié‘h-spced inference machine based on logic programming [MoK85], and

the various rcé{)pnses from North America and Europe (' [Bis88], Chapter 3).

A most appealing characteristic of logic programs is their admissibility of paral-
lelism. However, improving logi¢ programs’ execution speeds by incorporating paral-
lelism is not an easy task. A proposed parallel ezecution model should at least be

justified by the following factors: target architecture(s), forms of parallelism sup-

. . . : S\
ported, potential of parallelism, incurred overheads and ease of realization.

o ' o p

Many parallel executlon models have recently been proposed Most of them are
© parts of some ambitious long-range prolects aiming.at explontatlon of masswe parallel-
ism in logic programs (see Chapter- 3). “These prOJects encounter various problems,

such as the design of the proper supporting architectures% eflective control of over-

heads, etc, that must be satisfactorily solved before actual implementations can be -

realized. In view of thie\, it seems more sensible for a short-term project to start small.
My idea is that a good starting point is to support some slmple languages on-a
moderately-parallel, readily-available architecture. There have recently been some
proposals of piarallel logic programming language, most notably C’oncurrenl Prolog,
-PARLOG’ and Guarded’ Harn Clauses (GHC), whlch are 1ntended to support con-

()
‘current programmmg and parallel execution. The efforts spent to desugn an executlon

model for them that aims at explomng moderate parallelism, incurs low overheads,

and is relatively easy to realize are highly justlﬁable.

N

1.1.2. Obje‘otlves

P

The research in exploiting paralleli‘sm in logic prOgramsbl invalves two non-
complementary areas: the development of parallel lOglC programmlng languages, and
the desrgn and reallzatlon of parallel execution models for logic programs. The latter
‘b area can be further dmded into .two major problems (1) the control of parallel activi-
tles, and (2) the management ol binding cnv:ronmcnta (i.e. the differept variable bind-
ings generated in Lhe'.com‘putat.ions). | v ,

.The work atrempted in this thesis can be divided ir;‘to two parts. '12he first-part
' (Chapters 2 and 3) is the study and’ \;\nalysm of some parallel logic programmlng
" languages and parallel execution models for logic programs. The second part (Chapter

4

4 and) is thex'proposal of an execution model for the parallel logic programming

*

languages Concurrent Prolog, PARLOG, and GHC. The ‘proposed model is strongly V

influenced by Levy s work [Lev86] but lncorporates some extensions and modifications

-
4

(see Chapter 4). The proposal concentrates on contro.lling parallel activities, while a
brief discussion of the problems in managing the bir'xdiﬁg.'environments is provided in

Chapter 8. The target architecture of the proposed model is a shared memory mul-
/ - ,

tiprocessor system. The emphasis is on ease of realization and low overheads. The

objectives.are:

7" (1) To investigate some of the data structures and algorithms™meeded to support //”.
- the model.) : , o 4

| : 3
|

(2) To investigate the eflects of the target archite?ture over the design decisioqs/
of the model. -

o

K] : - - 7
3) To justify the model on the abovementioned factors, especially the forms of
- - N . . y S
parallelism supported, incurred overheads and ease of realization.

(4) To provide a basis for further research and implementation.

1.2. 'Logfxc Programming : ‘ -t

Logic programming is.based on the ideas of the statements: "logical inference 18
. // R
computation” and "logic can be a programming language” [Kow74]. It is the out-

growth of rescarch in automatic inference, in particular rcgﬁluti’on [KoK71,Rob65]
L/ ,

which is a generalization of modus ponens coupled with unification [Nii80], a powerful
o - i / o .
pattern matching operation. Special features such asf on-deferminsam, the flexibility

of logical variables, and the close intimacy of opera fional and declarative semantics

make logic programming a promising tool for proble solving.

-

«

«

1.2.1. Syntax

. 0 B . : ~ . .
The building boxes of a logic program are terms. A term 1s either a constant
(number, name, character, etc), a*variable, or a composite term.! A composite term

b . . .
acts as a compléx data structure or a function in logic programs. It takes the form:

ks Al pa———
1 In this thesis, the syntactic conventions of DEC-10 Prolog are followed: constants begin witha -
lower-case letter, variables begin with an upper-case letter. The termAle] denotes a list whose
ist v

head (CAR) is X, and tail (CDR)is Y. The constant [} denotés an empty lis

-

. . N b . , lt
f(tl,tz,...,tm) -‘.m:-:l.‘ o

!

where [is a name called the funclor and each argument t,is aterm.
» i . - o
~An_atom is e:'her %‘name or a composite term. The name or functor (of the com-
posite term) is cq}hd* Lhc prcdvcatc symbol. Predicate symbols must occur at the top
/ 8
level, i.e. they cannot‘appeqr inside-any composite term. .
A Horn clause is either.a program clause or a goal clause. All the variables in a
Horn clz‘xﬁixse are universally quantified. The scope_of a variable is confined to the

clause containing it, i.e. two variables with the same name but in diflerent clauses are

imdependent. A program clause has the form:
N H <- _BI,BQ,'...,BD. :'BZO. - [PC] .

where the H‘ and B,'s are atoms. The H is called the hcad of - the clause and the B;'s
collectively are called its body The symbol "<- can be omm/ed if the body is empty,
i.e. when n=0. The set of program clauses whose"he_ads havve the same predlc-ate name
and arity (i.e. ggmber of arguments) is sd:x'nqiti:'n‘ésQ kpbwu”as the procedure for that
predicate symbol. A goal clause has the form: =

. } N
<'{<G1,G2,...,Gm. mZO. [GC]
\ 1

where the G.'s are atoms called goals. It.is'called an empty clowgeif m=0. In this
e Gi's pty cloygeif m=

thesis, the term "program clause” is sometiu}gs simplified to just "clause”; a clause is
. by . ,
somctimes known as an "assertion” if its bedy is empty, or a "rule” otherwise.
A logic program is a finite set of program clauses. Figure 1.1 is a sample logic

program.

-

-4

[C1] father(john,tom).
[C2] father(tom,sam). ,
[C3] grandfather(X,Y) <- father(X,Z),father(Z,Y).

Figure 1.1 A Sample Logic Program

1.2.2. Semantics , L

toadi) e
A A

Informally, the program clause PC in Section 1.2.1 has the dcclarativc‘ reading: H
if Bl’1 and B, and ... and,Bn. The goal clause GC has the reading: the conjunction of

the G-l’s is false. IfGCisan empty clause, it denotes a contradiction.?

The formal'.sem:mtics of l/ gic programs were investigated by van Emden and
Kowalskﬂi&[val\'w]. They consi(ier‘éd operational semantics and two kinds of declara-
vtive semantics; model-thesretic and fizpoint. In the opéra(ional semantics, the denota-
tion o}f a n-ary predicate symbol p is the set of n-tuples <tl,..:tn> such that

p(tl;...,tn) is provable given the program as the sct of axioms. In the model-theoretic

semantics, the denotation of p is the set of g—tuples byt > such that p(tl,...,tn)

" is logically implied by the program. In the fixpoint semantics, the denotation of pis

derived from the program through a transformation that maps clauses into ground
clauses, from which tuples of ground terms are formed.3 These three kinds of seman-

tics were shown to.be equivalent to each other.

In practical programming we ignore formal semantics, contend with the intuitive

idea of truth and write programs which are true in the intended meanings. Forexam-

ple, the intended meanings of the program in Figure 1.1 are:

2 The proof procedure in logic programming is based on resolution which is a refutation system..
This means that the procedure proves a formula by including its negation into the set of axioms
(i.e. program clauses) and tries to derive a contradiction. The goal clause is in fact the negation of

- the formula we want to prove, i.e. "for some variable bindings, the conjunction of G'sis true” (see

Section 1.2.4). _
3 A clause or term is ground if and only if it contains no variable.

™

(1) jobnis tom’s father.

-(2) tom is sam'’s father.

(3) forall X and Y, if Xis the father of some Z and Z is the father of Y, then X
is the grandfather of Y.

1.2.3. Unification

Two atoms G and H are unifiable if there exists a substitution 8 such that G.0 =

H.8. The unifier (i.e. unifying substitution) 8 should be the most general an’fier
[Rob85] of G and H. A substitution is a set of variable bindings. G.8 means applying

the substitution 8 to the term. G. For example:

G: - father(X,Y) ' o 1\
0: * {X=john,Y=tom} :
G.6: father(john,tom) = .4 4 ——

In unifying a goal G with a clause head H (i.e. head unification), the unifying sub-

stitution is often classified into two disjoint sets. The snput subststution is the set of
bindings to variables in H, and the output subststution is the set of bindings to vari-

ébles in G. For example:

goal: father(X,tom)

clause head: father(john,Y)
‘input substitution: {Y=tom}

output substitution: {X=john}

1.2.4. Computation Model

A logic program P is invoked by a goal clause G which has the form:

<‘ GI,GQ,...,Gm- mZO.

The computations are to derive an empty clause using G and P, i.e. to prove that an

instance of ~G is.implied by P. Itisa seiueqce of goal reduction steps:

(1) Arbitrarily selecting a goal G;, 1<i=<m, in the goal clause G. "

(2) Noundeterministically choosing from P a program clause C of the form H<»-
B, e Bl k20, where H and G; are unifiable via a substitution 8.

(3) Using Cto reduce G. The reduced G is G with Gi' replaced by the C"s‘:bo:dy i
(which may be empty) and the substitution 6 ‘applied throughoutly.
, i

(4) Repeating the goal reduction step (i.e. steps 1 to 3) until either G is empty
(i.e. the proof succeeds) or G is not empty but no clause C can be found in
step 2 (i.e. the proof fails).4

For example, given G as <- grandfather(Who,sam) and P as the program ip Fig-
ure 1.1, Figure 1.2 shows the computations i/;]”voked by G. Note that the proof pro-
cedure. is cohalru\ctiye, 1.e. bnot only ‘can it prove the existenfe of an instance of ~G
impiied by P, but that particular instance can also be found by construc‘ting the bind-
i)ngs to the variables in G using the substitutions generated in the sequence of goal
reduction steps. In this example, since Who=X= john, the instance of ~G implied by
N

Pis grandfathér(jc;hn,sam).
4

. <- grandfather(Who sam)
& apply C3: Who=X,Y =sam
<- father(X,Z), father(Z,sam)
+ apply C1: X=john,Z=tom
<- fach.er(tom,sam)
l apply C2

<

‘ / Figure 1.2 A Resolution Proof

—-- / 4 Since first-order logic is semidecidable ({Nil80], pages 144-145), nonterminating computation

/ .
/may happen in some cases.

1.2.5. Non-determinism

-

A distinguished feature of logic ptogramming is its non-determinism. Two

~ "

sources of non-determinism are apparent in the computation ‘\model in 1.2.4: any goal
can be selected in step 1, and any applicable clause can be chosen in step 2. The latter

~

determines which solution is computed, the former only affects the system's behavior.

A system may have 'diﬂ'ercnt attitudes in dealing with non-determinism. It
features don’t-know nondeterminism if it doesn't know how to obtain a solution. An
ex'amp/'lé is Prolog (see Section 1.3) which relies on its backlracki;lg facility to explore
the search space. It features don ’l-.carc non-determinism if it doesn’t care how solution
is obtain'cd, hence no or a fewer amount of search is needed. Examples a-re the

languages discussed in Section 2.2 whose commitment mechanism . non-

deterministically chooses a path to a single solution.

1.2.8. The Logical Variable -

Another important fcamre of logic programming is the logiéal variable. Because
of the flexibility of uni‘ﬁcation, a variable can be partially instantiated by an atom,
and subsequently further instantiated by other atoms. "This nature of the logical ;rari-
able is heavily exploited in logiE ‘programs, and it allows lcgic programming to be an

effective tool in many practical applications (e.g. the examples in [Sha83, War80]).

1.2.7. AND-OR Tree

The execution of a Iégic program can be conceptually viewed as a search in an’
AND-OR tree [Nil80] based on resolution proof procedures. The OR-branches of an
AND-OR tree lead from a goal to its applicable clauses, the AND-branches tie the
atoms of a clause together. Figure 1.3 s t.he AND-OR tree solving
grandfather(Whp,sam) using the program in Figure 1.1. Note !,.hat, the bindings to the

shared variable Z must be consistent, Who= john is the solution.

9

A logic program is non-determiniatic if a goal clause can have more than one solu-
tion (i.e. the AND-OR tree has many active OR-Eanches). It is determiniatic if a goal

clause has at most one solution.

. grandfather(Who,sam)
I Who=X,Y=sam -

grandfather(X)Y)

//O\ |

father(X,2) - father(Z2,Y)
FAIL X=john,Z=tom Z=tom FAIL
father(tom,sam) father(john,tom) ° father(tom,sam) [ather(john,tom)

Figure 1.3 A Sample AND-OR Tree

\
1.3. Pro_log \\S

Prolog was the first [BaM73], an'd'is still the most widely used, logic programming

- langl;age. Standard Prolog implementations use the order of goals in the goal clause
and the order; of clauses in the pfogram to co;)trol the search in the AND-OR tree.

The non-determinism is simulated by sequential search and backtracking. In each
cycle, the system chooses the left-most goal as the current goal and sequentially tries

the applic:;ble clauses in their textual order. If a goal cannot be reduced, the sys:}m
backtracks to the most recently reduced goal with untried clauses, makes it the -
current goal and tries itgl next untried clause. This results in a left-right depth-first

search which allows the AND-OR tree to be collapsed into a stack of-records® (each

represents one head unification) that can be space-eiﬁciently implemented [Bru82].

8 In fact, an actual Prolog implementation uses three stacks: the ensironment stack, the
global/copy stack and the trail stack. The trail stack is used to undo global eflects i backtracking-
The envirgwk holds control and binding information. Some binding infgrmation which

§ 5.

10

¢

The growth and shrinkage of the tree are accomplished by the push and pop opera-
tions qf the stack. However, Prolog's search strategy is unfair and incomplete; solu-

’

tions to the right of an inﬁuit‘s branch in the AND-OR tree will never be discovered.

Pure Prolog is non-practical and cannot exploit the knowledge built into many
[;;o'grams. _Because of this, most Prolog implementations incorporate the following
' . L

extensions.

1.3.1. Cit

Cut (1) is a widely used and controversial control facility in Prolog. It stops the
system from chzosing untried clauses for an atom in backtracking and hence allows the
programmer to control the search by pruning unwanted OR-branches from the AND-

\ .

OR trec. For example, consider the following: -

<- b [goal clause]
b<-ctd. [Cl]
b <-ef. [C2]

c <-..

C1 is first applied to tile goal b. S.uppose cis provabie, the effect of executing the cut
will commit the system to C1, the system will not try C2 (since it is prufied) even if
the proof .of d fails. Cut is dangerous since undisciplined usage of it will introduce
incompleteness into the system; as a search space containing solutions may be acciden-
~

2

tally pruned.

y,

—

has a longer life span is placed in the global/copy stack so that space.in the environment stack can
be reclaimed more frequently. See [War77].

~

1.3.2. Other Built-in Predicates

/
Prolog, like many other declarative programming languages, provides a metalevel

programming facility by which a program can construct and evaluate other programs.’

, -
The system built-i \’ predicate "call” accepts a goal as argumen?and evaluates it whcn
i

invoked (see Section 1.3.3 for an example). g

3

Side effects such as the ability to pcrform input/(\)ittput a‘ie3-<requircd in practical

Prolog programs. The system built-in predicates such $b "read”, "write”, "add_axiom"
v

and "delete_axiom™ are introduced for these purposes\“j l»c lattér two predicates allow
Prolog to change the clause database (| e. the logic prc; ‘ a) at run-time, thus endovt-
ing the program with self-modifying capabj (J L |

sefwlfunctions such as arith-

Other evaluable predicates are proviaﬁé "to perform
metic operations. The built-in predicate "fail" is a r‘ontrol facility used to simulate a

failure in the proof.

1.3.3. Negation As Failure

The needs to specify negétive information in the clause body naturally arise in
practical Prolog programs. Prolog supports this by .implementing the ncgalio.n as
failure (NAF) rule [Cla78]. Basically the NAF rulg gives a procedural interprctoation to
negation: if a system fails to prove an at§m X, then it infers not(X). The rule can be
impleme\nted as the following Prolog program:

C1] not(X) <- call(X),! fail.
C2] not(X).

The correctness of the above program depends on Prolog's backtracking facility and
the textual order of the clauses. C1 tries to prove X (instantiated to a goal) using the
metalevel facility "call” and reports failure if X is provable (i.e. then not(X) is false).

C2 is a catch-all clause. It is invoked when call(X) fails (i.e. X is not provable, so

not(X) is true). -

-

12

1.4. Summary

We have described the basic conceptsin the field of logic programming and intro-
duced its first practica}l out\come, the programming language Prolog. Prolog's rigid
search strategy, while resulting in a sbace-efﬁcient implementation < -on Neumann
machine, usually forces the programmers t6 use odd tricks to improve execution speed.
There are some attempts to improve the perform;xnce of Prolog programs, such as the
provision of various control strategies in [C-Prolog [CMG82] and the research in intel-
ligent backiracking [BrP84, Cox84, Kul.86]. While these att:cmpts.(especially the latter) -
ha:/e obtained some achievements, performance improvement within the constraints of

sequential processing cannot be expected to be large.

Besides using sequential search and backtracking, the non-determinism in logic

\‘Zhv

- programs can also be simulated by parallel search in the AND-OR tree. The approach
of improviﬁg peﬂ'ormance by incorporating parallelism has a high potential, and is
reinforced by the advances in hardware technologies and VLSI techniques. The main
questions are: What forms of parallelis‘m can be exploited in lqgi; progr:ms? What are
the desired features of a parallel language within the formalism of logic programming!

These are the topics to be covered in Chapter 2.

Chapter 2

. Parallel Logic Programming Languages

In this chapter, we describe the forms of parallelism in logic programs which may
be usefully exploited. Then we focus on some recently proposed parallel logic pro-
gramming languages. These languages incorporate special features that are designed
particularly to uncover the expressive power of parallel programming languages embo-

died in the logic programming formalism.

2.1. Parallelism in Logic Programs

¥

A pure logic progmm’has no restriction on execution order, this separation of con-
trol from logic [Kow79b) /:ulfnitﬂ flexibility in ‘execution which allows the exploitation
of parallelism. Conery and Kibler classified four forms of pamlle]ism.6 in logic p:o-
grams: AND-parallelism, OR-paralleliam, stream padallelism,” and search parallelism

[CoK81]. Their patures and some proposals of their exploitation are described in this

section.

2.1.1. AND-Parallelism J

AND-parallelism chcrs to the conc%nt cxcgution of more thap onec atom in a
conjunction. The major difficulty of ymplementing AND-parallelism is the problem of
shared variables; not only must the constituent atoms in the conjunction be solved (i.e.

L . . - : .
reduced to an empty clause), but their generated bindings for a shared variable must

also be consistent.

If the constituent atoms share no variable (or all shared variables are bound to

ground terms before invocation), so that they are independent, then there is no

8 Paralielism in unification, which is in a lower level than the forms of parallelism mentioned
here, is not discussed in this thesis.
7T A stream is a scquencé of partial approximations to a data structure, each approximation is a

further extension of the revious one. For example, the following is 3 stream: [2Z], [2,312'],
[2,8,4.;2"4, {2.3.4]. ‘

13

- 14

difficulty in evaluating them in parallel. The concurrent evalyation of such indepen-
dent aton:s is sometimes known as independent (or restricted) AND-paralleliam
[DeG84).

For non-deterministic programs, there are several eflective ways to exploit AND-
parallelism. The first way is to compute the solutions of each constituent atom
independently, and then perform JOIN operations [Mai83] on the shared variables to
climinate solutions containing inconsistent bindings. This scl;;e has a high potential
for parallelism, but'is not practical in conventional computers because of the expensive
JOIN operations and the wasted efforts in computing the solutions containing incon-
sistent bindings. However, it is proposed for a Prolog implementation on a high-speed,

VLSI-based, tree-structure architecture [TLM84] and seems to be used in a dataflow
implementation of the OR-pa;allcl subset of ICOT's KL1 (Kernel Language 1) [KKI85].

A second way is to have the constituent atoms working concurrently on different
solutions. One variant is an extension of the Prq‘lw control strategy. To understand

this scheme, consider the conjunction:
p1(X). p2(X).

To introduce parallelism, after pl passes the first solution to p2, it immediately
procecds to search for other solutions, even before they are required by p2. For the
pre-searched solutions, either they are buflered in pl until they are required, or a new

invocation of p2 is created and evaluated for each of them. The fatter scheme

apparently has a greater parallelism potential but also higher overheads [TaK84].

