
Journal of Theoretical Biology 547 (2022) 111135
Contents lists available at ScienceDirect

Journal of Theoretical Biology

journal homepage: www.elsevier .com/locate /y j tb i
Spreading speed of chronic wasting disease across deer groups with
overlapping home ranges
https://doi.org/10.1016/j.jtbi.2022.111135
0022-5193/� 2022 Published by Elsevier Ltd.

⇑ Corresponding author at: Department of Mathematical and Statistical Sciences,
University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2R3, Canada.

E-mail address: ji9@ualberta.ca (J. Xu).
Jingjing Xu a,b,⇑, Evelyn H. Merrill b, Mark A. Lewis a,b

aDepartment of Mathematical and Statistical Sciences, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2R3, Canada
bDepartment of Biological Science, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2R3, Canada

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 July 2021
Revised 13 April 2022
Accepted 17 April 2022
Available online 28 April 2022

Keywords:
Differential equations
Restricted movement
Landscape heterogeneity
Chronic wasting disease
Spreading speed
Chronic wasting disease (CWD) is a fatal disease of cervid species that continues to spread across North
America and now in Europe. It poses a threat to cervid populations and the local ecological and economic
communities that depend on them. Although empirical studies have shown that host home range overlap
and male dispersal are important in the spread of disease, there are few mechanistic models explicitly
considering those factors. We built a spatio-temporal, differential equation model for CWD spreading
with restricted movement of hosts within home ranges. The model incorporates both direct and environ-
mental transmission within and between groups as well as male dispersal. We compared the relative
influence of host density, sex ratio, home range size, and male dispersal distance on the spreading speed
using sensitivity analysis. We also assessed the effect of landscape heterogeneity, quantified as edge den-
sity, on the spreading speed of CWD because it jointly alters the host density and home range size. Our
model binds the theoretical study of CWD spreading speed together with empirical studies on deer home
ranges and sets a base for models in 2D space to evaluate management and control strategies.

� 2022 Published by Elsevier Ltd.
1. Introduction

Chronic wasting disease (CWD) is a prion-based transmissible
spongiform encephalopath in deer species (cervids) that leads to
a 100% mortality (EFSA BIOHAZ Panel, 2017). The disease is spread
from individual to individual (direct transmission) but also
through the environment (indirect transmission) due to the persis-
tence of excreted prions from saliva, blood, urine, and carcass of
infected hosts (Williams et al., 2002; Williams, 2005; Mathiason
et al., 2006). The latent period of CWD is one to two years, but even
during this period, animals can be contagious and shed prions into
the environment. Populations are expected to decline by 10–21%
when prevalence exceeds 30% in deer species (Odocoileus spp.)
(Edmunds et al., 2016; DeVivo et al., 2017) and elk (Cervus spp.)
population starts to decline with a prevalence of 13% (Monello
et al., 2014). Widespread loss of cervid populations will result in
economic loss to local communities from diminished hunting and
tourism, and could result in major ecological changes influencing
the conservation of biodiversity (Rivera et al., 2019; Escobar
et al., 2020). Because no vaccine is available, management options
for controlling the spread of CWD remain limited with most
focused on non-selective harvesting targeting males, or removals
of individuals associated with locations of known CWD-infected
individuals (Uehlinger et al., 2016; Mysterud and Rolandsen,
2018; Rivera et al., 2019). The disease continues to spread and is
now reported in free-ranging cervids in 28 states in the USA and
three Canadian provinces (USGS, updated March, 2022), as well
as in isolated areas in Norway, Sweden and Finland. Understanding
which factors play a key role in the speed at which CWD spreads is
important in directing current and future management strategies
to control or contain the disease.

Previous approaches to model the spread of CWD have ranged
from statistical models based on regression and spatial clustering
analyses to models with detailed mechanisms of disease transmis-
sion. Spatially explicit, statistical models estimate risk based on
associated factors such as host type and landscape features
(O’Hara Ruiz et al., 2013; Robinson et al., 2013), and provide valu-
able information to direct surveillance and management (Nobert
et al., 2016), but typically do not lend themselves to making pre-
dictions over time. For this reason, mechanistic models that
include the mechanisms of disease transmission over changing
conditions, are particularly powerful in the prediction of CWD
spread (Michael, 2001; Garlick et al., 2014; Hefley et al., 2017).
Mechanistic models include individual-based models and mathe-
matical/epidemiological models. Individual-based models can pro-
vide more mechanistic realism, such as social grouping dynamics,
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with the flexibility to deal with landscape heterogeneity, spatial
structure, and adaptation (Hammond, 2015), but have high data
and computational requirements (Hammond, 2015; Michael,
2001; Belsare et al., 2020). Epidemiological models that include
population-level dynamics and disease transmission are useful to
assess direct hypotheses about key factors influencing the rate of
disease spread, and may uncover the possible critical factors in
the transmission routes at scales ranging from local to regional
(Potapov et al., 2012; Potapov et al., 2013; Potapov et al., 2016).
For example, Garlick et al. (2014) introduced an averaging method
to efficiently estimate CWD spreading speed in a state scale, based
on population size and ecological diffusion of deer in heteroge-
neous landscapes. Hefley et al. (2017) incorporated the ecological
diffusion into a Bayesian framework to address disease spread,
and found that incorporating a more mechanistic framework into
statistical model outperformed regression and machine learning
approaches. However, these models ignored the fact that a good
portion of deer live in groups, which leads to a higher contact rate
among members of the same group than the contact rate of a pair
of deer from different groups (Merrill et al., 2011).

We use an alternative mechanistic framework that is based on
overlapping home ranges to assess the importance of factors influ-
encing CWD spreading speed. A model using home range on lat-
tices to address ecological processes was first introduced in 1971
by Holgate (1971), and extended to continuous space by Lewis
et al. (1997) and Moorcroft (1997). Since then, mechanistic home
range models have been widely used to study animal movement
and pattern formation of territories (Lewis and Murray, 1993;
Moorcroft et al., 1999; Briscoe et al., 2002; Hamelin and Lewis,
2010; Auger-Méthé et al., 2016). To our knowledge, Reluga et al.
(2006) first introduced the approach to addressing theoretical dis-
ease spread. We adopt Reluga et al. (2006)’s restricted-movement
model into the CWD spreading model, incorporating both direct
and environmental transmission within a group and between
groups as well as male dispersal.

Landscape heterogeneity has been shown to affect deer move-
ment and their home ranges at multiple scales (Adams et al.,
2020; Kie et al., 2002), which affects the encounter rate, and hence,
the spread of CWD, but very few models for CWD have incorpo-
rated home-range structure. Our work builds a bridge between
the empirical studies and mechanistic home-range models that
can be used to examine the relationships between landscape
heterogeneity and disease spread. For example, deer are reported
to respond to woody-cover edge (i.e., the border between woody
cover and other vegetation types) in multiple ways. Edges are pre-
ferred vegetation because they provide a diversity of forages and
thermal cover in close proximity and protection from predation
(Massé et al., 2009; Altendorf et al., 2001; D. Freddy et al., 1985;
Cook et al., 2004). In landscape ecology, edges are the boundaries
between different vegetation types, and edge density equals the
Fig. 1. An illustration of direct and environmental transmission between d
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edge length per unit area (e.g., km/km2; see Appendix J, also).
Higher edge density is correlated with smaller home ranges, and
also supports a larger deer density (Adams et al., 2020; Walter
et al., 2018; Plante et al., 2004), both of which may be associated
with disease spread (Habib et al., 2011). Including the home range
structure and the effects of landscape features on home range sizes
offers an opportunity to make use of data from empirical studies
and provides a means of identifying areas with higher spread
potentials and evaluating management or control strategies for
CWD through manipulating edges.

In this paper, we present a CWD spread framework that is based
on a spatio-temporal system of coupled differential equations and
incorporates a home-range structure (Reluga et al., 2006;
Moorcroft et al., 2006) and dispersal across home ranges. In our
model, deer share space with the members of their group, so the
within-group space use influences within-group contact; deer
from different groups may have overlapping home ranges, which
determines the frequency of between-group contact. Infectious
hosts spread the disease by direct contact or by shedding the pri-
ons to the environment, which hosts are exposed to within over-
lapping home ranges. By incorporating these features, we are
able to project disease spread over relatively large spatial areas
through both direct contacts with an infected individual (within
a group or from another group) as well as exposure to prions
through the environment.

Below we first present model components to build a one-
dimensional framework (Fig. 1), followed by numerical simula-
tions of spreading speed under a specific arrangement of groups,
which inspires our derivation of a spreading speed formula for
the disease. We deduce the spreading speed of the disease from
the minimum possible traveling wave speed, based on a lineariza-
tion about the leading edge of the spreading disease. We then illus-
trate the relative influence of host density, sex ratio, home range
size, and male dispersal distance on the spreading speed using
local sensitivity analysis, first when factors are assumed indepen-
dent from each other; and second, when we simultaneously
change host density and home range size by altering edge density.
Finally, we describe an ongoing future work that extends this
model to 2D space , which can enhance our understanding of the
driving factors of CWD spread and assess various harvesting
strategies.
2. Model

We construct a model based on grouping individuals within
home ranges, with the dispersal of males between home ranges.
We include disease transmission within and between groups and
derive a system of coupled ordinary differential equations for the
disease spread.
ifferent components in the model. Male dispersal is not shown here.



Table 1
Notations (s represents sex, f for female; m for male. In general cases for both sexes,
we omit the s superscript in the notations.)

Notation Description
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2.1. Grouping structure and home ranges

We structure the population such that deer live in groups and
that groups are distinguished as either male or female groups
(Mejia Salazar et al., 2017). If we assume that there are an equal
number of male groups and female groups, then it is possible to
determine the number of individuals in a group from the deer den-
sity and population sex ratio in a simulation. This approach is used
in simulations in Section 3. The number of deer in a group (i.e., the
group size) is assumed to remain unchanged over time, a simplifi-
cation reflecting the assumption of a stable population density.
Groups are located discretely in one-dimensional space. Individu-
als in each group have a spatially distributed symmetric home
range around a location, xj (see Fig. 2), which creates the possibility
of overlapping home ranges between groups. The probability dis-
tribution for spatial use by each individual in a group is given for
each group, and the location of one home range does not influence
another. Within home ranges, the probabilistic distribution in
space is the same for all individuals in a group. It is assumed to
result from two balancing processes: random motion and a direc-
ted motion towards a given location, i.e., the center of the home
range (see Section 2.2). The frequency of pairwise interaction
among individuals within the same group is then determined by
the probabilistic distribution arising from these processes. The
between-group pairwise interaction is determined by both the dis-
tance between the location of the home range centers and the
probabilistic distribution of individuals within a home range.

2.2. Home range based on a restricted movement model

Restricted movement within a home range. Suppose a group of
deer move around a center xj, and the distribution of deer space
use within a home range results from restricted movement, which
includes a random motion with diffusion coefficient D and a direc-
ted motion towards the center with speed c (Reluga et al., 2006;
Moorcroft et al., 2006). The steady state distribution of a deer
group is

�u xð Þ ¼ Nu xð Þ; ð1Þ
where N is the group size, and u xð Þ is the probabilistic distribution
of a deer in this group, with

u xð Þ ¼ b
2
exp �bjx� xjj

� �
; ð2Þ
Fig. 2. Distribution of groups over space when we assume the same number of
male and female groups. Red is for female group distribution, and blue for male.
Here, there are seven female groups and seven male groups. Male groups are
located around the same seven locations for female groups. The distance between
neighbouring groups is set to Dx ¼ 5 km, and the home ranges are determined by
bm ¼ 1km2yr�1; bf ¼ 1:4979km2yr�1.
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where the relative strength of directed motion is b ¼ c
D (see

Moorcroft et al., 2006, page 31).
When the relative strength of the directed motion b is

unknown, it can be related to the size of the home range. The
relationship between the parameter b and the radius of the
95% home range, r, comes from Eq. (2). We use the radius here
in 1D to mean the distance from the home range center to the
edge of 95% home range. A 95% home range corresponds to the
relation

0:95 ¼
Z r

�r

b
2
exp �bjxjð Þdx; ð3Þ

which gives us

b ¼ ln 20ð Þ
r

: ð4Þ
2.3. Direct and environmental transmission within and between
groups

We assume that infectious hosts (I) spread the disease by direct
contact with susceptible hosts (S) or by shedding the prions to the
environment (H), which susceptible hosts (S) can pick up from
overlapping home ranges (see Table 1 for notations, and Fig. 1).

