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Abstract 

This thesis investigates observer design for uncontrolled multi-output nonlinear sys­

tems. The notions of special state coordinates and time scale transformations are 

explored to generalize an Observer Form (OF) in the geometric framework. Ob­

server designs and stability analysis of the error dynamics are provided. Special 

coordinate forms are also used to derive two adaptive observer designs. 

We begin by discussing a Block Triangular Form (BTF) whose structure readily 

allows decentralized observer design. The existence conditions of a BTF are estab­

lished. Unlike with most normal forms in the literature, the existence conditions are 

derived in an iterative manner using a notion of extended state. A system in BTF 

has a relatively general dynamic structure which in some cases can make observer 

design nontrivial. Hence, a Block Triangular Observer Form (BTOF) is presented 

which is a special case of the BTF. By restricting the dynamics of the BTOF, a 

straightforward observer design results which is similar to exact error linearization. 

We consider a Time-scaled Observer Form (TOF) to generalize an OF by includ­

ing output dependent time scale transformations. This work is further extended to 

a Time-scaled Block Triangular Observer Form (TBTOF) where time scale trans­

formations have a more general state dependence. Existence conditions for TOF 

and TBOTF are given. Conditions on time scale transformations to preserve global 

stability of the error dynamics are presented. 

Finally, this thesis discusses the adaptive observer design for two linear and 

nonlinear uncertainty parameterizations. The linearly parameterized case considers 

a more general OF with nonlinear output. Next, an adaptive observer design for 

nonlinearly parameterized systems transformable to an OF with linear output is 

considered. Local exponential convergence of the estimation error of system state 

and parameters is established for both cases. 
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Chapter 1 

Introduction 

Many real systems are nonlinear and often modeled in an explicit state-space frame­

work 

C = /(C,«) , (1.1a) 

y = MC,u), (Lib) 

where it £ Rm is the system input, C G Rn is the system state, y G MP is the mea­

sured output, the mapping / ( • ,«) : R" —> R™ is a C°°-vector field defined on R" for 

each u G Rm , and /i is a p-vector valued C°°-output function defined on R™ x RTO. 

The mapping / is called Ck if each of its components possesses continuous partial 

derivatives of all orders ^ k on Rn . If / is Cfc for all k then / is C°° or smooth. In 

this thesis we will work in the smooth or C00 setting, although everything can be 

adapted to the C^-setting for sufficiently large k. The problem of estimating a state 

from system measurements is referred to as a nonlinear observer design problem 

when either the system dynamics (1.1a) or measurements (1.1b) are nonlinear func­

tions of their arguments. A nonlinear observer is a system that processes system 

measurements to asymptotically provide the value of the actual system state. There 

is practical motivation to being able to estimate a system's state without its direct 

measurement. This is because direct measurement is often either impossible or pro­

hibitively expensive. Examples of applications which involve estimating a system 

state include bioreactor microorganism concentration estimation [46, 145], chaotic 

synchronization for communication systems [119, 123, 93], nonlinear map inversion 

in robotics [117, 112], parameter identification in uncertain models [44, 32], etc. The 

value of a state is also commonly required to evaluate a state feedback control law 

[101, 127, 128]. Although this is an important application of state estimation, the 
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proposed work does not directly address performance of so-called estimated state 

feedback laws. 

Most identity or full-order observers for (1.1), including those discussed in this 

thesis, take the form 

^ = /(C,«) + *(C,£,«,y.MC,u)), (i-2a) 

£ = \(lt,u,y), (1.2b) 

with 

fc(C, €,«. V, HC,«)) = 0, VC S Rn , £ € R9, u G Rm , y £ MP, 

where ( 6 S " denotes the state estimate, £ e R9, A : Mn x R9
 x R"» X RP _> R ? 

is a C°° mapping, A; : Rn x M<? x R m x Kp x RP -> R" is an observer gain that is 

C°° in its arguments. The augmented state variable £, which for some observers is 

omitted, provides dynamics to the observer gain k. Such state augmentation is used 

for example in the Kalman Filter [68], Kalman-like observers [17], and observers for 

systems with unmeasurable inputs [61, 153]. The structure in (1.2a) ensures that if 

C(0) = C(0) then £(f) = ((t) - ((t) = 0 for a lH > 0 [152, 166, 151]. Equivalently, 

C - C = 0 is an invariant subspace for the cascade system (1.1), (1.2). 

The so-called error dynamics are the differential equations determining the error 

(\ For the system (1.1) and observer (1.2) we have the error dynamics 

C = C - £ = /(C,«) - /(C,«) - *(C,?,«, y, MC,«)). (1.3) 

Hence, the observer design problem involves a selection of the observer gain k and 

the dynamics vector field A in (1.2) to ensure at least local asymptotic stability of the 

equilibrium C = 0 of (1.3) for all system inputs u. "Local asymptotic stability" of 

C = 0 means for all system inputs u and initial augmented observer state £(0) there 

exists an open neighbourhood U C R™ of the equilibrium such that if £(0) e U then 

IICWII > ll£MII , i ^ 0 are bounded and lim^oo ||C(0ll = 0. For nonlinear systems, 

the error dynamics (1.3) is nonlinear and nonautonomous, even when the system is 

unforced; this makes nonlinear observer design challenging. Further, local stability 

is sometimes not enough in practice. Often we desire global or semi-global error 

stability at the origin. "Semi-global" stability is when the error dynamics is globally 

asymptotically stable at the origin provided the system state remains in a compact 

subset of K". 

2 



1.1 Literature Review 

In this section we describe some of the main existing approaches to observer design 

which are relevant to the thesis. Particular emphasis is on geometric design methods 

where state coordinate transformations are used to put the system dynamics and its 

output equation into a special form. The discussion below will show that although 

observer design is a mature and sophisticated area of research, there is presently 

no globally applicable observer design method. We broadly categorize the design 

methods discussed. 

The linear observer design problem, i.e., when / and h in (1.1) both depend lin­

early on £ and u, for Linear Time-Invariant (LTI) and Linear Time-Varying (LTV) 

systems is fully solved when / and h are known exactly [122, 91]. However, many 

extensions to this linear observer design problem remain open, e.g. designs for sys­

tems with unknown inputs and optimal observer design. Work on observers for 

LTV systems originated with the Kalman Filter [70, 69]. Later work in [163] consid­

ered observer design for LTV systems in a deterministic setting. This last approach 

is significant since it is a basis for the Exact Error Linearization (EEL) nonlinear 

observer design discussed below. Although the problem of linear observer design 

is fully solved, nonlinear observer design continues to receive significant attention. 

This interest has led to a range of methods being developed over the last three 

decades. One of the original nonlinear designs is the Extended Kalman Filter (EKF) 

which is based on a (time-varying) linearization of a nonlinear system about an esti­

mated state trajectory [143]. The EKF for a nonlinear system is in fact a standard 

Kalman Filter for the system's (LTV) linearization and therefore its performance 

can be fundamentally limited by its first order approximation. The EKF is some­

times described as heuristic as it provides limited guidance on how to choose its 

design parameters to ensure estimate error convergence [11, 50, 86]. On the other 

hand, we note recent efforts to analyze the EKF's convergence [10, 130, 144, 26]. 

Since the EKF was proposed, many researchers have developed methods which 

are mathematically well-founded. That is, they provide precise statements about 

performance subject to various system assumptions which are often verifiable a pri­

ori using modeling information. Typical measures of performance include the size 

of the error dynamics system's region of attraction and bounds on norms of the 
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error's trajectory. Nevertheless, providing a rigorous design method only partially 

addresses the difficulties in nonlinear observer design. Other attributes are also im­

portant: applicability to a broad system class, constructive nature of the method, 

robustness to model error and noise, and ease of implementation. The given ap­

plication will determine which criteria are most important in order for a particular 

method to be practically useful. 

The high-gain observer design method is a popular and relatively constructive 

method based on a nonlinear observability assumption which is often satisfied in 

practice on some open set of state space [46]. Generalizations, including industrially 

applications, of the high-gain method are in [12, 17, 22, 38, 42, 45, 47, 48, 141, 148]. 

The main drawback of the high-gain method is large observer gain values [12]. Hence, 

the high-gain method can suffer from a lack of robustness to measurement noise. 

Roughly speaking, we can attribute this lack of robustness to a gain conservatively 

designed to overpower the worst-case nonlinearity which is measured by a Lipschitz 

constant. Below, we discuss EEL methods which rely on exact cancelation of system 

nonlinearity (as opposed to overpowering it). Exact cancelation extracts additional 

structure from the system which can avoid high gain. We remark that the high-gain 

observer theory for the multi-output case appears to be incomplete [42]. 

Time-invariant EEL is a geometric approach to nonlinear observer design which 

dualizes State Feedback Linearization [66, 62]. The method originated indepen­

dently in [84, 19] shortly after the development of State Feedback Linearization [66, 

62]. EEL attempts to find a change of state coordinates z = $(£) which puts the 

unforced multi-output system 

C = /(C), 

y = MO, 
into Observer Form (OF) without output transformation [166, 167, 109] 

(1.4) 

z = Az + -y(y), (1.5a) 

y = Cz, (1.5b) 

where matrices A € RnXn, C e WXn are block diagonal 

A = Uockdiag(A1,...,Ap), 

C = Uockdiag(C\...,Cp), 
(1.6) 
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and each pair 

A* = 

/O 1 0 • 
0 0 1 -

0 0 0 -
V) 0 0 • 

• 0 

• 1 

p A j x A% 

(1.7) 

<?=(! 0 0 ••• 0 ) e R l x A i 

is in dual Brunovsky Form, and A;, 1 ^ i < p are observability indices in Definition 

A.0.1. The existence conditions of (1.5) are given by Theorem A.0.2. Transformed 

into OF, a Luenberger-like observer 

i - Az + 7(y) + L(y - Cz) (1.8) 

yields a homogeneous, LTI error dynamics system 

z = (A - LC)z, 

where z — z - z. EEL can be difficult to apply in practice as it requires an in-

tegrability condition to hold. Condition (iii) in Theorem A.0.2 is non-generic and 

restricts the range of applicability of EEL. Numerous papers have generalized and 

improved the original work on EEL which considered unforced, single-output sys­

tems. Significant improvements made the original work more constructive [75, 74]. 

A similar approach to [75, 74] is found in [124, 125] which presents a more gen­

eral constructive algorithm incorporating an output transformation for multi-input, 

multi-output, control-afnne systems. Other work in [92] also contains constructive 

conditions given in terms of rank conditions of matrices for the single-output, nonau-

tonomous general system case without output transformation. The multi-output 

generalization of [92] is in [166], and a time-invariant version of [166] is in [167]. A 

substantial generalization is obtained in [90, 6, 67] by immersing an n-dimensional 

system into a linear A'-dimensional one with N ^ n. Constructive algorithms are 

discussed in [7, 121, 8] for a class of systems and a specific structure of dynamic 

extensions. Although immersion is a generalization of state diffeomorphisms used in 

[84, 19], the algorithms to check immersibility of the system are difficult to describe 

for the most general form of dynamic extensions. Work on discrete-time EEL in­

cludes for example [89, 30] and the necessary and sufficient conditions take a similar 

form as the continuous-time case. However, the unit vector fields are constructed 

differently. 
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Even when an OF (1.5) exists, computing the change of coordinates is often 

impractical since it requires the closed-form expression for the inverse of a non­

linear map. The work in [19] presents a so-called Extended Luenberger Observer 

which computes an approximately linearizing observer for integrable systems using 

straightforward operations of differentiation and integration. This approach is ex­

tended to a Generalized Observer Form with output transformation for single-output 

systems in [170] and for multi-output systems in [20]. Work in [113] characterizes 

the OF existence conditions by the exactness of one-forms. This exactness con­

dition is weakened by approximating the nonexact one-forms by exact ones up to 

some order. Other work which provides approximately linear error dynamics is in 

[24, 99, 98]. Here optimization is used to uniformly make the system error dynamics 

approximately linear in some coordinates. 

Important recent work in [72, 73, 82, 83] eliminates the constraint (1.5b) which 

forces the output to be linear in the design coordinates. Removing this constraint 

and applying a result on existence of solutions to systems of first-order PDEs [126], 

sufficient conditions are provided for the existence of a new Observer Form where 

the output can be in general a nonlinear function of state in the new coordinates. 

These conditions are met by a larger class of systems than those admitting OF (1.5). 

Instead of an analytic and invertible solution of PDEs, work in [2] requires the solu­

tion is only continuous and uniformly injective. However, the method can still have 

practical limitations since in general the solutions of the PDEs are only guaranteed 

to exist in a potentially small neighborhood of an operating point. On the other 

hand, the local nature of this result can be considered a drawback of any geometric 

method. 

Work on time-invariant error linearization is extended in [13, 53, 55, 56, 57, 54] to 

consider state transformation into bilinear and state-affine forms plus input-output 

injection vector. In the new ^-coordinates the system has the general form 

i = A(u)z + >y(u,y), 
(1.9) 

y = Cz, 

where A e Wixn is C°° matrix-valued function of the input u G Rm, 7 is an input-

output injection vector field, and C is defined in (1.6). Extensions of the form 

(1.9) are considered in [15] where an output transformation is introduced for a sin­

gle output system. Work in [17, 18] considers transformation to state affine forms 
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plus triangular nonlinearity using immersion techniques. As opposed to systems 

admitting an OF (1.5), which are observable uniformly for all inputs, the problem 

of observer design for state-affine systems is complicated by the existence of inputs 

which makes them unobservable. Even though generically nonlinear systems have 

few bad inputs [146], state estimation can be difficult for inputs rendering the sys­

tem sufficiently unobservable. Recent work [132, 52] considers a generalization of 

EEL which incorporates an output dependent time scale transformation for a single 

output unforced nonlinear system. Time scale transformations lead to an additional 

degree of freedom when transforming the system to OF. Similar to the work on 

time-varying linearization [17, 13, 53, 55, 56, 57, 54, 15, 18], the system's dynamics 

in new state coordinates has a LTV part plus output injection. The idea of time 

scale transformation has been applied in state feedback design in [137, 131, 51]. 

Most of the design procedures discussed above assume knowledge of an exact 

system model. Evidently, this assumption is rarely valid in practice and a design's 

robustness to model error is desirable. Significant work has been placed on designing 

adaptive observers to achieve robustness by simultaneously estimating the unknown 

parameters and system states. Compared to observer design assuming a known 

model, the design of adaptive observers is more challenging and error convergence 

can only be proven under restrictive conditions. Adaptive observer design for linear 

systems has been largely solved [31, 58, 80, 81, 88, 97, 96, 115, 133, 171]. On the 

other hand, the nonlinear case remains only partially solved. The existing work is 

applicable to a small class of nonlinear systems state equivalent to a certain form 

with a specific uncertainty parameterization. For example, uncertainty is assumed 

to be linearly parameterized (LP). Results on nonlinear adaptive observer design are 

usually developed by combining linear adaptive theory and a nonlinear geometric 

framework [11, 105, 102, 103, 104, 16, 37, 169, 14, 168]. For example, work in 

[11, 105, 102, 103, 104] transforms the system to an Adaptive Observer Form (AOF) 

and a LTI observer design in [96] is applied. The resulting adaptive observer includes 

a state estimator, a parameter identifier, and an auxiliary filter which is excited 

by the coefficient of unknown parameters. A different approach to that taken in 

[11, 105, 102, 103, 104] is in [37] which considers a different class of system whose 

dynamics are Lipschitz and have a LP uncertainty. Based on results in [129], [37] 

solves an adaptive observer problem using LMIs. The work in [105, 103, 104, 37] 
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was unified under the same framework in [16]. Here Lyapunov's direct method is 

applied to design the parameter update law. This work treats the AOF in [103] and 

[37] as special cases. However, the results are given as non-constructive existence 

conditions which could be difficult to apply in practice. 

Many practical systems such as biochemical processes and machines with friction 

often contain unknown parameters that enter the systems' dynamics nonlinearly, e.g. 

friction dynamics in [4] and bacterial growth systems in [43, 172]. Prom a theoreti­

cal point of view, adaptive observer and control design of nonlinearly parameterized 

(NLP) systems is interesting and challenging. The major difficulty in extending ap­

proaches developed for LP systems to the NLP case is due to the non-convexity of 

the underlying cost function which prevents the application of a gradient algorithm 

[95, 25]. There is little known general theory on adaptive observer design for NLP 

systems. Some work on specific systems includes a microbial growth process appli­

cation [172]. For the control problem, backstepping and high-gain techniques are 

applied in [108] to a class of system admitting an OF. Recent work [9, 3, 95, 142, 78] 

proposes a control design using a novel parameter update law based on a min-max 

optimization strategy instead of a gradient algorithm. Other approaches include 

a linear approximation design [71], a control Lyapunov function method [49], a 

parameter separation technique combined with feedback domination design [94], 

and a backstepping design [150]. The work above is not generally applicable and 

is restricted by factors including the type of parameterization and nonlinear sys­

tem structure. For example, work [3] requires convex/concave parameterizations, 

[95] considers general nonlinear parameterizations where closed-form solutions of a 

min-max optimization problem are nontrivial, [79, 78, 150] discuss special classes 

of triangular systems, and [94] investigates a class of feedback linearizable systems. 

Evidently, further research is required to solve the control problem for NLP systems. 

1.2 Contributions of the Thesis 

Chapter 2 presents a Block Triangular Form (BTF). The primary reason for trans­

forming a system into BTF is that it permits lower dimensional observer designs 

to be performed subsystem-at-a-time while effectively treating "upper" subsystem 

states as known measurements. Reducing the dimension of the observer is important 

as it simplifies the design. Existence conditions for the BTF are weaker than those 
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of the OF [85, 165, 167] and can therefore be applied to a broader class of systems. 

The main contribution of this chapter is to establish new BTF existence conditions 

with the ordering of observability indices. The ordering constraint is finally removed 

and BTF existence conditions are derived which are less constructive. This chapter 

is based on [154, 158]. 

Chapter 3 discusses the existence conditions of a Block Triangular Observer 

Form (BTOF), BTOF-based observer design, and the stability of the error dynam­

ics. As a special case of BTF, the existence conditions of the BTOF are weaker 

than the OF but stronger than the BTF. A main contribution of this chapter is 

to provide generalized BTOF existence conditions. Our work shows that different 

BTOF existence conditions can be formulated depending on which system variables 

are treated as parameters. Treating variables as parameters leads to more restrictive 

existence conditions. Another contribution is to provide a rigorous proof of global 

and semi-global error dynamics stability. The resulting stability proofs lead to a 

simple condition on the observer gain. This chapter is based on [155, 159]. 

Chapter 4 investigates a Time-scaled Observer Form (TOF). Output dependent 

time scale transformations are introduced to enlarge the class of systems admitting 

OF. A main contribution of this chapter is to extend the single output time scaling 

work [52, 132] to multi-output systems. TOFs with single and multiple time scale 

transformations are discussed and existence conditions are provided. The necessary 

and sufficient conditions on time scale transformations to preserve the global ex­

ponential stability of the error dynamics are presented. This chapter is based on 

[160, 161]. 

Chapter 5 considers a Time-scaled BTOF (TBTOF) which generalizes a BTOF 

to include time scale transformations. Due to a block triangular structure, the time 

scale transformation introduced in this chapter allows more general dependence 

than the TOF case. A main contribution of this chapter is to derive the existence 

conditions for a TBTOF. The error dynamics stability for TBTOF-based observer 

design is studied. This chapter is based on [39, 156, 157]. 

Chapter 6 discusses adaptive observer design for uncertain unforced nonlinear 

multi-output systems. A relatively large class of systems admitting the Nonlinear 

Output Observer Form (NOOF) in [73, 82] is considered. Hence, the proposed 

adaptive observer should also be widely applicable. Due to the system's nonlinear 
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dependence of the output in the new coordinates, only local exponential conver­

gence of the error dynamics is achieved with the proposed adaptive observer. Next, 

we consider the adaptive observer design for NLP systems in OF. Local exponen­

tial convergence of the state estimation error of system state and parameters is 

established. 
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Chapter 2 

A Block Triangular Form (BTF) 

In this chapter and in Chapters 3-5, we consider special coordinates which enable 

observer design for the uncontrolled multi-output system 

C = /(C), , N 
(2.1) 

y = HO 
with C°° vector fields / : R™ -> Rn , and C°° output functions h : R" -» W. 

Throughout this thesis we consider the design of observer which provides convergent 

estimate error dynamics when t —> oo. Hence, we assume that (2.1) has a unique 

solution on [to,oo). The Observer Form (OF) and related special forms, such as 

the Block Triangular Form (BTF) considered in this chapter, define coordinates in 

which the system has a special structure which facilitates observer designs. This 

chapter considers a BTF which permits lower dimensional observer designs to be 

performed subsystem-at-a-time while effectively treating "upper" subsystem states 

as known measurements. The idea of performing a design in subsystems came from 

work in [134], We consider existence conditions for the BTF. These conditions are 

weaker than those of the (Block Triangular) OFs used in EEL [134, 165, 167] and 

can therefore be applied to a broader class of systems. 

This chapter is organized as follows. In Section 2.1 we introduce some funda­

mental concepts and system forms. Two different existence conditions for a BTF are 

established in Sections 2.2 and 2.3. Examples of the construction of BTF coordinates 

and a BTF-based observer design are presented in Section 2.4. 
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2.1 Introduction 

Before introducing a number of special state coordinates, we define some notation. 

Given a C°° vector field / : R" -» Kn, and a C°° function a : Rn -> R, the function 

da 
Lfa = & ' 

is the Lie derivative of a along / . The differential or gradient of a C°° function 

a : Rn —> R is denoted da and has local coordinate description 

da . da da . 

dx dxi''''' dxn 

Given a C°° one-form w : R™ -+ Rn and a vector field / : R™ -> Rn , the inner 

product of w and / is the function 

n 

{co(x),f(x)) = ^Ui(x)fi(x), 
i=\ 

where WJ,/J are the components of u,f in local coordinates, respectively. The Lie 

bracket of two C°° vector fields / , g : R™ —> Mn is defined as 

dg df 
[f>9]=dx-f-dx-9-

See [64, 120] for further details. 

The approach taken for observer design in this thesis relies on special coordi­

nates which exist if we assume system (2.1) is observable in some sense. A number 

of notions of observability exist [60, 118, 85]. For instance, Definition A.0.1 uniquely 

defines observability indices to ensure a single normal form. However, this unique­

ness is actually unnecessarily restrictive for transforming a system into a special 

coordinate form. Hence, we introduce an alternate definition of observability in a 

similar manner as in [109, 85]. 

Definition 2.1.1. System (2.1) is locally observable in UQ with indices Aj, 1 ^ i ^ p, 

if after suitable reordering of the /ij's, 

dim(span{L}-1d/i i(C), 1 < j < A*; 1 < * < p}) = n, (2.2) 

for every £ € UQ. A system is globally observable if L3f~ hi, 1 < j ^ Aj, 1 ^ i < p 

are globally defined coordinates on R". • 
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Note that in [120, 60] the notion of indistinguishability of states is introduced 

and used to derive a rank condition for observability. For the mapping x — T(£) = 

(hi,- • • , L,x~ hi,--- , L/ hp)
T to be a global diffeomorphism, in addition to sat­

isfying (2.2) for all C £ K", the following condition must hold [164, 77] 

lim | |T(C) | |=oo. 
HCIHoo 

The indices \ in Definition 2.1.1 are not uniquely defined [134]. 

E x a m p l e 2 .1 . The non-uniqueness of observability indices in Definition 2.1.1 is 

demonstrated in the two-output system 

C = /(C) c! 

where C = (Ci > C2 > Ch Ci ) T • The system is globally observable with indices (3,1) since 

the observability matrix with indices (3,1) has the representation in (^-coordinates 

Q 

( dhi \ 
dLfhi 
dL2

fh 
\ dh2 J 

h, VCe 

and the mapping 

no Lfhi 
Ljhi 

\h2 ) 

C21 

C31 

vc?y 
is globally defined. On the other hand, the observability matrix with indices (2,2) 

has the representation in ^-coordinates 

Q 

which is nonsingular for all £ E M4. Verifying that the mapping 

/ dh \ 
dLfhi 

dh2 

\dLfh2) 

(I 0 0 0 \ 
0 1 0 0 
0 0 0 1 

\ 0 0 1 1 / 

n o = ^1, Lf hi, h2, Lfhi)1 
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globally defines new coordinates, we confirm that the system is also globally ob­

servable with indices (2,2). On the other hand, according to Definition A.0.1, the 

observability indices make use of the lowest order independent Lie derivatives and 

are uniquely defined as (2,2). • 

When system (2.1) is locally observable according to Definition 2.1.1, we can 

define new coordinates a?*- = Li" /i;,l < j < A*,l < i < p to locally transform 

system (2.1) into an Observable Form whose ith subsystem is 

/ 4 \ 
x* = f(x) = 

V(s)/ 
Vi = x\i 

where <p*{x) — L^hi, and xl — (x\,... ,x\.)T. The vector field fl(x) can be written 

using two notations: in matrix format (2.3) or alternatively 

(2.3) 

fc=i dxk dxK 

Treating the lower subsystem outputs as inputs, we denote <pl(x) as (pl(x<l> ,-y^^X 

where 

^ = ( 1 ^ W e ^ , ^ = £Afe, 

y[i+i,p]= (w»+i ) ' • • • ' \Vv p ) ) i 

and the non-negative indices a j , 1 < i < j ^ p denote the highest order of time 

derivative of yj appearing in <pl. Since x3
k = y, ~ , there can be time derivatives of 

yj of order at most Xj - 1 appearing in tpl, i.e., 

a) < Xj - 1, 1 ^ i < j' ^ p. 

Putting system (2.1) into Observable Form allows us to derive the existence condi­

tions in the framework of [41]. 

Assuming that system (2.1) is observable according to Definition 2.1.1 and can 

be interconnected in a state cascade output feedback form, system (2.1) is said to 
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be in BTF [134, 139, 140, 154]. That is, in BTF the ith subsystem has the form 

x% = Pyx % , 2/[j+i)P]), ^ 4 ) 

y% = hi(x), 

where x% = (x\,... ,x\.)T denotes the state vector of the ith subsystem, x<%> = 

({xl)T,... ,{xl)T)T denotes the state vector of the upper i subsystems, 2/[j+i,p] = 

(yt+i,... ,yp)
T, and hi is the output function expressed in the x-coordinates. We 

denote /<(x< i > ,y[< + i l P]) in matrix format (/i(S<i> ,y[ i+i,p]), • • • ,f{i(x
<i>,y[i+liP]))

T 

or the alternate form 

Xi d 
fi(x<i>,y[i+hp]) = Y.^{x<i>,y\i+i,P])-^-, 

fc=i axk 

where fl(x<l>, J/[J+I ] P]) is the &th component of jl{x<%>, j/[j+ilP]). In order to simplify 

presentation we make use of both notations in the sequel. We remark that a BTF 

considered in [139] is a special case of (2.4) in that j / * = x\. This special case can 

be useful for observer design and is discussed below. 

