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ABSTRACT 

This thesis studies the qualitative theory of linear and nonlinear infinite 

dimensional dynamical systems with applications mainly to parabolic 

partial differential equations. The objective of the study is to examine 

through linearization the local and global behaviour, including existence and 

nonexistence, of invariant structures such as equilibria and periodic solutions. 

In the linear theory, the dimension of the asymptotically stable solution 

subspace of a linear differential equation is studied. This gives new insights 

into the behaviour of linear and nonlinear dynamical systems. 

The nonlinear results include such topics as a generalization to infinite 

dimensional differential equations of a classical stability condition of 

Poincare. The main idea is that a periodic orbit is stable if the 

system diminishes nearby 2-dimensional areas. Similar considerations give 

conditions for the existence as well as the stability of a periodic solution. 

If the system diminishes areas globally rather than locally, it is shown that 

nontrivial periodic solutions can not exist; this is a generalization of the well-

known 2-dimensional Bendixson condition for the nonexistence of periodic 

solutions. 

Examples of applications to concrete differential equations are given 

throughout and the thesis concludes with an application of the Bendixson 

condition to an epidemiological model. 
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Introduction 

This thesis extends the theory and applications of compound matrices to 

differential equations in Banach spaces. The research developed provides 

new tools for the study of global behaviour of infinite dimensional dynamical 

systems. 

Most of the developments on compound operators have occurred in the 

context of linear and multilinear algebra. Results on Hilbert spaces are 

discussed in [1, 7, 8, 94, 104]. A classical body of work dealing with algebraic 

aspects of multiplicative compound operators in W1, usually called compound 

matrices, can be found in [3, 33, 47, 67, 109]. One of the best-known results 

is the Binet-Cauchy identity. Good historical summaries are [75-78, 91]. In 

contrast, the literature on additive compound matrices is quite sparse. In 

the final chapter of the lecture notes [110] Wielandt discusses algebraic and 

spectral properties of both multiplicative and additive compound matrices. 

The same approach is taken in the book of Marshall and Olkin [67]. Fiedler 

[31] presents algebraic aspects of additive and multiplicative compounds in 

a coordinate-free setting and has applications to stochastic matrices. 

Apart from the Abel-Jacobi-Liouville equation, which is also the formula 

for the determinant of an n x n matrix solution of a linear differential 

equation, applications of compound matrices to differential equations begin 

in the 1970s. Other cases are considered for special equations by Mikusinski 

[73], Nehari [82] and less directly by Hartman [41], Corollary 3.1, Chapter 

IV. However, the first treatment in full generality is due to Schwarz [95] in 

his study on the total positivity of fundamental matrices to general linear 

systems. London [61] derives a large number of interesting properties of 

additive compounds based on the relationship between a linear ordinary 

differential equation and its compound differential equations, and shows 

how properties of compound matrices may be used to greatly simplify many 

classical spectral inequalities. 

Muldowney [76-78] systematically develops the theory of compound 

differential equations in his study of linear and nonlinear problems of 

differential equations in Rn, such as dichotomy and stability theory, orbital 

stability of periodic solution of nonlinear autonomous systems and establishes 
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a new approach to higher dimensional criteria for the non-existence of 

periodic orbits analogous to the conditions of Bendixson and Dulac for planar 

systems. Li and Muldowney [52-54, 56, 58] further explore problems such as 

lower and upper estimates for the Hausdorff dimension of the global attractor 

of dissipative dynamical systems, higher dimensional generalization of the 

criteria of Bendixson and Dulac for the nonexistence of periodic solutions, 

the existence and stability of equilibria and periodic orbits of nonlinear 

autonomous systems on invariant manifolds and global stability problems. 

They solve a long-standing open problem on the global stability of the 

endemic equilibrium of the SEIRS models with general nonlinear incidence 

rate in epidemiology. 

Temam [104] reviews the definitions of the exterior product of Hilbert 

spaces and of two multilinear operators, which are the additive and 

multiplicative compound operators of this thesis. Emphasis is placed on 

investigation of bounds on the growth of exterior products of solutions of 

differential equations in terms of Lyapunov exponents rather than specific 

representations for the compound operators. Central to the discussion in 

Chapter V of [104] is the behaviour of distance, area, and, more generally, 

A;-volumes which are generated locally by the semigroup {S(t)}t>o of a 

dynamical system. This book gives an exposition of the work of P. Constantin 

showing that the evolution of oriented ^-dimensional volumes is related to 

the A;-th multiplicative compound operator of the differential of the map 

S(t). Applications to an upper estimation of the exponential decay rate of 

the volume and the Lyapunov exponents to partial differential equations are 

also discussed in Chapter VI. The concept of evolution of A;-volumes in the 

dynamics is also emphasized in this thesis. 

In Chapter 1, the exterior product of vector spaces and additive and 

multiplicative compound operators are defined and compound differential 

equations associated with linear differential equations in a Banach space X 

are discussed with examples. 

In the linear theory, Chapter 2 investigates the codimension of the 

asymptotically stable solution subspace of a linear differential equation, 

which gives new insights into the qualitative theory of linear and 

nonlinear dynamical systems. The objective of the study is to examine, 
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through linearization, the behaviour of nonlinear dynamical systems in 

the neighbourhood of particular invariant structures such as equilibria and 

periodic orbits. 

Chapter 3 establishes a generalization of the 2-dimensional Poincare's 

stability criterion to differential equations in Banach spaces. It is well 

understood that for periodic orbits of evolutionary differential equations, 

the moduli of Floquet multipliers determine their stability characteristics. 

However, the problem of directly estimating the Floquet multipliers is 

inherently difficult. It is shown that the orbital stability of periodic solutions 

is equivalent to the stability of a related compound linear system. This 

permits the use of simpler techniques such as Lyapunov functions in the 

estimation of the multipliers. Applications to reaction diffusion equations 

give new insight on the effect of diffusion terms. 

Chapter 4 discusses the structure of omega limits of differential equations 

in Banach spaces. A criterion for the existence of periodic orbits for 

differential equations in Banach spaces is developed. The finite dimensional 

motivation is the Poincare-Bendixson theory. The characterization of the 

stability of steady state solutions in terms of stability of linearizations and 

orbital stability of periodic orbits in terms of stability of second compound 

differential equations, discussed in Chapter 2 and Chapter 3 respectively, are 

special cases of this chapter. 

In Chapter 5, an infinite dimensional analogue of the Bendixson criterion 

for the nonexistence of periodic orbits is established. The generalized 

Bendixson criterion states that, if some measure of 2-dimensional surface 

area tends to zero with time, then there are no closed curves that are left 

invariant by the dynamics. In particular, there are no nontrivial periodic 

orbits, homoclinic loops or heteroclinic loops. In this chapter, the Bendixson 

conditions for general nonlinear differential equations are developed in terms 

of stability of associated compound differential equations. 

In Chapter 6, the results of this thesis are applied to a diffusive SIR model. 

A SIR model is an epidemiological model that is used to study the spread of 

an infectious disease, such as measles, mumps and rubella. In this chapter, 

the Bendixson criterion of Chapter 5 is used to establish the nonexistence of 

periodic orbits under certain conditions. 
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Appendix A gives a brief synopsis of relevant properties of Lozinskii 

measures for linear operators. These arise when norms are used as Lyapunov 

functions in stability analysis of linear systems. 

Appendix B is a summary on sectorial operators and some notations which 

will be used throughout this thesis. 



Chapter 1 

Compound Operators and 
Compound Equations 

This chapter contains essential definitions and results that will be used 

extensively throughout the thesis. A theory of compound operators and 

compound differential equations in a Banach space X is developed. 

The definitions and properties of multiplicative and additive compound 

operators in W1, usually called compound matrices, can be found in 

[3, 31, 33, 47, 67, 75-78, 91, 109, 110]. Applications of compound matrices to 

differential equations are discussed in [41, 52-54, 56, 58, 61, 73, 76-78, 82, 95]. 

Results on Hilbert spaces are discussed in [1, 7, 8, 94, 104]. In particular, 

when X is a Hilbert space, Temam [104] relates the evolution of oriented 

A;-dimensional volumes to the fcth multiplicative compound operator of the 

differential of the semigroup {S(t)}t>0 of a dynamical system. 

This chapter introduces the exterior product of vector spaces and additive 

and multiplicative compound operators. Compound differential equations 

associated with linear differential equations in a Banach space X are 

discussed with examples. 

1.1 Exterior Products 

Let X, Y be vector spaces over M. Let Jz?(X, Y) denote the space of all linear 

functionals from X to Y and X* = J?(X,R) denote the (algebraic) dual 

space of X. Define a nondegenerate bilinear map (•, •) : I * x I - > I by 

(v,u) = v(u) (1.1) 

5 
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where v € X* and u G X. 

Definition 1.1. For every k G N and elements it1, • • • ,uk G X, define the 

kth exterior product u1 A • • • A uk by 

u1 A • • • A uk : (X*)k —• R 

u1 A--- Auk(vi,-" ,Vk) := det[vi(uj)], vt € X*, i = I,-• • ,k. (1.2) 

Definition 1.2. For each k G N, the kth exterior power ofX, f\kX, is the 

vector space of all finite linear combinations of elements u1 A v? A • • • A uk 

where ut E X, i = 1, • • • , k, whose vector addition and scalar multiplication 

are defined by 

(u1 A u2 A • • • A uk + w1 A w2 A • • • A wfc)(vi, V2, • • • , t^) 

= « 1 A a 2 A ' " Auk(vi,V2,-- • ,Vk) + w1 Aw2 A ••• A wfc(vi,v2,- • • ,vk), 

a(ux A u2 A • • • A uk) = (au1) A u2 A • • • A uk = • • • = u1 A u2 A • • • A (auk), 

where a G M, u\ w% G X, vt G X*, i = 1, • • • , k. 

Remark 1.1. Equation (1.2) also defines v\ A- • • Avk G f\ X* as a multilinear 

map from Xh to R and a nondegenerate bilinear map (-,•)'• f\ X* x /\ X —*• 

Mby 

(fi A • • • A Vk, u1 A • • • A uk) = u1 A • • • A uk(vy, • • • , vk). 

In this thesis, both notations will be used. 

Proposition 1.1. The vectors u1, • • • ,uk are linearly dependent in X if and 

only if 

u1 A u2 A • • • A uk = 0, 

that is, u1 A • • • A ufe(wi, • • • , vk) = 0 for all Vi, • • • , vk G X*. 

Proof. It is straightforward that u1 A • • • Auk = 0 if u1, • • • ,uk are linearly 

dependent in X. Mathematical induction is used to prove that u1 A u2 A 

• • • A uk = 0 implies the linear dependence of u1, • • • ,uk. First, it is true 

if k — 1. Assume that u1 A • • • A uk — 0 implies that u1, • • • ,uk is linearly 

dependent in X. Next, suppose that ul A • • • A uk A uk+1 = 0. Then for every 

vi,--- ,Vk+i G X*, 

u1 A---Auk+\vu--- ,vk+1) = 0. 
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Choose ui such that v^u1) ^ 0. Let on = - $ $ , 2<i<k + l. Then 

0 = u1 A--- Auk+1(vh--- ,vk+i) 

viiu1) 0 ••• 0 
v2 (u

1) v2 (it
2 + a2u

1) ••• v2 (u
k+1 + a/b+i u1) 

= det 

vk+x(u
l) vk+1(v? + a2u

l) ••• vk+1(u
k+1 + afe+iit1) 

= v1(«
1)(tt2 + a2it1) A ••• A (uk+1 + ak+iul)(v2, • • • ,vk+1), 

which implies that 

(u2 + a2u
x) A • • • A (uk+1 + ak+lu

x){v2, ••• , vk+1) = 0 

for all v2, • • • , fft+i since Vi(n1) ^ 0. Therefore 

(ti2 + a2u
l) A • • • A (u*+1 + afc+iu1) = 0, 

and the induction hypothesis implies that u2 + a2u
x, ••• ,uk+1 + ak+\ul 

are linearly dependent. Hence ui,---,uk+1 are linearly dependent. 

Mathematical induction implies that u1,--- ,uk are linearly dependent in 

X if u1 A • • • A uk = 0. • 

Let X be a normed space and X' denote the continuous dual of X, 

consisting of the continuous linear functionals on X. In general different 

topologies and norms can be imposed on /\ X depending on the application. 

For we f\kX, define 

I M I A * *
 : = s u P u ; ( u i ) - - - ,Vk) = sup(t;i A ••• Avk,w). (1.3) 

Vi Vf 

Here the supremum is taken over vt £ X', \\vi\\x> < 1, i = l,--- ,k. 

For simplicity, the symbol || • || will be used instead of || • | |^*x except 

when the relationship with the norm in X is to be emphasized. Then for 

w,w1,w2 £ f\kX,a e l , 

(i) \\w\\ > 0; 

(ii) \\w\\ = 0 if and only if for every v, e X', w(vi, v2, • • • , vk) = 0 if and 

only if w = 0; 



1. Compound Operators and Compound Equations 8 

(Hi) \\aw\\ = |a|||ty||; 

(iv) \\w1+w2\\ = sup(wi(v1,v2,--- ,vk) + w2(v1,v2,--- ,vk)) 
Vi 

<supw1(v1,v2,--- ,Vk) + 8wpw(v1,v2,--- ,vk) 
Vi 

< \\wi\\ + \\w2\\. 

Therefore, || • || is a norm on f\ X. The symbol j \ X is used to denote the 

completion of /\k X in this norm. 

Proposition 1.2. If X is a normed space, then for every ul G X, i = 

1, • • • , k, the norm on f\ X defined by (1.3) satisfies 

{{u1 A • • • A ufe|| < 2M^ i i | |u1 | | • • • ||ufe||. (1.4) 

Proof. The proof is by mathematical induction . First, equality is satisfied 

in (1.4) when k = 1. Assume that (1.4) holds for k, a positive integer. Then 

if ul G X, Vi € X', i = 1, • • • , k + 1 and Vi A • • • A v\ A • • • A vu+i denotes the 

exterior product of the k vectors {vi: i = 1, • • • ,k + l,i^l}, then 

(vi A • • • A Vk+i, u1 A • • • A uk+1) 

Ai-f 1 

= E ( - ! ) ' + 1 (vh w1) (vi A • • • A v; A • • • A ufc+i, u2 A • • • A «fc+1) 

fc(fc-i) 
« • 

fe+ii 

Thus 

< (k + l)-\\u1\\-2*1^±1\\u2\\---

< 2 f e-2M¥ i | |M1 | l l lu2 | | . . - | |^+ 1 | 

2^||u1|lllu2ll---llu*+1l 

\u1A---Auk+1\\<2k-il¥1\\u1\\---\\uk+1\ 

and mathematical induction implies that (1.4) holds for all A;. • 

1.1.1 Vector Space: Hamel Basis 

Every real vector space X has a Hamel basis H C X such that each u € X 
is a finite real linear combination of elements h € H, a sum of the form 

U=^2 Uhh, 
heH 
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where all but a finite number of uh = 0. With each h € H associate a linear 

functional (h, •) : X —> R defined for k in H by 

and, for any u € X, by linearity so that (h,u) = u/j. Thus 

M=J^( / l , « ) f t . (1.5) 

Finally, for any u € X, a linear functional {u, •) : X —• R is defined by 

linearity (n, •) = X) Ci>'u) (̂ > *)• It follows that, when H is a Hamel basis of 
heH 

X, u1 A • • • A uk can be expressed as a finite sum of the form 

u1A---Auk = ^ (hx,u1)(h2,u2)---(hk,uk)h1A---Ahk. (1.6) 
^eif , i=i,-,k 

However, if k > 1, {/i1 A- • • Ahk : h% e H, i = 1, • • • , k} is not a Hamel basis 

for /\fc X. It is not a linearly independent set as 

h1 A • • • A hk = sgna hh A • • • A hik (1.7) 

if a = (ii, • • • , ifc) is any permutation of (1, • • • , Ai). A subset iJ^ obtained by 

including just one element h1 A • • • A hk of each set of &! elements related by 

(1.7) is a Hamel basis for f\ X and, from (1.6), 

ulA---Auk= ^2 (hl A---Ahk,ux A---Auk)hx A---Ahk, 
h1/\-/\hkeHk 

where (h1 A • • • A hk, u1 A • • • A uk) = det (h\ uj). 

1.1.2 N o r m e d Vector Space: Schauder Basis 

Suppose that S = {el: i = 1,2, • • • } is a Schauder (countable) basis of a real 

normed vector space X, then 

i 

where Ui = (e\ u) is the ith coordinate of u with respect to this basis. Here 

(e\ •) is defined as for (1.5) but now the sum (1.5) may contain infinitely many 
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non-zero terms when X is not finite dimensional. Analogously to (1.7), the 

set 

Sk = {eh A • • • A eik : 1 < h < • • • < ik} 

is a basis for /\ X under the norm || • || defined in (1.3). No particular 

order is imposed on Sk- By Definition 1.2, if v?; € X, j = 1, • • • , k, vj = 

Y2uieli u i = {e%iu^) i then 
i 

ul A • • • A uk == ^2 u(i)eh A-'-Ae'4 , 
W 

where 
u(i) = (e11 A • • • Aelk,u1 A • • • Auk) 

= det[(e\^'}], r,j = l,--- ,k 

= det N J > r,j = 1,--- ,k 

Thus the («) = (ii • • • ik)-th coordinate U(j) = t4j'.'.*fc of tx1 A • • • A uk, 

1 < i\ < • • • < ik, with respect to the basis {eh A • • • A eih} in f\ X is 

the k x k minor determined by the rows ii, • • • , ik of the matrix [u^] . 

If X is a Hilbert space with inner product (•,•), then /\ X is also a Hilbert 

space with inner product 

(u1 A • • • A u\ v1 A • • • A vk) = det [(u\ v*)} . (1.8) 

The space f\ X is the completion of /\ X under the associated norm 

(wi,W2)1. If X is separable and {e1} is an orthonorrnal basis, then 

{en A • • • A e%k : i\ < • • • < ik} forms an orthonorrnal basis of f\ X. It 

follows from 

(eh A • • • A eih-,eh A • • • A ejk) = tfg} 

that 

H^1 A ••• A ufe||2 = (u1 A ••• \uk,ux A ••• Au*) 

= ] T ( e H - A e ^ t t ' A . - M i * ) 2 

= £ «4)2-
ii<"-<«A, 

Remark 1.2. A good reference on the exterior product of a Hilbert space is 
Temam [104], Chapter V. 
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1.1.3 Funct ion Space 

Let X be a vector space of real-valued functions on a set ft. Then a linear 

functional x € X* may be associated with x E ft by 

(x,u) = u(x) 

if u E X. For u1,- • • ,uk E X and Xi, • • • , £& e ft, 

(xi A • • • A Xk, u1 A • • • A uk) = u1 A • • • A uk(x\, ••• , Xu) — det [V (£*)] . 

Norms on /\k X may be denned by 

Halloo :=esssup{|io(xi,--- ,xk)\ : xt E 0,} (1.9) 

or, if 1 < p < oo and Q is a measurable set by 

(1.10) 

when these expressions are finite. If Q is finite or countable, the integral 

(1.10) may be replaced by a discrete sum. For example, when X = Rn and 

ft = {1,2, • • • , n}, for u* = (u[, ••• , < ) , i = 1, • • • , k, 

(l A • • • A k, ul A • • • A uk) = u1 A • • • A uk(l, • • • , k) = det [u|] 

and the Zp norm of u1 A • • • A uk on / \ Mn is 

ii« iA---A«%=i(x;KAr) , , = f E i<4ip)' 
\U>->«t / \ l<* l<-<*k / 

where uj^ik is the kx k minor of the nx k matrix (u1, • • • , ufe) determined 

by the rows i\, • • • ,ik-

1.1.4 L\tt) 

The choice of v plays an important role in the application of exterior products. 

The following example o n I = ^'2(^)j where Q is a measurable set in Rn , 

shows different representations of u1 A u2 associated with different choices of 

v. 

\w\\v> :--k\ f 
.Jak 

\w(x-i,--- ,Xk)\pdxi • • -dxk 
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Case 1: A pointwise representation of exterior products 

For u G L2(Q),x G fi, let re again denote the linear functional u 

(re, u) := i((rc). Define an inner product 

(u, v) = / u (re) v (re) drc. 
Jo, 

For it1,it2 € X and X\,X2 G f2, 

u1 A M2(rci,rc2) = det [ i t ' ^ ) ] • 

Then, from (1.8), 

(u1 Au2^1 Av2) =de t 
(u1,^1) (u1,^2) 
(u2,vl) (u2,v2) 

det / « V (1.11) 

is an inner product on f\ L2(Q,). Since u1 A v?(xi,X2) — det [u'(rCj)], 

(u1 A u2, v1 Av2)= / det [U*(XJ)] det [V\XJ)] dxidx2 (1.12) 

is also an inner product on /\k L2(Q). In fact, the inner products in (1.11) 

and (1.12) are equivalent since 

(u1 A u2, v1 Av2) = — (u1 A u2, v1 A v2) . 
2! 

(1.13) 

This can be seen by applying the Binet-Cauchy identity for square matrices 

[it], [v],det[u] det[v] = det[uv], to the integrand in (1.12). 

Case 2: A basis representation of exterior products 

Suppose that {e*} is an orthonormal basis of L2(fi). Then u = ^ (e\ u) e\ 
i 

Define another linear map e% : u i-> (ei, u). For u1, u2 G X, u1 Au2 is a bilinear 

map from {e*} x {e*} to M and 

ul A u2(eh,ei2) = det {e^y) (ei2,w2) 

The set {eh Ae'2 : h < «2} forms an orthonormal basis of /\2L2(fi) and if 

v? = Yl (e\ uj) e\j = 1,2, then 
i 



1.1. Exterior Products 13 

where 

= det[(e\uP>], r,j = 1,2 
(1.14) 

= d e t [ < J , r j = l ,2 

is the (i) = (iii2)-th coordinate of ul A M2, H < i%, with respect to the basis 

{e*1 A e*2} in / \21/2(0) , which is the 2 x 2 minor determined by the rows ilt i% 

of the matrix [v%] (see Section 1.1.2). It follows from (1.13) that 

Uu1 Au2f = Y, « f = ^ / 2 d e t [ui(xj)]
2dx1dx2, 

where uj^2 is defined by (1.14) for any basis orthonormal with respect to the 

inner product (•, •) on L2(Q). 

1.1.5 In terpre ta t ion 

In keeping with the tradition of representing a vector u as a directed line 

segment, the exterior product u1 A • • • A uk € /\ X can be interpreted as the 

oriented parallelepiped determined by the ordered set of vectors {u1, • • • ,uk} 

(see Figure 1.1). Just as ||u|| can be considered a measure of the length of u 

U 

Figure 1.1: Exterior product u1 A • - • A uk 

when it is represented as directed line segment, a norm \\ux A • • • A uk || may be 

considered a measure of the A;-volume of the oriented parallelepiped. If u is 

referred to a basis {e*}, then u = ]T) Uie1 and the coordinate Ui = {el, u) may 
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be considered the projection of the directed line segment onto the coordinate 

axis e\ With respect to the basis {eh A • • • A eik} of f\kX, u1 A • • • A uk = 

J2 U{i)eh A • • • A eik, where u^ = (eh A • • • A eik, u1 A • • • A uk) = u\^k
ik 

may be considered the projection of ul A • • • A uk onto the fc-dimensional 

subspace of X spanned by eh, • • • , elk. For example, when X = W1 with 

the standard orthonormal basis e1,- • • , e™, then f\kM.n ~ R^ and the (^) 

components of u1 A • • • A uk with respect to the fc-dimensional coordinate 

subspace span {en, • • • , e%k} are the determinants «,\".'.fejfc. 

1.2 Compound Operators 

The definitions of compound operators on vector spaces are generalized from 

compound matrices on M.n, (see [3, 33, 47, 67, 109]) and the two multilinear 

operators on Hilbert spaces considered in Temam [104], Chapter V. 

Definition 1.3. Let X and Y be vector spaces and A : X —• Y be a linear 

operator. The operator A(k) : /\k X -^ f\k Y defined by 

A^(u1A---Auk):=Au1A---AAuk, u* € X (1.15) 

and extended by linearity to /\k X is called the kth multiplicative compound 

(or exterior power) of A. 

Definition 1.4. Let X and Y be vector spaces, X cY and A : X —>• Y be 

a linear operator. The operator A^ : /\fe X —> /\fc Y denned by 

k 

A^ (U1 A---Auk) :=Y^ul A • • • A Auj A • • • A ufe, u ' e X (1.16) 

and extended by linearity to /\fc -X" is called the kth additive compound of A. 

Remark 1.3. In [104], Temam uses / \ 4̂ and A\. to denote what are, in this 

thesis, called the /cth multiplicative compound operator and A;th additive 

compound operator of A. 

The multiplicative and additive compound operators have the following 
properties. 
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Proposition 1.3. 

(i) If A : X —• Y and B : Y —> Z are linear operators, then (ABy ' 

satisfies the Binet-Cauchy identity 

(AB){k)=Aik)B(k\ 

(ii) If X c Y and A,B : X -» Y are linear operators, then (A + By1^ 

satisfies the additive identity 

(A + B)lk] = AW+BW. 

Hi) If X C Y and A : X •->• Y is a linear operator, then A^ — {in 

!< '+"> w = lim \l + hA){k)-lW h . 

(iv) If Ai, A2, • • • and e1, e2, • • • are eigenvalues and eigenvectors of A, then 

e11 A • • • A elk, 1 < ix < i2 < • • • < ik are eigenvectors of A^ and A^ 

with corresponding eigenvalues Xix • • • Xik andX^-i \-Xik, respectively. 

Proof, (i) Let u* € X, i = 1, • • • , k. Then 

(AB)W (u1 A • • • A uk) = ABu1 A • • • A ABuk 

= A{k)(Bu1 A---ABuk) 

= A^B^(u1A---Auk) 

and this equality can be extended by linearity to /\ X. Thus the 

Binet-Cauchy identity is proved. 

(ii) Let u1 £ X, i = 1, • • • , k. Then 

(A + JB)W(u1A---AM*) 

k 

= J2 ul A • • • A (A + B)uj A---Auk 

J=I 

k k 

= J2 u1 A • • • A Au> A • • • A uk + £ u1 A • • • A Bui A . . . A uk 

= (AW + BW) (U1 A • • • A uk) 

and this equality can be extended by linearity to /\k X. Thus the 

additive identity is proved. 



1. Compound Operators and Compound Equations 16 

(in) Let « ' £ l , i = 1, • • • , k. Then 

'(/ + hA){k) - /<*>] (u1 A • • • A uk) 

= (I + hA){k) (u1 A • • • A uk) - u1 A • • • A uk 

= (1 + hA)ul A • • • A (1 + hA)uk - u1 A • • • A uk 

= (hAu1) A u2 • • • A uk + • • • + u1 A u2 • • • A (hAuk) + 0(h2) 

= hA® (u1 A u2 • • • A ufe) + o(h2) 

and thus 

lim [(/ + M) ( fc) - J(fc)] (w1 A u2 • • • A uk)/ h = A® (U1 A u2 • • • A ufc). 

This above equality can be extended by linearity to f\ X. Therefore 

AW=±(I + tA)w 

t=o 
lim 
fe-»o L 

(I + hA){k)-lW h. 

(iv) The eigenvalues and eigenfunctions properties follow from 

A(k)(eil A---Aeik) = Aeh A • • • A Aeik 

= Xh • • • Xik(e
h A • • • A eik) 

and 
k 

A^(eh A---Aeik) = J2 eh A • • • A Ae*i A • • • Aeik 

k 

•= Yleh A ' - - AAj.e^' A--- Aeik 

= (Ail + --. + A,J (e i l A---Ae^) . 

1.2.1 Representation of Compound Operators 

Let X and Y be real normed vector spaces with Schauder bases {ej} and 

{/*} respectively. If A : u i-> v = Lu is a bounded linear function from X to 

y, then 

3 

Lu = £>*/*, Vi = (f\Lu) 
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implies that 

Vi = Yl °iuj, where a{ = (f, Le?) . (1.17) 
j 

Thus the relationship between the sequences of basis coefficients or 

coordinates, u = («,) and v — (VJ) of u and v = Lu respectively, arrayed as 

column vectors, satisfy (1.17) which may be written 

v = Au 

where A = [af\ is a matrix whose rows are indexed by i and columns by j . 
By Definition 1.2, if « r e I , r = 1, • • • , k, ur = I > ^ , «J = 

<e*,ur>, 

where 

implies 

M ' A - ' A U ^ ^
 u(j)eJ1 A • • • A ejk 

(j) 

tt(j) = (ejl A • • • A eik, u1 A • • • A uk) = ttjj'.'.*^ (1.18) 

is the (j) = (j'x • • -jk)-th. coordinate of u1 A • • • A uk, j i < • • • < j k , with 

respect to the basis {ejl /\ • • • A ejk} in /\kX (see Section 1.1.2). 

From (1.17), vr = Lur = Ylvif> vj = {f\LuT) implies, since 
i 

L(*> {U1 A • • • A uk) = (Lu1) A • • • A (Luk) 

the (i) = (ii • • • ifc)-th coordinate W(j) of l/fe) [ul A • • • A tife), ii < • • • < i^, 

with respect to the basis j / ' 1 A • • • A /'*} in /\ kY is given by 

L<*> (u1 A • • • A uk) = J2vd)fh A • • • A /ifc 

(0 

where, from (1.17) and (1.18) with (i) = ft • • • ife), (j) = (jj • • • j k ) , 

«<o = <A = E>gR4. 
0') 

6 « = < f 1 A - - - A / ^ , L ( f e ) ( e i l A - - - A e ^ ) > 

= (f1 A • • • A / \ (LeJ1) A • • • A (Le^)> 

= det [(f r,Le?>)] , r ,S = l , . . - , fc 
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where af*.'"̂  denotes the k x k minor of the matrix A = [a^] determined by 

the rows h, • • • ,ik and the columns j i , • • • ,jk- Denote by 

AW = b(j) = [ < t ] , (1-19) 

the matrix of the linear function L^ : /\ kX —• f\ kY referred to the bases 

{e?1 A • • • A e**} , {f1 A • • • A fk} . 

Similarly, if X C Y, the (i) = (ii • • • ifc)-th coordinate tu^ of 

L[fcl (u1 A • • • A uk), i\ < • • • < ik„ with respect to the basis {eh A • • • A eik} 

in /\k Y is given by 

L[h] (u1 A • • • A uk) = ] T ^ e * 1 A • • • A eik 

W 

where, from (1.17) and (1.18) with (i) = («!••• ifc), (j) = (ji • • -jk), 

W) 

e g = (e*1 A- - -Ae i l , L^ (eh A • • • A ej*)) 

= leh A • • • A e**, J V 1 A • • • A Le?s A • • • A e>k \ 

= ^2 (e<1 A • • • A e 4 , ejl A • • • A LeJ's A • • • A ejk) . 

Let 

gh-Ts-h = f 1» i f * i • • • *t • • • *fc = J i • • • j s • • • jk 
h-it-ik \ o, if i\ • •if-ik^ jf-js---jk 

where h • • • U • • • ik denotes the k — 1 numbers i1---it-iit+i •••ik- Since 

(eh A • • • A eik, ejl A • • • A Lejs A • • • A e'*) 

= ^ (- l ) s +* ( e \ Le^) (eh A • • • A e^ A • • • A e**, eh A • • • A e^ A • • • A e 
t 

= y ( - l ) s + t a f 5 j l " i 8 - . i f c , 

Jk 
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the matrix of L^ is A^ = ,0) 
' 0 , where 

0) _ I (—l)s+ta£, if exactly one entry it of (i) does not occur in 
W J (j) and j s does not occur in (i); 

[ 0, if (i) differs from (j) in two or more entries. 
(1.20) 

Example 1.1. When X = R3, A ^ 3 = span {u1 A • • • A uk : u* G R3} ~ 

l w . Let A : I 3 -> I 3 be a linear operator, which has a matrix 

representation A = [G^]3X3- Then 

A ^ = 
aj a? a? 
a 2 &2 fl2 
a3 a3 a3 

= A, A<2> = 

„12 13 fl23 
u12 u12 "12 
a13 a13 a13 
a 23 a 23 a 23 

, A^ = a\H = detA, 

AM=A, A® 
a\ + a\ a\ 

a\ a\ + a3 

ai a\ + a\ 
, A[3] = ai+al+aij = t rA 

"3 "2 

Example 1.2. Let X = C(S7,R) where VL is a measurable set in R™ and 

p G C(Q x n —>• M). Consider an integral operator P : X —* X, 

(Pu) (x)= p {x, y) u (y) dy. (1.21) 

Let (Qu) (a;) = Jnq(x,y)u (y) dy and the multiplication of P and <5 is defined 

by 

(PQu) (x) = / pq (x, y) u (y) dy, 
JQ 

wherepc/ (x, y) — Jap (x, s) q (s, y) ds. Now the operator P(/c) : f\kX —• f\kX, 

(P{k)w) (xu • • • , xk) = 77 / det [p (Xi, %•)] w (Vi, • • • , Vk) dyi • • • dyk , 

satisfies the Binet-Cauchy identity (PQ)(fc) = p(fc)Q(fc); and the operator 

( P ^ C X ! , - " , ^ ) 

= / [P (xi, y) w (y, x2, • • • , xk) + • • • + p (xk, y) w {xx, • • • , xk-U y)} dy, 
Jn 

satisfies the additive identity (P + Q)[k] = P[k] + Q[k]. 



1. Compound Operators and Compound Equations 20 

Example 1.3. Let X be a vector space of real-valued functions on a set Cl. 

Consider a linear operator A : X —> X defined by 

(x,Au) = a(x)u(x), xett. (1.22) 

Then, by Definition 1.3 and Definition 1.4, pointwise representations of the 

A;th multiplicative and additive compounds of A satisfy 

(xi A • • • A xk, A{k)w) = I J J a(xi) 1 w (x b ••• ,xk) 

k 

and (xi A • • • A xk, A^w) = Y^ a(rCj)«; (x1; • • • , 2^), 
j = i 

where Xi, • • • , xk eft and we /\kX. 

More generally, Example 1.3 can be included in Example 1.2 if singular 

kernels p(x,y) are permitted in (1.21). 

In the case that X is a normed space with a basis {e*}, this example falls 

under the discussion of bases at the beginning of this section. The basis 

representation of A is a) = (e^ae1) = a{ and thus the basis representations 

of AW and A® are given by (1.19) and (1.20). 

1.2 .2 T h e L a p l a c i a n O p e r a t o r 

Let X = C2(Q,R) and Y = C(Q,K) where Q is a bounded domain of 

Rm. Then X C Y. By Definition 1.4, the fcth multiplicative and additive 

compounds of the Laplacian A : X -»• Y, A{k) and A ^ : f\k X -* /\k Y, are 

defined on wedges by 

A< f cV A • • • A uk) = (Au1) A • • • A (Auk) , 

AW (u1 A • • • A uk) = (Au1) A • • • A uk + • • • + ul A • • • A (Auk) 

and extended by linearity. For u e X and x £ Q, the pointwise representation 

of Au is 

(a;, Au) = Au(x), 

the Laplacian of u with respect to x. For w € /\k X and £i, • • • ,xfc G Q, 

pointwise representations of A^VJ and A^to are 

( x i A • • • A Xk ,A (\)= IflAAwixt,--- ,xk), 
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k 

and (xi A • • • A xk, A[k]w) = ^ A*u; (xi, • • • ,xk), 

where AiW = (x ,̂ Aw) is the Laplacian of w(x\, • • • , xk) with respect to Xj. 