We also assume there are multiple groups, each with a different
home range location, so that group j is centered around home
range center xj. Based on the steady-state distribution, we derive
a model for both sexes without considering dispersal (see Appen-
dix A for derivations). We will consider male dispersal in the next
section. The proportions of susceptible Sj tð Þ and infected Ij tð Þ hosts
in group j, and the average group-j per-individual shedding
amount of prions Hj tð Þ (that is, the total prion amount shed by a
size-Nj group is HjNj) obey the following ordinary differential
equations (ODEs):
F the number of female groups
M the number of male groups
Ns the group size of sex s
xj center of home range for group j
Dx distance between the centers of neighbouring groups
bs relative strength of directed motion compared with the random

motion of sex s
c1; c2 parameters determining the male dispersal
b the basic direct transmission rate
/ the basic environmental transmission rate
a the rate at which prions are excreted
d the degrading rate of prions from environment
us
j xð Þ the probability density of group j of sex s

Ns
k the number of individuals in group k of sex s

Ssj tð Þ the proportion of susceptible individuals in group j of sex s

Isj tð Þ the proportion of infected individuals in group j of sex s

Hs
j tð Þ the amount of prions shed from group j of sex s

bsjk direct transmission rate from group k to group j of sex s

bxyj‘ direct transmission rate from sex-y group ‘ to sex-x group j

/xy
jk

transmission rate from prions shed by sex-y group k to sex-x
group j

/s
jk transmission rate from prions shed by group k to group j for sex s

ljk the coefficient of pairwise encounter rate
ejk the rate of male dispersal from group k to group j
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d
dt

Sj tð Þ ¼ �Sj tð Þ
X
k

Ik tð ÞbjkNk � Sj tð Þ
X
k

Hk tð Þ/jkNk; ð5Þ

d
dt

Ij tð Þ ¼ Sj tð Þ
X
k

Ik tð ÞbjkNk þ Sj tð Þ
X
k

Hk tð Þ/jkNk; ð6Þ

d
dt

Hj tð Þ ¼ aIj tð Þ � dHj tð Þ; ð7Þ

where

bjk ¼bljk; ð8Þ
/jk ¼/ljk; ð9Þ

ljk ¼
Z
R
uj nð Þuk nð Þdn; ð10Þ

where we call bjk the coefficient of pairwise direct effective trans-
mission, /jk the coefficient of pairwise environmental effective
transmission, and ljk the pairwise encounter rate. Note that j ¼ k

indicates transmission within a group, and j– k indicates transmis-
sion between groups.

2.4. Dynamics of male groups with dispersal

In addition to the random motion and directed motion of indi-
vidual group members within each home range, which is used to
derive the steady-state distribution in Eq. (2), the male distribution
among groups is modified via dispersal between groups. We use
Nj tð Þ to denote the number of deer in group j, and use ejk to denote
the rate at which males in group k disperse to group j. For M male
groups, the change of group size is given by

d
dt

Nj tð Þ ¼
XM

k¼1; k–j

ejkNk �
XM

k¼1; k–j

ekjNj: ð11Þ

The system can be written in the following matrix form,

_N tð Þ ¼ EN tð Þ; ð12Þ
where

E ¼

�
XM

k¼1; k–1

ek;1 e1;2 � � � e1;M

e2;1 �
XM

k¼1; k–2

ek;2 � � � e2;M

..

. ..
. ..

. ..
.

eM;1 eM;2 � � � �
XM

k¼1; k–M

ek;M

2666666666666664

3777777777777775
: ð13Þ

Note:
PM

k¼1Ekj ¼ 0 for j ¼ 1;2; . . . ;M and ejk > 0. The total num-
ber of males remains constant becauseXM
j¼1

d
dt

Nj tð Þ ¼ 0; ð14Þ

so
PM

j¼1Nj tð Þ ¼PM
j¼1Nj 0ð Þ ¼ K , where K is the total number of males.

If we divide the equations by K, the system (11)-(12) corre-
sponds to a Continuous Time Markov Chain (CTMC) (see Appendix
G). Because males can disperse between each pair of male groups
and there are a finite number of groups, the system corresponds
4

to an irreducible and finite CTMC, that is, a positive recurrent
CTMC. Therefore, there exists an equilibrium solution N� satisfying
EN� ¼ 0 which is the limiting probability distribution (see Pishro-
Nik et al., 2016, Section 11.3.2). Thus

lim
t!þ1

Nj tð Þ ¼ N�
j : ð15Þ

We assume the male distribution is at equilibrium and we drop
� in the following sections to simplify the notation. For the special
case when the dispersal is symmetric between groups, i.e., ejk ¼ ekj,
we can verify the existence of a uniform equilibrium by substitut-
ing N� ¼ K

M ; KM ; KM ; . . . ; KM
� Þ into the system (12). That is, the number 0

is an eigenvalue of E with the corresponding eigenvector
1;1;1; � � � ;1ð Þ. All other eigenvalues have negative real parts. This
can be proved by the direct application of the Gershgorin circle
theorem. That is to say, the spectral abscissa (i.e., the largest real
part of the eigenvalues) of E is zero. Furthermore, with the given
total number of males, the solution to EN ¼ 0 is N�.

2.5. Full model in finite domain

Assuming there are M male groups and F female groups, we
combine the transmission model (see Fig. 1) and male dispersal
to obtain the full model as follows:

d
dt

Sfj tð Þ ¼ � Sfj tð Þ
XF
k¼1

Ifk tð Þbf
jk þ Hf

k tð Þ/f
jk

� �
Nf

k

� Sfj tð Þ
XM
q¼1

Imq tð Þbfm
jq þ Hm

q tð Þ/fm
jq

� �
Nm

q ; ð16Þ

d
dt

Ifj tð Þ ¼Sfj tð Þ
XF
k¼1

Ifk tð Þbf
jk þ Hf

k tð Þ/f
jk

� �
Nf

k

þ Sfj tð Þ
XM
q¼1

Imq tð Þbfm
jq þ Hm

q tð Þ/fm
jq

� �
Nm

q ; ð17Þ

d
dt

Hf
j tð Þ ¼aIfj tð Þ � dHf

j tð Þ; ð18Þ

d
dt

Smp tð Þ ¼ � Smp tð Þ
XF
k¼1

Ifk tð Þbmf
pk þ Hf

k tð Þ/mf
pk

� �
Nf

k

� Smp tð Þ
XM
q¼1

Imq tð Þbm
pq þ Hm

q tð Þ/m
pq

� �
Nm

q

þ
X
q–p

epqS
m
q tð ÞNm

q � Smp tð ÞNm
p

X
q–p

eqp; ð19Þ

d
dt

Imp tð Þ ¼Smp tð Þ
XF
k¼1

Ifk tð Þbmf
pk þ Hf

k tð Þ/mf
pk

� �
Nf

k

þ Smp tð Þ
XM
q¼1

Imq tð Þbm
pq þ Hm

q tð Þ/m
pq

� �
Nm

q

þ
X
q–p

epqI
m
q tð ÞNm

q � Imp tð ÞNm
p

X
q–p

eqp; ð20Þ

d
dt

Hm
p tð Þ ¼aImp tð Þ � dHm

p tð Þ; ð21Þ

where superscripts f and m on variables denote the sex as described
in Table 1,
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j ¼1;2; � � � ; F; ð22Þ
p ¼1;2; � � � ;M; ð23Þ

bfm
jq ¼blfm

jq ; ð24Þ
/fm

jq ¼/lfm
jq ; ð25Þ

lfm
jq ¼

Z
R
uf
j nð Þum

q nð Þdn; ð26Þ

bmf
pk ¼blmf

pk ; ð27Þ
/mf

pk ¼/lmf
pk ; ð28Þ

lmf
pk ¼

Z
R
um
p nð Þuf

k nð Þdn; ð29Þ
bs
jk ¼bls

jk; ð30Þ
/s

jk ¼/ls
jk; ð31Þ

ls
jk ¼

Z
R
us
j nð Þus

k nð Þdn; ð32Þ
s ¼f ;m: ð33Þ

with initial conditions:

Sfj 0ð Þ ¼ Sfj;0; I
f
j 0ð Þ ¼ Ifj;0;H

f
j 0ð Þ ¼ Hf

j;0; for j ¼ 1;2; � � � ; F; ð34Þ
Smp 0ð Þ ¼ Smp;0; I

m
p 0ð Þ ¼ Imp;0;H

m
p 0ð Þ ¼ Hm

p;0; for p ¼ 1;2; � � � ;M: ð35Þ
For the male dispersal rate eqp, we assume an exponentially

decreasing rate function

eqp ¼ epq ¼ c1 exp �c2Dxjp� qjð Þ; ð36Þ
where c1 denotes the magnitude and c2 denotes the drop off with
distance. Note that the rate of dispersing deer is the product of
the per capita dispersal rate and the number of deer. When per cap-
ita dispersal rates are the same in both directions, the sizes of two
deer groups can change if the groups begin with different sizes.
However, the sizes of the two groups remain the same if they start
with the same size, because they ‘‘exchange” the same number of
deer per time unit. Although denoted distinctly by Nm

q , here we
assume the male groups are of the same size, which is later simpli-
fied to Nm. We present a more general model in Appendix H, where
we track the number of hosts in the group instead of their propor-
tions allowing the group sizes to be different.

2.6. Model in the infinite domain

In the infinite domain, the indices for j and p run from �1 to1,
i.e., they are integers Z (see Eqs. (16)-(21)). For male groups, we
restrict ourselves to the case where the per capita dispersal rate
matrix E is symmetric and we assume that male group sizes are
at the uniform equilibrium in the infinite domain, N�. Similar to
the existence of a uniform equilibrium solution in the finite
domain, we substitute the uniform equilibrium solution in the infi-
nite domain into the version of the system (12) expanded into the
infinite domain. For a given group j, the movement to any other
group k balances out with the movement from that group k, so
the existence of the uniform equilibrium solution with respect to
male dispersal is guaranteed. The initial conditions are as follows:

Sfj 0ð Þ ¼ Sfj;0; I
f
j 0ð Þ ¼ Ifj;0;H

f
j 0ð Þ ¼ Hf

j;0; for j 2 Z; ð37Þ
Smp 0ð Þ ¼ Smp;0; I

m
p 0ð Þ ¼ Imp;0;H

m
p 0ð Þ ¼ Hm

p;0; for p 2 Z: ð38Þ
2.7. Equilibrium

Here, we calculate equilibrium solutions for the spatially uni-
form problem (where each node is identical). On the finite domain,
when the male groups are of a constant size (i.e., Nm

q ¼ Nm for
q ¼ 1;2; � � � ;M) and the dispersal matrix E is symmetric, we can
5

obtain two equilibria by letting the right-hand side of Eqs. (16)-
(21) be zero. The female group sizes do not have to be the same.
Note that, although looking complicated, the right-hand side of
equations for Ssj tð Þ decreases with Isk and Hs

k, the right-hand side

of equations for Isj tð Þ increases with Isk and Hs
k. We obtain the

disease-free trivial equilibrium as follows:

Sfj ¼ 1; Ifj ¼ 0;Hf
j ¼ 0; for j ¼ 1;2; � � � ; F; ð39Þ

Smp ¼ 1; Imp ¼ 0;Hm
p ¼ 0; for p ¼ 1;2; � � � ;M: ð40Þ

The other trivial equilibrium with disease is:

Sfj ¼ 0; Ifj ¼ 1;Hf
j ¼

a
d
; for j ¼ 1;2; � � � ; F; ð41Þ

Smp ¼ 0; Imp ¼ 1;Hm
p ¼ a

d
; for p ¼ 1;2; � � � ;M: ð42Þ
3. Spreading speed

The spreading speed for our system is the speed at which ini-
tially localized infection data will spread spatially, asymptotically
in time. In other words, a moving reference frame traveling out-
wards from the initial infection at a speed faster than the spreading
speed will eventually see no infection, while a moving reference
frame traveling outwards from the initial infection at a speed
slower than the spreading speed will eventually encounter the
region of established infection. Spreading speed calculations nor-
mally require spatially homogeneous environmental conditions
for the disease to spread into (but see, for example, Garlick et al.
(2014)). Recall that, in sections 2.6 and 2.7, we required male
groups to be of the same size. In this section, we put more restric-
tions and choose a special spatial arrangement of groups: we
assume an equal number of female groups and male groups evenly
spaced, with the home range center of a female group as the home
range center of a male group and distance between the centers of
neighbouring groups is set to the same, denoted by Dx. Female
groups are of the same size Nf , and male groups are of the same
size Nm. We choose such an arrangement as a reasonable example
for which we can consider the spreading speed of the disease into a
spatially homogeneous population.