As shown in Section 2.4, non-uniqueness of A* can add a degree of freedom when 

checking BTF existence conditions. That is, for a particular choice of indices Aj the 

system may be transformable to a BTF and for another choice it is not. 

2.2 BTF Existence Conditions : State Approach 

Two approaches have been proposed to solve the existence conditions of a BTF. For 

the ith subsystem, the first approach, which is taken in [134, 139] and Section 2.3, 

treats only part of variables in the ith subsystem dynamics as states, and the rest 

of variables as parameters. This parameter assumption reduces the complexity of 

the existence conditions, but it also limits the range of applicability for the resulting 

conditions. It is worth noting that in [134, 139], where only the current subsystem 
<a'-> 

state xl and output derivatives y- 3 ,i + 1 ^ j ^ p are considered as states, 

incomplete existence conditions for the BTF result due to the implicit assumption 

that the upper subsystem states are parameters. In Section 2.3, only j/[i,i_i] is 

treated as a parameter. Another approach which is considered in this section treats 

all variables in the ith subsystem dynamics as states. However, this approach in 

general leads to very complex existence conditions. We therefore impose the ordering 

constraint on observability indices in this section to derive relatively straightforward 

existence conditions. 
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2.2.1 M a i n R e s u l t 

Theorem 2.2.1. Given an observable system (2.1) with Aj ^ m a x i + i ^ ^ p Â  — 1, 

with its first i — 1 subsystems in BTF, and its last p — i + 1 subsystems in Observable 

Form, define the prolonged vector field F\ and the extended state x\ as 

FM) = E;^<j>,%-+i,p])+m) + E X>?+1)TISJ. (2-5a) 
j=l j=i+l fc=0 VVj 

< = ( (x< i - 1 > ) T , (xY, ( V ^ f f 6 *N, (2.5b) 

where N = V{ + L,L = Y%=i+i(°ij + !)• ^7*e ^ subsystem in (2.3) can 6e locally 

transformed into BTF in (2.4) by the extended state transformation xl = ^%{x\) 

and the first i — 1 subsystems remain identical if and only if 

a d ^ 
FiSyf F ! ^ 

(1 < i < j , I < p; 

= 0, 0 < q < a j ; (2.6) 

0 ^ r ^ aj. 

The extended state transformation \P* is a solution of the Xi • L PDEs 

e dyj
 3 

Remark 2.2.2. The notion of a prolonged vector field comes from [41]. The main 

differences between Theorem 2.2.1 and previous work [139, Thm. 1] involve the 

definitions of the extended state x\ and the prolonged vector field F^. Previously, 

xl
e and F\ did not include the upper subsystem states. That is, 

j=i+\ k=0 °Vj 

The necessary and sufficient Lie bracket conditions in [139, Thm. 1] are the same 

as (2.6). The difference in the definitions of x\ and Fe* leads to different vector 

fields appearing in conditions (2.6). This difference will be demonstrated by two 

counterexamples in Section 2.2.2. However, the Lie bracket conditions using either 

(2.5) or (2.8) are equivalent in two simple cases. The first case is when a*- ^ 

1, i + 1 ^ j < p, 1 ^ i < p — 1. In this case we have x\ = x{(y), 1 < j ^ i — 1 

and the Lie bracket conditions using (2.5) or (2.8) are equivalent. That is, the Lie 
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bracket conditions reduces to ipi not having terms involving yjyi,i + 1 ^ j , Z ̂  p. 

The other case is when the first subsystem is transformed. No upper subsystem 

for the first subsystem implies the same prolonged vector fields and extended state 

for both definitions. Hence, for the two subsystem case, which is considered for the 

examples in [139], the Lie bracket conditions are equivalent. • 

Remark 2.2.3. To simplify notation we have specified that the extended state 

transformation W depends on x\, however tyl can only be a function of 

This is because allowing y^ 3 dependence in \P' is not required to remove y. 3 from 

the ith subsystem. As shown in the proof of Theorem 2.2.1, provided that conditions 

(2.6) hold, such a W can always be constructed. • 

Remark 2,2A. Theorem 2.2.1 removes all time derivatives of lower subsystem 

outputs from the ith subsystem. In order to reduce the order of time derivatives 

of yj by dj - ffj,i < j ^ p, we change the range of indices in (2.6) to 0 ^ q ^ 

a}-/?j; 0 < r < a { - / 9 / , t < j > K p - • 

Remark 2.2.5. Given an observable system (2.1) with Aj ^ maxi+i^j^pXj - 1, the 

first i — 1 subsystems have a globally defined BTF, and the last p — i+1 subsystems 

have a globally defined Observable Form, The ith subsystem in (2.3) can be globally 

transformed into BTF in (2.4), and the first i — 1 subsystems remain unchanged if 

and only if (2.6) are satisfied on M.N and the vector fields ad^ ; —TTTIO ^ k ^ 

oft, i + 1 ^ j < p are complete. A vector field / is said to be complete if the domain 

of all its integral curves can be extended to all of R [162, 21]. Thus if through every 

point there is an integral curve that exists for all time, we show that a vector field 

is complete. A vector field is incomplete if we find one integral curve that cannot 

be extended for all time. • 

Next, two examples are given to illustrate Theorem 2.2.1 and its differences from 

the previous work in [139, Thm. 1]. 

2.2.2 Counterexamples 

The first example shows the existence conditions based on (2.8) are not necessary, 

and the second example shows the conditions are not sufficient. We consider a 
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three-output system with indices Ai = 2, A2 = A3 = 4 

±2 = f\x) = 3 
\a;22/33) + K ( x ) / 

i 3 - /3(x) 

(2.9) 

» = \ x i 

where initially we take /t(x) = x\x\/{x\)2. The first subsystem is already in BTF 

coordinates (i.e., xl = x1). Hence, we only consider the transformation of the second 

subsystem into BTF. Since a§ = 3, we define the extended state 

xl^((xY,(x2f,(yf>ff, 

and the prolonged vector field 

F! = ((P)T,(f2)T,ys,h,yf\yt])T-

We can verify that the Lie bracket conditions (2.6) of Theorem 2.2.1 hold. Using 

PDEs (2.7) to solve for the state transformation ^ ( a ^ ) , we can transform the second 

subsystem into a BTF 

x\ = xlv3 - xjxl, 

2x 

„2\2„ 1^2-1=2 s2=l xi = xt - 73^2 (5(*S) - Sxiiyz) - Zmrwi - miffi + 3y 3 zp2 + 2(y3)J), 

X4 

(4) 
= fc?(6^5|x| - 4x2(x2)2 - 7(x | ) 3 - 5x1(2/3) 

- 27(x2)2y3 + 18ysi%xh + 15(2/3)
3), 

2/2 = x{. 

Following the results in [139, Thm. 1], we define 

*2 = ((*a)T . fo< 3 >)T)T , 
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and 

F! = ((f2)T,m,mJ"\y^)T-

It is trivial to verify the Lie bracket conditions (2.6) are not satisfied, which implies 

the second subsystem is not transformable to BTF. This leads to a contradiction as 

a BTF was computed above. Hence, the Lie bracket conditions (2.6) with definition 

(2.8) are not necessary. 

In order to show the conditions of [139, Thm. 1] are not sufficient, we consider 

system (2.9) with K(X) = 0. As above, we only consider the transformation of the 

second subsystem. Defining F% and x2 to include the first subsystem as in Theorem 

2.2.1, we observe the Lie bracket conditions (2.6) are satisfied nowhere 

2 d 3 
ad^2r"W'ac lFe2 

d 

Byf\ 
= 2 

d 
dx\' 

Alternately as in [139, Thm. 1], defining F 2 and x\ to exclude the first subsystem, we 

observe the Lie bracket conditions (2.6) for a 2 — 3, j — I = 3 are satisfied, and the 

second subsystem appears to be transformable to BTF for some \P2. Consequently, 

there should also exist changes of coordinates i/>21,^>22 which successively remove 

2/3 and (2/3,3/3) from S2 . However, we show that attempting to remove 2/3 and 

then (2/3,2/3) from the second subsystem using [139, Thm. 1] leads to a contradiction 

and the conditions in this result are therefore not, sufficient. 

Remark 2.2.4 can be applied to [139, Thm. 1] and in order to remove only j / 3 ' 

from the second subsystem, we verify 

ad 
d 0 

n Qyf'dyf 
- 0 , 

and solve PDEs (2.7) to get a transformation ijP'1 which removes 2/3 • Without any 

loss of generality (shown below), we choose the solution 

/ 

V^(^) = 

\ 

£ 3 Am 
\x\ - x\yz) 

which leads to 

x21 = 

( xf + xly3 \ 
(ys? 
ym 

\ -J/3S/3 J 

X 3 X 2 
X^ -
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where the state of the second subsystem is re-notated as x21. Next, we define 

^ = ((*2 1)T ,0/3< 2 >f)T> 

J?1 = ((W.fe,fo,v?V\ 
where x21 = P1^21), and verify the Lie bracket conditions for removing (2/3,^3) are 

not satisfied 

- dy3
 p* dy3 

= - 2 8 

dx*t
r 

By [139, Thm. 1] this means there exists no change of coordinates ip22 to transform 

the second subsystem into a BTF, but because \P2 was previously shown to exist, 

there must exist V22 given by ?/>22(x21) = *2(Xg) o (ip21 {x2.))-1. This leads to a 

contradiction. Above, we made a specific choice for V21- However, this choice 

will not affect the existence of V22- For instance, suppose we consider an alternate 

transformation ip21 in place of ip21, and that after transformation by •ip21 there exists 

1/j22 to put the second subsystem in a BTF. If we define n = -ip21 o (ip21)-1 then V22 

can be constructed as ip22(x21) = ip22 o 7r(521). Therefore we can pick any V21 

without loss of generality. 

2.2.3 Proof of Main Result: Theorem 2.2.1 

We assume the ith subsystem of (2.1) to be in Observable Form (2.3) and that 

its first i - \ subsystems are in BTF. We determine the existence conditions to 

transform the ith (i ^ p - 1) subsystem (2.3) into BTF (2.4) while leaving the 

first i — 1 subsystems unchanged. As originally suggested in [134], we treat the 

yj, i+1 ^ j < p which appear in (2.3) as inputs so that the problem of transforming 

the ith subsystem to BTF is converted into the problem of removing derivatives of 

inputs as considered in [41]. In particular, we wish to completely eliminate, as 

opposed to merely lowering input derivative order. The important point is that we 

consider the first i subsystems, and not the ith subsystem in isolation, as the original 

system. The problem is to transform the prolonged vector field (2.5a) into 

where we have removed the derivatives of j/[j+i,p] from the ith subsystem dynamics. 

Necessi ty: We assume there exists a transformation 

* = ( ( » < < - 1 > ) r , ( * , ) r
> ( y i ^ 1 > ] ) r ) r (2.11) 
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putting the ith subsystem into BTF and leaving the other subsystems unchanged. 

According to Remark 2.2.3, the components of the inverse transformation xl
k+1 — 

(*_1)fc+i have the dependence 

-i _ (ty-Ui (~<i> <a*+i "**+*> <ap-*i+k>\ 
xk+l — V* )k+\\x iVi+\ > - - - ) J / p )> 

for 0 ^ A; < Aj - 1 and Aj ̂  maxj+i^j^pAj - 1 ^ maxj+i^j^pO!*-, and particularly 

we have 

Vi = (V~1)i(x<i>,V[i+i,p])-

Hence, the vector field (2.10) can be rewritten as 

By induction we calculate 

oyj ayj 

These unit vector fields satisfy the Lie bracket conditions (2.6), and since these 

conditions hold independent of coordinates, necessity is shown. 

Sufficiency: We use a constructive method to prove sufficiency. The extended 

state transformation ^{x\) is the inverse of a composition of flows of vector fields. 

These vector fields are defined on the extended TV-dimensional state space S which 

is constructed by extending the i/j-dimensional state space of the first i subsystems 

with y£?tf'->, the L output time derivatives in tp%. We begin by introducing N vector 

fields defined on <S 

1 < k < XJ;1 < j < i - 1, 

l^k^Xi, (2.12) 

0 ^ A; < a j ; i + 1 < j < p . 

We denote the vector fields (2.12) as W\,..., VKJV and order them as follows: the first 

fj_i vector fields are X\,... ,X\ ,... ,X\-1,... ,X%^ , followed by the next Aj vec­

tor fields Y i , . . . , Y\t, and finally followed by the L vector fields Z^+1,..., Z%\1 ,..., 

x>- d 

d 
Yk~94' 
Zk - ad_F< 

d 
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Z ? , . . . , Z*t. Given an initial condition s0 G RN , * is given by *(x^) = $_ 1(x*) + s0 

where 

*(*i, • • -,tN-i,tN) = <$„(• • • {<t>%MwSs»))) •••) (2-13) 

with (jty denoting the flow of a vector field V defined on <S, i.e., the solution of the 

differential equation 

|<^ (s ) = V{4>Us)) 

passing through s at t = 0. 

We show *(x*) has the following properties 

(i) it is a local diffeomorphism; 

(ii) it rectifies the prolonged vector fields ad^.Fi—^-r into —-—• 
("J J ' 

(iii) it preserves x<%~1:>^^"^•,, i.e., \P takes the form of (2.11); 

(iv) it transforms the ith subsystem into a BTF. 

The property (i) can be shown by verifying that the Jacobian matrix of $ at SQ is 

nonsingular. Computing the ith column vector of the Jacobian matrix —-̂ p-

dti <9TJV-I STjv-i+i dtN-i+i 
£>$ STjv-i+2 

( ^ - ^ ( - ( ^ ( - o ) ) . . . ) ) 

OlN-i dWN-i+l 

where t = (tu..., tN)T, and Tfc - < ^ ( . . . ( ^ ( s o ) ) • • •) , 1 *S * < N - 1. Taking 

th = 0 for 1 < k < N, we have 

Wiv-i+i(Tjv-i+i(so)) = WN-i+i(so), 
dTk+1 

dTk 
= /„• 

Since Aj ^ maxj + i^ j^ p \j - 1, by direct calculation all the vector fields in (2.6) have 

the form 

dy)3' ,=i a:E* %• 

for 0 ^ k ^ OJ*-,I + 1 < j ^ p, and where crs
J is a smooth function. We therefore 

conculde that the Jacobian matrix 

™(0) = (W1(s0),...,WN(so))=(t£ ^ 
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is nonsingular and * is a local diffeomorphism. 

The property (ii) can be shown by verifying 

|>„_ i+1,..,WW=(°). (2.15) 

Prom the Lie bracket conditions (2.6), i.e., Wk,N — L + l ^ k ^ N commute, we 

know their flows commute [162]. This implies 

*(t) = 0fe(---(^a(^(ao)))---) 
= twMwJ- • • ttwllMwll • • • « ( * > ) ) . . . ) ) • • • ) ) , 

for N — L + 1 < k < N. Similar to the proof of property (i), we can derive 

j j r -W = Wfc(*(i)), N-L + l^k^N, 
otk 

and 

— = (*,WN-L+i,...,WN) 
dt 

Considering the formula of the extended state transformation \&(x*) = $ _ 1 (a^,) + SQ, 

we have 

d4^ = d4^WN-L+i>--->WN^lN> 
and complete the proof of (2.15). 

To show the property (iii), we compute the effect of $ on a point 

Clearly, for Yfe, 1 ^ k < Aj 

4fc(4)=((^<i-i>)^4,...,2^,-..,4i,(2/f:irP])
T)T (2.i6) 

k + Vi-\ 
entry 

We have a similar result for the flow of X3
k, 1 ^ k ^ Xj, 1 ^ j' ^ i — 1 

<f>^M) = ((*<J'-1>)T, • • •, J H , • • •, (*J+1)T, 
v,-_i + k 

entry 

••• , (*<-1)T , (*<)T , (<1 i ) r) r . (2-17) 
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Considering (2.14), we have 

^i(*S)=((2<i-i>)r,(si)r,(vIt?S-i])T.(»;*-1>)r. Jk 

yf^t.^^f^^ff, (2.18) 

where x%(x\) is some smooth function, I = i/i + YllZi+i(al + 1) + A; + 1, and 

yKfc+i),(aj)] = ( y ( f c + 1 ) ; . . . j j / ^) ) r prom (2.16)-(2.18) we conclude that $ denned 

in (2.13) transforms a point 

into 

where 

x k 

s0 = (x<^>,xl(y<°>p])0)ES 

( S < - 1 > , i i ( 4 ) , ( y < ^ > ] ) ) 6 « S , 

tVj-i+k + («fe)o, 1 ^ k ^ Aj-; 1 ^ j ^ i - 1, 

with (-)o denoting the initial point, and xl(x\) e RXi is a smooth function. Thus 

\P, which differs from $ _ 1 by a shift of the initial condition so, preserves x^.,1 < 
(k) 

k ^ Xj, 1 ^ j < z - 1 and y] ,0 ^ fc < a*-,z + 1 ^ j ^ p. Therefore, only x% is 

transformed or \I/ has the special structure given by (2.11). 

Finally we show \P transforms the ith subsystem into BTF, i.e., the property 

(iv). Since p are rectified into —(J,_fc) by \P, 
i.e., in new coordinates, 

adfc pi—7-7T = — 7 1 - 7 7 , (2.19) 

where Fl denotes F\ in the new coordinates. Since Afc ^ maxfc+ i^^ p Aj - 1 > 

m a x ^ i ^ ^ a ' , we know y^ only depends on (£<fe>,y[fc+i)P]) for 1 < k ^ i. After 

applying the extended state transformation \P, F* is written as 

. 1 ai 

(fc+i) a 

&=1 j ' = » + l fc=0 " J / j 

From (2.19), we readily verify by induction that 

dp 
0, 0 < k ^ a'- - 1; i + 1 < j ^ p, 
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which implies that /* is independent of j/j ' , 1 ^ k ^ ctj, i + 1 ^ j ^ p, and the ith 

subsystem is in BTF. • 

Remark 2.2.6. According to the structure of the vector fields in (2.14), we have 

7 _ ( yi+l yi+l yP 7V \ _ ( ®vi-ixL \ 

Thus 'J'* can be solved from 

&£n = <W, (2.20) 

where x* is defined in (2.8b). Written in the form (2.20) we remark the similarity 

with the PDEs provided in [139, Thm. 1]. However, the first A, rows of f2 can differ. 

This accounts for PDEs in [139, Thm. 1] leading to the incorrect transformations 

for some systems. For the same reason, the Lie bracket conditions (2.6) using (2.8) 

can lead to the wrong conclusion about the existence of a BTF. • 

Remark 2.2.7. In a more general setting, for Z to be rectified into the form of 

(0,0,1)T by an extended state transformation \f (2.11), the first I/J_I rows of Z must 

be zero. In Theorem 2.2.1, this necessary condition is inferred from the ordering 

constraint on Aj. D 

Example 2.2. To illustrate the construction of the BTF coordinates by the com­

position of flows of vector fields, we consider a system 

i 2 = / 2 = uy' 
X 

i3 = / 3 =l 4 
2 

,3/ 
Kf (^)j 

y = 

where c is a constant and <p3 a C°° function. The system is in Observable Form 

with indices (2,2,3). The first and the third subsystems are already in BTF and we 

only consider the transformation of the second subsystem. We have a\ — 2 since j/3 

appears in f2. Defining the extended state x\ and the prolonged vector field F% 

^ = ( ( * 1 ) T , ( * 2 ) r , ( % < a > ) r ) T , 

^ = ((/1)r,(/a)r,w,w,y?))T, 
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we verify the conditions of Theorem 2.2.1 with j — I — 3 and i — 2. Taking the 

vector fields 

dx\' dx\' bi 

d 
W5 = ad l F 2 -^r- = X2 

d d 
CTT-0- + 

dx\ 

dx\ dx\ dy3' 

0^,(0) 

d i d d 
r" dy3 dx\ dy3 

dys 

we compute the composition of flows of W^, 1 ^ k ^ 7 with the initial condition 

so = 0. 

(h\ 
0 
0 
0 
0 
0 

\o/ 
/'A 

t2 

0 
0 
0 
0 

\o/ 
/*A 

i3 

0 
0 
0 

W 

4°4(o) = 

4°<o<(°) = 

tfW&°<°^(0) = 

/*A 
is 
t4 

0 
0 

V o / 
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<°<&4°<otfiWvk(°) 

fa 
fa + fafa 
£4 — Cfa 

fa 
0 
0 

*&, ° < ^ ° <f>w. ° </>f4 ° ^ ° ^ (0) w4 ^w3 n*^ "n^i * 

ti 
fa 

fa + fafa 
£4 — Cfa + ^2^6 

*5 

fa 
0 

\ 

- < ° < , ° < ° <Pw4 ° <t>%3 ° < ° < (o) = 

*1 

fa 
fa + ^ 5 

(4 — Cfa + £2^6 

<5 
fa 
fa 

The transformation $ is obtained by solving the inverse of the composition of flows 

* 

ffa\ 
fa 
fa 
u 
fa 
fa 

\tr) 

I 

= 

V 

1 
1 JL>r\Jb 

\ 

- J2. ! ~ 3 . 
2^1 

which define the BTF coordinates 

x2 = 

T 3 

x2 
„3 

1 *̂ 2 1 
Xo X0X9 r W i 

D 

2.2.4 BTF with Linear Output Function 

As we will discuss in the next chapter, a BTF is an intermediate step between the 

original C-coordinates and Block Triangular Observer Form (BTOF) coordinates. 

For the ith subsystem in BTF to be transformable to BTOF, the ith output is 

required to be independent of lower subsystem states and outputs. Furthermore, 

a BTF system with a linear output is more likely to admit a BTOF. Hence, the 
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existence conditions of a BTF with linear output function are significant. Using the 

same procedure as in the sufficiency side of the proof of Theorem 2.2.1, we obtain 

the following theorem which ensures yj = x[, 1 < j < p. 

Theorem 2.2.8. Given an observable system (2.1) whose first i — 1 subsystems 

are in BTF, the ith subsystem 1 < z < p — 1 in (2.3) can be locally transformed 

into BTF (2.4) by ^l{x\) = (x\, ^\,..., \P\ ) T leaving the remaining subsystems 

unchanged if a^: + 1 ^ Aj,i + 1 ^ j ^ p, and the Lie bracket conditions (2.6) hold. 

Proof: Since a* + 1 < A,, the vector fields Z3
k can be written as 

7 J — 

d , ^a)-k kj, j-y d 
+ Z/r=0 (Tr' (^eJa? 

A j - r 
0 ^ k < a} - 1, 

(«}) ' 
A; = a!-

for smooth functions <7r
J(x*), i.e., Z]

k has no ^ component. Therefore, the com­

position of flows defined in (2.13) preserves x\ and we have x\ = x\. Finally, 

** = (x\, * | , . . . , ty\.)T transforms the ith subsystem into BTF. • 

Remark 2.2.9. If system (2.1) has indices Ai ^ . . . ^ Ap and is transformable to 

BTF, we have yj = x{, 1 < j < p. • 

2.2.5 B T F for Systems with Inputs 

We now consider the BTF existence conditions for a class of afflne control nonlinear 

systems. Without loss of generality, we assume the input u is a scalar, 

C - /(C) + Q(()U, 

v = MO, 
where Q{Q is an input vector field. It is well-known that for nonlinear systems 

observability is a function of input [46]. As our objective is observer design we avoid 

the problem of "bad inputs" by assuming (2.21) is uniformly observable for any 

input. By defining the observable coordinates x\ = Lkflhi, 0 < A ; ^ A ; - l , l ^ i < p , 

the ith subsystem of system (2.21) is rewritten as 

(2.21) 

/ X2 \ ( LQ{x)hi{x) \ 
Lg(x)Lf(x)hi{x) x3 

+ 
V(s)/ 

Vi = fh(x), 

A i - l , 

u = f(x) + ^(x)u, 
(2.22) 

\L
e(*)Lftihi(x)J 
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where f(x),g(x) are expression of /(C); #(C) m ^-coordinates respectively. Denote 

fj(x),Qj(x) as the j t h component of fl{x),Q%{x) respectively. Sufficient conditions 

to ensure (2.22) is uniformly observable can be found in [22, 23]. 

A system (2.21) is in BTF if its ith subsystem has the form 

x% = f(x<l>,y[i+hp]) + ${x<l>,y[i+ltP])u, 
(2.23) 

yi = hi(x). 

We state the BTF existence conditions for the forced case in the following theorem. 

Theorem 2.2.10. Given a uniformly observable system (2.21) with 

Aj ^ max A7- — 1 

, with its first i — 1 subsystems in BTF (2.23), and its last p — i + 1 subsystems in 

(2.22), define the prolonged vector field F* and the extended state x\ as (2.5). The 

ith subsystem can be locally transformed into BTF in (2.23) by the extended state 

transformation x% = ^>l{xl
e) and the first i — 1 subsystems remain identical if and 

only if in addition to Condition (2.6), the following Lie bracket conditions hold 

adh _ (a«)' & 0, 0 ^ q < a) - 1; i + 1 < j ==C p, 

where Q\ — (0, (gl(xl))T\0IXL)7'• The extended state transformation tyz is a solution 

of the Xi • L PDEs (2.7). 

2.3 BTF Existence Conditions : Parameter Approach 

Theorem 2.2.1 gives BTF existence conditions for an observable system (2.1) pro­

vided that its indices satisfy 

Xi ^ max Xj — 1, 1 ^ i < p. 

This condition potentially restricts the choice of indices, and the objective of this 

section is therefore to remove this constraint. 

Noticing a j , i + 1 ^ j ^ p instead of Xj plays a crucial role in determining 

the expressions of the prolonged vector fields Z3
k and therefore the extended state 

transformation to a BTF, which in turn affects the BTF existence conditions. We 

divide the existence problem of a BTF into two cases in terms of a*-. 
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Case 1: A, ^ a*., i + 1 ^ j ^ p. 

Case 2: A; < a j , i + 1 ^ j ^ p. 