Another variant is not to use Prolog's control strategy, but te impoye a partial
g gy posg a p

- \ ‘
order in the evaluation of the constituent atoms. For example, in the AND-OR pro-

cess model [Con83|, among the atoms sharing a variable, one of them is designated the

producer and the others are consumers. Bindings for shared variables are sent from

N

15

producers to their consumers. An atom can start evaluation if it has no producer, or it
has received all the bindings from its producers. If the cvalu_ation fails, the system,
based on some heuristic rules, selects one of the atom's producer and requests the
trapsmission of a new binding. The system reports failure if the failed atom has no
producer, or all ita producers are unable to.generate new bindings. AND-parallelism in
this scheme is introduced by the concurrent evaluation of independent atoms and the

pre-search for solutions by the producers. ™

The above schemes are not effective in exploiting parallelism for deterministic
programs. For these programs, the exploitation of stream parallelism, described in

Section 2.1.3, should be considered.

2.1.2. OR-Parallelism

OR-parallelism refers to the concurrent invocation of applicable clauses in solving
an atom. It is related to breadth-first smrr& and tends to be more complete than
Prolog’s control strategy. Since OR-branches of the AND-OR tree are traversed con-

currently, even solutions to the right of an infinite branch can be computed.

Because of the possible exponential fanout of OR-branches in an AND-OR tree,
‘QR-[)RHL”(‘“S[D may exhaust system resources rapidly and hence must be controlled.
This involves employing an approp‘rime scheduling algoriLhm_m_f.ontro‘l the traversal
of the search space. and adopting a richer control l:;ngllagc to prune the unwanted
subsp:\c;‘s [CiHg1].)

For systems featuring committed (don\'t care) non-determinism, a limited form of
OR-parallelism is still possible. In those systems, the guards of all the alternative
clauses are evnluatedjn parallel, if oné of them succeeds, the system commits to that
clause and eliminates all its siblings (see Section 2.2). This committed OR-paralleliam

is an OR-parallel scarch for a single solution, where full OR-parallelism is usually used

to compute all solutions concurrently.

3

—— ro v -

2.1.3. Stream Parallelism .

o i B “: . . ‘ . . .)
~ Stream parallelism allows the concurrent evaluatidn of atoms in a conjunction
P : curf ¥

that share avariable while working on a single solution. The concurrency is enabled by

the stream, i.e. the partial results that are incrementally communicated through bind-

ings to the shared variab.le‘. For example, in the conjunction: '
: . : ¢
\ o

create(List),member(X,List)

- /‘3 K

the atom "member” can start testing membership of X in List while "create” is con-

structing and passing to it the stream of partial bindings for List.

"

The iu;plementatiou of stream parallelism depends heavily on how variable bind- g

ings are maintained and how execution of atoms are synchronized. Usually some cag-

"Lrol constructs should be provided in the language for synchronization and stream
Ndjrection determination -(see Section 2.2). The exploitation of stream parallelism is
only practical for deterministic programs or.prograins with don't-care ‘non-

determinism, where a partial result is not subsequently retracted, and thus can be

“immediately conveyed to other atoms.

R 4

2.1.4. Search Paralleliém - . ' : : ,nkl

Search parallelism refers to the alility to search the clause database (i.e. the
lugic program) concurrently. There are two variants: concurrent search for ¢lauses
whose heads have the same pb"c‘dicate name, and t,hos',el ﬁ;hose heads have different
‘pi'ed‘icate‘ names. The former supports OR-parallelis’xln.,‘ the latter supports AND-

parallelism and stream parallelism.

Most proposals for exploiting search parallelism is the division of the clause data-
£)
. /

base into separate components locating on different memory modules, and initiating

searches simultaneously in thesé components. Examples of these proposals are the sys-

tems described by Warren, Taylor et al: [TLM&4,WAD84]. The problems they

g

-

Zo

[o

\

encountered usually fall into the realm of database‘theory, such as finding the ideal

way to divide the clause database, and controlling communication and computation
) [A ' .
W :

costs (in'a distributed'dabgbase).

2.2. Some Parallel Logic Programming Languages

i
o o Fj," i ot

Bécausetof the separﬁ't”io"n of logicpfrdm control, a logic program basic‘_‘ally needs no
special "language feature for parallel execution. For example, a parallel language can
be defined by replacing Prolobg'sj{’ﬁefb-righ& dépth-ﬁrst search 'Strategy with a parallel
control strat,vg)' without altering Prolog‘sisynta;(‘;\ However, in the light of the princi-

pl,e’ stated by Warren:

.

"Logic programming is programming”

and a special case of the dictum mentioned in Gregory's thesis ([Gre85), page 21):

logic\programming language = logic pr_ogfamming formalism

+ control strategy 3

. “control strategy = evaluator + control language

it is desirable to provide some Con‘grol.constructs in a language so that the programmer

can have a greater control over program execution, and the evaluator can be simpler
. - ‘ . w

and thus behaves more predictably. Co
- . - ’

-

Also, parallel programming is more than attempting to parallelize program execu-

tion; it must bave the ability to respond in real-time to multiple events that occur con-

currently. An ideal: parallel programming language should be capable of expressing

important concepts such as the forms of concurrency, the type of communication, syn-

‘chronization of concurrent actions, and indeterminacy for time-dependent behavior.

Shapiro claimed that the logic programrﬁing_formalisfn embodies all these mechanisms,

the problem is how to uncover. them ([Sh583], page 9).

-

) ‘ 18

Recent researches have led to ihevdevelopﬁment of three parallel logic program-
ming languages: Concurrent Prolog, PARLOG and GHC. All of them are endowed
with the abovementioned expressive power but in different ways. As a prologue, Fig-

ure 2.1 lists the important parallel computational concepts and their counterparts in

these languages.

Conce‘pté _ Counterparts in Parallel Logic Languages
“Process Goal |

System of processes | L ‘Conjunctio"n‘ oﬁggals

Process state Value of argument;\ink\goal‘

Process c‘omputation ' Goal reduction’ |

Concurrency AND-parallelism
~ Indeterminacy. ' " OR-parallelism

Communication , Shared variables

Synchronization Read-only variable in Concurrenﬁ Prolog,

Mode declaration in PARLOG,
Semantics of guards in GHC

Figure 2.1 Parallel Computational Concepts and Their Counterparts

-

2.2.1. Concurrent Prolog

Concurrent Prolog was propoéed by Shapiro [Sha83]. It and its predecessors, the

L 4

Relational Language [C1G81] and the language developed by van Emden and de Lucena

[vad79], in addition to Kowalski's procedural reading [Kow74}, give a behavior reading

o \)
“to logic programs.8 \ E A
— ‘
8 For a program clause:
H <- B, By,..B,, nZ0.

In addition to its declarative readings:H is implied by B, and By and ... and-B_, Kowalski suggest-
ed the procedural reading: to execute the procedure N, performthe procedure calls By, Bo,..., B,.

>
.

19

2.2.1.1. Synta.x'

A Concurrent Prolog progrzxm is a finite set of guarded clauses each of which has

the form: ' _ o

H <' Gl,...,Gm |Bl,..-,Bn. m,nZO.

where the H (clause head), Gi's (guard goal) and Bi's (body goal) are atoms. The Gi's
collectively are called the guard. The B;'s collectively are called the clause body.
When the guard is empty the commst operator " can be omitted. A clause may con-

tain variables trailed with "?", such as X?; these variables are called the read-only vars

\

ables.

2.2.1.2. Semanvt‘igs o

In the declarative reading, the commit operator is treated as an "AND" operator,
i.e. the prog.ram clause reads: H if Gyand ...and G, and B, and ... and B. Opera-

Liobnally, a goal reduction step is depicted in Figure 2.2. [t has the following meanings:

(1) Unify: to reduce a goal; the head unifications of all the applicable clauses are
tried in parallel. Each of which may result in suecess, suspension (sce
below), or failure. \ '

/

Ex €
(2) Guard spawn: the guards of the clauses with successful head unification are
created and evaluated. ‘

.

. (3) Commit: the first clause whose guard 1s i,(l:cccssfully solved is the candidate
(i.e. committed) clause, the goal commits to it and eliminates all its siblings.

< (4) Body spawn: finally, tlie goal is replaced by the committed clause body.

Under this reading, a program clause is a-procedure definition, a goal is a procedure call, and
unification provides a unique mechanism for parameter passing, variable assignment, and data ac-
cess and construction. :

In the behavior reading, the program clause reads: a process H can replace itsell by the system of
processes containing By, Bo, ..., B_. A process terminates by replacing itself with an empty system. Under
this reading, a goal is anafogous to a process, a conjunction is analogous to a system of processes, shared
variables act as communication channels among processes, and unification, in addition to-the abovemen-
tioned functions, also provides a mechanism for message sending and receiving..

——po—

20

Goal
Unify | Unily Unify Unify Unify
\
Guard
Spawn

Body
Spawn - —

| Figure 2.2 A Typical Goal Reduction Step

A unification is suspended if it require:; the instantiation of a rend-only variable.
It is re-activated until the vanable causing the suspension is instantiated by other
comput,at.ions.‘ In most lmplementatlons, this suspension mechanism is realized by
associating a suspension list to each variable. A’goal suspended on a variable is added

into its suspension list. .When-a variable is instantiated, the goal(s) in its suspension

list are de-linked and re-activated. For example:
<- p(X), q(X?).

lC‘Z q(l)
When the goal clause is activated, both the goals p and q try their head unifications in

parallel. However, q cannot proceed since its head unification tries to instantiate the

21

read-only variable X? to 1. As a result, q is added into X's sufipension list and is re-

activated until p has committed to C1 and instantiated X to 1.

A clause is not allowed to bind any %oal variable before commitment. For exam-

i

ple:

<- p(X), q(X7).

[C1] p(1) :- guard] | body].
[C2] q(1) :- guard2 | body?2.

As before, the head unification of q will cause q to be suspended on X. The head
unification of p binds X to 1. However, since C1 has not yet committed, this binding is
locally recorded in C1's-environment.8 When guardl is solved, Cl's binding for the
goal variable X is unified with that in the goal clause’s environment, only if this
environment unification succeeds will p commit to C1. After Cl's commitment, the

binding X=1 is visible in the goal clause, only then can the suspended goal q be re-

}

activated.

To support. Concurrent Prolog, the unification algorithm is extended to bandle
read-only varia%)les [Lev84‘,Sha83], and multiple OR-par'zfllel environments are main-
t:'xined for the épplicai)le clauses to record bindings made locally to a goal variable.
The commit operation hence involves.three steps: (1) environment unification for goal
variables; (2) if step 1 succeeds, eliminate the committed clause’s siblings; (3) if the
commitment in step 2 instantiates variables with pending goals, re-activate those

.o

goals.

9 A (binding) environment is allocated to each clause invocation. It is a set of memory cells
containing variable bindings. oo S

\

22

" 2.2.2. PARLOG

PARLOG was proposed by Gregory [Gre85]. Its most notable feature is the mode
declaration which not only enables synchronization, but also avoids the needs of full '

unification and multiple environments for goal variables (c.f. Concurrent Prolog). The
i

language has two components: the single-solution subset and the all-solution subset.

These two components are interfaced by PARLOG's set constructors. The all-solution

subset is merely included to allow pure Horn clause programs to be written in PAR-
LOG to solve all-solution problems; it is excluded from discussion in this thesis. The

single-solution subset (hereafter known as PARLOG) is described below.

&

2.2.2.1. Syntax

A program in PARLOG is a finite 3et of procedures. Each procedure is a sequence

of guarded clauses with the same predicate name and arity and separated by the sym-

‘bol "." or ";". A guarded clause in PARLOG has the form: .
' ‘ v

‘H <-Gl and ... and Gm:Bl and ... and Bll m,n=0.

where ":lmd" is cither the symbol "&" or ",". The H (clause head), Gi's (guard goal)
and Bi's (body goal) are atoms. The G;'s collectively are called the guard. The‘Bi’s

collectively areicalled the clause body. The symbol ":" is the commit operator.

A mode declaration for a predicate symbol P has the form:

mode P(ml,...,mn)

——

’

where each m; is either the symbol "?" (input) or """ (output). Each procedure has one

and only one mode declaration.

23

2.2.2.2. Semantics

Declaratively, each of the commit operator "™ and the symbols "&" and ", is

treated as an "AND" operator. Hence_t’h‘e_’ program clause reads: H if G, and ... and

[y

Gn and B andand B. Each of the symbols ";" and "." is treated as an "OR"

-

operator, so the clauses in a procedure are disjunctive.

Operationally, PARLOG provi.des-"?:; sequencing facility in goal evaluation and
clauvse selection. The sy~mbo|s "&" and "," denote sequential AND and parallel AND,
respectively. They have no syntactic .precedence(parentheses must be used to resolve
ambiguity if they are mixed. For example, to evaluate the conjunct.ion

(AI,A‘Z)&(‘A3,A4), Al and A2 are first evaluated in parallel, if both succeed then A3

and Ad are evaluated in parallel.

The symbols ;" and "." denote sequential OR and parallel OR, respectively.

has a higher precedence than ™;". For example, if the followin'.g proéedure is invoked:

Clausel;) . .
‘Clause?.)
Clause3;

Claused.

Clausel is attempted first. If it fails, Clause2 and Clause3 are attempted in parallel’

If both fﬂil. then Claused is attempted.

~

The mode declaration for the predicate symbol of a procedure constrains the head

unification in two ways:

(1) The input constraint: the ubification substitution for each input argument
(trailed by "?") must be only an input substitution (see Section 1.2.3).

(2) The output constraint: each output argument (trailed by """) in the goa‘l :
must be an unbound variable at head unification time. |

N

A ‘unification violating an input constraint is suspended, that violating an output

constraint causes a run-time error. d

24

Unlike Concurrent Prolog, PARLOG's means of synchronization is attached to
procedures, instead of data. When a procedure is invoked by a goal, its clauses can be

classified into three categories:

(1) Candidate clause: if both the head unification’s input matching!® and guard
evaluation succeed.

(2) Non-candidate clause: if either the input matching or the guard evaluation
fails. ' :

(3) Suspended clause: if either the input matching or the guard evaluation is
suspended, but neither of them fails.

The goal fails if all its clauses are non-candidate,'is suspended if there is no candi-
date clause but some suspended clauses, and succeeds if there is at least one candidate
clause. In the last case, the goal commits to the first cahdidate clause (i.e_. the commit-
ted clause) by replacing itself witil the committed clause body, and aborts the commit-
ted clause's siblings. The bhead unification’s output matching (i.e. unifications of the
output argil'ments) and clause body are then evaluated. This may instantiate some

variables and cause the re-activation of some suspended clauses.

*

Since the input/output argﬁments are fixed by t-heh unique mode declaration of
each procedure, there is no need to support full unification in PARLOG. .ln fact, eaéh
PARLOG program P will be translated into a Kernel PARLOG program _KP before
execution. In KP, there is no mode declaration. All the head arguments of a clause
are replaced by distinct variables, and the input and output matchings are expressed
in unification primitives and n-ddc.d to the original guard and clause body, respectively.
Hence after the translation, the input matching in P is evaluated in parallel with the
guard before commitment, and the output ﬁlatching is evalugﬂed in parallel with the

clause body after commitment. : .

10 A head unification's input matching is the unification of the input arguments. It succeeds if
the unification of those arguments succeeds without violating the input constraint. It is suspended
it the unification succeeds only when the input constraint is violated. "It fails if the unification
fails.

25

As in Concurrent Prolog, a clause must not instantiate a goal variable before
commitment. Since in KP the output matching is evaluated after commitment, the
only risk of binding a goal variable is in the guard evaluation. However, a compile-
time algorithm can be devised to verify that a guard is safe (i.c‘v. it does not bind any -
goal variable). Hence if a PARLOG program P passes the safe-guard check, its
corresponding kernbel PARLOG program KP will not bind any goal variable before
commitment; this avoids the need to support multiple environments for a goal vari-
able. The intcrested reader is referfed to Gregory's thesis [Gre85] for more saetails in

PARLOG’s unification primitives, the features of Kernel PARLOG, and the algorithm

for guard safety check.

2.2.3. GHC

GHC (i.e. Guarded Horn Clauses) was proposed by Ueda [UedSS]. its most not-
able feature is the idea that only the guard is sufficient for describing concurrent com-

putations.

2.2.2.1. Syntax

A GHC program i3 a finite set of guarded Horn clauses each has the form:
u,
H <-G1,...,Gm|Bl,...,Bu. m,n=0.

The H (head), G;'s (guard goals), and Bi's (body goals) are atoms. The symbol "I s
the tru.s't operator. The part of the clause before "[" (i.e. the H and Gi's collectively) is

 “called the guard, and the part after "I is called the clause body.

26

2.2.3.2. Semantics

GHC's semantics are defined by the suspension rule and the trust rule. The

suspension rule is stated as follows:

(1) [Synchronization] Any piece of unification invoked directly or indirectly in
thp guard cannot bind a variable appearing in the invoking goal with (i) a
ndu-variable term or (ii) another variable appearing in the invoking goal.

(2) [Sequencing] Any piece of unification invoked directly or indirectly in the
clause body cannot bind a variable appearing in the guard with (i) a non-
variable term or (ii) another variable appearing in the guard until the clause
is trusted (see below).

A unification violating the suspension rule will be suspended. As a result, no goal
variable ‘can be bound before the clause is trusted. Hence GHC, like PARLOG, also

does not need to maintain multiple environments for a goal variable.

The trust rule states 1 at: a clause whose guard is successfully solved can try to
be trusted. To be trusted, it must first conﬁw that no other clause in the same pro-
cedure has been trusted for the same goal.™If confirmed, it is trusted indivisibly. The

evaluation of a trusted clause body may bind some variables in the guard, and thus

re-activate some suspended unifieation.
7y ’

A set of goals is solved if it is reduced to an empty clause using only trusted
clauses; hence after a clause is trusted all its siblings are useless and can be eliminated.
- The original semantics of GHC do not have the concept of failure. However, failure of

unification can be readily introduced into the language: a set of goals fails if it con-
tains or derives a unification goal (e.g. "=", see below) with non-unifiable arguments.
Also, a goal proved to have no trustable clause can be detected as fail (under the

closed world assumption, i.e. the assumption that the program contains all the relevant

information about the problem).

As an example, consider the following program:

<- p(X), q(X).

27

Ci
C2

plok) <- true} ...
q(Z) <-true|Z=ok.

The predicate "true” is used in GHC tofdenote empty set of guard or body goals. The
predicate "=" is a predefined predicate which unifies its two arguments. C1 cannot
instantiate the goal argument X since this will violate the suspensiortrule. After bind-
ing X to Z, C2 tries to be trusted and succeeds. It can bind X to "ok” after it is

trusted.

Finally, it is worth mentioning that in GHC any kind of evaluation pattern is pos-
sible .jgs'lgng w the two rules are not violated. For example, the unification of the head
arguments may be executed in any order or even parallel. The head unification and
gu'ard evaluation can be donc in any order, e.g. in-parallel. Even the clause body

evaluation can start before that clause 1s trusted. ’ .

154

2.2.4. Comparisons

2.2.4.1. Comparison among the Three Languages

All of the three languages share the features of guarded clauses and committed
don't-care non-determinism to implement stream parallelism, and as a result can only
solve single-solution problems. Howlcvcr, there are several major differences among
them. The first is the means of suspension in unification: in Concurrent Prolog, it is

)

attached to data; in PARLOG, it is attached to prt)cedurcs; in GHC, it is determined

by the suspension rule. \

/ .
Secondly, they use different unification algorithms: in Concurrent Prolog,

unification is extended to handle read-only variables; in PARLOG, unification is dis-

solved into several primitives; in GHC the full unification is employed.

~ Lastly, they have different attitudes to guard safetyl Concurrent Prolog does not
detect unsafe guard, but provides multiple environments and performs environment

unification at commitment. In PARLOG, unsafe guard is detected at compile time. A

. 28
R r’ >
‘ = v
program with unsefe guards is rejected b3f the detection algorithm. In GHC, unsafe
guard 19 d.ct,cctcd at run time. Before the clause is trusted, any unification trying to
bind a goal variable is suspended. However, as pointed out by Gregory [Gre85], all
these methods are n:n satisfactory. Concurrent Prolog's multiple environment
mechanism incurs considerable run—_time ov?rheads, and is claimed to have semantics
¢
problems: PARLOG's comipile-time detection algorithm is insufficiently discriminat-
ing; it may sometimes reject a program that actually has safe guards. Also, even a
-
perfect compile-time algorithm requires the check to be done in a global®way; thus
making separate compilation difficult. GHC's run-time check may be computationally
expensive unless special-purpose architectural support is provided. F!in(ling an efficient

run-time safety check algorithm is therefore still an open question in the area of

language design.