Remark 1.4. It is emphasized that A ^ and A ^ are not considered as 

operators on w(x\,--- ,xk) in C2 (fifc,M), but rather in /\k C2 (Q,R) and, 

in particular, w{x\, ••• , x^) is antisymmetric in (xi, • • • , xk). 

In the more general context, X -•= H2(Q) = {u € L2(Q) : Vu, Au e L2(Q)} 

is associated with some boundary conditions on a smooth boundary dQ and 

y = L2(Q); X C y . Let {e* : i = 1,2, •• •} be an orthonormal basis of 

X composed of eigenfunctions of the Laplacian A. Then the set of vectors 

{eil A • • • A e%k : 1 < i\ < • • • < ik} is an orthonormal basis of /\ X composed 

of eigenfunctions of A(fe) and A'fc'. Since (el, AeJ) = XjSj, 

(e* A • • • A e1*, A C V 1 A • • • A e>*)> = (A,, • • • A,,) 5 ^ 

and (e* A • • • A e**, A ' V 1 A • • • A e**)) = (A,, + • • • + Xh) 6 ^ , 

it follows that if u G X, then a basis representation of AM is 

(e\Au) = A,u, 

and if w € A*-^") then basis representations of A^w and A^iu : /\k X ^ 

A ^ a r e 

<eilA---Aeifc,A(fc)W) = (A,1---A i j tK 

and (e*1 A • • • A e 4 , A[k]w) = (Xh + ••• + Xik)w. 

1.3 Compound Differential Equations 

This section deals with linear differential equations in a Banach space X. 

Definition 1.5. A two-parameter family of linear operators {T(t, s) : 0 < 

s <t} C ^f(X, X) is said to be an evolution operator if 

(i) T(s,s) = I, 

(ii) T(t, s)T(s, r) = T(t, r) for 0 < r < s < t, 

(Hi) t *-> T(t, s) is continuous for t > s. 
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Let 
,. T(t + h,t)x - x 
lim - i H = Mt)x, (1-23) 

the domain V(A(t)) of A(i) being the set of all x E X for which the limit 

defined above exists. The map A(t) : V(A(t)) C X -* X is called the 

generator of T(£, s). Assume that £>(A(i)) = X)(^4), which is independent of 

t and dense in X. 

If there exists a unique solution of the initial value problem 

— = A(t)u, 
dt w (1.24) 
u(s) = us € T>(̂ 1), 

then there is an evolution operator given by the relation u(t) = T(t, s)us. 

The operators A(i) are usually unbounded. Detailed discussions of these 

topics may be found in [34, 42, 87, 111, 113]. 

Now assume that u(t) — T(t,s)us,0 < s < t solves the initial value 

problem (1.24). The kth multiplicative compound T^(t,s) of T(t,a) 

satisfies, from Definition 1.5, 

(ii) r(*> (t,s)T^ (s,r) = T^ (t,r),0<r<s< t, from (ii) of Definition 

1.5 and the Binet-Cauchy identity; 

(Hi) 11-> T"(fe) (t, s) is continuous for t > s. 

Thus T(fe)(t,s) is also an evolution operator. Let v}(t),--- ,uk(t) be k 

solutions of (1.24) with initial conditions u\,--- ,uk G V(A). Since 

T<*> (t, s) u] A • • • A uk
s = (T(t, s)ul) A • • • A (T(t, s)uk

s) = u1 (t) A • • • A uk (t) 

and 

ft[ul(t)A---Auk(t)] = ^ a ' C l A - A ^ W A - A u ^ t ) 
i 

= J2ul ( * ) A • • AA (*)u< ( * ) A • • Av>k (*) 
= -A[fc] (i) [u1 (t) A • • • A uk (t)] 
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it follows that w (t) = u1 (t) A • • • A uk (t) is a solution of 

^ = A*Ht)w,t>s, 

w(s) = ulA---Au*. 

This equation is called the kth. compound differential equation of (1.24). 

For example, if A(t) = A is a sectorial operator, then —A is the 

infinitesimal generator of an analytic semigroup {e~tA}t>o and the evolution 

operator T(t, s) = e~^~s^A (see [87], page 20). The evolution operator of the 

kth compound differential equation of (1.24) is 

TW(M) = ( e - ( i - s ) A ) W = e - M # l . 

Example 1.4. Consider a linear differential equation in W1 

£ = *<«*. (1.25) 

where A(t) is a continuous real or complex matrix-valued function of t. 

Suppose that yl{t),--- ,yk(t) are k solutions of (1.25). Then w(t) = 

y1(i) A • • • A yk(t), is a solution of the kth compound differential equation 

of (1.24) 

^ = AW(t)w, (1.26) 

For the special case when k = n, it is well known that w(t) is the solution of 

the Abel-Liouville-Jacobi equation 

dw .. . 

- = t r ^ K 

If Y(t) is a fundamental matrix of (1.25), then Y^k\t) is a fundamental matrix 

of (1.26). Here T(t,s) = Y(t)Y~\s) and T^k\t,s) = y<*>(i) (y-i)<fe> (s). 

For example, if 4̂ is a constant matrix, then F(£) = etA and y(fe)(<) = 

(e*A) = etA is a fundamental matrix of (1.26). For a detailed exposition 

and applications in the finite dimensional situation, see [76-78]. 

E x a m p l e 1.5. Consider a reaction diffusion equation 

^ = (A + A(t))u. (1.27) 
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Suppose that (1.27) generates a semigroup on HQ(0, 1) = {0 € L2(0,1) : 0' £ 

L2(0,1), 0(0) = 0(1) = 0}. It is assume that the linear operator A(t) has the 

pointwise representation 

(x, A{t)u) = a(t, x)u{x). (1.28) 

This example illustrates how different choices of families of linear functionals 

v used to examine the exterior products of solutions of (1.27) yield different 

representations of the differential equation and its compound equations. 

Choosing first as v the pointwise evaluation functionals gives partial 

differential equations representing (1-27) and its compounds. Then, using 

eigenfunctions of the Laplacian a basis and the spectral projections as the 

linear operators v, equation (1.27) and its compounds are represented by 

infinite systems of coupled ordinary differential equations. 

Case 1: A pointwise representation of the fcth compound differential 

equation of (1.27) 

For u £ HQ(0,1),X G (0,1), let x also denote a linear functional u \—>> 

{x,u) = u(x). Then (1.27) can be written as 

(1.29) 
ut = uxx + a(t,x)u, 0 < x < 1, t > 0, 
u(t,0) = u(t,l) = 0, t>0. 

For w(i) e f\kHQ(0, 1), a pointwise representation of w is 

{xi A • • • Axk,w(t)) = w(t,xi,--- ,xk). 

A pointwise representation of the A;th compound operator (A + A(t))^ = 

AM +A(t)W : A fc#o(0,l) -»• AfcI/2(0,l) follows from Example 1.3 and 

Section 1.2.2 and thus, a pointwise representation of the A;th compound 

differential equation of (1.27) in /\k H%(0,1) is 

k k 

w t = Yl Wx*x*+Yl a^> x^w- (1>30) 

If u1^), • • • , uk{t) are solutions of (1.29), then 

(xi A • • • A xk, v}{t) A • • • A uk(t)) = det[uj(t,xt)]. 
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It can be checked by differentiating the above determinant that u1^) A • • • A 

uk(t) satisfies the fcth compound differential equation (1.30) and Dirichlet 

boundary conditions of ul implies that 

(x1A---Axk,u
1(t)A---Auk(t))\Xi=01=0, i = !,••• ,k. 

Again, (1.30) is not considered as an equation for w(t, X\, • • • , xk) in 

Hi ((0,1)*), but rather in A*H%(0,1). 

Case 2: A basis representation of the kih compound differential equation of 

(1.27) 

Let {e?(x) — \Z2swjirx : j — 1,2,•••} be an orthonormal basis of 

HQ(0, 1). Define another linear map e>: : u i-» {e?,u). Then u(t) = J2uj(t)ej 

and Uj = (eJ, u) satisfies 

^ = [A; + <#)H + E aW>v (1-31) 

where Xj = -(J7r)2 and a*. — (e\aej) — a\. For w(t) e /\kHQ(0, 1), a basis 

representation of w is 

(e*1 A • • • A e ' \ w(t)) := ww(t) = w(il...i(k)(t). 

A basis representation of the fcth compound operator (A + A(t))^ — 

Alfel + A(t)W follows from Example 1.3 and Section 1.2.2 and thus, a basis 

representation of the A;th compound differential equation of (1.27) is 

^ ^ = ( ^ + ••• + Â  + ̂ («) + --- + oft(*)) u;^..^) 
(1.32) 

+ J2 HW^ofc-i*) + • • • + <(*M<i-i*_ij)) • 

If u1 (£),-• • , «fc(t) are solutions of (1.29), then 

(e*1 A • • • A e ' * y (t) A • • • A uk(t)) = det [<e\ </(*)}] = u};X(t). 

It can be checked by differentiating the above determinants that u1 (t) A • • • A 

uk{t) satisfies the fcth compound differential equation (1.32). 

file:///Z2swjirx


Chapter 2 

Dimension Problems 

This chapter addresses the problem of estimation of the codimension of the 

asymptotically stable solution subspace of a linear differential equation. This 

question arises not only for its intrinsic interest as a singular linear boundary 

value problem but also for its importance in investigations of the dimension 

of stable manifolds of equilibria and periodic orbits of nonlinear equations by 

linearization techniques. 

The approach is motivated by results on the dimension of the 

asymptotically stable solution subspace of a differential equation 

Hit 
^ = A(t)u, «(•) € Rn. (2.1) 
at 

When n = 2, Milloux [74] shows that if 0 < a(t) is a nondecreasing function, 

then the scalar equation u" + a{t)u = 0 has a nontrivial solution u = Uo(t) 

such that 
lim Uo(t) = 0 if and only if lim a(t) = oo. 

t—»00 t—MX) 

Higher dimensional equations have been studied by Hartman [40], Coppel 

[19], Macki and Muldowney [65] and Muldowney [76-78]. Hartman [40] 

([41], page 501) shows that if 0 < lim \\u(t)\\ < oo exists for all solutions 

u, and || • || is the Euclidean norm, then there exists a nontrivial solution 

such that lim ||«o(£)|| = 0 if and only if lim L Re tr.A = —oo. Hartman's 
t—>oo t—>oo 

proof relies heavily on properties of the norm. Coppel [19], page 60, shows 

tha t the result holds for any norm. Macki and Muldowney [65], by an entirely 

different approach, weaken the restriction that ||tt(t)|| tends to a limit to a 

stability requirement on u(t). Muldowney [76-78] extends these results by 

26 
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means of a sequence of compound matrices A^(t), k = 1, • • • , n of A(£) such 

that, under the same stability assumptions as in [65], the given system has 

an (n — k + l)-dimensional asymptotically stable solution subspace if and 

only if all nontrivial solutions of the system 

tend to zero. 

The applications of compound matrices to differential equations are 

further developed in [51, 56, 58, 76-78]. In [78] a general result on the 

existence of an asymptotically stable subspace in a linear space of W1-valued 

functions is obtained. This chapter extends that result to general vector 

spaces. Nonlinear applications include estimation of the codimension of 

stable manifolds in Section 2.2. It also provides an important step in the proof 

of Theorem 4, Section 4.2.1, on the existence of stable periodic solutions. 

2.1 Asymptotically stable subspaces 

This section extends a result of Muldowney [78] on the existence of an 

asymptotically stable subspace in a set of vector space valued functions on 

[0,oo). 

Let X be a vector space and X* be its (algebraic) dual space. Let U be a 

vector space of maps t H-» u(t) from [0, oo) to X and V be a family of maps 

t*-*v(t) from [0,oo) to X*. 

Condition L: The pair {U, V} satisfies Condition L if for each u 6 U, the 

following two assumptions hold: 

(i) limsup | (v,u) (t)\ < oo for every v eV; 
t—*oo 

(ii) liminf | (v,u) (t)\ = 0 for every v GV implies that lim (v,u) (t) = 0 

for every v £V. 

Here (v,u)(t) = (v(t),u(t)). 

Remark 2.1. For example, suppose that X is a normed space and that U is 

a linear space of functions t *-+ u(t) from [0, oo) to X that satisfy in some 
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sense a linear differential equation of the form 

^ = A(t)u, u(-)eX. (2.2) 

If V is the set of all functions t1—> v (£) from [0, oo) to X', the continuous dual 

space of X, such that \\v (t)\\ = 1, then the pair {U, V} satisfies Condition L 

provided that (i) and (ii) hold: 

(i) \\u (t)\\ is bounded, 0 < t < oo; 

(M) liminf ||tt (i)|| = 0 implies lim. \\u (t)\\ = 0. 
t—>oo t—>oo 

The above conditions (i) and (ii) are satisfied if lim ||u(t)|| < oo exists for 
t—*oo 

all u €U. Conditions (i) and (ii) are also satisfied if there exists a constant 

C such that 
||u(t)|| < C | | u ( s ) | | , 0 < s < t < o o . (2.3) 

Thus the solution space of a linear differential equation satisfies Condition L 

if the equation is uniformly stable. The condition (2.3) can be weakened to 

| | u ( t ) | |<C u | | u ( s ) | | , 0 < s < £ < o o , 

where the constant Cu depends on the solution u. 

Let 

UQ = { u € U : lim {v, u) (t) = 0 for every v € V j . (2.4) 

In the following proposition codim UQ < k means that any subspace of U 

that has dimension k or greater must intersect UQ nontrivially. 

Proposition 2.1. Let U be a vector space of maps 11-> u(t) from [0, oo) to 

X and V be a family of maps t i—> v(t) from [0, oo) to X*. Suppose that the 

pair {U, V} satisfies Condition L. Then 

codim Uo < k 

if and only if 

lim (vi A • • • A vk, u
1 A • • • A uk) (t) = 0 (2.5) 

is satisfied for all u1, • • • , uk € U and v1, • • • , vfc € V. 
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Proof. Suppose that codim U0 < k. Then for every k linearly independent 

functions u1, • • • ,uk eW, there exists a nontrivial linear combination u0 = 

c\ul + • • • + CkUh such that 

lim (v,u0)(t) = 0 f o r a l l u e V . (2.6) 
t—>oo 

Without loss of generality, it is assumed that Ci ^ 0. Then, it follows from 

Condition L(i) and (2.6) that for every v\, • • • , Vk € V, 

lim (v\ A • • • A Vk, ul A • • • A uk) (t) 

= — lim (vi A • • • A vk, u\ A • • • A uk) (t) (2-7) 
C\ t—>oo 

= 0. 

Conversely, suppose that (2.5) is satisfied. If u1,- • • ,uk E U are 

linearly independent, it is to be proved that spanjw1, • • • ,uk} intersects Uo 

nontrivially. The proof is by mathematical induction on k. It is evidently 

true when k = 1 since, in that case, 

t—>oo 

for all «i e V and hence u1 E U0. Suppose that the proposition is true if 

1 < k < h. Let vi, • • •, Vh E V. From Condition L(i) any sequence tn —• oo 

has a subsequence, which will also be denoted tn, such that 
n—>oo 

]im(vi,ut){tn) = $ (2.8) 
n—>oo 

exists i,j = !,••• ,h. Let fif-.t denote det [§?] , z,j = 1,- • -,fe. Now 

(2.5), k = h, implies £j|".'ft == 0. It may be assumed that tn and 

vi,- • -,Vh-i E V can be chosen so that ^'.'^Z\ =£ 0 since otherwise 

lim (vi A • • • A Vh-i, u1 A • • • A •u'1"1) (t) — 0 for all vi, • • -, Vh-i E V and the 
t—»oo 

induction hypothesis implies that there is a nontrivial UQ = ^ CjU-* E UQ. 

Thus, with 
<42-/i-l / n £l2-h _ A 
S12—/i - l T ' U ' S12-fe — U> 

expanding the determinant îf.'.'.'h along the last row gives 

h 

o = &2:::£ = 2 > ^ (2.9) 
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where c,- is the cofactor of f̂ , j = 1, • • •,h. In particular, Ch = ^12-t-i 7̂  0-

Then (2.9) implies 

0 = J2 c^h = ^ I Z ci iVh'uS) (*") 

and thus rto = J2 cjuj satisfies 

lim <Ufc,uo)(tn) = 0. (2.10) 
n—>oo 

Furthermore, for any choice of Vh E V, a subsequence of £„, also denoted £n, 

may be chosen so that (2.8) is still satisfied and the preceding analysis shows 

that each choice of Vh satisfies (2.10) with the same constants Cj, which do not 

depend on Vh, for some sequence tn —> 00. Therefore liminf {v, UQ) (t) = 0 

for all v E V which, by Condition L(ii), implies 

lim (v, u0) (t) = 0 
t—»oo 

and so 
h 

u0 = "Y^Cjui EU0. 
i=i 

The proposition is thus true for k = h also and hence for all k by 

mathematical induction. • 

2.1.1 Function Space 

Let X be a vector space of real-valued functions on a finite, countable 

or uncountable set Q. For x € Cl, let a; also denote the linear functional 

u i-+ (x,u) := u(x), u E X. The pointwise representation of the exterior 

products discussed in Section 1.1.3 is u1 A u2 A • • • A uk : /\k X —• E, 

(xi A • • • A xk, u1 A • • • A uk) = u1 A • • • A uk(xx, ••• ,xk) = det [u'fa)] . 

Let U be a lineax space of maps t \—* u(t,-) and V be the set of constant 

maps {t i-* v(t) = x : x £ X*}. 

The following corollary is a particular case of Proposition 2.1. 
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Corollary 2.2. Suppose that, for every u eU, the following two conditions 

hold: 

(i) limsup |u(i,x)| < oo for all x e Q; 
t—+oo 

(ii) liminf \u(t, x)\ = 0 for all x e Q implies lim u(t,x) — 0 /or aZZ a; € Q. 

£—>oo t—>oc 

Then 

codim\u eU : lim \u(t,x) \ = 0 /or aW x € fi f < k (2.11) 
«/ and on/?/ z/; for each ul, • • • ,uk EU and all xi, • • • , x^ € Q, 

lim det [?/(£,£,•)] = 0. 
t—>oo 

In particular, conditions (i) and (ii) are satisfied if, for every u £ U, 

lim \u (t, x)\ < oo exists for all x € Q. 

2.1.2 Normed Vector Space 

Let X be a normed vector space, U a linear space of functions i i-» «(t) 

from [0, oo) to X and V the set of functions t *-> v(t) from [0, oo) to X', 

\\v(t)\\x> = 1- Proposition 2.1 has the following corollary. 

Corollary 2.3. Suppose that for every u EU, the following two conditions 

are satisfied: 

(i) limsup ||ii(£)||x < oo; 
t—»oo 

(ii) liminf ||u(£)||x = 0 implies lim ||u(t)||x = 0. 

t—*oo t—>oo 

T/ien 

codim \ u e U : lim ||it ( i) | |x = 0 \ < k 
«/ and on/y i/, for allu1,- • -,uk eU, 

lim lltx1 A • • • Auk (t)\\.k v = 0. 
t—»oo "A A 

7n particular, conditions (i) and (ii) are satisfied if, for every u € U, 
lim | |K(£) | | X < oo exists. 

Consider X, a vector space of real-valued functions on f l The following 

table gives examples of the norms ||«(i)|lx a n d IK A * * * A w* (*)||A*je i n 
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h(t)\\x 

1 / \u(t,x)\pdx J 

sup \u(t, x)\ 
xeQ 

fekwrY 
sup \ui(t)\ 

i 

llwlA---Au fc(*)||Afex 

(— / |det [v? (t, Xi)] f dxi • 

sup |det [uj (t,Xi)]\ 

(EKWY 
supi<"**(*)i 

••dxk\ 

Table 2.1: Norms of fcth exterior products 

Corollary 2.3 for a set U of functions t \-+ u (£) in this space. In the first two 

examples Q is a measurable set in M.n and in the last two examples O, is a 

subset of the set N of natural numbers. In each case, it is assumed that X 

is the space of functions for which the expression defining the norm is finite. 

Notation in the last two examples is denned in Section 1.1.2. 

The examples may be related, for example, through an orthonormal basis 

{e*} with respect to an inner product (u,v) = fnuv and 

u(t,x) ~ ^ ^ ( ^ e ^ x ) , 
i 

Ui (t) = u (£, x) el (x) dx 
Jn 

and,then 

ul A • • • A uk (t, xu • • -, xk) ~ J2 < " 4 (*) e*1 A • • • A eik (xu •••,xk). 
(0 

Remark 2.2. When X is a Hilbert space and p = 2, the second and fourth 
lines in the table above give the same condition in Corollary 2.3. 

2.1.3 Differential Equations 

In Remark 2.1, Condition L is discussed in the context of the solution 

space U of a linear differential equation. This discussion is continued with 
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applications of Proposition 2.1 to estimation of the codimension of the 

asymptotically stable subspace UQ. 

Theorem 2.4. Suppose that X is a normed space and that the differential 

equation 
du . . 

has a solution space U that satisfies, ifusU, 

(i) lira sup \\u(t)\\x < oo; 
t—>oo 

(ii) liminf | |u(t) | |x = 0 implies lim ||w(£)llx = 0. 
t—*oo 

Then 

codim \ u E U : lim \\u (t) \\x = 0 \ < k 
I t—»00 J 

if and only if all solutions w = ul A • • • A uk, u% G U, of the kth compound 

equation 
d^- = A^{t)w 

satisfy 

lira\\w(t)\\Akx = 0. 

Remark 2.3. In particular conditions (i) and (ii) of Theorem 2.4 are satisfied 

if, for every u £ U, lim \\u (t) \\x < oo exists or if the equation ^ = A (t) u is 

uniformly stable. The finite dimensional results discussed in the introduction 

to this chapter are all special cases of Theorem 2.4. 

Consider a scalar reaction diffusion equation 

dii 

- = (A + A(t))u, u(-)€Hl
0(0,l), (2.12) 

where the linear operator A(t) has the pointwise representation 

(x,A(t)u) = a(t,x)u(x). 

In Example 1.5 of Section 1.3, two representations of the kth compound 

differential equation of (2.12) are considered. 
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Case 1: The pointwise representation of the kth. compound differential 

equation of (2.12) on /\fc H&(0,1) is 

k k 

wt = Y^ w*m + Yl °(*> xi)w- (2-13) 

Case 2: The basis representation of the &th compound differential equation 

of (2.12) on A fe#o(0>l)is 

W{Tlk) = (Xh + --- + K+ Oiiii (*) + • • • + aikik (*)) ™(h~ik) 

where (e*1 A • • • A eifc, w(t)) := W(i)(t) — W(i1...ik)(t), ej(x) = y/2sinJTvx, 

Xj — —(J7r)2 and a^ = a^ — (e\ ae J) . 

To compare different choices of the functional in X', Theorem 2.4 implies 

the following two corollaries. Corollary 2.5 discusses the problem in L2 (0,1), 

\\u\\2
L2 = J0 u(t,xf dx, while Corollary 2.6 considers the l^ norm, IHI^ = 

sup|uj(£)|. 

Corollary 2.5. Suppose that there exists a constant M such that 

I Ai +maxa(T,x) dr<M, 0<s<t<oo, (2.15) 
Js L x J 

where the maximum is taken over 0 < x < 1 and Xj = — (j7r)2, j = 1,2, • • • . 

Then 

codiml u(-) satisfies (2.12) and lim ^ ( i ) ! ^ = 0 \ < k 

/*°° r 
/ Ai -\ \-Xk + k max a(t,x) dt = — oo. (2.16) 

Jo L x J 

Corollary 2.6. Suppose that there exists a constant M such that 

,(T)\\ dr<M, 0<s<t<oo, (2.17) / sup I Xi + Ojj(r) + V ] |a: 
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where ay = a^ = (e*, aej) and Xj = -(J7r)2, j = 1,2, • • • . T/ien 

corfim \ u(-) satisfies (2.12) and lim \\u (t)\\ = 0 \ < k 

/•oo 

/ sup^ 
./O (J) 

fc ^ 

E (Ai. + fli8is(r)) + J2 (Kj(T)\ + ••• + Ki(T)\) > dr = —oo 

(2.18) 

where (i) = (ii, • • -,ik), h < ii < • • • < %k-

Remark 2.4. In Corollary 2.5, condition (2.15) implies that the reaction 

diffusion equation (2.12) is uniformly stable in L2(0,1) by considering |H|L2 

as a Lyapunov function. The asymptotic stability of the kth. compound 

differential equation (2.13) in /\k L2(0,1) is obtained from condition (2.16) by 

considering ||w|L*L2- Similar arguments using conditions (2.17) and (2.18) 

with IHI^ and I M I A * ^ prove Corollary 2.6 respectively. 

2.2 Dimension Problems for Steady State 
Solutions 

This section derives results on the stability of steady state solutions of 

differential equations. For an autonomous ordinary differential equation 

flit 
a-g = /(«), u(-) e Rn, 

a necessary and sufficient condition for an equilibrium u = u* to be stable 

hyperbolic is that the linear variational equation at u = u*, 

dv df 
Tt = Tu^ ^ 

is uniformly asymptotically stable. General results on the stability of steady 

state solutions of differential equation in Banach space can be found in 

Smoller [103], Theorem 11.20, page 120 and Henry [42], Theorem 5.1.1, page 

98. 

Let A be a sectorial operator in a Banach space X and / be continuously 

differentiable from X01 into X where 0 < a < 1. Let V(A) denote the domain 
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of A. Consider an autonomous differential equation 

^+Au = f(u), u(-)eX. (2.19) 

Equation (2.19) has been discussed in Henry [42]. Definitions and properties 

of sectorial operators and the space Xa are listed in Appendix B. 

Definition 2.1. A solution of the initial value problem 

du . . 
Tt+Au = f(u), 

u(0) = u0, 

on (0,T) is a continuous function u : [0, T) —>• X such that tt(0) = UQ and 

on (0,T), (t,u(t)) E l x Xa,u(t) E V(A),^(t) exists and the differential 

equation (3.1) is satisfied on (0, T). 

Lemma 2.7. Assume that A is a sectorial operator, 0 < a < 1, and i/iai 

/ : Xa —> X is locally Lipschitz continuous in u. Then for any Ua € X01, 

there exists T = T(u0) > 0 such that (3.1) has a unique solution u on (0, T) 

with initial value u(0) = UQ. 

Definition 2.2. A solution is a steady state solution or (an equilibrium) if 

u = u* e T>(A) and Au* = f(u*). The steady state solution u* is stable 

hyperbolic if the spectrum of A - ^(u*) lies in {ReA > 0) for some (3 > 0. 

Theorem 2.8. A steady state solution u* is stable hyperbolic if and only if 

the linear variational equation at u(t) = u*, 

| + A » = ^ H . , (2.20) 

is uniformly asymptotically stable. 

Remark 2.5. Definition 2.2 is equivalent to Definition 11.19 in Smoller 

[103], page 120. Theorem 11.20 in Smoller [103], page 120, shows that the 

hyperbolic stability of u* is equivalent to the uniform asymptotic stability of 

(2.20). Theorem 5.1.1 in Henry [42] proves that if / = f(t,u), then u = u* 
is stable hyperbolic if 

dv . „ 
— + Av = Bv 
dt 
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is uniformly asymptotically stable where B is a bounded linear operator from 

Xa to X such that 

f(t,u* + z) = f(t,um) + Bz + g(t,z) 

and | |#(M)|| = o(\\z\\a) as ||jz||a -> 0. 

The effect of adding diffusion to the dynamics of an ordinary differential 

equation in Rn has been studied by [16, 17, 57, 62, 63, 81, 83, 85, 103, 105]. 

Turing [105] is the first to demonstrate that different diffusion coefficients can 

cause a stable equilibrium of the ordinary differential equation to cease to be 

stable for the reaction diffusion equation. The diffusion-driven instability has 

become an important mechanism for the occurrence of interesting patterns 

in many model systems. Turing's idea has been explored by many authors; 

see [17, 81, 83, 85]. With the help of compound matrices, for a stable 

matrix A with real entries, Wang and Li [57] derive sufficient and necessary 

conditions for A - D to be stable for any nonnegative diagonal matrix D. 

These conditions can be used to study the stability and instability of constant 

steady state solutions to reaction diffusion equations. 

In the following, the stability of steady state solutions of scalar reaction 

diffusion equations is studied. Theorem 2.4 gives an estimate of the 

codimension of the asymptotically stable solution subspace, which is related 

to the stability of a compound differential equation. Rather than use 

Theorem 2.4 directly, estimates on the spectrum of an operator A from the 

spectrum of its compound A^ are derived. 

Consider a nonlinear scalar reaction diffusion equation 

Ut = uxx + f(x, u), a<x<b, t > 0, . . 
u(t,a) = u(t,b) = 0, t>0. [ > 

Assume that (2.21) generates a semiflow on Hl(a,b) and that u(t,x) exists 

for all t. Suppose that u = u*(x) is a steady state solution of (2.21). The 

linear variational equation at u = u*(x) is 

vt = vxx + q(x)v, a<x<b, t > 0, . . 
v(t,a)=v(t,b) = 0, t>0, yL-ll) 

where 
q(x):--=fu(x,u*(x)). (2.23) 
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Assume that (2.22) also generates a semiflow on Hl(a,b) and that v(t,x) 

exists for all t. Theorem 2.8 states that the steady state solution u — u*(x) of 

(2.21) is stable hyperbolic if the linear variational equation (2.22) is uniformly 

asymptotically stable and thus, if the eigenvalues of the following eigenvalue 

problem 
\4> = <j)" + q(x)(f), , . 

(̂a) = m = o, v-M) 

satisfy A < 0, the steady state solution u = u*(x) is stable hyperbolic. The 

eigenvalue problem (2.24) is a Sturm-Liouville boundary value problem; see 

Hartman [41], page 337-344 for details. 

Let L(f) = <fi" + q(x)(j). Then L is a self-adjoint operator on Hi (a, b). The 

standard analysis in [2, 20, 21, 103] on the eigenvalue problem of a self-adjoint 

second order differential equation implies that the principal eigenvalue of 

(2.24) is 

A 1 =sup / L(0')2 + #21 I f <$ 

rb where the supremum is taken over the functions <j> e Hl(a, b) with f 4>2 ^ 0 

and the maximizing function <f>\ is the corresponding eigenfunction. In 

particular, if \i\ > \X2 > ••• and e\,e2,--- are the eigenvalues and 

orthonormal eigenfunctions of the Laplacian in Hi (a,b), 

Ml=sup f-M2/ [b<P=-f(etf-
(j>GHg Ja I J a J a 

f" 2 
Mi + / <Z ( e i ) < Ai < /i i + m a x q (x). 

Ja a<x<b 

Since L is self-adjoint, the fcth additive compound operator L ^ of L is 

also self-adjoint on f\ Hl(a,b). Let Ai > A2 > • • • be the eigenvalues of L, 

counting multiplicities, and (f>i,<f>2, • • • be the corresponding eigenfunctions. 

Then {4>h A • • • A <pik : 1 < i\ < • • • < ik} forms a basis of f\k Hi (a, b) and 

the principal eigenvalue of L^ is Ai -I 1- Afc satisfying 

Therefore 

Ai + --- + Afc= sup / y2[-(wXi)
2 + q(Xi)w2] If 

weAkHiJ(a,b)k~T{ I J (a, 
w2 

b)k 
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where the supremum is taken over the functions w e /\ Hl(a,b) with 

/(o,6)* w2 ^ °- T h e r e f o r e 

Mi + • • • + Mfc + / V)q fa) (ei A • • • A ekf / (d A • • • A ekf 

< AH h Afc < Mi H \- Mfc + k max q (x). 
x 

It follows from 

C ' t = (ei 1A---Ae i p ,e j lA---Ae j p) 

= -r / tei A • • • A e j (e^ A • • • A ejr), 

where r > 1, that 

f (ei A • • • A efc)
2 = fc! (2.25) 

and 

/ £g (a r i ) ( e iA- - -Ae f c ) 2 = fc!]£ / g(e»)2 

J(^b)k
 i = 1 j = i "'a 

which implies the following proposition. 

Proposit ion 2.9. Let Hi > M2 > ••• and ei ,e2 ,--- &e i/ie eigenvalues 

and orthonormal eigenfunctions of the Laplacian in Hl(a,b). Then the 

eigenvalues Ai > A2 > • • • of the eigenvalue problem (2.24) satisfy 

k rb 

i(e,)2 

(2.26) 
Mi H + Mfc + X ) / q ^ 

< AH 1- Afc < M H h Mfe + ^ m a x 9 (^) • 
a<x<h 

Remark 2.6. The inequalities (2.26) are sharp in the sense that both can be 

replaced by equality when q{x) is a constant. The above techniques can be 

applied to a more general eigenvalue problem, for example, 

\<t> = A<j) + a(x)<f>, 

with homogeneous boundary conditions on dCl, 

du 
u(dQ) = 0, or — + b(x)u = 0, 

an 
where A is the Laplacian on Q, a is bounded and b is a piecewise continuous 

function on dCl. Here fi is a bounded domain of Rn and <9£7 is smooth. 
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The estimates obtained in Proposition 2.9 on the eigenvalues for the regular 

Sturm-Liouville boundary value problem (2.24) may be of independent 

interest and a particular case is noted separately in the following proposition 

with a = 0, b — 1. In this case, Hj == -(J7r)2, e,- = \f2 sin(j7ra;), j == 1,2,--- . 

Proposition 2.10. The eigenvalues Ai > A2 > • • • of the Sturm-Liouville 

boundary value problem 
X(f> = <j>" + q(x)<f>, 
<K0) = 4>{\) = o, 

satisfy 

1 k pi 
—^k(k + l)(2fc + l)?r2 + 2 V / g(x) sin2(j7rx) dx 

» - ; " (2.27, 

< J ^ Aj < -^A:(fc + 1)(2A; + 1)TT2 + A; max q (x). 

Stability of the steady state solution u = u* of the scalar reaction diffusion 

equation (2.21) follows from Theorem 2.8 and Proposition 2.9. 

Corollary 2.11. / / 

Hi + max q(x) < 0, (2.28) 
a<x<b 

then u = u*(x) is stable hyperbolic. 

Corollary 2.12. / / 

Hi-\ \- Hk + k max q(x) < 0, (2.29) 
a<x<6 

then u = u*(x) has a stable manifold with codimension at most k — 1. 

The above procedure also applies to a more general reaction diffusion 

equation ut — uxx + f(x,u,ux). However, the eigenvalue problems of its 

linear variational equation and compound differential equations need to be 

transformed to the self-adjoint form. An example of / = f(u, ux) is explained 

as follows. 