Since Case 1 differs slightly from conditions in Theorem 2.2.8 for BTF with linear 

output, we state the BTF existence conditions for Case 1 in the following proposi­

tion without proof. 

Proposition 2.3.1. Given an observable system (2.1) whose first i - 1 subsystems 

are in BTF, the ith subsystem l < i < p - l t t i (2.3) can be locally transformed into 

BTF (2.4) by ^l{x\) leaving the remaining subsystems unchanged if ofy ̂  A;,i + 1 ^ 

j < p, and the Lie bracket conditions in Theorem 2.2.1 hold. 

Next, we focus on Case 2. As shown by the following example, allowing a£ > Afe 

makes yu a general function of x in BTF coordinates. For the ith subsystem, the 

complexity of the state approach increases drastically because of the dependence on 

2/[2,t-i) m the first z — 1 subsystems. Hence, we treat 2/[2,»-i] as parameters. Since 

the ordering conditions on observability indices are not satisfied, Theorem 2.2.1 

and Remark 2.2.4 are in general not applicable. However, with Z/[2,i-i] treated as 

parameters, we verify that the first i/j_i components of the vector fields 

ad^ F i —T-j - , 0 ^ k ^ A*; i + 1 ^ j s? p 

are zero. This fact allows us to establish the following proposition by imitating the 

proof of Theorem 2.2.1. 

Proposition 2.3.2. Assume yp.t-i] are parameters andalj > A*. For the ith subsys-
(Q* — fc) 

tern, the output derivatives y • 3 , 0 < k < Aj, of the jth subsystem can be removed 

by an extended state transformation ty1 if and only if the Lie bracket conditions of 

Theorem 2.2.1 are satisfied with the indices 0 < q,r ^ Xi,i + 1 ^ j,l < p and the 

vector fields ad^ p i —TTTJO < k ^ \%,i + 1 < j ^ p are independent o/yrai-n-
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Example 2.3. We consider a five-output observable system with indices (2,1,1,1,4) 

j 1 = /^x1 ,3/(2,4]), 

Vs + xf, 

x\ 

T 3 

Xl 

= P 
= f 
= / 4 

- 2 , 2 
= ^1 + 2/3. 

= *? + y$°_ 
= Xi + x?y5, 

/ * j \ 
i 5 = / 5 = 

T 5 

vw 
^ 

X? 

w 
The first two and the last subsystems are in BTF. For the third subsystem, since 

A3 = 1, Proposition 2.3.2 is applied to determine the existence of a change of coor-
(3) 

dinates where the second subsystem dynamics is independent of y5 . We verify the 

Lie bracket condition (2.6) with 0 < q, r < 1, / = j = 5, and solve PDEs (2.7) for \I>3 

\j»J 

which puts the third subsystem into 

*3 
xi P 

J/5, 

Xi + Xi-

For the fourth subsystem, a\ = 1 = A4. If 2/3 appearing in / 2 is treated as a function 

of state, Proposition 2.3.2 is not applicable to remove 2/5 from the fourth subsystem 

since gf-,ad_F4gf- are not the vector fields to be rectified. We illustrate this fact 

in Example 2.4. On the other hand, treating t/3 as parameter, we apply Proposition 

2.3.2 to solve an extended state transformation 

* 4 = x\ - xjy4. 

\I/4 puts the fourth subsystem into 

i l = x1 + (x?)22/4 + (zf + 2/32)y4, (2.24) 

which is independent of output derivatives of the lower subsystem. Note that due 

to the dependence on y3 (2.24) is not in the BTF (2.4). D 
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Example 2.3 demonstrates the use of Proposition 2.3.2 for Case 2 and the 

limitation of the BTF (2.4). In the sequel, we consider the existence conditions of 

a generalized BTF whose ith subsystem is written as 

(2.25) 
Vi = hi(x). 

We can make use of Proposition 2.3.2 to solve the extended state transformation \Pl 

(a* —k) 
which eliminates the output derivatives y• j , 0 ^ k ^ Aj from the ith subsystem. 

</3'-> 

The ith subsystem after tp* will depend on y- 3 ,/3j = a^ — A,. Hence, in this 

section we consider the following problem. 

Problem: Given an observable system with the first i - 1 subsystems in BTF 

xk = fk(x<k>,y), 
-<*>. .< /*>* ! < * < • - ! . (2-26) 

the ith subsystem 

(2.27) 
y% = hi{x ,x ,y^i+lpj), 

and the remaining p — i subsystems are in Observable Form, find the necessary and 

sufficient conditions to guarantee the existence of an extended state transformation 

/ ! « - ! > \ 

^ - ^ s ' . y f f ^ ) = ^ (^ < i - 1 > ^^i ; p ] > ) (2.28) 
V y[i+l,p] ' 

such that the ith subsystem is transformed into a BTF (2.25). • 

Remark 2.3.3. The ith subsystem (2.27) is not in Observable Form and yi is 

a general function of system state. This is different from what is considered in 

Section 2.2. Proposition 2.3.2 is not applicable to remove y ^ f ^ i from /*. This is 

explained by Example 2.4. • 

Example 2.4. We consider a three-output observable system with indices (1,1,3) 

x{ = f1 =x\ -t-j/2, 

x2
1=f2 = x\+2x2

1+y3 + y3, 

( Xl \ 
x3 = f = si , (2.29) 

WW 
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where the first and the third subsystems are in BTF. Proposition 2.3.2 is applied to 

removed 2/3 from the second subsystem. We verify the Lie bracket condition (2.6) 

for q = 0, r — l,j = I = 3, and solve the extended state transformation 

* 2 1 = xj- y3, 

which yields the first two subsystems 

x\ = x\ + xf + y3, 

xf=pl = Zyz + x\+2xf. 

We attempt to remove 1/3 by reapplying Proposition 2.3.2. Defining the extended 

state and prolonged vector field 

xf = (x\,xf,y3,y3)
T, 

F? = (f\p\m,m)T, 

computing the vector field 

~F^ dy3 dx\ dxl1 dy3' 

and verifying the Lie bracket condition (2.6) for q = 0, r = 1, j = I = 3, we solve the 

extended state transformation to remove ys from the second subsystem 

(x\\_( x\+xf \ 
* - \ x \ ) - \ - 2 x \ - x ? ) -

We remark that the change of coordinates \I> cannot preserve the first subsystem 

dynamics since the first component of the vector field ad_F 2 i -M- is nonzero. In the 

new coordinates, the first two subsystems are expressed as 

x\ = f1 = x\ + j/3 + j/2 - £3, 

x\ = p = -5x\ - x \ - 5y3, 

which are not in BTF (2.25) since the first subsystem dynamics depends on 2/3. On 

the other hand, the first two subsystems are in BTF with the transformation 

•-(3)-(*r-0-
This fact demonstrates that for Case 2 vector fields which appear in the Lie bracket 

conditions (2.6) are not necessarily unit vectors to be rectified. This results from 

the appearance of 2/i in the upper subsystem dynamics. D 
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2.3.1 Main Result 

We first introduce several definitions, then state the main theorem, and finally 

present the proof of the theorem. For the ith subsystem, the prolonged vector field 

F* and the extended state x\ are redefined as 

FU4) = E/^< j >
l 2 / )+f(4) + E X > ? + 1 ) T I * ) . (2-30a) 

j=i j=i+i fc=o "Vj 

< = ( ( x < i - 1 > ) T , (xY, (v&lff, (2.30b) 

and N = i/i + L,L = Ej=i+i(/3 j + 1)- The vector fields ^ , 0 < k < /3j,t + l < j < p 

are defined as 

a 
^ . o = ~ ~ W ^ = a d - ^ ? 7 ^ - 1 ~ K5,*' (2.31) % 

where 

"S'.O ~~ ^' Kj,fc 
. - l ' 

Vfli1 / 0x<'-1> (0!.-*+l) 
fy 

(2.32) 

V 0 / 
The vector fields ijj0,fjj1,i + 1 ^ j < p are defined by the following equations 

dF% 

ffj,o = Vj,o n\x = —j^y • (2.33) 

We also introduce the following definition. 

Definition 2.3.4. U is the set of all transformations * l such that | | £ is nonsingular, 

and nji.,0 ^ k ^ /3$,i + 1 ^ j ^ p are rectified into unit vector fields —.% ., 
•/>"' </ IP. ,* -"V 

respectively. D 

Remark 2.3.5. According to the proof of Theorem 2.2.1, the set U is not empty 

if and only if there exists a state transformation \P* such that rf,k are linearly 

independent and commute. It is not difficult to verify that vector fields rjjk (2.31) 

are always linearly independent. However, the construction algorithm cannot ensure 

that the first fj_i rows of 77*. k are zero, which is required to construct an extended 

state transformation as (2.28), i.e., (j?J+1)/Si , • • •, Vjfl, •••, %^i. • • •, Vp,o) i s n o t o f 

the form 

* 
I 
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As in Section 2.2, the extended state transformation rectifying rf-k is defined by the 

PDEs 

dy- > 

and ** 6 (7 can be solved from the PDEs 

d * ' • 

QjVj,k = °> O a ^ ; i + K j < p . (2.34) 

As demonstrated in Example 2.4, the extended state transformation solved from the 

above PDEs is not necessarily written as (2.28). • 

Theorem 2.3.6. Considering an observable system (2.1) with the upper i subsys­

tems given by (2.26)-(2.27), and the remaining p—i subsystems in Observable Form, 

the ith subsystem 1 < i < p— 1 (2.27) can be locally transformed into BTF in (2.25) 

by an extended state transformation (2.28) if and only if 

(i) U is non-empty; 

(ii) the first I/J_I rows of rf-k are zero; 

(Hi) the vector fields r/'fc are independent of the parameters, i.e., 

dr>U 
dyr 

= 0, 
1 < r < i - 1; 

0 < k < /?]; (2.35) 

J + 1 ^ j < p. 

Remark 2.3.7. Treating J/[i,j-i] appearing in the first i subsystems as parameters 

simplifies the presentation of the proof. Also, it ensures that y- 3 is the highest 

derivative of yj,i + 1 ^ j ^ p appearing in the prolonged vector field F\ and 

extended state definition (2.30b). On the contrary, treating 2/[i,i~i] as the state 

results in the appearance of y • 3 ,1 < k ^ i — 1, k + 1 ^ j ^ J p in F\, where j/[i,i_i] 

might have higher order time derivatives of lower subsystem outputs than j/j, i.e., 

Pj > f3j. The extended state has to include output time derivatives higher order 

than Pj. This will overcomplicate the derivation and statement of the existence 

conditions. As well, treating 2/[i,j_i] as a parameter does not significantly restrict 

the class of systems. The component yk with y^ — x\ can be treated as a state, and 

accordingly the conditions (2.35) with r = k are no longer necessary. The example 

in Section 2.3.4 illustrates this case. D 
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Remark 2.3.8. Condition (iii), where if- k determine the dependence of \P, are im­

posed by the assumption that \P depends on x\. The extended state transformation 

^ has no dependence on j / r , 1 ^ r ^ i — 1 only if none of the vector fields rf, k 

depends on yr. D 

2.3.2 Proof of Main Result: Theorem 2.3.6 

Necessity: If the first i subsystems are in BTF and the remaining subsystems 

are in Observable Form then there exists a transformation (2.28) to put the ith 

subsystem into a BTF. We show * ' e U, or equivalently the vector fields 77J fc are 

linearly independent and commute. First we introduce the prolonged vector field 

K=±f(x<>>,y) + f ±yf+l)-Aj, (2-36) 
j=i j=i+ik=o dVj 

where the dependence of ith subsystem dynamics on derivatives of yrj+i^i has been 

removed. As discussed in Section 2.2, j / ; is some function of x<%>,y^^y Conse­

quently, (2.36) is rewritten as 

»-i 

K = H/ ,( i<,>»yJfii]»yy+i,i-i]»»[i+ij«]) 
3=1 

0) 

+ fi(z<i>,y[2ti-x],y[i+r,p])+ £ X>? + 1 ) a 

d Taking jf-. = — j ,0 < k < /3J,i + 1 < j < p, which are linearly independent 

unit vectors and commute, we have shown the necessity of Condition (i) in BTF 

coordinates. Condition (ii)-(iii) hold in BTF coordinates. Given the transformation 

(2.28), we have 

* * = r = 

dx\ 

With rf-k = (**) - 1 rf-k, where rf, k denotes jf- k in ^-coordinates, we prove that Con­

ditions (ii)-(iii) are necessary. To show Condition (i) is necessary in x*-coordinates, 

we need to work out the expression of 77*- k. According to the definition of the trans­

formation (2.28), it is trivial to determine rf-Q are unit vectors as well. Next, we 

show the vector fields rjjik,k ^ 0 are given by (2.31). Given the transformation 
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(2.28), ** maps the vector fields &d_pirfik_-i into ad^iT/'-1., for 

We have 

-i V " V " dfl d d 

= K; 

and 
Kj,o — 0) 

r=l s=l 0^- J s 5 .̂ J 

a/*' 
I . J 

' 0 

(2.37) 

On the other hand, it is true that 

where K%- k is the expression of K1- k in ^'-coordinates. Knowing K%- k we can determine 

rf- k. For Kjk, the following relation holds 

M,*= 4*- (2-38) 
Evidently, there is a unique vector K*. fc which satisfies (2.38) with \P* nonsingular. 

Given Rl-k expressed in (2.37), it is straightforward to verify the solution of «'-fc is 

given by (2.32) and rfjk is given by (2.31). 

Sufficiency: Condition (i) of Theorem 2.3.6 guarantees the existence of * ! e U 

such that rfjk satisfies the Lie bracket conditions. Given Conditions (ii)-(iii), the 

extended state transformation * can be constructed as in the sufficiency proof of 

Theorem 2.2.1 and is given by (2.28). * rectifies the vector fields ^ j . , 0 < k < 

j3lj,i + 1 < j < p into unit vector fields ff,k. For any \fl G U, it is simple to verify 

any ^{xl
e) of form (2.28) is a local diffeomorphism, rectifies the prolonged vector 

fields rf- k, and preserves 5 < i _ 1 > and j / p f ^ i . Next we show \l/ transforms the zth 

subsystem into BTF. In x-coordinates, we have 

¥*ad_F<J7Jifc = ad-Fj^',fe 

= *»»7j,fc+i + *.«J.fc+i (2.39) 

S y / 
( # - k - l ) + KJ,fc+l' 
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where K*-fc+1 is given by (2.37). Since rf-k,Q ^ k ^ /?j,i + 1 ^ j ^ p are rectified 

§_ into $_k) by * , we have 

r=i «=i efy J s djjj 3 

It is clear that (2.39) is equal to (2.40) if and only if 

^ = 0 

which implies /* is independent of y- J . Thus we have verified that /* is inde-

(k) 

pendent of y- , 1 < k < /3j, i + 1 < j < p, and the ith subsystem is in BTF. Hence, 

the necessary conditions are sufficient. • 
2 .3 .3 Lowering t h e H i g h e s t Der iva t ives 

Theoretically, we can apply Theorem 2.3.6 to solve the extended state transforma­

tion such that all the derivatives of the lower subsystems are removed from the ith 

subsystem. However, we have to solve the high order PDEs (2.34) which is non-

trivial. Considering the well-developed approaches for solving first order PDEs, it 

is meaningful to derive the conditions on removing the highest order derivatives of 

lower subsystem outputs. These conditions are formulated in terms of first order 

PDEs as in the following Proposition. 

Proposit ion 2.3.9. Given an observable system (2.1) with the upper i subsystems 

given by (2.26)-(2.27), a local extended state transformation (2.28), which removes 

y\i+i „] from the ith subsystem (2.27) can be solved from the following first-order 

PDEs 
dW • 
^ J , f c = 0, * = 0 , l ; t + l < j ^ P , (2.41) 

where rf- k is defined in (2.33) and satisfies 

Hk 
- ^ - = 0 , 0 < r < i - 1. 
dyr 

Proof: In this case, U is defined by (2.34) with indices k = 0,1. PDEs (2.34) 

with k — 0 is equivalent to PDEs (2.41) with k = 0 since rf0 = ry]]0. We only need 

38 



to verify they are equivalent when k = 1. First, we calculate /•wi,7/j1 based on the 

definitions (2.31), (2.32) 

f < i - l > 

K3,l -

\ 

\dx> J 
- 1 aw as< 

\ 

32<*-i> ' 

0 

<"}> 

/ 

According to the expression of KjJ and ad_F irf0 , rf j is written as 

/ 0 \ 

0 
1 

^5.i 

where 

6iA 
dp 

dy-(0}) + 
- l d¥ df '<»-!> 

0 £ < i - l > 
<9y,-' 

<9> 

From the formula of rjjtl, (2.34) with k = 1 is written as 

a* i df^-^ d¥ df dW 
flx<*-i> „ (/Jj-fc+i) ftr* fl (i8}-*+i) 

dVj
3 + „ (/3}-fc+l) 

= 0, 

which leads to PDEs (2.41). Hence, the transformation * ' solved from PDEs (2.34) 

with k — 0,1 also satisfies PDEs (2.41). On the other hand, it is straightforward 

to verify that for any transformation \&* which solves PDEs (2.41) also satisfies 

PDEs (2.34). Therefore, PDEs (2.34) and (2.41) are equivalent in that they solve 

the same transformation **, with | | £ nonsingular. Additionally, from the necessity 

proof of Theorem 2.3.6, we have the condition that rf- k has to be independent of 

y r ,0 ^ r ^ i — 1. • 

Remark 2.3.10. The ith subsystem 1 < i ^ p—1 in (2.3) can be locally transformed 

to BTF (2.25) if and only if Proposition 2.3.9 can be applied step by step until 

^ = 0 , * + l < j ^ p . • 

Remark 2.3.11. Considering the existence conditions of the transformation elimi­

nating one of the highest derivatives from the ith subsystem, we notice the difference 

between Theorems 2.3.6 and 2.2.1. Here, given the ith subsystem in Observable 

Form (2.3), the function <̂>l does not have to be affine in the highest order derivative 
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of the lower subsystem outputs. This is shown by verifying the necessary Lie bracket 

condition of rjj 0, rfiX 

( 

feo,<i] 

0 

a2p + 
(dv*\ 1 ay* d2f<i-i> 
l ax 1 I ax<'-1> (j8j) 

\ 

= 0. 

J 
Considering the fact | | r is nonsingular, we conclude that 

d2f 

d{y^Y 
+ dx% 

d¥ d2f < i - l > 

0S<»-1> < ^ 2 
'3 

= 0 

%n 
has the same solutions as 

d¥ d2f 
dx% 

d(yf}))2 + 
d¥ d2f '<»-!> 

m<i~l> di^Y 
o. (2.42) 

Hence, tp% is required to be affine in the highest order derivative if and only if the 

second term in the left hand side of (2.42) is zero. Compared with results in Theorem 

2.2.1, this approach potentially introduces additional freedom when transforming a 

system to a BTF. • 

2.3 .4 E x a m p l e 

We consider a three-output system with indices A i = 2 , A2 = 2, A3 = 5 and 

*i _ fi _ lx2 xl = P 

x2 = P 

x* = f 

(4) _ i . n_i 
\V3 +x[y3 + xfx[/ 

( 4 \ 

x5 

W(x)J 

For a general function f3(x), if the system is arranged in a different order, for 

instance using indices (5,2,2), although Theorem 2.2.1 is applicable, its conditions 

do not necessarily hold. Hence, we order the system with indices (2,2, 5). The first 
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and third subsystems are already in BTF, and the second subsystem is not in BTF 

for 2/3 and 7)3 appear in f2. For the second subsystem, a2, = 4 > 2 = A2, and 

Theorem 2.2.1 is not applicable. However, Proposition 2.3.2 can be applied to check 

if y^, y^ can be removed. Defining the prolonged vector field and extended state 

F? = ((P)T,(f2)T,(f)T)T, 

^ = ((*r,(*2)T,(2/3<4>)Tf, 

the conditions to eliminate 2/3,2/3 are 

ad-FSWadtF2%ff> 1 
= 0, 0 < r, s < 2. 

The transformation to remove 2/3,2/3 from / 2 can be solved from 

8<H 21 

dx2J 

After applying the transformation 

* (x°> - I 2 _ u(3) 
\x2 % , 

^21 

the first two subsystems are written as 

x\l + 2/3 

s21 
-21 
x2 

> 2 1 + 2 / 3 + £ 3 ) ^ 1 , 

To apply Proposition 2.3.9, we redefine the prolonged vector field and extended state 

xf = ((xir,(x2if)(2/3
<2>)T)T, 

where x21 = / 2 1 . Computing Jjjfo,??22 

-22 

-22 

d 
a ( 2 ) ' 

dy3 

dx\+2ldx£ + dm 

we can solve the PDEs (2.41) for * 22 

,j,22 _ x 21 

;21 1-1 a;2 — X1X2 

41 

= a; 
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Since y\ = x\ is treated as a state instead of a parameter, conditions (2.35) are 

unnecessary. * 2 2 removes j/3 from the second subsystem and leads to 

£22 _ / x2 + x\x2 

Av* - (4)7' 
where 2/3 still appears. Applying Proposition 2.3.9 once again and iterating the same 

procedure for solving the transformation * 2 3 , we define 

i'e = U/ ) ,U ) -2/3,2/3) , 

„23 
= ( ( * 1 ) r , ( x a a ) r , ( % < 1 > ) r ) r , 

where x22 = / 2 2 . Computing 

n23 

~23 

d 

8 

we solve PDEs (2.41) for transformation \l>23 

-22 
^,23 = ( _ xl 

"f - VZX\ 
x2. 

Finally, the second subsystem in BTF is 

x2 xl + x\{x\ + yz) 

2.4 Observer Design Examples 

Industrially relevant examples which are transformable to BTF include: a Web 

Machine [100] with y = (61,62,#3,r\,r2)T and indices (2,2,1,1,1), a Synchronous 

Motor [109, Sec. 1.10.10] with y — {6,ia,%)T and indices (2,1,1), a Permanent 

Magnet Stepper (PMS) motor [40, Sec. 3.2] with output y = (q,ii,i2)T and indices 

(2,1,1), a Brushless DC (BLDC) motor [40, Sec. 4.2] with output y = (q, ia, ib)T and 

indices (2,1,1), and a one degree-of-freedom MAGLEV system with y = (x\,x2)T, 

indices ( 2 , l ) r , and Observable Form dynamics [110] 

/ 
ff(s?): 

T\ 

\ 

m(x\)'i 

1 £IDX-i bio * 

\20x{+a(x{)2 J 

+ 
0 
0 

\ 

^I+W (2.43) 

_ / x i 
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where a, /3, m, g are positive constants, x\ is position, x\ is velocity, x\ is the current, 

and x = {x\,x\,x2)T. Many practical systems, such as the ones above-mentioned, 

are forced and control affine. These examples are a special case of that discussed in 

Section 2.2.5. This is because the input vector field for the ith subsystem in BTF 

depends on the output alone. Hence, complexity of the observer design is unaffected 

by the forced part of the system. 

When transformed into an Observable Form, the above-mentioned systems are 

also in BTF. To illustrate the transformation to BTF for a system whose observable 

form is not in BTF, we consider the cart-pendulum system 

M + m mlcos(p\ /z\ (b -m/0sin<A / i \ / 0 \ = (H 
ml cos (f> I + ml2J U / VO 0 J U / [mglsmcj)) ~ I 0 

where M is the mass of the cart, m is the mass of the pendulum, b is a viscous friction 

coefficient of the cart, Af is the force input applied to the cart, I is the length to 

the pendulum's center of mass, z is the cart's position, and (j> is the pendulum 

angle from vertical position. For simplicity, we take the pendulum inertia I — 0 

as this does not affect the BTF-based observer design. For the output y = {z,4>)T, 

system (2.44) is observable with indices (2,2). However, it is not transformable 

to BTF because the first subsystem has dependence on the output derivative of 

the second subsystem from the term (<fi)2. This implies the Lie bracket conditions 

(2.6) in Theorem 2.2.1 do not hold. Reordering the outputs as y — ((f), z)T, we 

can verify the forced system (2.44) can be transformed to BTF. Leaving the output 

as (</>, z)T leads to 4>2 appearing in the first subsystem of the BTF. This increases 

the complexity of the observer design. Hence, we introduce the following output 

transformation to allow for linear error dynamics 

yi = !(<!>) = VMS (<!>,—), 
(2.45) 

V2 = Z, 

where £(£, k) = JQ \/l — fcsin2idi is an elliptic integral of the second kind. The 

Observable Form of system (2.44) with this new output is 

/2(x) = \xle\ + {l\fel + el) ' g2{y) = U) ' 
(2.46) 

43 



where xl = {x\,x\)T = (<j),<fi)T,x2 — (x2,x?,)T = {z,z)T, <?\<72 are input vector 

fields, and 

nl 6cos(7 l) 

IT) 

nl - 5 s i n ( 7 - 1 ) ( M 

Irj 

nl - c o s ( 7 _ 1 ) 

°3= Ir, ' 

+ m) 
> 

92- b 

2 m/sin(7-1) 
h = rf ' 

2 m5COs(7-1)sin(7-1) 

with rj(yi) — \/M + m • sin2(7_ 1(yi)). In order to put the system into BTF, we need 

to remove the second subsystem output derivative 2)2 — x\ from the first subsystem 

dynamics. Denning the extended state x\ = {x\,x\,y2,y2)T and prolonged vector 

field Fg1 = ((/1)T ,y2)J/2)T we can verify the Lie bracket conditions (2.6) of Theorem 

2.2.1 hold. The transformation V1 can be solved from PDEs (2.7) as ** = {x\,x\ -

x\e\)T. Applying f1 puts the system (2.46) in BTF 

f (x) - [ ^252 , (*l\2fi2 , ^1E2 , Z2 > 0 (?/) ~ l 52 zp2 + (4)21 + m + ej) ' f{y)' [el 
with ft(aj) = (hi(x),7i2(x))T = (x\,x\)T, and where x\ = x f , ^ = x2,6j,l < j ^ 4, 

02, 1 < j < 5 are some functions of y, and 51 , g2 are input vector fields. The observer 

and the error dynamics for the first subsystem are 

*-i::4J1,H*rw"n3><"-*')' 
*-q 41**=̂ ', 

where xl = x1 — xl. The error dynamics of the first subsystem is LTV, hence 

one approach to determine an observer gain is to apply [136, Cor. 8.4] so that the 

maximum eigenvalue Amax (,4i + Aj) < - e < 0. This ensures the error dynamics 

of the first subsystem is uniformly exponentially stable. For the second subsystem, 

the observer and error dynamics are 

12 = (0 -ei) *2 + ((i2)^i+m+ei) + (Jg)N + ( |) ^ - *>>• 
k* _ (A 1 ^ 2 . / 0 

q e\)~x +\{{x\f-{x\)2)ei + m)' 
A2 disturbance 

44 



where S2 = x2 - x2. The error dynamics consists of a LTV part forced by a "distur­

bance" which converges to zero exponentially assuming the system state is bounded. 