2.2.4.2. Comparison with Parallel Prolog

While parallel Prolog (i.e. Prolog using a parallel control strategy) is inferior in
. describing concurrent compukatious,-it has two advantages over the three languages.
Firstly, because of its don't-know non-determinism, it can solve all-solution problems.
Also, it can find a solution provided one exists, while such guarantee is not provided in
the three languages. As an example, consider the following Concurrent Prolog pro-

gram:

<-p(X), q(X?).

Cl} p(1).

C2| p(2).

C3| q(1).
Whether the executjon of this program succeeds or fails depends on which clause, Cl
or C2, commits first. The implication of the commitment in the three languages is
that: either the committed path leads to a solution, or, if it does not, there is no solu-

tion elscwhere in the AND-OR tree. It is the responsibility of the programmer to

1

p3)

. Yo B .
enforce this property. Despite these restrictions, the t,hrc\ languages are shown to be
, . . r \,W .
simple but powerful, and cnjoy a large variety “of application areas

’

[CIG&4,ShTR3, UedR5].

2.3. Summary

We have described four forms of parallelism in logic programs and with each
form, identifiecd their natures and the problems of exploiting them. The desired
features of a parallel logic progr:xmmin}'I:\ngu:\gv, namely concurrency, communica-
tion, synchronization and indeterminacy, are mentioned. Three of the recently pro-
posed parallel logic programming languages, namely ('(;ncurrcnt Prolog, PARLOG and
GHC, are introduced and comp.:m‘d with each other and with parallel Prolog., Appen-

dix Al contains some example programs written in the three languages.

As the sources of parallelism in logic programs have been identified and some
parallel logic programming languages capable of describing concurrent computations
have been devised, the next important questions should be: How to implement those
forms of parallelism on parallel architectures? How to support the parallel execution
of programs written in Prolog and those parallel logic.,programming languages’

Chapter 3 is a survey of the research attempting to find the answers.

Chapter 3

Parallel Execution Models of Logic Programs

o F

Parallel execution of-logic programs is an active résearch topic in logic program-
ming.; it involves the development of parallel execution modelskal;d th}eir realizz’iiion on
parallel archltecburcs Many parallel executlon models, for both Proleg, ns variants .-"
and Lhe three parallel logic programmmg languages menmoned in Chagter Q have
rccently been proposcd and they have various scores on the Just,lﬁ.cauon factors stated
in Section 1.1.1. In this chapter, we will study and justify the typical ones among
them. These mhodels can be broadly classiﬁ;d into five dlasses: the communicating-
processes appw‘toa;:h, tl;e work-pool approach, the reconciliation approach, the datgflow-

*

based approach and the reduction-based approach. S

3.1. The Communicating-Proceéses Approach

A natural approach to represent the parallel computation in a logic program is to

organize the concurrent components of co“mputations as communicating processes,
ﬂveach notmnally allocates a processor of lts own. The processes share no common
mcmory, but communlcate W|Lh one another through message passlmg As the
‘\ND/OR t,rce grows and shrlnl\s during pfogram executrxon the procéss structure (l e.
) Lhe proccqses in the system and’ thelr mLeractlons) changes accordlngly The exccutlon .

models in this approach can be further divided into two_subclasses: those™ employmg

homogeneous processes, and those employing helerogeneous processes.’

30

+ < . Attt ! .
e '

. S \ .]
3.1.1. Execution Models Employing Homogeneous Processes

, o o . LI
A typical example in this subclass is Bowen's model for interpreting Prolog pro-

grams (Bow82]. Figure 3.1 g'iveslthc prpcessu:stru(é/turc of the model. The USER

AGENT interacts with human ﬁsers and generatés problems for the rest of the system.
The database machine DBM manages the'clause database. The SCHEDULER allocates
E\PLORER*t to problems and coordinates the EXPLORERs and the U%ER AGENT.

The EXPLORERS are Lhe homogeneous processes searchmg the AND/OR tree, each of

t,h‘cm\exccutcs a version of van 'Emden’s algorithm [van81]. Basically, an@PLORLR
v

tries to verify that its current tree node is an empty clause. If thé"verification

* succeeds, it informs its parent of the success and awaits further instructions. Other-

wise, it expands the current node by generating the node’s sons, and requests the

SCHEDULER to allocate-an EXPLORER to each son. It may, recurse to cxploreqa sub-
O .
tree rooted by a son, if no EXPLORER is available. When no son of the current node

=3

can be generated, the EXPLORER fails and informs its parent of the failure.

EXPLORERs. .

HUMAN USER

USER AGENT

SCHEDULER

user interaction

<«———» communication path

Figure 3.1 Process Structure of Bowen%g Model

32

Three kinds of messages are passed among the EXPLORERs: the stop messages
frofn parént.s to sons, and the failure and success messages from sons to parents. The
model can exploit both AND-parallelism and OR-parallelism; for the former it depends
on the explicit notations of the language (like those in 1C-Prolog) to tell the interac-

tions of the different AND-branZhes. Search parallelism is also possible if the DBM

1
comprises several components.

Another example is the PRISM nxt;dcl [KKM83] which has been developed at the
Lln{versity of Maryland and hasibeen implemented on ZMOB, o paralle‘l\ machine coﬁ-,
sisting of 256° Z80A microprocessors. The PRISM model aims at the'h‘;ievelopment of
distributed Al problem solvers, and is based on ‘Prolog gnriched with various co.nu.'ol
annotations. It hz?.s three c?mponcnts: the problern solver (PS); Lhe_éz'tcnaionul, data-
base (>EDB) that consists of all t.he’atomic grc;uhd assertions, and the intentsonal data-
basé ([DB) th;'lt consists of all the rules and non-EDB asscrtions v(i.e.‘ those having
complex terms and var{ablcs). The PS component administers the search space deﬁnéd
by the AND/OR tree; wh’ile the EDB/IDB comp’onents store the clauses and perform
inifications. The Separation of the clause database into EDB and IDB enables the

application of different unification algorithms for efficiency pux;poses.

At system initialization time, L}ie* pool of processors in ZMOB is divided into
three groups: the PS machines (PSMS),lthe EDB and IDB machines (collectively known
as the database machines or DBMs). Each of the homogeneous processes searching the
AND/OR tree is executed on a PSM. Ineach cycle, a PSM pf‘ocess choosels an expand-

. . “ \ .
able goal clause iu ihggiree, selectd one or more atoms from it, and sends'them to the

!
&

=y
DBMs for unifications. The DBMs return all the necessary information needed to gen-

erate the successors of the goal clause. While waiting for the results from the DBMs, a
. - A : ’ v . - . .

PSM process can start expanding other goal clauses. During the expansion of-the

AND/OR treey a new PSM process can be started every time an OR-branch or an

| independent AND-branch (i.e. that shares no variable with others) takes place. This
n é,’?‘l ’

e

?

33

results in a PSM process tree whose nodes are autonomous except for the parent-child
‘ 4
relations; hence interprocessor communication is necessary only when answers are

available. The model can exploit OR-parallelism, independent AND-parallelism, and

search parallelism.

3.1.2. Execution Models Employing Heterogeneous Processes

Unlike the models in Section 3.1.1 which merge the controls of AND/OR parallel-
ism into a single process, the exccution models in this subclass employ different kinds
of processes to search the AND/OR tree, so that the algorithm handling cach form of

parallelism can more easily be identified.

" A typical example is Conery's AND/OR Process Model for interpreting Prolog

programs [Cbn83]. 1t has two kinds of processes: the AND-processes and the OR-
O, : .

\\\\yrocqsae.’. The former handle AND-parallelism, whi!c the latter handle OR-

éarallelis‘m. Figure 3.2 depicts the alternating levels of AND-processes and OR-

processes in a sample AND/OR. process tree.

An OR-process controls the evaluation | the applicable clauses for an atom,

-

- and relays the results to ifﬁt‘pﬁre,n‘tﬂAND-procés " An AND-process controls the evalua-
tion of a clause body. It ha.:é {‘\'v.o modes of execution: the forward ezecution mode
spawns descendant OR-processes to solve the at»o'ms;‘ in the clause body and schedules.
their c,{ccut,io.n, while the backu'ard'_ezecution mode performs backtracking in a parallel

" context, but needs quite expensive bookkeepings. Besides the success and fail mes-
sages, there are other kinds of message passing among the pro\c;sscs: a alar! message i3
used to invoke a descendent, a ‘redo message is used to ask for a new answer from a
descendent, and the reset and cancel messages are used by an AND-process in back-

tracking to reset and abor} the executions of the aflected descendant OR-processes,

respectively. The model can exploit both OR-paraIlelisf{ and AND-parallelism.

e 34

To solve: Ay Ag,... ;A

Using: ‘
B<-B|,B,....,B
C<-C;,Cy,.-..Cpy

H<-H, Hy....H,

Suppose:
Ay unifies with B,C,....H

€y Cn O AND-process
it - oTT D OR-process

Figure 3.2 A Sample AND/OR Process Tree

3

a

Another exampilc. is the distributed Concurrent Prolog interpreter sketched in
Shapiro's paper { [Sha83], pages 12-14). The Port Prolog execution model [Lee84] real-

izes those ideas on a quasi-parallel environment. The model uses three kinds of

N

" processes: the conjunction-processes, the goal-processes and the clause-processes. Fig-

ure 3.3 depicts a sample process structure in Port Prolog. £

Given a conjunction AI'AQ"“'Am' the conjunction-process'creates a §oal process
- for every at%x’n A-:isism. A goal process finds the solution of its atom A by creat-
ing a clausc-process for each clause whose head has the same predicate name and arity
as A;. Civen a cla‘ii'se C and apn atom Aj, a clause process tries the head unification
between C and A;, and if successful, spawns a conjunction-‘i)focess to solve C's guard.
The first clause process to inform its parent goal-process of successful guard evaluation
becomes the candidate clause-process, all the ot.her clause-processes are then (ies-'

troyed. The parent goal-process sets up the connection between its father

conjunction-process and the candidate clause-process and then destroys itself.

36

\ieanwhile. the candidate clause-process spawns a conjunction-process to solve the

-

clause body and sends the rcsult to its grandparent conjuncuon process. A

con_]unctlon process succeeds if all its candidate clause-processes succeed, and fails if
any of them fails; the result is, in turn, communicated to its parent clause-process (f
any). The messages transmitted among'tbc processes include both control (e.g. suc-
cess, f;ul or commit) and variable binding (e.g. new binding, need binding) information.

The model, if xmplemented on 2 parallel architecture, can exploit both AND-

parallelism, committed OR-parallelism and stream parallelism.

i

v

AI'A’.Z""‘Am To solve: Al,l\g,.-‘,A
\ Using;:
- (1)B<-By.... Bk ‘Bk+l""'nl'

m

2)C<-Cy... .C. lCH_l,....C".

A '

m .
2 (H<-H,...H ’”|+l"“'"q'
'''' Suppose:
AQ unifies with B.C,.‘..,ll
* e Aa.(2 o Aq(r)

Cl""‘Cj Hl"' ,H-l conjunction-process

goal-process

clause-process

>O0

(%
- - - connection after
- commitment

Figure 3.3 A Sample Process Structure in Port Prolog

—T

The AND-OR Tree Model for PARLOG ([Gre85], Chapter 8) can also be.
classified into this subclass. In this model, the process structuré is not a hierarchy of
alternating levels of AND/OFR processes, but is c“optrolled by the sequential aﬁ*(} paral-

lel AND/OR operators {i.e. "&", "7, " and "."). Tﬁe model can exploit both AND-

paralleliém , committed OR-parallelism and stream parallelism.

3.1.3. Evaluation of the Approach

While the representation of an AND/OR tree as covmvmunicating processes is
natural and has a high parallelism potential, execution models in this approach usually
encounter the following difficulties. Firstly, mzyﬁy 'p'r‘actical problems must be satisfac-
torily solved before the models can be (y:[fcct,ive‘_ltyqrealized on their target architectures;
usually some conventional distributed systems. These problems include the optimal
allocation of processors to processes, the kandling of unexpected commuunic ation pat-
terns, etc. Also, the overheads of the.models, in terms of the management of complex
data structures, the message.costs and the process synchronization delay (for some

modelé), are quite high. .
L

3.2. The Work-Pool Approach

T\he'execution models in this approach partition the AND/OR tree into computa-
tion units and store them inv a work pool which is commonly accessed by a set of
processes. The processes advance tl;g concurrent computations independently (vs.
message passing); each proccés repeatedly selects a unit from the pool, performs some

;_3,§omputa’tions, and adds the generated results (if any) back into the pool. The con-<

currefft-computations complete successfully only if the work pool is empty.

3.2.1. The OR-Parallel Token Machine Model . -

A Lypicﬁl example is the OR-Parallel Token Machine model which exploits OR-
parallelism in Prolog program [CiH84]. The model, as depicted in Figure 3.4, consists

of atoken pool, a set of processors and a storage.

The storage is divided into a static memory for user program and a dynamic
memory for binding environments and other management information. The processors

execute computation units prescribed by the tokens and genérate new tokens. The

37

N S A .
derivational relations among tokens are implicit in the token naming scheme: A token

contgins references to an atom, a context, a binding environment and a con,u'nuah';n
frame. The atom reference refers to an-instruction stored in the static memory. ‘l‘hc
con;'ext and binding environment references collectiveily identify the set of variables
used by the prescribed computation unit. The continuation-frame reference refers to a
continuation frame representing 'Lh;e untried siblings of the atom. The sequential
nature implied by the continuation frame disallows the e:xp_loimtion of AND-
parallelism and stream parallelism. The target architecture of the model is a system
containing a set of processing elements that communicate via an order preserving
interconnection network. A sketch of implementing the model on a ring network is

provided by Cicpielewski and Haridi [Cili&4]. While featuring demand IoaS balancing

and abortion propagation, the sketch secms to be realizable with reasonable efforts.

.

v
D> [—:_D token pool

> b
;
- processors
static memory dynamic memory
program binding environments,
code storage management info.

Figure 3.4 The OR-Parallel Token Machipe Model

38

3.2.2. The Goal Rewriting Model

-

Another example is the goal rewniting model on which the PIE (Parallel Inference
Engine), a highly parallel architecture containing 100s ~ 1000s inference units (IUs), is
based [GTM84]. The computation units in the goal rewriting model are goalframes. A
goalframe is a partial result in the derivation of an empty clause; it is the combination
of an intcrmediaté‘ goal clause énd the substitutions produced by the prévious
uuiﬁcatiousﬁ.'\ For example, F1gure 3.5(a) depicts a.go#lframe resulting from t,wc‘) con-
tiguous reductions of the initial goal clausé G using thf_clauses C3 and C1. The size of
a goalframe increases as the comput:;tion proceeds, however, it can be reduced by the
removal of information unnecessary for later unifications. For example, the goalframe
in Figure 3.5(a) can‘ be reduced to that in Figure 3.5(b) by removing successful

unifications (represented by full circles) from it.

-

[G] <- subl{[aiX],[Y)).

(C1] app((}X.X)

[C2] app([UNX].y.[UR]) <- app(X.Y'2).
1C3) subl(X,Y) <-app(U.X,V),app(V.W,Y).

w

app

(b)

Figurc 3.5 A Goalframe and its Reduced Form

The model is primarily aimed at OR-parallel execution of Prolog program. An IU
in the PIE is composed of an Unify Processor (UP), a Definition Memory (DM) that

stores all the clauses, a Memory Module (MM) that stores the goalfrahles, and an

39

Activity Controller (AC) that creates and maintains part of the inference tree (see
below). The basic operation of an UP is the rewriting of goalframes: each UP re;;at-
edly inputs a goalfmmbc from the MM apd selects an atom from it, then unifies the
atom with the heads of the applicable clauses read frotI; the DM, and finally generates
the new goalframes (if any), reduces them, and adds them into the MM. The goal-
frames are iudépendent except for derivational relations which are recorded in the
inference tre‘cv(vs. the token nﬂaming scheme used in the OR-parallel token mnc,hine;),
An internal node of the inference tree recordé a relation among goalframes; 'while a leaf
node either refers to a goalfram’e (goal-node), indicates failure (fail-node), or has spe- |
’cial function (e.g. NOT). Besides OR relationship, the inference tree is claimed to be
capable of supporting independent-AND relationship, negation as failure, and the
Kg’uard concept (hence can be adapted for implementing Concurrent Prolog, etc). The

A}

major practical problems are the efficient activity control inyolving the distributed

inference tree in the ACs, and load balancing involving the goal pool distributed
among the MMs. Figure 3.6 shows an abstract view of the model. Rc\iults of simula-
“tions and pilot implementations' of the model are provided by ,Moto-oka, et al.

+

(MTAR4).

lafetence Tree
ACs
MR M L
) J 1 : [
'
 [es] N
Goal Pool

g O O () omwen
, F = fail-node

Figure 3.6 The Goal Rewriting Model on PIE

3.2.3. Evaluation of the Approach

The benefit of this approach is that OR-parallelism is easily controlled thr?ugh
the management of the work podl; where (liﬂereflt schﬂguling strategies, such as
depth-first, breadth-first, or some mixed. schc‘mes. can be employed to direct the
growth of the AND/OR tree. However, unrestricted AND-parallelism, which requires
communication and coordination among-the processes, is quite hard to exploit. A
simpler task may be to support the parallgl logic programming languages mentioned in
Chapter 2 in this approach, where the AND-parallelism and stream para”e&sm are

severely constrainted on order and pace by the synchronization mechanisms {e.g. the

read-only variable). ~

41

3.3. The Reconciliation Approach

The example exccution model in this approac!; is the AND-OR Proof Procedure
proposed by Pollard for parallel execution of Horn clause programs ([Pol81], Chapter
8). The model performs a completely unrestrained parallel traversal of the ANb/OII
tree; scarching for compatible sets of branches. In parallel with the ANDFOR tree
traversal performed by a set of processes, there is another set df administrative
processes performing the tasks of reconciliation and pruning. Basically, the unification
substitutions generated in different branches of the AND/OR tree are reconciled to
produce filters that identify sets of mutually incompatible branches. Based on the
AND/OR tree structure, the filters are promoted and reduced to derive information

leading to the pruning of unfruitful branches. Figure 3.7 is a simple example to clarify

the ideas.

| Rcf(;rring to.the scopes of the various bindings for the variable Z. {b} and {i} are
disjoint (i.e. most recent common ancestor is an OR-node) whereas {h} and {j}, {i} and
{j} are conjoint (i.c. most recent common ancestor 1s an AND-node). Bindings in con-
joint scopes must be compatible, hencve two reconciliations are set t'o progress for the
scopes {h, j} and {i, j}. trying to reconcile the components {Z=1, Z=3} and {Z=2,
7=3}, respectively. Obviously both the reconciliations will fail, so two filtcrs {h, j}
and {i, J} are developed. Since h and i are the only ways to solve the OR-node d, the
filters can be promoted to {d, j}. However, since any solution including the AND-node
b must also include its descendants {wherc ne of them is d), the filter can be further
prdmoted to {b..j}, As b is an ancestor of j, it can be removed from the filter, reducing
the filter to a singleton set {j} which indicates that the branch leading to node j can be

@

safely prune?l.‘ .

goal clause and program ' variable , binding {scope}

<- goal(Y,2}). U Y {b}

goal(Y,Z) < p(U),q(V),R{U,V). \% 7 (b}

" N wr oY

pl2). X Y {k}

all). : Y 1AM 2 (g), 2 (k)
a2). 2 1 {hh, 2 (ih 30}
1(W,3) <-.... -

(X, X).

s goal(Y,2)
U=Y, v=2

b: goal{U V1)

I p(1) g p(2) hiq(l) @g(2 W3 ke r(XXX)

A\

Figure 3.7 The Generated Bindings in an AND/OR Tree

3.3.1. Evaluation of the Approach

While the AND-OR proof procedure can achieve the maximum possible (AND-,
OR-. and stream) parallelism from any pure Horn clause program, it has the risk of an
explosion in parallel activities, and its computational overhead (e.g. aset of adminis-
trative processes is associated to every generated variable) is so high that no efficient

realization on a present-day architecture is feasible.