We take two approaches to the spreading speed, one computa-
tional and the other theoretical. The computational approach
approximates the spreading speed in a finite domain using numer-
ical simulations where there are a finite number of groups. Then,
we turn to the case of the theoretical spreading speed, which is
applicable to an infinite spatial domain and with an infinite num-
ber of groups. The theoretical approach follows the classic theory
of spatial systems with linearly determined spreading speeds
(Lewis et al., 2016). It focuses on the rate of spread of the disease
at low disease prevalence found at the leading edge of the disease
invasion, and uses a linearization approach. The relationship
between the traveling wave speed c and wave steepness s, referred
to as a dispersion relation, is calculated for the linearized problem
and then the spreading speed is given as the minimum speed for
the traveling wave solution, minimized over all possible wave
steepnesses (Lewis et al., 2016). Although this approach is widely
used in theoretical biology (Kot et al., 1996; Lin et al., 2003;
Lewis et al., 2006; Lee et al., 2008; Maidana et al., 2008; Lewis
et al., 2018), our approach is informal in that, in this paper, we
do not prove rigorously that minimum traveling wave speed for
the linearized system yields the spreading speed for the nonlinear
system. We leave this for later work. We do, however, compare the
theoretical predictions to the numerical approximations over a
range of model parameter values.



Fig. 3. The infected fraction of hosts in female and male groups (upper panel) and
environmental prions shed by females and males (lower panel). Different colors of
solid curves shows the status of infection at time 0.2479, 11.6804, 30.1797, 49.6260
and 75.0642 ordered from the middle to the sides, and black dashed curve near
them are for male groups at the corresponding time. Parameters are set to
b ¼ 0:0326yr�1; / ¼ 0:787mass�1yr�1; Nm ¼ 2; Nf ¼ 4; bm ¼ 1km2yr�1;

bf ¼ 1:4979km2yr�1; c2 ¼ 0:2; Dx ¼ 1km; a ¼ 0:111yr�1; d ¼ 2:55yr�1. Most of
the parameter values are chosen based on previous studies (see Table C.1), and
others are estimated.

Fig. 4. The traveling wave of infected fraction of hosts in female and male groups
(upper panel) and environmental prions shed by females and males (lower panel) at
time 0.2759, 9.4582, 24.4005, 40.6578 and 57.3946. Red solid curves are for female
groups, and blue dashed curves for male. The infection is introduced to four male
groups and four female groups near the origin. Parameters are set to
b ¼ 0:0326yr�1; / ¼ 0:787mass�1yr�1; Nm ¼ 2; Nf ¼ 4; bm ¼ 1km2yr�1;

bf ¼ 1:4979km2yr�1; c2 ¼ 0:2; Dx ¼ 1km; a ¼ 0:111yr�1; d ¼ 2:55yr�1 (see
Table C.1).

Fig. 5. The spatio-temporal spread of disease. Red triangles are for female groups,
and blue stars are for male groups. For example, a red triangle placed at (x,y) means
the infected fraction of the female group at location y reaches a threshold (in our
case, we set the threshold to 99:99% – other thresholds can be used but the
computation of speed will not change much) at time x. Points along the dashed line
are used to compute the spreading speed, which is the slope of the dashed line.
Here, the spreading speed is approximately 6.9635 km/yr. Parameters are set to
b ¼ 0:0326yr�1; / ¼ 0:787mass�1yr�1; Nm ¼ 2; Nf ¼ 4; bm ¼ 1km2yr�1;

bf ¼ 1:4979km2yr�1; c2 ¼ 0:2; Dx ¼ 1km; a ¼ 0:111yr�1; d ¼ 2:55yr�1 (see
Table C.1).
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3.1. Numerical simulations

First, we illustrate the spread of CWD that would be expected
via numerical simulations on a finite domain, where the spreading
speed is numerically approximated. Appendix E provides an exam-
ple of the numerical simulation of spreading speed.

In these simulations the 95% radius of the home range r is used
to determine the parameter b that is needed in the calculation of
the home range overlap via Eqs. (2) and (10). For females we
6

choose a 95% radius of rf ¼ 2, which gives bf ¼ 1:4979 via Eq. (4)
and for males we choose a 95% radius of rm ¼ 3, which gives
bm ¼ 0:9986 via Eq. (4). bf > bm means male groups have a larger
home range size (see Fig. 2). For a special case that CWD is intro-
duced to the origin where both the female group and the male
group located near the origin are infected, CWD spreads out to
other places around the origin in a wave-like pattern (see Fig. 3).

To make it easier to obtain an approximation of the spreading
speed numerically, we look at the case where the disease starts
from one the left side of the domain (near the origin point on the
left, see Fig. 4) where deer in four female groups and four male
groups near the origin are all infected. We use the simulated infec-
tion levels of each group and the time of infection to compute an
approximated spreading speed (Fig. 5). For each male and female
group, which we track separately, we record the time at which
the infection fraction of the group reaches 99:99%, relative to the
locations where each group centers around. We choose 99:99%
for convenience, but other thresholds will not change the outcome
because the shape approaches a traveling wave as time goes on.
Then, as there are both a female group and a male group for each
location and we track them separately, we decided to record the
time of the group that reaches the threshold later in time (in our
case, it is the male groupmost of the time). Finally, we use the mid-
dle section of the points to fit a straight line where the least square
slope of the line approximates spreading speed.

3.2. Deriving the spreading speed analytically

Because computations of the spreading speed with a large set of
parameters are time demanding, we also provide the analytical
approach as a means to obtain the spreading speed from traveling
wave, considering the system on the infinite domain. Then, we
rewrite the system as follows, using j; k as indices of females, and
p; q for males:
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d
dt

Sfj tð Þ ¼ � Sfj tð Þ
X1
k¼�1

Ifk tð Þbf
jk þ Hf

k tð Þ/f
jk

� �
Nf

� Sfj tð Þ
X1
q¼�1

Imq tð Þbfm
jq þ Hm

q tð Þ/fm
jq

� �
Nm; ð43Þ

d
dt

Ifj tð Þ ¼Sfj tð Þ
X1
k¼�1

Ifk tð Þbf
jk þ Hf

k tð Þ/f
jk

� �
Nf

þ Sfj tð Þ
X1
q¼�1

Imq tð Þbfm
jq þ Hm

q tð Þ/fm
jq

� �
Nm; ð44Þ

d
dt

Hf
j tð Þ ¼aIfj tð Þ � dHf

j tð Þ; ð45Þ
d
dt

Smp tð Þ ¼ � Smp tð Þ
X1
k¼�1

Ifk tð Þbmf
pk þ Hf

k tð Þ/mf
pk

� �
Nf

� Smp tð Þ
X1
q¼�1

Imq tð Þbm
pq þ Hm

q tð Þ/m
pq

� �
Nm

þ
X
q–p

epqS
m
q tð ÞNm � Smp tð ÞNm

X
q–p

eqp; ð46Þ

d
dt

Imp tð Þ ¼Smp tð Þ
X1
k¼�1

Ifk tð Þbmf
pk þ Hf

k tð Þ/mf
pk

� �
Nf

þ Smp tð Þ
X1
q¼�1

Imq tð Þbm
pq þ Hm

q tð Þ/m
pq

� �
Nm

þ
X
q–p

epqI
m
q tð ÞNm � Imp tð ÞNm

X
q–p

eqp; ð47Þ
d
dt

Hm
p tð Þ ¼aImp tð Þ � dHm

p tð Þ; ð48Þ
j 2 Z; p 2 Z; ð49Þ

where

bfm
jq ¼bfmlfm

jq ; ð50Þ
/fm

jq ¼/fmlfm
jq ; ð51Þ

lfm
jq ¼

Z
R
uf
j nð Þum

q nð Þdn; ð52Þ

bmf
pk ¼bmflmf

pk ; ð53Þ
/mf

pk ¼/mflmf
pk ; ð54Þ

lmf
pk ¼

Z
R
um
p nð Þuf

k nð Þdn; ð55Þ
bs
jk ¼bsls

jk; ð56Þ
/s

jk ¼/sls
jk; ð57Þ

ls
jk ¼

Z
R
us
j nð Þus

k nð Þdn; ð58Þ
s ¼f ;m: ð59Þ
Note that the Eqs. (43)-(48) are different from Eqs. (16)-(21).

The space is extended to infinity in this model, and the group sizes
of each sex are equal, Nf for females and Nm for males.

3.2.1. Pairwise host encounter rates
The pairwise host encounter rates (see Eqs. (52), (55) and (58))

are essential for transmission. To obtain these rates from the inte-
grals, we first recall that the probability density of group j is

uj xð Þ ¼ bj
2 exp �bjjx� xjj

� �
. Then, we substitute the probability

expressions of uj xð Þ and uk xð Þ into Eqs. (52), (55), and (58). We
assume groups of the same sex have the same b value, so the pair-
wise encounter rate between two same-sex individuals from dif-
ferent groups j and k (Eqs. (52) and (55)) is simplified into

lf=m
jk ¼ b

4
1þ jxk � xjj

� �
b

� �
exp �b jxk � xjj

� �� �
: ð60Þ
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For a female and a male from different groups j and k, the
encounter rate (Eq. (58)) is

lfm=mf
jk ¼ bjbk

2 b2
k � b2

j

� � �bj exp �bk xk � xj
� �� �þ bk exp �bj xk � xj

� �� �� �
:

ð61Þ
In the special case of (61), when these two individuals have the

same home range center, the encounter rate is simplified into

lfm=mf
jk ¼ bjbk

2 bk þ bj
� � : ð62Þ

In Eqs. (60)–(62), parameters b; bj, and bk take the value of bf for
females and bm for males. (See Appendix I for derivations of Eqs.
(60)–(62).)

We can obtain the effect of changing the home range size by
using Eqs. (4) and (60)–(62), e.g., if the home range radius of female
groups is 3 km and group j and group k is 5 km apart, then bf � 1,
which means the pairwise between-group contact rate is

lf
jk � 0:01 and the pairwise within-group contact rate is

lf
jj ¼ 0:25; if the home range radius of female groups is 2 km and

group j and group k is 5 km apart, then bf � 1:5, which means

the pairwise between-group contact rate is lf
jk � 0:002 and the

pairwise within-group contact rate is lf
jj ¼ 0:375.