To ensure the second subsystem error converges to zero, we apply the result of [104, 

Lem. III.l] and place the eigenvalues of Ai + A% in the open LHP so that the origin 

of the second subsystem error dynamics is exponentially stable. Finally, we remark 

that without output transformation (2.45) a BTF-based observer design would still 

be possible; however, a relatively simple LTV design in BTF coordinates results if 

output transformation (2.45) is used. 

2.5 Summary 

This chapter considered existence conditions of an established Block Triangular 

Form for a broad class of uncontrolled multi-output systems. Given the constraint 

on the ordering of the observability indices Ai, . . . , Xp, necessary and sufficient con­

ditions were derived in Theorem 2.2.1. Sufficient conditions were given in Theorem 

2.2.8 to ensure that the output is linear in BTF coordinates. Next, Theorem 2.3.6 

was presented to generalize the work of Theorem 2.2.1 by eliminating the ordering 

restriction. Existence conditions of a state transformation for lowering the highest 

order derivative dependence on the lower system outputs were proposed as a special 

case of Theorem 2.3.6. Finally, a physical example illustrated the BTF construction 

and a typical observer design. 
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Chapter 3 

A Block Triangular Observer 
Form (BTOF) 

In Chapter 2, a BTF was introduced and its existence conditions were derived. Ex­

amples of the advantage of a BTF-based observer design were shown. Although the 

complexity of a decentralized observer design for a system in BTF is generally lower 

than a centralized approach, it is relatively difficult to establish error convergence 

and the design procedure itself is less systematic. This motivates the work in this 

chapter which presents a Block Triangular Observer Form (BTOF) that leads to a 

straightforward observer design. The BTOF originally appeared in [134]. A BTOF 

divides a p-output nonlinear system (2.1) into p subsystems and is a special case 

of a BTF. The BTOF dynamics of the ith subsystem contain two terms: a linear 

function of the ith subsystem state, and a term with nonlinear dependence on y and 

on "upper" subsystem states, i.e., the states of subsystem jf, j < i. This nonlinear 

term plays the role of the output injection in EEL (see Section 1.1), and allowing 

for its dependence on upper subsystem states gives the entire system a triangular 

structure. The ith component of the output in BTOF coordinates is a linear func­

tion of the ith subsystem state. As expected, the existence conditions for a BTOF 

are more restrictive than a BTF but weaker than an OF [85, 165, 167]. 

As mentioned above, a motivation for BTOF is a straightforward observer design 

similar to an EEL design. The difference is due to the upper subsystem states 

in the nonlinear terms which in general cannot be exactly canceled in the error 

dynamics. However, the exponentially decaying nonlinear terms which appear in 

the error dynamics do not complicate the proof of convergence. Related recent work 

in [141] also considers a triangular cascade structure which allows for a more general 
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nonlinear dependence of the ith subsystem dynamics on the ith subsystem state, 

and the resulting observer design uses high-gain to prove error convergence. We 

restrict our attention to the more structured BTOF. Relative to work in [141], the 

BTOF considered here has the advantage of a simpler error convergence proof and 

condition on the observer gain. As well, no high-gain approach is required. 

In Section 3.1 we present BTOF existence conditions and demonstrate coun­

terexample systems which show the conditions established in previous work [134] 

are neither necessary nor sufficient. In Section 3.2 we discuss the error convergence. 

The work in Section 3.1 is further extended in Section 3.3 by removing the pa­

rameter assumption used to simplify the derivation and statement of the existence 

conditions. In Section 3.4 we discuss some examples with engineering relevance and 

provide the details of a BTOF-based observer design which is compared to the recent 

method in [82], 

3.1 BTOF Existence Conditions I 

We begin by defining a BTOF. 

Definition 3.1.1. An observable system (2.1) is said to be in a BTOF if its ith 

subsystem has the form 

where 

*i = ( z i , . . . , 4 < ) T e R \ 

7i(-) = (7i(0,--- ;7i i(-))Te»Ai, 

z<i> = {(zlf,...,tf)T)TeR''\ 

and A\ & are defined in (1.7). • 

In order to derive the existence conditions for the BTOF, we recall the two 

methods used for the BTF in Chapter 2. These approaches arise naturally from 

the decentralized design. The first approach treats a subset of the outputs and 

states appearing in the current subsystem dynamics as parameters. This assumption 

restricts the class of applicable systems. However, the existence conditions are 

easier to derive. The second approach treats all system variables appearing in the 
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current subsystem dynamics as functions of state. This approach enlarges the class 

of applicable systems while increasing the complexity of the derivation of existence 

conditions. As with the BTF, in this chapter we first derive the BTOF existence 

conditions under the following parameter assumption. 

Assumption 3.1.2. For the zth subsystem, the lower subsystem states xJ and 

outputs yj,i + 1 ^ j ^ p are treated as constants. • 

Later in Section 3.3, a state approach is applied to establish existence conditions, 

and we demonstrate the limitation of the parameter approach. We make another 

assumption to simplify the presentation of the existence conditions. This assumption 

is natural since the BTOF is a special case of the BTF, and the BTOF existence 

conditions are verified sequentially subsystem-at-a-time. 

Assumption 3.1.3. When transforming the «th subsystem, the first i— 1 subsystem 

are already in BTOF, and the other subsystems are in BTF. • 

3.1.1 Main Result 

Theorem 3.1.4. Let system (2.1) be locally observable in UQ C M.n with indices 

Ai, 1 ^ i < p. Given Assumptions 3.1.2 and 3.1.3, there exists a local diffeomorphism 

$(xe) = {{z<%~l>)T, ($l(xl))T)T such that in the new coordinates, the ith subsystem 

is of the form (3.1) if and only if in UQ 

(i) the first i^_i = Yl^i ^k components of a d ^ i f , 0 ^ k ^ Aj - 1 are zero, 

where 

^ = ( ( / 1 ) T , ( / a ) T , . . . , ( / , ) r ) r eR^ 

xi = ((z<i-1>)T,(xi)TfeRUi, 

and the Ui-dimensional starting vector gl is the unique solution of 

LSiL%hi = <5Mi_i, O^k^Xi-l; (3.2) 

(ii) the Lie bracket conditions are satisfied 

adr_pig
l,ads_pig' = 0, 0 < r , s < A i - l ; 
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(in) the vector fields are independent of lower subsystem outputs 

d_ 
—adr__pig

% = 0, 0 < r < A < - l ; i + l ^ j ^ p ; 

(iv) the ith subsystem output is independent of lower subsystem states 

- 4 = 0 , 1 0 < A j ; i + l s $ j ^ p . 
"xk 

The state transformation $ ' is the solution of the Af PDEs 

- ^ — [ad_pig,...,9)-IXi. (3.3) 

Remark 3.1.5. Given Assumptions 3.1.2 and 3.1.3, Condition (iii) ensures 

i ^ , ? = o, < 
0 < r ^ Ai - 1; 

l^k^Xf, (3.4) 

[i + 1 ^ j < p . 

Condition (3.4) means the vector fields a d l ^ i f ,0 < r ^ Aj - 1 depend on x\ which 

in turn guarantees that the state transformation $ is independent of parameters. 

Condition (iv) is imposed to ensure the output map hi{x) is not a function of 

x J , i + 1 ^ j ^ p after the transformation <E>\ A simple example can explain its 

significance. Considering a system 

0 A*) *+{>?&,»)) 

we can verify all the conditions of Theorem 3.1.4 hold except Condition (iv). With­

out Condition (iv), we might falsely conclude the system can be put into a BTOF 

by an identity transformation which actually cannot transform the system into a 

BTOF. • 

Remark 3.1.6. As in Section 2.2 the solution of (3.3) can be constructed by a 

composition of flows formula. We denote the vector fields 

Zk = 7rj> l < * < A i ; l ^ j < * - l , 
dzk 

Yr = a d ^ V , 1 < r < Xi 
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as W\,...,WVi and order them as follows: the first z/j_i vector fields are the Z3
k 

(ordered as Z\,...,Z\V..., Z\~l,..., Z]^\ ), followed by Y i , . . . , YXi. Given an 

initial condition 

»o = ((«o<i-1>)T.(4)T)T€R^> 

the change of state coordinates $ is given by 

where 

*(*i,• • .,tVi-uU) = vfeX •. W&2(A(S°))•••))• 

Thus the solution of the PDE (3.3) can be obtained by integrating ODEs and per­

forming a nonlinear map inversion. Standard numerical routines are available to 

accomplish this procedure. • 

Remark 3.1.7. For a globally observable system (2.1), a globally defined transfor­

mation to BTOF exists if 

(i) BTF coordinates are globally defined; 

(ii) the conditions in Theorem 3.1.4 are satisfied globally; 

(hi) the vector fields a.dr_ pig%, O ^ r ^ A j — 1,1 ^ i ^p are complete. 

• 

Remark 3.1.8. A main difference between Theorem 3.1.4 and work in [134] is that 

the latter uses Fl = f% in Conditions (i)-(iii). Also, previously a Aj-dimensional 

starting vector gl is defined as in (3.2) with Fl = / ' . Taking F1 — /* implies the 

effect of the upper subsystems is ignored. This leads to the vector fields ad_n5*, 0 ^ 

k ^ A, — 1 defined on R*'. However, when applying the transformation <&* defined 

on M.Ui, z < l - 1 > and x% are treated as states. The transformation <&' defined on K"* 

cannot guarantee Condition (ii) (with Fl = f l ) , which was defined on RAi, still holds 

after transformation. However, if we impose 

jadr_p<? = 0, 
K 

1 ^ K ^ s^j] 

( K r < Ai - 1; (3.5) 
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then Condition (ii) (with Fl = /*) still holds after transformation to BTOF. Con­

dition (3.5) implies the upper subsystem states are treated as parameters and the 

transformation solved from (3.3) depends only on x%. Condition (3.5) limits the 

applicability of the result to a smaller class of systems. Finally, Condition (iv) does 

not appear in previous work. • 

Remark 3.1.9. The BTOF for the control affine system (2.21) can be generalized 

as in Section 2.2.5: 

i* = 4 V + 7<(z<<-1>,z{,j/[i+liP]) + ^ ( ^ " ^ z i ^ i + i ^ K 

Vi = CV. 

The existence conditions of the generalized BTOF above can be established analo­

gously. In addition to the conditions in Theorem 3.1.4, we require 

a d ^ W . g l = 0 , 0 O < A i - 2 , 
L. e J 

where & = (0, (^))T . • 

3.1.2 Counterexamples 

In this section two examples illustrate that the existence conditions as previously 

stated are neither necessary nor sufficient. In order to show existence conditions 

given in [134] are not necessary, we consider a two-output system 

/ x\ 
x1 = p(x) = 4 

\x\ + 2/2, 

£2 _ 72 3? = f\x) = 
V(x| + (4)2)x^ 

hl(x)\ _ (x\ y-\h2(x))-{x* 

The first subsystem is already in a BTOF. We consider the transformation of the 

second subsystem. Using (3.2) with F2 — f1 we solve for the three-dimensional 
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starting vector g2 and check Condition (ii) 

- l 
d/»2_ 

g2 = | dLpfl2 

KdLnh2j ; ) - -&*&• 
(3.6) 

- 2 - 2 

- g 

a 

= o, [ad / 252 ,52] = [ad^igf2, 

a,dpg2,ad2pg2j = 2 ^ - ^ ^ 0. 

Since Condition (ii) is not satisfied with F 2 = J 2 , we falsely conclude that the second 

subsystem is not transformable to BTOF. On the other hand, using Theorem 3.1.4 

we solve (3.2) for the starting vector 

-2 1 / - 1 \ 2 " 

and verify the other conditions are satisfied. Therefore, the second subsystem is in 

fact transformable to a BTOF. The transformation for the second subsystem 3>2 is 

determined from the PDEs (3.3) with \ = 3,i = 2 

=-1. 

1=1 =2 2\2 / = 1 \ 2 = 2 \ z2 — ~^T\X2X3 + 2a;2 : r i + (^1) ~~ (x3) x\)i 

7 2 

(4? 
-±-2 + x\) x\{x\f - x\{x\f + 2x\{x\ + x\)x\ - 2x1 

-2{4fx\ + 2x\{x\f + hx\f 

which puts the second subsystem into a BTOF 

i? = 4 - § N + *?-(*S)a], 

•2 _ 2 
Zn — Zr> — 6(4) 

i-2 {l2{z\)2zl
2 - 24 (4 ) 2 + ${zlfzl + 304z* + 10(z2)2 + 24(^) 2] , 

% = -WW i12^3 ~ 6 ^ ) 2 * 2 - V(4?z\ - 3(4)4 + 24(4)2-2 

+4(*2)3 + 16z2W] 

Here we have denoted zk the first subsystem is already in BTOF. 

Hence, this example shows that the conditions as stated in previous work are not 

necessary. 
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Next, we show that the conditions given in [134] are not sufficient by considering 

the BTF system 

=i _ n/~\ _ I ~i x1 = p(x) 
\xl + V2; 

i2 = p{x)=\jixi)^_i 
KXZXZ ~^~ X2X3/ 

h\(x)\ (x\ 

(3.7) 

V ~ \h2(x) 

The first subsystem is observable and LTI. Hence, the transformation to a BTOF 

is straightforward. We attempt to transform the second subsystem. As in example 

system (3.6), we use the incorrect definition of the starting vector to get 

_2 1 d 
9 = {x\fdxl 

Next we verify that Condition (ii) with F2 = f2 and g2 holds. Hence, we falsely 

conclude the system admits a BTOF. However, we can show by direct computation 

that in fact no transformation exists. For the second subsystem to be in BTOF, we 

require z2 = x2 and have the form of the other two coordinates 
2 .2 2 / - 1 - 2 \ - 2 - 1 2 / - 1 - 2 \ 

*2 = Zi - 7 i ( z ,£ i ) = x2x3-j1{x ,x{), 
2 -2 2/-1 -2 \ 

z3 = *2 ~l2\x ,xl) 
_ ^2r=l-v3 _ =1^2l _ r 1 ^ ! A. T 1 ? 2 - T 1 ^ . + ~2=2 -X3(X3) X2Q-1 X3Q-I+X2X2

 X2 Q-\ + X2X\ 

-2dll -2-\dll 2,-1 -2\ 

" " ' W ^ W ~72(x 'Xl)' 
Local diffeomorphism <E>2 = (z2, zf, ^ l ) 7 puts the second subsystem in the form 

•2 2 , 2 

Z\ = * 2 + 7 l , 
•2 2 , 2 
^2 = 23 + 7 2 > 

*3 = w ( x \ z 2 ) . 

The fact that a BTOF structure requires 

provides two PDEs which define 7 2 , 7 | - Using Maple, a solution for 7 2 , 7 | is 

2 2(*2)2 / 1 Axl
2\ 2 

7l 

3 \ ^3 
4 ^ ) 2 ^ 7 + r r h 3 O ^ L a 0 ( 2 2 ) 3 + H 5 ( 4 ) 2 + 6 x 2 ] ( ^ ) 2 

L (^)2 (4Y 
Zl~2~ ,^U2 
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Since 72 must depend on z\ we cannot transform system (3.7) into a BTOF. As 

expected, we can verify that the conditions in Theorem 3.1.4 are not satisfied. We 

use (3.2) to obtain the starting vector 

_ 2 _ _ 1 d_ 
9 ~ [x\fdxl 

Condition (ii) is not satisfied for 

[ad | 25 2 ,adf 25 2] = -^VJ4Q^2 ^ °-

Hence, this example shows the conditions as stated in previous work [134] are not 

sufficient. 

3.1.3 Proof of Main Result: Theorem 3.1.4 

Necessity: Assume there exists a state transformation $ such that the ith subsys­

tem is put into BTOF, and the first i — 1 subsystems are unchanged, i.e., $ defined 

on a i/j-dimensional state space takes the form of 

This $ transforms the first i subsystems in BTOF. Given the ith. subsystem in BTOF 

(3.1), we denote the representation of <?' in z-coordinates as gl and define g1 = 4 - . 

Based on the expression of the ith subsystem in BTOF and the assumption that 

the first i — 1 subsystems are in BTOF, we have by direct computation 

d 

dz\ 
a d ^ = - d ^ " > ( K A ^ A i - 1 , 

where F% is the representation of Fl in the z-coordinates. Denoting the ith output 

function hi expressed in the z-coordinates as hi, we have hi{z) — z\. Hence, we 

know g% satisfies 

(dhiM
k_F<9i) - (d4,-^—) = Sk^-i, O^k^Xi-1. (3.9) 

From [120, Lcm. 6.15], conditions (3.9) are equivalent to 

LpL'jxh'= 6^-!, 0<fc<Ai-l, (3.10) 
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which imply LgiLkpJii — ^ ^ - 1 , 0 ^ k ^ Aj — 1. We note that the starting vector 

g1, which is the representation of gl in ^-coordinates, is also given by gl = ($*)-1<7\ 

where 
_ d $ _ 

(3.H) 
"e \Qz<i-i> 

It is clear in the x-coordinates the starting vector is written as 

A; 

fc=i & 

and we have the definition of the starting vector (3.2). 

As the vector fields a d ^ ^ g l , 0 < s < Aj — 1 are constant, we have 

a d ! ^ ' , a d ^ ] = 0 , 0 < s ,* ^ A< - 1. 

Also, from the expression of $* in (3.11), we know its inverse is given by 

( *} " I * (»)-v 
Hence, expressed in the ^-coordinates the vector fields ad^^g 1 , 1 ^ k < Aj — 1 are 

of the form (Oix^.i , £iXA-)r> w ^ t n t n e components of g\yx
 a n y arbitrary functions 

depending on x\. The first t'j-i components of ad*^^ 1 , 1 < k < Aj - 1 are zero. 

Similarly, as adf^ i j 1 ,1 ^ s ^ Aj - 1 are constant, we have 

— a d ' & ^ O , O ^ r ^ A j - l ; i + l < j ^ p . 

Conditions (ii) and (iii) in Theorem 3.1.4 are satisfied in the z-coordinates. These 

conditions hold in Xg-coordinates because they are invariant under change of co­

ordinates which is independent of yj. In addition, from the expression of hi, we 

have 

—7 = 0, U K A j i i + U j ^ p . 

After a transformation «J>-1 depending on z<i:>, we have Condition (iv). Therefore, 

all conditions in Theorem 3.1.4 hold and necessity is proven. 

Sufficiency: Given definition (3.2), local observability ensures the solvability of the 

starting vector g% in ^-coordinates. Since 

dhi \ 

KdL%-%J 
(ad^V,...,/) 

/ 1 0 .. 
* 1 .. 

* * .. 
\ * * .. 

. 0 

. 0 

. 1 

0 

0 
1 / 

b Ai X Ai 
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the vector fields a d ^ c / ^ O < k ^ Aj - 1 are therefore linearly independent. Given 

Conditions (iii) and (iv) are satisfied, these vector fields are independent of yj, x^, 1 < 

k ^ Aj, i + 1 ^ j ^ p. If Condition (ii) holds, the Simultaneous Rectification The­

orem [120, Th. 2.36] guarantees the existence of a change of coordinates $ defined 

locally on R"* such that 

$* (ad^V, ...,gi) = (°«y*A e RUixXi. (3.12) 

Denoting the last Aj components of $ as $ l we have 

g ( a d ^ V . . , i f ) = / v (3.13) 

Using the conditions that the first J/J_I components of vector fields a d ^ ^ O ^ k < 

Aj — 1 are zero, we know the first i/j-i components of $ can be taken as identity 

and get $ = {{z<l~l>)T, ($*)T)T . Next we show $ is a local diffeomorphism, keeps 

the first i — 1 subsystems in BTOF, and transforms the ith subsystem into BTOF. 

Since $* is solved from (3.13), and 

( a d ^ 1 g * > . . . > 5 i ) = ( ° ^ A ' ) I (3.14) 

where the components of Q\.XX a r e s o m e functions depending on x\. We know ^ 

is nonsingular, i.e., $* in (3.11) is nonsingular, hence $ is a local diffeomorphism 

defined on some open set of M.Vi. 

Next, we show that the ith subsystem is transformed into BTOF by <&, i.e., 

f(:) = AV + 7
( ( : < i - 1 >

1 ^ i + y) , 
hi(z) = &z\ 

As well, we require /J-, hj, 1 ^ j ^ i — 1 remain untransformed by $. Because the 

first i/j_i components of the transformation $ are z3
k, 1 ^ k ^ Aj, 1 ^ j ^ i — 1, 

and the first i — 1 subsystems will not be affected by the transformation $* through 

their dependence on yj, the first i — 1 subsystems remain in BTOF. As for the zth 

subsystem, we first consider how / ' transforms. Given the expression of Fl in the 

^-coordinates 
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where fk,l^k^i-lis the representation of fk in z-coordinates, from Condition 

(ii), we have 

4 a ^ = 0 , l ^ j ^ \ i ; 2 ^ k ^ \ i ; j ^ k - l , 

5 ^ - = l, 1 -, - < j < Aj - 1, 

which imply 

fk = 4 + 1 +7 i (« < i _ 1 > . 4 ,y [ i+ i , P ] ) , 1 < A < A» - 1, 

/i4=7i<(z<<-1>,«i,y[i+M). 

Next we consider the expression of hi. From the definition of the starting vector, 

we have 

LSiL%hi = (dhtM-F*^) 

- hx-i' 0 ^ A; < Aj - 1, 

which means 

dhi — dz\ mod I dz£, l ^ f e ^ A j ; l ^ j ^ i - l [ , 

and hi — z\ + K ( Z < 4 _ 1 > ) for some smooth function K. Let 

$* =2J+/C(Z < *- 1 > ) 

and zj = $*i be the first component of $*. With this definition of $ \ PDEs (3.13) 

are still satisfied. With $\ we have hi = z\, and 

. , dz> 

Izl fl„.^-<i-l>> 

= 4 + 7i(2<i"1>,«i,i/u+i,pi)-

Therefore, / J , 1 < j < i - 1 remains in BTOF and the ith subsystem is transformed 

into BTOF. This concludes the proof of sufficiency. • 
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Remark 3.1.10. We show that if hi(x) = x\, Condition (i) of Theorem 3.1.4 is 

satisfied. Prom (3.2), g* is solved from the following equation 

M 

0 

/ dht \ 

dLxf% 
\dL%-%) 

f = 

/ 0 0 •• 
* * • • 

and the starting vector is 

< f = ( OlXi^i- ! 0 * 

0 
* 

* 

1 0 • 

* * • 

* * • 

• f. 

• 0 \ 
* 

(3.15) 

or the first v%-\ + 1 components have to be zero (since j/j = x\ implies dhi = dx\). 

Based on (3.15), we find the special structure of vector fields ad^ ̂ <f, 1 ^ k ^ A, —2. 

Using induction we have for k = 1 

aa_Fig — az<i-i> QS\ 

= | (dLpih^g1) 
* 

0 

where x l A, = (£2, • • • i%i\)T a n d {dLFihi,gl) = 0. Hence, ad_^*if has a special 

structure, i.e., its first ^_i + 1 components have to be zero. Assuming ad^^g1 has 

this special structure, we show adjt^if, 2 ^ h ^ A* — 3 does as well. 

aa_F>y — 0z<'-!> as1! 9xj. fc - i 

* * 

^ 0^_ lXi 

(dL pi hi, ad-^9*) 

\ 

* 

a c r e s ' -

where 

( 0ix^_, 0 * ) , 1 < fc< A i - 3 , 

( Oix^.! 1 * J , A; = Aj - 2, 

dLpihi,adk_Fig
lJ = 4,^-2-

58 



Hence, the first i/$_i + 1 components of a d ^ c / ' , 0 < A; < Aj - 2 are zero. According 

to the definition of gl, we know only the i^_ith component of adj^g* is non-zero 

for 

(dLpihi, a d ^ V ) = L-giL
xJ-% = 1. 

Finally, we have (3.14) and Condition (i) of Theorem 3.1.4 is satisfied. • 

3.2 Observer and Error Dynamics Stability 

We consider the following observer structure in BTOF coordinates 

! ' - Aizi + f + L'iyt - &#), 1 < * < p, (3.16) 

where we have simplified notation with j k = j1* (z<k~l>, z±, y[k+i,p]), 1 ^ & < p, and 

Lk 6 RAfc, 1 ^ k ^ p are constant observer gains to be designed below. The error 

dynamics for (3.16) is 

z* = (A1 - LiCi)zi + 7* - f , 1 < i < p, (3.17) 

where the state estimate errors are zk — zk — zk, 1 ̂  k ^ p, and 

7
fc = 7 f c(z< f c-1 > ,zf,y [ f e + l i P ]), 1 ^ fc ̂ p . 

3.2.1 Global Exponential Stability of Error Dynamics 

Theorem 3.2.1. Assume a BTOF exists globally for (2.1) and jl,l < i < p are 

globally Lipschitz in z<l~l> uniformly in y\%yp\ w.r.t. any norm, i.e., there exist 

constants M£, 1 < k < i — 1 suc/i i/iai 

i - l 

| |Y-f| |^EMfc 
fc=l 

T/ien provided the spectrum of A% — L%C%, 1 ^ i ^ p Zies i n C " = { s e C : 3U(s) < 0}, 

i/ie zero solution of (3.17) is Globally Exponentially Stable (GES). 