43

3.4. The Dataflow-Based Approach
'

The dataflow model is perhaps one of the most promising models for parallel com-
putation. The basic idea is the representation of computation as a dataflow graph: a
directed graph whose nodes represent the operators while the data are represented as
tokens flowing on the directed arcs connecting the nodes. The lack of global memory
and the data-driven characteristic (i.e. an operator is enabled once all its input tokens
have arrived) of the model allows a high potential for parallelism [TBH82]. A simple
computation step is illustrated in Figure 3.8 that shows two dataflow graph segments
for the exccution of {(3+5)*(7-12). The dataflow model was originally designed for
functional programming, but also has similarity to the goal driven nature of lagic pro-
gramming; this leads to the proposals of various dataflow-based parallel exccution

modely for togic programs.
o

- .

T

Figure 3.8 A Simple Computation Step in the Dataflow Model

A typical example is Halim's data-driven model which exploits OR-parallelism in
pure Horn clause programs [Hal86]. Figure 3.9 gives an abstract view of the model
where clauses are compiled into dataflow graohe and the data flowing on the directed

arcs are binding environments (BEs). A Solve node is associated with the pure code of

.

) 44

‘a goal, and is viewed as a function which maps an input BE into a set (organized as a
4" :
stream) of BEs, one for each alternative solution. Figure 3.9(a) is an example of a

‘Solve node associated with the pure code p()&Y). Wkhen invoked by an input BE E1, .

the node will generate .Lﬁe set of BEs E2 and E3 as its output. Using;,x,"he solve nodeé as
a building block, the model ‘can rep;'csent goal clauses, rules and assertions as shown in
Figure 3.9(b). The representation does not supp(;rt dynamic goal selection, thus disal-
lowing the exploitation of AND-parallelism and stream parallelism. The Unify node is

a primitive operator; it has the clause head :x;s its constant argument aud is activated
by the arri‘val of a goal token (c;nstrucL_ed by an A-:tiv ste nodr, see below) Its func-
tion is to construct o BE containing the bindings znifying the clause head with the
incomin ‘('goaI: The Solve node is not a primitive oparator; its structure is shown in
Figure 3.9(c). The pure code of a gaal G, associated witn the solve node, is a constant

argument of the Activate node. The function of this primitive operator, when enabled

by the activating BEE, is to construétt the goal G.E (i.e. G with E applied to it) and

send it to each of the applicable clauses. A clause in 3.9(c) is represented by a pro-
I B .

cedure call Proc+j that corresponds to either {ii) or (iii) in 39(b) All the clauses are

!

invoked by the goal token G.E cor—lcurr'é'htly, thus exploiting OR-parallelism. Each

invoked clause Proc-j evaluates Aa_‘streavm of returning BEs {Ei}j which are fed into the -

w

Ertract-output ode whose function is to extract output bindings from the returﬂ'fng
BEs.and assimilate them into the activating BE E to produce the solution BEs.

A
!

y

(a)

Q

program binding environment
p{tom,john). El = {X=tom, Y=UNBOUND}
p(tom,sam). E2 = {(X=tom, Y=john}

i E3 = {X=tom, Y=sam}

{b) . . .
: (i) <-P.Q,..R. " |goal clause|
(i) H <- Al""‘An‘ {rule}
{i1i) H. [assertion]
rl_n.}-)l-l-b-wl _ ri;p_u; ﬁ.) :—iap_ui ﬁ, riap_lll—ﬁ| riEp.u{ 1,
| S Loo-J Lo ad Lopad Lep—Jd
El H H
Unify Unify |-
L DR B L
joutput youtput) joutput 4
TR | Lem ot ; [|

-=- =T ="
joutput voutput iy

| I | Lo

(b)

,rinput _,:

Solve-G

G
[

Activate

YE.._E/KV

Proc-1 Proc-n

{E}
{Ek(m—/’ .

Extract-
output

joutput
L d

(c)

Figure 3.9 Halim's Data-Driven Model
Lo, . [] .

Another example is the OR-parallel model proposed by Umeyama and Tamura

A

[UmT&3]. It is very closed to Halim's model but uses a different set of primitive opera- .

tors. A comparison between the two models is provided by Halim "[Hal88]. Their

major similarity is the treating of alternative solutions as stream of tokens, while the

major difference is the abandonment of dynamic tagging in Halim's model.

The dataflow architecture research group in ICOT!! has recently proposed the

11 [nstitute for New Generation Computer Technology, the organization coordinating the

Japanese Fifth Generation Project.

:

4
P4

46
{
mechanisms for executing parallel Prolog and Concurrent Prolog programs on a
dataflow architecture [ISK85). The description is made in a lower level wAith emphasis
on architectural aspects, token format, variable representation, etc. In this proposal,
the unify operatﬁfurthcr expanded into a dataflow érapl; so that parallelism in
‘.
unification is also exploitable. An gperand in the model may be a'goal, or a finer
object such as consﬁant, variablc., &Lc. Structure data are -‘storc;d in the structure
memories to minimize copying overhead and redundancy. A clause is, as usual,
represented as a dataflow graph. OR-parallelism is exploited by concurrent invoca-
tions of applicable clauses. The stream merge pr:‘rniliéea are used to merge the alterna-

tive solutions into a stream in parallel Prolog, while the semaphore primitives and

erporting mechanism are used to achieve the effect of commitment in Concurrent Pro-

\

. ¢ ¢
log. ANBeparatfetrsorean also be exploited, but syntactical notations are needed to

aid the compilation of a clause into a dataflow graph.

Other examples include Bic's model where all predicates are restricted to a binary
form [Bic84], and Wise's model which is basedon the concept of dframe, a centralized -
data structure including all the necessary information to solve a goal [Wis82).

skétch of a dataflow implementation for GHC is provided by Ito et al. [KKI85]. -

3.4.1. Evaluation of the Approach

iy

While a dataflow-based execution model may be the most sujtable scheme for

s

. v’
explomng maﬁsy\c parallellsm in loglc programs, a number of dlfﬁcultles reveal them-

P 1._

«cl\es ‘when anfactual implementation is attcmptcd Flrstly, if the model is too fine-

‘grained, what is gpia{gd through parallelism exploitation may be lost through commun-

S

¥ jcation overheads unless the underlying architecture pravides sufficient supports. Also,

if the target applications need to manipulate a large amount of structure data (e.g.

language processing), the provision of structure memones shared access by all the pro-

PPN

cessmg elements is necessary; this will mtroduce latency in accessing structure data

&3

and incur extra management costs.

A

3.5. The Reduction-Based Approach g

The execution models in this approach are usually based on the graph reduction
computation model where a computation is viewed as a nested expression whose execu-
tion unfolds to a graph of subexpressions. As various portions of the graph are

evaluated, they are replaced by their intermediate results until the computation fails

or the final result is obtained. Various steps in unfolding and reducing the graph can

be c:.rrie ‘Mﬁ:ﬁs’? gallel [TBH82]. .. N
tedrewt L .

A Y - -
~An example is the AND-tree model of PARLOG where the exccution of a PAR-
LOG program, after compiled into this model, conforms to an AND-tree process-struc-
ture ([Gre85], Chapter 7). The AND-tree process structure can be represented on

ALICE [DaR&1], a graph reduction architecture, by a tree structure of reuwritable pack-

. . . . !\/‘l
els. The format of such a rewritable packet is shown in Figure 3

y -

‘The 1D field

uniquely identifies the packet, the Function field cootains the ction of the

corresponding procc-s:ix(‘c.g. EVAL), the Arg-List field contains the identifiers of the

argument packets, and the secondary ficlds are used for control purposes (e.g. Ref-

Count counts the number of sons, Signal-List can be used for goal
' ’ '?;:‘f
suspension/activation). :

’ .
-~
\ y
-

S

Primary Fields
|

ID | Function Arg-List Status Ref-Count Signal-List

!
Secondary Fields

Figure 3.10 The Structure of a Rewritable Packet in ALICE

In the process tree, an internal uodg is represented b); a rewritable packet whose
argument fields reference other rewritable packets; wﬁile a leaf Rode (i.e. an untried
goal) is represented by a rewritable packet whose argument fields reference the goal
arguments re})rcsented by ‘conalruclor';&cketa (i.e. those that are not rewritable).~The
cvaluat‘iqn of & leal node may rewrite the packet to a structure of rewritable packets
representing i&.he#:cbmmitted clause bodg,;:; or the construétor packet SUCCEEDED or
l'\llED 'I‘hé brocess tree is expanded in the former case, and reduced in the latter
case. Compt;tat,ion stops when the»;‘x_}ﬁ)ot of the treg is rewritten to a construct;)r

g0)
< packet. AND-parallelism is exploited in this model.

¥

The reduction architecture research group in ICOT has also proposed a highly
parallel reduction-based architecture for logic programs, where OR-parallelism”in Pro-b
log and AND-parallelism in Concurrent Prolog are exploited [OAS85]. Various tech-

niques, such as the only reducible goal copy method, structure memory, etc. are

employed to reduce storage and copying overheads.

49

3.5.1. Evaluation of the Approach

-

A reduction-based execution model may also be a good scheme for exploiting mas:

sive parallelism. However, like a dataﬁow-bascd model, various practical problems

reveal tBem§el\'es when an implementation is attempted. The provision :\vnd manage-

ment of structure mcmo;-y are necessary, if target applications need to manipulate a
- N

large number of structure data.

3.6. Summary : .

In this chapter, We have classified the parallel execution models for Prolog, its

“variants and the three parallel logic programming languages mentioned in Chapter 2,
* i . .

into five classes: and within each class, studied the typical examples. These examples

“are briefly evaluated according to the justification factors stated in Section 1.1.1.-

While the design of an elegant execution model is an important step, what is
equally important is that the model should not require a highly complicated architec-
ture {c.f. the l:cconciliatiou apprc;acb) .andvshould be realizable on a parallel architec-
ture with reasonable eflorts. Most of the oxécul.ion models studied in this chapter are
parts c;f some ambitious long-range projects which have many objectives, such as the
exploitation of massive parallelism, the search for an ideal architecture for logic pro-
grams, etc. Various practical problems, ﬁ]ost of them concerning thé reaiizabilityl of
the modgls and the effective control of overheads, must be solved before these models -
can ac.tually be realized. Whileya long-range project has this luxury, it is reasonable
for a short-term project to design an execution model that aims at exploiting moderate
parallelism, and put more emphasis on its rcalizability ahd Igw overheads. This con-

siderations lead us to propose the execution model mentioned in Chapter 4.

’ Chapter 4

Proposal of an Execution Model

In this chapter, we propose an execution model for the parallel logic programming

A}

languages Concurrent Prolog, PARLOG and GHC bn a shared memory multiprocessor
architecture. The model is heavily inspired by Levy's work [Lev86] (see Appendix A2),

but incorporates the following extensions:

(1) Additional pointer fields are used to connect the run-time structures
together so that they reveal the AND-OR tree structure which allows infor-
mation of failure and abortion to be propagated promptly. Failure is pro-
pagated up the AND-OR tree and across the conjunction of goals. Abortion
due to commitment is propagated down the AND-OR tree and across the dis-
junction of clauses (see DO_FAILURE and DO_KILL in Section 4.4.2.6).

(2) The detection of deadlocks caused by a user program (sewection 4.4.2.1).

(3) The initialization of the run-time structures for the top level goal (see Sec-
)] .

tion 4.4.1).
- . g'e

C)

| (4) The detection of program termination (see Section 4.4.2.5).

A few modifications are also made, mainly to improve the original model (e.g. to

,avoid re-processing of aborted/failed goals. See DO_WAKEUP in Section 4.4.2.6).

4.1. Architectural Assumptions

©

In the following, we list the assumptions of the architecture supporting the pro-

posed model and their implications: ’

(1) The architecture is a shared memory multiprocessor with a moderate number
(say, from 2 to 30) of processors each of which has some local memory. The
shared memory stores the run-time structures, the binding environments, the
user program and the system program implementing the algorithm in Section
1.4.2; it 1s accesped by all the processgrs. Each local memory stores the local
variables used in the system program; it is only accessible by its owner pro-

cessor.
(2) Write access t« shared memory is controlled by a locking mechanism.- To
' obtain a lock .+ 101 expensive, as memory contention is assumed to be not

severe since tz. .umber of processors is moderate. As a result, all the pro-
cessors will us+ ne - sy-wast strategy to obtain a lock. Also, a processor will
frequently reles i re-obtain a lock to minimize the period of a critical
region. : ' \

50 .

51

(3) Locking is not necessary for read access to shared memory; a consistent
value will be read even if the same location is being written by another pro-
cessor.

The reasons for aiming at shared memory multiprocessor architectures are:
(1) The model naturally calls for such arcbitvc/xure.
(2) Some shared memory multiprocessors are readily available.

(3) ‘It is probable that in the futufe, a node of a loosely-coupled architecture is
itsell a shared memory multiprocessor, so the model developed here is still
applicable to the nodes of such architecture.

v
N

4.2. Overview of the Model

The proposed model is based on the work-pool approach, where the AND-OR tree
of alogic program is partitioned into.computapioh units. The model is coarse-grained,
when compared with most of the execution mpdels discussed in Chapter 3. lnstead of
t.rea%\ing anvA.\’D-OR tree nod‘e‘a(or an even ﬁper object) as a computation unit, it views
the computation necessary to satisfy a goal with its applicable clauses as a unit. This .
approach allows parallelism to be easier to control, which is significant for the target
architecture. Figurc. 4.1 shows an sample AND-OR tree, each dashed bo;(around a
goal (OR-nodc) and its clauses (AND-nodes) represents a unit computation of the

problem. - -7

52

/\ OR-branch O OR-pode

/O\ AND-branch E AND-node
LJ Computation Unit

Figure 4.1 An AND-OR Tree Partitioned into Computation Units

During a user program execution, the computations represented by the AND-OR
trce arc advanced by a set of processes (‘each running onka processor). The goals which
currently remain to be solved are divided into two groups: the ready goals and phe
suspended goals. The set of processes, each executing the same algorithm, share access
to a ready \g\o/zsl pool. Each process repeatedly selects a goal from the pool, applies all
the applic:;ble clausé&, and adds the generated subgoals (if any) iﬁto the pool. A goal
suspended on a variable is inserted into the suspensson list of that variable, and is re-

activated until that variable is instantiated by another goal.

In this model, a goal reduction step is divided into different stages as depicted in

Figure 2.2.!12 The computations associated with a computation unit are advanced by a

12 This staged goal reduction concept does not properly fit the operational semantics of PAR-
LOG and GHC. Considerations in supporting these languages are discussed in Chapter 5.

53

ﬁnitc'alalc machine whose state is irﬁplicitly recorded in the data structures discussed
in Section 4.3. The computations in a specific goal reduction are depicted in Figure
4.2. A process solves a computation unit by attempting the applicable claua-cs in
sequence. When the computation involving a clause cannot be further advanced, the
next clause is tried. If a head uniﬁgation suc‘cecdsA(as in the first, third and fourth

clauses), the goals in the guard are spawned and added into the ready goal pool. A

" head unification may also fail (as in the second clause) or be suspended on a variable

" (as in the fifth clause). For the latter case, it is re-triecd when the variable is 1nstap-

tiated.

The goals in a spawned guard are computed concurrently by the processes. A
spawned zuard may fail (as in the first clause), result in commitment if it is the first

ofie to finish (as in the fourth clause), or be aborted because of another clause’s com-

mitment (as in the third clause). Ounly one clause can reach the commitment stage.

- After commitment.:the goals in the clause body are spaw ned and added into the ready

goal pool.

54

'

1 Re-active
'
'
1
'
'
1
Guard Guard Guard :
Spawn Spawn Spawn)
'
; 1
Lo d

\
*
Body -
Spawn

Figure 4.2 Computations in a Specific Goal Reduction

To achieve a unanimous point of view, each goal, except the top level one, is con-’

<
tained in some guard. When a goal commits to a clause, it is replaced by the clause
: .bedy in the containing guafd.- A key requirement of the model is the ability to re-
activate a computation unit when the spawned guard of one of iﬁrtsﬂclauses is complete!y
sol»;cd, 20 that the commitment step‘ can be performed. This is accomplished by the‘n
recursive commitment mechanism, which occurs when the last goal G in a guard com- _
mits to a clause without body (and is thus solved), causing G's father goal to commit

to G's father clause (see Section 4.4.2.5). The data structure guard tuple is provided tox

Sup,port this mechanism (see Section 4.3.3).

4.3. Data Structures

A computation unit is represented by a goal record and several guard tuples. A
goal record contains all the relevant information for the computations involving a

. . . -
goal. A guard tuple is used to monitor the guard evaluation of a clause.

’

4.3.1. Goal Record ‘ ..';
The ficlds of a goal record, depicted in Figure 4.3, have the following mcanin%:

(1) The Procedure field is a pointer to a list of all the applic:aij‘)‘,fc clayses for this
goal.

(2) The Arguments ficld is a pointer to the list of arguments of this goal.

(3) The Guard_Tuple field is a pointer to the guard tuple {see Section 4.3.3)
representing the guard containing this goal.

(1) The Status_Vector field is a vector of status, one for each of the clauses in
the Procedure field. The different status of a clause is provided in Section
1.3.2.

(5) The Env_Vector field is a vector of en+ - nments, one for cach of the clauses
in the Procedure field.

(8) The G T_Vector field is a vector of puinters to guard tuples, one f r‘,eacb of
the clauses in the Procedure ficld. The pointer for a ciause is before
the guard is spawted (sce Section 4.3.2). - n
. ,%N‘

(7) The Flag field shows the status of the goal, it is either READY (the go:ﬁis in
the ready goal pool), DEQUEUED (the goal is dequeued from the ready goal
pool). or DEAD (the goal has failed, or been reduced or aborted).

(#) The R_L.ink field is a pointer to the next goal record in the ready goal pool.

(9) The G_Link field is a pointer to the next geal record in the Goal_List of
Guard_Tuple.

56

Procedure

Arguments

Guard _Tupte

Status _Vector I -

- Env_Vecipr
GT_Vch%%
Flag
R_Link
G _Link

&
F&ure 4.3 The Structure of a Goal Record

A)

4.3.2. Clause Status

Each entry in the Status_Vector field of a goal record shows the status of the

corresponding clause in the Procedure field. The following lists all the possible status

of aclause:

(1)

UNIFY: the clause is ready to start head unification.

B

UNIFYING: the clause is now performingfl;;éhcf*uniﬁc’h’iion.

SPAWNED: the clause has Spawned |ts guard ‘?»;'

N

COMMIT: the goalis ready to corﬁmltvrt‘tné*c!lnuse

9 v 4.' g Lo = o e

COMMITTED: the goal has comu;ﬂ}'ttec’j‘, t'o> ﬁhi\sf;c'j'd\{,zg, e g o

FAIL: either head unification or g*a
. 5&

KILLED: the computation of Vh),s cf?lause 13 aborted because of another
clausescommltment j Ny : -

V.a‘.lu';_stioﬁfof?t;bis cléuse fails. s

RS

57
4.3.3. Guard Tuple

The fields of a guard tuple, depicted in Figure 4.4, have the following meaning:

(1) The Father field is a pointer to the goal record of the goal unUklng the
clause cont \lmn;, this guard,

-
(2], The lause field is a pointer to the clause containing this guard.
>

(3) The Guard_Count field records the number of goals in (he guard still not yet
solved. Father attempts to commit to (lause when it reaches zero.

(1) The Goal_Lust field contains a list of goal records. Initially the list contains
the goals in the guard. When a goal reduces to its committed clause body,
the goals in the body are added wto the list. For the sake of efficiency. a
reduced goal is not removed from the hist, but marked as DEAD to be dis-
tinguished from other active goals,

Father
Clause
Guard _Count
Goal _List
. Figure t.4 The Structure of o Guard Tuple

"4.3.4. Suspension List "

A goal r;ln}' be sl:ﬁpcndcd on some variable(s) during unification. The model
records this fact by associating a suspension list with each variable. A suspension list
is a list of suspension records, one for each éf the goals suspended on that variable. A
suspension record is depicted in Figure 4.5. It has two fields: the Link field points to
the next suspension record in the suspension list, the Goal_ftecord field point’s to the

goal record of the suspéided goal. A suspension list is depicted in Figure 4.8.