3.2.2. Boundary conditions and initial conditions
The natural boundary conditions for the model on the infinite

domain are:

lim
j!�1

Sfj tð Þ ¼ 0; lim
j!�1

Ifj tð Þ ¼ 1; lim
j!�1

Hf
j tð Þ ¼ a

d
; ð63Þ

lim
p!�1

Smp tð Þ ¼ 0; lim
p!�1

Imp tð Þ ¼ 1; lim
p!�1

Hm
p tð Þ ¼ a

d
: ð64Þ

lim
j!1

Sfj tð Þ ¼ 1; lim
j!1

Ifj tð Þ ¼ 0; lim
j!1

Hf
j tð Þ ¼ 0; ð65Þ

lim
p!1

Smp tð Þ ¼ 1; lim
p!1

Imp tð Þ ¼ 0; lim
p!1

Hm
p tð Þ ¼ 0: ð66Þ

We do not need the initial conditions to obtain the spreading
speed analytically, but, for completeness, we list them here as
follows:

Sfj 0ð Þ ¼ Sfj;0; I
f
j 0ð Þ ¼ Ifj;0;H

f
j 0ð Þ ¼ Hf

j;0; for j 2 Z; ð67Þ
Smp 0ð Þ ¼ Smp;0; I

m
p 0ð Þ ¼ Imp;0;H

m
p 0ð Þ ¼ Hm

p;0; forp 2 Z: ð68Þ
3.2.3. Linearization
We linearize the system around the disease-free equilibrium by

substituting the following into the system:

S ¼ 1� ~S; I ¼ ~I; H ¼ ~H; ð69Þ
and keep only linear terms. Note that there is a negative sign before
~S, where ~S represents the lost fraction of the susceptible hosts due

to initial infection. For illustration only, a simplified ODE for ~S looks
like

� d
dt

~S ¼ � 1� ~S
� � X

k

~Ibþ ~H/
� �

N þ
X
q

~Ibþ ~H/
� �

N

" #
ð70Þ

� �
X
k

~Ibþ ~H/
� �

N þ
X
q

~Ibþ ~H/
� �

N

" #
: ð71Þ
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For simplicity, we use S to denote ~S in the following (as well as
droping the tildes on I and H). As the original ODE for pairs of S and
I sum to a constant, we only keep the ODE of Iin the following. So,
we obtain

d
dt

Ifj tð Þ ¼
X1
k¼�1

Ifk tð Þbf
jk þHf

k tð Þ/f
jk

� �
Nf þ

X1
q¼�1

Imq tð Þbfm
jq þHm

q tð Þ/fm
jq

� �
Nm;

ð72Þ
d
dt

Hf
j tð Þ ¼aIfj tð Þ� dHf

j tð Þ; ð73Þ
d
dt

Imp tð Þ ¼
X1
k¼�1

Ifk tð Þbmf
pk þHf

k tð Þ/mf
pk

� �
Nf þ

X1
q¼�1

Imq tð Þbm
pq þHm

q tð Þ/m
pq

� �
Nm

þ
X
q–p

epqI
m
q tð ÞNm � Imp tð ÞNm

X
q–p

eqp; ð74Þ

d
dt

Hm
p tð Þ ¼aImp tð Þ� dHm

p tð Þ: ð75Þ
3.2.4. Spatially homogeneous infection dynamics
For the disease to spread spatially when introduced locally we

require that CWDwill growwhen introduced into an uninfected pop-
ulation in a spatially homogeneous manner. The condition for infec-
tion growth is equivalent to the condition under which the trivial
equilibrium 0;0;0;0½ �T for the spatially homogeneous system is
unstable. That means the Jacobian matrix evaluated at the trivial
equilibrium should have at least one eigenvalue with a nonnegative
real part. Now we revisit our model in Eqs. (72) and (75) and assume
homogeneous infection and prion levels, so that we obtain

d
dt

If tð Þ ¼ If tð Þ
X1
k¼�1

bf
jk þ Hf tð Þ

X1
k¼�1

/f
jk

 !
Nf

þ Im tð Þ
X1
q¼�1

bfm
jq þ Hm tð Þ

X1
q¼�1

/fm
jq

 !
Nm; ð76Þ

d
dt

Hf tð Þ ¼aIf tð Þ � dHf tð Þ; ð77Þ

d
dt

Im tð Þ ¼ If tð Þ
X1
k¼�1

bmf
pk þ Hf tð Þ

X1
k¼�1

/mf
pk

 !
Nf

þ Im tð Þ
X1
q¼�1

bm
pq þ Hm tð Þ

X1
q¼�1

/m
pq

 !
Nm

þ Im tð ÞNm

X
q–p

epq � Im tð ÞNm

X
q–p

eqp; ð78Þ

d
dt

Hm tð Þ ¼aIm tð Þ � dHm tð Þ: ð79Þ

As we assume symmetric dispersal, i.e., eqp ¼ epq, the dispersal
terms cancel in the Im tð Þ equation, leading to the following system:

d
dt

If tð Þ ¼ If tð Þ
X1
k¼�1

bf
jk þ Hf tð Þ

X1
k¼�1

/f
jk

 !
Nf

þ Im tð Þ
X1
q¼�1

bfm
jq þ Hm tð Þ

X1
q¼�1

/fm
jq

 !
Nm; ð80Þ

d
dt

Hf tð Þ ¼aIf tð Þ � dHf tð Þ; ð81Þ
d
dt

Im tð Þ ¼ If tð Þ
X1
k¼�1

bmf
pk þ Hf tð Þ

X1
k¼�1

/mf
pk

 !
Nf

þ Im tð Þ
X1
q¼�1

bm
pq þ Hm tð Þ

X1
q¼�1

/m
pq

 !
Nm; ð82Þ

d
dt

Hm tð Þ ¼aIm tð Þ � dHm tð Þ: ð83Þ
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We rewrite the system into the matrix form in the following:

d
dt

If tð Þ
Hf tð Þ
Im tð Þ
Hm tð Þ

266664
377775 ¼ W

If tð Þ
Hf tð Þ
Im tð Þ
Hm tð Þ

266664
377775; ð84Þ

where W ¼ wjk

� �
is

Nf
P1

k¼�1
bf
jk Nf

P1
k¼�1

/f
jk Nm

P1
q¼�1

bfm
jq Nm

P1
q¼�1

/fm
jq

a �d 0 0

Nf
P1

k¼�1
bmf
pk Nf

P1
k¼�1

/mf
pk Nm

P1
q¼�1

bm
pq Nm

P1
q¼�1

/m
pq

0 0 a �d

266666664

377777775: ð85Þ

Note that wjk P 0 for j– k, i.e., all the off-diagonal entries of W
are nonnegative, so W is a Metzler matrix (see, e.g., Ngoc, 2006).
Using the properties of the matrix exponential and Gronwall’s
Inequality (Gronwall, 1919), we show that the trivial equilibrium
is unstable in Appendix B.

3.2.5. Traveling wave ansatz
We consider traveling wave solutions to the linearized system

(72)-(75). Because the system is linear we write the traveling wave
solutions in the following form (exponentially decaying traveling
wave ansatz):

Ifj ¼ K1 exp �s jDx� ctð Þð Þ; ð86Þ
Hf

j ¼ K2 exp �s jDx� ctð Þð Þ; ð87Þ
Imp ¼ K3 exp �s pDx� ctð Þð Þ; ð88Þ
Hm

p ¼ K4 exp �s pDx� ctð Þð Þ; ð89Þ
where the parameters Ki ði ¼ 1; 2; 3; 4Þ are constants, s determines
the shape of the traveling wave solutions and c determines the
speed. Our goal is to derive a dispersion relation between c and s
for this traveling wave problem (c ¼ c sð Þ) and then to equate the
spreading speed with the minimum possible traveling wave speed
(minsc sð Þ).

We first substitute the above form of solutions into Eqs. (72)-
(75), and obtain equations for constants Ki:

csK1 ¼Nf bf K1 þ /f K2

� �
Lfj sð Þ þ Nm bfmK3 þ /fmK4

� �
Lfmj sð Þ; ð90Þ

csK2 ¼aK1 � dK2; ð91Þ
csK3 ¼ Nf bmf K1 þ /mf K2

� �
Lmf
p sð Þ þ Nm bmK3 þ /mK4ð ÞLmp sð Þ

þNmK3J
m
p sð Þ;

ð92Þ

csK4 ¼aK3 � dK4; ð93Þ
where

Lfj sð Þ ¼ exp sjDxð Þ
X1
k¼�1

lf
jk exp �skDxð Þ; ð94Þ

Lfmj sð Þ ¼ exp sjDxð Þ
X1
q¼�1

lfm
jq exp �sqDxð Þ; ð95Þ

Lmf
p sð Þ ¼ exp spDxð Þ

X1
k¼�1

lmf
pk exp �skDxð Þ; ð96Þ

Lmp sð Þ ¼ exp spDxð Þ
X1
q¼�1

lm
pq exp �sqDxð Þ; ð97Þ

Jmp sð Þ ¼ exp spDxð Þ
X
q–p

epq exp �sqDxð Þ �
X
q–p

eqp: ð98Þ
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Eqs. (94)-(98) can be simplified using the formula for a geomet-
ric series (see Appendix D). Thus, we obtain a system of the con-
stants Ki

A

K1

K2

K3

K4

26664
37775 ¼ 0; ð99Þ

where A is

Nfb
f Lfj sð Þ � cs Nf/

f Lfj sð Þ Nmb
fmLfmj sð Þ Nm/

fmLfmj sð Þ
a �d� cs 0 0
Nfb

mf Lmf
p sð Þ Nf/

mf Lmf
p sð Þ a33 Nm/

mLmp sð Þ
0 0 a �d� cs

266664
377775;

ð100Þ
with a33 ¼ Nmb

mLmp sð Þ þ NmJ
m
p sð Þ � cs.

In order to make sure the traveling wave solutions are non-
trivial, a non-zero solution of Ki needs to exist, which means
det Að Þ ¼ 0 must hold. Then, the implicit relation between s and c
is obtained from det Að Þ ¼ 0. Once we obtain an expression of c in
terms of s, the minimum value of c is the spreading speed.

3.2.6. Calculating the spreading speed mathematically
We revisit the matrix in Eq. (100), and rewrite it as

A ¼ bA � cs

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

26664
37775; ð101Þ

where bA is the following matrix:

Nfb
f Lf sð Þ Nf/

f Lf sð Þ Nmb
fmLfm sð Þ Nm/

fmLfm sð Þ
a �d 0 0
Nfb

mf Lmf sð Þ Nf/
mf Lmf sð Þ Nmb

mLm sð Þ þ NmJ
m sð Þ Nm/

mLm sð Þ
0 0 a �d

266664
377775

ð102Þ
Then the problem of det A c; sð Þð Þ ¼ 0 can be turned into

det bA sð Þ � csI
� �

¼ 0; ð103Þ

where cs is the eigenvalue of the matrix bA. In the meantime, Eq. (99)
is equivalent tobA sð Þ � csI
� �

~K ¼ 0; ð104Þ

or,bA sð Þ~K ¼ cs~K; ð105Þ

so that cs is the eigenvalue of bA, and the vector K
!
¼ ½K1;K2;K3;K4�T

is the associated eigenvector.