Example 2.1. Consider a scalar reaction diffusion equation 

ut = uxx + u + eu(l - u2 - ux), 0 < x < 2ir, t > 0, , , 
u(t,0) = u(t,2n), ux(t,0) = ux(t,2ir), t > 0. <• ' 
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When e > 0, since 

\d_ ^ 
2dt f 

Jo 

u dx 
/•27T 

/ Utudx 
Jo 

[~u2
x + (1 + e)u2 - e(w4 + u2

xu
2)]dx 

< (1 + e) / u2 

Jo 

and 

1 d f2* o , f2* 

2JtJ0
 U*dX = -J0 ^ 

= / [-̂ L + ̂  + eK + ̂  + ^ K J ^ 
JO 

-u2
xx + (1 + e ) < - e [ 3u2u2

x + -f 

< 
/•27T 

(1 + e ) / ' 
Jo 

uldx, 

the solution it(t,ar) of (2.30) exists in X = {u e /^(O^Tr) : w(°) = 

it(27r), « X (0 ) = wx(27r)} for all t > 0. Each solution of (2.30) can be written 
<x> 

as u(t, x) = a0(t) + J2(cij(t) cos(jx) + bj(t) sin(jx)). It can be shown that the 

subspaces Si — span{l} and S^ = span{cos(x),sin(a;)} are invariant with 

respect to (2.30). In fact, if u = a0(t) + ai{t) cos(x) + bi(t) sin(:r), then 

a'0(t) + a[(t) cos(a;) + b[(t) sin(a;) 
= —ai(t) cos(x) — bi(t) sin(x) + a0(i) + ai(i) cos(rc) + bi{t) sin(x) 

+e(a0(i) + ai(£) cos(:r) + &i(£) sin(x)) 
•(1 - a?0(t) - a\{t) - b2(t) - 2a0(t)ai(t) cos(:c) - 2aQ{t)b1{t) sin(x)). 

Thus, if « = ao(t), then 

ao = a 0 + £ a 0 ( l - a o ) ; 

if u — a,i(t) cos(rc) + bi(t) sin (a;), then 
a[ = ea^l-aj-bj), . . 
6i = eax{\-a\-b\). [Z-6i) 

When e > 0, the reaction diffusion equation (2.30) has steady states solutions 

u — 0, it = ±J ^f- and it = cos(x + a), where a e l . The stability of these 
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|3 

Figure 2.1: Stability of steady state solutions in the invariant subspace Si 
and 52. 

three steady state solutions in the invariant space S\ and S2 is illustrated by 

Figure 2.1. 

In the following the stability of these steady states solutions in the whole 

space X will be studied. 

Steady state Solution u = 0: 

The linear variational equation at u = 0 is 

vt = vxx + (1 + e)v, 0<X<2TT, t > 0, 

v(t,0)=v(t,2ir), vx(t,0) = vx(t,2ir), t>0 

and its eigenvalue problem is 

A0 = 0" + (l + e)</>, 
0(0) = 0(2*), 0'(O) = 0'(2TT), ^ ^ J 

for some A, which has eigenvalues 

Ai = 1 + e > 0, A2 = A3 = e > 0, A4 = A5 = - 2 2 + 1 + e, 

and corresponding eigenfunctions 

0! = 1, 02 = cos(x), 03 = sin(x), 04 = cos(2:r), 05 = sin(2:c), ••• , 

respectively. 
Case 1: n2 - 1 < e < (n + l ) 2 - 1, n > 2 

« = 0 has a (2n + l)-dimensional unstable manifold and a stable manifold 
with codimension (2n + 1). 
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Case 2: e = n2 - 1, n > 2 

it = 0 has a (2n+l)-dimensionaI unstable manifold, a 2-dimensional center 

manifold, a stable manifold with codimension (2n + 3). 

Steady state solution it = iw- 1 -^ : 

The linear variational equation at u = ±W ±±£ is 

w* = wra - 2(1 + e)v, 0 < x < 27T, i > 0, 
u(t,0)=u(t,27r), ua(t,0) = ua(t,27r), « > 0 

and its eigenvalue problem is 

A0 = </>" - 2(1 + e)4>, 
0(0) = 0(2TT), 0'(O) = 0'(27r), 

for some A, which has eigenvalues 

A1 = - 2 ( l + e ) < 0 , A2 = A3 = - l - 2 ( l + e ) < 0 , 

A4 = A5 = - 2 2 - 2(1 + e) < 0, 

and corresponding eigenfunctions 

4>i = 1) ^2 = cos(o;), 03 = sin(a;), 04 = cos(2:r), 05 = sin(2rc), 

respectively. Therefore u = ± < / ^ ~ is stable. 

(2.33) 

Steady state solution u = cos(x + a): 

Only the case u — cos(x) will be discussed and other cases are similar. 

The linear variational equation at u = cos(x) is 

vt = vxx + e sin(2x)t;a; + (1 — e — e cos(2x))u, 0 < x < 2w, t>0, 
v(t,0) = v(t,2ir), vx(t,0) = vx(t,2ir), t>0 

and its eigenvalue problem is 

A0 = 4>" + e sin(2x)0' + {l-e-e cos{2x))<j), 
0(0) = ^(2TT), 0'(O) = ^(2TT), 

for some A, which has solutions 

0i = sin(:c), when Ax = 0, 

(2.34) 

(2.35) 
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and ^ = cm(x), when A2 = - 2 e < 0. 

Rewrite (2.35) as a self-adjoint second order differential equation 

14 - \jHf> = fa//)' + q<i>- \p<l> = 0, (2.36) 

with periodic boundary condition, where 

p(x) = exp ( —- cos(2a;) J > 0, q(x) = (1 — e — ecos(2a;))p(x). 

Then the first principal eigenvalue Ap of (2.36), and thus of (2.35), is given 

by 
/•27T / />27T 

\ = sup / [~p(^)2 + # 2 ] / / V<? (2-37) 
<t>eHierJo I Jo 

where the supremum is taken over <f> 6 #^,,.(0,27r) — {0 6 L2(0,2%) : 

<f>' € L2(0,27r),^(0) = 0(2TT), 0'(O) = (f>'(2n)} with J ^ p ^ 2 ^ 0. Subst i tute 

6 = }•— into the right-hand side of (2.37) t o obtain 

£2 

A p > l - e - — . 

Moreover, 

A p < l . 

For e > 0, 1 - e - f = 0 when e = 2 ( ^ 6 - 2) « 0.898979 (see Figure 2.2). If 

0 < e < 2 ( \ /6 - 2) ?s 0.898979, then Ap > 0 and thus Ai, A2 and Ap are three 

different eigenvalues of (2.36). 

If vl,v2, v3, v4 are solutions of (2.34), then w(t) = (v1 A v2 A v3 A i>4)(£) € 

f\4 X has a pointwise representation 

w (t, xi,x2,xs,x4) = det [vl(t,Xj)] 

which satisfies the 4th compound differential equation of the linear variational 
equation (2.34) 

4 4 4 

wt = J2 wXiXi +eJ2 sin(2xi)wXi + 4(1 - e)w -eJ2 cos(2xi)w. (2.38) 

Consider a Lyapunov function 

V(t) = / w2 = / u;2(i,a;1,a;2,a;3,a;4)da;ida;2da;3dx4. 
^(0,27r)4 ./(0,27r)4 
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Then 

d+V 
wwt 

' ( 0 , 2 T T ) 
dt Jcn.QTr^ 

w 
' ( 0 , 2 T T ) 4 

)w2 

-L 
= \WY] wxixj + 4(1 - e)w2 - e V cos(2^) 

+ / *S~]£ sin(2x j)wwXj 

J(0,270" p f 

< (0 - l2 - l2 - 22 + 4(1 - e)) / - 2 

./« 

/• 4 

-2e / V cos(2^ + 2ct) 

< ( -2 - 4e + 2e • 4) / w2 = 2 ( -2 + 4e)V. 

Thus, for any four eigenvalues A,:i, A,2, A;3, A,4 of (2.35), by choosing w = 

^ A • • • A 4>iA where <f>is, s = 1, • • • ,4 are the corresponding eigenfunctions, it 

follows that 
Xh + Ai2 + Ai3 + Xh < - 2 + 4e. 

In particular, 

Ap + Ai + A2 + A3 < - 2 + 4s. 

Therefore, 

A 3 < - 3 + 7e + ^-. 

For e > 0, - 3 + 7e + f = 0 when e = 2(v
/202 - 14) » 0.425341 and 

l - e - ^ = - 3 + 7£ + y when e = 2(13\/2 - 18) « 0.769553 (See Figure 

2.2). 

Corollary 2.13. / / 0 < e < 2(\/202 - 14), then u = cos(:r) Acs a 1-

dimensional center manifold, a 1-dimensional unstable manifold and a stable 

manifold with codimension 2. 

Corollary 2.14. //2(^/202 - 14) < e < 2 (13^2-18) , then u = cos(x) has 

a stable manifold with codimension at most 3. 
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1.5 2.0 -'-0 "0.5 ' 0.5 1,0 l.S 2.0 

/0.5 !>-.-„ 1 

V 

Figure 2.2: Graphs ofj/ = l - e - ^ - and y = - 3 + 7e + ^-. 



Chapter 3 

On Poincare's Stability 
Criterion for Periodic Orbits 

This chapter deals with the stability of periodic solutions of differential 

equations. A fundamental result on this topic is that a nonconstant periodic 

solution is orbitally asymptotically stable with asymptotic phase if, with the 

exception of a single characteristic multiplier which equals 1, the moduli of 

all characteristic multipliers of the periodic solution are less than 1. For a 

2-dimensional autonomous ordinary differential equation, this is equivalent 

to Poincare's stability criterion: a nonconstant u>-periodic solution u = <j>(t) 

of 

f = / («) , < ) € M 2 , 

is orbitally asymptotically stable with asymptotic phase if 

div f{<f)(t))dt < 0. 

This is the requirement that the Liouville equation 

^ = div /(«&(*))«, 

be uniformly asymptotically stable, which means that 2-dimensional areas 

near the orbit of <j>{t) decrease exponentially under the flow of the differential 

equation and, as a consequence, nearby orbits are attracted to the orbit of 

</>(t). 

A higher dimensional generalization of Poincare's stability criterion is 

obtained by Muldowney [78]: a nonconstant w-periodic solution u = <f>(t) 

I 

47 
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of 

^ = /(«), «(-)€RB , 

is orbitally asymptotically stable with asymptotic phase if 

is uniformly asymptotically stable. This equation is called the second 

compound differential equation of the linear variational equation 

dv df , ,,,.. 

which reduces to the Liouville equation when n = 2. The uniform asymptotic 

stability of the second compound differential equation means that, under the 

flow of the nonlinear equation, 2-dimensional areas near the orbit of tp(t) 

diminish exponentially, which is the reason that the characteristic multipliers 

of the periodic solution </>(£), with the exception of a single characteristic 

multiplier which equals one, all have moduli less than 1. 

When, with the exception of a single characteristic multiplier which equals 

1, the characteristic multipliers have moduli less than 1, the periodic solution 

is said to be stable hyperbolic. It was shown by Muldowney [78] that the 

periodic solution is stable hyperbolic if and only if the second compound 

differential equation is uniformly asymptotically stable. 

In this chapter the property of the diminishing area being a sufficient 

condition for a nonconstant periodic solution to be stable hyperbolic is 

extended to autonomous differential equations in general Banach spaces 

X with particular applications to reaction diffusion equations. As in the 

finite dimensional situation, this property is characterized by the asymptotic 

stability of an associated compound differential equation. This allows the 

possibility of applying standard asymptotic stability techniques such as 

Lyapunov theory to the difficult problem of estimation of the characteristic 

multipliers. 

3.1 Orbital Stability of Periodic Solutions 

The following notation, definitions, and lemmas are taken from Henry [42], 

page 53-54, page 197-202 and page 247-261. 
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Let A be a sectorial operator in a Banach space X and / be continuously 

differentiable from Xa into X where 0 < a < 1. Let V(A) denote the domain 

of A. Consider an autonomous differential equation 

^ + Au=-f(u), u(-)eX. (3.1) 

In the following, let u(t) = u(t,u0) denote the solution of (3.1) with initial 

value u(0) = UQ. A nonconstant periodic solution of the autonomous 

differential equation (3.1) is u — 4>(t) if there exists a least LO > 0 such 

that (f>(t + w) = cf)(t). Let 7 = {<fi(t),Q < t < u} denote the orbit of the 

^-periodic solution (j>(t). 

Definition 3.1. An u;-periodic solution </»(*) of (3.1) is said to be orbitally 

stable if the orbit 7 is stable, that is if for any neighbourhood U of 7, there 

exists a neighbourhood AT of 7 such that u0 G N implies that the solution 

of (3.1) u(t,uo) e U for all t > 0. An w-periodic solution cf>(t) is said to 

be orbitally asymptotically stable if the orbit 7 is asymptotically stable, that 

is, the orbit 7 is stable and there exists a 5 such that distxa(uo,</>(0)) < 6 

implies that distx«(n(i, u0),(f>(t)) —>• 0 as t —• 00. An w-periodic solution <f>(t) 

is said to be orbitally asymptotically stable with asymptotic phase if there exist 

M,p,/3>0 such that 

dis t x4«o,7} == mm ||tt„ - <j>(t)\\a < p 
0<t<p 

implies that there exists a real constant h = h(u0) such that the solution 

u(t,Uo) of (3.1) satisfies 

\\u(t,u0) - ct>{t - h)\\a < Me-&\ for t > 0. 

An w-periodic solution <f>(t) of (3.1) is orbitally unstable if it is not orbitally 
stable. 

The linear variational equation of (3.1) at the solution <f>(t) is 

dv d f 
-+Av = JLm)v, (3.2) 

whose solutions satisfy 

v(t) = T(t,s)v(s), t>s, 

where T(t,s) is the evolution operator generated by (3.2). 
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Definition 3.2. The period map of (3.2) is 

U{t) = T(t + u,t). (3.3) 

The nonzero eigenvalues of U(t) are called characteristic multipliers of the 

periodic solution 4>{t) or characteristic multipliers of the linear variational 

equation (3.2). 

Remark 3.1. For an ordinary differential equation, this map is called the 

monodromy matrix, whose eigenvalues are also the eigenvalues of the Jacobian 

matrix of the Poincare map. 

Lemma 3.1. U(t + ui) = U(t) for all t. The characteristic multipliers are 

independent oft, that is, the nonzero eigenvalues ofU(t) coincide with those 

ofU(s). In fact, a(U(t))\{0} is independent oft. If A has compact resolvent, 

then U(t) is compact and a(U(t))\{0} consists entirely of characteristic 

multipliers. 

Lemma 3.2. Suppose that o~i is a spectral subset of a(U(t)) for all t; the 

usual case is when o\ is a finite collection of isolated eigenvalues or the 

complement of such a set. Then for each t, the space X may be decomposed 

as X — X\(t) © X^it), the direct sum of closed subspaces invariant under 

U{t), (r(U(t)\Xl(t)) = <Ti,<T(U(t)\Xa(t)) = <7(£/(t))Vn. Ift > s,T(t,s) maps 

Xi(s) into Xi(t), and is a one-to-one map onto X\(t) ifO$ o~\. 

Let e ^ = sup{|A|, A e CTI}. Then for each e > 0, there exists M£ > 0 such 
that 

\\T(t,s)u\\ < M^+^-^WuW 

for t > s and u € X\(s). 

Suppose 0 g CTI and let eau = inf{|A|,A e a{\ > 0. Then T(t,s)u,u € 

Xi(s), may be defined also for t < s, and for small e > 0, there exists 

M£ > 0 such that 

\\T(t,s)u\\ < Mse
(a-e)(t-^\\u\\ 

for t < s and u € Xx(s). 

Assume that <fi(t) is a nonconstant w-periodic solution of (3.1). Let S be 

a C1 manifold (in Xa) of codimension 1 such that <£(0) G S and ^ (0) is not 
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tangent to S at (f)(0). For £ 6 S near 0(io), define $(f) e 5 by 

where w(£) = a; + 0(||£ — 0(O)||Q) is chosen to ensure $(£) G 5. Let 

Definition 3.3. The map $ defined in (3.4) is called the Poincare map. 

It is shown in Henry [42], page 258-260, that $ is a well-defined Cl function 

on S near 0(0) and 

$'(0(0)) = U(0) 

where T(t,s) is the evolution operator generated by (3.2). Notice that any 

fixed point of $ yields an ^-periodic solution of (3.1). 

Without loss of generality, assume that 0(0) = 0,^(0) ^ 0 and S is 

represented near 0 in the form x = h(y) for y £ Y where Y is the tangent 

space to S at 0. Thus \\h(y) — y\\a = o(\\y\\a) as y —> 0 in Y. Now 

Xa = s p a n { ^ ( 0 ) , y } . Let PY : Xa -» Y be the projection onto Y where 

i V f ( 0 ) = 0,iV3/ = S/fors/€Y. 

If {1} is an isolated eigenvalue of f/(0) and Xa = X" © Xg is the 

corresponding decomposition with 

<r(U(0)\x?) = {1}, 

a(U(0)\xs)=a(U(0))\{l}, 

then Y = Yi@Y2 where 1} = PyXf,j = 1,2 are $'(0)-irivariant subspaces 
and 

a($'(0)|y i) C {1}, 

a(V(0)\y2)=a(U(tQ))\{l}. 

In particular, if {1} is an isolated simple eigenvalue of U(0), then Y\ — {0} 

and 1 ^ a($'(0)). If {1} is an eigenvalue of multiplicity m, then dimYi = 

m - 1. Suppose that Y2 = I5 0 Yv where 

a($'(0)|ys) = a(tf (0)) n {|A| < 1, A e a(U(0))}, 

a(V(0)\Yu) = <j(£/(0)) n {|A| > 1, A e a(C/(0))}. 

Let e#" = sup{|A|,A e ff($'(0)|y5)} and e<*" = inf{|A|,A e <r(<E>'(0)|yJ. 

Assume that either cr($'(0)|ys) or <j($'(Q)\Yu) is a finite collection of isolated 
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eigenvalues and /3 < 0, a > 0. Then Lemma 3.2 implies that there exist 

constants M, N > 0 such that 

\\T(t, 0)uo|U <: Me^\\u0\\a, for t > 0 and u0 € YS, 

and T(£, s)u, u G Yy, may be defined also for t < s, and 

\\T(t, 0)u0\\a < Ne^\\u0\\a, for t < 0 and u0 e Yv. 

Definition 3.4. The dimension of Ys is called the dimension of the (local) 

stable manifold of 4>(t). The dimension of Yu is called the dimension of 

the (local) unstable manifold of <j>{t). The dimension of spanl^^O),!^} is 

called the dimension of the (local) center manifold of (j)(t). The sum of the 

dimension of the (local) center manifold and the dimension of the (local) 

unstable manifold is called the codimension of the (local) stable manifold of 

4>(t). 

Lemma 3.3. If A has compact resolvent, then the zero solution of (3.2) is 

uniformly asymptotically stable if and only if all nonzero eigenvalues ofU(t) 

have moduli less than 1. 

Lemma 3.4. Let f be continuously differentiate from Xa into X in a 

neighbourhood of a nonconstant periodic solution (j>(t) of (3.1). Suppose that 

11-» gj((f>(t)) e J>?(Xa,X) is Holder continuous. Then the linear variational 

equation dv a / 

has 1 as a characteristic multiplier. 

Lemma 3.5. Suppose that the assumptions in Lemma 3.4 are satisfied. If 

a(U(t))n{\\\ > 1} is a nonempty spectral set, then <j>(t) is orbitally unstable. 

Lemma 3.6. Suppose that the assumptions in Lemma 3.4 are satisfied. If 

1 is an isolated simple characteristic multiplier of the periodic solution <j>(t), 

and the remainder of the spectrum lies in {|A| < e_/3w} for some j3 > 0, then 

4>{t) is orbitally asymptotically stable with asymptotic phase. 

These theoretical results from Henry [42] furnish a context in which 

the compound differential equation approach to orbital stability may be 
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developed. The next theorem uses the compound differential equation 

introduced in Chapter 1 to provide a sufficient condition for the remainder 

of the spectrum of the period map lying in {|A| < e_/3a;} for some (3 > 0. 

Theorem 3.7. Suppose that <j>(t) is a nonconstant u-periodic solution of 

(3.1). If the second compound differential equation 

dw ,[2l df^,,,.ss 

it+Ai]w=iu w»w 

of the linear variational equation (3.2) is uniformly asymptotically stable in 

/ \ Xa, then <fi(t) is orbitally asymptotically stable with asymptotic phase. 

Theorem 3.7 will follow from Theorem 4.12 in Section 4.2. No proof is 

given here. A particular case when A has compact resolvent is discussed in 

detail as follows. 

Theorem 3.8. Suppose that A has compact resolvent and <j>(t) is a 

nonconstant u-periodic solution of (3.1). / / the kth compound differential 

equation 

of the linear variational equation (3.2) is uniformly asymptotically stable in 

f\ Xa, then at most k — 2 characteristic multipliers of the periodic solution 

(f)(t) have moduli greater than or equal to 1. 

Proof. Let T(t,s) be the evolution operator generated by the linear 

variational equation 
dv . d f, ,, .. 

Let U(t) — T(t + u,t) denote the period map. Since <f>(t) is a nonconstant 

w-periodic solution of (3.1), Lemma 3.4 implies that one of the characteristic 

multipliers of the periodic solution 4>{t) is 1. From Section 1.3, w(i) = 

TW(t,s)w{s) is a solution of (3.5), and thus the period map of (3.5) is 

U(k)(t) = T(k)(t + uj,t). Since (3.5) is uniformly asymptotically stable and 

A has compact resolvent, Lemma 3.3 implies that the nonzero eigenvalues 

of C/W(t) have moduli loss than 1. Let {\} be the eigenvalues, counting 

multiplicities, of U(t). Then all possible products of k eigenvalues of U{t) 

in the form A^A^ • • • Xik,ix < i2 < ••• < ik, counting multiplicities, are the 
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eigenvalues of U^(t). Since one of the characteristic multipliers of <j>(t) is 1, 

it can be concluded that at most k — 2 characteristic multipliers of ${t) have 

moduli greater than or equal to 1. • 

Definition 3.5. A periodic solution is stable hyperbolic if, with the exception 

of a single characteristic multiplier which equals 1, the moduli of the 

characteristic multipliers of the periodic solution are less than 1. 

Corollary 3.9. Sup-pose that A has compact resolvent and <j>(t) is a 

nonconstant periodic solution of (3.1). If <j)(t) is stable hyperbolic, then <j>(t) 

is orbitally asymptotically stable with asymptotic phase. 

Corollary 3.10. Suppose that A has compact resolvent and (j>(t) is a 

nonconstant uj-periodic solution of (3.1). Then <f>(t) is stable hyperbolic if 

the second compound differential equation 

^ + Amw^£\m)a (M) 
of the linear variational equation (3.2) is uniformly asymptotically stable in 
f\2Xa. 

Remark 3.2. Let U(t) be the periodic map of the linear variational equation 

of (3.1) at the solution <fi(t) 

dv o f 
- + Av = JL(<Kt))v. (3.7) 

Suppose that {Aj} are the eigenvalues, counting multiplicities, of U(t). If the 

corresponding eigenfunctions of U(t) form a basis of X, then the eigenvalues 

of U(k\t), counting multiplicities, are given by all possible products of k 

eigenvalues of U(t) in the form XhXi2 • • • \ik,ix < i2 < ••• < ik. In this 

case, the uniform asymptotic stability of the second compound differential 

equation (3.5) is equivalent to the hyperbolic stability of the periodic solution 

Remark 3.3. The finite linear combinations of expression of the form v1 A v2 

are solutions of the second compound differential equation (3.6), where 

v\ i = l,2 are solutions of the linear variational equation (3.7) of (3.1) at the 
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solution cf>(t). If the second compound differential equation (3.6) is uniformly 

asymptotically stable in f\2 Xa, then there exists a a > 0, such that 

IK*1 Av2)(w)\\Axa <e~™Mv1
 AV2)(0)\\AX°. (3-8) 

Hence 

||C/^(0)(^ A ̂ 2 ) (0 ) | | A ^ < IKr;1 A V
2 ) ( 0 ) | | A ^ , 

where U^2\t) is defined in the proof of Theorem 3.8. Let {A,} be the 

eigenvalues, counting multiplicities, of U(0). Then all possible products of 

two eigenvalues of U(0) in the form A^A^ii < i%, counting multiplicities, 

are the eigenvalues of U^(0). Since one of the characteristic multipliers of 

4>{t) is 1, it can be concluded from that (3.8) that all the other characteristic 

multipliers of 0(£) have moduli less than 1 and thus </>(£) is stable hyperbolic. 

3.2 Reaction Diffusion Systems 

In this section, Corollary 3.10 is applied to study the stability of periodic 

solutions of reaction diffusion systems. 

Let Q, C W1 be a bounded domain with smooth boundary and D = 

diag(di, • • • ,dn), di>0. Let / : fi xK™ —> Mn be locally Lipschitz continuous 

in u, uniformly in x. Suppose that 4>(t, x) is an w-periodic solution of 

— = DAu + f(x,u), (3.9) 

with Dirichlet boundary condition 

u\m = 0, (3.10) 

or Neumann boundary condition 

= 0, (3.11) 
du 
dn da 

or a more general boundary condition of the form 

Bu\m = 0. (3.12) 

In the following, the case with Dirichlet boundary condition is discussed 

and similar arguments can be applied to other boundary conditions. Let 
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X = L2(Q,,Rn) and A : T>(A) C X -+ X be the linear unbounded operator 

Au = —Au, where 

£>(A) = {u e # 2 (n ,R n ) , u| a n = 0} . 

The initial value problem of (3.9) is well-posed in Xa, 0 < a < 1. The linear 

variational equation of (3.9) at u — <f>(t, x) is 

dv 0 f 
^ = DAv + JL(x,<Kt,x))v, ( 3 1 3 ) 

v\aa = °-

Let A,, i = 1,2, • • • be the eigenvalues of the Laplace equation 

Au = -XiU, (3.14) 

with Dirichlet boundary condition (3.10) and e1, e2, • • • be its corresponding 

orthonormal eigenfunctions. It is assumed that 0 < Ai < A2 < • • • . 

Remark 3.4. If <f>(t,x) is an w-periodic solution of (3.9) with Neumann 

boundary condition, then 0 = Ai < A2 < A3 < • • • is assumed. For other 

boundary conditions, Â  are the eigenvalues of the Laplace equation (3.14) 

and Ax < A2 < A3 < • • • is assumed. 

Let vi = (v[,vi,---,vil)
T €z Xa,i = 1,2 be solutions of (3.13) 

and f(x,u) = (fi(x,u),f2(x,u),---,fn(x,u))T. In the following, two 

representations of the second compound differential equation of (3.13) are 

discussed. 

Case 1: A pointwise representation of the second compound differential 

equation of (3.13) 

For u £ Xa, x € fi, i = 1, • • • ,n, define a linear functional (i,x) : u 1-+ 

{(i,x),u) = Ui(x). Then (3.13) can be written as 

Q n 

dt 

where 
Of. 

o-jk(t,x) = -^-(x,<f>(t,x)). 
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For w(t) e /\2Xa, x\,x2 6 f i , i, j = 1, • • • ,n, a pointwise representation of 

w(t) is 

{(i,Xi) A (j,x2),w{t)) := iu„(t,:ci,£2) 

and a pointwise representation of the operator I DA + -̂— I is 
duj 

df\m N 

( i ,xi)A(i ,x 2) , (Z)A + ^ J w 

= diAiWij(t, x1; x2) + djA2wij + (au(t, x{) + a,jj(t, x2))wij (t, xi, x2) 

+ Yl ^(t, xi)wkj + ] P ajk(t, x2)wik, 
k^i k^j 

where Aiiity and A2Wij are the Laplacian of Wij(xi,x2) with respect to x% 

and x2. Since Wy satisfies 

Wy (*, Xi , X 2 ) = - W j i ( t , X2 , Xi), 

there are fc + (k — 1) + (fc — 2) H f 1 = (2"1"1) different types of determinants 

that will need to be discussed. Thus a pointwise representation of the second 

compound differential equation of (3.13) in f\ Xa is 

dwi, 

dt 

dw. 

= di(Aiwu + A2Wjj) + (au(t, xi) + au(t, x2))wu 

+ Y2((kk(t, xx)wki + aik(t, x2)wik), i = 1,2, • • • n, 

(3.15) 

- = diA-LWtj + djA2Wij + (a«(i, xx) + a,j(t, x2))wij 

n. 

If v1^),!)2^) are solutions of (3.13), then 

Wij{t,xx,X2) = ((i.ari) A(;,x2),(f1 Au2)(t)) 

= det l" 1 ' '^ '^ ^ ' ^ 
[ UJ(t,X2) Uj(t,X2) 

It can be checked by differentiating the above determinant that v1^) A v2(t) 
satisfies the second compound differential equation (3.15) and the Dirichlet 
boundary conditions on vl imply that 

x i , x 2 € f i , i,j = 1,2, n. 

Wij{t,xux2)\Xi€dn = 0, wij(t,x1,x2)\ eaa = 0 
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Case 2: A basis representation of the second compound differential equation 

of (3.13) 

Let {e%{x)} be the orthonormal eigenfunctions of the Laplace equations 

(3.14) with Dirichlet boundary condition (3.10) and Aj,i = 1,2,- •• be the 

corresponding eigenvalues. Then the set of vectors {e1} is an orthonormal 

basis of Xa and {el A eJ, 1 < i < j} is an orthonormal basis of / \2 Xa. Define 

another linear map (i, eJ) : v = (vi,v2, •• • , vn) i—>• ((i, eJ), v) = Jn t>V. Then 

v(t, x) = (vi, v2, • • • , vn) = I YlCU ( ^ f a ) , • • • i J^cnj(t)e?(x) ) 

where cy := ((i, ej),v), i = 1,2, • • • , n, j = 1,2, • • • satisfies 

-^- = [-diXj + aiiitJJ^ + Y^auitJ^^k + ̂ ^aiiitJ^^ik, (3.16) 
k^tj lyti k 

where a,ij(t,k,l) := (e^a^e ') = Jnay(£,a:)e'(a;)efc(a;)da;, i , j = 1,2, ••• ,n, 

Ar, Z = 1,2, • • •. Here ay(t, A;, Z) = Oy(£, /, k). 

For «;(£) e /\ Xa, a basis representation of w(t) is 

((i.e*1) A (j,ei2),w(t)) := Wij(t,iui2) 

and a basis representation of the second compound differential equation of 

(3.13) in A2 Xa is 

-^(t,i\,i2) = (-djAj! -d jA i 2 + a^(i,i1,i1) + aii(t,i2,i2))wji(i,zi,22) 

+ E °M(*) &> h)wii(t, k, i2) + E E °tf (*> fe, k)wu(t, k, i2) 
k^ii tyi k 

+ E aii(t,k,i2)wii(t,ii,k) + Y/Jlaii(t^,i2)wii(t,ii,k) 

—j—(t,ii,i2) = (-djA^ - dj\i2 + aa^tjii,^) + ajj(t,i2,i2))'wij(t,ii,i2) 

+ E aii(£> fc>h)wij(t, k, i2) + E E««/(£>fc>k)wu(t, k,i2) 
kjti IjLi k 

+ E %j(*, &> i?)wij(t, h, fc) + E E Oji(*, &> h)wu(t, ix,k). 
k^i l^i k 

(3.17) 
A direct application of Corollary 3.10 implies the following corollary. 
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Corollary 3.11. If the second compound differential equation (3.15) or (3.17) 

of the linear variational equation (3.13) is uniformly asymptotically stable in 

f\2 Xa, then 4>{t,x) is orbitally asymptotically stable with asymptotic phase 

inXa. 

In the following, the two cases when Q = (0,L) axe discussed in detail. 

Scalar Case: n = 1 with periodic boundary condition 

Suppose that u = <f>(t,x) is a nonconstant w-periodic solution of 

ut = uxx + f(x, u), 0 < x < L, t > 0, 
(3.18) 

u(t,0)=u(t,L), ux(t,0) = ux(t,L) t>0, 

where / G C2((0, L) x R - » R). The linear variational equation of (3.18) at 

<f>(t, x) is 
Vt = vxx + a(t, x)v, 0 < x < L, t > 0, 

(3.19) 
v(t,0) = v(t,L), vx(t,0) = vx(t,L) t>0, 

where 
df 

a(t,x) = —(x,<f)(t,x)). 

If v1^2 are solutions of (3.19), then w(t) = (v1 A v2)(t) € f\2X has a 

pointwise representation 

U! (t, xi, x2) = (aii A x2, (v
1 A v2)(t)) = det ^ ( M i ) u2(t,o;i) 

^(Ms) v2(t,x2) 

which satisfies the second compound differential equation of (3.19) defined 

on A 2 ^ 

wt = wXlXl + wX2X2 + (a(i, rci) + a(i, x2))w. (3.20) 

The periodic boundary conditions of vl implies that 

w(t,0,x2) = w(t,L,x2), wXl(t,0,x2) = wXl(t,L,x2), 

w(t,xu0) = w(t,xi,L), wX2(t,xu0) = wX2(t,x1,L). 

The eigenvalues and orthonormal eigenfunctions of the Laplace equation 

Au = —AjU, 

u(0)=u{L), ux(0)=ux{L) ( 3- 2 1 ) 



3. On Poincare's Stability Criterion for Periodic Orbits 60 

axe Ai = 0,A2n = ( f ) ,A2n+1 = (fY, and e 1 ^) = l,e2n(x) = 

Jlcos(?f)x,e2n+1(x) = y / f s i n ( f : ) x , n = 1,2,-••, respectively. 

Consider a Lyapunov function 

v(t) = o w2 = o / w2(t,x1,x2) dxxdx2. 
2 v/(0,L)2 Z J(0,L)2 

Then 

d+V 

dt J(O,L) 
wwt 

= / wwXlXl + wwX2X2 + (a(t,xi) + a(t,X2)) 
J(0,L)2 J(0,L)2 

= wwXl\^l=0 + wwX2\^0- / [(wXl)
2 + (wX2)

 2] 
-/(0,L)2 

lu;2 

w2 

+ / (a(t,x1) + a(t,x2)) 
J(0,L)2 

= - [(wxif + (wX2)
2] + (a(t,x1) + a(t,x2))w

2 

•/(0,L)2 J(0,L)2 

< / (-Xi-X2)w
2+ (a(t,xi) + a(t,x2))w

2 

= I \-(T) +2m&x {a(t,x)})w2. 
i(0,L)2 V ^Lj

 °<X<L J 

Corollary 3.12. If 

/ max \—-(x,(t)(t,x))}dt <-——, 
J0 O<X<L{8U J 2L2 

then 4>(t,x) is orbitally asymptotically stable with asymptotic phase in 

L2(0,L). 