-

4

58

"]

Link
Goal_Record :
Figure 4.5 The Structure of a Sﬁ;p‘e‘nsion Record .
| PR >
A \
, —> > NULL
VAR ' : -
Goal : Goal] Goal
- Record Record Record

Figure 4.6 A S-uspcnsion List

[y

4.3.5. Locks .

N
I}

o

More than one process may attelflpt to update the same run:t‘imglstructure con-

currently. To enforce exélusivc access of common data, the model associates a lock

with the ready goal pool, each goal record, each‘ guard tuple and e:;ch variable. To

obtain a lock, a process will busy-wait uptillit'is available. This is acceptable prb\rfidéd

the architectural as;;uuiptions in Section 4.1 are ;sfat‘,i_s:@ed‘ A majdr problem in a sys-

tem empl’oying locking mechanism is the possibility 6f/_deadlock; the discuSsion of this
- i _

issue is delayed until Chapter 5.

t

59

4.4. Algorithm

-

The algorithm, specified as pseudo code in Section 4.4.2, is executed by évery pro-

cess in the modél, The followings aj 0ol features:

(1) Given a computation unit’Z4§ocess tries to advance the computations along -
the OR-branches in sequence. When the computation along an OR-branch
canpot be advanced further in this computation unit {e.g. it fails, is aborted
or spawned into other computation units), thé process attempts another
OR-branch. When the computations in all the OR-branches cannot be
advanced further in this unit, the process tries another computation unit.

(2) The duration of a critical region is kept to minimal by releasing locks
immediately when they are.no longer needed and re-obtaining them later
when necessary. Hence the psecudo code is interspersed with lock and unlock
operations. '

(3) The status of a clause in the Status_Vector of a goal record is checked before

' making any change. The change is made only if the clause is in the expected
status, otherwise the process assumes that the computation has already been
advanced by another process, so it-simply attempts another clause. This
measure is pravided to avoid duplicating the computatidns unnecessarily.

kY
4.4.1. Initializaﬁdh
Given a goal clause of the form:
<- GGy ns0.
“The model replaces it by the following clauses:13
’ ‘<- TOP_GOAL.
' TOP_GOAL <- Gl""'Gn|' . [co]
‘The new goal clause contains only a goal, TOP_GOAL, which cannot be confused with

any goal in the user program. TOP_GOAL's only applicable clause, CO, is added to

the user program.

A goal record and a guard tuple is created and initialize for TOP_GOAL. Since

TOP_GOAL is not contained in any 'g_uard, the Clause, Father, and Guard_Count
3 EER 1 . '

. o 4 s : .
13 For illustration purpose here, clauses are expressed in the syntax of Concurrent Prolog.
4 s .

3 R o B oo

- : o S i 80

fields of the gua\rdltuple are sg¥™o NULL, NULL and 1, respéctivély, as shown in Fig-
; AN | ,
ure 4.7. TOP_GOAL is t%.he only‘r’g‘o{l in the model having such guard tuple; this

feature is used to detect program tertnigation &See_Sectionb 4.4.2.5).

"

v

_ co
= —F— 4
= UNIFY :
l | = . —— Envifonment of CO
- NULL
Guard Tuple READY
T T 2
[=

Goal Record

Figure 4.7 Data Structures for the Top Level Goal

.0

s

The pseudo code in Section 4.4.2-assumes that the data structures in Figure 4.7

~ have al.r'ead_v been set up, and TOP_GOAL has already been added into the ready goal

pool. X

4.4.2. Pseudo Code

&% e . “

"

= A g
The pseudo code of the _al“ ithm executed by each process is presented below. .

Phe code segments are interspersed with comments expl‘aining the desi'gn idea's. Inside bl

the code, statement labels, subroutine names, macro names~and locking operations are
. t

highlighted in bold print. Names of local variables and arg\kments are in stalics. For .

the sake of conciseness, some abbreviations are used, for example, "lock curfenl goal’

means "lock the goal record referenced by the local variable current goal.”

“ >

. £y
4.4.2.1. Getting Started

6l

After initialization, every process tries to get a goal record from the ready goal

pool using the following code segment:

START:
GET_CURRENT_GOAL. {explained bclow}
lock current goal.
if Flag(cdrrent goal) # READY Tnot an unsolved goal}
unlock current goal. . ¢
goto START {try a new computation unit}
end il. -
Flag(current goal) <- DEQUEUED.
unlock current goal.
current clause <- first clause it Procedure(current goal).
START_UNIFY:
- guard tuple <- Guard_Tuple(current goal).
goto UNIFY. {can start head unifications}

A goal reduction starts at the START label. The START_UNEY label is used

i

when a" recursive commitment occurs (see Section 4.4.2.5). The

GETl__CUR'RENT__‘GOAL dequeues current goal from the ready goal pool.

the following code segment:

GET_CURRENT_GOAL:
registered <- FALSE.
LOOP: *
‘ if ready goal pool is empty
~if not registered (first time can't get ‘3 goal}
lock idle_num.
idle_num <- idle_num + 1. {I am idle!}
unlock idle_num.
) “registered <- TRUE.
_if idle_num = number of processes in the systcm ,
report deadlock - i

exit. ‘2
. v
endif. - o .
end if. ’ oo s
goto LOOP., {buqy ‘wait until there is a ready goal} -

5 end if.

lock ready goﬂ pa

if ready gozg@ool is empty {other processor seizes the goal}
unlo@k-ready goal pool:
goto’ T.OOP. {bad luck, try agam}

end if. ‘

if registered {has prevtqusly claimed idle, reset it} : O
lock idle_num. * e B

Zn
S ey . .
oW . ‘ E

a

macro

It has

62

L]

idle_num <- idle_pum - 1.

unlock idle_num.
end il.
current goal <- dequeued goal record from ready goal pool.
unlock ready goal pool. '

4

The major concern here is thé detection of deadlock caused by user program. A simple

‘case is shown in the following program:

<- p(X?), q(X?).

p(1).

When the goal clause is invoked, both p and q will be suspended on X, and will ke re-
activated only when another goal instantiates X (whi‘c‘h‘ will never happen). While this
simple case may be detected by a compiler, the geteral case needs a run-time deadlock

detection mechanism.

The deadlock detection mecha;lism employed in this model is simple. It is based
on the idea: "the system deadlocks when all the pro'cesses are idle before program ter-
mination.” A process increments the shared variable idle_num, used to record the
number of idle proceqscs/ in its first time to obtain a goal record from an empty ready
goal pool. It decrements idle_num when it finally gets aygoal record and has prew-’
, ously incremented idle_num. A deadlock is implied when,,‘;icﬂe_num reaches the.
number of processes in the system. The nestedly locked critictal;?region for géttin.g- a
goal r(;‘cord and decrementing idle_num is necessary, otherwise a process may repor?’

7

deadlock while another process gets a goal record and is able to proceed.

63

4.4.2.2. Head Unification

The code segment for head unification is shown below:

UNIFY:
if current clause = NULL {no more clause}
NO_MORE_CLAUSE. {explained below}
end if.
lock current goal
case (status of current clause) of
COMMITTED: {current clause has already committed}
unlock current goal.
goto START. {try a new computation unit}
FAIL, KILLED, SPAWN, SPAWNING, SPAWNED, UNIFYING:
{current clause has failed or been aborted or is being attemPted by another process}
unlock current goal.
TRY_NEXT_CLAUSE. {explained below}
COMMIT: {current clauseis ready to commit}
unlock current goal.
goto COMMIT.
UNIFY: {current clause is ready to unify}
status of current clause <- UNIFYING.
unlock current goal.
attempt the unification.
case (result of unification) ol'
SUCCESS:
lock current goal.
VERIFY_UNLOCK(UNIFYING). {explained below}
status of current clause <- SPAW'\J
unlock currenl goal.
goto GUARD_SPAWN.
FAILURE: o
lock current goal.
if status of current clause # KILLED
_ status of current clause <- FAIL.
end if. : 3
unlock current goal.
TRY_NEXT_CLAUSE.
SUSPENSION: : o
lock current goal. :
if status of current clavse = UNIFYING
status of current clause <- UNIFY.
end if.
unlock current goal.
V <- set of variables causing the syspension.
call DO_SUSPEND(current goal, V).
TRY_NEXT_CLAUSE.
end case.
end case.

3,

The UNIFY label is reached when the process attempts to unify a goal with a clause

o I
T —

head. If the clause has already committed, the reduction is abandoned and the process
tries a‘ﬁothcr compﬁtgtiqn unit. If the head unification has previously. failed or been -
aborted, or it is currently being attempted by another process, the pmccss, tries
another clause. If the clause is ready to comﬁ)it, the commitment step i3 attempted.

Otherwise the clause status is set to UNIFYING and the head unification i3

‘attempted. If it succeeds, the computation proceeds to the guard spawning step. If it

is suspended, the clause status is reset to UNIFY (so that head unification can be re-
tried later), the goal is added into the appropriate suspension list(s) and the process
tries another clause. If it fails, the clause status is set to FAIL if that clause has not

yet been aborted (by other process), andZanother clause is tried.]

A process tries the next clause using the macro TRY_NEXT_CLAUSE. Its

code segment is shown below:

- TRY_NEXT_CLAUSE: ’
current clause <- next clause in Procedure(current goal).
goto UNIFY

A process always verifies the clause status, using the macros VERIFY and
V'EREFvY._UNLOCK,'.before making any status modification. If the current ciause.
status is not expected, it assumes that another process has already advanced the com-
putation of that clause (e.g.’ has aborted the glau§e); so it proceeds to try andtﬁgf
clause. 'The two macros are simil%r, except that VERIFY_UNLOCK alsouunlocks

current goal when unexpected status i¥encountered:

VERIFY(ezpected status):’
if status of current clause # ezxpected status
. "TRY_NEXT.CLAUSE. -
end il.’

L 4

VERIFY UNLOCK(ezpected status):
atus of current clause # ezpe!ted status
% nlock current goul.
TRY_NEXT CLAUSE.
end.lf -

N

FY

65

The macro NO_MORE_CLAUSE is used when all the clauses in the Procedure

¢ 1 field are exhausted. lt,’de segment is shown below:

"

NO_MORE_CLAUSE:
. it Procedure({current goal) = NULL {no applicable clause}
call DO_FAILURE(current goal).
else
fail <- FALSE.
lock current goal. N)
if (every entry in STATUS_VECTOR(current goal) is FAIL)

fsil <- TRUE.
end if.
unlock current goal.
if fail
call DO_FAILURE(current goal).
end ifs - J : ' -

end if.
goto START. {try a new computation unit}

The goal fails if it has no applicable clause or all its clauses have failed. In those cases

PRSI et

the goal ,.‘iz"x“marked as DEAD and the failure is propagated (by calling
DO_FAILURE). Note that DO_FAILURE is recursive and hence the code avoids

calling it directly in the critical region. The subroutines DO_SUSPEND and

f

DO_FAILURE are explained in Section 4.4.2.6.

4.4.2.3. Guard Spawning

The following code segment implements the guard spawning step:

GUARD_SPAWN:
pending goal pool <- NULL. {initialize}
lock current goal: 8
VERIFY_UNLOCK(S]‘W‘N). {is current clause status still SPAWN?}
status of current clause << SPAWNING. '
unlock current goal.
if guard(current clause) is empty
lock current goal.
VERIFY_UNLOCK(SPAWNING).
status‘ol current clause <- COMMIT.
unlock current goal. '
goto COMMIT. {empty guard, commits immediately}
end if. '
-create a guard tuple T for this guard.
‘ Clause(T) <- current clause. '
. Father(T) <- current goal. {link from T to current goal}
H

£

66

for each goal gin this guard
VERIFY(SPAWNING).
call CREATE_GOAL(y, 7). .
{the goals are added into pending goal pool as 3 side eflect)
end for.
add goal records in pending goal poolinto Goal List(T).
"Guard_Count(7) <- number of goal records in pending goal pool.
lock curpent goal.
VERIFY_UNLOCK(SPAWNING).
current ¢lguse's entry in GT_Vector(current goal) <- T.
{link from current goal to T
lock rea(fy goal pool.
add goa| records in pending goal poolinto ready goal pool.
unlock ready goal pool.. -
status of cyrrent clause <- SPAWNED.
unlock cyrrent goal.

TRY_NEXT-CLAUSE.
The GUARD_SPAWN- label is reached whep a clause is ready to spawp jis guard. If
the guard is empty, the process proceeds immediately to the commitment step. Other-
wise a guard tuple for the guard is created, initialized, and bi-directionally linked to
its father goal record. The clause status is updated to SPAWNING, apd the goal
records for the gyard goals are created and added to ready goal pool. Sin-ce » clause
may be aborted ip the middle of the spawning step, the use of the pending goal pool
and the nestedly jocked critical region ensures that the change:of clause status to
SPAW%NED and the inseption of pending goals into the ready goal pool ;onstit}lte an

atomic action. T}, subroutine CREATE_GOAL is expl'ai!ied in Section 4.4.2.6.

4.4.2.4. Commijpment

The fol_lowiug code segment implements the commitment step: .
Fan
: 3

T %A
COMMIT:
lock Currenl goal. ‘
VERIFy_UNLOCK(COMMIT).
do langygage-specific commitment actions.
case (regy|t of commitment actions) of
FAILURE: g
statys of current clauge <- FAIL. ‘3%3;7
unlock current goal. Lu?é
TRYNEXT_CLAUSE.
SUSPENSION:

unlock current goal. 4}

v
>

"

V <- set of variables causing the suspension.
call DO_SUSPEND(current goal, V).
TRY NEXT_CLAUSE.
SUCCESS:
status of current clause <- COMMITTED.
for each clause Cin Procedurc(current goal) # current clause
status of C <- KILLED. {abort sibling clauses}
end for.
unlock current goal.
for each aborted clause C's entry Tin GT_Vector{current goal)
if T# NULL {guard already spawned}
for each non-DEAD goal G in Goal List(T)
call DO_KILL(G). {propagate abortion}
end for.
end il.
end for. "
if language-specific actions instantiated variables
V <- set of instantiated variables.
J call DO_WAKEUP(V). {re-activate suspended goals}
i end if.
X 3 lock current goal, p
' f Flag(current goal) <- DEAD. {mnrk as reduced}
unlock current goal.
commitled clause <- current clause,
current clause <- Clause(Guard “Tuple{current goal)). {father clause}
current goal <- Father(Guard Tuplf’(currcnl goal)). {father goal}
goto BODY_SPAWN.
end case,

The COMMIT label is reached when ap empty guard is encountered in the guard
spawning step (see Section 4.4.2.3), or when the guard of a clause is solved (see Section
4.4.2.5). The language-specific commitmt;nt actions are simple for PARLOG and
Guarded Horn Cflauses,"but it involves environme,ﬁt unification for Concurrent Prolog.
If the result of these actions fails, the process sets the clause status to FAIL and tries
another clause. If it is suspended, the goal is added info the appropriate suspension
list(s), and another clause is tried. If it succeeds, the process sets the clause status to
COMMITTED, aborts all sibling clauses and their descendants (by calling .
DO_KILL), re-activates suspended goals (if any), claims to be reduced and proceeds
to the body spawning step. The subroutines DO_KILL and DO_WAKEUP are

explained in Section 4.4.2.8.

68

4.4.2.56. Body Spawning

-

The following code segment implements the body spawning step:

BODY_SPAWN:
pending goal pool <- NULL. ({initialize}
if body(commitled clause) is empty
lock guard tuple. ‘
if Guard_Count(guard tuple) = 1 {last goal in a guard solved}
unlock guard luple. A
if current goal = NULL ({top level goal solved}
report program termination.
exit.
end il
lock current goal. {father of reduced goal}
.if status of current clause # SPAWNED {not in expected status}
unlock current goal.
goto START. {try a new computation unit}
end if.
status of current clauge <- COMMIT. {recursive commitment}
unlock current goal.
goto START_UNIFY.
end if.
decrement Guard_Count{guard tuple) by 1.
unlock guard tuple.
goto START. {try a new computation unit}
end if.
- for each goal G in body(commilted clause)
if status of current clause # SPAWNED
goto START.
ca] CREATE_GOAL(G,guard tuple).
{the goals are added into pending goal pool as a side eflect}

AT

end for. .)
lock current goal. \
« VERIFY_UNLOCK({SPAWNED).
lock guard tuple.
: add goal records in pending goal pool into Goal_List(guard tuple).
/ Guard_Count(guard tuple) <- Guard_Count{guard tuple)l+
humber of goal records in ending goal pool - 1.
unlock guard tuple.
lock ready goal pool.
add goal records in pending goal pool into ready goal pool.
unlock ready goal pool.
unlock current goal.
goto START. {try a new computation unit}

The Tabel BODY_SPAWN is reached after a clause has committed. If the commit-
ted clause body is empty, then the reduced goal is solved. The process examines the

guard count to handle the following cases: (1) If guard count is 1, then the solved goal

69

is the lasg one in the guard. 1t is a program termination if the goal has no father goal,
[

or a recursive commitment otherwise. In the latter case the father goal commits to the

N

father clause. (2) If guard count is not 1, it is decremented and another computation

unit is tried. : -

If the committed clause body is not empty, the process creates and initializes the
goal records for its goals, updates the guard count, adds the new goals into thé ready

goal pool and the goal list, and tries a new computation unit.

N

4.4.2.86. Subroutines '

The followings are the subroutines used i1n the pseudo code:

CREATE _GOAL(g.GT): {gis agoal, GT is a guard tuple}
create a goal record G for g, add it to pending goal pool.
initialize the Goal, Procedure, Arguments, and Env_Vector field.
Flag(G) <- READY.
Guard_Tuple(G) <- GT. {point to father guard tuple}
set every entry in Status_Vector(G) to UNIFY. {clauses ready to unify}
set every antry in GT_Vector(G) to NULL. {guards not yet spawned}
return. :

CREATE_GOAL is used to create and initialize a goal record. It is called in the

guard spaWning and bagy spawning steps. The created goals are added into the pend-

I

ing goal pool as a side effect.

DO_FAILURE(G): {Gis a goal record}
if Flag(G) # DEAD {G still exists}
lock G.
Flag(G) <- DEAD. {mark as failed}
unlock G.
f <- Father(Guard_Tuple(¢)). {fatt r goal} _
“if f= NULL {G is the top level goai
report computation failure.
ex‘t.
end il
for each sibling goal S of G4 ;
call DO_KILL(S). (propagate failure across-conjunction}

end for.
¢ <- Clause(Guard_Tuple(G)). {father clause}
lock /. '
status of ¢ <- FAIL. {father clause fails}
unlock /. . : -

o ST

RN Wmma G C »
%ﬁg‘ M%ky"u : ,}\"'“ N 1 o ' :7

. R) 0
‘ ' 1"1
L A i . W ﬁ# “’v“ .
1f Status_Vector(f) is all FAH s o } e,
call DO_FAILURE(/) {propagate f:nlurc up the ANI)‘(:).R tree} A
end if. p ; » ﬁc‘ ¢ . i,
end if. 7‘&' T . . , “_‘
return. . . 4 ' Al

ah N
N A

. - i . ,

DO_FAILURE is called when a goal fails. If the goal is already the, rgot of the A'\'l)~
oA n,gﬂﬁ, W .

OR, tree, then the compitation f'nls Otherwise Lb(‘ failure 4hou|d %ﬁ p%rfp.xg'\tod

\

across the conjunction since a conjunc\lon containing a fallcd goql also: “mls The
failed conjunction causes the failure of its Tathérelause. Hence the father goal is re-
activated to check if all of its applicable clauses have failed. Il so the father goal fails
and propagates the failure to its siblings and up the AND-OR tree (by recursively cal-
ling DO_FAILURE). Note that DO_KILL is called in cross:conjunction failure pro-

pagation, since the descendants of the sibling goals should also be aborted.

DO_KILL(G): {Gisa g0'1l record}
if Flag{G) # DEAD (G still exists)
lock G.
Flag(G) <- DEAD. (marked as aborted}
set all entries in Status_Vector(G) to KILLED.
- {propagate abortion across the clauses}
unlock G.
for each entry gt in GT_VECTOR(G)
it gt # NULL -{guard already spawned}
for each goal record din Goal List(g!)
call DO_KILL(d).
{propagate abortion down the‘AND-OR tree}

end for.
end if.
end for.
end if.
return.