Proof: We first show that the stability for the error dynamics of the first two 

subsystems (3.17) 

zl = (Al-LlC1)zx, (3.19a) 

I 2 - {A2 - L2C2)z2 + 7
2 - 72 , (3.19b) 

V y M G M " - ' + 1 , V z < i - 1 > , z
< * - 1 > e R"'"1. (3.18) 
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then induction is applied to show stability for the entire error dynamics. For the first 

subsystem the error dynamics (3.19a) is LTI, thus given {Al,Cl) observable there 

exists L1 such that the zero solution of the error dynamics is GES. For the second 

subsystem, its error dynamics (3.19b) consists of a LTI part and a "disturbance" 

term 72 - 72 . Denoting u2(t) = j 2 - 72 , (3.19b) is written 

I 2 = (A2 - L2C2)z2 + B2u2(t), (3.20) 

where B2 = Ix2. Provided (3.18) holds and z1 converges exponentially to zero, u2(t) 

converges exponentially to zero. Also, with (A2, C2) observable, L2 can be chosen to 

make the LTI part of (3.20) exponentially convergent. Therefore, according to [104, 

Lem. III.l] we know the zero solution of the error dynamics of the second subsystem 

is GES. For the ith, 3 < i < p, subsystem, after u%(t), B%, U are similarly chosen, 

[104, Lem. III.l] can be reapplied to show the zero solution of the error dynamics 

of the ith subsystem is GES. Therefore, the zero solution of the error dynamics of 

the first i subsystems is GES, and by induction we have shown the zero solution of 

the entire system's error dynamics is GES. • 

R e m a r k 3.2.2. A global Lipschitz property is important to ensure that the zero 

solution is GES. We consider a simple quadratic scalar system example 

x = —fix + x u, 

where x € M, u = e~kt, and fi > 0 is constant. The system is not globally Lipschitz 

in x, u. As shown in [87], using the change of dependent variable w = 1/x gives the 

solution of x(t) 

x(t) = (/* + fc)*° 
(/J, + k — xo)ekt + xoe~kt' 

where XQ = x(0). The solution x(t) has a finite escape time when the initial condition 

satisfies XQ ̂  (i + k. • 

R e m a r k 3.2.3. The global Lipschitz condition on 7* is not always necessary. We 

consider the Jet Engine Example [87, Sec. 2.4] 

-aR2 - aR(2(j> + 4>2) 
-0 - §02 - |̂ » 

—1 

where R ^ 0 is the normalized stall cell squared amplitude, 0 is the mass flow, %p 

is the pressure rise, a is a constant positive parameter, and u is the control input. 
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The homogenous part of the R subsystem is globally asymptotically stable (GAS). 

It is shown in [87] R has a GAS equilibrium at R = 0 if <fi decays to 0 as t —> oo. 

However, the nonlinear term crR(24> + </>2) is not globally Lipschitz in 0. A detailed 

proof in [87] reveals that Input-to-State Stability (ISS) of the il-subsystem w.r.t. <f) 

leads to GAS. Realizing the Lipschitz condition on 7 is imposed to make the error 

dynamics (3.17) ISS with respect to zk, 1 ^ k ^ i - 1 which appears in 7* - 7* [76, 

Lem. 4.6], we can provide a GAS version of Theorem 3.2.1. • 

Theorem 3.2.4. Assume that a BTOF exists globally for (2.1) and that the error 

dynamics (3.17) is ISS w.r.t. zk,l < k < i — 1. Then provided the spectrum of 

A* - LiCi, 1 ^ i ^ p lies in C - , the zero solution of (3.17) is GAS. 

Remark 3.2.5. The proof of Theorem 3.2.4 is omitted since it is result from a 

direct application of [76, Lem. 4.7]. Although Theorem 3.2.4 is more general than 

Theorem 3.2.1, the latter is preferable in some cases since GES is a stronger form 

of convergence and systematically verifying ISS in practice can be challenging. A 

sufficient condition for ISS is given in [76, Lem. 4.6]. • 

Remark 3.2.6. Another choice of observer design is possible for systems in BTOF. 

If we take the observer of the zth subsystem as 

f = Aizi + 7 i ( 2 < i _ 1 > , y) - L\yi - &&), (3.21) 

where we have defined 

-,i(Z<i—1> „,\ ^,i( -A *1 ~i—1 si—1 -,i n. \ 
7 ( 2 ,V) = 7 ( Z l . Z p , * ! ] ' " - ' 2 ! ' ^ A i - i p ^ ' ^ + l . P ] ) ' 

%,Afc]
 = (^2 1 ' " 1 Z\k ) j 1 ^ k ^ i - 1, 

the error dynamics of the ith subsystem is written as 

I* = (Ai - V&)? + ii(z<i-1>,y) - 7 ' (5 < i _ 1 > , y ) . 

With observer design (3.21), we have a similar stability result to Theorem 3.2.1. 

However, for (3.21) we only require 7*, 1 < i < p, to be globally Lipschitz in zt A , = 

(zk,..., z% ) T , 1 < k < i - 1 uniformly in y G W w.r.t. any norm, i.e., there exist 

constants Mj., 1 < k < i — 1 such that 

||7V 

for Vy G RP, Vzf2iAfc] G R * * " 1 , 1 < k < i - 1. D 

* - l 

<i-1>,y)-ii(z<i-1>,y)\\<J2Mk 
fc=i 

2[2,A )C] 

R** - 1 , ! < fc ^i- 1. 
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Remark 3.2.7. Many practical systems have outputs which lie in some compact 

set y. Hence, we only require the Lipschitz condition (3.18) to hold uniformly for all 

y\i,p\ € y c Kp~'+1- If the system state belongs to a compact set and the Lipschitz 

condition (3.18) does not hold, convergence cannot be proven as in Theorems 3.2.1 

or 3.2.4 due to the observer state leaving the compact set. In this situation, an 

observer design with semi-globally stable error dynamics is therefore preferred. • 

3.2.2 Semi-global Stability of Error Dynamics 

To ensure a GES result we require 7*, 1 ^ i ^ p to be globally Lipschitz. This 

condition can be restrictive and unnecessary in practice. In fact, the state of many 

physical systems belongs to D C t " , where V is a connected compact subset of 

Rn [46]. The set V is mapped to another connected compact set denoted P e l " 

in BTOF coordinates. As discussed in [46, 141], we can extend the dynamics in 

BTOF coordinates from V to Rn to obtain a semi-global stability result. We choose 

a particular Lipschitz extension technique, proposed in [141] and described by the 

following Lemma. 

Lemma 3.2.8. [141, Lem. 2j Consider a C1 function x '• M. x W H-> R where 

M = {x<ERq: \xi\4pi,Ki<1,Pi>0}. 

Then x(<r(a:),y) is C° on Rq x W and equal to x(x>y) for a^ x e -M, and there 

exists a bounded function M(y) such that 

\X(<?(x),y) - X(ff(£),»)| < M(y) \\x - x| | , Vx,x € R", Vy € Rr, (3.22) 

where a{x) is an element-wise saturation function which is saturated outside M. 

We remark that if function x m Lemma 3.2.8 is defined on M x y where y 

is a bounded compact subset of R r , we can extend the definition of x to R9 x 3̂  

in a similar way. Considering the observer design (3.16) for the ith subsystem, 

7 J(2< l - 1 > ,4,2/[ j+ 1 ) P]) i s defined on hi1 x y1 c f>, where 

U* = {<;:<; = z ^ " 1 5 , G V} , 

y = { ^ = y M G P } . 

We need to extend the definition of 7* from W x y% to R^- 1 x y\ 1 ̂  i ^ p, to 

design a semi-global observer. According to Lemma 3.2.8, the Lipschitz extension of 
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7 i (z < i l>,z\,y[i+iiP]), l^i^p, could be constructed as -i\u{z<i 1>))zi,2/[i+ilP])-

The system after extension is 

i i = ^ + 7
< ( ^ < i - 1 > ) 1 ^ y | i + i ) p ] ) , , N 

1 < i ^ p, (3.23) 
Vi = Clz\ 

and the corresponding semi-global observer and error dynamics system are 

!• = A? + 7
i ( (T(f < i - 1 > ) , zly[i+hp]) + L\yi - &z% (3.24a) 

+ [7
i(a(Z< i-1>),4,y[ i+i,p])-7 i^(^-1>),41y[ i+i,p])] ! (3.24b) 

for 1 < i < p. Using the same method of proof as in Theorem 3.2.1, we can show 

the following result. 

Theorem 3.2.9. Consider system (2.1) whose state lies in a connected compact 

set V, and assume the system is transformable to BTOF on some set enclosing 

V. Denote the set f> as the image ofV in BTOF coordinates, and assume 7 l , l < 

i < p, is Lipschitz in W uniformly in (4 '2 / [ J+I ,P] ) G ^*- The Lipschitz extension 

(3.23) and observer (3.24a) yield error dynamics (3.24b). Provided the spectrum of 

A1 - L'C*, 1 < i < p lies in C~, the zero solution of (3.24b) is GES. 

Remark 3.2.10. The stability results are stated in the BTOF coordinates. If the 

inverse map C = Q(z) is Lipschitz on V, the error dynamics (3.24b) are GES in the 

original coordinates. • 

Remark 3.2.11. Based on observer (3.21), another semi-global observer and semi-

global stability result can be derived if we redefine 

y = { s : s = ( y i , - - - . y p ) r } , 

and extend the definition of 7* from W x y to R ^ - i - ^ 1 x / . • 

3.3 BTOF Existence Conditions II 

The previous section gives the existence conditions using a decentralized approach, 

in which a system is decomposed into several observable subsystems based on the 
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p-tuple of observability indices. Each subsystem is then treated separately and trans­

formed into a BTF by an extended state transformation. Finally each subsystem 

is sequentially transformed into a BTOF. As indicated above, Assumption 3.1.2 is 

imposed to simplify the presentation of the existence conditions and its elimination 

is therefore desirable to enlarge the class of applicable systems. 

3.3.1 An Illustrative Example 

To demonstrate the challenge in removing the assumption, we consider a two-output 

system with indices (2,2) 

4,2 _ /|2 2 , „ , 2 / _ l „ 2 \ 

z = A z + 7 (z ,zx), (325) 

- C D -
The system is in a BTOF. We discuss the necessary conditions of a BTOF, and 

explore the differences from the OF case. The Simultaneous Rectification Theorem 

[120, Th. 2.36] is applied to derive the BTOF existence conditions. We begin by 

defining the unit vector fields to be rectified 

i_ d i _ ^ 2 _ d 2 _ ® 
Vl=:dz{> V2~~d4' ^'dz2' ?72~^f' 

Starting vectors are required to construct these unit vectors. For the second sub­

system, we take g2 — rfc as the starting vector and have 

r}\ = &d_fg
2. 

Taking the starting vector for the first subsystem as g1 — r}\, we have 

i ! 6>7
2 d d72

2 d 
771 ~&-f9 'dz\dz\~ lz\dzl 

We notice the vector field r)\ depends on unknown functions j2,7I, i.e., unit vectors 

are not merely determined by system dynamics / and output mapping h. This leads 

to the difficulty in verifying the new existence conditions given later. To compute 

the starting vectors, it is straightforward to verify g2 = rfe is defined by 

Lg2Lk
fhi = 5it2Sk,i, 0 < k < 1; 1 ^ i < 2. 
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This is equivalent to 

(dhi,ad-f9
2) = Si<28kA. 

We note the definition of g2 is the same as that in the OF. However, we cannot 

derive a similar definition of the starting vector for the first subsystem. Following 

the standard procedure of computing the starting vector g1, we obtain Lfh\ — 

z\ + 7 j , Lfh,2 = z% + 7i , and have 

Lgihi — 0, Lg\h<i — 0, 

07? LgiLfhi = 1, LgiLfh2 = ^ - j - ^ 0, 

which implies the starting vector depends on the unknown function 7^. Without 

the knowledge of the starting vectors, it is difficult to construct the vector fields to 

be rectified. Therefore, it is desirable to develop a new definition for the starting 

vectors which can be solved directly. 

Relative to an OF, the extra freedom introduced by a BTOF is evident. For a 

two-output system with indices (2,2) to be transformed into an OF, the necessary 

conditions are 

&dk_fg
l,ads_fg

j = 0, 0 < k,s < 1;1 < l,j ^ 2. 

On the other hand, transforming to a BTOF does not require 

= 0. adl/flV 

Instead, this condition is replaced by 

a d ^ g 1 - Lgifjad_fg
2 - Lgi~flg2,gl = 0. 

(3.26) 

(3.27) 

Allowing the dependence of functions 7?, 7 ! on z\ makes (3.27) easier to satisfy. 

3.3 .2 C o n s t r u c t i o n of Vec tors 

Starting vectors The previous example shows how the derivation of the starting 

vectors in the BTOF coordinates is not straightforward. However, we can simplify 

the derivation using a 'parameter assumption. That is, when calculating Ly/i;,0 ^ 

k ^ Aj — 1,1 < I < i for the ith subsystem, the outputs of lower subsystems 
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2/[»+i,p] a r e treated as parameters. This new assumption can be made without loss 

of generality. Imposing the assumption we have 

I»/ftj = 4 + 7i. 

: 1 ̂  I ̂  i, 

^/4~1/U = 4 4 + ft(2<i-1>
)4)A4-i].y), 

and Lkjhi = 0 for 0 < k < Aj — l , i < I < p. Hence, the starting vector gi = -J^-

follows its traditional definition [165, 109] 

LgiL
k
fhi^6itldkX-i, 0 a a - l i U i < p . (3-28) 

It is worth noting that in the BTOF case, g% is solved from iAj equations since the 

last (p — i)Xi equations are trivially satisfied, while the number of equations for gl 

is pXi in the OF case. There is more freedom in choosing the starting vectors for 

the BTOF than for the OF. Given a system in Observable Form, a typical solution 

of (3.28) for the starting vector gl is 

M Z=i+1 fc=l K 

where Ql
k{x) is an arbitrary smooth function of x. The unknown functions Ql

k(x) is 

result from treating j/[j-t-i)P] as parameters. 

Unit vectors Next we discuss the construction of unit vectors given the starting 

vector g% defined in (3.28). For the ith subsystem, we proceed as in the example 

system (3.25) and construct rf. from gl and / 

A ^ d^ d (3.30) 

fc=i+l (=1 °Zs+l °Zl 

When i — p, we have ifk — &d^7kgl,l ^ k < Ap. Since r\\ has dependence on 

unknown functions j k , 1 < k ̂  Xi,i + 1 < I ̂  p, it is impossible for us to verify 

in advance whether rfk are unit vectors. Also, it is not clear whether 7 .̂, 1 < k < 

Aj, 1 < i ̂  p solved from (3.30) ensure that the Jacobian matrix defined by 

is nonsingular. 
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3.3.3 Main Result 

Given the starting vectors and the unit vectors denned by (3.28) and (3.30) respec­

tively, we state a theorem for existence of a BTOF without Assumption 3.1.2. 

T h e o r e m 3.3.1. Let system (2.1) be locally observable in UQ C Rn with indices 

Aj, 1 < i ^ p. There exists a state transformation z = $(£) defined locally such that 

in the new coordinates, system (2.1) is of the form (3.1) if and only if in UQ 

(i) for 1 ^ i ^ p, there exists a starting vector gl satisfying (3.28); 

(ii) there exist functions 7^, l ^ / c ^ A j , l ^ i ^ p such that n vectors rjitT, 1 ^ r ^ 

Aj, 1 < i ^ p given by (3.30), are linearly independent and commute: 

' l ^ r ^ A,; 

[vUrA]=o, | u « < A j i 

(Hi) the functions 7 £ , l ^ f c ^ A i , l ^ z ^ p satisfying Condition (ii) are such that 

Lvthi = h,\f>i,i, 1 < k < AJ; 1 < i, I < p. 

The transformation <1> is the solution of the n2 PDEs 

mo, 
d( MO = in. (3.31) 

Remark 3.3.2. The BTOF coordinates are globally defined if the system is globally 

observable, the theorem conditions hold in E n , and the vector fields rfr,l < r ^ 

Aj, 1 < i ^ p, are complete. D 

Remark 3.3.3. The unknown functions gl
k (defined in (3.29)) and 7*. are restricted 

by Conditions (ii)-(iii). To simplify computation, the starting vectors can be typi­

cally taken as g% = -A- in the observable coordinates. • 

Remark 3.3.4. Unlike the OF case, the vector fields ad l* <?*, l < r < A j , l < i < p 

are linearly independent. This is guaranteed by the observability assumption on the 

original system and can be verified by 

/ d/ii \ 

d l ^ 1 - 1 / n 

•X*-lhn \dLy 'hpJ 

n(c) = 

(1 0 • 
* 1 • 

* * • 
\ * * • 

• 0 o\ 
• 0 0 

• 1 0 
• * 1/ 
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dhj 

dzi 

where 

0 ( 0 = ( a d ^ - y , - . - ,g\... . a d ^ / V , - . - , / ) • 

However, we cannot arrive at the same conclusion if 0(C) is replaced by 0(C). Q 

Proof: Necessity: Given the system in BTOF, the starting vectors are taken 

as gl = r]l
Xi = g-2-, 1 < i ^ p. It can be verified that the starting vectors satisfy 

(3.28) provided the outputs of the lower subsystems are treated as parameters. 

Furthermore, the vectors r / ^ , l < / c ^ A i , l < i < p can be calculated as proposed 

in (3.30). The vector fields rfk, 1 ^ k ^ Aj, 1 ^ i ^ p are unit vectors and therefore 

commute. Hence, Condition (ii) holds with some functions j k . On the other hand, 

according to the expression of h in BTOF-coordinates we conclude 

(dhi,r)l
k} = L^ihi - 6k,i6iti, 

°k 

for 1 < k ^ Aj, 1 ^ i ^ p. The necessity of Conditions (i)-(iii) is therefore shown. 

Sufficiency: To prove the sufficiency, we need to verify the existence of the state 

transformation to BTOF coordinates and / , h under the new coordinates is in BTOF 

(3.1). According to Conditions (i)-(ii), we can construct the vector fields ifk, 1 ^ 

k < Aj,l ^ i ^ p. Since Lie bracket conditions (ii) hold and the vector fields are 

linearly independent, the Simultaneous Rectification Theorem ensures the existence 

of a state transformation 3>(C) which rectifies rfk into a unit vector field. Induction is 

employed to verify the expression of / in the new coordinates. According to (3.31), 

the starting vector of the pth subsystem is denoted as ^Jr- in BTOF-coordinates. 

Following the standard approach in Section 3.1, it can be verified that the dynamics 

of the pth subsystem is written as fp = Apzp + jp(z<p~l> ,zp). The dynamics of 

the other subsystems, denoted b y / 4 , l ^ i ^ p — 1, have no dependence on the 

pth subsystem state zp except on its output z\. We assume the last p — i + 1 

subsystems' dynamics have the BTOF structure in the transformed coordinates 

and check the expression for /* in the new coordinates. Denoting the unit vectors 

rjk — ^ - , 1 < k < Aj and considering (3.30) we have 

k=i+i (=i ° ^ + i °zi 

dzk k=i+i 1=1 dzs+i dzi 
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for 1 ^ k ^ A, — 1, which implies that 

~f- = 0, 1 < s < A,; 1 < j < » - 1. 

Similarly, we can verify that *f depends on z<l~l>,z\,yj = z{,i + 1 < j < p, and 

have / l = A V + 7'. Enumerating i from 1 to p, we can verify the expression for 

/ in the new coordinates has a BTOF structure. Condition (iii) can be applied to 

verify the expression for h in the new coordinates. • 

R e m a r k 3.3.5. Theorem 3.1.4 gives conditions which are very similar to the result 

we can obtain by following the generalized characteristic equation approach taken 

in [74]. Both are based on the construction of n functions 7 .̂. • 

3.4 Observer Design Examples 

We consider the observer design for a Lorenz system 

<KC2 - Ci) 
/OCl - <2 - ClC3 

C1C2 - <*<3 / (3.32) 

where £ = (Ci, C2,C3)T; V = (j/ii V2)T, and <r, 6,p are constants. Provided that a ^ 0, 

the system (3.32) is globally observable with the indices (2,1). The conditions of 

Theorem 3.1.4 are satisfied and the transformation of the first subsystem is a linear 

transformation of the observable coordinates xj = L3f hf. &1 = (x\,x\+{o+l)x\)T. 

The system in BTOF coordinates is 

/ -(a + lK1 

z + az\(p-y2- 1) 

(z}\ 
y = 

The error dynamics for the first subsystem is LTI, and the second subsystem has 

error dynamics 
~2 _ ;2-2 1 1 1-1 Zi — —l\Zi H ZyZ2-
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Applying the observer (3.21) we require the disturbance term to be globally Lipschitz 

in z\ for GES. This condition is satisfied as z\ is bounded for any initial condition. 

For the simulations below, the observer is implemented in the (^-coordinates and we 

take L1 = (2, l)T,l\ = 1. 

In order to demonstrate the usefulness of a BTOF-based approach, we compare 

it to a generally applicable method in [82]. We take the parameters a = 10,5 = 

8/3, p — 28 and design the observer about the equilibrium 

Cei = (\AG^r"i), Vs(p~^T),p- if. 

The system matrix of the linearization F = •*(Cei) has a spectrum 

A(F) = {0.09396 ± 10.1945*, -13.8546}. 

These eigenvalues lie in the Poincare domain and are non-resonant [5], We choose 

A such that its eigenvalues are type (C, v) w.r.t. A(F). This is achieved with A = 

diag( - \ /2 , — \ / 3 , - 1 ) . Recall, an n-tuple \x — (/xi,... ,p,n) of eigenvalues belongs to 

the Poincare domain if the convex hull of the n points ( / i i , . . . , /J,n) in the complex 

plane does not contain zero; the n-tuple fj, of eigenvalues is said to be resonant 

if among the eigenvalues there exists an integral relation of the form fis = (m, p) 

where m = ( m i , . . . , m„), m^ ^ 0, J2m-k ^ 2; given an nxn matrix F with spectrum 

A(F) = \i and constants C > 0, v > 0, we say a complex number K is of type (C, v) 

w.r.t. A(F) if for any vector m of nonnegative integers, \m\ = YM=\ mi > 0, we 

have 

As the conditions of [83, Main Thm.] are satisfied, there exists a local diffeomor-

phism 6 which transforms the system into 0 = A6 — f3(y). We choose /3 to have 

degree two and compute 6 

f - l l j / i + 40y2 \ 
P - 270yi - IO2/12/2 

W-8/3y3-0.9(yi)V 

/ -0.4447 4.6703 0.2960 \ 
<?W = 14.8084 1.94072 -17.6194 £. 

\0.3654e-l -0.3058 -0.4306e-l/ 

/ 0.7364e-l 0.6010 0.4917 0.2279 0.1344 -0.2271 \ 
0(21 = 0.7262 3.0887 2.1235 0.8475 1.4636 -0.9013 C!2], 

\-0.1245e-l 0.9849e-l 0.5056e-l 0.3176e-l 0.7445e-l -0.2582e-l/ 
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where C[2] = ((G)2 , (C2)2, (Cs)2, C1C2,C1C3, C2C3)
r-

Figure 3.1 shows trajectories of the 2-norm of the error for both observers for 

three initial conditions 

IC1 

IC2 

IC3 

C(0) = ( 6 V 2 - 2 , 6 \ / 2 , 2 7 ) r , 

C(0) = ( 6 ^ - 3 , 6 V / 2 , 2 7 ) T , 

C(0) = (0.1,0,0)T , 

C(0) = ( 6 \ / 2 , 6 N / 2 - 1 , 2 7 ) T , 

C(0) = ( 6 ^ , 6 N / 2 - 1 , 2 7 ) T , 

C(0) = ( 1 0 , 1 0 , 1 0 ) T . 

We make a number of observations. First, as expected, the BTOF-based observer 

converges for all initial conditions. Second, the observer from [82] is local and its 

convergence depends on which equilibrium point the observer is designed about and 

the choice of (3. Some experimentation was performed to optimize the region of 

attraction by varying /3. However, this is an unguided empirical process which led 

to local convergence in all cases considered. 

Figure 3.1: 2-Norm of estimate error for BTOF (dashed line) and observer in 
[82](solid line). Each graph corresponds to a different initial condition. 

Other examples to demonstrate the usefulness of the proposed approach include 

a simple MAGLEV system (2.43). For the indices (2, l ) , system (2.43) is already in 

BTOF provided we include input dependence into 7^. A semi-global observer based 
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on Remark 3.2.11 is applicable if we assume the system state is bounded: 

where a(-) is a saturation function. We remark that an OF does not exist for system 

(2.43) for x\ appears in the dynamics of x\-subsystem. Further, we note that the ap­

proach given in [82] cannot be applied as the spectrum of the system's linearization 

F = ^(xe) about any equilibrium point xe is not type (C, v) w.r.t. A(F), i.e., the 

last condition of Main Theorem in [83] is not satisfied. Other industrially relevant 

examples for which the BTOF-based design is suitable include: a Synchronous Mo­

tor [109, Sec. 1.10.10] with y = (6,ia,%)T and indices (2,1,1), a Permanent Magnet 

Stepper Motor [40, Sec. 3.2] with y = (q, ii,i2)T and indices (2,1,1), a Brushless DC 

Motor [40, Sec. 4.2] with y = {q,ia,%)T and indices (2,1,1), and a Ball-and-Beam 

system with y = (4>,r)T and indices (2,2) provided a time scale transformation is 

used for the first subsystem [139, 156]. A straightforward application of the results 

in this note yields the BTOF coordinates for the above examples. Evidently, for 

systems which admit a global BTOF, such as the practically relevant ones consid­

ered in this section, a BTOF-based observer has significant performance benefits 

including error dynamics which are GES in BTOF coordinates. In this case, the 

error dynamics are GAS in the original coordinates. If the inverse map £ = Q(z) is 

globally uniformly Lipschitz in z, then the error dynamics are GES. 

3.5 Summary 

In this chapter, we first discussed the existence conditions of a BTOF for unforced 

nonlinear multi-output systems. Theorem 3.1.4 removes the upper subsystem state 

parameter assumption to provide existence conditions. Two counterexamples were 

provided to demonstrate the difference from the existing work [134, 139]. Condition 

(iii) in Theorem 3.1.4 is imposed as a parameter assumption. This simplifies the 

derivation and presentation of the BTOF existence conditions. Theorem 3.1.4 was 

extended by removing the parameter assumption and new existence conditions of a 

BTOF were provided in Theorem 3.3.1. Since the vector fields to be rectified depend 

on unknown functions, conditions in Theorem 3.3.1 were presented as the solvabil-
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ity of PDEs which cannot be verified as easily as those in Theorem 3.1.4. Next 

BTOF-based observer designs were studied. The BTOF allows an established EEL 

observer design method to be generalized to a larger class of multi-output systems. 