Suppose that v(t,x) = 52cj(t)ej(x), where Cj = (ej,v) = J0 vej, j = 

1,2,--- .Then 

d^ 
dt 

j - [-Xj+a(t,j,j)}Cj + ^ a , ( i , j,k)ck, (3.22) 

where a(t,k,l) := (ek,ael) = J0 a(t,x)el(x)ek(x)dx, k,l = 1,2, ••• . If 

vx,v2 are solutions of (3.19), then w(t) = (v1 A v2)(t) e f\2 X has a basis 
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representation 

w(t,iui2) = (eh Aei2,w(t)) = det 
c1 c? 
c1 c? 

, for 1 < i\ < i2, 

which satisfies the second compound differential equation of (3.19) 

dwit.iijio) , , , / , • • \ i. . • w i, • • \ 

dt 
+ Y^ a(t,i1,k)w(t,k,i2) + ]C a(t,k,i2)w(t,ii,k). 

(3.23) 
Consider a Lyapunov function 

V(t)= Y^ w<2(t,h,i2)-

l<il<i2 

Then 

—fT ^ E / W * X ( M i , * 2 ) 

< M(«)V, 

where 

Miii2(0 = ~ ^ i - A i 2 + a ( i , i i , i i ) + o(t,i2 , i2)+ £ (|a(t,*i, A:)| + \a(t,k,i2)\), 

a(t,x) =—(x,(f>(t,x)), a(t,k,l)= / a(t,x)e\x)ek(x)dx, k, I = 1,2, • • • , 

M(t)= sup KfeC*)}. (3.24) 
l < i i < » 2 

Corollary 3.13. 1/ 

/ ^ < 0 , 
Jo 

w/iere //(•) is given by (3.24), then 4>(t,x) is orbitally asymptotically stable 

with asymptotic phase in L2 (0, L). 

Planar Case: n = 2 with Dirichlet boundary condition 

Suppose that u = 4>(t,x) = ((j)\(t,x),4>2(t,x)) is a nonconstant w-periodic 
solution of 

ut = dxuxx + f(x,u,v), vt = d2vxx + g{x, u,v), 0 < x < L, t > 0, 

u(t, 0) = u(t, L) = 0, v(t, 0) = v(t, L) = 0, t>0, 
(3.25) 
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where f,ge C2((0,L) x R 2 ^ R2). Let 

df 
an(t,x) a12(t,x) 
a2i(t,x) aw(t,x) 

df, 
du (X, fait, X),(j)2(t, X)) -7^(X, fait, x),fait, X)) 

do da 
— (x, fait, x), fait, x)) — {x, fait, x), fait, x)) 

The previous discussion implies that a pointwise representation of the second 

compound differential equation defined on f\ Xa is 

dwn 

dt 

dw22 

dt 

dwi2 
dt 

= diiAiWn + A2wn) + iauit, xx) + an(t, x2))wn 

+a12it, xt)w21 + a12it, x2)w12, 

= d2(AiW22 + A2W22) + (fl22(*, X\) + a22it, X2))W22 

+a21(t, X^WM + a2i (i, £2)^21, 

= diAiioi2 + d2A2K;i2 + (an(i, x\) + a22{t, x2))wi2 

+a12it,xx)w22 + a21it,x2)wn. 

(3.26) 

Let 

Vl(*) = o / ( W l l ) 2 = = - / (Wll(i,Xi,X2))2C?XidX2, 
z J(0,L)2 Z J(0,L)2 

^2(0 = 0 / iw22)
2 = -j iw22it,x1,x2))

2dx1dx2, 
Z J(0,L)2 l J(0,L)2 

Va(t) = - Oi 2 ) 2 = - / iw12it,xi,x2))
2dx1dx2. 

Z J(0,L)2 l J(0,L)1 

Then 

2 dt 

= / di(AiWn + A2Wii)u;ii+ / (an(£,:ri) + an(*,x2))(wii)2 

J(0,L)2 J(0,L)2 

+ / [ai2it,xi)w2iwn + ai2(i,x2)tyi2twii] 
J(0,L)2 

< / d1i-X1-X2 + auit,x1) + a11it,x2))iw11)
2 

J(0,L)2 

+ / [anit, x1)w2iWu + ai2(t, x2)w12wn] • 
J(d,L)2 
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It follows from 

'(0,L) 

that 

ld+Vi 

/ ax2{t, xi)w2i(t, x1,X2)w11(t, xi, x2)dx\dx2 

•/(o,£)a 

/ ai2(t, x2)w2i(t, x2, xi)wn{t, x2, xi)dxidx2 
J(0,L)2 

/ a12(t, x2)w12(t, xi, x2)wn(t, xi,x2)dx1dx2 
J(0,L)2 

2 dt 
< 

l(0,L) 

Similarly, 

IdV, 

l di [-Ai - A2 + an(«,xi) + an(t,x2)\ (wnf 
J(0,L)2 

+2 / a12(t,x2)wi2Wn. 
J(Q,L)2 

IT r /» 

—- < / d2[-\1-\2 + a22(t,x1) + a22(t,x2))(w22)
2 

a t J(.0,L)2 

+2 / a2i(t,x1)wi2w22 
J(0,L)2 

< / [-\i{d1 + d2) + au(t,xi) + a22(t,X2)](w12)
2 

J(0,L)2 

+ / [oi2(t, x^w^wn + a21(t, x2)wnwl2] • 
J(0,L)2 

'(0,L) 

2 ^ J(0,L) 

/(0,i) 

Consider a Lyapunov function 

V(t) = ^(V1 + V2 + 2V3). 

It follows from Young's inequality 

u(x)v(x) < - v{x)u\x) + V^X) 

u(x) 
, for every positive function u(x), 

(3.27) 

that for any positive functions v\(x), u2(x), 

^ - < f [Hi(t)(wuf + ^(t)(w22)
2 + 2^(t)(w12)

2] 
dt

 J(O,L)2 (3.28) 
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where 

Mi(0 = - (Ai + A 2)di+max^2an(t ,x)H j-r |oi2(t,x) + a2i(t, x)| > , 

V2(t) = - (Ai + A2) d2 + max \ 2a22(t, x) H r T \a12(t,x) + a2i(t,x)\ \ , 

x \ v2{x) J 

A*3(*) = -X1(d1 + d2) + maxlan(t,x) + ^-^\a12(t,x) + a2i(t,x)\ i 

{ . . vAx) , , . , .."I 
+ maxia22{t,x)-\ -—\a12{t,x) + a21(t,x)\ > , 

(i(t) = max.{n1(t),n2(t),iJ,3(t)} 
(3.29) 

and the maximum is taken over 0 < x < L. 

Corollary 3.14. If 

/ ' 
Jo 

H < 0, (3.30) 

where /z(-) is defined by (3.29), then <f>(t,x) is orbitally asymptotically stable 

with asymptotic phase in L2((0,L),] 

Remark 3.5. Corollary 3.14 is used in Section 3.3 to give a stability condition 

for a periodic solution of a system arising from an ordinary differential 

equation. 

3.3 Effect of Diffusion 

In this section the effect of adding diffusion to the dynamics of an ordinary 

differential equation in R™ on the stability of a periodic solution is studied. 

It has been shown by Henry [42], page 201-202, that for 2-dimensional 

systems, the orbital stability is preserved under certain circumstances. But 

he proved that, in general, stability is not preserved for general diffusion 

terms. Leiva [50] extended Henry's sufficient condition on the preservation 

of orbital stability to systems in Rn . Here the necessary and sufficient 

condition for hyperbolic stability is formulated in terms of stability of an 

infinite dimensional system of uncoupled ordinary differential equations, 
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which includes both conditions of [42] and [50] with weaker restrictions on 

the added diffusion. 

The following necessary and sufficient condition for a periodic solution of 

an ordinary differential equation to be hyperbolic stable is from Muldowney 

[78]. Let u — 4>(t) be a nonconstant w-periodic solution of 

(jit 

- = / («) , / G C ' ^ R " ) . (3.31) 

The linear variational equation at u — <fi(t) is 

dv df, ,, xx 

Theorem 3.15. The periodic solution (j)(t) of (3.31) is stable hyperbolic if 

and only if the second compound differential equation 

-dj = iu imw 

is uniformly asymptotically stable in /\2M™ (= M.W). 

Corollary 3.16. The periodic solution (f>(t) of (3.31) is stable hyperbolic if 

for some Lozinskii measure \L, 

jf«(iT«M>W 

Theorem 3.15 is the special case of Theorem 3.7 when X = Rn and 

A = 0. When n = 2, it is the Poncare stability criterion which asserts 

that a nonconstant ^-periodic solution u = <j>(t) of 

f = /(«), <)rf, 
is orbitally asymptotically stable with asymptotic phase if 

div /(0(t)) < 0. 
Jo /o 

Suppose that a diffusion term is added to (3.31) as follows. Let fl C M.m be 

a bounded domain with smooth boundary and D = dia,g(d1,d2, ••• ,dn),d~i > 

0. Then u = <j>(t) is also a periodic solution of the reaction diffusion equation 
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du 

m 
du 

dn 

= DAu + f(u), 

= 0. 
(3.32) 

an 

Let X = L2(n,Rn) and A : V(A) C X -* X be the linear unbounded 

operator Au = —Au, where 

V(A) = LeH2(Q,Rn), |^ = o | . 

Theorem 1.6.1 in Henry [42], page 39, implies that if j < a < 1, then 

Xa C C(Q,Rn), and Xa C i7(fi,Mn), p > 2. 

The initial value problem of (3.32) is well-posed in Xa. The linear variational 

equation of (3.32) at u = 4>(t) is 

^ = DAv + ^(t))v. (3.33) 

The eigenvalues and orthonormal eigenfunctions of the Laplace equation 

Au = —Aj«, 

(3.34) du 
dn 

= 0, 
da 

are 0 = A0 < Ai < A2 < • • • and e°(x),e1(x),e2(x), • • •, respectively. Let 
00 

v(t) € Xa be any solution of (3.33). Then v(t,x) 

Vj(f) := {e?,v(t)) = fav(t,x)e?(x)dx, j = 0,1,2,. 

J2 Vj(t)e?(x) where 

and (3.33) is equivalent 

to the following infinite dimensional system of linear equations 

dt 
df 

(3.35) 

While the methods of Section 3.1 may be used directly to analyze the 

characteristic multipliers of the periodic solution <j>(t) with the help of the 

second compound differential equation of (3.33), a simpler development 

presented here is based on the finite dimensional theory of compound matrices 

by Muldowney [78] and the material in Henry [42], page 201-202. To that 

end, the above infinite system of uncoupled n-dimensional linear differential 

equations (3.35) is considered. 
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Lemma 3.17. The characteristic multipliers of the periodic solution <f>(t) of 

(3.32) are the characteristic multipliers of the infinite dimensional system 

(3.35). 

oo 

Proof. Let v(t) e Xa be any solution of (3.33). then v(t,x) = £ Vj(t)ej(x), 
j=0 

where Vj(t) = (e>,v(t)) satisfies (3.35). 

If Hj is a characteristic multiplier of (3.35), then there exists a nonzero 

Vj (t) such that 

Since Vj(t)ej(x) is a solution of (3.33), /J,J is a characteristic multiplier of the 

periodic solution 4>{t) of (3.32). 

If \i is a characteristic multiplier of the periodic solution <j>(t) of (3.32), 
oo 

then there exists a nonzero v(t,x) = ^ Vj(t)ej(x) such that 
3=0 

v(u) = nv(0), 

oo oo 

or ^2 Vj {^Y (x) = fi^2 Vj (0)ej (x). 
3=0 i=0 

Thus for all j = 0,1,2, • • • , 

^H=^(0). 

Since r>(t) is nonzero, at least one of the Vj is not identically zero and thus [i 

is a characteristic multiplier of (3.35) for some j . 

• 

Remark 3.6. The technique developed here can also be applied to other 

boundary conditions such that p(t) is still a periodic solution for the reaction 

diffusion equation, for example, periodic boundary condition. 

3.3.1 Stability of Periodic Solutions 

The following theorem is an analogue for the reaction diffusion equation 

(3.32) of Poincare's stability criterion for the ordinary differential equation 
(3.31). 
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Theorem 3.18. Suppose that <j)(t) is a periodic solution of the ordinary 

differential equation (3.31). Then $(t) is stable hyperbolic for the diffusive 

system (3.32) if and only if the second compound differential equation 

^ = | ' W (3.36) 

and the linear equations 

^ = -\jDvJ + yt.M))vj, i = l , 2 , - - , (3.37) 

are uniformly asymptotically stable. 

Note that the stability of equation (3.36) is a necessary and sufficient 

condition for the periodic solution </>(£) of the ordinary differential equation 

(3.31) to be stable hyperbolic. In addition, Poincare's stability criterion here 

also requires the stability of the infinite system of decoupled n-dimensional 

linear equations (3.37). The following corollaries give concrete sufficient 

conditions on D for the preservation of stability in the diffusion system. The 

concept, "Lozinskii measure", is discussed in Appendix A. Good references 

on Lozinskii measure are Coppel [19], page 41 and Muldowney [76-78]. 

Corollary 3.19. Suppose that the periodic solution cf)(t) of the ordinary 

differential equation (3.31) is stable hyperbolic. If, for some Lozinskii measure 

M' fi(-D) < 0 (3.38) 

md £ H {j^W)) ~ *iD) < 0, (3.39) 

then u = (f>(t) is stable hyperbolic for the diffusive system (3.32). 

Remark 3.7. The Lozinskii measure \i in Corollary 3.19 is assumed to be 

admissible. The term "admissible" was introduced by Li and Wang [57]. 

Precisely, a Lozinskii measure // is said to be admissible if fJ>(—D) < 0 for 

all diagonal D = diag(di, da, • • • ,dn) where d\ > 0,1 < i < n. The Lozinskii 

measures \i listed in Table A l of Appendix A are admissible. 

Corollary 3.20. Suppose that the periodic solution <f>(t) of the ordinary 
differential equation (3.31) is stable hyperbolic. Then there exists K > 0 

such that 

ix^pr1^)! <K, o<s<t, 



3.3. Effect of Diffusion 69 

where X(t) is a fundamental matrix solution of 

If there exists a constant d > 0 such that 

\D-dI\<j£, (3.40) 

then u = 4>{t) is stable hyperbolic for the diffusive system (3.32). 

Remark 3.8. Neither of Corollary 3.19 and Corollary 3.20 is implied by the 

other. This is discussed through an example in Section 3.3.3. For the case 

D = dl, inequality (3.39) is true but inequality (3.40) may not be satisfied. 

Remark 3.9. Corollary 3.20 includes as special cases results of Henry [42] 

and Leiva [50]. When n = 2 and D = diag(di, (fe), Henry [42] proved that if 

\di — d%\ is small, u = <f>(t) is orbitally asymptotically stable with asymptotic 

phase for the reaction diffusion system (3.32). Leiva [50] generalized this 

result for D = dl + diag(ei, £2, • • • > £n) with Si small enough. The results of 

Henry and Leiva are strengthened slightly in that a concrete bound is given 

here on £j. A particular example obtaining such a bound is discussed in 

Section 3.3.3. 

Proof of Theorem 3.18: 

Proof. Theorem 3.15 implies that (f>(t) is stable hyperbolic for the first 

equation of (3.37) with Ao if and only if the second compound differential 

equation (3.36) is uniformly asymptotically stable. Theorem 7.2 in Hale [37], 

page 120, implies that the characteristic multipliers of the infinite dimensional 

linear equations (3.37) with Xj = Ai, A2, • • • have moduli less than 1 if and 

only if it is uniformly asymptotically stable. By Lemma 3.17, the proof is 

completed. • 

Proof of Corollary 3.19: 

Proof. Let A(t) = f£(tf(i)). A solution of (3.37) satisfies 

\Vj(t)\ < bj(s)|exp fi(A-\}D)Y s<t, j = l,2,-
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which implies that 

iX^X^^lKexpfj^A-XjD)), s<t, j = 1,2, - - - , 

where Xj(t) is a fundamental matrix solution of (3.37) and Xj(0) = I. Thus 

If fi(-D) < 0 and ^ /i(A - XiD) < 0, then for j = 2,3, • • • , 

/ fx(A-\jD) = j n{A - AiD - (Xj - X1)D) 
Jo Jo 

< P {ii{A - XiD) + (Xj - XM-D)) < 0, 
Jo 

which implies that all of the characteristic multipliers of (3.37) with A = 

Xj,j = 1,2, ••• have moduli less than 1. Therefore, u = </>(t) is stable 

hyperbolic for the diffusive system (3.32). • 

Proof of Corollary 3.20: 

Proof. Since the periodic solution <p(t) of the ordinary differential equation 

(3.31) is stable hyperbolic, Theorem 7.2 in Hale [37], page 120, implies that 

there exists K > 0 such that 

\X(t)X-\s)\ < K, s<t, 

where X(t) is a fundamental matrix solution of 

Let A{t) = g£ (</»(*))• Choose d > 0 and consider the following equation 

f = -dly + A(t)y. (3.41) 

Then the fundamental matrix solution Y(t) of (3.41) satisfies Y(t) = 
X(t) exp(-dt) and thus 

| y ( i ) y - 1 ( s ) | < K e x p ( - d ( £ - s ) ) , s<t. 
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Now consider differential equation 

| = (-D + A(t))z. (3.42) 

Then the solution of (3.42), 

z{t) = Y(t)Y-1(s)z(s) + f Y{t)Y-\T)(dI - D)z{r)dT, s < t, 
J s 

satisfies 

|*(t)| < Kexp(-d(t - s))\z(s)\ + f Kexp(-d{t - T))\D - dl\ • \z{r)\dr. 
Js 

Gronwall's inequality implies 

\z(t)\ <Kexp((-d + K\D-dI\)(t-s))\z(s)\, s<t. 

Therefore, if 

\D - dl\ < | , (3.43) 
then (3.42) is uniformly asymptotically stable. Since Xj > 0, j — 1,2, • • • and 

\\}D-\JdI\ = \j\D-dI\<^, 

the above argument implies that if \D — dl\ < j | , then 

%L = (-\jD + A(t))Vj 

is uniformly asymptotically stable. Therefore, from Theorem 3.18, u = <f>(t) 

is stable hyperbolic for the diffusive system (3.32). • 

3.3.2 Instability of Periodic Solutions 

Since solutions of the ordinary differential equation (3.31) are also solutions 

of the reaction diffusion equation (3.32), it follows that an orbitally unstable 

solution of (3.31) is also an orbitally unstable solution of (3.32). In the 

following, it is assumed that u == <j>(t) is an orbitally stable solution and 

conditions under which it is an orbitally unstable solution of (3.32) are 

explored. 
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Theorem 3.21. Suppose that for some Lozinskii measure \i, 

/i(-D) < 0. 

Then the stable manifold of the solution u = (j>(t) of the diffusive system 

(3.32) has finite codimension. 

Proof Since the Jacobian matrix A(t) = §£($(£)) is a continuous and 

periodic function of t, there exists a (3 > 0 such that 
rt 

KA) < P(t -s), s< t. (3.44) 
/ 
J s 

If A > z ^ b ) , then 

t n(-XD + A)< X(i(-D)(t -s)+ I n(A) < (Xn(-D) + f3)(t - s) < 0, 

which implies that the linear ordinary differential equation 

^ = (-\D + A(t))v 

is uniformly asymptotically stable. Thus there exists N such that (3.37) with 

A = Xj is uniformly asymptotically stable for j > N. Therefore the stable 

manifold of the solution u = 4>(t) of the diffusive system (3.32) has finite 

codimension. • 

Theorem 3.22. Suppose that u = <j>(t) is orbitally asymptotically stable for 

the ordinary differential equation 

du 

¥ = f{u)-
Let A(t) = |£((/>(£)). Suppose that there is a principal m x m submatrix An 

of A and a Lozinskii measure Hi on Mm such that 

f 
Jo 

-Mi(-An) > 0. (3.45) 

Then, for any integer k > 0, there exist an e > 0 and a n x n matrix 

D = diag(elmxm, ~I(n-m)x(n-m)) such that u = <f>(t) is orbitally unstable for 

the diffusive system 

~ = DAu + f(u), 

o (3.46) 
du = Q 
dn an 

and the dimension of the unstable manifold ofu = <j>(t) is at least k. 
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Condition (3.45) in Theorem 3.22 is satisfied if for some i, f£ a,u(t)dt > 0. 

Without loss of generality, let i = 1. 

Corollary 3.23. If J^ au(t)dt > 0, then for any integer k > 0, there exist 

an e > 0 and a n x n matrix D = diag(e, ̂ I(n-i)x(n-i)), where e > 0, such 

that u = <f>(t) is orbitally unstable for the diffusive system (3.46) and the 

dimension of the unstable manifold of u = <j>{t) is at least k. 

The proof of Theorem 3.22 is based on an argument in Muldowney [77]. 

Proof. Consider the linear equation 

— = ( A n ( i ) - XelmxmjVl + A12(t)v2, 

dv2 ( A \ ( 3"4 7 ) 

— = A2i{t)v1 + f A22(t) I(n-m)x(n-m) J V2, 

where e > 0, f£ —fj,i(—Au) > 0 for some Lozinskii measure \x\ and 

v = (vi,v2),vi e Rm,v2 e R"~m. Let | • |i and | • |2 be vector norms in 

Rm and M"_m, /^ and fj,2 the corresponding Lozinskii measures, respectively. 

Let r\ = |i>i|i and r2 = \v2\i- Then 

d+rx 

—jj- > -fJ>i{-An + Ae7mxm)r:L - a12r2 > (an - As) n - a12r2, 
d+r2 / (* A. \ ^ / A\ 
—jj- < a 2 i n + H2 \A22 i(Tl_m)X(n_TO) I r2 < a21n + I a22 I r2, 

where 

<*u(t) = -tn(-Au(t)), a22(t) = -n2(-A22(t)), 

a12(t) = |v412(t)|2i = sup 
\A12{t)x\ 

a2i(t) = |A2i(t)|i2 = sup 

™-fc, x^O p | 2 

|4 2 l ( t )x | 2 

xeK*, x^O \x\l 

and ^ denotes the right-hand derivative. Since /„" —/xi(—An) > 0, we can 
choose e, 5 > 0 sufficiently small such that 

' (an - Ae - <Ja2i) > 0, (3.48) 
o 
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and 

a22(t) - - +-au(t) <an(t)-\£-5a21(t), for a l i i > 0. (3.49) 

Let r = r\ — 5r2. Then 

d+r ( A\ 
- — > (an - Ae) rx - ai2r2 - 6a2iri - 5 ( a22 j r2 

= («n - Ae - <5a2i) n + f a22 - -jQ;i2 J Sr2 

> (an - Ae - Sa2i) r, 

which implies 

r(t) > r(s) exp ( / (an - Ae - <fa2i)) , for t > s. 

Choose t>!(0) and v2(0) such that r(0) > 0. Then 

r{nuj) > r(0) exp f n / (an - Ae - <5a2i) j —> oo, as n ^ o o , 

and thus 

Vi(noj)—> oo, as n —> oo. 

Therefore (3.47) is unstable and at least one of the characteristic multipliers 

of (3.47) has modulus greater than 1. Let Ai, A2, • • • , Afc be the first k nonzero 

eigenvalues of the Laplace equation 

Au = —XiU, 

du 
dn 

= 0. 

Then there exists an e > 0 such that the inequalities (3.48) and (3.49) 

hold for all Ax, A2, • • • , Afc. The above argument for A implies that for each 

j = 1,2, • • • , k, the linear equation (3.47) has at least one of the characteristic 

multipliers with modulus greater than 1. Hence, Lemma 3.5 and Lemma 

3.17 imply that u = cj)(t) is orbitally unstable for the diffusive system and 

the dimension of the unstable manifold of u = <fr(t) is at least k. m 
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3.3.3 Planar Reaction Diffusion Systems 

The following results include Henry [42], page 201-202, as the special case 

n — 2 of Theorem 3.18 and Corollary 3.23. 

Suppose that the planar system 

du . 

dv 
~dl 

(3.50) 
g(u,v), 

has a nonconstant periodic solution (p(t),q(t)) with period u, where f,g € 

C^K2 —> K). In this case the second compound differential equation of the 

linear variational equation at (p(t),q(t)) is the Liouville equation 

dw 
Hit ^<P>«) + %M)"> 

= (fu(p,o) + 9v(p,q))w. 

Theorem 3.15 implies that (p(t),q(t)) is stable hyperbolic for the ordinary 

differential equation (3.50) if and only if 

Jo 
(fu(p,q) + 9v(p,q)) < 0 . 

Solution (p(t),q(t)) is also a periodic solution of the diffusive system 

tk = diuxx + f(u,v), 

vt = d2vxx + g(u,v), in (0,27r) x (0,oo), di,d2>0, 

with Neumann boundary conditions 

ux(t,0) = ux(t,2ir) = 0, 

vx(t,0) = vx(t,2n) = 0, f o r * > 0 , 

or periodic boundary conditions 

u(t,0) = u(t,2ir), ux{t,0) = ux(t,2w) 
v(t, 0) = v(t, 2TT), vx(t, 0) = vx(t, 2TT), for t > 0. 

(3.51) 

(3.52) 

(3.53) 

Let 

Mj(t) 
fu{PA)-^3d± fv(P,q) 

9u(p, q) 9u(p, q) - Xjd2 

(3.54) 

(3.55) 
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where A0 = 0, \j = (j/2)2 for Neumann boundary conditions and A0 = 

0, A2j_i = \<2j = j 2 for periodic boundary conditions, j = 1,2, ••• . The 

characteristic multipliers of (p(t),q(t)) for the reaction diffusion system (3.52) 

are the characteristic multipliers of 

du 
~dl 

dv 

~dt 

Mj(t) u 

V 
0,1,2,. (3.56) 

Let di,d2 > 0 and d\ + d2 ^ 0. Corollary 3.24, 3.25 and 3.26 are given in 

Henry [42]. Corollary 3.27 and 3.28 are new and follow from Corollary 3.23. 

Corollary 3.24. Suppose Jo(fu{p,q) + 9v(p,q)) > 0. Then (p(t),q(t)) is 
orbitally unstable for the diffusive system (3.52). 

Corollary 3.25. Suppose Jo(fu(p,q) + gv(p,q)) < 0. If Jf gv(p,q) > 0, 

then (p(t),q(t)) is orbitally unstable for the diffusive system (3.52) with 

di = e - 1 , d2 = e where e is sufficiently small. 

Corollary 3.26. Suppose fv(fu(p,q) + gv(p,q)) < 0. If |<2i - d2\ is small, 
then (p(t),q(t)) is orbitally asymptotically stable with asymptotic phase for 
the diffusive system (3.52). 

Corollary 3.27. Suppose £\fu(p, q) + gv(p, q)) < 0. If 

/ m&x{fu(p,q) - Xxdi + \fv(p,q)\,gv(p,q) - \i<h + \gu{p,q)\} < 0, 
JO 

(3.57) 

or 
l-UJ 

I m&x{fu(p,q) - Aidi + \gu(p,q)\,gu(p,q) - Md2 + \fv{p,q)\} < 0, 
Jo 

or 

P(* + M; 
<o, 

(3.58) 

(3.59) 

where A ( M l + M f ) denotes the largest eigenvalue of Ml+M '*, then (p(t), q(t)) is 

orbitally asymptotically stable with asymptotic phase for the diffusive system 
(3.52). 
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The orbital asymptotic stability of (p(t),q(t)) can also be discussed by 

using the result of Corollary 3.14 in Section 3.2. Let 

A*i(*) = - M i + max \ 2fu(p, q) + -—— \fv(p, q) + gu(p, q)\ \, 
x { V\[X) ) 

Vv{t) = -Md2 + ra^<2gv(p,q) + j—-\fv(p,q)+gu(p,q)\\, 

li3(t) = msxUu(p,q) + ^^-\fv(p,q)+gu(p,q)\> 

+ max I gv(p, q) + ~ - \fv(p, q) + gu(p, q)\ i, 

fj,(t) = sup{/ii(i),/x2(i),M3(*)}, 

where Vi(x)1v2{x) are positive functions and the maximum is taken over 

0 < x < 2-E. 

Corollary 3.28. Suppose thai 

J M<0, 

where fi(-) is defined by (3.60). Then (p(t),q(t)) is orbitally asymptotically 

stable with asymptotic phase for the diffusive system (3.52). 

The next example is an application of Corollary 3.27. 

Example 3.1. ([18, 35]) Consider the following predator-prey system with 

logistic growth for prey u in the absence of predation and Holling type II 

functional response for predator v. 

du / , u \ Mu .. . 

dv ( Mu \ . . ( 3"6 1 ) 

p)v:=g(u,v), dt \N + u 

where M,N,K,r,(3 > 0. Let M > fi and r] = jfJL. This system has been 

studied in Cheng [18]. If ^^- < r\ < K, then the equilibrium (u*,v*) is 

globally asymptotically stable where u* — r),v* = -^(N + u*) ( l - ^ ) . If 

0 < r) < ^Y*-, then the equilibrium (u*, v*) is unstable and a unique periodic 

solution exists. Let (p(t),q(t)) denote the unique periodic solution. Then 

7 = {(p(t), q(t)), 0<t<u>}C {(u, v), 0<u<K, 0 < v}. 
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The second compound differential equation of the linear variational equation 

at (p(t),q(t)) is the Liouville equation 

dt \ \ KJ (N+p)2 ' N + p 
MNq Mp 

It has been shown in Cheng [18] that 

Mp 

and 

s: (N + pf 
13) =0, 

2p\ MNq 
~KJ ~ (N + pf 

<0 . 

(3.62) 

(3.63) 

Thus if 0 < f] < ^Y1, then Poincare's stability criterion implies that the 

periodic solution (p(t),q(t)) of (3.61) is orbitally asymptotically stable with 

asymptotic phase. Let 

(t\ — 
\l) 

2MK q 

' fu{p,q)-\di fv(p,q) 

. 9u{p,q) gv(p,q)~Md2 . 

[ (, 2p\ MNq x J 

"{'-KJ-iN + p)*-^ 
MNq 

. (N + p)2 

•> 0 since n <• n <r KZN. Tf 

Mp 
N+p 

Mp 
N + p 

(3 - \xd2 

Then - i r r „ „ — ., - 2 

Airfi > r, \\di > 
2MK 

N P, 

then 

max 

< max 

< 0 . 

{-H)~ 
H1-

MNq 

WTpf-
MNq Mp Mp 

- Aidi + / ; ; " ' \ 0 , - ^ - -P- \id2 + - ^ - j 
N + p) (N + pf N + p 

2p\ 2MK 
— I - Aidi , — /* - Aid2 

Corollary 3.27 implies the following result. 
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Corollary 3.29. Suppose that 0 < ^ < £=£. / / Axdi > r, Xxd2 > 

(3, then (p(t),q(t)) is orbitally asymptotically stable with asymptotic 2MK 
N 

phase for the diffusive system 

Mu 
Ut = diUxx + ru(l- — J -v, K) N + u , x 

/ Mu \ ( 3 ' 6 4 ) 

«t = ^2«xx + ( ^ — - P J v, in (0,2?r) x (0, oo), 

with Neumann boundary conditions (3.53) where Ai = | or periodic boundary 
conditions (3.54) where Ai = 1. 

The following example will show that neither of Corollary 3.26 and 

Corollary 3.27 is implied by the other. This example will also show how 

to find a concrete bound on |di - di\ in Corollary 3.26. 

Example 3.2. Consider a planar system 

du 
/3u + (1 - u - av )u := f(u, v), 

— = —fiv + (1 - u2 - av2)v := g(u, v), 

where 1 < a < 2. Rewrite (3.65) in polar coordinators as 
(if 

— = r ( l - r2 cos2(0) - ar2 sin2(0)), 

dt H 

(3.65) 

(3.66) 

Then | > 0 if 0 < r2 cos2 (0)+ar2 sin2 (0) < 1 and f < 0 if r2 cos2 (0)+ar2 > 

1. Thus, every solution of (3.65) except (0,0) ultimately enters and remains 

in the annular region 

G=t.{u,v):^<u2 + v2<l\. 

The Poincare-Bendixson theorem implies that there exists a periodic solution 

(j>(t),q(t)) in G. System (3.66) shows that the period of the periodic solution 

(p(t),q(t)) is 2f. The linear variational equation of (3.65) at any solution 

(p(t),q(t)) is 
(111 
— = (1 - 3p2 - aq2)u + (/3 - 2apq)v, 

— = -(/? + 2pq)u + (1 - p2 - 3aq2)v. 
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Since 

1 - 3p2 - aq2 + 1 - p2 - 3aq2 = 2 - 4(p2 + aq2) < 2 - - < 0, (3.68) 

Poincare's stability criterion implies that (p(t),q(t)) is asymptotically 

orbitally stable with asymptotic phase in G. A result in [60] implies that 

the periodic solution of (3.65) is unique. Let 

fu(p, q) - Aidi fv(p,q) 

9u(p,q) gv(p,q)-Md2 

Mi(t) -

1 - 3p2 - aq2 

-(0 + 2pq) 

Xidi (5 — 2apq 

1 - p2 — 3aq2 - d2 

If 

(3.69) 

A i d i > l + |^|, A id 2 >2a + |J9|, 

then it follows from ^ < p2 + q2 < 1 that 

max{l - 3p2 - aq2 ~ A ^ + \/3 + 2pq\, 1 - p2 - Saq2 - \xd2 + \(3- 2apq\} 

< max{l + \/3\ - Aidi, \/3\ +2a- Aid2} 

< 0. 

Corollary 3.27 implies the following result. 

Corollary 3.30. If dx > 1 + |/3| andd2 > 2a+|/3|, then (p(t),q(t)) is orbitally 

asymptotically stable with asymptotic phase for the diffusive system 

ut = dxuxx + (5u + (1 - u2 - av2)u, 

Vt = d2vxx - /3v + (1 - u2 - av2)v, in (0,2n) x (0, oo), 

with Neumann boundary conditions (3.53) where Ai = \ or periodic boundary 

conditions (3.54) where Xi = 1. 

Prom the argument developed in the proof of Proposition 4.15 in Section 

4.2.1, if 1 < a < | , then the solution of (3.67) satisfies 

V V (*) + z2(t) < Ky/y*(s) + z*(s), 0<s<t, 

where tf = 4e*™ [ ^ ^ + i ) a n d T2 = 4 ^ . Let d = &±* and 

e = * ^ 2 . Then 

0 d2 J ^ 0 d - e 
Corollary 3.20 implies the following corollary. 
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Corollary 3.31. Suppose that du<h >0,d\ + d2^0 and 1 < a < f. Let 

K = 4 e f + 2 T 2 ( ^ ^ + ^ md ^ = tW) _ If |rfi _ ^ < ^ ^ 

(p(*) >?(*)) ^5 orbitally asymptotically stable with asymptotic phase for the 

diffusive system (3.69) with Neumann boundary conditions (3.53) or periodic 

boundary conditions (3.54). 