DO_KILL is called when a goal is aborted. ‘An aborted goal is marked DEAD and

has all its clauses aborted (i e. status set to KILLED).!> The abortion should be pro-

v

pagated down the AND-OR tree so that the computations in all the spawned descen-

dants of the aborted clauses can also be aborted. Prompt propagation of failure and

.(abortion is impoi‘tant when the AND-OR tree is large (as can be imagined in many

14 A sibling of G is a goal record S in the Goal_List of Guard Tuple((f) where G % S and
FI:;;(S) #» DEAD.

non-toy applications), it avoids redundant efforts spent in exploring a sub-tree rooted

by s DEAD goal and hence may result in substiutial performance improvement.

t .
DO_SUQ:END(GAY (G isgigoal record, Vis aset of variables}
if Flag{e) # DEAD {6 still exists}
for each variable vin V'
il (7 is not ¢Yrrently suspended on v

, . ' create a suspension record r.
& Goal_Record(r) <- .
lock .
add rinto the suspension list of v
unlock v <
a end if. ' v,
end for
end if. .
return, ‘

DO _SUSPEND is called when a goal is suspended on some variable(s) during
’

unification. Suspension record(s) are created for the goal and added into the appropri-

ate suspension list(s). The existence check before suspension record 1nsertion avoids

_multiple suspensions of a goal on the same variable. It is not strictly necessary, but is

" employed here with the assumption that the suspension list is usually short; the cost of

p

“the ¢heck is lower than that of handling duplicated suspensicn records.

DO_WAKEUP(1): {}Vis aset of variables}
" for each variable vin V
it v's SUSpPﬂnF:.li()n list { # NULL
?gfnr each suspension record rin /
C , G <- Goal_Record(r).
B it Flag(G) = DEQUEUED {(still exists and not ready} '
- lock G.

Flag(G) <- READY. |
unlock, G. K ,‘vg}‘
lock re?xdy goal pool. ‘ *
add G to ready goal pool N
unlock ready goal pool.

e

end if.
end for. .
b end if. , o -
' end for.
return. '
16 Since all the clauses are indiscriminately aborted, it is possible that a COMMITTED or @
FAILED clause may also be KILLED. Thisis anticipated in the model and does not create chaos. ;

%

72

DOL_WAKEUP is called ‘when some variables are lnstantlated The goals suspended
on these varnables are re- acnvated Ly inserting them bar‘k into the ready -goal pool
‘The existence check beéafc ready goal pool insertion is necesszu'y; since the model

keeps only one record for a. goal,:\two occu‘rre‘nces of the same goal cannot be in the
’ o ' . } ' A
ready goal pool simultancously. Without the check, an insertion may spoil the link

3

structure of the pool, resulting in lost goals. ; o .

-

It is worth mentioning that in the model, a goal may be suspended on a set of

variables, but re-activated-ona pcr-varlable basis. It is hence possnble that a goa! may

A

go Lhrough smeml iterations of re-activation and re- suspensmn before it is actuall)

— . .

waken up. 'I‘hlq is acceptable since such an 1teramon is not expensnve and only snmple‘
data structures are needed to support the scheme. Also for L-he sake of slmpllcny no

' lnliormatlon of the clause(s) contalnmg tfe \nrlable(s) cdusmg the suspensn/\l is made:

.

A re-activated goal xnmply re-tries all the '\ppllcable clauses in qequence to find the

approprmte clause(s). a

4.5. Summary Lo

'\N'e have propoeed an 'execution model for the . three parallel logic programming‘

langunges Concurrent Pro'og, PARLOG and GHC on a shared memory,,\mulkiproeeesorw«_ _

¢ :

.anchltecture Tlxe archltectural assumpuons are presented wnth emphas:s on cheap
4 . ‘o Pl S .o

-‘ logl\ oper'monq as tbe) are heavnl’j used in the desngn For the data structur_es uséd in ;. .
: the mcdcl the Guard 'ﬁuple land GT Vector ﬁelds of the goal recoed'and tbe Fathers A
and Goal_l |st ﬁclds of the gunrd Luple collectxvq.ly provnde all Lhe requlred lm’kages to !
. Ce
reveal the l\ND OR tree structure :illowmg\fallure and abomon to be pro’pagatedmp,

” . v . - . L

down and horlzontally in the trec. The guard count field of a guard Lup1e supports ‘the

R
: dqtect"b\gﬁev\urswe,commltment whnch is the only means in the ‘model to re-

E

acuvate a goal when the spawned guard of oge of its clauses»has successfully been
J i
qolved urgmg |t to oommlt For the a]gonthm the .major concepts are the v1ew1ng of

. T a - . .
. [
C . . N Ly <

. ‘ © 13

the computation necessary to satisfy a goal with ilt;é applicable clauses as a computa-

tion unit, and the encoding of computations by a finite state machine. This coarse-
. 1 ‘ ,

))

v,
. o ¥

grained approach makes parallelism easier to control, which is ‘significant for. a
moderately parallel system. Appendix A3 depicts the run-time structures created in

the model when executivg a small Concurrent Prolog program. Chapter 5 provides an

)

analysis of the model.

o e . :’ﬂ L .
3. RO s . .
SRR DA x
. # - I - -
o Ty e

and

\:"\ B o

Chapter 5
Analysis of the Proposed L‘Execution Model
This chapter is an analysis\ of the execution model proposed in Chapte‘r‘fi. The
following issues are considered in Lhc analfsis: (1) the correctness of the exegution

model; (2) the Kinds of parallelism supported, and the execution model's potential for

~exploiting them; (3) the effetts of architectural issues on the design decisions; (4) the

considerations in supportix}g the three target languages; and (5) the justification of the

execution model based on the factors stated in Section 1.1.1.
. vm.\ N
5.1. Correctness Verification T.\
. ’ }
. .

As the correctniess of the execution model depends onthe proper function of its
P prop ,

~locking mechanism and the precise implementation of the desired operations, the prob-

lem of correctness veriﬁcatiog can itself be split into the following subproblems:
o N % [N

PR

(1) Verify that the execution model is dcadlock-freé.

(2) Verify that the execytion model enforces eXElusive access in update and pro-
tects all critical actions. co . :

(3) Verify that for every goal reduction, a goal will commit to at most one
clause. :

(4) Verify that the’goal suspension /re-activation scheme is correct. .
. . ‘

o (5) Verify that the failure/abortion propagation scheme is correct.

Sections 5.1.1 to 5.1.5 sketch the informal solutions to these subproblems, the -

. v \ .
ideas to solve the first three subproblems originate from Levy’s work [Lev86].

| 3 g ’
- . «(. . 4 N
L4
AN ¢
N
) 4
“ <
4
\ -
k3 ﬁfi “ ;z‘v),
» N \ AT
. . P RN
‘ 5‘, - - . -
- - T
~ ' 6 i
N - ’ i ~
- R o
N
'S -
i
) b .
v - o .
R . | 4 ,\;’: g(\:gg@
' r .

el "5‘
4

5;1.1'. Deadlock Avoidance

To avoid deadlock, the algorithm in Section 4.4 ensures that a process rcqui;es to VY
lock at most. two objects at any time. When locks on two pbjccts are needed, they are
obtained in a strict order;’ so deadlock will never happen. However, deadlock can still
be introduced into the system by a user program. This situation cannot be avoided

but only be de_Lecieq, a simple detection algorithm is provided in Section 4.4.2.1.

'5.1.2. Enforcing Exclusive Access and Protecting Critical Actions

To enforce exclusive accéss, every update U, shared objects (e.g. the ready goa%? -
0 ;
pool, goal records and guard tuples) is locked. THere are two kinds of cri‘tical‘"actions

- that should’ be proteeted: (1) complex atomic actions whoseé execution; when being

1

mterrupt,e,(;‘.’ may cause inconsistency;{2) a¢tions with side eflects which should only be
. 'L R . . v . B

. % N o
performejg An example‘of the former is the atomic action for dequeueing a goal

the idle_num in the macro GET:CURRENT_GOAL (see Section
' \

and updatyn

\;ﬁij,bl;)/# xamples of the latter are binding environment updates (in unification and
noT comy,iﬁitp}entj\'and goal spawning. 7
- & ’ ~

Each complex atomic action in the pseudo code is ﬁ‘fgtectcd by a lock or nested
locks so that the action as a whole can be carried out to completion without interrup-
tion. A process changes the clause status (e.g. from UNIFY to UNIFYING, from

-)) L, . . . A
SPAWN to SPAWNING) before performing any action with side eflects sq that the
- - . » "
“rother processes, detecting the status change, can avoid repeating the action.

S R] s) . AN h ° ‘-

'5.1.3. Uniqueness of-Committed Clause

To guarantee that a goal commits to at most one clause, the code segment in Sec-
tion 4.4.2.4 ensures that the status change of the committed clause to COMMITTED
and the status changes of its siblings to KILLED constitute an atomic action. Since a
process chec ks the clause :;tatgs before making any change, a KILLED clause, even if

it is ready for commitment, will never be tried.
R

N . _ . e

5.1.4. Correctness of the Goal Suspension/Re-activation Scheme
’ o e D ®

A correct goal suspensioh/re-qcti'vation scbime should ensure that (1) every

suspended goal which is re?ac“t‘ablé (i.e. not caused by user-program deadlock) will

-

Section 4.4.2. 6, a re- acmvatcd goal tries the apphcable clauses in sequence to conunue :

e -

AL

- suspc?lgded computations. In cases where computau?zz in ;everal clauses are

|

_ suspended ﬁ QR parallelism is not supported this unfair R- acuvauon scheme may "

result m indefinite neglect ofg clause as the re- activation of ILS computathn may

A N
ey

always be |ntercepted by *'{\e preced,mg one(s% lns situation is problematlc smceuhe

-y p
indefinitely noglccted clause may be tbe onl) one Lhat can lead to a succeaful cg‘uipgL

_eventually be awakened up, and (2) only active goals are re-activated.#As stated in

.

tation. However, committed OR-paralle\hsm, though in a restricted form, is suﬂpport,edv-

i EY

. ~‘:)\; (X . . 2
by the cxecution model (see Section 5.2); so the abovementioned situation will never
¢ s

4

Lo.e . .
iy P . - .
! o

‘h“"p"“' L L o ®

e . " e

oy

Since the subroutine DO._ WAKEUP never adds a goal whose flag is not

DEQUEUED into l.he ready goal pool, the execution model ensures that only active

’

since ever) ‘non- READY %oal dequeued from the pool is discarded (see Section

4.4.2.1), even a goal whlch becomes DEAD (because of iits own reductlon, or. Lhe

1 L

Cha, - .
: . L ; . I4 . .
au&’i"ndnscnmmatcdly processed. . s

" goals are re-activated, and the link structure in the pool is neve’r spoiléd. ‘Moreover, -

-fanlure/aboruon propagation) after its re-acuvatlon will not be picked up by 3. process

ot

5.1.5. Correctness of the Failure/Abortion Propagation Scheme

L . . :
A correct failure/abortion propagatlon scheme should ensure that (1) the failure

or abortion is propagated to the relevant goals only; (2) pontermina&g propagation is

-
‘avoided (optional). It is easy to verify (1) by inspecting the pseudo code in Section
Q.)
C ot o, . .
4.4.2.8. To verify (2), it should be noted that the failure/abortion: propagation is
directional (i.e. ehher up, down, or hdrizontal’in the AND/O‘R trec) a goal is marked

»
as DEAD after thc propagation, and the propagauon stops at a DEAD goal; thus

each goal in thc AND/OR is visited at mostyoncc .,AS a result, the propagation will

Ml

means of ban(iligg ,

»

son for the nonterminhtion is that the generation of the goals in an abprted subspace (EX

faster than the abprtion of those goals. If the initial caller of DO_KILL locks the
. : ‘ 1

ready goal pool before the call aggrunlocks it afterwards, no new goal can be generated °

b&fore the abortlon ﬁmshes Lhu;(the abovementnoned race condmou 18 ided. Tliis

- N B
solution is only a ﬁr%t attempt, it Ians the ekploitable parallell;;m ~and is pracucal

only if the [ﬁ&b’ﬂr of processors in the ‘system 1s small lnstead of lettmg the caller of

I)O_J\ ILL monopollzc the sbortion, a second solut:on is to provndc a sh'xrcd work-pool

¥

for: abort ﬂ)lxgoals and hav\c\zrll the |dle processes (bccause of the locked ready goal

pool) partiupate the abomon A process fetches an abortable go‘ll fro.n the work

pool, m'u;ks it as DEAD changes all the clause status to KILLED and" adds Lhc,

a@qrt?d goal 3 sons mto the work pool Normal oporauon i3 rcsumcd whcn the work

ol is empty (: e. 1boruon is completed) Rcsults of s:mulauon or pslot xmplemeuta-

tion arg needed to analyze the trade-off belwceq, the bcneﬁtz (l.e. the cxplon:mon of

though a eorrect scheme can quite easily be devised. The rea-
4 - .

&

f},"’f“ o 78

idle resources) and costs (i.e. the overheads of maintaining the abortion work-pool) of

this scheme. : ‘ T et .

5.2. Parallelism Potential

o

The execution model exploits AND- parallehsm stream parallehsm and commm,ed
OR-parallelism in Ioglc programs.v Regardmg AND parallehsm it .is clear that the

goals from a spawned guard or clause body can be cvaluat,ed in parallel, the only res-.

r

i

trictions are Lheéum ber of available processors. m the syst,em and the sync@;omzatnon
. ool :

requirements. Regarding stream parallelism, Lhe evaluation of the consumbr and pro %ﬁ‘@* N
~ _‘ In*l

dacer of a stream can be syncbromzed by the goal suspens:on/re uctlvatlon scheme as’

the stream variable is incrememally instanl»iated;\ the only deficiency is the execution

N

model’s inability to adjust ths dégree of stream parallelism according to system work--

loads.

Although the applicable clauses of a goal are tried in sequence, and a
DEQUEUED goal is moaopollzed by a process most of Lhe’ilme, a restricted form of

o, committed, OR-parallehsm can still be explo& y the executron model. It should be

noted that the unfairness resultmg frém sequentlal clause application is bounded a

process swnches 1t(ent|on to the neu clau«e when the computatlon of a clause cannot

be advanced further (l e. enther failed, suspended or spawned) As a result the compu-

ol

tation of any clause is never indefinitely negleﬁd Committed OR- pzallehm *"g"‘
- .

exploited in the execution model when a goal spawns the guard of a clause and then

L4

_ tries tbe pext clau;\g leaving the e,pawned gpals to be processed by others This leads

-to the comcurrcnt compumtlons n dISJuncuve OR- branches Also, mauy processes can’

concurrcntl) attempt to reduce a goal with its apphcable clauses. This h'\ppens whem
s :
a process is sull applnng some untned clauses to a goal, but either (1) suspended com-

- 1 B
b 3 e

pmatmns in some of lhe goal 3 prcvnous clauses arc%c-actwated and‘ processed by oth-

°ers. or {2) a recursive commitment pr.opega,tcs to the goal, urging it to commit to a
. : > or ’ : ’

,
A : .

| 79

previous clause, or both. .
" 5.3, Architectural Issues
g ' The presence of shared memory strongly mﬂuenccs the design dccmons of the

.

execution model, especially the pollsigs of husy- wamng for a lock and frcqucnt release.
ing and re-holding of locks to minimiu; ;he period of a critical region. These policies
may .not be profitable if the execution model is'to be implemented on non-shared
memory muluptpcessor architectures. The features of a modified modcl designed for

R execution of Flat Concurrent Prolog [Mie84] on those archnecturcs, is provided in

Levy's s wotk [Lev88]. The most notable design decisions are to allow only one process

to advance the computation in a computation unit at any time, :md to avoid lock

Fy "
i

operations unless they are necessary. . . .
. X B . - » . ‘ ‘ nggif . :\ B “".'*'!‘;,l.‘?,il SR R s

EF . T B “l y" 2

It is déSirable if the execution model can be adapted to be suitable for implemen-

¢

tation on nou-sb.ar* memory multiprocessor architectures. A first step should be the

- a A

. minimization of inter-connections among the run-time structures. A naming scheme
» » . .

for goal records, like that in the OR-parallel token machine [CiHi84], which reveals the

AND/OR tree structure can be employed for this purpose, In general, supporting the

execution of logic pr.ovrams on a non-shared memory multiprocessor architecture is

more difficult than .n = -hared memory one. For the former, not only the control of

,

parallel activities but .s0 the mauvagement of binding environments (sce Chapter 8) ,

. \"_.‘

are more complicated than the latter. ‘ o

va

"

80

5.4. Considerations in Supporting the Target Languages

As can be seen from Chapters 2 and 4, the staged goal reduction concept of the
execution model fits the operational semantics of Concurrent Prolog, but deviates from
those of the oihcr two languages. In this section, the issues to be considered in sup-

g

porting the thrge target languages are discussed.

5.4.1. Supporting Concurrent Prolog

The only d(:ﬁciency of the modet in supporting Concurrent Prolog is in the com-
ﬁ]itmtnt step (sée Scction 4.4.2.4) where the language-specific commitment actiou (1e.
“ enwronmcnt unification) may Iock Lhe goal record for a&nnacceptable long period.: f‘" ’.
)% Thls problcm can be solved by mtroducmg a new clause status COMMITT]NG’ LAso ~
clause wnh this status means that a goal is committing to it. The langque spec%c:)
&;(o commitment action can be extracted out of the critical region in the following way:
tf{-ﬁ after having ve'riﬁedf'that the clause status is COMMIT, the pro&w changes it to
Q’OAthlTTlNG ‘a‘nd unlocks the goal record. Then the langu‘age-speciﬁc éommiiient'
action i3 performed. When ‘the action completes, the process changes the clause stat’\.’l;’

™

to FAIL if the result of the ac}ion is failure. If the result is success or suspension, the

process verifies that the clafise status is still COMMIT'f‘lNG, and if so changes it to

.'A'kfz%;’ " COMMITTED, or bagk to COMMIT, respectively.” The other parts of the code is

S .
PR upchanged \otc that the introduction of the new clause status CO\!\HTTII\G is
<% pécessary since environment unification has side effects and honce should onl) bc per-

9

formed once (soo Section 5.1.2).

e,

5.4.2. Supporting PARLOG _ K

There are two majpr discrepancies between the proposed execution model and
.P/\RLO'C;'S operational semantics: (1) in PARLOG, the head unification’s input
matching is evaluated in parallél with the guard, and the output matching is evaluated
in parallel with the clause body; (2) PARLOG provides s)equencing constructs (i.e. the

o ’ .
"g" and ";" operators) in both clause selection and goal evaluation (see Section

]

9.2.2.2). ‘

-

The first discrepancs disappears after a PARLOG program P has been compiled -

into its i(ernel PARLOG counterpart KP (see Section 2.2.2.2). To narrow the second

L]

discrepancy is tricky. For the sequential OR ";" operator, the proccdurg field of a goal
record is changed to a list of sequential components, each of which is a list of parallel-‘,:
OR clauAses. Thc sequential components are tried‘inA sequence; when all the clauses in a
component fail, the next compo\ient, is tried. The number of engries in tbe\«“
S(atus_‘?cctor, Env_Vector and GT_VMector fields of a goal record is changvéd LQ.!.:L:l‘;e

m'mmum number of clauses in all components The methods of getting the next ‘l

clause and dctectmg the end of a» procedure are changed accordingly.

- . . \‘.

Since the scquenitial AND operator "&" and ,&he“parallel ‘AND operator "," h'\ve no -

precedence, any arbitrarily com;plcx expression i3 hence possible; this mai\'es the sup-

port of the langu‘age'in the exec’ution’model dificult. A ﬁrstfatt‘empt“soll‘ition is to add

a rl;m.sc descriptor field in the guard tuple. Thc purpose éf this field is to control the
.,,sequon}ing of goal ev:xluruio‘n n tb‘e guard. At the beginning ofv 3 guard computation,

or every time a goal is reduced, the descriptor is updated and then parsed to find the

goal(s) th.xt should be created and addet&mto the ready goal pool. The idea of the

clause dcscnptor 13 mapurcd by the AND-OR tree inodel in Gregory's thesis ([Grc85]

‘Chapter 6). but the hlcr:xrch_\‘ of the AND-processes in that qucl is coltapsed ingo the

a clause descriptor i this proposal At present the idea is pot sufficiently dcvclom'

)

82

how to represent the ‘Slausc descriptor and how to parse it are stillv vaguely defined.
However, it should be noted that for efficient execution, a PARLOG program should be
compiled intgeKernel PARLOG, and further compiled into other abstract models (e.g.
the AND-OR tree model) t!x_at*’ﬁts the characteri;:ics of the target architectures (
[Gre85), pages 175-177). There is a gap between Kernel PARLOG and the proposed
execution model as their target architectures have different granularities, most |ikely
some abstract model(s) should be placed between them to bridge the gap. .Tbe solu-
tion to the sequential AND problem had bétter be delayed until those intermediate

models are defined.
. &
5.4.3. Supporting GHC |

-

#he semantics of GHC allow no restriction in parallel activities in goal reductions
provided that the suspension.rule and trust rule are not violated. This freedom may

be exploitable in a fine-grained architecture [KIKI85], but should be suppressed in a

moderately-parallel architecture wher aking for low overheads is a-key objective.
There is, in general, no harm in perfo different activities in a goal reduction
v 3 9 & - . o
e g

step ih sequence, as suggested by the proposed execution mitl)‘f'iel.v In fact, for a
. . + .
moderately-parallel architecture, the advanced clauéé“b‘ody"ev:;l“&g(_fiﬁh'ybefb‘i‘e*"ct)mmit—‘
ment is not profitable since most of the efforts, except that for the committed clause,
are wasted. lf‘uniﬁcatio'n and guard/clause evaluati‘on are needed to be performed in

parallel, it may still be achieved by adopting the compilation method like that'in

PARLOG.