Observer design proceeds in a decentralized manner, starting with the uppermost 

subsystem. Designs for each subsystem effectively treat upper subsystem states as 

known measurements and are relatively simple given their reduced dimension. The 

zero solution of the error dynamics was shown to be GES in Theorem 3.2.4 under 

the global Lipschitz assumption on 7. The global Lipschitz assumption was removed 

and the semi-global stability of the error dynamics were established in Theorem 3.2.9 

by using a saturation technique. Examples illustrated the construction of the BTOF 

coordinates and the advantages of a BTOF-based design compared to a generally 

applicable method in [82]. 
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Chapter 4 

Time-scaled Observer Form 
(TOF) 

In the previous two chapters, we presented the BTF and BTOF coordinates in 

which observer design became simplified. These coordinates are generalization of 

the Observer Form (OF). In this chapter we also consider a generalization, but take 

a different approach; we show that a time scale transformation can be combined 

with a state transformation in order to generalize the OF. Recent work in [52, 

132] incorporates an output dependent time scale transformation for single output 

nonlinear systems. The extension to multi-output systems form has not appeared 

in the literature to date. Compared to the time scaling of the single output OF, the 

multi-output problem allows distinct time scale transformations for each subsystem. 

We take a different approach relative to [132] in order to simplify the derivation of 

the existence conditions. This difference in approach is largely due to different time 

scales for the subsystems. 

This chapter considers the existence conditions for a Time-scaled Observer Form 

(TOF). In Section 4.1 we present two motivational examples and introduce the TOF. 

In Section 4.2 we discuss both single and multiple time scale transformation cases, 

and propose the existence conditions of TOF. A comparison between TOF and OF 

with output transformation [85] is made in Section 4.3. TOF-based observer design 

ensures global exponential error convergence in the transformed time scales. In 

Section 4.4 we derive conditions on time scale transformations to preserve global 

exponential stability in the original time scale. 
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4.1 Problem Statements 

A significant amount of work has been performed on the use of time scale trans­

formations for control design [137, 131, 51]. Early work on time scaling for control 

in [137] considered a single-input control affine system 

which is state feedback linearizable in a new time scale. Recall, that a system is said 

to be locally "state feedback linearizable" if it is locally equivalent to a linear system 

in Brunovsky controller form by a smooth state feedback u — k(Q + /3(Qv, /3(0) ^ 0 

and a local diffeomorphism z = T(£), where v denotes the auxiliary input. In order 

to generalize the class of single output systems which admits an OF, an output 

dependent time scale transformation was introduced in [52, 132]: 

^ = s(y(t))>0, r ( i0) = r0, (4.1) 

where s(y) is a non-vanishing positive smooth function, called a Time Scale Function 

(TSF). A TSF uniquely defines a time scale transformation; for simplicity of pre­

sentation below, we do not distinguish between a TSF and its associated time scale 

transformation. As well, we ignore the initial conditions r(to) = TQ since they play 

no role in our application of the TSF. For the single output case, work in [52, 132] 

considered the problem of finding a TSF and change of state coordinates z = T(Q 

to locally transform (2.1) into OF in T time scale 

dz , , 
— = Az + j(y), 

y = Cz. 

When this transformation is possible, a Luenberger-like observer in r time scale can 

be designed 

•£ = Az + i(y) + L{y-Cz), 

which yields a LTI error dynamics system in r time scale. 

4.1 .1 T O F P r o b l e m 

For the multi output case, we consider distinct time scale transformations for each 

subsystem 

^ = Si(y(t)) > 0, l^i^p. (4.2) 
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We define the TOF as an OF in the new time scales 

dzi . . . 

^ v + yfo), 1<i<pj (43) 
Vi = C{z\ 

where A\Cl are given in (1.7). The ith subsystem in the TOF coordinates and t 

time scale is given by 

i< = ai(^*z' + 7 i(y)), 
1 ^ i < p, 

Vi = <?z\ 

where s, abbreviates Si(y(t)). Collecting the p subsystems in TOF in the original 

time we denote the system dynamics as 
z = S(Az + -y(y)), 

(4.4) 
V = Cz, 

where S — Blockdiag{si J,\i, • • • , spl\p }• Note that the difference between the multi-

output and the single-output TOF lies in the matrix S. This difference leads to an 

alternate and more straightforward approach to deriving the TOF existence condi­

tions. Given TSF (4.2) and TOF (4.3), we then formalize the problem of transfor­

mation to TOF. 

Definit ion 4 .1 .1 . The nonlinear system (2.1) locally (globally) observable w.r.t. 

indices Aj, 1 ^ i < p in Definition A.0.1 is said to be locally (globally) transformable 

to TOF (4.3) if there exists a local (global) diffeomorphism z = <&(() and time scale 

transformations (4.2) such that the transformed system in Tfc, 1 ^ k ^ p time scales 

is 
d± = S-^Sf = M + l{yl (4.5) 

where 

dz 

dr 

d-n \ 

dz" I 
s drv ' 

f = S"7-

• 
System (2.1) is transformable to TOF (4.3) if and only if there exists a change 

of coordinates z = $(C) and time scale transformations (4.2) such that the system 

in the t time scale is given by (4.4). 
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4.1.2 Motivational Examples 

The following two examples illustrate that distinct time scale transformations for 

each subsystem allow for an important degree of freedom in the multi-output case. 

Example 4.1. Consider a two-output system in Observable Form with observability 

indices (2,2) corresponding to the output y = (yi,y2)T 

x = 

/ i 4 i 2\ 
\x2> "I" X2X2 

VC3 )̂ + X2X2/ 
(4.6) 

We can verify system (4.6) is not transformable to OF since tp1,^)2 have terms 

( a ^ ) 2 , : ^ ^ ! (^i)2- We introduce the time scale transformation (4.1) with s(y) = 

eyi+V2 a n c j rewrite system (4.6) in the r time scale 

CLT S 

y = h(x), 

where s is an abbreviation of s(y). Applying Theorem A.0.2 with / replaced by / , 

we solve the starting vectors 

dXn 
9 = a f l S ' r = "•»**> i, 2 ^ 2 

and verify that the Lie bracket conditions (A.2) are satisfied 

'adk_fg
r,adl_fg"' = 0, 0^k,l^l\l^r,q^2. 

We solve PDEs (A.3) for the new coordinates 

*(x) = (xi>^,x?,^)r, (4.7) 

in which system (4.6) is a LTI OF 

dz 
= Az, 

dr 
y = Cz. 

D 
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Example 4.2. We modify the dynamics of the system (4.6) by taking 

*2 = {x\f + x\x\, 

x2
2 = {xl)2 + x\. 

Using the results provided below, we can show the system cannot be put into an OF 

using a single time scale transformation and a state transformation. If we introduce 

a different time scale transformation for each subsystem 

the system in the new times can be put into OF 

dz 
— = Az + 
dr 

y = Cz 

with the local diffeomorphism 

( ° \ 
e 2yiy\V2 

0 

*(x) = (x l I ^ ,«? l ^) r . (4.8) 

D 

4.2 Existence Conditions 

We first present the existence conditions for a TOF when each subsystem has a 

different time scale transformation. Then necessary and sufficient conditions for 

a TOF with one time scale transformation are given. These last conditions are 

presented in a similar form to the established result for OF [167, 132]. 

4.2.1 Multiple Time Scale Transformation Case 

Theorem 4.2.1. Assume the nonlinear system (2.1) is locally observable w.r.t. 

indices Aj, 1 ^ i ^ p in Definition A.0.1. The system is locally transformable to 

TOF (4.5) if and only if in U0 
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(i) the TSF of the ith subsystem (4.2) satisfies the PDEs 

dL^Lfh^Ul^dLfhi + ^-l) j ^ jidLfhj 
1 \ 1 j=i>jy* Zl (4.9) 

where 

mod {dy}, 1 < i < p, 

ife = A ( f c l ) + 1 | x ^ f c ^ ^ 

and gl is the starting vector field in the original time and defined by (A.I); 

(ii) Qi=Qif)Q; 

(Hi) the Lie brackets conditions are satisfied 

(l<r<Xi; 

4,nl
s]=0, | l < a < A , ; (4.10) 

1 < i,l < p , 

where for 1 ^ i < p, 

Vi = 9%, Vj = -ad-fV
lj-i, 2 < 3 < *i, 

and gl are the starting vector fields and defined by 

L-gih)hi = s^~lSktXi-\&i,u 0 < k < Ai - 1; 1 < I < p. 

The transformation z = $(£) is the solution of the n2 PDEs 

mo 
d( (V^,--- ,Vl,--- > ^ A p . ' " ,»7i) = / » • 

(4 .11) 

(4.12) 

(4.13) 

Remark 4.2.2. The TOF coordinates are globally denned if the system is globally 

observable, the theorem conditions hold in Kn, and the vector fields rjpl < j < 

Aj, 1 ^ i ^ p are complete. The transformation $(C) can be constructed from the 

composition of flows of vector fields rf,, which is globally denned if the vector fields 

are complete. D 

Remark 4.2.3. Given the nonlinear system (2.1) in Observable Form, we know 

Lxjhi — <pz(x),gl — d/dx\., and Ljhk — x\,l < k ^ p. We therefore reformulate 

Condition (i) as 

flV(s) _ lXi dsi 
dx\dx\ Si dyi' 

d2iP
i(x) = l \ i - l dsi 

dx\dx\ dyk 
1 ^ k < p, k 7̂  i. 
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Since Sj > 0, we introduce the change of variable Kj = ln(sj) and rewrite PDEs 

where ip\ i = d2ipl{x)/dx2dx\.. A solution of m exists if and only if 

d2Ki d2Ki 

which imposes conditions on ip1 

9yj 

1 diflix) 
hi dyj 

dyjdyk 

Or): 

_ 9if)ti{x) 

dyk 

fykdyj 

> j ¥ = i 

i WiM 
^ - i % ' 

k-i,j # i . 

D 

Remark 4.2.4. Prom definition (4.12), we know <?* = s** V - Note that the 

following fact will be used to prove Theorem 4.2.1 

dhi^r(Az + 7) = d / i i f ^ -S - 1 S(Az + 7 ) 
•0z? ' 54 

/ 

^ i " —(0ixy i _ 1 , l ,0 l x ( n _ l / i _ 1 _i)) / 

dsi 1 

#4 s* 
D 

Remark 4.2.5. Condition (ii) guarantees the solvability of the starting vectors 

[167]. This can be illustrated by considering a LTI system with observability indices 

(2,1) 

C= 1 0 o j c , 

'•ei§)-(S)-
The starting vector 5 1 cannot be solved from 

/ d/u(C) / d/n(C) \ (0\ 
dLMO ni= 1 

d/i2(C) 5 0 

\dLM0j W 

with 

(I 0 0 \ 
dL/fti(C) I 0 1 0 

dh2(0 o 0 1 
\dLM0J \o 1 1/ 
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since 

/ dMO \ A o o\ 
Qx = dh2(Q = 0 0 1 , 

\dLMOj \o i V 
d/n(c) \ /i o o\ 

Q= IdL/^CC) = 0 1 0 , 

dh2(0 J \o o 1/ 

« " * " « - $ $ ) - ( ; ! ! ) 
which violates Condition (ii). Hence, the system is not transformable to OF by a 

linear coordinate transformation. Including a change of output coordinates allows 

transformation to OF. • 

Proof: Necessi ty: Taking rj\ = d/dz\., 1 < i < p and following the definition of 

rfk given by (4.11), we verify 

OZ\i-k+X 

Since ^ , l ^ f c ^ A j , l < i ^ p are unit vectors and commute, the Lie bracket 

conditions (4.10) are necessary. Next, we derive the definition of the starting vector 

g% (4.12). Since g1 — rj\, 1 ^ i ^ p, we have 

dh, 

^ , 
0=^L^ihi = 0, l < / < p . 

Further computation gives 

° = 4^ = <d^) = (dft,,«[~/'*'1 

= -(dLfhi!g
i)--Lf(dhl,g

i) 

= TL9iLfhl' 

for 1 < I < p. Having shown the k — 0,1 cases we can use induction to show 

UiLHh^l ***-/- . . (4.14) 

K* f| = ^ ' * = A i-l;l^I<p. 
Hence, the starting vector g* satisfies (4.12). For the necessity of Condition (ii), it 

is evident that Qi D Q C Qi. Thus we only need to show Qj C Q D Qi. From (4.14), 

we have 

Qi {g\ .. .MX-lfXi~l9k) = Qi (r?i, • • • , ^ - A , ) = 0 , 1 < fc < i - 1. 
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Since rjj5 , . . . ,r/* _A., 1 ^ k ^ i - 1 are linearly independent and have dimension 

Sfc=i(^fc - Aj), we conclude 

i - l P 

rankQj < n - ^ ( A f e - Aj) - 1 = i \ + ^ \k - 1. 
fc=l fc=i+l 

Considering Q is a nonsingular matrix, rank Qi n Q = iAj + ]Cfc=t+i Â  - 1 and 

Qi Q QiHQ. We therefore complete the necessity proof of Condition (ii). To derive 

the condition on TSFs, we first state the equations ensuring the existence of a state 

transformation $(C), for 1 ^ i ^ p 

dW dW 

dW d dW 
— - ( S ( M + -,)) = ^ _ , w i - l , (4.15b) 

dW 
dhr aT = 5i>lSr<h ! < i < AJ; 1 < r < p, (4.15c) 

where W = <&-1(z). dW/dz\. is verified to be the starting vector since it satisfies 

the starting vector definition (4.12). Substituting g% into (4.15a), we have 

dW 
-QJ = VXi-j+v 1 < j < AJ;1 < z < p . 

The left hand side of (4.15b) is 

8W d 
[ ( ^ + 7)) = _ ( _ ( ^ + 7) + 5^j. 

dz dz\ 

Given the right hand side of (4.15b) in Remark 4.2.6, the multiplication of (4.15b) 

and Ahi{dW/dz)~l gives 

^(Az + j) + dhiSpT = dhi-4z-1axix_i
f9

i + dhi^-1 3 

az\ az\ s ' ' s; 
dhi-1(Az + 1) + dhiS-^ = dhi-x-[^dti

f9
% + dhiJ->;i "Lf(Si)aA*pgx. (4.16) 

According to Remark 4.2.4, we rewrite (4.16) as 

where p(y) = dhiSd"f/dz\ is some function of y. Prom [120, Lem. 6.15] 
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and from [64, Lem. 4.1.2] 

L
adti

fg*hi = L9iL/hi-

Hence, (4.17) is rearranged as 

S' 1 
± Lfhi+p{y) = -^L^Lfh, - 2 " ^ / W . (4.18) 

dSi l T h _i_ I \ 1 r r A i . Xi(Xi ~ 1) 1 

Collecting the terms of (4.18) and taking the differential, we have 

8 p 8 
dLsiL

x
f
ihi = his*i-2^dLfhi + (hi-l)s$i~2 Yl a £ t d L / ^ mod {dy}, (4.19) 

where y\ — z\, 1 ̂  k ^ p. Since g% — st
 i~1gl, we have 

dLpL^hi = s^^dLgiLfhi mod {dy}. 

Plugging the above equation into (4.19), we have Condition (i). 

Sufficiency: Given the TSF of each subsystem s$ solved from Condition (i), it is 

readily shown Conditions (ii)-(iii) are sufficient to guarantee the existence of a state 

transformation z = $ ( ( ) which puts system (2.1) into TOF (4.4). This approach 

was taken in the proof of sufficiency in Theorem 3.1.4. • 

Remark 4.2.6. Given (4.15a), we can compute dW/dz^, 1 < j < Aj - 1 iteratively 

and have 

oz\-k si si 

span{adi,<f ,0 < j ̂  k - 2}, 1 < A; < A* - 1. 

Further calculation yields the right hand side of (4.15b) 

d z i - s ^ - f 9 + > a d _ / — r - - j ^ a d ^ s * + ^ ^ Lf(si)ad^pgz s p a n j a d i ^ , 0 < j < A* - 2} 

The previous two equations are independent of coordinates and hold provided a TOF 

exists. Without loss of generality in the above proof we made use of a (-coordinate 

representation in (4.15b). • 

Remark 4.2.7. The multiple time scale transformation case has a different TSF 

for each subsystem. This can be generalized by employing a TSF for each state, i.e., 

S = Blockdiag{si, • • • , s n } , which leads to the multi-output extension of the output 

dependent observability linear normal form in [173, 174], A similar procedure can 

be followed to obtain the existence conditions of this generalized TOF. • 
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Example 4.2 (Continued) We recall Example 4.2 and verify the conditions of 

Theorem 4.2.1, solve for a matrix TSF candidate using Condition (i), and compute 

the state transformation. The functions LgiL\hx and dLfhi,i = 1,2 are readily 

computed and Conditions (i) reduce to 

2dx£ = s^{2^±dx\ + | ^ d x i ) mod {dy}, 

2dx| = s - i ( 2 ^ d x l + ^ d x J ) mod{dy}, 

which yield the PDEs 

dsi dsi ds2 n ds2 

«2/i »y2 oj/i oy2 

Hence, we solve the TSFs s\ = evl,S2 = em. Computing 

i _ d 1 _ d 1 d 

2 - A ^ - A + ̂ A 
l ~ dx\' % ~ dx\+X2dx\ 

and verifying the Lie bracket conditions (4.10) are satisfied for 1 ^ r,s,i,l ^ 2, we 

solve the state transformation (4.8) from (4.13). D 

4.2 .2 Single T i m e Scale Transformat ion Case 

The existence conditions are given in the following theorem. 

Theorem 4.2.8. Assume the nonlinear system (2.1) is locally observable w.r.t. 

indices Aj, 1 ^ i ^ p in Definition A.0.1. The system (2.1) is locally transformable 

to TOF (4.5) if and only if in UQ, 

(i) Condition (i) in Theorem 4.2.1 with s — s;, 1 ^i ^p holds; 

(ii) Qi^QiH Q; 

(Hi) the Lie brackets conditions are satisfied 

( 0 < k < Xr - 1; 
adk_fg

r, a d ^ ] = 0 , I 0 ^ I < Xq - 1; (4.20) 
[ 1 ^ r, q < p, 

where f — f/s, and gl,l ^ i Sj p, are the starting vector fields in new time 

scale and defined by 

LgiL
k
fhr = <Jfc,A4-i<Ji,r, 0 < A < A i - l ; l < r < p . (4.21) 
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The transformation z — $(£) is the solution of the n2 PDEs 

^ ( a d ^ - y , - - - , g \ - M ^ g " , - ,9P)=In. (4.22) 

Proof: Condition (i) in Theorem 4.2.8 can be immediately obtained from Con­

dition (i) in Theorem 4.2.1 by taking s = Sj. Given system (2.1) in the new time 

scale, Conditions (ii)-(iii) in Theorem 4.2.8 are equivalent to Conditions (ii)-(iii) in 

Theorem A.0.2. Provided the existence of a TSF, Conditions (ii)-(iii) in Theorem 

4.2.8 are therefore necessary and sufficient to guarantee the transformation to OF 

in the new time scale. • 

Remark 4.2.9. Theorem 4.2.8 and its proof demonstrate its similarity to Theorem 

A.0.2. Alternatively, we can show Theorem 4.2.8 by replacing the matrix TSF with 

a scalar TSF in Theorem 4.2.1. We verify that #' solved from (4.12) is the same as 

g* solved from (4.21), and ad*".1^ = r)\, 1 ^ k ^ Xh 1 ^ i ^ p. Thus Theorem 4.2.8 

is proven. When p — 1 Theorem 4.2.8 leads to the same existence conditions as 

stated in [132, Thm. 1]. D 

Remark 4.2.10. For a fixed i, it can be verified by induction that for 1 < r ^ p 

. J s _ 1 d L / / i r mod {dhr}, k = 0, 

f r~ \s-kdLk
fhr m o d { d Z ^ / i r , 0 < j < A - 1}, 1 < k < Xi - 1. 

We therefore conclude that gl = sXi~lgi, where gl,g% are defined by (A.l) and (4.21) 

respectively. • 

Example 4.1 (Continued) We apply Theorem 4.2.8 to solve a scalar TSF, verify 

the conditions, and compute the state transformation. Given LgiL
2hi,dLfhui — 

1,2 readily obtained, Condition (i) reduces to 

d(2x\ + x\) = s-l{2-^-dx\ + Q^-dxl) mod {dy}, 

d(2:r| + x\) = s~1{2-^-dx% + Tp-da^) mod {dy}. 

The above equations give the PDEs 

ds _ ds _ 

dyi dy2 

Hence, we solve the scalar TSF (4.1). Lie bracket conditions (4.20) are satisfied and 

the state transformation is (4.7). • 
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4.3 TOF and OF with Output Transformation 

In this section we discuss the difference between TOF and OF with output trans­

formation [85]. Our discussion relies on a system (2.1) being in Observable Form 

with indices A;, 1 ^ i < p. The starting vector g% — d/dx\. and conditions (4.9) are 

dx\ 
1 / lXi | | d x 2 + (lXi - 1) Y, dxi ] m o d idvh 1 ^ * < P 

Performing coefficient matching of the above equation, we can solve Si only if tp% is 

affine in x\, and the coefficients of x\, in <pl are of the form ai(y)x2 or «2(y)- How­

ever, without the time scale transformation, the necessary condition for OF requires 

no terms of the form a\(y)x3
2x\. in <pl. This illustrates a benefit of introducing a 

time scale transformation. If A, = 1 and <pl(x) has dependence on a ,̂,fc ^ 2, no 

TOF can be solved. We conclude this by verifying the conditions (4.23c) which are 

written as 

-r-—-r- = 0, j ,6 %. 
dyidyj 

If y>% has linear dependence on x\, introducing the output transformation leads to 

the transformability to OF. On the other hand, if ^(x) depends on y only, no 

time scale transformation is required for the ith subsystem which is in OF already. 

Transformation of the other subsystems to OF will not change the expression of the 

ith subsystem dynamics. We therefore conclude that a time scale transformation is 

not helpful when attempting to transform one dimensional subsystems. 

We perform the comparison between a time scale transformation and an output 

transformation by considering a multi-output system with observability indices Afc = 

2,1 ^ k ^ p. Assuming the system is in Observable Form, g* = Sid/dx\,, 1 ^ i < p 

are unit vectors and commute. We expand [772,̂ 1] = [s^1&d_fgl,gk] = 0 to derive 

necessary conditions for a TOF: 

\sT1
sA_sg

i,gk^ sd^fg
i-si

1Lf(si)g\skg
k 

= sk [ad_/5\5*] + Ladfgi(sk)g
k + -Si lLf{si)g\skg

K 

= Sk 
y-fV_d_ d_ _8_ 
^ dyi dyi dyi' dyk 

Sk 

= skYj 
ay d dsk d 

+ f^ dyidyk dyi dyi dyk st dyk % ' 
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which yields the PDEs 

0y? 
0V 

Sidy., 

dyidyk sfc dy, 

ay 0, l^k-J^i, 

(4.23a) 

(4.23b) 

(4.23c) 

for 1 < l,i, k ^ p. For the output transformation case, we define the output trans­

formation y = ip(y) — (ipi, • • • ,ipp)
T and compute 

dxl>, p p 

^ E Z V + E E 
s2Vi 

-ViVk-

ttdyl ti^ldykdyi' 
For a system transformable to OF with output transformation we require 

-ydiPj 82<pl
 | a V i 

^ dy* < % % dyidyk 
= 0, i ^ fc, 

Aa^ay 1 2 gy^ 0 
^ % a&f 

(4.24) 

*, 
,=1 -~ -*, dyf 

for 1 < i ,k,l < p. Comparing Conditions (4.23) and (4.24), we have the following 

observations 

1. When p = 1, i.e., i = k — I in (4.23) and (4.24), the conditions are equivalent 

since Sj = dtpi/dyi. We recover the result in [132] that an output transforma­

tion is equivalent to a time scale transformation for a two dimensional system. 

2. In general, an output transformation is not equivalent to a time scale transfor­

mation even for ap-output system with observability indices \ = 2,1 < k ^ p. 

This demonstrates a difference between the single and multi-output cases. 

Next, two systems exemplify the difference between TOF and OF with output trans­

formation. 

Example 4.3. Consider an observable system with indices (2,2,2) 

/ 4 + 7i(3/2)\ 
7j(y) 

•I + 7? (yi) 
72

2(y) 
x2 

\ X2X2 "t" x2 / 

(4.25) 

y= \x\ 
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System (4.25) is not transformable to OF without output transformation since x\x\ 

appears in ip3. Since conditions (4.23c) do not hold for I = 3,i = 1, k — 2, system 

(4.25) does not admit a TOF. This is consistent with the conclusion from checking 

the conditions in Theorem 4.2.1. However, we can solve an output transformation 

V̂  = 2/12/2 — 2j/3, and the system with new output y = (x\, x\,i})^)T is transformable 

to OF. • 

Example 4.4. Consider a system in Observable Form with indices (2,2) 

1X
2

X
2 ' xl\x2) 

V I 2 2 1 / 2 \ 2 / 

x2a;1X2 + x1(x2) / 
_ (hx{x)\ _ (x\ 
- {h2(x)J - [x2 

(4.26) 

System is not transformable to OF since (x^tX^x?,, and (x2)2 are present in (p1,^2-

We apply Theorem 4.2.1 to investigate whether system (4.26) admits a TOF. The 

starting vectors are trivially solved as g1 = d/dx\,g2 = djdx\ and we have 

LgiL
2fhi = x\x\ + 2xlx

2, 

Lg2Lfh,2 = x\x\ + 2x\x2. 

With Lfh). = xk,k = 1,2, Condition (i) in Theorem 4.2.1 is applied to set up the 

PDEs 

2y2 = 

2j/i = 

1 dsx 
si dyi' 
1 ds2 

s2 dy2' 

1 dS! 
2/1 = —£—: 

s\oy2 1 ds2 
2/2 = — ^ — • 

s2oy\ 

Solving the above PDEs gives TSFs 

si = s2 = ey™1. 

With si = 82, Theorem 4.2.8 can be applied. Since gk,k = 1,2 exist, Condition (ii) 

holds. Defining / = f/s\,gk = s\gk,k = 1,2, we verify Condition (iii) as well. We 

therefore know system (4.26) is transformable to a TOF. On the other hand, system 

(4.26) cannot be put into an OF with an output transformation since no output 

transformation satisfies PDEs (4.24). • 



4.4 Error Dynamics Stability 

Assuming the existence of a TOF and considering the Luenberger-like observer in 

TOF coordinates and the new time scales 

^- = Az + 7(y) + L(y-Cz), (4.27) 

we have the LTI error dynamics 

fr={A-LC)i, 

whose zero solution is GES. The error dynamics of the ith subsystem in the original 

time scale is written as 

Zi = SiiA* - L{&)t, (4.28) 

which is LTV. We study the stability of the error dynamics (4.28) by examining the 

stability of the LTV system 

e = g(t)Ace, g{t) > 0, Vt ^ to, (4.29) 

where e = (ei, • • • , e n ) r , and Ac € K n x n is Hurwitz. Since the observer gain allows 

for arbitrary eigenvalue assignment, Ac is assumed diagonalizable. We first give the 

stability result of (4.29) when n = 1. 