3.4 Scalar Reaction Diffusion Equations 

Another type of reaction diffusion equation for which the existence of periodic 

solutions can be established is given in the form 

Ut = uxx + f(x S1 = R/2TTZ, / € C2. (3.70) 

Fiedler and Mallet-Paret [30] proved that the classical theorem of Poincare 

and Bendixson holds for the scalar reaction diffusion equation (3.70): the 

cj-limit set of any bounded solution satisfies exactly one of the following 

alternatives: 

(i) it consists of precisely one periodic solution, or 

(ii) for every orbit in the w-limit set, its w-limit set and a-limit set are 

contained in the set of steady state solutions. 

When / = f(u,ux) is analytic, the Poincare-Bendixson theorem was 

proved by Angenent and Fiedler [4]. It was shown in [4] that any OJ-

limit set contains either a rotating wave or a steady state. All periodic 

solutions of (3.70) in this case are rotating waves, that is solutions of the 

form u = u(x — ct), which are always unstable. Independently, Massatt 

[68] proved that either the w-limit set is a single rotating wave, or a set of 

equilibria which differ only by shifting x. The same result was also obtained 

by Matano [71], who further shows that the w-limit set is a single equilibrium 

if / = f(u, ux) is even in the second argument. 

The scalar reaction diffusion equation (3.70) with Dirichlet boundary 

conditions or Neumann boundary conditions is gradient-like with respect 

to a continuous Lyapunov functional F of the form 

/•27T 

F(u) = / 9(x,u-, ux)dx. 
Jo 
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In particular, LO(UO) consists entirely of equilibria if the orbit of u(t, UQ) is 

bounded. In the general case of a scalar semilinear parabolic equation on the 

line segment (0, 1), Zelenyak [114] and, independently, Matano [70, 71] prove 

this result, where Zelenyak uses a special Lyapunov function to obtain this 

result and Matano uses a nontrivial application of the maximum principle. 

This result is also proved by Fiedler and Mallet-Paret [30], who show that the 

scalar reaction diffusion equation (3.70) with Dirichlet boundary conditions 

does not have periodic solutions (see page 339), and thus u(u0) consists 

entirely of equilibria. Hale and Raugel [39] consider an extension of a result 

of Hale and Massatt [38] on convergence of orbits to a single equilibrium point 

for gradient-like systems using the theory of integral manifolds in dynamical 

systems. 

One of the tools in the analysis of u;-limit sets and the maximal compact 

attractor is the zero number, see Nickel [84], Matano [70], Henry [43], 

Brunovsky and Fiedler [10]. For any continuous u : S1 —• R, the zero number 

z(u) is the number of sign changes of u, not counting multiplicity, that is z(u) 

is the maximal integer n < oo such that there exist 0 < xn+i = #o < %i < 

• • • < xn < 2TT with 

u(xi) • u(xi+i) < 0, 0 < i < n. 

Set z(0) := 0. The crucial property of z(u) is the following. For any solution 

u(t,uo) of 

ut = uxx + f(x,u,ux), xGS1, 

with / sufficiently regular and f(x, 0,0) = 0, the function t i-» z(u(t, •)) is 

nonincreasing in t. 

Now suppose that u — 4>{t, x) is a nonconstant w-periodic solution of 

Ut = Uxx + f(x, U, Ux), 0 < X < 27T, t > 0, 
(3.71) 

u(t, 0) - u(t, 27T), ux(t, 0) = ux(t, 27r), t > 0, 

where / € C2((0,2n) x E x R ->• R). The initial value problem associated to 

(3.71) generates a local semiflow on the Sobolev space X which contains all 

functions in #a(0,27r) satisfying the periodic boundary conditions. Choose 

s > | so that X embeds into C2(0,2TT). For u0 € # S (0 ,2TT) , u(t,x) = 
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k k k 

Y2 ^w+Yla^' xi)w*i+Y26(*> x^w- (3-73) 

u(t,Uo) e C2(0,2%) is a solution which exists on [0,T) for some T > 0. 

The linear variational equation of (3.71) at <j)(t,x) is 

Vt = vxx + a(t, x)v + b(t, x)vx, 0 < x < 2-JT, t > 0, 

u(t,0) = t;(t,27r),us(t)0) = i;x(t,27r), t > 0, 

where 

a(t,:r) := —(x,4>,(px) = fu{x,<t>,<t>x), b(t,x) := — {x,4>,(j)x) = fUx(x,4>,4>x)-

If Ui, V2, • • • , Vfc are solutions of (3.72), then ix?(t) = («i A v2 A • • • A vk)(t) € 

/ \ X has pointwise representation 

w(t,xi,x2,--- ,x4) = (^i Au2 A ••• Avk)(t,x1,x2) = det(^ (£,£,)), 

which satisfies the kth compound differential equation of (3.72) defined on 

A fcx 
k k k 

The periodic boundary conditions of vl implies that 

w(t,XU--- ,Xj-i,0,Xj+i,--- ,Xk) =w(t,Xi,--- ,Xj-i,2-K,Xj+i,--- ,Xk) 
wxj\ti x\, • • • ,Xj-i, 0,Xj+i, • • • , xk) = wXj\t,X\, • • • ,Xj-i, 2n,#j+i, • • • ,xk) 

i = l ,2 , - - - ,fc. 

The eigenvalues and orthonormal eigenfunctions of the Laplace equation 

AM = — XiU, 
(3.74) 

u(0) = u(27r),«x(0) = us(27r) 

are A0 = 0,A2n-i = n2,X2n = n2,n = 1,2, ••-, and e°(x) = l,e2n~1(x) = 

4 j cosnx, e2n(x) = - ^ sinnx, • • • respectively. 

A particular case of Theorem 3.8 is the following theorem. 

Theorem 3.32. Suppose that f G C2((0, 2TT) X R X R -+ R) and that </>(t, x) 

is an uj-periodic solution of (3.71). / / the kth compound equation (3.73) is 

uniformly asymptotically stable in f\ X, then <fi(t, x) has a stable manifold 

with codimension at most k — 2. 
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Consider a Lyapunov function 

v(t) = o / w2 = o / w2^'Xl' X2>''' ' xk)dxidx2 • • • dxk. 
* J(0,2ir)k Z J(0,2n)k 

It follows from Young's inequality that 

d+V 
dt .l(0,2tr)k -J 

J(0., 

= / ( 5 2 ww^i + 5 2 a(*> xi )wwxi + 5 2 &(*. ̂  )^2 

^(0,2ir)* \ i = l i= l i= l 

< -52/ K ) 2 + E / OK«.*J)I 
] Z J ^(0,27r)* j = 1 .7(0,2*)* ^ 

21 

Z / J ( X J > + 
K,) 

2 

.7(0,2*)* j = 1 

j = 1 J(0fl-K) 

k 

7 Xib^ 
•7(0,2*)* ~TX \ 

+ ; > .Kt . * i )+ w ' , ^ | , ' , M V. 

for any positive functions t'i(rc), z*>(rc)- If max \a(t, x)\ > 0,0 < x < 2TT, then 
X 

a choice 
^ z ) = max \a(t,x)\:=v(t), j = l,2,---,k, 

implies that 

where 

M(t) = - £ A,- + 21fcmax (b(t, x) + K ^ M j . 

If max \a(t, x)\ = 0, then a(£, re) = 0 for all 0 < x < In and 
X 

fc-1 

//(£) = — \ Aj• +A;max6(i, x). 

Theorem 3.32 implies the following corollaries. 
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Corollary 3.33. Suppose that f <E C2((0,2TT) x l x l ^ l ) and <f>(t,x) is 

an u)-periodic solution of (3.71). / /max |o(i,a;)| > 0, 0 < x < 2ir and 

fc-i 

or if a(t, x) = 0 for all 0 < x < 2-n and 

' max bit, x) < — > A,-

where A2J-1 = j 2 , X2J = j2,j = 1,2, • • • and v(t) = max |a(i, x)\, then cf>(t, x) 
X 

has a stable manifold with codimension at most k — 2. 

Example 3.3. Consider the van der Pol equation 
ofu . 9 .,. du „ .„ „ , 
_ + £ ( u 2 _ 1 ) _ + , = 0 . (3.75) 

Equation (3.75) has a unique stable limit cycle <j>(t) with period to for all 

values of e > 0. The formula for UJ as a function of e can be found in 

[15, 25, 90, 106, 107]. Moreover, u > 2TT. If c > 0, then <f>{x + ct) is a 

—periodic solution of 

Ut = Mxx + CUx + ^ ( ^ 2 - l ) « x + U, 0 < X <LO, t>0, 
(3.76) 

u(£,0) = u(t,u), ux(t,0) = ux(t,u), t > 0. 

The initial value problem associated to (3.76) generates a local semiflow on 

the Sobolev space X = H^r(0,u>) which contains all functions in ifs(0,27r) 

satisfying the periodic boundary conditions. Choose s > § so that X embeds 

into C2(0, to). Now for u0 € H*er(0, to), u(t, x) € C2(0, u) is a classical solution 

which exists on [0, T) for some T > 0. Since 

I utdx = / [uxx + cux + e(u2 - l)ux + u] dx 
Jo Jo 

= ux\% + cu\% + uz\% - u\% + I udx 
Jo 

f 
Jo 

10 
) 
udx, 
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G = [u e Hper(0,io) : JQ u(x)dx = 0} is an invariant set with respect to 

(3.76). In this invariant set G, 

r , ^ 2TT r 2 j 
/ uuxxdx < / u dx, 

Jo u Jo 
and thus, 

1 d 
2i 
-— / u2dx = / [uuxx + cuxu + e(u2 — l)uxu + u2] dx 
' dt j 0 JQ 

= / [uuxx + u2] dx 
Jo 

which implies that the L2 norm of u exists for all t > 0. For any T > 0, 

' u2(t,x)dx<exp[(-4-K2/u)2 + l)t] / u2{0,x)dx, (3.77) 
o Jo 

which implies that J^ u2dx is uniformly bounded for all 0 < t < T. 

For each fc > 2, multiply u2k~l on both sides of (3.76) and integrate it to 

obtain 

I u2 ~xutdx = I 
Jo Jo 

.2 fc-l„ ,2 fc-l 2 * - ! , „ 2k 
u uxx + cuxu + e(u — l)uxu + u dx, 

that is, 

L£ r 
¥JtL 

u2 dx = — 
2 * - l 

2* dt ./0 " """ ""' 22*-2 .,„ Jo 
ViT rdx + / i r da; 

where Vu = % or equivalently, 

i£ r , ofc-i,o, 2fc-i r 
2dtJ0 

Let 

/W— ^jf Vu2k-1\2dx + 2k-

F 
Jo 

-1 r(ii2*_i)s 

Jo 
dx. 

2k - 1 
M = |«| , «fe = -gjtzj-, a* = 2' fe-i 

Then 

l_d_ 
2<ft 

/ (u*)2dx = -ak I \Vu*\2dx + ak ["(u*)2dx. (3.78) 
Jo Jo Jo 
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Apply Young's inequality to a special case of the Nirenberg-Gagliardo 

inequality ([42], page 37) 

u\\^ < Vcm^iuf2 
V- ' 

to obtain 

IKIli* < Ce-ifl l ix +C e | | e | | ^ l i a = Ce-%\\1 +Ce| |Ve| | | 2 + Ce||£||22. 
(3.79) 

Substitute u* in the place of £ in (3.79) and ek in the place of e to get 

r \u* fdx < Cel1 ( I u*dx] + Cek f \Vu*\2dx + Csk f (u*)2dx 
Jo \Jo J Jo Jo 

and thus 

[(Cek)-1 - 1] Hu*)2dx - £fc2 ( fW u*dx\ < r \Vu*\2dx. (3. 80) 

Choose ek > 0 small such that — ̂  + (ak + afc)efc + (&fc)2 < 0. It follows from 

(3.78) and (3.80) that 

ld_ 
2dt / («•) 'dx 

< -ctfc [(Cefc) - 1 - 1] / (u*)2dx + ctfe£fc2 f / u*dx ) + uk \ {u*)2dx 

= [ojfe - «fe ( C e f c ) _ 1 + afc] / (u*)2cfo + akel2 ( / «*dx j 

< —£fc / ( l t * ) 2 d x + ttfeEfe2 f / U*dx ] . 

If JQ u*dx is uniformly bounded for all 0 < t < T, then 

(3.81) 

/ (u*)2dx < max < ̂ - ^ s u p / w*dx , / (u*(0,x)) 
Vo I (£fc) L t Jo J Jo 

Hx 

In particular, if k — 2, then u* = it2, er2 = 2 and a2 = §• Choose e2 such that 

(2 + e2)Ce2 < § and thus 

n2 

I u' 
Jo 

dx < max • 
2fe)3 sup / i^dz 

. t Jo 
, / u4(0,x)dx 
Jo 
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Therefore, sup J" uAdx is bounded since s u p / ^ u2dx is bounded from (3.77). 
t t 

Induction will imply that for k > 1, sup f£ u2fcdx is bounded. By taking the 

^ power of both sides and passing to the limit, the L°° estimate is obtained. 

Therefore, for any T > 0, there exists a M, which depends on |[tt(0, ar)||z,<», 

such that 

H«)l loo<M, 0<t<T. 

Since 

— / u2
xdx = - [u2

xx + cuxuxx + e{u2 - l)uxuxx + uuxx] dx 
dt Jo Jo 

= — [u2
xxdx + eu2uxuxxdx — ux]dx, 

Jo 
put pu) ru) 

< — / u2
xxdx + M2e I \uxuxx\dx + u2

xdx, 
Jo Jo Jo 

r 2 j M4S2 r 2 j i r 2 J r 2 J 
< - / uxxdx + —^— / U-A + - / uxxdx + / u^da;, 

< -gj j j « L ^ + (^ + —%-) Jo
 uldx> 

or 

/ ^ ( i , x )da :<exp [ ( l + M4e2 /2)i] / u2
x(0,x)dx, 

Jo Jo 

the L2 norm of MX exists for all 0 < t < T. Therefore u(t) exists in H^,r(0, to) 

for all t > 0. 

The linear variational equation of (3.75) at (j>{x + ct) is 

vt = vxx + (e((t>2 -l) + c)vx + (l + 2e<fx/)x)v, 0 < x < LO, t>0, 

v(t,0) = v(t,to), vx(t,0) = vx(t,Lo), t > 0, 

v(0, x) — v0(x), 0 < x < LO. 

(3.82) 

It can be shown that u(t) exists in Hper(0,co) for al i i > 0 since <f>(x + ct) e 
C2(0,uo). The pointwise representation of the kth. compound equation of 

(3.82) denned on f\k G is 

k K K K 
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where 

a(t, x) = e((j)2(x + ct) - 1) + c, 

b(t, x) = 1 + 2e(f)(x + ct)<t>x{x + ct). 

Consider a Lyapunov function 

^(*) = o / w2 = o / w2^->Xl' x2, •' • , xk)dx1dx2 • • • dxn. 
1 J(0,2-ir)k 4 J(0,2ir)k 

Then 

d+V 

dt 
= / wwt 

J(0,27r)k 

= / \WJ2 Wxixi + ] C a(*' xi)wwxi + y ^ &(*> xj)w2 J 
J(°w V i=l j=l j=l / 

„ / k k \ 

= / w V m ^ . + V (e(</>2(xj + ct) - 1) + c) TO,. ] 

+ / ( kw2 + 2e Y^ </>(Xj + ct)<j>x{xj + ct)w2 ) 

= / \ w ^2 Wxm +kw2) +£ jS2 (f>(xj + ct)<j>x(xj + ct) 
./(0,270* \ j^l ) Jnj^l 

< 2 l^Xj + k + keW^x + ct^ix + c^Woo ] -21/ 

2 ( £ A j + fc + fce||#I||0OJ V, 

where 

A2j-i = A2j = - j 2 ( ^ J , i = 1,2, • 

Thus, for any k characteristic multipliers Hi, ji2, • • • ,fik, 

|i«iM2 • • • Wc| < exp I ^2 XJ + k + M I # x | U I 
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Since 1 is a characteristic multiplier of the periodic solution <fr(x + ct), say 

fj,\ — 1, the other k — 1 characteristic multipliers 

IM2M2 • • • Atfcl < exp I ] P A,- + fc + feell^xlloo I - (3.84) 

Case 1: e = 0.2 

An approximation of the periodic solution of the ordinary differential 

equation (3.75) is shown in Figure 3.1, which implies 2||<60a;||oo < (2.2)2. 

The Urabe formula of the period implies that to « 6.3. Then 

Yl \• + 3 + Ze\\<N>*\\co < - 6 (-^j + 3 + I • 0.2 • (2.2)2 « -1.516. 

Figure 3.1: e = 0.2. The black trajectory is u2 + (u')2 = 2.22. 

Theorem 3.32 implies the following corollary. 

Corollary 3.34. Ife = 0.2, then the periodic solution <f>(x+ct) of the reaction 

diffusion equation (3.75) has a stable manifold with codirnension at most 1 

in G. 

Case 2: e — 1 

An approximation of the periodic solution of the ordinary differential 

equation (3.75) is shown in Figure 3.2, which implies \\<f>\\oo < A. « 2.009, 

2||^a;||oo < (2.9)2. The Urabe formula of the period implies that u « 6.687. 

Then 

J 3 A,- + 9 + feH^Hoo < - 8 5 ( — J + 9 + 9 -1 • 2.009 • 2.9 « -13.609. 
j = i 

Theorem 3.32 implies the following corollary. 
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I 3 U 

Figure 3.2: e = 1. The black trajectory is u2 + (u')2 = 2.92. 

Corollary 3.35. Ife — 1, then the periodic solution (f)(x + ct) of the reaction 

diffusion equation (3.75) has a stable manifold with codimension at most 7 

in G. 

Case 3: e = 10 

An approximation of the periodic solution of the ordinary differential 

equation (3.75) is shown in Figure 3.3, which implies \\(f>\\oo < A & 2.0145, 

||<MJ;||OO < 16. The Urabe formula of the period implies that ui pa 19.1550. 

Then 

i / 27 r \ 2 

5328AJ-+128+128e||^B | |0O < -178880 ( — j +9+9-1-2.009-2.9 w -488.181. 
i=i V w / 

Figure 3.3: e = 10. The black trajectory is u2 4- (u1)2 = 14.52. 

Theorem 3.32 implies the following corollary. 

Corollary 3.36. Ifs — 10, then the periodic solution <f>{x-\~ct) of the reaction 

diffusion equation (3.75) has a stable manifold with at most codimension 126 

in G. 
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For the case c = e > 0, it can be shown that u = <f>(x + et) is the only 

nonconstant periodic solution of the reaction diffusion equation (3.76). The 

full discussion is as follows. If c = e > 0, then the reaction diffusion equation 

(3.76) is 

ut = uxx + eu2ux + u, 0 < x < u), t > 0, 

u(t,0) = u(t,u), ux(t,0) = ux(t,uj), t>0, (3.85) 

u(0, x) = UQ(X), 0<x<cu. 
The steady state solutions of (3.85) satisfies 

0 = uxx + eu2ux + u, 0 < x < u>, t > 0, 
(3.86) 

u(0) = U(LO), UX(0) = ux(u). 

Let v = ux. Then (3.86) is equivalent to 

ux = v := f(u, v), 

vx =—eu2v + u:= g(u,v), 0<x<u, t > 0, 

u(0) = «(w), u(0) = u(w). 

Since 

div(/,5) = fu(u,v) + gv(u,v) = -eu2 , 

Bendixson's Condition implies that the only solution of (3.86) is u — 0. The 

linear variational equation of (3.86) at u = 0 is 

Vt = vxx + v, 0 < x < to, 

V(0)=V(OJ), VX(0) = VX(OJ), 

whose eigenvalue problem 

Xcj) = 0" + 0, 0 < x < u;, 

# ) ) = # * ) , # 0 ) = #w) , 

has solutions 

Ao = 1, </>o(x) = 1, 

A2,-i = - j 2 + 1, <hj-i(x) = cos ( M x ) , 

A2j_i = -J'2 + 1, <hj(x) = sin ( ^ i x ) , 

where j = 1,2,3, ••• . 
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Corollary 3.37. The solution u =• 0 of the reaction diffusion equation (3.85) 

has a 2-dimensional center manifold, 1-dimensional unstable manifold and a 

stable manifold with codimension 3. 

The result of Angenent and Fiedler [4] implies that the periodic solutions 

of (3.85) are in form of u = u(x — c\t). Let z = x — c\t. Then 

du d?u 0 du 

u(0) = u(u), ux(0) = ux(u). 

or 
d?u , 9 .du 
-T-T + (eu + ci)—- + u = 0, 
dz2 dz (3.87) 

u(0) = U(UJ), ux(0) = ux(u), 

which is equivalent to 

du x . 
Tz=v:=f(u,v), 

— = — (eu2 + ci)v — u:= f2(u, v) 
dz 

u(0) = U(LO), U(0) = v(u). 

Since 

div(/,#) = fl(u, v) + fliu, v) = -(eu2 + ci), 

Bendixson's condition implies that the only solution of (3.87) is u — 0 if 

Ci > 0. Thus the periodic solutions of (3.85) are in form of u = u(x + c\t) 

where c\ > 0. Let p — y/^-u. Then 

p(0)=p(u), px(0)=Px{oo), 

or 
d2P / 9 ,\ dp 
_ + C l W - 1 ) _ + p = 0 , ( 3 8 8 ) 

p(0)=p(w), px(0)=px(u). 

The result of van de Pol equation implies that equation 

(Pp ii -\ dp 
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has an u-periodic solution if and only if C\ = e. Therefore, the only periodic 

solution of the reaction diffusion equation (3.85) is (j>(x + et) where 0 is a 

solution of the van der Pol equation 

d2p , 2 ,\ dp 

The result in Angenent and Fiedler [4] implies that the w-limit set of any 

bounded solution of the reaction diffusion equation (3.85) is either u = 0 or 

u = <j>(x + et) whose stability is given by Corollary 3.34- Corollary 3.37. 

Example 3.4. Consider a scalar reaction diffusion equation 

{ ik — uxx + u + eu(l —u2 — u2) + cux, 0 < x < 2-K, t > 0, 
(3.89) 

u(t, 0) = u(t, 2TT), ux(t, 0) == ux(t, 2TT), 

where e, c > 0. Similar arguments used in Chapter 2 show that the 

initial value problem associated to (3.89) generates a global semifiow on the 

Sobolev space X = H^O^ir) == {4> € L2(0,2TT) : fl G L2(0,27r),4>(0) = 

4>(2TT), C/)'(0) = 4>'(2n)}. Since u = cos(x) is a solution of 

{ iH = uxx + u + eu(l — u2 — u2
x), 0 < x < 27r, t > 0, 

u(t,0) = u(t,2ir), ux(t,0)=ux(t,2ir), 

equation (3.89) has a —periodic solution u = cos(a;+ci). In fact, the circle of 

equilibria cos(x + a),a e M of (3.4) becomes the periodic orbit u = cos(x+ ct) 

of (3.89). 

The linear variational equation of (3.89) at u — cos(:r + ct) is 

Vt = vxx + (c + £ sin(2:r + 2ct))vx + (1 — e — £ cos(2x + 2ct))v, 

v(t,0) = v(t,2ir), vx(f,0) = vx(t,2ir), 

which has solutions 

t\ = sin(x + ct) and e2 = e~2et cos(x + ct), 

with the characteristic multipliers 

Hi = 1 and [i2 = e~2e"^ < 1. 

(3.90) 
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The linear variational equation of (3.4) at u = cos(x) is 

vt — vxx + esin(2x)vI + (1 — e - ecos(2rc))v, 0 < x < 2ir, t > 0, 
v(t,0) = v(t,2ir), vs(t,0) = vx(t,2«), t>0, 

whose eigenvalue problem is given by 

\d> = 6" + esin(2a:U' + (1 - e -ecos(2x))6, 
(3.91) 

0(O) = ^(2TT), ^(0) = ^(27r). 

If (3.91) has an eigenvalue A with the corresponding eigenfunction (f>(x), 

then (3.90) has a characteristic multiplier ex'~? with a corresponding nonzero 

solution eXt(p(x + ct). In fact, substitute v = ext(p(x + ct) into (3.90) to get 

\ext(f>(x + ct) + ext4>x(x + ct)c 

= ext4>xx{x + ct) + (c + e sin(2a; + 2ct))ext(f)x(x + ct) 

+(1 - e - ecos(2x + 2ct))ext(j){x + ct), 

or 

A</>(a;+ct) = 0a;a;(x+ct)+e sin(2x+2ct)0a ;(x+ct)+(l-e-e cos(2a;+2ct))0(x+ct), 

which always holds from (3.91). The stability of the periodic solution 

u = cos(a; + ct) of (3.89) can be discussed by studying the stability of the 

steady state solution u = cos(:r) of (3.4), which has been studied in Example 

2.1 of Section 2.2. In particular, Corollary 2.13 and Corollary 2.14 imply the 

following results on the estimate of the stability of u = cos(a; + ct). 

Corollary 3.38. If 0 < e < 2(^202 - 14), then u = cos(x + ct) has a 1-

dimensional center manifold, a 1-dimensional unstable manifold and a stable 

manifold with codimension 2. 

Corollary 3.39. 7/2 (A/202 - 14) < e < 2(13\/2 - 18), then u = cos(x + ct) 

has a stable manifold with codimension at most 3. 



Chapter 4 

Convergence Theorems 

In this chapter the implications of various types of stability of a solution of 

a differential equation for the structure of its omega limit set are considered. 

A fundamental result of this type is the Poincare-Bendixson theorem for a 

planar autonomous system of ordinary differential equations. The w-limit set 

of a bounded solution of such a system is a periodic orbit if it does not contain 

an equilibrium. Massera's theorem [69] infers the existence of a periodic 

solution to a nonautonomous time-periodic scalar differential equation from 

the existence of a bounded solution. Other expositions and extensions of 

the Poincare-Bendixson theorem were obtained by Hirsch [45], R. A. Smith 

[98, 99, 101], Mallet-Paret and H. L. Smith [66]. An application of the 

Poincare-Bendixson theorem is that it can be used to deduce the existence 

of a periodic solution in the case when no equilibrium occurs in the w-limit 

set of a bounded solution. 

In dynamics, it is natural to enquire how much of the nontransient 

behaviour can be detected from an analysis of an individual orbit and its 

relationship with its neighbours. Sell [96] proved for a general semiflow on a 

metric space that a Lagrange stable orbit has a phase asymptotically stable 

periodic orbit as its omega limit set if the orbit itself is phase asymptotically 

stable. A Lagrange stable orbit means that the closure of the orbit is 

compact. Good expositions of Sell's results may be found in Cronin [22] 

Chapter 6 and Saperstone [93] Chapter III. Yoshizawa [112] also discussed 

these results and extended the application to functional differential equations. 

Pliss [89] established a closely related result for autonomous differential 

96 
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equations in R™ where the stability requirements are somewhat different from 

those of Sell: Lyapunov stability is not required but a certain uniformity is 

imposed on the manner in which the orbit attracts its neighbours. Li and 

Muldowney [54] and Muldowney [79] extended these results in the context of 

dynamical systems on a general metric space with greatly simplified proofs. 

A good summary of these results may also be found in Muldowney [80]. 

Another result of Muldowney in [80] is to deduce the existence of an 

equilibrium, even when the algebraic equations yielding the equilibria can 

not be solved explicitly. For example, Muldowney proved that, for an 

autonomous ordinary differential equation 

§ = /(«), u(.)ERn, 

the w-limit set of a bounded solution u(t) is a stable hyperbolic equilibrium 

if and only if the linear variational equation at u(t), 

dv df, .... 

is uniformly asymptotically stable. In particular, if the bounded solution 

u(t) — u* is an equilibrium, it reduces to the familiar observation that u* 

is stable hyperbolic if and only if the linear variational equation at it* is 

uniformly asymptotically stable. Li and Muldowney [55] and Muldowney 

[79] also proved that, if the w-lim.it set of a bounded solution u(t) contains 

no equilibrium, it is a stable hyperbolic periodic orbit if and only if the second 

compound differential equation 

dw df{2\ , ^ 
= -JL (u(t))w 

dt du y K " 
is uniformly asymptotically stable. This is in fact the necessary and sufficient 

condition cited in Theorem 3.15, Section 3.3.3 for stable hyperbolicity when 

u(t) is itself a periodic solution. 

An infinite dimensional version of the Poincare-Bendixson theorem for a 

scalar reaction diffusion equation was studied by Henry [43], Brunovsky and 

Fiedler [10, 11], Massatt [68], Matano [71], Angenent and Fielder [4], Fiedler 

and Mallet-Paret [30]. It was proved by Fiedler and Mallet-Paret that, for a 
general scalar reaction diffusion equation 

ut = uxx + f(x,u,ux), XES1 = R/2TTZ, / € C2, 

http://w-lim.it
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the w-limit set of any bounded solution satisfies exactly one of the following 

alternatives: 

(i) it consists in precisely one periodic solution, or 

(ii) for every orbit in the w-limit set, its w-limit set and a-limit set are 

contained in the set of steady state solutions. 

In this chapter, an extension is given of the results in [55, 79, 80] to an 

infinite dimensional differential equation 

^ + Au = f(u), u(-)eX, (4.1) 

where A is a sectorial operator in a Banach space X. The characterization of 

the stability of steady state solutions in terms of stability of linearizations and 

orbital stability of periodic orbits in terms of stability of second compound 

differential equations, discussed in Chapter 2 and Chapter 3 respectively, are 

special cases of this chapter. 

4.1 Existence of Stable Steady State 
Solutions 

The following notation, definitions, and lemmas are taken from Henry [42], 

page 53-54, page 91-92 and page 98-104 and Smoller [103], page 114-122. 

Let A be a sectorial operator in a Banach space X and / be continuously 

differentiable from Xa into X where 0 < a < 1. Let T>(A) denote the domain 

of A. Consider an initial value problem 

— + Au = f(u), u€X, ^ ^ 

u(0) = u0. 

In the following, let u(t) = u(t, u0) denote the solution of (4.2). A solution is 

a steady state solution or (an equilibrium) if u = u* € T>(A) and Au* = f(u*). 

Definition 4.1. A solution u(t,u0) of (4.2) on [0,oo) is said to be stable 

if, for each e > 0, there exists a 8 > 0 such that any solution u(t, u\) with 

\\ui — Mo||a < £ exists on [0, oo) and satisfies ||u(£,iti) — u(t, tio)||a < £ for 

all t > 0. A solution u(t, u0) of (4.2) on [0, oo) is said to be uniformly stable 

if there exists a 8 > 0 such that for each e > 0, any solution u(t,ui) with 
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11 i*i — uo\\a < 5 exists and satisfies \\u(t,u\) — u(t,uo)\\a < £ for all t > 0. 

A solution u(t,u0) of (4.2) on [0, oo) is said to be uniformly asymptotically 

stable if it is uniformly stable and there exists a 5Q > 0 and for each e > 0, 

there is a corresponding T = T{e) such that if ||ui — uo\\a < So, then 

| |tt(Mi) -u(t,u0)\\a <£ for al i i > T. 

The linear variational equation of (4.2) at the steady state solution 

u(t) = u* is 

*+*,_§£«> (4.3) 
Lemma 4 .1 . Let f be continuously differentiable from Xa into X in a 

neighbourhood of a steady state solution u* of (4.2). / / the spectrum of 

A — |£(u*) lies in {Re A > f3} for some /3 > 0, then the steady state solution 

u* of (4.2) is uniformly asymptotically stable in X01. More precisely, there 

exist p > 0,M > 1 such that if \\uo — u*\\a < ^ , then there is a unique 

solution of 

— + Au = f(u), ueX, 

u(0) = u0, 

satisfying for 0 < t < oo, 

\\u(t,uo) -u*\\a < 2Me~l3t\\u0 -u*\\a. 

Lemma 4.2. Let f be continuously differentiable from Xa into X in a 

neighbourhood of a steady state solution u* of (4.2). Let L = A — §£(«*)• 

/ / o~(L) fl {Re A < 0} is a nonempty spectral set, then the equilibrium u* 

of (4.2) is unstable. Specifically, there exist £Q > 0 and {un,n > 1} with 

\\un — u*\\a —> 0 as n —* oo, but for all n 

s\xp\\u(t,Un) — u*\\a > e0 > 0. 
i>0 

Here the supremum is taken over the maximal interval of existence ofu(t, un). 

Definition 4.2. For any u0 G Xa, the positive orbit of u(t,Uo) is C+(u0) 
{u(t, UQ) : t > 0} and the u-limit set of UQ is 

u)(u0) = {«€ Xa : there exist tn —> oo such that «(£„, n0) —• u} . 
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Remark 4.1. If ux € C+(u0), then u(ui) =ui(u0). Also 

w(«0) = Q c l C+(«(i,n0)), 
t>o 

where cl denotes the topological closure. 

Lemma 4.3. IfC+(u0) lies in a compact set in Xa, then ui(uo) is nonempty, 

closed, connected, invariant and dist(u(t,uo),u)(uo)) —> 0 as t —• oo. 

The following Lemma 4.4, Lemma 4.5 and Lemma 4.6 are taken from 

Smoller [103], page 114-122. 

Lemma 4.4. Let u(t,uo) be a solution o/(4.2) which exists on [0, T). Then 

there exists a neighborhood N of uo such that if ui S N, there is a solution 

u(t,Ui) of (4.2) which exists on [0,T). Moreover, there is a constant c > 0 

such that for all such u\ € N, 

| | u ( i , t l i ) -u(t,U0)\\a < c\\ui - t t o | | a - ( 4 - 4 ) 

Let u(t,uo) be a solution of (4.2) which exists on [0,T). Let N be as 

in Lemma 4.4. Define the solution operator (t,uo) >—>• S(t)uo on the set 

[0,T) x Xa such that the solution u(t,uo) = S(t)u0 satisfies u(0,uo) — UQ. 

Lemma 4.5. Let u(t,uo) be a solution of (4.2) and N be as in Lemma 4.4. 

If ux € N, then S(t),0 <t<T, is (Frechet) differentiable, and if UQ € N, 

then v(t, VQ) = dS(t)UQvo solves the linear variational equation of (4.2) at 

u(t,u0), 
dv . df, . .. 
- = Av +-W^v, 
v(0) = v0. 

Lemma 4.6. S(t) is continuous (Frechet) differentiable on N. 

For an autonomous finite dimensional ordinary differential equation, a 

necessary and sufficient condition for the w-limit set to be a stable hyperbolic 
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equilibrium was proved by Muldowney [80]. Consider an autonomous 

differential equation 

§ = /(«), «(-)€M", (4.5) 

where / € C^M^M"). This defines a semiflow (t,u0) i-v (f>(t,u0) on the set 

R x R n such that the solution u(t, UQ) — <j>(t, UQ) satisfies u(0, uo) — UQ. The 

linear variational equation of (4.5) at a solution u(t, u0) is 

£ = §£««,«.)).. (4.6) 
Because of linearity, every solution has the same stability properties as the 

zero solution. Therefore, it is permissible to say that a linear system is stable, 

uniformly stable, and so on. 

Proposition 4.7. The equation (4.6) is uniformly asymptotically stable if 

and only if there exist constants K, a > 0 such that if u € C+(UQ), 

£*M <Ke~at, fort>0. 