5.56. Justification ‘ o

The proposed execution model has quite high scores on sox;ic‘of B justification
factors in Scction 1.1.1. It is relatively cas'y to realize, as indicated by ihe closeness of
the pseudo code to an implementation language (e.g. C or; Pascal).. Its overheads are
low: (1) a process is idle only when the ready goal pool is empty, (2) busi);-.\\‘rlaiting for a
lock is a cheap way to syuchronize the execution of processes (vs. m.esis’% passing),
and (3) the costs to manage the data structures are low. The model also exploiAts vari-
ous kinds of parallelism, although committed QR~par:\lIelism 18 i‘rnplemente“d,;wﬁ a res-
tricted way. The coarse-grain approach in viewing the éom‘putation nécessary to

satisfy a goal with its applicable clauses as a unit implies a lower potential of parallel-

ism, however, this fits the target architecture, which is moderately parallel, properly.

Chapter 6

Conclusions : .

8.1. Summary of the Thesis

B . . i)
In this thesis, we investigated the various aspects of exploiting parallelism in logic

P » -
programs, and proposed an execution mode! on a shared memory ocessor archi- g7~

~

tecture for the parallel logic programming languages Concurrent’ , PARLLOG and
Y

GHC. We started by reviewing the basic concepts in logic prging where one of

Y

& W . .
its distinguished features, non-determinism, is the major soune® from which various

forms of parallelism originate. A conventional impleme@bn of Prolog. the first
T .
logic programming language, does not exploit this potential, but simulates the non-

“

determinism by sequential search and backtracking. However, improving the execu-

tion speeds of logic programs by incorporating parallelism is promising (thougi

+

difficult) and is reinforced by the.advances in hardware technologies.

[n Chapter 2, we stidied the four different forms of parallelism in logic programs,

and the difficulties of their realization. We then examined the features of the three
abovemecntioned parallel logic programming languages which were designed to support

3 '

concurrent computation and parallel execution. In Chapter 3, we surveyed the typical
parallel execution models for Prolog, its varianlcgs and the three parallel logic program-
ming languages. Most of these models are parts of some ambitious‘ long-range pro-
jects, where various problems must eflectively be solved before the models can actually
be realized. These considerations have led us to propose -a simpler execution mode:l;
described in Chapter 4, for the three parallel log?c’ progr'amfning languages on a shared
memory n;ultiprocessor architecture. Tyhe aim of she model is to expldit r;xoderate.

Pa_—

parallelisd, 'wit'yh‘ empfmsis on ease of realitation and low overheads. ,

vl .- ¢

‘ ’ ‘?T,}lﬁ ptcpg&e’d' executnon modek‘,"p s&rongl)\ mﬁqenced by Levy s work [Lev86} but

¢\"

84 | :

BS

additional pointers used to set up the linkages among the goal records and guard
tuples, revealing th;: :\N[)/\G)R tree structure. This allows failure and abortion to be
prop: \gatol up, do!v n And honzont.\lly in the tree "Compared with the orlgm.sl model,
the propmod model ronsumcgﬂorc memorics and i incurs additional overheads in ’m‘un-

taining the link structure. Hoever, it is justifiable as memories are cheap, and the

- . -~ . i i .-’.\
_additional ovcinecads are low (ie. only one-shot sct-up costs are needed), but th&

resulting prompt failure/abortion propagation may result in substantial performance
L |

improvement, especially for a wide and deep AND/OR tree. Other extensions include

the initialization of data structures for the top-level goal, and the detection of pro-

gram termination and software deadlock. A few modifications are also made, mainly

to improve the original model.

The proposed execution médcl,'c:\rrying over Levy's ideas, is hased on the work-
pool approach. The major concepts are the viewing of the comput:_\m: necessary to
satisfy a goal with its applicable clauses as a unit, and the separation‘gf the step into
different stages so that computations can be encoded by a finite staie.m:\clxine. This
coarse-grained approach allows parallelism to be easier to control, which is significant
in a moderately parallel sys'tem. Finally in Chapter 5, we provided an informal

correctness verification of the proposed model, an analysis of its parallelism potential,

and some considerations of supporting the three parallel logic programmihg languages
. ~ . -
. ‘ . g

on the model. The proposed model is justified for its fitness to the target architecture,

ease of realization, low overheads, and exploitation of various forms of parallelism.

~ b

\

-

6,2. The Management.of Binaing Environments : ' o

[

While this thesis concentrated on the.discussion of, controlling parallel activities

[y
s

in" an execution model, another important problem,” the management of binaiug-—r

.

1

environments, was given little attention. This problem is important since for eflective
computatiém;“the variable bindings generated in a unification must be maintained if

they are necessary for later “unifications or the final answer constructions (see Section

1.2.4). In this section, a brief discussion of the problem is provided.

In a conventional Prolog implementatian, there are basically ‘two alternative

approaches of representing: the = binding environments: ~ structure-sharing

{BoM72,Bru82] and atructure-copying [Mel82]. In both approaches, the binding of a

L4

variable to a constant, another variable, or a ground complex term can be a poinﬂer to
the direct representation of the value. To represent the binding to a non-ground com-
plex.term, the structure-sharing approach uses two pointers: one to the pure code of
the term, another to the binding égvironment'containing the variables occu.r in the
term; while.phe structrure-cbpying abpréach creates a new copy of the term for the

v

binding. A.comparison of the two approaches, mainly on memory consumptions, is

€

provided by Mellish [Mel82]. ' v

4

Additional problems reveal themselves when a parallel implementation is con-

sidered, though the basic ideas of the two above approaches can still be applicd. A

major problem is the need to manage separate OR-parallel binding environments, due ‘

to the mutually exclusive bindings made to the same goal variable by the OR-pﬁrallcl
computations. This problem ig not serious for PARLOG and 'GHC, since such binding:;
are either disz‘;:lvlowed or suspe‘:;ded béfore commitment, ;xnd only one of thm can be
;nade afterbcommitment,._ Ho.we.vAer, the situation is quite complicated in Coﬁcurre’nt
Prol,og: The semantics of Concurrent Pfolog allow bindings to goal variables to be

#

made locally, but disallow them to be accessed cutside the guard'before commitment.

A o3

3 | o 87

.
A n’atural approach to cope with this‘is to use the copying scheme, i.e. to make a copy
of the goal for each umﬁcatlon so. that goa\vanables are bound-ia-the copied goal, mot
the ongmal one. Thc copled and original goals are umﬁed at commltment However,
because of the copylng, the links for mformatlon flow from g\oals to guards are broken,.
creating unexpected results in guard evaluatmn that depend on this |nformat|on Two
recently proposed schemes_; multiple commitment and eagcr broadcasting [LeF88] are:

/sgill/riot»'sat,isfactory; the former does not 'dolv,e the problernd, the latter solves the prob-
lem, but reouires complex run-tirne structures and incurs high ove‘rheads.wFor parallel
Prolog, ;'arious tecbniqoes such as Lh/'e schemes of directory trees, hash windows, eL’c.

° ,

are proposed to avoid unnecessary duplication of binding information: a brief survey of

these schemes is provided by Levy and Friedmann (‘[LeF‘86]v, paées 19-24).

Anoiher problem is the eﬁicierit support of binding environments, when a distri-
‘buted implementat.ion is considered. The binding en\;ironments generated during com-
putations are highly mter-connected distributing them- a.mong different processmg ele-
ments lmphes a complex varrable reference scheme and addmonal message overheads

N
in derefercncmg a v:mable which is a most basic operatlon in the system (e.g. Port
Prolog [Lee8:}). A possible s'olution'to the above problem may be to completely ban
the nomou of blndmg environment, but literally subftltute the bound variables in a
goal with the terms (e g. the AND/OR Process Model [Con83], and: PIE [GTM&4]).
dereference of variable is needed in this scheme, but the copying overheads may be

unacceptably high, especially when there is a large amount of structure data. More.

research is needed in order to reach a satisfactory solution.

88

8.3. Future Work ' ' ,

As the work reported in this thesis represents only a preliminary step towards an
actual implementation of a parallel-logic programming system, many extensions and

improvements are remained to be done. In ‘this section, some suggestions for possible
directions of futube work are provided.
\ . .

s,

Before making any full-scale implementation of the execution model, a first step
. ¢ . ° ' . . . o .
may be to obtain some performance measurements through simulations or pilot imple-

N L\ . L L
mentations to verify the design decisions. A possible direction is to implement the

execution mode| on a uniprocessor running an operating system (e.g. Unix) where mul-
tiple processes are supported:-so that a multiprocessor architecture can be simulated.
The major benefits of this approach are the case of inaking architectural chaofges fog

experimental -purposes, and the alleviation of the difficulties in porting the developed
4
" : ' . '() .
programs in the prototyping environment to the target system, due to their closeness.

In a pilot implementation, unifications and binding environment management opera-

tions can be simulated; however, simulation parameters such as the average times of a

unification step and each of those operations must be provided.

N

The performance measurements should provide information such as the

effectiveness .of the models failure/abortion propagation scheme and the goal

~

. suspension/re-activation scheme, the ratio of lock operations to unifications performed

3

by each processor, the ratio of processor utilization time to idle time, the gfowth rate
of memory contentions with the increasing number of processdrs, and the effectiveness
of-the mod;l in exploiting the paf'allelism in logic programs and supporting architec-
tures (e.g. to produce plots of the speedups in running different program< on architec-
tures with different number of pro'cesso"rs). An analysis of this information can help to

°

\ \‘"‘h, ‘-
pinpoint the shortcomiTgs of the mode! and make enhancements.

A.seconﬁ‘d\step ma}{ be to address the problems in managing the binding environ-

‘ : 89
.

ments. S‘;ncé the ,th:e-:isrget Iangu:;ges have different uniﬁcatiog algorithmé and
_different binding en‘vironinen’t jpanagement requirements, a decision must, be made to
lipeciﬁcallyo ;upport one of the languages finst. A godd starting point; may be to sup-
, porthHC or x simpler version of PARLOC (e.g. PARLOG without ‘Lhé sequential
AND/OR operators) where the management of OR-parallel binding environments is
not thﬁt compﬂcated, when compared with Concurrent Prolog. Finally, to e;(tend the
implémemat-ion\to a logic programming system, various problems, such as the design
of the internal proéram éodes, the device of a garbage collection scheme (on a mul-

tiprocessor system), and the provision of program development tools (e.g. debugging

facilities), must be effectively solved.

/

[BaM73]

-

[Bic84]

[Bis86]

[Bow82]

[BoM72]”

(Bru82]

© [BrP&4]

[Che84|
[CiH&4]

[Cla78]

- [c1Ga1]

[CMG82]
[CIT82]

[C1G84]

(CIM81]

[CoK81]

[Con83|

—
/

L4
References

G. Battani and H. Meloni, Interpreteur du Langﬁagc de” Programdhation
Prolog, Groupe d'Intelligence Artificielle, University d'Aix Marseille,
Luminy, France, 1973.

L. Bic, Execution of Logic Programs on a Dataflow Archltecture Proc. of the
11th 4nnupl Intgrnational Symposium on Computer Architecture, Ann Arbor,

Michigan, U.S.A., 1084, 290-296. ‘ v
P. Bishop, Fifth Generation Computers: Concepts, Implementations, and
Uses, Ellis Horwood Limited, 1986. .

K. A. Bowen, Concurrent Execution of Logic, Proc. of the First International -

Logic ProgrammingConfercnce,_Marseille, France, September 1982, 26-30.

R. S. Boyer and J. S. Moore, The Sharing of Structure in Theorem Proving
Programs, in Machine Intelligence, vol. 7, Bernard Meltzer and Donald
Michie (ed.), Edinburgh University Press, 1972.

‘M. Bruynooghe, The Memory Management of Prolog lmplem‘entations. in

Logic Programming, K. L. Clark and S.-A. Tarnlund (ed.), 1982, 83-98.

M. Bruynooghe and ‘L. M. Pereira, Deduction Revision by Intelligent
Backtracking, in [mplementations of Prolog, J. A. Campbell (ed.), Ellis
Horwood Limited, 1984, 194-215.

M. H. M. Cheng, The Design and lmplem.cnt,auon of the Waterloo Unix
Prolog Environment, Master Thesis, Department of Computer Science,
University of Waterloo, 1984.

A. Ciepielewski and S. Haridi, Control of Activities in the OR-Parallel
Token Machine, Proc. of "IEEE International Symposium on Logic
Programming, Atlantic City, NJ, U.S.A. 1984, 49-57.

K. L. Clark, Negation as Failure, in Logic and Data Bases, Herve Gallalrc
and Jack Minker (ed.), Plenum Press, New York, 1978, 293-322.

K. L. Clark and S. Gregory, A Relational Language for Parallel
Programming, Proc. of the Conference on Functional Programming
Languages and Compuler Architecture, October 1981, 171-178.

K. L. Clark, F. G. McCabe and S. Gregor) IC-PROLOG Language Features,
in Logic Programming, K. L. Clark and S.-A. Tarnlund (ed.), 1982, 253-266.

K. L. Clark and S.-A. Tarnlund, editors, Logic Programming, Academic
Press, 1982. v . ’
K. Clark and S. Gregory, Notes on Systems Programming in PARLOG,
Proc.~of the International Conference on Fifth Generation Computer Systems,
Tokyo, Japan, November 1984, 299-3086.

W. F. Clocksin and C. S. Mellish, Programmmg in Prolog, Springer-Verlag,
1981. A\

J. S. Conery and D. F. Kibler, Parallel Interpretation of Logic Programs,
Proc. of the Conference on Functional . Programming Languagca and’
Computer Architecture, October 1981, 163-170.

J. S. Conery, The AND/OR Process Model for Parallel Interpretation of
Logic Programs, Technical Report 204, Ph.D. Thesis, University of
California at Irvine, June 1983. - '

90

[Cox84]
(DaR81],
[DeG84)

| [Fer8 lj -

[GTM84]

[Gre85)

. L I T b

3

P. T. Cox, Finding Backtrack Points for Intelligent Backtracklng, in’

Implementations of Prolog, J. A. Campbell (ed)} Ellis Horwood Limited,
1984, 216-233.

J. Darlington and M. Rc‘eve, Alice:'A Multi-processor Reduction Machine for
the Parallel Evaluation of Applicative Languages, Proc. of the Conference on

Functional Programming Languages and Computer Architecture, 1981, 65:75. .

D. DeGroot, Restricted And-Parallelism, Proc. of the Internatianal

Conference on Fifth Generation Computer Systems, Tokyo, Japan, November '

1984, 471-478. |
R. J. Ferguson, Prolog Interpreter for the Unix. Operating System, Master
Thesis, Department of Computer Science, University. of Waterloo, 1981.

A. Goto, H. Tariaka and T. Moto-oka, Highly Parallel Inference Engine PIE -
Goal Rewriting Model and Machine Architecture, New Generation
Computing 2, 1 (1984), 37-58. .

S. Gregory, {asign, Application and lmplemcntatwn of a Parallel Logic
Programming Language, Ph.D. Thesis, Imperial College of Scnence and .

: "Technology, University of London, September 1985,

[Halgo]

[ISK85)
[KKM83]
- [KKI8S]

[KoK71]

[KowT4]

Z. Halim, A Data-Driven Machine for OR-Parallel Evaluation of Logic"
Programs, New Generation Computing 4, 1 (1988), 5-33.

N. Ito, H. Shimizu, M. Kishi, E. Kuno and K. Rokusawa, Data-flow Based
Executijon Mechamsms of Parq!jel and Concurrent Prolog, New Generation

‘Computing 3, 1 (1985), 15-41.

S. Kasif, M. Kohli and J. Minker, PRISM: A Parallel Inference System for
Problem Solving, Proc. of Logic Programming Workshop 83, Portugal, 1983,
123-152.

M. Kishi, E. Kuno, N. Ito and K. Rokusawa, The Dataflow-Based Parallel

Inference Machine to Support Two Basic Languages in KL1, Technical

. Report TR-114, FCOT, Tokyo, Japan, 1985.

R. A. Kowalski and D. Kuehner, Linear Resolution w:th belecuon Function,
Artificial Intelligence 2, (1971), 227-260. -

R. A. Kowalski, Predicate Logic as Programming Language, Proceedings of
IFIP Congreu 74, Stockholm, Sweden, August 1974, 569-574. .

[Kow79a] R. A. Kowalski, Logic for Problem Solving, Elsevier, North-Holland, 1979.
[Kow79b] R. A. Kowalski, Algorithm = Logic + Control, Comm. ACM 22, 7 (July

[KuL&e]

. 1988. ‘

[Lee8H]
YLev84]

[Lev8s]

1979), 424-436. {

V. Kumar and Y- J. Lin, 4 Framework jor Intelligent Batktruacking in Logic
Programy, Computer Science Department, University of \Jexas at Austin,

K. S. Lee, Concurrent Prolqg in a Multi-process Environment, CS-84-46,
Department of Computer Sci:aX}ge, University of Waterloo, November 1984,

~J. Levy, A Unification Algoritbm for Concurrent Prolog, Proc. of the Second

International Logic Programming Conference, Uppsala, July 1984, 333-341.

J. Levy, Shared Memory Execution of Committed-Choice Languages, CS86-
29, Department of Applied Mathematics, Weizmann Instltute of Science,
Rehovot Israel, October 1986.

/

[LeF88)

‘[L|08~l]

[Mai83]

[Mel82]

[Mie84]

[MTA84]

92
v

J. Levy and N. Friedmann, Concurrent Prolog lmplementatiém - Two New
Schemes, CS86-13, Department of Applied Mﬁthematlcs Weitmann
Institute of Science, Rehovot, Israel, May 19886.) ’

JoW. Lloyd, Foundations of L ogic Programm?g, Springer-Verlag, 1984.

D. Maier, The Theory of Relatsonal Databases, Computer Science Press,
1983. ‘

C. S. Mellish; An Alternative to Structure Sharing in the lmplementatlon of
a Prolog Interpreter, in Logic Programmmg, K. L. Clark and S.-A. Tarnlund
(ed.), 1982, 99-106.

C. Mierowsky, Design and Implementation of Flat Concurrent Prolog,
CS84-21, The Weizmann Institute of Science, Rehovot, Israel, 1984,

T. Moto-oka, H. Tanaka, H. Aida, K. Hirata and T. Maruyama, The

Architecture of a Parallel Inference Engine - PIE, Proc. of the International

" Conference on Fifth Generation Computcr\Syalcma, Tokyo, Japan, November

© [MoK85]

[Nilg0]
[OAS85]
[Pol81]
[Rob85)
[ShT83]

[Sha8&3]

[TaKs4]

[TLM84] §
[TBH82]

[Ued8S5],

(UmT83]
.

[vaK 78]

1984, 479-488.

T. Moto-oka and M. Kitsuregawa, The Fifth Generation Computer: the
Japanese C'hallenge, John Wiley & Sons, 1985. »

'N. J. Nilsson, Principles of Artificial Intelligence, SRI International, 1980.

R. Onai, M. Aso, H. Shimizu, K. Masuda and A. Matsumoto, Archltecture of ~
a Reduction-Based Parallel Inference Machine: PIM-R, New Generation
Computmg 3.2 (1985), 197-228. *

G. H. Pollard, Parallel Ezecution of Horn Clause Programa Ph.D. Thesis,
University of London, Imperial College of Science & Technology, 1981. A
J. A. Robinson, A Machine Oriented Logic Based on the Resolution
Principle, J. ACM 12,1 (1965), 23-44.

E. Y. Shapiro and A. Takeuchi,” Object Oriented Programming in
Concurrent Prolog, New Generation Computing 1, (1983), 25-48.

E. Y. Shapiro, A Subset of Concurrent Prolog and its Interpreter, C$83-00,
The Weizmann Institute of Science, Rehovot, Israel, February 1983;

N. Tamura and Y. Kaneda, Implementing Parallel Prolog on a Multi-
processor Machine Proc. of IEEE International Sympoamm on . Logic
Prograi , Atlantic City, NJ, U.S.A., 1984, 42-48.