Proposition 4.4.1. Given a one dimensional system 

x=-ag(t)x, x0 = x(t0),o- > 0, g(t) > 0,Vf ^ to, (4.30) 

its equilibrium point x = 0 is GES if and only if there exist positive constants to, To, 

and e > 0 such that 
ft+To 

J e(Z)<X>e, Vt^ to . (4.31) 

Proof: For the LTV system (4.30), its solution is 

z ( 0 = e ~ f f / ' o e m a : ( t o ) . (4-32) 

Sufficiency: From Condition (4.31), we have 

ft ( t - ( d ) - i > i e < r . t t ) d C < r ^ + i i , / aim 
J to 
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Substituting the above equation into (4.32), we know 

Cle-"»('-*o)|x(t0)| ^ |x(«)| ^ C2e-^-^\x(t0)l (4.33) 

where c\,m are some positive constants, and C2 = exp(ere/To),/ — ae/To. Hence, 

the equilibrium point x = 0 is GES and the sufficiency of Condition (4.31) is shown. 

Necessi ty: Since the origin x = 0 is GES, the system trajectory satisfies (4.33) 

where ci,C2,m,l are some positive constants. Combining with (4.32), we have 

t 
(?(£)d£ ^ c3(t - t0) - c4, V£ ^ t0, 

3 

where 03,04 are some appropriate positive constants. Letting To > C4/C3 and e = 

C3T0 — C4 > 0, and computing the integral from t to t + To, we have 

rt+To 
J e ( 0 d £ £ e , V t ^ t o -

Thus the proof of the necessity is completed. • 

Proposit ion 4.4.2. T/te equilibrium point e = 0 0/ i/ie LTV system (4.29) is G-&S1 

?/ and on/y i/ i/iere exist positive constants to,To, and e > 0 such that Condition 

(4.31) holds. 

Proof: Since Ac is assumed diagonalizable into Ad — Diag{ai, • • • ,crn} by a 

linear transformation e = ( e i , . . . , e n ) r = He, system (4.29) is transformed into n 

decoupled scalar systems 

t{ — -cTj£i(t)ej, 1 ^ i ^ n, 

whose equilibrium points e\ = 0 are GES. According to Proposition 4.4.1, condi­

tion (4.31) is necessary and sufficient to ensure ej = 0 is GES. D 

Finally, we state the theorem without proof for the stability of the error dynamics 

(4.28), l^i^p. 

Theorem 4.4.3. Assume system (2.1) is globally transformed to TOF (4.3). Given 

the observer (4.27) with A — LC Hurwitz, the zero solution of the error dynamics 

in the original time (4.28), 1 ^ i ^ p, is GES if and only if there exist positive 

constants io,To, and e > 0 such that Condition (4.31) holds with g(£) replaced by 

sMO)-

L 
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Remark 4.4.4. A non-vanishing positive TSF is necessary and sufficient to preserve 

the error dynamics stability in the sense of Lyapunov. For a LTV system 

x = A(t)x, x(to) = XQ, 

x = 0 is a globally uniformly asymptotically stable (GUAS) equilibrium if and only 

if x = 0 is an GES equilibrium point. Hence, GUAS is guaranteed by Condition 

(4.31). • 

4.5 Summary 

The TOF for uncontrolled nonlinear continuous-time systems was considered in this 

chapter. The multiple and single time scale transformation cases were considered 

and necessary and sufficient existence conditions were provided in Theorem 4.2.1 

and Theorem 4.2.8, respectively. For each case, the unit vector fields are con­

structed differently. Compared to the existing single output time scaling work in 

[132], the proof of Theorem 4.2.1 does not directly make use of the OF result. On 

the other hand, Theorem 4.2.8 can be shown by directly applying the OF result and 

is therefore analogous in method to the single output time scaling case. Since the 

time scale transformation affects the error dynamics stability, necessary and suffi­

cient conditions on TSFs to preserve GES and GUAS of the error dynamics were 

presented. 
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Chapter 5 

Time-scaled Block Triangular 
Observer Form (TBTOF) 

In Chapter 4, a time scale transformation was considered to enlarge the class of 

systems admitting OF in the new time scales. In this chapter, to further broaden the 

class of systems allowing EEL design, we proposes a Time-scaled Block Triangular 

Observer Form (TBTOF) by incorporating time scale transformations with a BTOF. 

Thanks to its block triangular structure, the TBTOF is more general than the TOF 

considered in Chapter 4. The TSFs do not necessarily depend on outputs only. 

Instead, for the ith subsystem, the TSF can be a function of the upper subsystem 

states z f c , l < f c < i — 1 and outputs yk, 1 < k < p. A system is in TBTOF if in new 

time scales there exists a state transformation to BTOF. Theorem 3.1.4 is applied to 

establish the existence conditions of a TBTOF. Since each subsystem is transformed 

into BTOF sequentially while leaving the upper subsystem unchanged, similar to 

the single time scale transformation case in Section 4.2, we derive the necessary 

conditions on the TSF of the zth subsystem. The motivation for considering the 

TBTOF originated from [135] where it was briefly described. 

In Section 5.1 we consider TSFs and the TBTOF. The TBTOF existence con­

ditions are given in Section 5.2. In Section 5.3 we discuss TBTOF-based observer 

design and error convergence. Section 5.4 presents a Ball-and-Beam system and 

a mathematical example which admit a TBTOF but not a BTOF; TBTOF-based 

observer designs are given. 
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5.1 Problem Statement 

Theorem 3.1.4 requires that the original system in new time scales must be in 

BTF. This fact imposes restriction on the form of TSF for each subsystem. For 

the ith subsystem, its TSF can only depend on the first i subsystem states and 

all outputs. On the other hand, a TSF should only depend on measured signals 

for the purpose of observer design. Considering the observer design for a system in 

BTOF is performed sequentially, for the ith subsystem, the previous i - 1 subsystem 

states can be treated as measurements since the convergence of the error dynamics 

of the first i - 1 subsystems can be established independently. Hence, a time scale 

transformation for the ith subsystem is taken as 

dr-
-£ = si(z<i-1>,ylij>]), l < i < p . (5.1) 

Similar to the TOF case, work in [157] chose an output dependent TSF for a TBTOF 

which led to a straightforward analysis of the error dynamics stability. However, 

the generalized form (5.1) provides an additional degree of freedom in design. This 

will be illustrated by the mathematical example in Section 5.4. 

After introducing the time scale transformation (5.1), we define the TBTOF 

whose ith subsystem is 

i i = sJ(>4V+7<), 
Ki^P, (5-2) 

Vi = C%z\ 

where 7* = 7l(2;<l_1>i'2ii2/[i+i,p])- This subsystem can be expressed in BTOF in r, 

time scale 
dzl 

dn~ z 7 ' l < i < p. (5.3) 

Vi = Cfiz*. 

Provided that a TBTOF exists, observer design in the new time scales can be per­

formed as described below in Section 5.3. We formalize the TBTOF problem to be 

solved. 

Definition 5.1.1. The nonlinear system (2.1) locally (globally) observable w.r.t. 

indices Aj, 1 ^ i < p given by Definition 2.1.1 is said to be locally (globally) trans­

formable to a TBTOF (5.2) if there exists a local (global) diffeomorphism z = $(£) 

and time scale transformations (5.1) such that the transformed system in the r time 

scales is in BTOF. • 
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5.2 Existence Conditions 

In order to derive the existence conditions of a TBTOF and a necessary condition on 

the TSF we follow the method of proof for the BTOF existence conditions in Section 

3.1. That is, we assume the first i - 1 subsystems are in TBTOF and consider the 

transformation of the ith subsystem from BTF to TBTOF. Specifically, starting 

with 
/ z1 \ ( s 1 ( . 4 V + 7 1 ) \ 

= Fi = 
i i - l Si-i(A i-1 ~ i - l i - i - 1 

V 
+ 7 . - i ) 

/ ' J 

Ci-lzi-l 2/i-i 

we want to transform into 

zk - sk(A
kzk + 7fe 

Vk = Ckz\ 
l^kCi. 

Expressing (5.4) and (5.5) in the TJ time scale as 

dri 

\ dn / 

2/i-i 

5 i=t( i4*- 1 z i " 1 +7 i - 1 ) 

( Cxzl \ 

and 
dzk Sfc fcjc ^^(AKz" + 1

K), 
dn 

Vk = Ckzk, 

1 ^ k < i, 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

respectively, we can apply Theorem 3.1.4 directly on (5.6) to check if it admits a 

TBTOF (5.7). 

Theorem 5.2.1. Let system (2.1) be locally observable in UQ C Mn with indices 

Aj, 1 < i ^ p given by Definition 2.1.1. There exist a change of time scale (5.1) and 

and a local diffeomorphism $(z< l~1 > ,5:1) to transform the first i subsystems (5.6) 

into (5.7), if and only if in UQ 
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(i) the TSF (5.1) must satisfy 

dL5iL%hi = h^dLpihi mod {dz{, 1 ^ k ^ A,, 1 ^ j < i - l;dz{}, (5.8) 

where s^ = dsi/dyi, Fi is defined in (5.4), and the V{-dimensional starting 

vector g% is the unique solution of 

L5iL%hi = 4 , ^ - 1 , 0 < fc < A; - 1; (5.9) 

(ii) the first fj_i = X)fc=\ ^k components of ad^g1, 0 ^ k ^ Aj - 1 are zero, w/iere 

Fl is defined by (5.6) and the v\-dimensional starting vector gl is the unique 

solution of 

L§iL%hi = 4 , A 4 - I , 0 ^ k ^ Xi - 1; (5.10) 

(Hi) the Lie bracket conditions are satisfied 

fuT^g1Ma_Pi9
% = 0, 0 < r, s < Xi - 1 _ i > j j _ ; "i AI 

fiwj ifte vector fields are independent of lower subsystem outputs 

— a c T . ^ - 0 , 0 < r < A i - l ; i + l ^ j < p ; 

(v) the ith subsystem output is independent of lower subsystem states 

-4-o, ia^j;i + Kj^. 

The state transformation $ ' is the solution of the A? PDEs 

where x\ = ((z^-^f, ( 5 i ) T ) T e Rv*. 

R e m a r k 5.2.2. By induction, we obtain 

dLk
pihi = -j^dLkpihi mod {dz{, 1 ^ q ^ Xf, 1 ^ j < i - 1, d L ^ , 0 < r < k - 1} 

for 0 ^ k ^ Aj - 1. The starting vectors gl,g% computed from (5.9) and (5.10) have 

the formula gl = s*<_1<?\ We remark that when calculating Lk.Jn and L^hi, x\ is 

treated as the state, and J/[i+i,p] is treated as a parameter. The same methodology-

is followed in computing ZA./ij,0 ^ k < Aj and the proof of Theorem 5.2.1 below. 
r * 

This is consistent with the proof of Theorem 3.1.4. • 
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Proof: Conditions (ii)-(v) are apparent by applying Theorem 3.1.4 with the vector 

fields Fl, gl replaced by Fi,gl. Next, we focus on the derivation of the necessary 

conditions on a TSF, i.e., Condition (i). We assume (5.4) is transformable into (5.5). 

Based on (5.9) and (5.5), we compute the starting vector expressed in the original 

time scale and z-coordinates denoted by g%. First, since hi(z) = z\ and denning Fl 

as 

^ s ' ( l ' ( 4 + i + i i , 5 + 7 l 4) ' 
we obtain Lpjii = Si{z\ + j[). Further computation gives 

L%hi = ( 4 + ibLp-iSi + Si {LpJ2 + Lpa[) 

= <$4 + (4)2s'iSi + Q2z\ + fa, 

where /?2,/?2 depend on (z<*~1>,y[^p]). By induction we have 

L%hi = sUl+i + lks'Azi
ks

k
i-

1 + 0fe4 + /M2<i-1>,4,fc_i],V[i,]) ( 5 J 2 ) 

holds for 3 < k ^ A; — 1. It can also be verified that Qk, 2 ^ k ^ Aj - 1 depend on 

(z<J_1>,j/[jiP]). In particular 

pi hi =Si ZM + l Ai - 1 SiZ2 Z\i -1 Si 
(5.13) 

Given lA^ft^O < k ^ Aj — 1 and (5.9), the starting vector is solved as 

-i = _ ! <L 

From (5.13), we have 

where gA. and pXi depend on (z<i_1>,y[i,p]) and (2<i_1>,-2[2)Ai_1],?/[i,p]) respectively. 

Hence, we have 

LSiL
3
F\hi = lXis'i4 + -£=IQxi. (5.14) 

96 



On the other hand, we know 

dLpjii = Sidzl
2 mod I dz^, 1 < k < XJ; 1 ^ j ^ i - 1, dz\ \. 

We therefore simplify (5.14) into 

dLpL&hi = IxfidL^hi mod {dzj, 1 < k < A,-; 1 < j < i - l,d«J j , 

which is the expression of (5.8) in ^-coordinates. Since it is independent of coor­

dinates, we have shown Condition (i) holds for A, ^ 4. By direct computation, 

Condition (i) holds when Aj = 2, Aj = 3. • 

Remark 5.2.3. Since (5.8) is a necessary condition on the TSF, its solution can be 

too general to give an explicit expression of the TSF candidate. This is the case we 

have in the Ball-and-Beam example in Section 5.4. To avoid this situation, necessary 

and sufficient conditions for TSFs would be required as in [137] where the feedback 

linearization problem is considered. On the other hand, conditions on TSFs in [137] 

are much more complicated and difficult to verify. Hence, no additional conditions 

on TSFs are considered here. • 

Remark 5.2.4. Condition (iv) in Theorem 5.2.1 implicitly impose some constraints 

on TSFs. In some special cases, Condition (iv) can give particularly straightforward 

constraints on the TSF candidates. For example, when g% has no dependence on 

y\i+\,p]i *ne TSF candidate Sj should be independent of y[j+i)P]. This is because 

with the time scale transformation introduced, g% = si
i~1gl, applying Condition 

(iv) for r = 0 in Theorem 5.2.1 with gl replaced by g% we end up with conditions 

dgl/dyj = 0, i + 1 < j < p- On the other hand, if g% is a function of j/[j+i)P], the TSF 

candidate must have dependence on j/[,+i,p] such that dgl/dyj = 0,i + 1 < j ^ p. • 

Remark 5.2.5. In the single output case, the output transformation is equivalent 

to the time scale transformation when the system order is two [132]. We have two 

examples to illustrate this is not the case for the TBTOF. The first example demon­

strates that a system admits a TBTOF but does not admit an OF with an output 

transformation. The second example admits an OF with an output transformation 
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but does not admit a TBTOF. We consider a two-output system with indices (2,2) 

M 1 ^ + 7
1 (y) \ 

^2 J i 
a{zl){xl? J (5.15) 

System (5.15) is not transformable to OF or BTOF since {x2)2 appears. To find 

out if it admits a TBTOF, Condition (i) in Theorem 5.2.1 is applied to solve the 

TSF for the second subsystem. We can solve the TSF s2 — ec(-z )xi and verify 

that Conditions (ii)-(v) in Theorem 5.2.1 are satisfied with F2 = F2/s2,g
2 — s2g

2. 

Hence, there exists a state transformation to put system (5.15) into TBTOF. On the 

other hand, we show by contradiction that the second subsystem with new output 

i/2 cannot be put into OF. Assuming the existence of an output transformation 

V2 — ̂ ( y ) ; the characteristic equation for the second subsystem is 

L)m = Lpliyum) + 72(2/1.2/2), 

where 72 ,7f a r e t n e components of the output injections. Further computation 

leads to the necessary condition on the transformability to OF, that is the so-called 

polynomial condition: d2L2fy2/dy2 — 0. This condition yields the following PDE 

d2 d 

which in general is unsolvable for an output transformation xjj2{y) since z\ appears 

in a. Hence, we conclude system (5.15) admits a TBTOF but not necessarily OF 

with output transformations. Next, we present a perspective dynamic system [33] 

with indices (2,1) 

/ - w i 6 6 + ^2(1 + £?) - w3& + (&i - foti)& 
£ = W26& - Wl(l + £2) + w3& + (&2 - &3&)& 

\ ~ ( w i 6 - w2& + &3&)& J (5.16) 

where £ = (£i>£2,£3)T- System (5.16) is locally observable if 

(hi - &3£i)2 + (fa2 - h&? # 0, 
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which is a commonly obtained expression, referred to as the focus of expansion. 

Without loss of generality, we assume b\ — 63^1 7̂  0. We have shown in [39] that 

system (5.16) can be transformed to OF with the output transformation 

1 
^ = I T ' 

032/1 ~ 0i 
_ _ &2 ~ 03& 

03(01 - 03^1) 

The first subsystem is not transformable to BTOF since Condition (ii) in Theorem 

3.1.4 is not satisfied. We attempt to transform the system into a TBTOF by intro­

ducing a time scale transformation for the first subsystem. Applying Condition (i) 

in Theorem 5.2.1 yields the PDE for s\ 

403 = 2 j 

033/1 - 01 si l 

Solving this PDE gives the TSF s\ = (633/1 - 0i)2. We verify that Condition (iv) in 

Theorem 5.2.1 is satisfied if and only if 

LJ\b\ + W 3 6 3 = 0. 

Hence, system (5.16) is in general not transformable to TBTOF. D 

5.3 Observer Design and Error Dynamics Stability 

5.3.1 Observer D e s i g n 

Assume the existence of a TBTOF and consider the following observer structure in 

BTOF coordinates and the original time scale 

l 1 = si[>4121 + 71 + L 1 ( y i - C 1 l 1 ) ] , 
(5.17) 

z* = S( [A*? + f + L\Vi - &zi)} , 2^i^p, 

where Sl = ai(y),Sk = Sk(«<fc_1> , »[*,„]), 7* = 7fc(«<fc_1>,*i.y[fc+i,p])>2 < k < p. 

The error dynamics for (5.2) and (5.17) is 

(5.18) 
zl = at [Alzl + 7»] - st [Alzl + f + V{Vi - C'z1)} , 2 < i < p, 

where zk = zk — zk, 1 ^ k < p. For a TBTOF, a time scale transformation is 

employed as well as a change of state coordinates. The stability of the error dynamics 

might be affected by the time scale transformation. We first give an example error 
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dynamics which has different asymptotic behavior in different time scales. Then the 

conditions for a TSF to preserve the error dynamics stability are discussed briefly. 

Finally, the stability result of the error dynamics (5.18) is given. 

5.3.2 Stabi l i ty Preserv ing T S F 

Example 5.1. We consider 

§ = -*, i(0)-l, 

where the r time scale is defined by 

dt 
,-t — e~l > 0, T0 = t0 = 0. 

Clearly, Z(T) = e T , r ^ 0 is globally exponentially convergent to the equilibrium 

z = 0. However, z{t) solved from dz/At — e~lz, z(0) — 1 gives the solution 

z(t) = e 6 - ' " 1 , t ^ 0, 

which converges to e~l as t —> oo. Hence, a C°° and positive TSF does not neces­

sarily ensure that the stability is preserved. Additional conditions on the TSF are 

required. If we consider the map 

rt 
r(t) = f s (e )de :K + ->M + , 

Jo /o 

which can be solved analytically r(t) = 1 — e~l,t ^ 0, we notice the time scale 

transformation defines a homeomorphism r(t) mapping R+ to a finite interval [0,1). 

This means the trajectory of z(t),t ^ 0 is same as Z(T),T e [0,1), which explains 

lim z(t) — lim Z(T) — e _ 1 . 

D 

We can intuitively give sufficient conditions on the time scale transformation 

T(£) to preserve Uniformly Asymptotic Stability (UAS): 

1. r(t) is a monotonically increasing function of t; 

2. lim^oo T(£) -> oo. 
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As well, we can show these conditions are necessary. Note the above conditions 

on the map r(t) can only guarantee that UAS in r time scale implies UAS in t 

time scale, not the converse. The conditions for the other direction can be similarly 

derived. Finally, we have the conditions on the time scale transformation to ensure 

that the zero solutions of the error dynamics in different time scales are UAS. 

Lemma 5.3.1. Given a system in different time scales t,r, 

§ -.(.)/(*), f - / ( * ) , 
where 

dr 
— = s{t)>0, T ( 0 ) = 0 , t ^ O , 

the following statements are equivalent: 

1. the zero solution of system in r time scale is GUAS <?> it is GUAS in t time 

scale; 

2. the maps 

r(«) = / s(e)de : R + -> K+ 

Jo 

satisfy 

r i 
Jo s{e) 

lim r(t) —> co, lim t(r) —> oo. 
t—»oo 

A sufficient condition for a TSF s to preserve GES is J ^ \s\ ^ K for some pos­

itive constants J, K. This can be readily established from the Lyapunov argument. 

We simplify the following discussion by introducing a stability preserving TSF which 

defines a new time scale such that the stability of an equilibrium point in the new 

time scale is equivalent to that in the original time scale. We denote the sets Qa and 

Qe consisting of GUAS preserving TSFs and GES preserving TSFs respectively. 

5.3.3 Error D y n a m i c s Stabi l i ty 

To simplify the stability analysis of the error dynamics (5.18) we make the following 

assumptions. 

Assumption 5.3.2. The TSF candidates Sj^s^1 ,1 < k < p in the error dynamics 

(5.18) belong to Qa. • 

101 



Assumption 5.3.3. The state of system (2.1) belongs to a compact subset V C Rn , 

i.e., there exists a constant M such that ||CWII ^ M, i ^ 0. • 

Provided that the TBTOF coordinates are defined on a set containing V, As­

sumption 5.3.3 implies that the state of system (2.1) in TBTOF coordinates lies in 

a compact subset V of W1, i.e., there exists a constant M such that ||z(i)|| ^ M,t e 

K+. 

Given Assumption 5.3.3 and that Si,Y are smooth, we have s, and 7* are Lips-

chitz in z < t _ 1 > € V uniformly in yuv\ € T> w.r.t. any norm, i.e., there exist constants 

IPk, Ml, 1 < fc < i - 1 such that 

i - l 

\si-Si\^J2Hi\\ik\\^ 
k=l (5.19) 

fc=i 

for all y\iiP],zk,zk G V. When considering the stability of the ith subsystem error 

dynamics, the observer state z<%~l> might leave V. The Lipschitz condition (5.19) 

still holds if we introduce an element-wise saturation function CT(-) as in Section 3.2. 

For the ith subsystem observer, we saturate z<%~l> to keep it in V, i.e., in (5.17) 

we take 

Ji = Sj(a(f< J - 1 >) ,y l i ) P ]) , 

7 = 7 [a(z ),Zi,y[i+i,P])-

We now present the error dynamics stability result. 

Theorem 5.3.4. Let Assumptions 5.3.2, 5.3.3 hold and provided that a TBTOF for 

system (2.1) is well-defined on R", we consider the observer (5.17). If A1 — UC%, 1 < 

i < p are Hurwitz, the solution z = 0 of the error dynamics (5.18) is GUAS. 

Proof: Sk,s^x E Qa implies s ^ , ^ 1 G Qa. The error dynamics (5.18) being GUAS 

in Tk,Tk time scales is equivalent to them being GUAS in the t time scale. Hence, 

we only need to show (5.18) is GUAS in any one of Tk,fk,t time scales. We use 

an induction argument to prove that the error dynamics (5.18) is GUAS in ffc time 

scale. First, we consider the first subsystem error dynamics 

^ r = (A1 - tfC1)?. 
dr\ 

102 



We define its Lyapunov function candidate Vi = (z1)TF1z1, where P1 > 0 is to be 

determined. Since {Al,Cl) is observable we can always solve Ll,Px > 0 such that 

dVi | | . 1 M 2 

where \i\ is arbitrarily large. Hence, the error dynamics of the first subsystem is 

GUAS in T\ time scale. 

Assuming the error dynamics of the first i - 1 subsystems is GUAS in f% time 

scale, we consider the stability of the ith subsystem error dynamics 

^r = {A1 - LlCl)z% + f - f + -^A-(Alzl + f ) . (5.20) 
(XTj Sl 

Treating z<l~l> as an input u, and z<l"l>, 2/[j+i,p] as functions of fj, (5.20) is rewrit­

ten as dSl/dfj = p(zl,u,Ti). Clearly, p(zl,u,fi) is Lipschitz in i* and u onV which 

can be extended globally as in [46]. On the other hand, taking u = 0, we have 

dP/dfj = (A1 — LlC%)zl, which is GES. Combined with the global Lipschitz prop­

erty, the error dynamics (5.20) is ISS [76, Lem. 4.6]. Given the first i — 1 subsystems' 

error dynamics are GUAS and the ith subsystem error dynamics is ISS, we can ap­

ply [76, Lem. 4.7] to show the zero solution of the first i subsystem error dynamics 

is GUAS in n time scale. Therefore, by induction we have shown the zero solution 

of the entire system's error dynamics is GUAS. • 

Remark 5.3.5. If Assumption 5.3.2 is replaced by s/^s^"1 £ Qe, with Assumption 

5.3.3 and (5.19), the zero solution of the entire system's error dynamics can be shown 

to be GES. This follows from an induction argument and [104, Lem. III.l]. • 

5.4 Observer Design Examples 

5.4.1 Ball-and-Beam Example 

To illustrate the TBTOF-based observer design, we consider a Ball-and-Beam sys­

tem. It can be shown that this system does not admit a BTOF. However, it is 

transformable to a TBTOF. From [139] the dynamics for the system in BTF with 
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indices Ai = A2 = 2 is 

x = 

m{xf)2+J 
u — mgx\ cos(s}) 

(5.21) 

y = _ x i 

Let xk = (xh, xffi, yk = x\, k — 1,2 denote the state and output of the kth subsys­

tem, respectively. We first verify the conditions of Theorem 3.1.4 to see if the first 

subsystem can be put into BTOF in t time. Define 

* " = (-
~ i 

l ^ r 
ym{x\)2 + J ' 

xe = x . 