Definition 4.3. An equilibrium u*, f(u*) = 0, is stable hyperbolic if Re A < 0 

for every eigenvalue of §£(«*)• This is equivalent to the uniform asymptotic 

stability of (4.6) with u(t, u0) = u*. 

Theorem 4.8. Suppose that u(t,uo) is a bounded solution of (4.5). Then 

lim u(t, uo) = u*, where u* is a stable hyperbolic equilibrium if and only 
t—>+oo 

if the linear variational equation (4.6) of (4.5) with respect to u(t,u0) is 

uniformly asymptotically stable. 

The generalizations of Definition 4.3 and Theorem 4.8 for a differential 

equation (4.2) in a Banach space X are as follows. 

Definition 4.4. A steady state solution u* is said to be stable hyperbolic if 

the spectrum of A - §£(u*) lies in {ReX > (5} for some /3 > 0. 

Remark 4.2. Definition 4.4 is equivalent to Definition 11.19 in Smoller 
[103], page 120. Theorem 11.20 in Smoller [103], page 120, shows that the 

hyperbolic stability of u* is equivalent to the uniform asymptotic stability of 

(4.3). 
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Definition 4.5. The equation 

dv . df. . NN 
- = Av + -(u(t,u0))v, ( 4 ? ) 

v(0) = vo 

is said to be uniformly asymptotically stable if there exist constants K, a > 0 

such that \\dS(t)u\\a < K e " ^ for t > 0 if u € C+(u0). 

Theorem 4.9. Suppose that u(t, u0) is a solution of (4.2) and that C+(UQ) — 

{u(t,u0),t > 0} is relatively compact in Xa with 0 < a < 1. TTien 

lim u(£,ito) — u*, where u* is a stable hyperbolic steady state solution if and 
t—»+oo 

only if the linear variational equation (4.3) of (4.2) with respect to u(t, u0) is 

uniformly asymptotically stable. 

Theorem 4.9 will be proved in Section 4.1.1. 

Remark 4.3. For a steady state solution u = u*, its omega limit set is itself 

and thus Theorem 2.8 in Section 2.2 is a special case of Theorem 4.9. 

Remark 4.4. An example of a diffusive epidemiology disease model will be 

discussed in Chapter 6 as an application of Theorem 4.9. 

4.1.1 Proof of Theorem 4.9 

To prove Theorem 4.9, a particular upper bound of the estimate in the 

inequality in Lemma 7.1.1 in Henry [42] is given in Lemma 4.10 . 

Lemma 4.10. Suppose that a,b > 0,/? > 0 and u(t) is nonnegative and 

locally integrable on 0 < t < oo with 

rt 

i(t) <a + b (t- sf-1u(s)ds. 
Jo 

Then 

u(t) < + 1 aezpt, (4.8) 
0 

where p = (bT(f3))^ and [•] is the greatest integer function 

Proof. Lemma 7.1.1 in Henry [42] shows that 

™-tm-n=0 
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An alternative proof of the above inequality can be obtained by first showing 

that a J2 {f^+i) i s a s o l u t i o n o f v(t) = a + bfo(t ~ s)0-1v(s)ds, and then 

showing that u(t) < v(t) for all 0 < t < oo. Let p = (bF(P))?. Notice that 

([ft*])! < T(/3n), if* < | ^ 
0<t< 1, 

1+1- * > 1. 

Upt> 1, then 

a2_,w/^ - a 2 ^ ------b( *W n=0 

and thus, 

rc=0 

If 0 < pi < 1, then 

n=0 

and thus, 

r(/3n) 
n=0 

(D8n])l 

«(t) < 

([/3n])! -

Therefore for 0 < t < oo, 

u(t) < 

P. 

A 

A 

) oo 

aptJ2 
fc=0 

jfc! 
< 

+ 1 )ae Jpt 

+ 0«E 
ft=0 

fc! < 

+ 1 1 ae2*. 

+1 ae2*. 

+ 1 apte**, 

+ 1 ae"% 

The proof of Theorem 4.9 adapts the proof of Theorem 11.12 in Smoller 

[103], page 121-122 and Theorem 5.1 in Muldowney [80]. 

Proof of Theorem 4.9: 

Proof. Suppose that lim u(t, u0) = u* and u* is a stable hyperbolic steady 
t-++oo 

state solution. Then the spectrum of L = A — §£(«*) lies in {Re A > /?} for 

some j3 > 0. If 0 < /3 < ft < Re a(L), there exists Mi > 1 such that for 
t > 0, v e X a , 

||e~L*v||a < Mie^^Hulla, 

l|e_x,tu||a < Mir^e-**!^!!. 
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In fact, dS(t)u* = e~Lt. Since / is continuous differentiable from Xa in to 

X, choose T > 0 and an open set N = {u € Xa : \\u - u*\\a < r} with the 

property that if u\,u2 G N and u(t,ui),u(t,u2) are solutions of (4.2), then 

there exists M2 > 1 such that for 0 < s < T, 

df df 
f(u(s, «i)) - f(u(s, u2)) - -^(u*)u(s, ui) + —(u*)u{s, u2) 

< M2\\u(s,ui)-u(s,u2)\\a. 

Rewrite (4.2) as 

* + (,_|(M,)„./M_|(tl>. 
Then any solution u(t, UQ) of (4.2) satisfies 

u(t,u0) = e~Ltu0 + / e-L(t~s) (f(u(s,uo)) - -^(u*)u(s,u0U ds. 

Thus, 

||it(£,ui) -u(t,u2)\\a 

< | | e -L t (wi-« 2 ) | |Q 

+ f \\e-L[t-s) (/(«(«, «i)) - f(u(s,u2)) - ^(u*)u(s,Ul) + §f ( « > ( « , «a), _ 
Jo 

< Mie~0lt\\ui -u2\\a 

Jo 

• | | /(u(s,ui)) - f(u(s,u2) - §J(u*)«(s,ui) + | J (M*)« (S ,«2 ) | | ds 

<M1e-ht\\ul-u2\\a+ I Ml{t-syae-0^t-^M2\\u(s,u1)-u{s,u2)\\a, 
Jo 

Lemma 4.10 implies that there exist constants r,M,p2 > 0 such that if 

ll^j — ^*|U < r> i = 1,2, then 

\\u{t,Ui)-u{t,U2)\\a<Me-02t\\u1-u2\\a, f o r O < t < T . (4.11) 

If \\ui - u*\\a < \ and ||u2 - iti||a < §, then \\u2 - u*||a < r. Choose 

0 < 7 < &(< A) , so that Me~^T < e~^'. For any t > 0, there exists a 

ds 
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nonnegative integer n\ such that n{T < t < (ni 4- 1)T. Let t\ = t — n{T. 

Then 0 < h < T. Notice that 

\\u(nT,Ul)-u*\\a < M e - f t r | | u ( ( n - l ) r , u i ) - M * | | a 

< \\u((n-l)T,Ul-u*\\a 

< ••• < IK -u*\\a < §, 

| |«(nT,u 2 ) -«* | | a < Me- / 3 2 T | | u ( (n- l )T ,w 2 ) -n* | | a 

< |K(n-l)T,u2)-n*||a 

< ••• < ||«2 - « * | | a < ?". 

Thus from (4.11), 

|K*,ui) -w(t,u2) |U 

= \\u(h +niT,ui) -u{h +niTi,u2)\\a 

< Me"* ' 1 \\u(niT, Ul) - u(niT, u2)\\a 

< M e - ^ ' W ' e - ' 1 ' ^ ^ ! - u2\\a 

< M e - ^ - ^ ^ e - ^ ^ H u i - u2||Q = Afe-^Hui - u2||a-

Hence if ||ui - u*\\a < § and ||tt2 - ui\\a < §, then 

\\u(t,u1)-u(t,U2)\\a<Me-yt\\u1-u2\\a, fovt>0. (4.12) 

This implies that there exists r\ > 0 such that if u\ G X a , ||«i — u*\\a < r\, 

then v(t,vo) — dS(t)Ulvo solves the linear variational equation of (4.2) at 
u(t,U!), 

dv . df, . .. 
- + Av = -(u(t,u1))v, 

v(0) = v0, 

where VQ 6 Xa and 

\\dS(t)Ul \\a < Kie-^, for t > 0, (4.13) 

for some constants K\ and 71 > 0. Notice that if lim u(t,Uo) = u*, then 
t—>+oo 

there exists a constant Ti > 0 such that for t > Ti, \\u(t,uo) — u*\\a < r\. 
Inequality (4.13) implies that if u e {u(t,u0) : t > Ti}, 

\\dS(t)u\\a < Kxe~^\ for t > 0. 
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Since the orbit C+(u0) is relatively compact, Lemma 4.4 and Lemma 4.6 

imply that there exist constants K2,js > 0 such that if u E {u(t,u0) : 0 < 

t < Ti}, 
\\dS(t)u\\a<K2e-^t, f o r t e [ 0 , r i ] . 

Let K = max.{Ki,K<i) and a == max{7i,72}. Then if u e C+(uo) = 

W*,w 0 ) : t>0}, 
||d5(t)„||a < Ke~at, for * > 0. 

Therefore, the linear variational equation (4.7) of (4.2) at u(t, UQ) is uniformly 

asymptotically stable. 

Conversely, suppose that the linear variational equation (4.7) of (4.2) at 

u(t,uo) is uniformly asymptotically stable: there exist constants K, a > 0 

such that if u € C+(u0) = {u(t,u0) : t > 0}, 

\\dS(t)u\\a < Re-"*, for t > 0. (4.14) 

If u(t,u0) is a solution of (4.2), then 

d2u d . . . . . . . du df du 
_ = _ ( -A«+ /(«)) = - A - + ^ - . 

Thus ^(t,uo) is a solution of the linear variational equation (4.7) and 

^(t,u0) = dS(t)Uo^(0,u0). Inequality (4.14) implies that lim f ( t , u 0 ) = 0 

and thus 

lim -Au(t, u0) + f(u(t, u0)) = 0. (4.15) 
t—>+oo 

Since C+(UQ) is relatively compact in Xa, OJ(UO) is nonempty and connected. 

If u* 6 a;(no), then there exists a sequence tn —*• oo as n —> oo such that 

lim u(tn,Uo) = u*. Prom (4.15), 
ro—>+oo 

lim -Au(tn, u0) + f(u(tn, u0)) = 0. 
n—>+oo 

Since / is continuous and A is closed on Xa when 0 < a < 1, 

lim -Ait(t„, uo) + /(w(tn, uo)) = -Au* + /(it*). 
n—>+oo 

T h u s u* is a s t e a d y s t a t e solut ion of (4.2). F r o m L e m m a 4.4 a n d L e m m a 

4.6, inequality (4.14) is satisfied with u = u* which means that it* is a stable 

hyperbolic steady state solution. Hence there exists an open neighbourhood 
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N of u* such that any solution u(t, Ui) of (4.2) with initial condition ui € N 

stays in N when t is large enough. Consequently, u* is the unique steady 

state solution in N since the omega limit set LU(UQ) is connected. 

4.2 Existence of Stable Periodic Solutions 

In this section, conditions for an omega limit set to be a stable hyperbolic 

periodic solution will be studied. A result of Li and Muldowney [55] for 

n-dimensional ordinary differential equation is the following. Consider an 

autonomous differential equation 

« / ( « ) , < ) £ » " , (4.16) 

where / € C^M^R"). This defines a semiflow (t,u0) i-» <p(t,u0) on the set 

R x i " such that the solution u(t, UQ) = <f>(t, UQ) satisfies u(Q, uo) = UQ. 

The linear variational equation of (4.16) at a solution u(t,uo) is 

!-§£(«<«,«.)>«. (4.17) 
The second compound differential equation of (4.17) is 

dw df[2] 

•*-£ {u{t^))w- (4-18) 

Theorem 4.11. Suppose thatu(t,u0) is a bounded solution o/(4.16) whose 

omega limit set U>(UQ) contains no equilibrium. Then u>(u0) is a stable 

hyperbolic periodic orbit if and only if the second compound differential 

equation (4.18) o/(4.17) is uniformly asymptotically stable. 

A generalization of the sufficiency statement in Theorem 4.11 for a 

differential equation in a Banach space X is Theorem 4.12. 

Theorem 4.12. Let A be a sectorial operator in a Banach space X and f 

be continuously differentiable from Xa into X and 0 < a < 1. Suppose that 

u(t, UQ) is a solution of 

-jt+Au = f(u), ( 4 1 9 ) 

u(0) -uo. 
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such that 

(i) C+(u0) = {u(t,Uo) : t > 0} is relatively compact in Xa; 

(ii) vx(t) = ^(t,uo) is uniformly bounded in Xa with respect to all t > 0;. 

(Hi) the omega limit setu>(uo) ofu(t,uo) contains no steady state solution; 

(iv) the second compound differential equation 

^ + A = |£[V(Mo)K (4.20) 

is uniformly asymptotically stable in / \ Xa. 

Then U>(UQ) is a stable hyperbolic periodic solution in Xa. 

The proof of Theorem 4.12 will be discussed in Section 4.2.1. The key 

consequence of the asymptotic stability assumption (iv) is that v1^), which is 

tangent to the periodic orbit and a solution of the linear variational equation 

^ + Av = ^-(u(t,u0))v (4.21) 

satisfies 

|| (v1 A v)(t)\\ < KIKv1 A v)(s)\\e-^-s\ 0<s<t, (4.22) 

for some constants K, 7 > 0. The exponential decay of vl A v is deduced from 

the uniform asymptotic stability of the second compound differential equation 

(4.20). This means that, infmitesimally, the area of a parallelogram with one 

side tangent to the periodic orbit decays exponentially in the dynamics. 

The remainder of this section will be devoted to discussion of an application 

of Theorem 4.12. Consider a reaction diffusion system 

— = DAu + f(x,u), x€Q, (4.23) 

with Dirichlet boundary condition 

u\m = 0, (4.24) 

or Neumann boundary condition 

= 0, (4.25) 
du 
dn on 

or a more general boundary condition of the form 

Bu\an = 0. (4-26) 
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where Q C Rm is a bounded domain with smooth boundary, / : Q, x Mn —» R" 

is locally Lipschitz continuous in u, uniformly in x and D = diag(di, • • • , dn), 

di > 0. Let X = L2(tt,Rn) and A : V{A) c X -»• X be the linear unbounded 

operator Au = —Au, where 

V(A) = { « £ tf2(fi,]T), £u | a n = 0} . 

The initial value problem of (4.23) is well-posed in Xa. Two representations 

of the second compound differential equation of (4.23) are (3.15) and (3.17) 

in Section 3.2 where the coefficient a^{t,x) = -^-(x,u(t,x)). Theorem 4.12 

gives a sufficient condition for the w-limit set of a bounded solution u(t,uo) 

to be a periodic orbit in Xa. 

Example 4.1. Consider a special case of (4.23) with n = 2 and fi = (0, L): 

ut = d1uxx + f(x,u,v), vt = d2vxx + g(x,u,v), 0 < x < L, t > 0, 

u(t,0) = u{t,L) = 0, v(t,0) = v(t,L) = 0, t>0, 

(4.27) 

where f,g £ C2((0,L) x M2 -> M2). Suppose that (u(t,x),v(t,x)) 

is a bounded solution of (4.27) in X = H$(Q,L) x H%(0,L). Then 

(fjf (i, x), fjf (t, x)) e X (see Henry [42], Theorem 3.5.2, page 71). A pointwise 

representation of the second compound differential equation of the linear 

variation equation at any solution (u(t,x),v(t,x)) is 

dwn 
^(Axwn + A2wn) + (an(t,xi) + au(t,x2))ivu 

+a12(t, xi)w2i + a12(t, x2)wi2, 

d2{Axw22 + A2w22) + (a22(t, xi) + a22(t, x2))w22 

dt 

dw22 

dt (4.28) 

+a21(t, xi)wn + a2i (t, x2)w2i, 

dw 12 

at 
c?iAiu;12 + d2A2w12 + (an(t, Xi) + a22(t, x2))wn 

+a12(t, Xi)w22 + a2i (t, x2)wn, 

where 

a>u(t,x) a12(t,x) 
a2i(t,x) a22(t,x) 

df df 
— (x, u(t, x), v(t, x)) — (x, u(t, x), v(t, x)) 

— (x, u(t, x), v(t, x)) —(x, u(t, x), v(t, x)) 
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Let Ai < A2 < • • • denote the eigenvalues of the Laplace equation 

Au = —Ajit, At; = —Ait; 
u(t, 0) = u(t, L) = 0, v(t, 0) = v(t, L) = 0. 

Consider a Lyapunov function 

V(t) = ~ [ [(wnf + (w22f + 2(w12f] . 
l- J(0,L)2 

Then the derivative of V calculated for (3.28) of Section 3.2 implies that for 

any positive functions v\(x), v2(x), 

—- < f [vx(t){wn)
2 + V2(t){w22)

2 + 2ti3(t)(w12)
2] 

dt J(o,L)2 (4.29) 

< 2fx(t)V, 

where 

(J>i(t) = - ( A ! + A2)<ii + max^2aii(£,x)H —r \a12(t,x) + a2i(t,x)\ } , 

M2(*) = - (Ai + \2)d2 + max<2a22(t,x) -\ — \a12(t,x) + a21(t,x)\ \, 

x \ V2\X) ) 

A*3(*) = -\i{d1 + d2) + ma,xlan(t,x) + -2-^-\a12{t,x) + a21(t,x)\ > 

f vAx) 1 
+ max < a22(t, x) + —~— \al2(t,x) + a21(t,x)\>, 

H(t) = max.{iii(t),iMi(t),tX3(t)}, 

(4.30) 

and the maximum is taken over 0 < x < L. 

Since H1^, L) C L2(0, L) is compact, Theorem 4.12 implies the following 

corollary. 

Corollary 4.13. Sup-pose that n = 2 and u(t,uo) is a bounded solution of 

(4.23) in X and that there exist constants a, b > 0 such that 

H< -a(t -s) + b, 0<s<t<oo, (4.31) 

where //(•) is defined by (4.30). / / the omega limit set u>(u0) of u(t,u0) 

contains no steady state solution, then it is a stable hyperbolic periodic 
solution in L2(0,L). 
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Remark 4.5. The above procedure also applies to other boundary conditions 

where Aj are the eigenvalues of the Laplace equation with correspond 

boundary conditions. 

Remark 4.6. To apply Theorem 4.12, it is not necessary to find an explicit 

bounded solution u(t,uo). For example, if S is an invariant bounded set and 

no steady state solutions exist in S, then there exists a stable hyperbolic 

periodic solution in S as long as inequality (4.31) is true for an upper bound 

of ji(t) in S. 

Fiedler and Mallet-Paret [30] proved the classical Poincare-Bendixson 

theorem for a scalar reaction diffusion equation 

ut = uxx + f(x,u,ux), 0<X<2TT, t>0, , . 
u(t,0) = u(t,2ir), ux(t,0) = ux(t,2n), t>0, { j 

where / e C2((0,2TT) X E X R -> E). However, Theorem 4.12 establishes 

both the existence and stability of periodic solutions. Let X = {u € 

H2(0,27r) : u(0) = U(2TT), UX(0) = •ux(27r)}. The initial value problem 

associated to (4.32) generates a local semiflow on X. The linear variational 

equation of (4.32) at a solution u = u(t, x) is 

vt = vxx + a(t,x)vx + b(t,x)vx, 0 < x < 2 7 r , t > 0, , . 
v(t,0) = v(t,2n), vx(t,0) = vx(t,27r), t>0, ^-66) 

where 
f) -P £l -P 

a(t,x) = —(x,u,ux) = fUx(x,u,ux), b(t,x) = — (x,u,ux) = fu(x,u,ux). 

A similar argument to that in Corollary 3.33 of Section 3.4 implies Corollary 
4.14. 

Corollary 4.14. Suppose that u(t, x) is a bounded solution in X and that 

there exist a, b > 0 such that max \a(t, x)\ > 0, 0 < x < 2n and 
X 

I max {4b(t,x)+2\a(t,x)\v(t)}dt<(l-a)(t-s) + b; 

or a(t, x) = 0 for 0 < x < 2ir and 

2 / max6(i, x) < (1 - a)(t -s) + b, 
Js x 

where v(t) = max.\a(t,x)\. If the omega limit set LJ(U0) of u(t,x) contains 
no steady state solution, then it is a stable hyperbolic periodic solution in 
L2(0,L). 
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4.2.1 Proof of Theorem 4.12: 

The proof of Theorem 4.12 is adapted from the argument used in the proof of 

Theorem 4.1 in Li and Muldowney [55]. To prove Theorem 4.12, the following 

Proposition 4.15 is established to show that, under the assumptions of the 

theorem, the solution space of the linear variational equation (4.21) is the 

direct sum of two subspaces X\ and X2\ the 1-dimensional subspace X\ 

is strongly stable and spanned by vx($) = ^(t,u0) and the codimension 1 

subspace X2 is uniformly asymptotically stable. 

Let X be a normed space and t E [0, oo) and X* be its (continuous) dual 

space. Let V be a linear space of maps t \-* v(t) from [0, oo) to X. If £ € A" 

and ip € X*, define 

ip(x) = (IJJ,X) . 

For xl,x2 E X, define a norm of x1 A x2 as follows (see Section 1.1): 

Ire1 A a;21| A 2 x = sup det 
{fax1) (fax2) 
(fax1) (fax2) 

(4.34) 

Here the supreme is taken over ipi E X', \\ipi\\x' < 1, i = 1,2. For simplicity, 

the symbol || • || will be used instead of || • || »*x except when the relationship 

with the norm in X is to be emphasized. 

Proposition 4.15. Suppose that assumptions (i),(ii),(iii) are satisfied: 

(i) there exists a constant L > 1 and a nonzero v1 EV such that 

H^OOH ^LH^Os)!!, 0<s,t; 

(ii) there exist constants K, 7 > 0 such that for every v E V, 

WiV1 Av)(t)\\ ^KWiv1 Av)(s)||e-7(*-s), 0 < s < t; 

{in) there exist constants H > 0 a,nd ft > 0 such that for every v E V, 

\\v(t)\\ < HWvWWe?^, 0<s<t. 

Then there exists a constant C > 0 such that 

V = Vt © V2 
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where 

Vt = spaniv1}, V2 = {yeV: \\v{t)\\ < C\\y(s)\\e-^-s\ 0 < s < t} . 

Remark 4.7. When X — Rn, Proposition 4.15 is proved by Li and Muldowney 

[55]. 

Proposition 4.15 will be proved by the following sequence of lemmas. 

Lemma 4.16. For xx,x2 6 X, 

TJII^IIIIX2!! < lire1 Arc2!! <2||a;1||||x2||, 

where 

t] = min 
-\<v<\ 

a;' 
\x* 

Proof. For xi € X and V* € X', | |^ | | < 1, i = 1,2, 

det 
(^ rc 1 ) {'ipux2) 
{ip2,xl) {tp2,x2) 

< \(^,xl) • ̂ 2,x
2)\ + \(^ux

2) • ^2)x
l)\ 

< 2||x1||||x2||. 

Thus 

xL Ax*\\ < 2 b 1 ar . HllU2l 

Let (x1)* E X' such that ||x|| = (x*,x), \\x*\\x> = 1. Then 

Ha?1 A a?2|| > sup | H^1!! • {ip,x2) - {{xl)*,x2) • (tp,xx) 
•<l> 

> ||rir||||ar||sup 

|rr1||||rc2||sup 

= llrrMlllx2! 

(ip,x2) (ip,xl) ((x1)*^2) 

1>, x± 
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where '•Z-L and — 1 < v < 1. Therefore, 

Ix1 A x2|| ^^H^llllx2!!, 

where 

r\ = mm 
x4- x" 

}• 
Remark 4.8. The number 77 in Lemma 4.16 is a measure of the angle between 

x1 and x2, see Figure 4.1. When X is a Hilbert space with inner product 

<v>, 

U ^ A x l ^ d e t ^ X \ \ \xl
2>

Xl\ 11 " (x^x1) (x2,x2) 

where 8 is the angle of the vector and 

= sinae||ar1||2||a:z||a, 

Thus 

where 77 

cos# 

r1 , , x2 

„1 11 ^ T T T T M 

IxMlllx2!! ' 

\xx Nx2f = tf\VXf\\A?, 
with i/ == 

^*~~ 

(x\x2) 

IMI • 

X1 

—~JI*'II 
x2 

Figure 4.1: A measure of the angle between x1 and x2 

Lemma 4.17 is from Daleckii and Krein [23], page 156. 

Lemma 4.17. Suppose that the normed space X decomposes into a direct 

sum X = Xi © X2 of closed subspaces and P\,PQ, = I — Pi are the 

corresponding projections. Then 

inf / x1-

\\xl } < 1,2. 
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Proof. Suppose that xi £ Xi:i = 1,2. Let x = x1 + x2 where xl = PiX,i = 

1,2. Then 

P\X PiX 

and thus 

Similarly, 

]\x* \\PiA\ \\P*x\\ 

1 

< 

||Pis|| 

1 

JPA 

_2|M|_ 
WPixV 

II-PL^II 

P\x - l l p ,,P2X 

ll^ll 
x-m^mP2X 

\x\\ + 

\\p*\\ 

\\PiX + P2x\\ 

ll^ll \P2X\\ 

inf ( 
Xi€Xi [ 

X ' 

\X* 
<2 in f 

inf 
XitXi 

x' 

xex \\PiX\\ \\Pi\ 

2 

x* }<-
Lemma 4.18 is Corollary 2.3 proved in Section 2.1.2. 

Lemma 4.18. Suppose that for every v G V, the following two conditions 

are satisfied: 

(i) limsup \\v(t)\\ < oo; 
t—*oo 

(it) liminf \\v(t)\\ = 0 implies lim ||u(t)|| = 0. 

t—*OQ t—>00 

Then 

codimlv € V : lim \\v(t)\\ = o) < 2 
I t—»00 J 

i/ and on/?/ if, for all v1, v2 £ V, 

lim IKu1 Au2)(t)|| = 0 . 

The proof of Proposition 4.15 is adapted from Li and Muldowney [55]. 
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Proof of Proposition 4.15: 

Proof. The proof of Proposition 4.15 will be divided into two parts according 

to the value of f3 in assumption (iii). 

Case 1: (5 = 0 in assumption (iii) 

Let Vo = {v G V : lim ||i>(i)|| = 0}. For any v G Vo and t > 0, there exists 
t—»oo 

a T such that ||u(f+ T)|| < ^IKOII- ft follows from assumption (i) that for 

any — 1 < v < 1, 

J._I-L< 
2L L 2L~ 

v1(t + T) _ v(t + T) 

\vi(t)\\ Ht)\\ 

or 
< 

2HL 

Thus, Lemma 4.16 implies that 

1 

v\t) 

<H 

v(t) 

v\t) v(t) 

\vi(t)\\ \\v(t)\\ 

2HV 

\\v\t)\\ \\v(t)\\ 

^(OIIIKOII < \\(vx Nv)(t)\\<K\\(vx \v)(s)\\<r^-s) 

< 2K\\v1(s)\\\\v(s)\\e-^t-s\ 

It follows from assumption (i) again that 

2^IK«)II <2KL\\v(s)\\e^-s\ 

or 
||u(t)|| <4ifJftTL2||w(s)||e-^-s). 

Therefore, 

V0 = {v G V : \\v(t)\\ < 4 i fXL 2 | |v(s) | |e-^ t^, for all 0 < s < t}. 

Now under assumptions (ii) and (iii), Lemma 4.18 implies that for every 

v G V, there exists a nontrivial i>o = c\vl + C2V such that 

lim | M * ) | | = 0 . 
t—>oo 

From assumption (^), c2 7̂  0 and thus v 

K = span{ t ; 1 }©^. 
Case 2: /? > 0 in assumption (iii) 

-Q±vi + J_w Therefore 
C2 C 2

 u 
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In the following, it will be shown that assumptions (i)-(iii) imply that there 

exists a constant H' > 0 such that 

||u(t)|| <H'\\v(s)\\, 0<s<t, 

and thus Proposition 4.15 follows from Case 1. 

For each t > 0, let (v1)*^) € X' be such tha t p 1 ^ = {(v1)*(t), v1 (t)} 

and | | ( v 1 ) * ^ ) ^ ' = 1. It follows from assumption (i) t ha t Hv1^)!! =£ 0. For 

each v 6 V, let 

V = span-{V,u}. 

Given 0 < a < r , define 

2/ x ((^YMMT)) , , , (4.35) 

Then u2 e V and ((i;1)*^),^?-)) = 0. For each t > 0, let (v2)*(t) 6 X ' be 

such that \\v2(t)\\ = ((v2)*{t),v2(t)) and ||(i;2)*(*)|U' = 1. Then 

\\V\T)\\\\V2(T)\ det ((v2yy) {(v2)*,v2) 
< ll(^At;2)(r)|| 

< K\\(vl Av2){a)\\e-^T-^ 

< 2K\\v1{a)\\\\v2{a)\\e-^T-"\ 

(r) 

Thus assumption (i) implies that 

\v\r)\\ < ^K^^\\v2(a)\\e-^^ 

< 2KL\\v2{u)\\e-^r-a\ 

Therefore, every » £ V can be written as 

{{vly{T),v{r)), 
«(*) = |« i ( r ) 

v\t) + v2(t), (4.36) 

where v2 € V and | | f2(r) | | < 2-KX||v2(er)||e-^T-ff>. Choose T > 0 such that 

5 := 2KLe~^T < y < 1. (4.37) 
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Let «o > 0 and define sk = s0 + kT, k = 0,1,2, • • • . Then every v eV can 

be written as 

v(t) = ckv
1(t)+v2'k{t), k = 0,1,2, • 

where v2'k € V and 

(4.38) 

Cfe 
((^)*(gfc+i)^(gfc+i)) / / „ i w . \ ,W(a \\-n 

llvl(sk+in , ((v ) (sk+1),v (sk+1))-0, 

\\v2>k(sk+1)\\<6\\v2>k(sk)\\. 

Let 
Vi = spanj?;1}, V2,k = {v e V : ||u(sfe+1)|| < 5||v(sfc)||}. 

Then (4.38) implies that on the interval [sk, sk+i], V = Vi © V2,k and Vi, V2,k 

are closed subspaces of V. Notice that if v2 e V^k, then 

HeF 
vl(sk) v2(sk) 

WWW \\v2(sk) 
> 

^(sfc+i) v2(sk+1) 

KK)II \\v2(sk) 

> T-8>0. 
Li 

Thus, on the interval [sk,sk+i], Lemma 4.17 implies that the projections 

Pi{-),i = 1,2 onto Vi and V2,k respectively satisfy 

Pi(sk) < nHe?T := p, 

where [i = ^ts- F° r every v € V, it follows from (4.38) that 

v(sk) = Cfcf1^) + v2'k(sk) = Cfc-it;1^) + v2'fe_1(sfc). 

Then 
«2'*(afc) = P2(sfc)«2'fc-1(afc), 
CkVX{sk) = ck-iv

1(sk) + Pi(sk)v
2'k-1(sk). 

Thus, for i = 1,2, 

llP^Sfc)̂ *-1^*)!! < Pll^-1^)!! 

< MH^-Hfl/b-i)!! := JR||v2*fc-1C«fc-i)ll 

< •••<i? f e | |v2 ' ° (s0 ) | | 

< P#||t>(so)||, 
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since ||v2,0(so)|| = ||P2(so)w(«o)|| < PlNso)||, where 

R = p6 = 2KLnHe^-~<)T. (4.39) 

Hence 

or 

MlK(s*)ll < |cfc_i|||i;1(sfc)|| + ||i'i(afc)u
2'*-1(sfc) 

< |Cfc_l|| |u1(Sfc)||+p/? fc | |v(s0)| | , 

h\ < |cfc-i| + /»IKso)|||7-j 
^K)ll" 

k Ri 

< •••<N + PHS0)|lEp (s i ) | 

lk(sn)l l n / MI v ^ -R* 

< p\Hs0)\\J2Rl 

(4.40) 

k 

= o m 

since |c0| = " ^ ^ f " < pJSg|> w h e r e m : = ^ ^ ""'(OH for all 
t > s0. 

Case 2.1: /3 < 7 

It can be assumed that R < 1 in addition to (4.37) by choosing T 

sufficiently large if necessary. Now inequality (4.40) implies 

|Cfc| * ^T=^ I K s o ) l 1 ' 
and thus 

\\v(sk)\\ < 10*111̂ (̂ )11 +ll«2,*(«*)|| 

< ^rn^\\y(s0)\\\\v\sk)\\+pRk\\v(so)\\ 

where M := L||ti1(s0||) > H^WH for all t > s0. It follows from assumption 
(Hi) that for every v EV, 

\\v(t)\\ < He0T\\v(sk)\\ for sk < t < sk+u 



4. Convergence Theorems 120 

and thus 

\\v(t)\\ < H'\\v(s0)\\, 0<s0<t, 

where H' = He^Tp I m(¥_R) + 1J which is independent of SQ. 

Case 2.2: /? > 7 

The case fl = 7 can be included in the case /3 > 7 by replacing 7 by a 

slightly smaller constant in assumption (M) or /3 by a slightly larger constant 

in assumption {Hi). Thus, without loss of generality, only the case /3 > 7 

will be discussed. 

Step 1: Inequality (4.40) implies 

i?78 - 1 

and thus 

IKsOII < \ck\\\v\sk)\\ + \y>k{sk)\\ 

- <,
m(fl-1)H"(s°)llli'''MII+ ^11^)11 

* >(s*£i)+i)*H*)'-
Let 0 < 71 < 7. Choose T > i ln(4KL2# + 2iCL2) so that 

2KLiiHe~llT < 1. 

Notice that if /?i = /? + 71 - 7 < /3, then 

R = 2KLixHe-^TehT < e^T, 

and thus 

H"M - "(m(iT-l)+ 1) e ' " ' 'T | K S° ) l 1 

£ " ( ^ L T ) + 1 ) e f t < " , | | , ' W I 1 -
Hence, for sk <t < Sk+i, 

\\v(t)\\ < He^\\v(sk)\\ < HiMso)]]^*-^, 0<s0<t, 
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where Hi = He^p ( TO(^
f_1) + l ) which is independent of s0-

Step 2: Repeat Step 1 until /3„ < 7 for some n and 

H i ) l ! < ^ | K s o ) | | e ^ - ^ ; 0<s0<t, 

where Hn is independent of SQ. In fact, this can be done by choosing T 

sufficiently large in each step. Since /3„ < 7, Case 2.1 implies that there 

exists a constant H' > 0 such that 

\\v(t)\\<H'\\v(s)\\,0<s<t. 

Therefore, Proposition 4.15 is proved. 

Proof of Theorem 4.12: 

Proof. Since u(t,Uo) is bounded and |£(«(£,u0)) G Jz?(Xa,X), there exists 

a constant Ci such that |||£(u(t,uo))\\^^xa,x) < C\. For a sectorial operator 

A, there exists a constant Mi such that for 0 < (3i < a < 1, 

We-^y^LSMiit-sf^Wyis)^. 