Theorem 1. The matrix bA in Eq. (102) has the following properties:

(i) there exists a positive real eigenvalue k that is associated with a
positive eigenvector ~v;
(ii) this eigenvalue k is simple and is the spectral abscissa of bA;
(iii) there are no other positive eigenvectors other than the vector~v
and its positive multiples.
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Proof. We rewrite (102) as

a11 a12 a13 a14
a �d 0 0
a31 a32 a33 a34
0 0 a �d

26664
37775; ð106Þ

where

a11 ¼ Nfb
f Lf sð Þ; ð107Þ

a12 ¼ Nf/
f Lf sð Þ; ð108Þ

a13 ¼ Nmb
fmLfm sð Þ; ð109Þ

a14 ¼ Nm/
fmLfm sð Þ; ð110Þ

a31 ¼ Nfb
mf Lmf sð Þ; ð111Þ

a32 ¼ Nf/
mf Lmf sð Þ; ð112Þ

a33 ¼ Nmb
mLm sð Þ þ NmJ

m sð Þ; ð113Þ
a34 ¼ Nm/

mLm sð Þ: ð114Þ
Because all the aij values are positive and a; d > 0, we can use a

similar method used at the end of Section 3.2.4 (see Appendix B) to

prove that the spectral abscissa c bA� �
is positive. Note that all the

off-diagonal entries of bA are nonnegative, so bA is a Metzler matrix
(see, e.g., Ngoc, 2006). We use the properties of Metzler matrix to
justify the rest of the proposition.

We first translate bA to a nonnegative matrix by adding a
positive multiple of identity dI. A simple calculation showsbA þ dI
� �2

> 0, and so bA þ dI is a primitive matrix (Meyer et al.,

2000, (8.3.16)). By definition, a primitive matrix is nonnegative and
irreducible (Horn et al., 2012, Definition 8.5.0). By the Perron
Frobenius theorem for irreducible and nonnegative matrices (Horn
et al., 2012, Theorem 8.4.4), there exists a simple positive

eigenvalue for bA þ dI
� �

that is equal to the spectral radius

q bA þ dI
� �

, and the associated left eigenvector and right eigenvec-

tor are both positive. Because bA þ dI is primitive, all other
eigenvalues have smaller modulus (Horn et al., 2012, Lemma
8.4.3). Therefore, we havebA þ dI
� �

~v ¼ q bA þ dI
� �

~v ; ð115Þ

that is,bA~v ¼ q bA þ dI
� �

� d
� �

~v : ð116Þ

Hence, the Metzler matrix bA has a simple eigenvalue

c bA� �
¼ q bA þ dI

� �
� d (Hinrichsen et al., 1998). Because we have

subtracted delta from the spectral radius of bA þ dI; c bA� �
may not

be the spectral radius of bA. However, it yields the spectral abscissa

of bA, c bA� �
. The associated eigenvector of bA is the same as the eigen-

vector of bA þ dI, so the entries of the eigenvector associated with

c bA� �
are positive. h

By now we have shown that the spectral abscissa of the matrixbA sð Þ exists and is a positive and simple eigenvalue, and its corre-
sponding eigenvector is positive. Hence, c can be expressed in
terms of s following Eq. (105):

c sð Þ ¼ 1
s
c bA sð Þ
h i

; ð117Þ
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The spreading speed is expressed as the minimum value that
c sð Þ can attain:

min
s2X

1
s
c bA sð Þ
h i� �

; ð118Þ

where X ¼ 0;min bm; bf ; c2
� 	� �

. Although we can simplify the series

in bA (see Appendix D), it is hard to obtain the analytical expression
of the spreading speed explicitly. Therefore, we minimize Eq. (118)
numerically to calculate the spreading speed.

3.2.7. Local sensitivity analysis
Many of the parameters have a positive effect on the spreading

speed, but their relative importance is not clear. In sensitivity anal-
ysis (Saltelli et al., 2004), we use r to denote the sensitivity of the
spreading speed (y) in response to the perturbed parameters. Here,
we look at the local sensitivity, for example, we perturb the prion
shedding rate a, around a nominal value, anominal ¼ 0:111, by 1%;
then we evaluate the spreading speed at the nominal value and
the new value of a with all the other parameters kept the same;
then we compare the relative change of spreading speed to the rel-
ative change of a by taking a ratio:

r ¼ ynew � ynominalð Þ=ynominal

anew � anominalð Þ=anominal
ð119Þ

¼ y 1:01 � anominalð Þ � y anominalð Þð Þ=y anominalð Þ
1:01 � anominal � anominalð Þ=anominal

: ð120Þ

Note: r ¼ 1 means the spreading speed increases by 1% when a
increases by 1% from the nominal value; r ¼ 2 means the spread-
ing speed increases by 2% when a increases by 1% from the nom-
inal value. Larger absolute value of r means the output is more
sensitive to the change of parameter, i.e., the parameter has a lar-
ger impact on the output, which is the spreading speed in our case.

3.2.8. Multiple parameters: edge effects on deer home range size and
deer density

Recall that edge density is a metric of landscape heterogeneity
(see Appendix J). Here we examine the effect of edge density on
the spreading speed when the home range size and deer density
are affected by edge density at the same time, as an example of
how our model could be used to assess the effect of landscape
heterogeneity in 1D space. Once we extend the model to 2-
dimensional space (in preparation), this application will be more
meaningful. Empirical studies found that the natural log of home
range size is negatively correlated with edge density (Walter
et al., 2018), and deer density is positively correlated with edge
density (Plante et al., 2004). We choose parameters to match the
range of home range size (in 2D) and deer density in (Merrill
et al., 2011). The 95% home range in 1D space is assumed to be
equal to the diameter of the home range in 2D, using the following
relationships:

home range size in 2D½ � ¼ exp 3� 0:01 � edge density½ �ð Þ; ð121Þ

home range size in 1D½ � ¼2
home range size in 2D½ �

p

� �1
2

; ð122Þ

We assume a linear relationship between deer density and the
edge density:

density ¼ 5 edge density½ � þ 1 ð123Þ
Group size is shown to change with deer density, so we use the

result by Habib et al. (2011):

ln group sizeð Þ ¼ 1:206þ 0:250 ln densityð Þ: ð124Þ

10
4. Results

4.1. Numerical vs. analytical-based spreading speed

Under the specific conditions of deer distributions, grouping
assumptions, and the default parameters, the numerical simulation
result of the spreading speed of 6.9635 km/year is close to the ana-
lytical result of 7.3201 km/year (Fig. 6). Further comparisons
between the theoretical and numerical spreading speeds are given
in Fig. 6. Because of the limited span of space and time we used in
the simulations and the spatial edge effect, the numerical simula-
tions consistently underestimated the spreading speed, which is
asymptotic in time and assumes infinite space.
4.2. Effects of a single parameters on the spreading speed

We categorize the parameters of interest to us into two sets for
easier reference. The first set of parameters includesthe direct
transmission rate, the environmental transmission rate, the prion
shedding rate, and the degrading rate of prions, which are directly
relevant to CWD. We refer to them as parameters relevant to the
disease in the following. The second set includes deer density,
group sizes, home range size, dispersal distance of males, and the
male-to-female sex ratio. Because those parameters exist for a
disease-free population, we refer to them as the set of parameters
relevant to the population in the following.

We first assess the effect for the set of parameters relevant to
the disease. As expected, we found that b, /, and a have a positive
effect on the spreading speed, whereas an increase in the rate of
prion degradation in the environment has a negative effect
(Fig. 6). Among this set of parameters, the spreading speed is most
sensitive to the direct transmission rate, whereas increasing the
direct transmission rate from 0:0326 yr�1 by 1% will increase the
spreading speed by 0:2842% (Table 2). Environmental transmis-
sion rate, prion shedding rate, and prion degrading rate have com-
parable although smaller sensitivities (0.2457%, 0.2457%, and
�0.2012%, see Table 2).

As for the set of parameters relevant to population, we found
that increasing any of them had a positive influence on the spread-
ing speed (Fig. 7). Among all the parameters, group size (which
affects deer density) and mean dispersal distance of males had
the largest impact on spreading speed (see Table 2) when all other
parameters were held constant at the nominal value. Increasing
the group size from Nf ¼ 4 and Nm ¼ 2 by 1% (i.e., deer density
increases by 1%) speeds up the spreading speed of CWD by
0:956%, whereas increasing the number of groups (group density)
by 1% (i.e., deer density increases by 1%) speeds up the spread by
0:3598% (Table 2). Increasing the mean dispersal distance of males
from 5 km by 1% speed up the spread by 0:9809% (Table 2). Per-
turbing the sex ratio by 1% around 0:5;0:2 and 0:1 leads to similar
changes in the spreading speed (0:3982%;0:4220%, and 0:3869%
respectively, see Table 2). Influences of home range size on spread-
ing speed were greater when home ranges were large. For example,
when the female home range radius is fixed, perturbing the male
home range radius by 1% around 3 km barely changes the speed
(�0:000092%), but perturbing the male home range radius around
20 kmchanges the speed up to 0:3656%. Appendix F provides a
brief note for the inputs and procedure of the mathematical calcu-
lation of spreading speed.
4.3. Effect of edge density

Here we examine the effect of edge density on the spreading
speed when the home range size and deer density are affected by
edge density at the same time. Increasing edge density has a pos-



Fig. 6. Transmission parameters b;/, and a have a positive effect on the spreading speed, whereas d has a negative effect. The numerical simulations (dots, see Section 3.1 for
the method of simulation) always underestimate the analytical spreading speed (solid lines). If not specified, the parameters are set to the default:
b ¼ 0:0326yr�1;/ ¼ 0:787mass�1yr�1;Nm ¼ 2;Nf ¼ 4; bm ¼ 1km2yr�1; bf ¼ 1:4979km2yr�1; c2 ¼ 0:2;Dx ¼ 1km;a ¼ 0:111yr�1; d ¼ 2:55yr�1. Most of the parameter values
are chosen based on previous studies (see Table C.1), and others are estimated. In each panel, the star (*) shows the analytical spreading speed (7.3201 km per year) calculated
using the set of given parameters; the dot below the star is the corresponding numerical simulation of 6.9635 km/year.
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itive effect on the spreading speed (see Fig. 8). In addition, the
slope of the curve in Fig. 8 increases as edge density increases.
For instance, we look at two special cases when the forest edge
density is 50 m/ha and 200 m/ha. By examining the effect of chang-
ing edge density from 200 m/ha to 190 m/ha, we found that the
spreading speed is reduced by 0.0772 km/year; when changing
edge density from 50 m/ha to 40 m/ha, we saw only a reduction
of the spreading speed by 0.0234 km/year.
Table 2
Sensitivity of spreading speed to 1% local perturbation of parameters.

parameters unit value sensitivity

direct transmission rate (b) yr�1 0.0326 0.2842
environmental transmission

rate (/)
mass�1yr�1 0.787 0.2457

shedding rate (a) yr�1 0.111 0.2457
degrading rate (d) yr�1 2.55 �0.2012
group density per 100 km (100=Dx) per 100 km 100 0.3598
group size multiplier� (dimensionless) 1 0.9560
male home range radius+ km 3 -9.2e-5

20 0.3656
mean dispersal distance of males km 5 0.9809
male-to-female sex ratio (Nm=Nf ) (dimensionless) 0.5 0.3982

0.2 0.4220
0.1 0.3869

See Table C.1 for the source of parameter values for our numerical simulations.
� The group multiplier is used to get the group size for fixed sex ratio with the same
number of groups for males and females. The deer density changes proportionally
with it.
+ Female home range radius is fixed to 2 km. We use the radius here in 1D to mean
the distance from the home range center to the edge of 95% home range. See Eq. (4).
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5. Discussion

To our knowledge, the framework we presented here is the first
one to incorporate deer home ranges, the group size, and the dis-
persal of males explicitly into the mechanistic model studying
the spreading speed of the chronic wasting disease. This frame-
work provides a base for integrating empirical studies of home
ranges, the group size, and male dispersal into the analytical mod-
els. Both direct and environmental transmissions are included.