S. Taylor, A. Lowry, G. Q_Maguire Jr. and S. J. Stolfo, Logic Programming
Lsmg Parallel Associative. Operations, Proc. of [EEE [nternalional
Symposium on Logic Programming, Atlantic City, NJ, US.A., 1984, 58-68.

P. C. Treleaven, D. R. Brownbridge and R. P. Hopkins, Data-Driven and
Demand-Driven Computer Architecture, ACM Compulmg Surveys 14, 1 °
(March 1982), 93-143.

K. Ueda, Guarded Horn Clauses, Technical Report TR-:103, ICOT, Tokyo,
Japan,.1985.

S. Umeyama and K. Tamura, A«Pﬂfa-H/l Execution Model of Logic Programs,
Proc. of the 10th nnnual Internatsonal Symposium on Computer Archslcclurc,

~ Stockholm, Sweden, June 1983, 349-355.

M. H. van Emden and R. A. Kowalski, The Semantics of Predicate Loglc asa
Programmmg Language, J. ACM 23, 4 (October 1976), 733-742.

~

[vad79]
(van8l1]

[Wat77]

[War80]

[WAD84] D. S. Warren, M. Abamad, S. K. Debray and L. Vj\:kale Executing :.

| [WisB‘Z]

\
/

93

M. H. van Emden and G. J. de Lucena, Predicate Logic as a Language for
Parallel Programming, CS -79-15, University®f Waterloo, April 1979,

M. H. vano Emden, An lnterpretlng Algorithm for Prolog Programs, CS-81-
28, University of Waterloo, September 1981. :

D. H. D. Warrcn, Implementing Prolog: Compiling Predicate Loglc

Programs, DAL Research Report No. 39/40, University of Edinburgh,

Edinburgh, Scotland, 1977

D. H. D. Warren, Logic Programming and Com pﬂw \‘am.png, Software-
Practice and EZperaem 10,(1980), 97-125. oy

Distributed Prolog Programs on a Broadcast Network, Proc. of IEEE
International Symposium on Logic Programming, Atlantic Clty, NJ, US.A.,
1984, 12-21. _

M. J. Wise, A Parallel Prolog: the Construction of a Data Driven Model,

1982 ACM Symposium on Lssp and Funct:onal Programming, August 1982,

506-66.

Appendix Al

Example Programs

In this appendix, example programs in Concurrent Prolog, PARLOG and GHC
are provided with the intention to give the reader some ideas of the programming tech-
niques supported by these languages. The programs are very simple and their execu-
tions incur no guard hierarc¢hies; more progr'unmmg examples can be found in the
" references quoted in Section 2.2.

The first example) 132 stack process written in Concurrent Prolog as shown in
Program 1: ;

v

[CO] stack(S) <- stack{S?, []).

[C1] stack([pop(X)S]. ['\L\s]) <- stack(S?, Xs).
[C2] stack([push(\)Is] ‘(s <- stack(S?, [XIXs]).
(€3] stack([], []):

Program I A Stack Process Written in Concurrent Prolog

A stack process (implemented by the clauses Cl to C3) has two arguments: the
"first is an input stream of sfack operations represented as a list of commands, the
second is the stack represented as a list of elements. The clause CO is used as an inter-
face to the caller; its purpose is to initialize the stack whose internal representation
{(i.e. a list) is hidden from the caller.

A stack process is invoked by a goal stack(S?), where S is the input stream of
stack operations. The goal unifies with the clause head of CO, invoking the stack pro-
dess with an empty stack. The invoked stack process then iterates, processing the
commands in the input stream. If-no command is available (i.e., Sis uninstantiated),
the process suspends, due to the read-only annotation S? in the recursive calls to stack.
Otherwise, one of the following three cases must apply:

(1) If the next command in the input stream is pop(X) and the stack is
nonempty, the clause C1 is invoked. It unifies X with the top of the stack,
amd iterates with the rest of the input stream and the rest of the stack.

(2) If the next command in the input stream is push(X), the clause C2 is
invoked. It adds X to the top-of the stack, and iterates with the rest of the
input stream and the new stack.

a

(3) If both the input stream and the stack are cmpty, the clause C3 is invoked
to terminate the stack process.

[
L

If none of these cases applies (e.g. when the next command is pop(X) but the
stack is empty), the stack process fails. Stream parallelism can be exploited if the
input stream S is incrementally constructed by the caller, in that case the execution of
the stack process is synchronized by the availability of data’in S. In Concurrent Pro-
_ log, the absence of a guard from a clause means that the guard is true. Hence when
the clauses C1 to C3 are tried in parallel, the first one with successful head unification
will become the committed clause.

94

¥ . 95

The sébond‘example is a simple Unix-like shell written in PARLOG. The shell, as
shown in Program 2, handles a stream of commands to run foregroand and background
processes without input and output: .

mode shell(?).

D).
bg(Proc)|Cmds]) <- call(Proc), shell{(Cmds).-
fg(Proc)|Cmds]) <- call{Proc) & shell(Cmds).

C2
C3

shell(
shell(
shell(

Program 2: A Simple Shell Written in PARLOG

The procedure shell is invoked by a goal shell{Cmdlist), where Cmdlist is the
input stream represented as a list of commands. Each tommand should be either
bg(Proc) or fg(Proc), which denotes a background process or a foreground process,
respectively. If no command is available (i.e. Cmdlist is uninstantiated), the clauses
C1 to C3 become suspended since they violate the input constraint of the input argu-
ment, as indicated by the mode declaration shell(?). As a result, the goal will be
suspended since all its applicable clauses are suspendcd Otherw:se one of the follow-
ing three cases must apply:

(1) If Cmdlist is em;pty, the clause C1 is used to terminate the shell.
v x:

(2) If the next command is bg(Proc), the clause C2 deals with this background
command by concurrcntly (because of the parallel AND operator ,") invok-
ing the process Proc via the metalevel facility call, and resummg the shell to
process the pext command.

(3) If the next command is fg(Proc), the clause C3 deals with this foreground
command by invoking the process Proc via the metalevel facility call, and
waiting for it to terminate successfully (because of the sequential AND
operator "&") before resuming the shell to process the next command.

The goal fails if none of these cases applies. Stream parallelism can be exploited
if Cmdlist is incrementally constructed by the caller. As in Concurrent Prolog, the
absence of a guard from a clause means that the guard is true.

The example program for GHC is a binary merge process as shown in Program 3:

C1] merge([A[Ns]. Y. 7s) <- true | Zs= [A|Zs1], merge(Xs, Ys, Zsl).
C2| merge(Xs, [A]Ys], Zs) <- true | Zs= [AlZsl], merge(\(s Ys, Zsl).
C3] merge({], Y's, Zs) <- true | Zs=Ys. P

C4| merge(Xs, (], Zs) <- true |Zs=Xs. /

{ ——

Program 3: A Binary Merge Process Written in GHC

The procedure merge is invoked by a goal merge(ls1, [s2, Os) which merges the
two input streams [sl and Is2 into the output stream Os. All the streams are imple-
mented as lists of elements. If no data is.available in both input streams (ize:, both Isl
and [s2 are uninstantiated), the clauses C1 to C4 become suspended since they viphlite
the rule of suspension. As a result, the goal will be suspended since all its appl 'ble

clauses are suspended. Otherwise, one of the following four cases must apply:

(1) If data in the first input stream is available, the clause C1 is invoked to add
* the data to the output stream, and iterates with the rest of the first input
stream. ’ .

(2) If data in the second input stream is available, thé\¢lause (2 is invoked to
add the data to the output stream, and iterates with the rest of the second
input stream.) ‘

-

(3) If the first- input stream is empty, the clause C3 is ¥voked to connect the
second input stream to the output stream. i

(4) If the second input stream is empty, the clause C4 is invoked to connect the
first ipput stream to the output stream.

If data are available in both input streams, which of C1 and C2 is selected first
depends on the particular implementation. In a gosd parallel implementation, the ele-
ments from the two input streams are expected to appear in the output stream almost
in the order of arrival. Note that in GHC, a true guard must be explicitly stated. The
binding of Zs to [AlZs1] in C1 and C2 must be dome explicitly in the clause body,
instead of implicitly in the clause head. to avoid violating the rule of suspension.

Appendix A2
Levy's Execution Model

The proposed execution model described in Chapter 4 of this thesis is a mddified
version of Levy's execution model, which was designed to support the parallel execu-
tion of Concurrent Prolog, PARLOG and GHC on shared memory multiprocessor. sys-
tems. Mapy of the design ideas in the proposed execution model are inherited .from
Levy's work; these include the viewing of the computation necessary to satisfly a goal
with its applicable clauses as a unit, the encoding of the computations by a finite state
machine, the heavy usage of locking operations and the concept of recursive commit-
ment. As these features have already been covered in Chapter 4, to avoid repetition,.
this appendix will only give a brief description of Levy's execution model and highlight
its major differences with the propesed execution model.

In Levy's execution model, the AND/OR tree of a logic program is partitioned
into com putation units each of which includes the computation necessary to satisfy a
goal with all its applicable clauses. A computation unit is represented by a goal record
and several guard tuples: the goal record represents the goal to be solved, the guard
tuples represent the computations of individual applicable clauses (after their guards
are spawned). Computation units are placed in the ready goal pool and are commonly
accessed by a set of processes, each of which executes a copy of a finite-state machine
that repeatedly selects a goal from the pool, advances its state, and places the gen-
erated goals (if any) back into the pool. .

A goal record contains all the information necessary to satisfy a goal. It, as
described in Levy’s model, has the following fields: Procedure, Arguments,
Guard_Tuple, Status_Vector, Env_Vector, Ready and Link. The first five fields are
carried over to the proposed execution model; their meanings are described in Section
4.3.1. The Ready field is set to NULL when the goal record is not in the ready goal
pool. It is set to some non-NULL value if it is currently in the ready goal pool. The
Link field is the same as the R_Link field in the proposed execution model; it is used to
manage the pool of reagdy goals. '

Since Concurrent Prolag PARLOG and ‘aHC are committed choice languages, a
goal will commit to one of its applicable clauses when-the Quard of that clause is
solved, and the computations involving the other applicable clauses are useless after
the commitment. Also, a guard is a conjunction; it fails when one of its goals fails. To
avoid unnecessary computations, information of failure and abortion (due to commit-,
ment) should he propagated promptly: failure should be propagated across the con-
junction of goals in a guard and up the AND-OR tree; abortion should B propagated
across the disjunction of applicable clauses of a goal and down the AND-OR tree. In
LLevy's execution model, the goal records are not physically interconnected as a tree, so
only the upward propagation of failure, by checking the Status_Vector field of a goal
record, is supported. It is possible that Levy's model will waste its resources in the
computations involving a subtree rooted by an aborted/failed goal. To avoid this
situation, the proposed:execution_model adds two fields to the goal record which,
together with the Father and Goal_List fields of the guard tuple (see below), reveal the
AND-OR tree structure among the goal records along which failure and abortion can
be propagated. These two fields are GT Vector and G_Link, their meanings are
described in Section 4.3.1.

Another modification in the proposed execution modeyl 13 to replace the Ready
field in the &o_al record by the Flag field. The Flag field'is set to READY if the goal

i3 ‘ 97

- 08

record is currently in the ready goal pool. It is set to DEQUEUED if it is removed from
the ready goal pool and is in some execytion status. It is set to DEAD if it has failed,
been reduced or aborted. This further classification of goal status is necessary since
«~the computations involving a goal in the ready goal pool may become useless, say,
because of the propagation of failure and abortion to that goal. The classification of
goal records into READY and non-READY, as in Levy's execution model, is not ade-
quate to reflect this fact.

A guard tuple is used to monitor the computation of a guard. It, as described in
l.evy's model, has three fields: Goal_Record, Status_Word, and Guard_Count. The
Goal_Record field contains a reference to the goal for which this guard is computing, it
is the same as the Father field in the proposed model. The Status_Word field points to
tha location of the status vector of the goal corresponding to the clause containing this
gu: vpd. In the proposed model, it i3 replaced by a pointer to the clause so that the
committed clause can be located in recursive commitment. The Guard_Count field
records the number of currently unsolved goals in this guard; it is used in recursive
commitment {see Section 4.4.2.5). A fourth field, Goal_List, is added to the guard
tuple in the proposcd model; it is used to manage the goals in this guard (see Section
1.3.3).

In Levy's model, a goal reduction step is divided into seven stages:: UNIFY, UNI-
CYING. SPAWN, SPAWNED, COMMIT, COMMITTED and FAIL. This staged goal
rdduction concept is carried over to the proposed model, the meanings of the stages are
Mscribed in Section 4.3.2. Because of the introduction of failure/abortion propagation
i the proposed model, a new stage, KILLED, is added. When a goal commits to a
clause, the status words of other applicable clauses of that goal are set to KILLI'D (in
Levy's _model the stat words are set to FAIL); this is netessary for the
fanlure/'xbortxon propagat n scheme to work properly (see Secteon 4.4.2.68), Finally, as
the guard spawning operatlon[lnvohes the creation of a guard tuple and goal records,
it may take a relatively long time (when compared with the other operations). - A new
stage, SPAWNING, is 1(1(10({]#[1 the proposed model so that tbe completion of the
spawning operation can be refMcted by a stage changed: from spawningto snawned.

3

Appendix A3
Run-Tlme Structures in the Proposed Execution Mpdel

This appeudlx demonstrates the creation and interconnection of he run-time

'struct,ures in the proposed execution model. The followmg Concurrent Pro program
is used as an examples 4 S 1 } ,
C1} p(1). -
C2| q(Y) <- u(Y) | t(Y).
[C3] q(Z) <-5(2) | u(Z).
Cd| f(Z) <+s(2)].
C5] s(1). . R L ‘
C6] t(1). , : : o .
~[CT] u(1). :

For the sake of simplicity, only the Guard_Tuple and GT_Vector fields of a goal
record are shown with the latter placed inside the box representing the goal record,
and the former along thé boundary. During program execution, snapshots. of the run-
time structures MQH be dlsplayed . - :

- As explamed in Section 4. 4 1, before -program execution, ‘a top level goal
TOP_GOAL 4s created whose only appllcable clause CO has a guard containing the
goals'in the orlgmal goal clausc and arr empty body: .

<- TOP_GOAL. ‘ [new goal clause]
FOP_GOAL <- p(X)a(X)s(¥) . [Co] |

? -

- The S)stem creates. a goal record for TOP_GOAL. Since TOP_¢ OAL is the root of
the AND/OR tree and hence not a part of anw guard, a dummy guard tuple gt0 is °
created with NULL father and clause fields (used for program termination detecuon)

TOP_GOAL 7

.

The system adds TOP GOAL s goal record into the ready goal pool. Some time
later it will besdequeued and processed The clause CO is applied -and the head
unlﬁcatlon succeeds, the guard is spawned with a.guard tuple gtl created to monitor

The goal records for p(‘() q(X?) and r(Y) are created and added into the ready goal
pool The ready goal pool is now: {p(‘() q(\’) r(Y)}.

T~

A

. | | . 100

TOP_GOAL | ‘ p(X) 9(X?) oY)

gto
T

Suppose the goal record of r(Y) is dequeued and processed first. The head
unification of r(Y) and C4 succeeds, binding Z to Y. *“The computation proceeds to
~spawn the guard in C4: a guard tuple gt2, and a goal record for s(Y) are created with
“the latter being added into the ready goal pool. The ready goal pool is now: {p(X),

q(X?), s(Y)h. : :

TOP_GOAL ‘
-— U T oo
——__——’/\—> 3

/ ’/ .
: _——— Y / .
q(X?) - r(Y) //

— A g
gto s) //
// ,/
\ //
[72 - /
] C4 -1~ g
. \ ‘) I f
\ /T
- j] gts / s

Suppose at this time the goal record of q(X?), which has two applicable clauses, is
dequeued and processed. As the system tries the clauses in sequence, C2 is applied
first. "The head. unification of g(X?) and C2 succeeds, binding Y to X?. The computa-
tion proceeds to spawn the guard in C2: a guard tuple gt3, and a goal record for u(X?)
are created with the latter bemg added-into.the ready goal pool. The ready goal pool
IS now: {p(\) s(Y), u(X?)}."

oSuppbse 'the goal record of u(X?) is immediately dequeued by a process. The head -
unification of u(X?) and C7 requires the instantiation of the read-only variable X?,
hence it is suspended A suspension recotd (represented by a circle) referencing the
“goal record .of u()\’) is created and added to ‘the suspensmn list-of variablegK. The
ready goal pool is now: {p(¥X), s(Y)} ' .

101

TOP—GOA::__/-/\ii — Co
] =

g T v g T
i J (
/_C\Z:_“ | ’ RPN
- _‘,\\ Cmepz /\
r- . ' 1
! wX7] g) (Y]

Meanwhile, the process evaluating q(X?), after havmg spaWDed C2 tncs its
second clause C3. The head unification of q(X?) and C3 succeeds,’ blndmg Z to X
The guard is then spawned: a guard tuple gt4 and a goal record for 8(X?) are created
with the latter being added into the ready goal pool. The ready goal pool is now:
{p(X), s(Y), s(X1)}. \ T A

Suppose the goal record of S(X’) is immediately deciueued by a process. The head
unification of s(X?) and C5 requires the instantiation of the read-only variable X?,
hence it is also suspended. A suspension record i is' created for it and added into X's
suspension list. The ready goal pool is now: {p(X}, s(Y)}.

TOP_GOAL -) ‘ -

—
‘ q(X7?)

£(Y)
C2=p = Nho o /\
-‘-\ >

102

: »

At this time the goal record of p(X) is dequeued and -processed. The head
unification of p(X) and C1 succeeds, binding X to 1. C1 has an empty guard, hence the
computation proceeds immediately to COMMIT without creating any guard tuple.
After the commitment action succeeds, the suspended goals u(1) and s(1) (note that X
is now bound to 1) are added back into the ready goal pool. P(1) is reduced (marked
as DEAD) to Cl's empty body, creating no new goals. The guard count in gtl is decre-
mented. The ready goal pool is now: {s(Y), u(1), s(1)}. . %, ’

)

gl

TOP_GOAL PN L
~/_’/\'> g
o

—all)

— 0 D

|
/::_ =~

C3 Cief=
|1 lf'\ 1 . T
~ 3 N
ul1] v s{1) . z : - s(Y)

Suppose now the goal record of s(Y) is dequeued and processed. The head
unification of s(Y) and C5 succeeds, binding Y to 1. ‘Since C5 has an empty guard, s(1)
commits immediately to C5 and is later solved (marked as DEAD). Also, the guard
count in gt2 is 1, so a recursive commitment occurs: r(1) (i.e., s(1)'s father) is re-

- activated and commits to C4. As C4 has an empty body, r(1) is solved (marked as
DEAD). The guard count of gt} is decremented. The ready goal pool is now: {u(1),

s(1)}. '

TOP_GOAL |

i
DEAD p——r DEAD [r(1)
_L - . 1 alt) = \
Y (/
/\ — - 4 —
C2 =) =T C3 Cief= /}AD
1 E.
ulT] 3 s(T) C S ~7 sfI)
- . t
o Suppose now the goal record of u(1) is dequeued and processed. Eventually u(1)

commits to C7 and is later solved (marked as DEAD). As the guard count in gt3 is 1,

v

103

q(l) is re-activated and commits to C2 (recursive commitment). C2's sibling.clause C3
is KILLED, the goal s(1) in its spawned guard is also aborted (marked as DEAD). q(1)
is reduced (an'd henced is marked as DEAD) to the committed clause body t(1). The
goal record for t(1) is created and added into the ready goa@ol and gtl's Goal_List.
The ready goal pool is now: {s(1), t(1)}. <

— ‘I[OP_GOAL y

/ —"CO\'
‘4/___>l

1 q(1)

E f’;,//) a) -
gt . . \

e \
DEADY DEAD —>C3 Ci=f= »/}E
-‘—\l k\l 1 —J\ AD
QT am EY) : - ST

Suppose now. the’goal record of s(1) is dequeued. As its flag is not READY (since
it is aborted afte being inserted into the ready goal pool), it is discarded immediately
Finally the goal record of t(1) is dequeued and; processed. t(1) commits to C6 and is
later solved. As the guard count in gtl is 1, TOP_GOAL is reactivated and commits
to CO (recursive commitment). As CO has an empty body and the guard count in gt0
is 1, TOP_GOAL's father is referenced. Since it is NULL, the system knows that it is
not-a recursive commitment, but a program lermmahon The answers X=1, Y=1 are .
then reported. :

7