The solution of the linear variational equation of (4.19) at u(t,Uo), 

dv . df,., ., 
- + Av = -(u(t,u0))v, 

v(0) = v0, 

satisfies 

\Ht,Vo)\\a < ||e-^-*o)v(0)||a+ f 
Jo 

< M 1 |K0) | | a + / 
Jo 

e Mt-s)^{u{SjUo))v^Vo) 

du 

A^s^(u(s,u0))v(s,v0) 

(4.41) 

ds 

du 
ds 

df 
(u(s,uQ))v(s,v0) ds < MiWviO^ + M^it-s)-0 ^ 

< Mi ||u(0) |U + M.1C1 f {t - s)~a ||v(s, vo) \\ads. 
Jo 

Thus, Lemma 4.10 implies that there exist constants M, (3 > 0 such that 

| | ^^o) IU<Me / ? t | | ^ 0 | | a . (4.42) 
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Since v\t) = ^(u( t ,«o)) e Xa (see Henry [42], Theorem 3.5.2, page 71) is 

uniformly bounded, there exists a constant a > 0 such that 

Italia < a, t>0. (4.43) 

Moreover, since its omega limit set w(«0) contains no steady state solution, 

there exists a constant b > 0 such that 

\\v1(s)\\a>b>0, s > 0 . (4.44) 

If not, then there exists a sequence \sn}, sn —-> oo as n —> oo, such that 

lim -Au(sn,uo) + f(u(sn,u0)) — lim wx(sn) = 0. 
n—»oo n—>oo 

Since / is continuous and A is closed on Xa when 0 < a < 1, this implies 

that a'('Uo) contains a steady state solution contradicting the assumption that 

u)(u0) contains no such solution. Thus, (4.43) and (4.44) imply 

H v ^ l l a < LWv^Wa, f o r M > 0 , (4.45) 

where L = | > 1. Let {T(t, s),Q < s < t} be the evolution operator 

generated by the solution of (4.41). The space X decomposes into a direct 

sum X = Xi(t) 0 X2(t) where Xx(t) = span{^( i ,« 0 )} C X a is the tangent 

vector space at time t of the bounded solution u(t, u0). If v(t) — v(t, vQ) is a 

( V ' A V X * ) 

^ ^ (V ]AVX0 

v'(*) 

Figure 4.2: Evolution of the oriented infinitesimal parallelogram v1 A t> 

solution of the linear variational equation (4.41), then (v1 Av)(t) is a solution 

of the second compound differential equation (4.20); see Figure 4.2. Thus 

the uniform asymptotic stability of (4.20) implies that there exist constant 

K, 7 > 0 such that 

IK*;1 A v)(t)\\ < K\\(vl A wXaJHe-'rf*-'), 0 < s < t. (4.46) 
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Prom (4.42), (4.45) and (4.46), Proposition 4.15 implies that there exists a 

constant G > 0 such that 

\\T(t,8)x1\\a<C\\x1\\a for X! €*! (* ) , 0<S,t, 
(4.47) 

\\T(t,s)x2\\a < Ce-^ -^H^IU for x2 € X$(s), 0<s<t. 

Since the stability of the second compound differential equation (4.20) is 

sufficiently robust, the above argument can be applied to any solution in the 

omega limit set LO(UQ). 

In the following, consider u = u(t,u-i) where U\ G OJ{UQ) and so u(t,Ui) € 

LU(U0). Let X = Xi(t) © X2(t) where Xi(t) = span{^(t ,ui)} c Xa and 

Pi(s) be the projections onto Xi(s),i = 1,2. Next apply an argument used 

in Coppel [19], page 82-85, Henry [42], page 251-253 and Li and Muldowney 

[55]. For any solution u(t) of (4.19), let z = u - u(t,ui). Then (4.19) is 

equivalent to 

% + ( A - ^ ( « ( * , « I ) ) ) Z = g(t,z), (4.48) 

where 
df 

9(t, z) = f(u(t, «i) + z)- f(u(t, ui)) - Q^(u(t,ui))z 

satisfies g(t, 0) = 0 and 

\\9(t,Zl) -g(t,Z2)\\ < k(6)\\Z! -Z2\\a, if ||2;i||a, \\z2\\a < 6, 

with k(5) —• 0 as S —*• 0+. Given e > 0, there exists 5 > 0 such that 

IkilU INIU < f> implies 

\\g(t,z1)-g(t,z2)\\<e\\z1-z2\\a. (4.49) 

If 0 < /3 < 7, consider a Banach space 

Ba>fi = { z e C([0,oo),X<*) : ||^|Ui/3 < oo}, 

where \\z\\a,p = sup p^Hae'3*. If z € #<*/?, ||^||a/3 < 5 and a 6 X2(0), define 
t>o 

^ ( z ) as 

Fa(z)(t) = T(t,0)a+ f T(t,s)P2(s)g(s,z(s))ds 

, (4-50) 
T(t,s)P1(s)g(s,z(s))ds, t>0. [ 
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From (4.47), (4.49) and (4.50), 

\Fa(z)(t)\\« < C 

< C 

< C 

e 7*||a| 

,-yt 

a + e e-^\\z(s)\\ads + e \\z(s)\\ads 
Jo Jt 

« , / ? ( / e-^-s)e-0sds+ [°°e-0sds e 7 \\a\\a + e\\z 

e ^WaWa + e\\z\\atl3 

-pt e-pt 
+ 

7- /S P 

Ce-7t | |a| |a + 0|HU/3e-'3t, 0 = Ce 7 
(3d-PY 

Choose e and 6 so that 0 < 9 < 1 and C\\a\\a < (1 - 9)6 and thus 

\\Fa(z)(t)\\a,p < C\\a\\a + 6\\z\\aS 

< (1-9)5 + 96 = 5. 

(4.51) 

(4.52) 

Let z,Zi E Ba,0,\\z\\a,f) < <MI<3i||a,/3 < 5,i = 1,2 and a € -^(O), ||a||a < 
^^•5. Then Fa(z) G Baip and ||Fa(,z)||a>/3 < <5. A similar estimate shows that 

\\Fa(zi)-Fa(z2)\\a,0<e\\zl-z2\\a,0. 

Hence the equation z = F^(z) has a unique solution z* = z*(t,a). Notice 

that 

(t, a) i-> u(t, £) := u(t, u\) + z*(t, a) 

is a solution of (4.19) with initial condition 
/•oo 

£ = u(0,u1) + z*(0,a) = u1 + a- T(0,s)P!(s)g(s,z(s))ds. (4.53) 

Prom the first inequality of (4.52), 

C 

\\z*(t,a)\\a,i3 < j ^ H U -

Since \\g(t, z)\\a — o(\\z\\a) uniformly in t for ||,z||a —»• 0, it follows that 

z*(0, a) = a + o(||o||a)u(0, ui). (4.54) 

If p is sufficiently small, the set of all £ satisfying (4.53) with ||£||a < p and 

Pi(0)£ = 0 is a manifold SP of codimension 1 and if £ 6 S^, 

lim Ht,0-«(*,«i)IU = 0. 
t—>oo 

(4.55) 
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Let u(t,£) be a solution of (4.19) with tt(0,£) = £. For £ = Ui, equation 

« ( t , 0 - « i - ^ ( 0 , o ) = 0 (4.56) 

has a solution when i = 0, a = 0. Observe that the linear map (t, a) H-» 

£^r(0, Ui) — a is invertible. From (4.54), the implicit function theorem implies 

that equation (4.56) is solvable when ||^ —Mi||Q < a for some constant a > 0, 

that is, there exist t' = £'(£) and a' G X%(0) such that 

«(£',£) = ui + z*(0, a'), 

where 

||a'||„ < ^ . 

Since u-\, EU{UQ), there exists £1,̂ 2 € <Sp such that ufa,^) = £2^1 > 0 and 

a sequence tk —* oo,u(tk,£i) —> ui,k —> 00. Now (4.55) implies 

l im| |u(<,£i)-u(U2)| |« = 0 
t—>oo 

so that 

lim \\u(t,tl)-u(t1,u(t,Zi))\\a = 0 (4.57) 
t—KX> 

since u(f,£2) = u(£,tt(£i,£i)) = u(t + ti,£i) = u(ti,u(t,£i)). Let t = tk in 
(4.57). Then 

lim \\u(tk, £1) - u ( i b u(tk, ^ ) ) | | 0 = 0 
K—>00 

and thus u\ = u(ti,ui), which shows that u(t,u{) is periodic with period t\. 

From Theorem 3.7 in Section 3.1, this orbit is stable hyperbolic, and thus 

attracts all nearby orbits. Therefore this orbit is the whole set UJ(UQ). 

• 

Remark 4.9. If the bounded solution u = u(t,ua) is a periodic solution, then 

its omega limit set is itself. Thus Theorem 3.7 in Section 3.1 is a special case 

of Theorem 4.12. 



Chapter 5 

Bendixson Criterion 

In this chapter a generalization of the Bendixson criterion for the 

nonexistence of periodic orbits to differential equations in Banach spaces 

is established. 

In the early 1900s, I. Bendixson and H. Dulac gave conditions for a 2-

dimensional autonomous system of ordinary differential equations to rule out 

the existence of nontrivial periodic solutions, which are called the Bendixson 

and Dulac criteria. In particular, Bendixson [6] showed that 

^ = /(«), uGRn (5.1) 

has no nonconstant periodic solution if n = 2 and 

d i v / ^ 0 onR2 . 

Dulac [26] generalized this to the statement that if div (af) ^ 0 on a simply 

connected open subset D of R2, where a is a real-valued function on D, then 

there is no closed path of (5.1) which lies entirely in D. 

Higher dimensional Bendixson criteria have been developed by Busenberg 

and van den Driessche [12] and by R. A. Smith [100, 102]. Busenberg and van 

den Driessche obtained conditions which preclude the possibility of certain 

oriented loops occurring in the dynamics of (5.1) and are not confined to finite 

dimensional spaces. In particular, an extension is obtained for functional 

differential equations. R. A. Smith [102] shows that, if the system (5.1) is 

dissipative and Ai (x) + A2 (x) < 0 or A„_i(x) + A„(a;) > 0, then each bounded 

solution converges to an equilibrium. Here Ai(x) > A2(x) > ••• > \n(x) 

126 
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are the eigenvalues of \ ((§£)* + §£), %. is the Jacobian matrix of / and 

the asterisk denotes transposition. In particular, there are no simple closed 

curves that are invariant with respect to (5.1). Smith's proof contains an 

error; see Li and Muldowney [53], page 465. However the result is correct. 

Based on compound differential equations, Muldowney [78] observed that 

Smith's conditions imply that, in the dynamics of (5.1) the usual Euclidean 

measure of 2-dimensional surface area decreases with increasing or decreasing 

time respectively. Also it was noted that, for any 2-dimensional surface which 

has a given simple closed curve as its boundary, there is a positive lower 

bound on the area of the surface that depends only on the boundary curve. 

These observations were used in [78] to develop two new approaches to higher 

dimensional Bendixson conditions based on various measures of surface area. 

Both approaches give the Bendixson-Dulac results when n = 2. 

The first approach in [78] uses the fact that, if some measure of 2-

dimensional surface area decreases in the dynamics of (5.1), then no simply 

connected open region D e l " can contain a periodic orbit or any invariant 

simple closed curve if such a curve is the boundary of a 2-dimensional surface 

of minimum area. Since the boundary is invariant and the surface area 

decreases strictly, the minimality of the area is contradicted. 

The preceding approach has the advantage that it requires only local 

existence of solutions. However, it places a restriction on the region D to 

which it is applied: it must have a shape that permits the existence of a 

minimal surface for any simple closed curve in D. As explained in [78], the 

"minimal surface" can exist in a fairly abstract sense, such as the existence 

of a minimizing sequence of surfaces. 

The second approach requires that solutions originating in D exist globally, 

but replaces the requirement that 2-dimensional surface area decreases with 

a condition that the area of any surface originating in D tends to zero as t 

tends to infinity under (5.1). If the boundary is an invariant simple closed 

curve in D, this would contradict the existence of a positive lower bound for 

the surface area. 

Both of these approaches are facilitated through consideration of the 
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second compound differential equation 

Tt=iu ^Uo))w (5-2) 

with respect to a solution u(t,u0),u0 € D, which governs the evolution of 

2-dimensional surface areas near u(t, uo). In particular, the second approach 

can be implemented in terms of Bendixson conditions related to stability 

requirement on (5.2); see Li and Muldowney [58], Muldowney [78]. 

This chapter begins with the establishment of a positive lower bound for 

a 2-dimensional surface area whose boundary is a given simple closed curve 

in a Banach space X; the bound depends only on the curve. Bendixson 

conditions for differential equations in Banach spaces are developed in terms 

of stability of associated compound linear differential equations. 

5.1 Surfaces and Boundaries in Banach 
Spaces 

In this section, a measure of 2-dimensional surface is introduced and the 

existence of a positive lower bound for 2-dimensional surface area whose 

boundary is a given simple closed curve in a Banach space X is obtained. 

Throughout this section, the real Banach space X is assumed to satisfy 

the Radon-Nikodym property (see [5, 27, 88]) and its norm is Gateaux 

differentiable (see [29, 46, 72]). 

Definition 5.1. Suppose that G is a nonempty open subset of a real Banach 

space X and that / : G —> Y is a map from G into a real Banach space Y. 

The map / is Gateaux differentiable at x 6 G if for each h € X, the limit 

/(« + ft)-/W 

t-*o t 

exists in the norm topology of Y and defines a linear (in h) map which is 

continuous from XtoY. The map / is Frechet differentiable at x € G if 

the limit (5.3) is uniform for h £ Sx = {% € X : \\x\\ = 1}. The Gateaux 

derivative of / at x is denoted by df(x). 

Definit ion 5.2. A real Banach space X is said to satisfy the Radon-Nikodym 

property if every function of bounded variation from [0,1] into X is Gateaux 

differentiable almost everywhere. 
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Earlier results of Dunford and Pettis (see [27]) showed that such spaces 

include separable dual spaces and reflexive spaces. The Aronszajn Theorem 

(see [88]) shows that every Lipschitz continuous map / : G —• Y is Gateaux 

differentiable almost everywhere provided that X is separable and Y satisfies 

the Radon-Nikodym property. 

Definition 5.3. A norm || • || on a Banach space X is Gateaux differentiable 

if it is Gateaux differentiable at every point of X\{0}. 

Lemma 5.1. Let X be a Banach space whose norm is Gateaux differentiable 

at the point x ^ 0 and X* be its (continuous) dual space. Then 
\\x + ty\\ — \\x\\ 

l im- -~——- = Gx{y) defines an element Gx € X* such that \\GX\\ < 1. 

Furthermore, if x € X and \x\ < 1, then ||GX|| = 1-

Let B = {x € R2 : |x| < 1} be the Euclidean unit ball in R2 centered at 

the origin, whose closure and boundary are denoted by B and dB. The 

boundary dB can also be associated with S1 = R/27rZ. The following 

definitions are similar to those in Li [51] and Li and Muldowney [53, 58]. 

Definition 5.4. 

(i) A map I/J 6 Lip(51 —> X) is a simple rectifiable closed curve if it is one to 

one. 

(ii) A map h € Lip(£? —• X) is a rectifiable 2-dimensional surface in X, and 

the restriction h\dB is the boundary of h. The map h is a simple rectifiable 2-

dimensional surface if h\dB '• dB —• X is one to one. Henceforth, for brevity, 
the term "rectifiable" will be omitted. 

Define 

J ] ( ^ , X ) := {h G Lip(B -»• X), h\dB is one to one and h(dB) = ipiS1)} , 

(5.4) 

where tp E Lip(5x —>• X) is a simple closed curve. If D is a simply connected 

open subset of X, then 

^2(tp,D) := {h € Lip(I? -»• £>), h\9B is one to one and h(dB) = ^(S1)} , 

(5.5) 

is nonempty (see Li and Muldowney [58]). 
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Definition 5.5. If X satisfies the Radon-Nikodym property and its norm is 

Gateaux differentiable, define a surface area measure a2 on Lip(5 —* X) by 

a2{h):=f\\d^h\\ = j dh . , dh , . 
dr, h € Lip(S -»• X), 

(5.6) 

where d h denotes the Gateaux derivative of h. Here || • || is any norm on 

f\2X and the associated operator norm on ,£f(/\2lR2,/\2X). 

The integral in (5.6) exists and is finite since h is Gateaux differentiable 

almost everywhere in B and the integrand is bounded. 

Example 5.1. Suppose that X = {(xi,x2, • • •),#$ € M, i = 1,2, • • • } is a 

sequence space. Then h(r) — (hi(r), hi(r), • • •) and for each h € Lip(S —> 

^)> 

d(hi,hj) 

d{r1,r2) 

p\ P 
dr\dr2 and 

/ sup 
d(hi,hj 

9(ri,r2) 
dr\dr2 

are examples of measures a2(h) of 2-dimensional surface area if the integrals 

exist. When X = Rn and p = 2, this is the usual Euclidean measure of the 

surface area. 

Example 5.2. Let X be a space of functions / : s i-> fs, where s e Q, a 

measurable subset in W1, and / s e E. A surface h in X is a Lipschitz function 

r e B \-> h(r) e X and may be expressed in the form (r,s) \-+ hs(r),r e 

B , s € f i and hs(r) € R. Then 

d(hsi, hs 

d{n,r2) I sup 
si,s2en 

d(hsi, hs 

d(rur2) 
ds\ds2 dv\dr2 and 

\J u\;ri,r2) 
B W / B 

are measures a2(h) of 2-dimensional surface area if the integrals exist 

dr\dr2 

While Example 5.1 is a special case of Example 5.2, it is useful to state 

the examples separately. For instance, the first example might be used to 

define surface area for a function space in terms of the Fourier coefficients. 

The second example uses the pointwise representation of the functions. 
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When X = Rn and V is a simple closed curve in Rn, the existence of a 

positive lower bound for a2(h) where h E^2(^,M.n) has been established by 

Li and Muldowney [51, 53, 78]. In the following, the existence of a positive 

lower bound for (72(h) for general 2-dimensional surfaces in X with a given 

boundary will be proved. 

Figure 5.1: The boundary of the 2-dimensional surface h in X 

In general outline, the procedure is as follows. At any point on the curve 

where there is a tangent, a whole segment of the curve lies inside a cone whose 

axis is the tangent line. Because ift is one to one, there is a ball centered on 

the point of tangency which contains no points of the curve other than those 

inside the cone. A rotation about the tangent is a map from X to R2 which 

does not increase the area. The region inside the ball and outside the cone 

"traps" a section of the surface which is mapped onto a sector of a disc in 

the upper half-plane of R2; see Figure 5.1. The area of the sector is a lower 

bound for the area of any surface in X that has this boundary curve. 

Suppose that tp € Lip(5J —+ X) is a simple closed curve. Then ip 

is Gateaux differentiable almost everywhere since X satisfies the Radon-

Nikodym property. Moreover, tj) is Frechet differentiable almost everywhere 

since Frechet differentiability is equivalent to Gateaux differentiability in R. 

Without loss of generality, assume that ip is Frechet differentiable at 0 € S1 

and ip(0) = 0 G X. Let Xx — drf(Q)WL and e be a unit vector in X\. If 

x — ae G Xx and a G R, let q(x) = a be the coordinate functional of xx G Xx 

referred to e, whose norm \\q\\xi — 1- By the Hahn-Banach theorem, the 

linear functional q admits an extension on the whole space X denoted also 
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by q with the same norm. Define P\x = q(x)e and P2 = I — Pi- Then Pi 

and P2 are projections and 

||Pi|| = l, | |P 2 | | <2 (5.7) 

(see Fabian et al [29], page 139 or Li and Muldowney [53], page 459-460). 

Now X = Xi ffi X2 where X2 = P2X. Define a map K : X - • R2 by 

K(x) = (q(x), \\P2x\\), (5.8) 

where Ptx = q{x)e € Xi, q(x) € R. 

Remark 5.1. The map 7?. is Lipschitz continuous. Let l i e 11+ a n d I I -

denote the sets of points (2/1,2/2) G R2 such that y2 = 0, y2 > 0 and y2 < 0, 

respectively. Then 7£ can be viewed as a rigid rotation of X about X\ = Ylo 

into n + with 1ZXX = U0. 

Remark 5.2. If X is a separable Hilbert space with an orthonormal basis 

{eJ}f, then the rotation map 1Z : X —> R2 about Xi = spanje1} is 

a; >-*• K(x) = I xi, I ^ ( X J ) 

00 

where x = ^ X j e \ 
j=i 

Remark 5.3. Since it is assumed that the norm || • || of the Banach space X 

is Gateaux differentiable, it follows from Lemma 5.1 that Gateaux derivative 

of 1Z exists and is uniformly bounded for all a; € X. Thus, there exists a 

constant M > 0 such that 

d^n{x) : /\2X - / \ 2 R 2 ~ R 

satisfies 

\\S2)n(x)\\ < M. 

Let v = TZ o tp : S1 —»• U+- Since ^ is Frechet differentiable at 0 G 5 1 and 
V'(O) = 0 € X, it can be assumed that 

tp(r) = dV(0)s + 5(s) 
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where g(s) — o(s) near s = 0. Thus, 

P^is) = di>{0)s + Pig(s) E Xi, 
P # ( s ) = P2g(s) e X2, 

and v(s) = (v1(s),v2(s)) where Vi(s) = q(P1tp(s)),v2(s) = ||P2V'(S)II implies 

that 

t>i(s) = ms + o(s), 0 < v2(s) = o(s), (5.9) 

near s = 0, where 0 ^ m = gr(Pid^(0))(l). Without loss of generality, 

assume that m > 0. If a > m, there exists 0 < e < 7r such that 

0 < v2(s) < a\vi(s)\, —e<s<e 

and sv(s) > 0, s ^ 0. Thus u((—£,e)) is a curve from v(—e) to v(e) through 

0 and lying in the sectorial region 

see Figure 5.2. 

r = { (« 1 , « a ) e i2 2 : 0 < « a < a | t ; i | } , 

Figure 5.2: A sector T at 0 in M2. 

Next define V> : S1 -> X by rp(s) = ^(s) on s € S1 \ ( -£,e) and 

tp : [—£,£} —• X is one-to-one defined by linear interpolation from i)(~e) 

to Pxip(-e), from P i ^ ( - e ) to PiV>(e) with -0(0) = 0 and from Pi^(e) to 

•0(e). If w = 71 o t/> : S 1 —> R2, then w, £ differ only possibly on (—e, e). Both 
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v and v map [—e,s] to curves from v(—e) to v(s) through 0 = v(0) = v(0) 

and passing from one half of T to the other as s passes through 0. 

The main result in this section, Proposition 5.2, shows the existence of 

a positive lower bound for 02(h) independent of h £ ^2(ip,X). This was 

deduced in the original paper of Muldowney [78] on systems in W1 from a 

classical result on the existence of a surface of minimum area. The proof 

given here for a general Banach space is adapted from a Brouwer degree 

argument used in Li [51] and Li a,nd Muldowney [53]. A good reference for 

degree theory is the book by Lloyd [59]. 

Proposition 5.2. Let X be a Banach space satisfying the Radon-Nikodym 

property whose norm is Gateaux differentiable. Suppose that ip € Lip(dB —> 

X) is a simple closed curve in X. Then there exists 5 > 0 such that 

02(h) > S 

for all he £XV>. X). 

Proof. As in the preceding discussion, it is assumed that ip(0) = 0 € X and 

ip is Frechet differentiable at 0. Let h E £ ( ^ > x ) and 91 = K o h : ~B -> f l + 

and v = Tl o ip : S1 -4 H+ so that 9t(5B) = v(5'1), where H is defined by 

(5.8). Remark 5.3 implies that there exists a constant M such that 

\\d{2)Tl{x)\\ < M 

for all x € X. Therefore, 

f\d^m\ = f\d^n(h)od^h(r)\dr 
B B 

< f\\d^n(h)\\\\d^h(r)\\dr 

f \\**>h(r)\\ 
B 

M j \\df-2)h\\ = Ma2(h). 

B 

< M 
(5.10) 

B 

< 

Since h\dB is one-to-one and h(dB) = V ^ 1 ) , the connected components of 

R2 \ «R(aB) = R2 \ v(dB) are the same for every h 6 £ ( ^ , X) and thus the 
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Brouwer degree of 91 relative to B, deg(9t, B, •), is a constant and independent 

of h on each component. It will be shown that there is a component A of 

R2 \ *R(dB) such that deg(SK, B,p) = ± 1 if p e A. It follows from (5.10) that 

5 = —-areaA < a->(h) 
M ~ 

f o r a l l / i e E ( ^ , X ) . 

Let $ be as in the preliminary discussion. It follows that there exists 

h € ^(tfiyX) and an open arc 7 C dB such that h{y) = •0((—e, e)),^(7) = 

$ ( ( - £ , e)) and r0 € 7, ft(r0) = h(r0) = 0. Recall 9t = 7£o/i and let & = Koh; 

r G dB\j; 9(l(7) c T, ^ ( 7 ) C T and both curves pass from one convex half of 

T to the other half as r passed through ro- Further, ^ ( 7 ) consists of three line 

segments [^(-e), P i ^ ( - e ) ] , [Pxip{~s), Piip(e)} € IIo and [Fi^(e), ip(e)]. Since 

<R(x) = 0 if and only if x = 0, it follows that, if r € dB, 0 = JR(s) = Tloh(s) 

if and only if r = ro- Therefore, the compact set 9i(dB \ 7) = ^(^JS \ 7) is 

a positive distance from 0 € R2 and so does not intersect B(0, p) c R2 for 

some p > 0; see Figure 5.3. In particular, 

ndB) n B(o, p) = (~P, P) c n0. (5.11) 
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Since 9t(s) = 9t(s) iir € dB\>y and the line segment [<R(s),iK(s)] C T if 

r G 7, the Poincare-Bohl theorem, [59], page 25, implies that deg(%B, •) = 

deg(«R, B, •) on M2 \ T. Prom (5.11), the sets II_, B(0, p) n 11+ are subsets of 

Ai, A2, connected components of M2 \*h(dB). The interval [—p,p] C I^o *s a 

subset of <H(<9.B) and is in the boundary of each of these sets. Further, SH is 

one-to-one on SR^Q-p,^) and deg(<R, B, •) = 0 on Ax since *R(dB) C J ^ -

Therefore, deg(<K,£,-) = ±1 on B(0,p) n J l + C A2. The Poincare-Bohl 

theorem then implies deg(9l, B, •) = ±1 on B(0,p)\T and hence 

6 = -^aiea{B(0,p)\T)<aa(h). 

5.2 Bendixson Criterion 

In this section, a generalization of the Bendixson criterion to autonomous 

differential equations in a Banach spaces will be developed. Let A be 

a sectorial operator in a Banach space X and /(it) be continuously 

differentiable from X a into X and 0 < a < 1. Consider the initial value 

problem 

_ + A i = /(«) , ( 5 1 2 ) 

u(0) = «o € X a . 

In the following, let u(t,uo) € Xa denote the solution of (5.12). The linear 

variational differential equation of (5.12) at a solution u(t,uo) is 

ft+Av = ^(u(t,u0))v, (5.13) 

and its second compound differential equation denned on /\2Xa is 

^ + A = f{ M^o)K (5-14) 
Suppose that Xa is a Banach space satisfying the Radon-Nikodym 

property whose norm is Gateaux differentiable. Let D C Xa be a simply 

connected open subset and B = {x 6 M2 : |x| < 1}. Consider a 2-dimensional 

surface /i0 G Lip(fi -> D). Suppose that ht(r) = u(t, h0(r)) is defined for all 
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t and r € B. Then ht is a 2-dimensional surface and 

a2(ht) = j\\d!~2X\\a = J dht dht (5.15) 

, 2-where || • ||a is any norm on f\ Xa. Proposition 5.2 implies the following 

Bendixson criterion. 

Bendixson Criterion. Suppose that 

(i) D c Xa is a simply connected open set; 

(ii) the solutions of (5.12) exist for all tifuo€ D; 

(Hi) ip is a simple closed curve in D; 

(iv) there is a simple 2-dimensional surface ho € Y^O'i^) suc^ that <r2(/it) 

tends to zero as t tends to infinity under (5.12). 

Then ip cannot be invariant with respect to (5.12). 

Remark 5.4. Condition (iv) is irrespective of the norm on /\2 Xa that is used 

to define o-2(ht). 

Since 

OU0 

satisfies the linear variational differential equation (5.13) with u$ = h0(r), it 

follows from the Binet-Cauchy identity that 

d(Vht(r) = ^ 4 ^ 1 ) ( 2 ) . dmho(r) 
OUQ 

which satisfies the second compound differential equation (5.14). This 

observation can be used to derive a concrete sufficient condition for 

Assumption (iv) of Bendixson Criterion. 

Theorem 5.3. Suppose that 

(i) D c Xa is a simply connected open set; 

(ii) the solutions of (5.12) exist for all t if u0 € D; 

(Hi) the family of linear systems 

— + A^w = -^ (u(t,u0))w, u0eS, 

is equi-asymptotically stable in /\2Xa if S is a compact subset of D. 
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Then D contains no simple closed curve that is invariant with respect to 

(5.12). 

The equi-asymptotic stability in Assumption (Hi) of Theorem 5.3 means 

that if S is a compact subset of D, then, for all no € S, the linear systems 

(5.14) are asymptotically stable and the limit 

l im|Kt) l la = 0 
t—>oo 

is uniform with respect to u0 € S, where w(t) € f\2Xa is a solution of (5.14) 

and || • ||a is any norm on f\2Xa. 

Proof. Suppose that ip 6 Lip(51 —• D) is a simple closed curve which 

is invariant with respect to (5.12). Let h0 € 5Z(̂ >,-D) be a simple 2-

dimensional surface which is one-to-one on dB and ho(dB) = ^(S1), where 

B = {x e M2 : |x| < 1}. Then r •->• ht(r) — u(t,ho(r)) is also a simple 

2-dimensional surface which is one-to-one on dB and ht(dB) = ^(S1). Since 

dhtir) — ^ • dh0(r) satisfies the linear variational differential 
duQ 

equation (5.13) with u0 = h0(r), d^ht(r) = ^ ' M O ) . (p)h , . ig & 
OUo 

solution of the second compound differential equation 

dw A,2] df[2], , _ 
— + AWW = -± (u(t,Uo))w, u0 = h0(r), r e B. 

These linear systems are equi-asymptotically stable and 

lim 
t—HX) 

du(t,h0(r)) (2) 

0 

uniformly with respect to r e B, which implies that 

l i m | | A 4 ( r ) | U = 0 
t—»oo 

uniformly with respect to r G B. Thus lim a2(ht) = 0. But Proposition 5.2 
t—>oo 

shows that 8 < a2(ht) for some 5 > 0. Therefore, i/; can not be invariant 

with respect to (5.12). 
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Remark 5.5. Theorem 5.3 rules out the existence of nontrivial periodic 

orbits, homoclinic loops and heteroclinic loops. For some systems, the equi-

asymptotic stability of the family of linear systems (5.14) can be established 

by constructing a suitable Lyapunov function in /\ Xa. For instance, (5.14) 

is equi-asymptotically stable if there exists a positive definite function V(w), 

such that QL is negative definite, and V and ^- are both 
* (5.14) * (5.14) 

independent of UQ. 

Remark 5.6. The results in this section are motivated by the high-dimensional 

Bendixson criterion for an autonomous ordinary differential equation in Rn 

established by Muldowney [78]. The proof of Theorem 5.3 is adapted from 

the idea used in Theorem 4.1 of [78]. 

Remark 5.7. An application of Theorem 5.3 is to combine with Theorem 

4.12, Section 4.2 to show the existence of steady state solutions. 

Consider a scalar reaction diffusion equation 

Ut = uxx + f{x, u,ux), 0<x<L, t>0, 
(5.16) 

u(t,0) = u(t,L), ux(t,0) = ux(t,L). 

Here / € C2((0,L) x R x i ^ R ) . Let X = H^r(0,L) = {0 E L2(0,L) : 

<f/ € L2(0,L),cj)(0) = <j>{L), </>'(0) = <//(L)}. Suppose that if u0 G X, 

u(t,x) = u(t,uo) E X is a solution which exists for all t > 0. The linear 

variational equation of (5.16) at a solution u(t,x) is 

vt — vXx + a(t, x)vx + b(t, x)v, 0 < x < L, t > 0, 

v(t,0) = v(t,L), vx(t,0)=vx(t,L), 

where 
df 

a(t,x) = -—(x,u(t,x,u0(x)),ux(t,x,u0(x)), 

df 

b(t,x) = —(x,u(t,x,u0(x)),ux(t,x,u0(x))). 

The pointwise representation of w(t) E f\2 X is 

w(t, xi, x2) = det [(xi, w(t))] 

which satisfies the second compound differential equation of (5.17) denned 
on /\2X 

2 2 2 
Wt = Yl Wxixi + Yl CL(t' Xi)WXj + 5 Z &^' X^W- (5-19) 

j = l j=\ j=l 

(5.17) 

(5.18) 
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The eigenvalues of the Laplace equation 

Au = —AjU, 

u(0) = u(L), ux(0) = ux(L) 

areA1 = 0 , A 2 n = ( ^ ) 2 , A 2 n + 1 = ( ^ ) 2 . 

Suppose that, for it, v € R, 

(5.20) 

df( , 
< A(x), 

df 
— (x,u,v) < B(x). 

(5.21) 

Consider a Lyapunov function 

V := - / w2 = - / w2(i,a;i,X2)da;ida;2. 
^ J(O,L) 2 ^ -/(o.L)2 

The discussion in the proof of Corollary 3.33, Section 3.4 implies that 

+ f ±(BiXj) + ^jhM)w^ 
J(0,L)* ~ V 2 J 

for any positive functions u1(x),u2(x). If maxA(x) > 0,0 < x < L, then a 
X 

choice 
vAx) = max A(x) := v, j = 1,2, 

implies that 
d+V <r v 

where 

fx = -Ax - A2 + 4 max i B(ar) + - y ^ 1. 

If maxA(x) = 0, then the function f(x, u, ux) = f(x, u) which is independent 

of ux, and thus 

(j, = —Ai — A2 + 2 max £?(#). 
X 

Theorem 5.3 implies the following corollary. 
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Corollary 5.4. Suppose that the solutions of (5.16) exist for all t > 0 and 

u0 e X. If max\A(x)\ > 0, 0 < x < L, and 

7T2 

max{2£(x) + A(x)u} < — , 

where v = maxA(x) or if f(x, u, ux) = f(x, u) and 

IT2 

where A(x),B(x) is defined by (5.21), then there is no simple closed curve 

that is invariant with respect to (5.16) in L2(0,L). 