Mathematically, we undertook an informal derivation of the
spreading speed for the CWD disease on this spatially discrete cou-
pled system of ordinary differential equations. In our derivation,
we made the assumption that the spreading speed was linearly
determined and equivalent to the minimum possible traveling
wave speed. These assumptions are consistent with the literature
on simpler models for spatially discrete epidemics (Zhang et al.,
2007) and also for the spatial spread in continuous space for coop-
erative disease dynamics, such as ours has (Lewis et al., 2006).
However, it remains to rigorously prove that the assumptions are
justified, and we leave this for future work.

Our numerical simulations of the spreading speed are intuitive,
and we found that the analytical results show a good match with
the simulations. The spreading speed from the numerical simula-
tions was shown to be always slightly smaller than that of analyt-
ical results, because we assumed finite space and time in the
simulations. The spreading speed we obtained analytically is less
time-consuming and appears to provide a proper upper bound
for more complicated cases when we include the demographic
processes.

Given the parameterization of our model, our local sensitivity
analysis (see Table 2) shows that the direct and environmental
transmission rates have a positive effect on the spreading speed,



Fig. 7. Graphs for population characteristics. Parameters are set to default values b ¼ 0:0326yr�1; / ¼ 0:787mass�1yr�1; Nm ¼ 2; Nf ¼ 4; bm ¼ 1km2yr�1;

bf ¼ 1:4979km2yr�1; c2 ¼ 0:2; Dx ¼ 1km; a ¼ 0:111yr�1; d ¼ 2:55yr�1 whenever not specified (see Table C.1).
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and the direct exposure and transmission have a greater influence
on the spreading speed than from the environment. The impact of
direct transmission on spreading speed is 16% more. However,
considering the sensitivity of the spreading speed to changes of
the prion shedding rate and the prion degrading rate (0.2457 and
�0.2012, which is similar to the sensitivity to the direct and envi-
ronmental transmission rates), the effect of environmental trans-
mission should not be ignored, especially for CWD-infected areas
that have been exposed to prions for decades. Previous experi-
ments of CWD bioassay inocula indicated that CWD infection could
occur through blood IV, saliva, environmental exposure of pre-
clinical and clinical CWD positive hosts (Mathiason et al., 2009).
Our result supports previous studies that emphasize the need to
obtain better estimates of the environmental transmission rate
and prion shedding/degrading rate, to make a proper prediction
of future prevalence and make management suggestions.
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Few models have considered male dispersal in a spatial context
due to a lack of data or technical difficulties in assessing the effect
of dispersal over a large spatial and temporal scale. Our results
indicate the dispersal distance of males might have a greater rela-
tive influence on the spreading speed than deer density (either by
increasing group size or group density). Previous studies found
that juveniles and particularly juvenile males are most likely to
disperse (DeYoung, 2011): when no fawns were collared, only
4.4% of collared mule deer in southeast Alberta (n = 135) dispersed
(Merrill et al., 2011), whereas 60% of male and 39% of female
white-tailed deer fawns were observed to disperse in a similar
agro-forested environment (Nixon et al., 2007). Although long-
distance dispersals of adult male deer are rarely studied, they
can be imperative in the spread of infectious disease (Moll et al.,
2021), such as CWD. Indeed, because the male infection rate is high
and male home ranges are usually larger than females, and we



Fig. 8. Effect of edge density on the spreading speed by affecting the home range
size and deer density directly. We separate the group size obtained from the
Eq. (124) into female group size and male group size using a fixed sex ratio
(m:f = 1:2). Then the 2D home range size is converted to 1D by taking the diameter
of a circular home range. Dx, the distance between neighbouring groups are
calculated using deer density and group size. Parameters are set to b ¼ 0:0326yr�1;

/ ¼ 0:787mass�1yr�1;Nm : Nf ¼ 1 : 2; c2 ¼ 0:2; a ¼ 0:111yr�1; d ¼ 2:55yr�1 (see
Table C.1).
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found that home range size could have a significant impact on the
spreading speed, males may contribute to the disease distribution
by spreading the disease as they travel long distances. Juvenile
male dispersal distance is negatively affected by forest cover
(Long et al., 2005). A study in southern Saskatchewan reported
juvenile mule deer dispersed 6.5 km to 195.5 km (n = 10), with
an average dispersal distance of 36.9 km (see Skelton, 2010,
Table 2.2). Using that dispersal distance, a buck: fawn ratio of
1:1, a sex ratio of 1:1 for fawns, and a dispersal rate of 0.55 (see
Skelton, 2010, Section 2.4.1.1), we estimate the dispersal distance
to be 6.8 km, so the value we use, 5 km, is comparable. Although
not considered in our framework, we expect the effect of female
dispersal to vary depending on the dispersal rate and distance
and the size of female social groups, and the female dispersal
may increase the spreading speed of CWD. Our study supports
the previous genetic study, which raised the concern on the effect
of deer movement on disease spread (Walter et al., 2011), espe-
cially long-distance dispersal.

Future work is in progress to include age structure. A study on
the patterns of CWD infection indicates that old males (> 4:5 years
old) are 1.4–2 times more likely to be infected than younger males
(< 1:5 years old) (Samuel and Storm, 2016). Including the age
structure enables us to compare the spread in different age classes,
and make recommendations for age-specific harvesting strategies
to manage CWD spread.

Because deer are reported to respond to forest edge density,
we considered two aspects of such effect, that is, on home range
size and deer density. Intuitively, a higher edge density might
have a positive or a negative effect on the spread of CWD. Indeed,
if higher edge density leads to a more scattered deer distribution,
then there will be less overlap of deer land use, leading to less
contact between groups. However, smaller home range sizes
might lead to a larger probability of within-group contact (Eq.
(4) implies smaller home ranges leads to a greater value of b,
and setting xk ¼ xj in Eq. (60) gives us the encounter rate is pro-
portional to b). On the other hand, larger deer density increases
the group size and increases both within-group contact and
between-group contact. However, our computational simulation
(Fig. 8) shows that increasing edge density leads to a faster
spread of CWD. This aligns with a previous study showing a pos-
itive correlation between forest edge density and infection rate
(Storm et al., 2013).
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For our choice of parameters, our simulation suggests that
reducing the edge density might serve as a management strategy
to slow down the spreading speed of CWD. The slope of the curve
in Fig. 8 increases as edge density increases, implying that the
outcome of reducing the edge density in areas with different
levels of edge density may be different. The difference resulted
from the effect of changing the edge density on the contact fre-
quency among the hosts. Both the within- and between-group
contact frequencies declined, as well as the within- and
between-sex contact frequencies. However, starting at the edge
density of 200 m/ha and reducing it by 10 m/ha, the resulting
reduction of total contacts in the population is more considerable
than starting at the edge density of 50 m/ha. Our method involves
measuring contact rate using the encounter rates and group sizes,
and this is in line with the approach in (Schauber et al., 2007)
that uses the volume of intersections of home ranges to under-
stand CWD transmission.

Despiteits importance on various aspects of deer demograph-
ics and movement, the impact of landscape heterogeneity in
CWD spread is not fully understood. Our framework makes it
possible to investigate this effect. Studies have shown that land-
scape heterogeneity influences the deer home range and other
forms of spatial movement in differing scales (Kie et al., 2002;
Walter et al., 2018), as well as deer density and composition.
For example, in addition to affecting deer density and home range
size, Skuldt et al. (2008) reported that higher edge density in the
natal home range of yearling males is correlated with a higher
probability of dispersal. We have includeda spatial structure in
our disease-modeling framework by including home ranges,
which allows us to investigate the encounter rate resulting from
the spatial structure of home ranges of hosts, as a step towards
a better understanding of transmission (Martinez-Garcia et al.,
2020). Movement patterns of deer in 2D vary in different biolog-
ical seasons, leading to critical changes in the interactions
between hosts, and therefore transmission. Our mechanistic
framework allows us to extend its application to 2-D in an ongo-
ing study and use the empirical resource selection functions for
home ranges, as well as including more realistic seasonal group-
ing patterns, especially the mixed-sex groups in winter, and
demographic dynamics (i.e., age structure, birth, and deaths).
Adding deer demography allows us to study the diluting effect
of newborns, and the compensatory mortality (Bartmann et al.,
1992) or dispersal of the population in response to disease-
induced mortality. We expect that the overall result for the rela-
tive importance of factors on disease transmission might be sim-
ilar in our 2D model, but the newly added factors (e.g., growth,
mortality, and seasonality) may affect the outcome. For example,
an increased harvest might reduce local transmission in a short
time but might encourage more dispersals and lead to unfavor-
able long-term outcomes. This level of spatial details also allows
us to apply the models at larger scales and inform the manage-
ment through spatially selective harvesting.
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Appendix A. Derivation of Eqs. (7) and (10)

We use sj x; tð Þ; ij x; tð Þ to represent the density of susceptible
individuals and the density of infected individuals in group j,
respectively, and use hj x; tð Þ to represent the prions in the environ-
ment shed from the infected individuals in group j. Then we con-
sider the change of total susceptible individuals and infected
individuals in group j due to direct and environmental transmis-
sion, and obtain the following equations:

d
dt

Z
R
sj x; tð Þdx ¼� b

Z
R
sj xj þ n; t
� �X

k

ik xj þ n; t
� �

dn

� /
Z
R
sj xj þ n; t
� �X

k

hk xj þ n; t
� �

dn; ðA:1Þ

d
dt

Z
R
ij x; tð Þdx ¼b

Z
R
sj xj þ n; t
� �X

k

ik xj þ n; t
� �

dn

þ /
Z
R
sj xj þ n; t
� �X

k

hk xj þ n; t
� �

dn: ðA:2Þ

As we assume the distribution of individuals in each group is at
its steady state and movement of individuals is fast, the density of
susceptible individuals and the density of infected individuals in
group j satisfy the following relations, at any given location x:

sj x; tð Þ ¼ Sj tð Þuj xð ÞNj; ðA:3Þ
ij x; tð Þ ¼ Ij tð Þuj xð ÞNj; ðA:4Þ
where Sj tð Þ (Ij tð Þ, respectively) is the proportion of susceptible (in-
fected, respectively) individuals in group j, and Sj tð Þ þ Ij tð Þ ¼ 1.

To simplify the Eqs. (A.1) and (A.2),we still need to look at the rate of
change of environmental hazard hj x; tð Þ, which is affected by the shed-
ding from the infected and its own degrading rate in the following:
@

@t
hj x; tð Þ ¼ aij x; tð Þ � dhj x; tð Þ; ðA:5Þ

where a is the rate at which prions are excreted by infected individ-
uals, and d is the rate at which prions are removed from environ-
ment. For any given x (fixed), we can solve hj x; tð Þ from the linear
differential Eq. (A.5):

hj x; tð Þ ¼ Njuj xð Þ a exp �dtð Þ
Z t

0
Ij sð Þ exp dsð Þdsþ �hj;0 xð Þ

� �
; ðA:6Þ

where the initial environmental hazard is

hj x;0ð Þ ¼ hj;0 xð Þ ¼ Njuj xð Þ�hj;0 xð Þ; ðA:7Þ
This, again, enables us to separate spatial and temporal changes.