Example 5.3. Consider a scalar reaction diffusion equation 

ut = uxx + pu-u3 + q(x), 0 < x < L, t > 0, 
(5.22) 

u(t,0) = u(t, L), ux(t,0)~ux(t,L) 

Suppose that p is a positive constant and q(x) is nonnegative continuous in 

x and maxg(x) < Q, 0 < x < L. Let X — Hper(Q, L). Since 

and 

--r u2dx = / utudx 
2 dt J0 J0 

= / [—ux +pu2 — uA +p(x)u]dx 
Jo 

u2
x = - utuxxdx 

Jo Jo 

/ ~ulx + PU2
X - q(x)uxx]dx 

Jo 

< b + | U ^ + f, 

1 1 <-L <-L 

2dt _ 

0 
L 

f) jf* < [P + Z) I <dx+^, 

the Gronwall inequality implies that the solution u(t, x) of (5.22) exists in X 
for all t > 0. The linear variational equation of (5.22) at a solution u(t, x) is 

vt = vxx + {p- 2u2)v, 
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and the pointwise representation of the second compound differential 

equation denned on /\ X is 

wt = wXxXl + wX2X2 + (2p - u2(t, xi) - u2(t, x2))w. (5.23) 

If 
-Ax - A2 + 2p < 0, 

Corollary 5.4 implies that there is no simple closed curve that is invariant 

with respect to (5.16) in L2(0, L). Since the to limit set of a bounded solution 

is nonempty, Theorem 4.12 of Section 4.2 implies that (5.22) has at least one 

steady state solution, which is nonconstant if p(x) is nonconstant. 

Example 5.4. Consider a reaction diffusion system 

ut = diuxx + au — uA — uv2, 
(5.24) 

vt = d2vxx — bv — v3 + u2v, 0 < x < L, t > 0, 

with Dirichlet boundary conditions or Neumann boundary conditions or 

periodic boundary conditions. Suppose that a,b,d\,di > 0. Let X be a 

subspace Hl{0,L) x H1^, L) with corresponding boundary conditions. Let 
X be a subspace H^er{Q,L). Since 

1 d fL fL 

2dt (u2 + v2)dx = / (utu + vtv)dx 

= / [-diU2
x + au2 - u4 - u2v2]dx 

Jo 

+ / [-divl - bv2 -v4 + u2v2]dx 
Jo 

a / u2dx, 
Jo 

/ {u2
x + vl)dx = - / (utuxx + vtvxx)dx 

Jo Jo 

= / |— d\v?xx + au2
x - 3u2ul — 2uuxvvx]dx 

Jo 

+ / [—divlx - bv\ — 3v2vl + 2uuxvvx]dx 
Jo 

i-2-ir 

< a I u2
xdx, 

Jo 

and 
1 d 
2~dl 

< 

f-2-K 

'0 JO 
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the solutions of (5.24) exist in X x X for all t > 0. The linear variational 

equation of (5.24) at a solution (u(t,x),v(t,x)) is 

Pt = dipxx + (a- 2u2 -v2)p- 2uvq, 
<h = d2qXx + (-b - 2v2 - u2)q + 2uvp, 0 < x < L, t > 0, 

and the pointwise representation of the second compound differential 

equation defined on /\2 X is 

dwn 

dt 

dw22 
dt 

dwi2 

dt 

= di(Aiwn + A2wn) + (anit^i) + an(t,x2))wn 

+au(t, x1)w2i + au(t, x2)wi2, 

= d2(Aiu;22 + A2w22) + (a*22(t, xi) + a22(t, x2))w22 

+a21(t, x^wn + a21(t, x2)w21, 

= diAtWn + d2A2Wn + (an(t, x^ + a22(t, x2))wi2 

+a12(t, xx)w22 + a2i(t, x2)wn, 

where AiW = a
 9

a and 

an = a- 2u2 — v2, 012 = —2uv, a2\ = 2uv, a22 — b — 2v2 — u2 

(see (3.26) of Section 3.2 for details). Consider a Lyapunov function 

V(t)-=Tif ( K f + W 2 + 2K)2). 

Then the derivative of V calculated for (3.28) of Section 3.2 implies that 

—r- < f (»i(t)(Wn)2 + H2(t)(w22)
2 + 2iHi(t)(w12)

2) (5.25) 
a l J(0,L)2 

where 

m(t) = -(\1 + \2)d1+max{2a-4u2(t,x)-2v2(t,x)} 

< - (Ai + A2) dx + 2a, 

H2(t) = -(\1 + \2)d2 + max{-2b-4v2(t,x)-2u2(t,x)} 

< - (Ai + A2) d2 - 2b, 

A*3(*) = -\i(d1 + d2) + max{a-u2(t,x)-v2(t,x)} 

+ max {-b - 2v2(t, x) — u2(t, x)} 

< -Ai(di + rf2) + a - 6 , 
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and Ai < A2 < • • • are eigenvalues of the Laplace equation uxx = — \u with 

corresponding boundary conditions. 

Corollary 5.5. / / 

^h±±idub + Xl(dl + d2)\, a < mm 

then the system (5.24) contains no simple closed curve that is invariant in 

L2(0,L). 



Chapter 6 

An Example from 
Epidemiology 

A general account of spatial dispersion of biological populations is contained 

in the work of Skellam [97], and in the recent books by Okubo [86] and 

Murray [81]. Early results on models for the spatial dependence of the 

spread of epidemics are presented by Fisher [32], Kolmogorov, Petrovsky 

and Piscounov [49] and Turing [105]. In particular, studies on infectious 

diseases with diffusion have been discussed by Capasso [13], Capasso and 

Fortunato [14], deMottoni, Orlandi and Tesei [24], Gurtin and MacCamy 

[36], MacCamy [64], Kallen, Arcuri and Murrary [48], and Webb [108]. 

In this chapter, as an example, the Bendixson criterion of Chapter 6 is 

used to preclude the existence of nontrivial periodic solutions to a diffusive 

epidemiological SIR model 

' St = dxSxx + A - (3(x)IS - hS, 

< It = d2Ixx + (3(x)IS-(b2 + j)I, 0 < x < l , t>0 (6.1) 

k Rt = d3Rxx + 7 / - b3R, 

with homogeneous Neumann boundary conditions: 

sx(t,o) = sx(t,i) = o, 
Ix(t, 0) = Ix(t, 1) = 0, t > 0 (6.2) 

Rx(t,0) = Rx(t,l) = 0, 

145 
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and initial conditions: 

' S(0,x) = SQ(x)>0, 

< I(0,x) = Io(x)>Q, 0 < x < l , (6.3) 

_ R(0,x) = Ro(x) > 0 . 

Here S, I, R denote the populations that are susceptible, infectious, and 

recovered, see Figure 6.1. The parameter bt > 0,i = 1,2,3 is the death rate, 

7 > 0 is the recovery rate and d, > 0, i = 1,2,3 is the diffusion coefficients. 

The parameter (3{x) is the effective per capita contact rate among individuals 

which is assumed to be spatially dependent and f3(x) € C([0,1]) are 

nonnegative, ||/3||oo = m a x fi{x) > 0- I* is also assumed that there is a 

constant recruitment A > 0 for this model. 

A c 
o 

hS 

pis 
1 

b2I 
• 

7 / 
H 

• 

b3R 
• 

Figure 6.1: A diffusive SIR model. 

The model without diffusion, a system of ordinary differential equations, 

is well understood; see Hethcote [44] and Brauer, van den Driessche and Wu 

[9]. This chapter presents some results on the existence and the structure of 

the global attractor of (6.3), and the nonexistence of periodic solutions, when 

diffusion is added and the contact rate (3 is spatial dependent. Consequently, 

the existence of at least one positive, x-dependent endemic steady state 

solution is obtained. 

The approach to the existence and boundedness is motivated by the work of 

Dung and Smith [28] in their study of a parabolic system modeling microbial 

populations with competition. 

6.1 Existence and Boundedness 

Let C+([0,1]) be the cone of nonnegative functions in the Banach space 

C([0,1]) with the usual supremum norm || • H^. For u = («!,••• ,uk) € 
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X+ x • • • x X+, define \\u\loo = max \ui\. 
l<i<k 

Theorem 6.1. The system (6.1)-(6.3) generates a nonlinear local 

semidynamical system T(t)t>o on the space C+([0,1]) x C+([0,1]) x C+([0,1]). 

Moreover, the solutions to (6.1)-(6.3) are in fact classical solutions. 

Remark 6.1. The system (6.1)-(6.3) is a system of semilinear parabolic partial 

differential equations. The standard analysis on the existence by fixed point 

theory, see Rothe [92], Pazy [87], Henry [42] and Wu [111]. 

Let T(5O, h,Ro) be the maximal interval of existence of the system (6.1)-

(6.3). The first two equations in (6.1) do not contain R, which allows the 

reduction of (6.1) to 

f St = dxSxx + A - 0(x)IS - 6i5, 
< (6-4) 
I It = d2Ixx + P(x)IS-(b2 + >y)L 

In the following, the system (6.4) is studied instead of (6.1). For simplicity, 

l e t X + = C+([0, l])xC+([0, l]) . 

Consider the following ordinary differential equation 

{ ut = A - /3(x)Iu — btu, 0 < £ < 1 , £ > 0 

«(0) = ||50||oo. 
(6.5) 

Then 

and thus 

u(t) < ^||5o|U-^e-M + ^ 

< max < 11 o o 11 oo j T~ } '•= Smax, 

, s A hmsupu(t) < — . 

Since 

-St + diSxx + A - 0(x)IS - biS = -m + A - 0(x)lu - biu, 

5(0, re) < u(0), 

the comparison theorem (see Smoller [103], page 94) implies that 

S(t, x) < u(t) < Smax, for all 0 < x < 1, t > 0, 

limsup S(t, x)<±, for all 0 < x < 1. ^6'6^ 

file:////u/loo
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Now for any e > 0, define a feasible region 

T£ := !(S(x), I(x)) G X+ : ||5|U < A + e | . (6.7) 

Proposition 6.2. T£ is positively invariant for (6.2)-(6.4) and for e > 0, Te 

is an absorbing set in X+. 

Proof. For any e > 0 and any solution (S(t),I(t)) of (6.2)-(6.4) with 
A. 
6l |5o||oo < £ + £ , s i n c e 

- 5 t + d1(Sxx + A - 0(x)IS - 6x5 > -f3(x)I (^- + ej- he, 

Sx(t,0) = Sx(t,l) = 0, 

S'(0,*) < A + e> 

a comparison theorem implies that 

S(t, x)< — +e, for all 0 < x < 1, t > 0. 
01 

Thus Te is positively invariant. 
For any bounded set B in X+, there exists a M such that ||5||oo < -W f°r 

every (S(x),I(x)) e B. Suppose that e > 0. If M < £ + e, choose T = 0, 
M— — 

otherwise choose T = ^ In — ^ . Then, for t >T, 

S(t,x) < (| |S0 | |oo-£)e-fc* + A 

* (*-£)̂ +£ ' 
A 

< T- + £, 

which implies that Te is an absorbing set in X+ when e > 0. • 

Since the solution of (6.2)-(6.4) is attracted to the set 
rQ = {(S(x),I(x))€X+:\\S\\00<±} 
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for larger time, in the following the dynamics of (6.2)-(6.4) in T0 is studied. 

It follows from 

(S + I)t = diSxx + d2Ixx + A-b1S- (b2 + 7 ) / 

that 

[ (S + I)tdx = I (diSxx + d2Ixx + A-hS- (b2 + j)I) dx 
Jo Jo 

= dxSx |*=J + d2Ix \*=l + f (A - hS - (b2 + y)I)dx 
Jo 

< A-bm (S + I)dx, 
Jo 

where bm = min{bi,b2 + 7}, which implies that 

f (S(t, x) + I(t, x))dx < ( f (S0(x) + I0(x))dx - £-
Jo \Jo bm 

< max i / (S0(x) + I0(x))dx, — V 

h t A 

— I—!" P'o 00 : = CI(IKOIIOO), 
Om 

(6.8) 

where Ci(||7o||oo) is a positive continuous function, and thus 

f1 A 
limsup / (S(t, x) + I(t, x))dx < —. 

t-*oo Jo bm 

In particular, 

/ I(t,x)dx<C1(\\I0\U, (6-9) 
Jo 

and 
f1 A 

limsup / I(t,x)dx < — := C\. (6.10) 
t—>oo Jo t)m 

The next proposition uses mathematical induction to estimate the IP norm 

of 7. The argument is standard and has been used by Dung and Smith [28]. 

Proposition 6.3. For each 0 < p < 00, there exists a positive continuous 
function Cp(||7o||oo) o,nd a positive constant cp such that 

\\I(t)\\p < CP(||70||oo), t > 0 (6.11) 
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and 

limsup||7(t)||p<Cp. (6.12) 
t—>oo 

Proof. Assume that (6.11) holds for some p > 1, in particular, it holds for 

p = 1 by (6.9) and (6.10). It is sufficient to prove that it holds for exponent 

1p. Here only the bound on L2 norm is proved. The general case can be 

obtained similarly and will be omitted. Since 

^- f I2dx = 2d2 / IIxxdx + 2 [ p(x)SI2dx - 2(b2 + l) f I*dx 
dt Jo Jo Jo J0 

< -2d2 f I2
xdx + 2||/3||00£ / I2dx-2(b2 + j) f I2dx, 

Jo °i Jo Jo 

the Nirenberg-Gagliardo inequality (see Henry [42], page 37) and Young's 

inequality imply that 

f I2dx < c(fl2dx+f I2dx\ 2 ( f Idx) 

< CeJ! I2
xdx + f I2dx\ +—([ Idx) 

(6.13) 

where C and e\ are positive constants. Thus, 

f 
Jo 

< -2d2 J i^drr + 2||/3||00^Ce1 (j I2
xdx+ f I2dx\ 

+2||/5||cc^f (J Idx) -2{h + i)f I2dx 

m°°iCei) jf l2*dx+2 {-(h+7)+I^I~£C£I) jf pdx < 2 -d 2 + 

+2||/3||oo£- (C Idx 
hex \Jo 

< - 2 (d2 - WW^Ce^ £ I2
xdx - 2 (fr + 7 ) - P U ^ C e ^ £ I2dx 

+2M(||/(t)| |i) 

:= - 2 a i / I2dx-2a2 f I2dx + 2M(\\I(t)\\1), 
Jo Jo 
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where Af(||J(t)||i) = ||/3||oo££ (fi I(t)dx\2. Moreover, from (6.9) and 

(6-10), 

Mdl /WIIO^II /^ l loo^^dl /ol loo)) 2 , 

and 

ummipM(\\i(t)\\i) < ll^llcorr ( r V = WPW-rrM2-
t->oo Oi Si \Om/ Oi £ i 

Choose £i < „..„,| A min{d2,62 + 7}- Then a.i, a2 > 0 and 

/" I2(t,x)dx < ([ Io(x)d ,x M(\\I(t)\\i)\c-^t, , M(||/(0lli) 
QJ2 / «2 

2 11̂  lloo 6i ei' , 1 1 M | 2 P l loo^^^d l /o l loc ) ) 2 

a2 J 

< n ^ | l | J o | | L - P l o ° ^ g ( ^ + l | J o l l o o ) a } := (C 2 ( | | /oU) 2 . 

(6.14) 

Therefore, (|-Z"(*) ||2 is defined for alii > 0 and there exists a positive constant 
JL£LI A^ ( c i ) 2 

C2 = 

limsup||J(£)||2 < c2 
i—>oo 

Theorem 6.4 shows an upper bound of WlW^, whose proof is based on the 

integral equation of I(t) and the Sobolev compact embedding property. 

Theorem 6.4. The solution of (6.2)-(6.4) exists for all t > 0 in TQ. 

Furthermore, there exists a positive continuous function C(||lo||oo) and a 

positive constant c, independent of the initial data I0, such that 

P(*)lloo < C(||Jo||oo), t>0, (6.15) 

and 

limsup||/(t) | |oo<c. (6.16) 
t—>oo 

Proof. First, consider problem (6.2)-(6.4) in the larger space Y = LP((Q, 1)). 
The solution I(t) satisfies 

I(t) = e-BtI0 + f e-B^g2(S(s), I(s))da, (6.17) 
Jo 
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where B = -cfeA + (62 + 7 ) / with homogeneous Neumann boundary 

conditions, 

g2(S(t), I(t))(x) = g2(x, S(t, x), I(t, x)) = 0(x)S(t, x)I(t, x). 

The operator B generates an analytic semigroup {T(t) = e~Bt}t>0 on Y with 

0 € p(B). The semigroup of operators {T(t) = e~Bt}t>o map Y into the 

space Ya = D(Ba) with the norm \\U\\Y<* — \\Bau\\p, where 0 < a < 1 and 

Ba is the fractional power of B, see Pazy [87], page 74 and page 242. Choose 

p such that Y < a < 1 and the embedding 

Ya ><r([0,l]), 0 < z / < 2 a - - (6.18) 
cont. p 

is continuous, see Henry [42], page 39 and Pazy [87], page 243. For each 

h € X+, 

BaI(t) = Bae-BtI0+ f Bae-B^-^g2(S(s),I(s))ds. 
Jo 

From the Lp estimates of I(t) in Proposition 6.3 and ||S,(i)||0o < £, f°r 

t > 0, we have that there is a positive function Gp — Gp(||/o||oo) = 

||/3||oo^Cp(||/o|U) such that 

\\g2(S(t),I(t))\\P = (Jo(P(x)S(t,x)I(t,x)Ydx 

< GP(||70|U), 

and there is a positive constant gp = ||/3||oo^-cp, independent of ||io||oo, such 

that 

limsup\\g2(S(t),I(t))\\p<gp. 
t—>oo 

Therefore, there is a r\ = 77 (J0) > 0 such that ||#2(<S'(£),/(0)llp < 2#p for 
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t > r\. Consequently, for t > r?, 

\\I(t)\\ya = \\B*I(t)\\P 

< \\B<*e-BtI0\\p± f H ^ e - ^ - ) | U ( y i y ) 11^(5(5), 7(s))||pds 
Jo 

< C a r a e - w | | / 0 | | p + / Ca(t-s)-ae-s^\\g2(S(s),I(s))\\pds 
Jo 

< Cat-
ae-st\\I0\\p+ rGp(\\I0\UCa(t-s)-ae-s^ds 

Jo 

+ f 2gpCa(t - s)-ae-s^ds 
Jn 

< C a r o e-" | | / 0 | | p + r?Gp(||/o||co)CQ(i - T ^ e " - ^ ) 
ft-r) 

+2gpCa f r~ae-Srdr 
Jo 10 

< Car
ae-5t||Jo||p + vGP(\\Io\\oo)Ca(t - n)-ae-^-^ 

/•oo 

+2gpCa / r-ae-Srdr, 
Jo 

and thus ||/(i)||ya is defined for all t > 0 and 

/»oo 

limsup ||/(t)lk<» < 2ppCQ / r-ae~Srdr = 2gpCa&-l+aT{l - a). (6.19) 
t—>oo Jo 

Furthermore, the estimate (6.19) and the embedding (6.18) implies that 

(6.16) holds. For t > 1, 

\\I(t)\\Ya = \\B«I(t)\\p 

< \\B-e-BtI0\\p+ f \\Bae-B^y{Y>Y)\\g2(S(s),I(s))\\pds 
Jo 

< C a r Q e-^ | |7 0 | | P + / Ca(t - s)-ae-^-smg2(S(s),I(s))\\pds 
Jo 

= Cat-
ae-dt\\I( |P + C?p(||/o||oo)Ca [ r~ae-Srdr 

Jo 
POO 

< Cae-^l/ollp + Gpdl/olUCa / r~ae-drdr 
Jo 

< C ae-i/0 | |oo + Gp(||/0 | |oo)Ca5-1+ar(l - a), 

(6.20) 
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and thus the embedding (6.18) implies that (6.15) holds for t > 1. For 

0 < t < 1, it follows from (6.17) and \\e-Bty{x+,x+) < e'^^1 that 

\\m\u 
< | |e-Si/0 | |oo+ f\\e-B^g2(S(s),I(s))\\00ds 

Jo 

< \\e-my(x,x)\\Io\\oo + C f\\e-B^g2(S(s),I(s))\\Y«ds 
Jo 

< e-i<i2+i)t\Moo + c f\\Bae-B^g2(S(s),I(s))\\pds 
Jo 

< \\Io\\oo + C [ \\Bae-B^-s)y(Y,Y)\\g2(S(s),I(s))\\pds 
Jo 

< ll/olloo + C f Ca(t - s)-ae-5^\\g2(S(s),I(s))\\pds 
Jo 

< ||/o||oo + CGp(||/o||oo)C« / r-ae-6rdr 
Jo 

/ •oo 

< ||/o||oo + CGp(||/o||oo)Ca/ r~ae-5rdr 
Jo 

and thus 

||/(t)||oo < ll/olU + CGp( | | /o| |oo)CQr1 + ar(l - a). (6.21) 

Therefore, (6.15) holds for all t > 0. 

• 

Now define a new feasible region 

6 := {(S(x), I(x)f € X+ : | |5|U < A | | / j ^ < 2 c } , (6.22) 

where c is from Theorem 6.4. 

Corollary 6.5. 0 is a bounded absorbing set for (6.2)-(6.4) in IV 

Proof. For any even number p > 2 such that h < a < 1, 

| |92(S(t),/(i))|jp 

< m\4Xl!,rdxy 
oi \\Jo a2 J a2 ) 

file:////m/u
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It can be shown that for any bounded set B in r0, there is a r}i = ??i(B) > 0 
such that for t > rji, 

||ft,(S(*),I(t))llp< l l / 3 l l c o ^ ^ l l / 3 | l ° 0 ^ ( C s ) P y = 2gp 

holds for all (S(t),I(t))T € B. Consequently, for t > rji, 

||I(*)||y- = \\BaI(t)\\p 

< \\B«e-BtI0\\p+ [ ||5a
e-

B('-s)||^(yiy)||52(5(S),/(S))||pdS 
Jo 

< CQrae-^||/o| |p+ / Ca(t-s)-ae-^-sm92(S(S),I(s))\\pds 
Jo 

J
rvi 1 GpiWloUCait-syae-^ds 
0 

+ f 2gpCa(t - 8)-
ae-^-^ds 

Jm 

JO 

rt 

2gPCa(t - s)~ae~'(t_a)ds 
'm 

< Car^e-^H/olloo + ViGP(\\Io\\oo)Ca(t - ^)-«e-*(«-fli) 

+2gpCa / r-ae~Srdr 
Jo 

< cQrae-ft||/0||oo + mGpiWioWMit - mTae-s(t-m) 

/•oo 

+2gpCa / r-ae~5rdr, 
Jo 

and thus there exists a 772 — 772 (#) > r?i such that for t > 772, 
/•oo 

||/(*)||y« < 4&Ca / r~ae-Srdr = 4gpCJ-1+ar(l - a). 
Jo 

Furthermore, for t > 772, 

||/(*)||oo < C\\I(t)\\Ya < ACgpCa5-1+aT(l - a) = 2c, 

where C is the embedding constant in (6.18). Therefore, 0 is a bounded 
absorbing set in IV 

• 

Theorem 6.6. There exists a compact, connected attractor A. = <*>(&) of 

(6.2)-(6.4) which attracts the bounded sets in X+ and is the maximal bounded 
attractor in X+. 
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Proof. The above result shows that system (6.2)-(6.4) generates a nonlinear 

semi-dynamical system T(t)t>0 : T0 - • IV Let T(t) = (ri(*),T2(*)), where 

S{t) = Ti(t)50 and J(t) = T2(£)/0- From (6.20), for any tt > 1, 

||/(*i)||y« < a*e-*||Io|U + M p ( | | / 0 | | o o ) a r 1 + a r ( l - a) := M(| | /0 |U) 

and thus 

||/(*1)||C7- < CH/C*!)!^.. < CAf(||70||oo)-

Since 

C ( [ 0 , 1 ] ) ^ - » C ( [ 0 , 1 ] ) , (6.23) 

Ti{ti) is compact. A similar argument shows that T\(t\) is also compact. 

Thus, for every bounded set B C T0 and ii > 1, 

r(ti)B C {(5(x), J(x)) € X+ : \\S(h)\\c» < N, \\I(h)\\c* < M}, 

where N and M depend on B. Theorem 1.1 of Temam [104], page 23 implies 

that the w-limit set of 0 , A = u>(&), is a compact, connected attractor of 

(6.2)-(6.4) which attracts the bounded sets in r 0 and is the maximal bounded 

attractor in To. Furthermore, Proposition 6.2 implies that T£ is an absorbing 

set in X+ when e > 0. It can be shown that OJ{T£) C T0. Therefore, A = u>(0) 

is a global attractor for (6.2)-(6.4) in X+. m 

6.2 Nonexistence of Periodic Solutions 

In this section, Theorem 5.3 of Section 5.2 will be used to rule out the 

existence of nontrivial periodic orbits. A particular conclusion that can be 

drawn from this, as a consequence of Theorem 4.12 of Section 4.2, is the 

existence of at least one positive steady state solution is obtained. 

The linear variational equation of (6.4) at any solution (S(t, x), I(t, x)) € 6 

of (6.2)-(6.4) is 

f ut = diuxx - (/3(x)I + bi)u - /3(x)Sv, 
< (6.24) 
{ vt = d2vxx + P(x)Iu + ((3(x)S - (fta + 7 ) K 
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with homogeneous Neumann boundary conditions. The pointwise 

representation of the second compound differential equation of (6.24) is 

du>n 

dw22 

= di(AiWn + A2itfn) + (an(t, rci) + an(t, x2))wn 

+a12(t, x1)w2i + a12(t, x2)w12, 

d2(AiW22 + A2w22) + (a22{t, x{) + a22{t, x2))w22 
dt zy "' v " v ±y "K ' *" ( 6 . 2 5 ) 

+021 (t, Xl)Wn + a2l(t, X2)W21, 

-—-^ = diAx^a + d2A2w12 + (an(t, xj + a22(t, x2))w12 

+an(t,xi)w22 + a21(t,x2)wn. 

where AiW = ^ - and 

an = -(P(x)I+b1), ai2 = -0(x)S, a21=/3(x)I, a22 = (P(x)S-(b2+j)) 

(see (3.26) of Section 3.2 for details). Consider a Lyapunov function 

v® - h i (Ki)2 + (W? + 2(w12)
2). 

l- J(0,L)2 

Then the derivative of V calculated for (3.28) of Section 3.2 implies that 

d+V 
< 

dt ~ 
where 

dt ./(o,L) 
/ ( M I ( 0 ( ^ H ) 2 + M2WK2)2 + 2^{t){wn)2) (6.26) 

J(0,L)2 

M*) = -d l 7 r 2 -26 1 + i||/3|| A + ^ll^ll^ 
£ u\ £ 

Kit) = -d2^-2(b2 + 7) + 2 P I A + 2 £ | | / 3 | | 0 0 - H I H ^ A 

M3(t) = - 6 l - ( 6 2 + 7)+||/5||00A + £ | | /g | |oo^ + 2 c e | | /3| |0 0 
Ol Ol 

where ||/3||oo = max (3(x), e > is an arbitrary constant and the constant c is 
0<x<l 

defined by (6.22). 
Theorem 6.7. / / the diffusion terms d\ and d2 are sufficiently large and 

&i + (&2 + 7)>ll/3| |oA 
»1 

then system (6.2)-(6.4) has no periodic solutions in G and thus there exists 

a positive, x-dependent steady state solution. 



Appendix A 

Lozinskii Measures 

This appendix is a summary on Lozinskii measures. Detailed information on 

Lozinskii measures of matrices will be referred to Coppel [19], Muldowney 

[76-78] and of a bounded linear operators on a Banach space will be referred 

to Daleckii and Krein [23], page 61. 

Let X be a Banach space. For any x,y € X, the limit 

r, i, ,, ,. \\x + hy\\ — \\x\\ ,. „, 
dv\\x\\ := lim ^ ^ — — > (A-1 

"" h-*o+ h 
always exists, see Coppel [19], page 3 and Daleckii and Krein [23], page 61. 

Let 38(X) denote the space of all bounded linear operators from X to X. 

Definition A. l . For any A € &(X), the Lozinskii measure of A is defined 

by 
,. ||/ + M | | - 1 

u(A) := lim 1J —^ . (A.2) 
h-*0+ h 

Remark A . l . It follows from (A.l) tha t ji(A) exists. The "Lozinskii measure" 

// had previously been called the "Lozinskii logarithmic norm"; however, it is 

not a norm since it can take negative values. The term "Lozinskii measure" 

has been used by Coppel [19]. 

The following propositions are stated in Daleckii and Krein [23], page 61-
62. 

P r o p o s i t i o n A . l . For any A,B e SS(X), 

(i) ji(aA) = afj,(A), if a > 0; 
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(ii) \n(A)\ < \\A\\; 

(Hi) ii(A + B)<n(A) + n{B); 

(iv) \^A)-li{B)\<\\A-B\\. 

Proposition A.2. If X is a Banach space, then 

-H(-A) < ReX(A) < n(A), for all A e a(A) 

where o~(A) denotes the spectrum of A. 

Proposition A.3. If X is a Hilbert space with an inner product (•, •), then 

H(A) = \M(ATI), An = ReA= + 

where A* is the adjoint operator of A and XM(ATZ) = sup (A-R,X,X) . 

Moreover, 

-H(-A) = \m{An) 

where \m(A-n) = inf (A-nx, x). 
11*11=1 

Example A. l . Let X be a Banach space of sequences of complex or real 

numbers, x = {£,}. Then each operator A e 3S{X) corresponds to a matrix 
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'oo 

X \\A\\ p{A) 

= < x : ||x||oo — sup |£j| < oo > sup Y j \a\\ sup I Re a\ + YJ \ol. 
{ j ' i k l V Mi 

h = < x : HXIIJ! = J ^ IC/I < °° \ SUP X ! Ia*l s u p ( R e afe + Yl 1°* I 

fe= j x : | | x | | , a = [ £ | & | 2 J < o o i v ^ ( A M ) A ^ ( ^ T ^ ) 

Table A.l: Norms and Lozinskii measures of A 

Remark A.2. The above results are given by Daleckii and Krein [23] as 

exercises, see page 61-62. When X = Cn and A = [a^] i s a n x n matrix, a 

similar table is given by Coppel [19], page 41. 

Proposition A.4. Suppose that x(t) is a solution of 

dx 
— = A(t)x, XGX, (A.3) 

where A(t) e @{X). Then, for t > t0, 

||x(t0)||exp (-£ /z(-A(s))<fc) < \\x(t)\\ < ||x(i0)||exp (j*fi(A(s))ds\ . 

(A.4) 

Corollary A.5. The equation (A.3) is 

unstable if 
rt 

ho 
stable if 

'to 
asymptotically stable if 

liminf / fi(-A(s))ds = -oo; 
*-*°° J to 

limsup / fj,(A(s))d, 
t-»00 Jtn 

t 

Is < oo; 

lim / fi(A(s))ds = -oo; 
't0 
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uniformly stable if 

li(A(t))<0, fort>t0; 

uniformly asymptotically stable if 

n(A(t)) <-6 < 0, fort>to. 



Appendix B 

Sectorial Operators 

This appendix is a summary on sectorial operators and detailed information 

is referred to Henry [42], page 16-29. 

B. l Sectorial Operators and Analytic 
Semigroups 

Definition B. l . A linear operator A in a Banach space X is called a 

sectorial operator if it is a closed densely defined operator such that, for 

some cj) € (0, n/2) and some M > 1 and real a, the sector 

Sa,<t> = {A | 4> < \arg(\ -a)\<w, A =f= a} 

is in the resolvent set of A and 

\\(X-A)-l\\<-^- for all A e S ^ . 

Example B. l . 

1. If A is a bounded linear operator on a Banach space, then A is sectorial. 

2. If A is a self adjoint densely defined operator in a Hilbert space, and if 

A is bounded below, then A is sectorial. 

3. If Au(x) = —Au(x), x G Q, when u G CQ(Q) where Q is an open set 

in M™, and A is the closure in LP{Q) of — A ^ Q ) , 1 < p < oo, then A 

is sectorial if its resolvent set meets the left half-plane. 

162 
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Definition B.2. An analytic semigroup on a Banach space is a family of 

continuous linear operators on X, {T(t)}t>0, satisfying 

(i) T(0) = / , T(t)T(s) = Tit + S) for t,s>0, 

(ii) T(t)x i-> x as t —• 0+, for each x € X, 

(Hi) t ^ T(t)x is real analytic on 0 < t < oo for each x £ X. 

The infinitesimal generator L of this semigroup is defined by 

its domain V(L) consisting of all x € X for which this limit (in X) exists 

and T(t) is usually written as T(t) = eL*. 

Theorem B. l . If A is a sectorial operator, then —A is the infinitesimal 

generator of an analytic semigroup {e~tA}t>o, 

e~tA - i / r < A + A>-V , < i A ' 
where T is a contour in p(—A) with argX —> ±6 as \X\ —> oo for some 

0e(§,7r). 
Further e~tA can be continued analytically into a sector {t ^ 0 : \arg t\ < 

e} containing the positive real axis, and if Re a(A) > a, that is, if Re\ > a 

whenever X € a (A), then for t > 0 

| |e- tA | | < Ce~at, \\Ae-tA\\ < -e~at 
II II - II II - t 

for some constant C. 

Finally —e~~tA = -Ae~tA for t > 0. 
dt 

B.2 Fractional Powers of Operators 

Definition B.3. Suppose A is a sectorial operator and Re cr(A) > 0, define 
for any a > 0, -, foo 

A~a = —— / ta-xe~tAdt, 
r ( « ) ./o 

where T(-) is the Gamma function. 
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Theorem B.2. If A is a sectorial operator and Re a (A) > 0, then for any 

a > 0, A~a is a bounded linear operator on X which is one-one and satisfies 

whenever a, j3 > 0. Also for 0 < a < 1, 

71" Jo 

Definition B.4. Define Aa to be the inverse of A~a (a > 0), V(Aa) = 

n(A~a). Set A° = I on X. 

Remark B.l. 
I /"OO 

1. Aa = AAa~l = —— / raAe-Mdt. 
r ( a ) J0 

2. If a > 0, Aa is a closed and densely defined. 

3. If a > (3, then V{Aa) c V(A?). 

4. AaA<3 = A$Aa = Aa+& on V{A») where 7 = max{a, /?, a + /3}. 

5. ^ e " 4 * = e~AMa on V(Aa),t > 0. 

Theorem B.3. / / A is a sectorial operator and Re a (A) > 6 > 0, tfien /or 

any a > 0, there exists Ca < 00 swc/i that 

| |^-ae-A*|| < C a r a e - 5 t /or t > 0, 

andif0<a< l,x € D(Aa), 

\\{e-At - l)x\\ < -C i_ a t a | |A a x | | . 

In addition, Ca is bounded for all a in any compact interval o/(0,oo), and 

bounded as a —>• 0+ . 

Definition B.5. Suppose A is a sectorial operator, define for any a > 0, 

XQ = £>(4«) 

with the graph norm 

ll*ll« = \\A?X\\, 

where Ai — A + al with a chosen so Re o(A\) > 0. 
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Remark B.2. It can be shown that different choices of a give equivalent norms 

onXa. 

Theorem B.4. If A is a sectorial operator in a Banach space X, then Xa is a 

Banach space in the norm || • ||a for en > 0, X® — X, and for en > /3 > 0, Xa is 

dense subspace of X13 with continuous inclusion. If A has compact resolvent, 

the inclusion Xa C X13 is compact when a > /3 > 0. 
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