So, hj x; tð Þ can be expressed in the following way:

hj x; tð Þ ¼ Hj tð Þuj xð ÞNj; ðA:8Þ
where we define the prions shed per individual in group j at any
given location x is

Hj tð Þ ¼ a exp �dtð Þ
Z t

0
Ij sð Þ exp dsð Þdsþ �hj;0 xð Þ: ðA:9Þ

We can now use Eqs. (A.3), (A.4) and (A.8) to simplify Eqs. (A.1),
(A.2) and (A.5). For Eq. (A.1), we can simplify it as follows:

d
dt

Z
R
Sj tð Þuj xð ÞNjdx ¼ �b
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X
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Nkdn;

ðA:10Þ
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) d
dt Sj tð Þ

¼ �Sj tð Þ
X
k

Ik tð ÞbjkNk � Sj tð Þ
X
k

Hk tð Þ/jkNk;
ðA:13Þ

where

bjk ¼b
Z
R
uj nð Þuk nð Þdn; ðA:14Þ

/jk ¼/
Z
R
uj nð Þuk nð Þdn; ðA:15Þ

are the effective pairwise direct and environmental, respectively,
transmission rates between group j and group k, and both of them
are constants given j and k. Similarly, we can simplify Eq. (A.2) to
the following:

d
dt

Ij tð Þ ¼ Sj tð Þ
X
k

Ik tð ÞbjkNk þ Sj tð Þ
X
k

Hk tð Þ/jkNk ðA:16Þ

¼ Sj tð Þ
X
k

Ik tð Þbjk þ Hk tð Þ/jk

� �
Nk

 !
: ðA:17Þ

Eq. (A.5) is simplified into

d
dt

Hj tð Þ ¼ aIj tð Þ � dHj tð Þ: ðA:18Þ

Now we obtain our model for one gender as follows:

d
dt

Sj tð Þ ¼ � Sj tð Þ
X
k

Ik tð ÞbjkNk � Sj tð Þ
X
k

Hk tð Þ/jkNk; ðA:19Þ

d
dt

Ij tð Þ ¼Sj tð Þ
X
k

Ik tð ÞbjkNk þ Sj tð Þ
X
k

Hk tð Þ/jkNk; ðA:20Þ

d
dt

Hj tð Þ ¼aIj tð Þ � dHj tð Þ; ðA:21Þ

where

bjk ¼bljk; ðA:22Þ
/jk ¼/ljk; ðA:23Þ

ljk ¼
Z
R
uj nð Þuk nð Þdn; ðA:24Þ

where we call bjk the coefficient of pairwise direct effective trans-
mission, /jk the coefficient of pairwise environmental effective
transmission, ljk the pairwise encounter rate. Transmission occur-
ring in the same group can also be expressed in this way.

Appendix B. The trivial equilibrium is unstable in the
homogeneous population

We want to show that the disease-free equilibrium, 0;0;0;0ð Þ,
is unstable for the following system



Table C.1
Parameter values from literature (MUDE for mule deer, and WTDE for white-tailed
deer).
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If tð Þ
Hf tð Þ
Im tð Þ
Hm tð Þ

266664
377775

0

¼ W

If tð Þ
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Hm tð Þ
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377775; ðB:1Þ
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with all the parameters being positive. We first simplify the system
as follows

~X tð Þ0 ¼ W~X tð Þ; ðB:3Þ
where

W ¼

w11 w12 w13 w14

a �d 0 0
w31 w32 w33 w34

0 0 a �d

26664
37775; ðB:4Þ

with

wij > 0; a > 0; d > 0:

We want to show that the trivial equilibrium ~X ¼ 0 is unstable.
The solution to the system (B.3) can be written in the exponen-

tial form:

~X tð Þ ¼ exp Wtð Þ~X 0ð Þ ðB:5Þ
Note that all the off-diagonal elements of W are non-negative,

so Wt is a Metzler (or, quasi-positive) matrix for t > 0 (see, e.g.,
Ngoc, 2006). According to the property of Metzler matrices (see
Thieme et al., 2009, Theorem 2.4), the elements in the matrix
exp Wtð Þ are positive.

The solution in Eq. (B.5) is a product of the matrix exp Wtð Þ and
the non-negative vector ~X 0ð Þ with at least one positive element.

Hence, ~X tð Þ is non-negative and has at least one positive element
for t > 0. Without loss of generality, we assume X1 0ð Þ > 0. Then,
from (B.3), we know

X0
1 tð Þ ¼

X
i

w1iXi tð Þ P w11X1 tð Þ > 0 ðB:6Þ

because all the Xi tð Þ are nonnegative and all the w1i’s are positive.
By Gronwall’s Inequality (Gronwall, 1919), we obtain

X1 tð Þ P X1 0ð Þ exp w11tð Þ ðB:7Þ
where w11 > 0. Therefore, X1 tð Þ is bounded below by an exponen-

tially growing quantity. Hence, the trivial equilibrium ~X ¼ 0 is
unstable, that is, the spectral abscissa of W is positive.

Appendix C. Parameters from literature

Here, we list the source of parameter values for our numerical
simulations (see Table C.1).

Appendix D. Simplification and convergence of series

In this appendix, we use the following formula for the geomet-
ric series and another basic series to simplify our series in Eqs.
(94)-(98):
15
X
k¼1

rk ¼ r
1� r

; for jrj < 1 ðD:1Þ
X
k¼1

krk ¼ r

1� rð Þ2
; for jrj < 1: ðD:2Þ

In order to numerically obtain a minimum of c, we first need to
make sure s is in a valid domain. In particular, we need to make
sure the series in Eqs. (94)-(98) converges. Substituting expression
(36) into Eq. (98), we simplify Jm sð Þ as follows:

Jm sð Þ
¼

X
q–0

c1 exp �c2Dxjqjð Þ exp �sqDxð Þ � 1ð Þ ðD:3Þ

¼ c1 exp � c2 þ sð ÞDxð Þ
1� exp � c2 þ sð ÞDxð Þ þ

c1 exp � c2 � sð ÞDxð Þ
1� exp � c2 � sð ÞDxð Þ �

2c1 exp �c2Dxð Þ
1� exp �c2Dxð Þ :

ðD:4Þ

We need s < c2 for Jm sð Þ to converge. For Lf sð Þ; Lm sð Þ; Lfm sð Þ and
Lmf sð Þ, recall the pairwise encounter rate between two females,
between two males, between a female and a male:

lf
jk ¼

bf

4
1þ bfDxjk� jj� �

exp �bfDxjk� jj� �
; ðD:5Þ

lm
jk ¼ bm

4
1þ bmDxjk� jjð Þ exp �bmDxjk� jjð Þ; ðD:6Þ

lfm
jk ¼ bf bm �bf exp �bmDxjk� jjð Þ þ bm exp �bfDxjk� jj� �� �

2 bm þ bf

� �
bm � bf

� � ðD:7Þ

lmf
kj ¼ bmbf �bm exp �bfDxjk� jj� �þ bf exp �bmDxjk� jjð Þ� �

2 bm þ bf
� �

bf � bm
� � ðD:8Þ

¼ lfm
jk : ðD:9Þ
We obtain the following simplified expressions:

Lfj sð Þ ¼Lf sð Þ ðD:10Þ

¼bf

4
1þ 1þ bfDx

� �
exp bf þ s

� �
Dx

� �� 1

exp bf þ s
� �

Dx
� �� 1

� �2
"

þ 1þ bfDx
� �

exp bf � s
� �

Dx
� �� 1

exp bf � s
� �

Dx
� �� 1

� �2
#

ðD:11Þ
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Lmp sð Þ ¼Lm sð Þ ðD:12Þ

¼ bm

4
1þ 1þ bmDxð Þ exp bm þ sð ÞDxð Þ � 1

exp bm þ sð ÞDxð Þ � 1ð Þ2
"

þ 1þ bmDxð Þ exp bm � sð ÞDxð Þ � 1

exp bm � sð ÞDxð Þ � 1ð Þ2
#

ðD:13Þ

Lfmj sð Þ ðD:14Þ
¼Lfm sð Þ ðD:15Þ

¼ bf bm

2 bm þ bf

� � ðD:16Þ

þ bf bm

2 bmð Þ2 � bf

� �2� � bm

exp bf þ s
� �

Dx
� �� 1

� bf

exp bm þ sð ÞDxð Þ � 1

" #

ðD:17Þ

þ bf bm

2 bmð Þ2 � bf
� �2� � bm

exp bf � s
� �

Dx
� �� 1

� bf

exp bm � sð ÞDxð Þ � 1

" #

ðD:18Þ

Lmf
p sð Þ ðD:19Þ

¼Lmf sð Þ ðD:20Þ

¼ bmbf

2 bf þ bm
� � ðD:21Þ

þ bmbf

2 bf

� �2 � bmð Þ2
� � bf

exp bm þ sð ÞDxð Þ � 1
� bm

exp bf þ s
� �

Dx
� �� 1

" #

ðD:22Þ

þ bmbf

2 bf
� �2 � bmð Þ2
� � bf

exp bm � sð ÞDxð Þ � 1
� bm

exp bf � s
� �

Dx
� �� 1

" #

ðD:23Þ
¼Lfm sð Þ ðD:24Þ

The condition for the convergence of the series is as follows:
with the convergence range

0 < s < min bm; bf ; c2
� 	

: ðD:25Þ
Table E.1
Input for numerical simulation of spreading speed.

Nf group size of female 4
Nm group size of male 2
Dx distance between neighbouring group centers 2 km
- space of simulation 450 km
b the basic direct transmission rate 0.0326 yr�1

/ the basic environmental transmission rate 0.787 mass�1yr�1

a the rate at which prions are excreted 0.111 yr�1

d the degrading rate of prions from environment 2.55 yr�1

c1 determining the male dispersal rate 0.2
c2 determining the male dispersal rate 0.2
Appendix E. An example of the numerical simulation of
spreading speed

E.1. Input

See Table E.1 for a full list of input parameters for numerical
simulations.

E.2. Calculating other parameters using inputs

� # of groups that consists of females in the simulating space
¼ F ¼ space

Dx þ 1 ¼ 450
2 þ 1 ¼ 226 ¼ M ¼ # of groups that consists

of males in the simulating space, with group indices
0;1;2;3; � � � ;225.
Note: (i). We have assumed the same number of groups F ¼ M and
the same home range center for group j of males and female,

xfj ¼ xmj . (ii). # of females in every female group is Nf , and # of

groups that consists of females in the simulating space is F. (iii).
F/space and M/space are also referred to as ‘group density’.
16
� Home range center for each group:

xfj ¼ xmj ¼ jDx; j ¼ 0;1;2; � � � ;225, which are 0;2;4;6; � � � ;450 in
our case.

� Male dispersal matrix E. First, we set a value for c1. Then epq is
given in an expression of c1; c2; p; q (see Eq. (36)).

� Pairwise encounter rate: ljk is determined by

bf ; b
m
; xfj ; x

m
j ;Dx; j; k (see Eqs. (D.5)-(D.8)).

E.3. Initial conditions

Ifj 0ð Þ ¼ 1; j ¼ 0;1;2;3
0; j ¼ 4;5;6; � � � ;225



ðE:1Þ

Imj 0ð Þ ¼ 1; j ¼ 0;1;2;3
0; j ¼ 4;5;6; � � � ;225



ðE:2Þ

Hf
j 0ð Þ ¼0; j ¼ 0;1;2; � � � ;225 ðE:3Þ

Hm
j 0ð Þ ¼0; j ¼ 0;1;2; � � � ;225 ðE:4Þ
E.4. Solve ODE

Using Runge-Kutta (2,3) (‘ode23’ in Matlab), we solve the sys-

tem (16)-(21) with initial conditions above. Note: Sfj tð Þ þ Ifj tð Þ ¼ 1

and Smj tð Þ þ Imj tð Þ ¼ 1 for any t P 0.
E.5. Find the time of reaching a threshold of infection

For every group, find the time tfj and tmj when Ifj tð Þ or Imj tð Þ
reaches a threshold. In our simulations, we set the threshold to
0:9999, so we look for the time of reaching ‘almost full infection.’
Other values could be used, but the spreading speed will be similar,
because the shape of the traveling wave remains the same as it
propagate along the domain (see Fig. 4).
E.6. Calculate the speed

Write time and location in pairs tj; xj
� �

, where tj ¼ max tfj ; t
m
j

� �
,

meaning that we use the time of the group reaching the threshold
later for each location – recall that there are one group of males

and one group of females for each home range center xj ¼ xfj ¼ xmj .
Use the middle portion of points (see Fig. 9) to fit a straight line

and get the slope, which is our goal – an approximation of the
spreading spreed.
bf determining the home range size of female 1.4979 km2yr�1

bm determining the home range size of male 1 km2yr�1
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Appendix F. Mathematical calculation of spreading speed

A brief description of the mathematical calculation of spreading
speed is as follows:

1. Input b;/;Nf ;Nm;a; d; bf ; bm;Dx; kRange; c2.
Note: (i) bf ; bm determines the home ranges of female groups, and

male groups. (ii) kRange is used to approximate infinite series by a
truncated series. (iii) c2 determines c1, and therefore the dispersal rate
for males. (iv) Relationships between input parameters can be incor-
porated here, e.g., the group size changes with the density (see Eq.
(124)), instead of independent from each other.

2. Obtain the spreading speed minsc sð Þ (see Eq. (118) and text
above) for s in the convergence interval of all the series in the cal-
culation (see Appendix D).

Appendix G. Eq. (12) is equivalent to a Kolmogorov backward
equation

The dispersal equation from the main text is:

d
dt

Nj tð Þ ¼
XM

k¼1; k–j

ejkNk �
XM

k¼1; k–j

ekjNj: ðG:1Þ

We rewrite it in order to match the order of terms in Sigman
(2009, Chapter 9)

d
dt

Nj tð Þ ¼ �
XM

k¼1; k–j

ekjNj þ
XM

k¼1; k–j

ejkNk: ðG:2Þ

¼ �
XM

k¼1; k–j

ekjNj þ
XM

k¼1; k–j

ejkNk: ðG:3Þ

To simplify the derivation and match with the notation in Sig-
man’s lecture note (Sigman 2009, Chapter 9), we letXM
k¼1; k–j

ekj ¼aj; ðG:4Þ

ejk ¼ajPkj: ðG:5Þ
Fig. 9. The spatio-temporal spread of disease. Red triangles are for female groups,
and blue stars are for male groups. For example, a red triangle placed at (x,y) means
the infected fraction of the female group at location y reaches a threshold (in our
case, we set the threshold to 99:99% – other thresholds can be used, but the
computation of speed will not change much) at time x. Points along the dashed line
are used to compute the spreading speed, which is the slope of the dashed line.
Here, the spreading speed is approximately 10.3650 km/yr. Parameters are set to
b ¼ 0:0326yr�1; / ¼ 0:787mass�1yr�1; Nm ¼ 2;Nf ¼ 4; bm ¼ 1km2yr�1;

bf ¼ 1:4979km2yr�1; c2 ¼ 0:2;Dx ¼ 2km; a ¼ 0:111yr�1; d ¼ 2:55yr�1.
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Then, Eq. (G.1) is equivalent to

d
dt

Nj tð Þ ¼ �ajNj tð Þ þ
XM

k¼1; k–j

ajPkjNk tð Þ: ðG:6Þ

Following Sigman’s lecture note we use P tð Þ ¼ Pij tð Þ� �
to denote

the transition matrix, where Pij tð Þ ¼ P X tð Þ ¼ jjX 0ð Þ ¼ ið Þ, the initial
state of an individual is X 0ð Þ, and the state at t is X tð Þ. Using lj tð Þ to
denote the probability for an individual to be at state j, there are
Nj tð Þ ¼ Klj tð Þ individuals at state j at time t. The number of indi-
viduals at state j follows the relationship:

Nj tð Þ ¼
XM
i¼1

Pij tð ÞNi 0ð Þ: ðG:7Þ

Substituting Eq. (G.7) into Eq. (G.6), we obtain an equation for
Pij tð Þ:

P0
ij tð Þ ¼ �ajPij tð Þ þ

XM
k¼1; k–j

ajPkjPik tð Þ

¼ Pi;1 tð Þ Pi;2 tð Þ � � � Pi;M tð Þ½ �

ajP1;j

ajP2;j

� � �
�aj
� � �

ajPM;j

2666666664

3777777775
;

which indicates that

P tð Þ0 ¼ P tð ÞQ T : ðG:8Þ
Therefore, we have

P tð ÞT
� �0

¼ QP tð ÞT ; ðG:9Þ

which is in the form of a Kolmogorov backward equation for a
CTMC. The transpose of our matrix defined in Eq. (13), ET , is the
transition rate matrix Q for the CTMC.

Appendix H. Full general model in finite domain

Here we present a general model where the male groups can
have different sizes. Because dispersal changes the male group size,
it is better to track the numbers instead of proportions of hosts
within a group so that we do not need an explicit group size.

Ŝsj tð Þ is the number of susceptible hosts in group j of sex s. Îsj tð Þ is
the number of infected hosts in group j of sex s. Ĥs

j tð Þ is the total
concentration of prions shed by hosts in group j of sex s. Note that
the dependent variables are not proportions of group
compartments.

Assuming there are M male groups and F female groups, we
obtain the full general model as:

d
dt
bSf
j tð Þ ¼ �bSf

j tð Þ
XF
k¼1

bIfk tð Þbf
jk þ bHf

k tð Þ/f
jk

� �
�bSf

j tð Þ
XM
q¼1

bImq tð Þbfm
jq þ bHm

q tð Þ/fm
jq

� �
;

ðH:1Þ

d
dt
bIfj tð Þ ¼ bSf

j tð Þ
XF
k¼1

bIfk tð Þbf
jk þ bHf

k tð Þ/f
jk

� �
þbSf

j tð Þ
XM
q¼1

bImq tð Þbfm
jq þ bHfm

q tð Þ/fm
jq

� �
;

ðH:2Þ

d
dt
bHf

j tð Þ ¼ abIfj tð Þ � dbHf
j tð Þ; ðH:3Þ
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d
dt
bSm
p tð Þ ¼ �bSm

p tð Þ
XF
k¼1

bIfk tð Þbmf
pk þ bHf

k tð Þ/mf
pk

� �
�bSm

p tð Þ
XM
q¼1

bImq tð Þbm
pq þ bHm

q tð Þ/m
pq

� �
þ
X
q–p

epqbSm
q tð Þ � bSm

p tð Þ
X
q–p

eqp;

ðH:4Þ

d
dt
bImp tð Þ ¼ bSm

p tð Þ
XF
k¼1

bIfk tð Þbmf
pk þ bHf

k tð Þ/mf
pk

� �
þbSm

p tð Þ
XM
q¼1

bImq tð Þbm
pq þ bHm

q tð Þ/m
pq

� �
þ
X
q–p

epqbImq tð Þ �bImp tð Þ
X
q–p

eqp;

ðH:5Þ

d
dt
bHm

p tð Þ ¼ abImp tð Þ � dbHm
p tð Þ; ðH:6Þ

where superscripts f andm on variables denote the sex as described
in Table 1,

j ¼1;2; � � � ; F; ðH:7Þ

p ¼1;2; � � � ;M; ðH:8Þ

bfm
jq ¼blfm

jq ; ðH:9Þ

/fm
jq ¼/lfm

jq ; ðH:10Þ

lfm
jq ¼

Z
R
uf
j nð Þum

q nð Þdn; ðH:11Þ

bmf
pk ¼blmf

pk ; ðH:12Þ

/mf
pk ¼/lmf

pk ; ðH:13Þ

lmf
pk ¼

Z
R
um
p nð Þuf

k nð Þdn; ðH:14Þ

bs
jk ¼bls

jk; ðH:15Þ

/s
jk ¼/ls

jk; ðH:16Þ

ls
jk ¼

Z
R
us
j nð Þus

k nð Þdn; ðH:17Þ

s ¼f ;m: ðH:18Þ
with initial conditions:

Ŝfj 0ð Þ ¼ Ŝfj;0; Î
f
j 0ð Þ ¼ Îfj;0; Ĥ

f
j 0ð Þ ¼ Ĥf

j;0; for j ¼ 1;2; � � � ; F; ðH:19Þ
Ŝmp 0ð Þ ¼ Ŝmp;0; Î

m
p 0ð Þ ¼ Împ;0; Ĥ

m
p 0ð Þ ¼ Ĥm

p;0; for p ¼ 1;2; � � � ;M: ðH:20Þ
For the male dispersal rate eqp, we assume an exponentially

decreasing rate function

eqp ¼ epq ¼ c1 exp �c2Dxjp� qjð Þ; ðH:21Þ
where c1 denotes the magnitude and c2 denotes the drop off with
distance.

Appendix I. Derivation of Eqs. (60)–(62)

The idea is to consider the relative value of x compared with xj
and xk, and separate the 1D space into three intervals. Without loss
of generalization, we first assume xj < xk.
18
lf
jk ¼

Z
R
uf
j xð Þuf

k xð Þdx ðI:1Þ

¼
Z
R

bf

2
exp �bf jx� xjj

� � bf

2
exp �bf jx� xkj

� �
dx ðI:2Þ

¼ b2
f

4

Z
R
exp �bf jx� xjj þ jx� xkj

� �� �
dx ðI:3Þ

¼ b2
f

4

Z xj

�1
exp �bf �xþ xj � xþ xk

� �� �
dx ðI:4Þ

þ b2
f

4

Z xk

xj

exp �bf xk � xj
� �� �

dx ðI:5Þ

þ b2
f

4

Z 1

xk

exp �bf x� xj þ x� xk
� �� �

dx ðI:6Þ

¼ b2
f

4

Z xj

�1
exp �bf �2xþ xj þ xk

� �� �
dx ðI:7Þ

þ b2
f

4

Z xk

xj

exp �bf xk � xj
� �� �

dx ðI:8Þ

þ b2
f

4

Z 1

xk

exp �bf 2x� xj � xk
� �� �

dx ðI:9Þ

¼ b2
f

4
1
2bf

exp �bf xk � xj
� �� � ðI:10Þ

þ b2
f

4
xk � xj
� �

exp �bf xk � xj
� �� � ðI:11Þ

þ b2
f

4
1

�2bf
� exp �bf xk � xj

� �� �� � ðI:12Þ

¼ bf

4
exp �bf xk � xj

� �� � ðI:13Þ

þ b2
f

4
xk � xj
� �

exp �bf xk � xj
� �� � ðI:14Þ

¼ bf

4
1þ bf xk � xj

� �� �
exp �bf xk � xj

� �� � ðI:15Þ

¼ bf

4
1þ bfDxjk� jj� �

exp �bfDxjk� jj� �
: ðI:16Þ

For xk < xj, we can obtain

lf
jk ¼

bf

4
1þ bf xj � xk

� �� �
exp �bf xj � xk

� �� �
: ðI:17Þ

Combining those two cases, we obtain

lf
jk ¼

bf

4
1þ bf jxk � xjj
� �

exp �bf jxk � xj
� � ðI:18Þ

For special evenly-spaced home ranges, xj ¼ j � Dx, we can
obtain

lf
jk ¼

bf

4
1þ bfDxjk� jj� �

exp �bfDxjk� jj� �
; ðI:19Þ

which is Eq. (60) for females. The equation for males can be
obtained by replacing bf with bm.

We use a similar to calculate lfm
jk . Note that bf � bm can not be

the denominator when bf ¼ bm. That is how we got two separate
cases.
Appendix J. A simplified explanation for edge density

In landscape ecology, edges are defined as the boundaries of dif-
ferent habitat types, and edge density equals the edge length per
unit area (see, e.g. Turner and Gardner, 2015). As an simple exam-
ple, we assume there are two landscape types (denoted by white
and green) in a squared region (3 km by 3 km) (Fig. 10). If there



Fig. 10. A region with two landscape types.
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are forest in the middle (1 km by 1 km) of the region surrounded by
grassland. Then, the edge density in this region is 4/9 km/km2.
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