The starting vector gl is obtained from 

-mgx\ cos(xj)) 

t 0\ , ,-.2x2 « d 

i! ("W + - 0 ^ . 
where /ii — y\. Since 5 1 depends on 2/2 which violates Condition (iii), the first sub­

system is not transformable to the BTOF. Next we investigate if the first subsystem 

admits a TBTOF. Using Condition (i) in Theorem 5.2.1, we calculate 

mgxl cos(x\) 
Lpih\ = -

dLpihi — 

m{x\ )2 + J 
1 

m{x\Y + J 

and setup the PDE for si 

dx\, 

LgiL^hi = 0, 

dL5iL
2
pihi = 0, 

l2—dLpihi = 0. 
si 

Solving this PDE gives si = £(2/2), where Q is some positive-valued C°° function 

depending on 3/2- Hence, we introduce the new time scale for the first subsystem 

given by dr\/dt — g{y2). The first subsystem in T\ time scale is F1 = F1/g(y2), J/i = 

hi = x\,x\ — {x\,x\)T. Solving the starting vector g1 in T\ time scale from (3.2) 

gives 

9l = Q(y2){m(x2
1)

2 + J)-^I. 

According to Theorem 5.2.1, Condition (iv) has to hold, i.e., dg1/dy2 — 0. Taking 

1 
Q(V2) 

m(x\)2 + J 
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which belongs to Qe, we have g1 = d/dx\ and ad_p,1g
1 = d/dx\. It is trivial to 

verify the other conditions in Theorem 5.2.1 are satisfied. This implies that the first 

subsystem admits a BTOF in T\ time scale. Further, g1,&d_p,lg
i are unit vector 

fields, and the BTF and BTOF coordinates are identical. We observe the second 

subsystem is in BTOF in t time scale. System (5.21) is therefore transformable to 

a TBTOF. The observers for the first and second subsystem expressed in T\ and t 

time scales, respectively, are 

dz1 _ (0 1 \ ,i / 0 \,rif ni*i\ 
dn ~\0 Oj Z + \(m(z2)2 + J)(u - mgz2 cos{z\))j +L [yx ~ C Z h 

v v ' 

V° ° / \(m(«?)a+J)» -9*M*i)J 
%

 v ' 

l2{z{,zl,y2) 

where Lk = (if, if)71) fc = 1,2 are observer gains. The observer in ^-coordinates and 

t time scale is 

i - ('MM*1)) + ^ V 1 (Sl{V2) {f - ^ + LHm ~ Cl^)]) (5 22) 

where 71* = T ^ i . J/2,u),72* = i2{zl,y2), and 

z(x) = (xl,xl(m{xj)2 + J),x\,xl)T. 

Take the observer gains L1 = (4,4)T , I? = (4,4)T , J = 0.020002kg-m2, m = 0.05 kg, 

g — 9.81 m/s , and the initial condition of system (5.21) and its observer (5.22) as 

z(0) = (0.1,0.5,0.1,0.5) r , 

x(0) = (0.1,0,0.1,0)T . 

Given the approximate feedback linearization and estimated state-based feedback 

u{x,y) = F — r , 
a{x,y) 

i/(x, y) =ab4 cos(bt) + 8(a63sin(M) + gx^cosfyi)) + 24(#sin(yi) - ab2 cos(bt)) 

- 32(absin(bt) + x\) + 16(acos(bt) - y2), 

0(£. V) = h\\2 . T(2m:£2^2y2 + ^52/2 cos(yi)) + fl^)2 sin(yi), 

m ^ ) 2 + J ' 

and the sinusoidal reference y\ — acos(bt) with a = 1,6 = 0.63 [59], the simulation 

result is shown in Figure 5.1. 
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Figure 5.1: Estimate error of TBTOF observer for Ball-and-Beam System 

5.4.2 M a t h e m a t i c a l E x a m p l e 

For the Ball-and-Beam example, a time scale transformation is solved which is only 

output dependent. In this section we provide a mathematical example which results 

in a TSF with more general dependence. We consider a three-output system 

?2\2 
2x\ 

QKximmf + m\xix\) 
<2jO ™ 3 

el{x<*>,x\){£lY + !3l{x<*>,x\) 
(5.23) 

The first subsystem is in BTOF. The second and third subsystems are in BTF in the 

original time scale. Our objective is to transform the second and third subsystems 

into BTOF to perform observer design. For the second subsystem, we define the 

extended vector field and extended state respectively 

F1\T rj2\\T F' = ((py,(F)) 
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^ = ((*T,(*2)T)T 

According to (3.2), the starting vector g2 of the second subsystem in t time scale 

has the expression 

where Q2., k — 1,2 are smooth functions. Solving the following equations 

Lg2h,2 = 0, 

LgiLf%h,2 — 1, 

where J12 — x2, Lp2Ji2 — x2,- 2x\, we have 

^2 a 
dxl' 9 

Next, we check Condition (ii) in Theorem 3.1.4 

d 
[adp2f,f] = 2^2(^1, x?)-^2 7̂  0. 

Hence, the second subsystem is not transformable to BTOF in t time scale. To 

investigate the existence of a TBTOF, we first solve for a TSF S2(x1,j/2,2/3) for the 

second subsystem. We calculate the Lie derivatives 

L\M = g2(x\,xj)(x2)2 + (32(x\x2) - 2(x2
2 - 2s?), 

Lg2L2p2h2 = 2Q2
2(X\,X\)XI - 2, 

and the differential of Lg2l?p2\i2 

dLg2L2p2h2 = 2^2(^1,x2)dxl mod {dxj ,d:r?}, 

where dx2, = dLp2h,2 + dx\. From condition (5.8) the PDE defining the TSF is 

s2 2/-1 \ 
— = £,2(Xl,2/2), 
S2 

whose general solution is 

si{x\yi, W ) = K2(x\y3)eS&^dv\ 

where K2{x1,ys) is some function depending on xl,y$. For simplicity, we choose 

K2{xl,y$) — 1 and the T2 time scale is defined by 

dt 
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Given system (5.23) in the Ti time scale, we define the vector field F2 — F2/s2 and 

compute the starting vector g2 = S2g2. Verifying the conditions of Theorem 5.2.1, 

we know the second subsystem can be put into TBTOF. 

Following the analogous procedure as with the second subsystem, we conclude 

the third subsystem is not transformable to BTOF in t time scale but to a TBTOF 

with the T3 time scale given by 

(XT/ 

We perform an observer design for the case 

72(*i»*l) = -Si+x?, 

g2(x\,x2) = -l) f32(x\x2) = e*K 

02V* ix ix\) — x2> H2\x ix ix\) — x\x2-

The TSFs for the second and third subsystems are 

52(^,2/2,2/3) = e~m, 

s3(x<2>,y3)=e-^. 

Solving the transformation $2(52) for the second subsystem from the PDEs 

gives the general solution 

&<&\-( x\ + u\{f) 
[Xe) ~ \(x2 + 2x\ - 2)e*? + co2(xv 

Taking u2 = u\ = 0, the transformation is a global diffeomorphism. After the 

transformation, the second subsystem is written as 

( z2 + e*{-Az2 + 2)\ 
Z = S 2 ^?( -4 ( 2

2 ) 2 + e^)J-

Solving the following PDEs for the transformation of the third subsystem 

d$ 3(£) / , .3 „3\ _ 

gives the general solution 

4(x) = xl+uf{x2
e), 

\x2) 

108 



Taking u\ — LJ% — 0, this particular transformation is well-defined everywhere 

except x\ = 0, and it transforms the third subsystem into 

Z6 = 33( 0 0 

where 

7 ? = S* \-2zl - ^ [zUzUl - 1 - z\zl) + z2- z\] } , 

7 | = J44 {_,3 + 2 ( z 3 ) 2 z l _ ( , 3 ) 2 , 2 + ^ 3 ) 2 _ 21,1 

+ 1 [ ,3x| + 1 + (zf)2(z\)2 + (zf)2(z2)2 - z\z\ - 2{z\)2z\z2] 

+ r l ¥ [4*?*}*? + z\ - x2 - 2zl{z\f - 2z\{z\f] 
\z2> 

+ ̂ [ 2 ( . } ) 2 + 2(z?)2-4z^]}, 

x\ = e"*i(z | - 2ezhf + 2ez*). 

We design the observer for each subsystem of (5.23) in ^-coordinates and t,T2,Ts 

time scales respectively. For the first subsystem we take 

i1 (:! i^C;)^-^1)-
We choose the observer gains L1 = ( l , 0 ) r to place the eigenvalues of A1 — LlCl at 

— 1. This observer gives the LTI error dynamics 

'-2 r 
i1 

-1 0 

For the second subsystem we take the observer 

z2 - s2 y^H4^k)^^\ 
where L2 — (l2,l2)T- The corresponding error dynamics is 

Z — S2 
o (5.24) 

^e i — e i y 

If Xj2 is bounded, si has finite lower and upper bound which are positive, the stability 

of (5.24) is same as 

*? A - 2 , 2 , ? / ' ° 
d,T2 -ll 0 e*i _ e « i 

(5.25) 
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To stabilize (5.25), since it consists of a LTI part and a disturbance which converges 

exponentially to zero, we take the observer gains L2 = (2,1)T for eigenvalues at - 1 

to get exponentially stable error dynamics. For the third subsystem, the observer 

is taken 

^ = A3z3 + f + L3(y3-C
3z% 

where L3 — (if,/3;)7- The error dynamics in t time scale is 

I 3 = s3{A3z3 + 73) - s3{A3z3 + 7 3 + L3(y3 - C3z3)) 

= h [(A3 - L3C3)~z3 + [ ( 7
3 - 7

3 ) + {-^j^-(A3z3 + 73)j j . ^5-26) 

Since S3 depends on z<2> which itself is exponentially convergent to a bounded 

z<2>, S3 has finite positive lower bound and upper bound. Therefore, the stability 

of (5.26) is equivalent to that of 

3 
^r = (A3 - L3C3)~z3 + 
" T 3 

(73-73) + ( S 3 : 3 3 Vz 3 +7 3 ) 
s 3 

(5.27) 

disturbance 

The disturbance converges exponentially to zero due to the exponential stability 

of z<2>, the Lipschitz dependence of 73,S3, and the boundedness of A3z3 + 73 . 

Hence, if the eigenvalues of A3 - L3C3 are in the left-half-plane, system (5.27) has 

an exponentially stable equilibrium. We take L3 — (2,1)T to place the eigenvalues 

of A3 ~ L3C3 at - 1 . 

Since the transformation <E>3 is not a global diffeomorphism, the state estimate is 

not globally convergent. If any bounded trajectory z(t) € V and estimate trajectory 

z(t) e E" satisfy z\{t),z\{t) ^ 0,Vt 5= 0, then the error dynamics are exponentially 

stable. The system (5.23) has three equilibria. One of its equilibria 

xei = (0.715,0.715,0.715,1.430,0.846,0.846)T 

is stable. This point is mapped by $ 2 , $ 3 into 

zei = (0.715,0.715,0.715,1.756,0.846,0.536)T. 

Hence, we choose the system's initial condition 

z(0) = ( - 1 , 1 , - 1 , 1 , - 1 , i f 

in the domain of attraction of ze\ to ensure ||z(£)|| is bounded and z(t) ^ 0, t ^ 0. 

Together with A2 — L2C2,A3 — L3C3 Hurwitz we ensure exponential convergence of 
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the estimate error provided the initial conditions gives z\{t) ^ 0, t ^ 0. Taking the 

initial condition of the observer as 

z(0) = (0 ,0 .5 ,0 ,0 ,0 ,0) r , 

the simulation results in z-coordinates and t time scale are shown in Figures 5.2, 

5.3, and 5.4. 
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Figure 5.2: Actual and estimated states of the first subsystem 
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Figure 5.3: Actual and estimated states of the second subsystem 
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Figure 5.4: Actual and estimated states of the third subsystem 

5.5 Summary 

This chapter has discussed the existence conditions of a TBTOF for multi-output 

systems which generalizes an established BTOF by including time scale transfor­

mations. Since a block triangular structure leads to sequential observer design, the 

TSFs allow for more general dependence. That is, dependence on the upper subsys­

tem state as well as outputs. A necessary condition for the TSF was presented. A 

stability result for the observer error dynamics was given. Two examples which do 

not admit a BTOF but admit a TBTOF were presented and TBTOF-based observer 

designs were given. 
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Chapter 6 

Adaptive Observer Design for 
Nonlinear Systems 

The nonlinear adaptive observer design problem was partially addressed by intro­

ducing certain Adaptive Observer Forms (AOFs) in [11, 105, 103, 104, 37, 16, 169]. 

A relatively straightforward stability analysis of the error dynamics resulted for sys­

tems with linearly parameterized (LP) dynamics and linear outputs. The linearity 

requirement restricts the class of systems allowing adaptive observer design. In this 

chapter, we first consider the adaptive observer design for a LP system but without 

the linear output constraint. The adaptive observer design is carried out on the 

basis of the Nonlinear Output Observer Forms (NOOF) in [73, 82]. The existence 

conditions of NOOF are commonly satisfied [82] and the adaptive observer design 

can be performed in general. Next, we consider adaptive observer design for a class 

of NLP systems admitting an OF: 

(6.1) 
y = Cz 

where A, C are given by (1.6), z € Rn, 0 e Rm, and 7 e Kn is a C°° vector field. 

In Section 6.1 we recall some fundamental results, assumptions and stability the­

orems in the adaptive observer design setting. In Section 6.2, an adaptive observer 

for a LP NOOF is proposed and the local exponential stability of the error dynamics 

is proven. In Section 6.3, we present a local adaptive observer for a class of NLP sys­

tems in OF and the local exponential stability of its error dynamics are established. 

In Section 6.4, an example illustrates the adaptive observer design procedures. 
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6.1 Fundamental Results 

The design of an adaptive law and stability analysis are the core parts of adaptive 

observer design. Indeed, these are not trivial even for linear adaptive observer design 

since the error dynamics are generally Nonlinear Time-Varying (NLTV). We first 

introduce some key concepts and results for adaptive systems, then demonstrate 

the use of these techniques by introducing a typical linear adaptive observer, and 

finally present a typical nonlinear adaptive observer to illustrate its connection to 

the linear case. Strictly Positive Real (SPR) functions play a central role in the 

stability analysis using Lyapunov's method. 

Definition 6.1.1. [116, Def. 2.6.1] A rational function H(s) of the complex variable 

s = a + JUJ is Positive Real (PR) if 

(i) H(s) is real for real s; 

(ii) 3t[H(s)] ^ 0 for all ft[s] > 0. 

• 
Definition 6.1.2. [116, Def. 2.7] A rational function H(s) is SPR if H(s - e) is PR 

for some e > 0. • 

Alternate definitions of SPR give certain criteria for a SPR function [63, 147]. 

From the definitions of PR and SPR, it is clear that if H(s) is PR, its phase shift 

for all frequencies lies in the interval [—n/2,n/2]. Hence, if H(s) is the transfer 

function of a causal system, the relative degree can only be either zero or one [116]. 

The connection between a SPR function and the existence of a Lyapunov function 

is demonstrated by the Lefschetz-Kalman-Yakubovich (LKY) Lemma. The choice 

of the Lyapunov function is therefore simplified substantially when the transfer 

function of a linear system is SPR. 

Lemma 6.1.3 (LKY Lemma). [116, Lem. 2.6] Given a scalar 7 ^ 0, a vector h, 

an asymptotically stable matrix A, a vector b such that (A, b) is controllable, and a 

positive definite matrix L, there exist a scalar e > 0, a vector q and a symmetric 

positive-definite matrix P satisfying 

ATP + PA = -qqT - tL, 

Pb-h = ^ 7 9 , 
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if and only if 

H{s) = ^ + hT(sI-A)-xb 

is SPR. 

The controllability requirement in LKY Lemma was relaxed in [111]. As shown 

below, SPR and LKY Lemma are commonly used to prove the uniform stability of 

the error dynamics in adaptive observer design. To show UAS, Barbalat's Lemma 

and its corollary are the most commonly used tools. 

Lemma 6.1.4 (Barbalat's Lemma). [138, Lem. 1.2.1] If f(x) is a uniformly con­

tinuous function, such that limj-Hx, / 0 / ( r ) d r exists and is finite, then f(t) —• 0 as 

t —> oo. 

Corollary 6.1.5. [138, Cor. 1.2.2] Ifg,g£ £«, , and g € Cp, for some p e [l,oo), 

then g(t) —* 0 as t —> oo. 

For a time-varying system 

± = f(x,t), (6.2) 

if f{x,t) is additionally assumed to be bounded for all t ^ to for any bounded x, 

the LaSalle-Yoshizawa Theorem [76, Thm. 8.4] can be applied to prove stability. 

6.1.1 A Typica l Linear A d a p t i v e Observer 

Consider a single-input single-output LTI plant of order n 

x — Ax + bu, 
(6.3) 

y = ex, 

where input u is a piecewise-continuous uniformly bounded function of time, and 

{A, b) are unknown parameters. The plant (6.3) is assumed to be observable. The 

objective is to construct an adaptive observer to estimate both the parameters as 

well as the state. Although the triple (c, A, b) contains n2 + 2n elements, only 2n 

parameters are needed to uniquely determine the input-output relationship. Of 

these, n correspond to the matrix A while the remaining n are contained in c and 

b. Different realizations of the plant transfer function lead to different adaptive 

observer designs. One of the adaptive observers is based on the minimal realization 

of the plant 
x = [—k, A]x + gy + bu, 

y = ex = x\, 
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where k is chosen such that K = [—k A] is asymptotically stable, g,b are the 

unknown vectors, and 

A= ( hx(n-i) 
^diag(-o2 , --- ,-an)J ' 

where l i x ( n - i ) is a 1 x (n — 1) row vector of ones, and a^ > 0,2 ^ k ^ n. To 

estimate g, b, the observer is chosen 

x — Kx + gy + bu, 

y = ex, 

where g, b are the estimates of the parameter vectors g, b respectively, and x is the 

estimate of x. The error equation is derived 

x = Kx + gy + bu + vi(t) + v2{t), 

V = ex, 

where vi(t),V2(t) are auxiliary signals, and 

9 = 9-9, b = b-b. 

The signals v\(t),V2(t) are designed such that the output error asymptotically con­

verges to ei which is determined by [116, Thm. 4.2] 

e — Ke + d4>TLJ, 
(6-4) 

ei = h1 e, 

where w = (y,u)T, 4>T = (g,b), hT(sI-K)~ld is SPR. The adaptive observer for the 

error system (6.4) can be designed based on the following well-established stability 

result. 

Theorem 6.1.6. [116, Thm. 4-lJ Let a dynamical system be represented by the 

controllable and observable triple (hJ,Ai,bi) where A\ is an asymptotically stable 

matrix, and 

W{s) = ti{{sl - Ax)-1^ is SPR. 

Let the elements of a vector w(i) be bounded piecewise-continuous functions. Then 

the origin of the system 

e — A\e. + b\4> <*>, ei — hxe 

<j) — ~e\u 

is globally uniformly stable. 
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Proof: Since the transfer function W(s) is SPR, according to LKY Lemma 6.1.3, 

there exists a positive definite matrix P satisfying 

Pb = hj, 

where Q is positive definite. Taking the Lyapunov function candidate 

V(e,</>)=eTPe + ^ > , 

we compute its time derivative 

V = -tTQe + tTPbi4>Tu} - (f>Ttnjj 

= -eTQe < 0, 

which implies uniform stability. D 

As shown in the proof of Theorem 6.1.6, the boundedness of e and <f> is concluded 

from V being negative definite. Prom the boundedness of V, we have e £ £2- If 

u(t) is further assumed to be bounded, the boundedness of e is concluded. Apply­

ing Barbalat's Lemma and its corollary, we know the zero solution of e is GUAS. 

Furthermore, global asymptotic convergence of </>(£) —> 0 as t —> 00 can be estab­

lished under the persistent excitation assumption on u>(t). Readers can refer to 

[31, 114, 116] for details on the construction of vi(t), V2{t) and the proof of stability. 

6.1.2 A Typica l Nonl inear A d a p t i v e Observer 

In this section, we use a typical nonlinear observer design to exemplify a straightfor­

ward application of linear adaptive observer design methods. The adaptive observer 

design for a class of single-output systems considered in [105] 

m 

x = f(x) + q0{x,u) + y^diqi{x, it), 
l^i (6-5) 

y = h(x), 

where u e Rl, y € K, x e R™, q{ : Rn x Rl -> R™, and ^ e K are unknown constant 

parameters. Necessary and sufficient conditions are given in [105] to transform 

system (6.5) into an AOF 

m 

z = Az + ipo(y,u) + y20iPi(y,u>t)b, 
i=i (6-6) 

y = Cz, 
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where A, C are defined in (1.7), b — (b\,..., bn)
T e Kn, bn > 0, and the polynomial 

bi + b2s + • • • + b„sn~l is Hurwitz, f3i(y, u, t j i l ' x R ' x l ^ R. The restrictions 

on b and 0» make the form (6.6) more conservative than that in [11]. Taking an 

observer 
m 

£ i (6-7) 

y = Cz 

yields the error dynamics 

m 

2 = (A- LC)z + £ WV,«,t)b, 

where di = Oi-di. Since b is Hurwitz and (A, C) is observable, the transfer function 

C(sI—A+LC)~1b can be made SPR by choosing a certain L. If /3(y, u, t) is bounded 

for any bounded u, y, there exists an adaptive observer that consists of the observer 

(6.7) and the adaptive law 

e = -Tp{yiU,t)y. (6.8) 

The proposed adaptive observer gives the asymptotic estimate of z without the 

need of auxiliary signals vi(t),V2(t) as in Section 6.1.1 or any persistent excitation 

condition as in [11]. Evidently, the adaptive law (6.8) and its associated stability 

analysis is closely related to the linear system case in Section 6.1.1. 

Recall the similar approach taken in the previous linear adaptive observer design 

case, where auxiliary signals v\(t), V2(t) are used to obtain an error dynamics whose 

output approaches that of (6.4) asymptotically. Later work in [103, 109] introduced 

a filtered state transformation to put 

z = Az + ipo{y, u) + ViO/, u)d, 

y = Cz 

into AOF (6.6). We will see the application of the filtered state transformation in 

the adaptive observer design in Sections 6.2 and 6.3. 

6.2 Adaptive Observer Design Based on a LP NOOF 

We first present the definition of a local adaptive observer based on a slight modifi­

cation of a global adaptive observer [109]. 
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Definition 6.2.1. A local adaptive observer for system (2.1) with the presence of 

the unknown parameter 9 in / is a finite dimensional system 

w — ai(w, 6,y(t)), w e Mr, r > n, 

6 = a2(w,d,y{t)), 9eRm, 

t = a3(w,0,y(t)), C € K n 

driven by y(t), such that for every <(0) G Kn,iu(0) G UW C W,§(0) e Ug C Rm , 

where Uw,Ug are the neighborhoods of C(O),0 respectively, for any value of the 

unknown parameter 0 and for any bounded ||C(i)|| , V t > 0 : 

(i) ||u;(t)Hi \\9{t)\\ and ||C(t) - <(i)|| » « bounded, Vt ^ 0. 

(ii) l im t_.0 0 | |C(t)-C(t)l l=u. 

D 

Since the state transformation from ^-coordinates to z-coordinates is locally 

Lipschitz, the convergence of C(i) to ((£) as t —> oo is guaranteed if z(t) —> z(t) as 

£ —> oo. We therefore focus on the adaptive observer design on the z coordinates. 

Given the NOOF 

z = Az + -y{y), 

y = h(z), 

we extend it to allow the linear presence of unknown parameters 6 

z = Az + 7(2/) + {3(y)9, 
(6.9) 

y = Kz>-

To simplify the stability analysis of the error dynamics below, we introduce the 

filtered state transformation which relies on a stable filter 

M = AM + f3(y). (6.10) 

We first make an assumption and recall a lemma, then present the local adaptive 

observer. 

Assumption 6.2.2. The auxiliary signal M(t) generated by (6.10) is Persistently 

Excited (PE), i.e., there exist positive constants a,f3,T such that 
rt+T 

a l < / MT{r)CTCM{T)dT ^ pi, \ft ^ t0. 

• 
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Lemma 6.2.3. [1] Let 4>{t) e M.mxp be a bounded and piecewise continuous matrix 

and r e M.pxp be any symmetric positive-definite matrix. If there exist positive 

constants T, a, (3 such that 

rt+T 
alp < / xT4>T(T)<t>{T)xdT < pip, Vi ̂  tQ, \\x\\ = 1 

then the system 

x = -F(pT{t)(j)(t)x 

is GES. 

Proof: Taking the Lyapunov function candidate V(x) = ^xTT~1x, we compute 

its time derivative 

V = -xT<j>(t)T<t>(t)x. 

Integrating V from t to t + T gives 

rt+T 
V(X{t + T)) - V(x(t)) = - XT{T)4)T{T)<j){T)x{T)dT 

^ -axTx^~-^V(x{t)), 

where fj, is the maximum eigenvalue of T. Applying [76, Thm. 8.5] we conclude that 

the system is GES. • 

As shown in Lemma 6.2.3, given Assumption 6.2.2, the zero solution of the LTV 

system 

x = -TMTCTCMx (6.11) 

is GES. The existence of the Lyapunov function candidate V is ensured by the 

following theorem such that 

dZ-dJ-MTCTCMx< -e llxll2 

dt dx 
\0V 

dx 
< a4 ||x|| 

where e, «4 > 0. 

Theorem 6.2.4. [138, Thm. 1.5.1] Assume that f(t,x) : R + —> Rn has continuous 

and bounded first partial derivatives in x and is piecewise continuous in t for all 

x G Bh,t ^ 0. Then the following statements are equivalent: 
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1. x = 0 is an exponentially stable equilibrium point of 

f(t,x), x(t0) = XQ, 

2. There exists a function v(t, x), and some strictly positive constant h',a\,a2,ct3, 

and <x\, such that, for all x e B^i, t ^ 0 

a i ||x||2 ^ v(t,x) ^ ai ||x||2 

dv(t,x) dx 
< «4 \\x\\ 

Theorem 6.2.5. Given a locally observable system in LP NOOF (6.9) and As­

sumption 6.2.2 holds with C(t) = —gp-, the system has a local adaptive observer 

k = Az + 7(y) + 0(y)6 + M§, 

M = AM + / % ) , 

0 = MT 8h{z)xT 

dz (y - y), 

where y = h(z). 

Proof: We apply the filtered state transformation n = z — Md and have 

») = An + j(y). 

Defining 6 = 6 — 6,fj = z + Md, and fj — n — f), the error dynamics are given by 

?) = AT), 

»—*(»*£) to_w. (6.12) 

Using the Taylor expansion of y along the trajectory of z(t), the output error is 

reformulated as 

where £ = (£i,••• , £n)T, £ £ [5,2] is used to denote £& e [%, z^] for 1 < A; ^ n, and 

% ^ Zk is assumed to simplify the presentation. Given Assumption 6.2.2, the LTV 
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part of ^-subsystem is GES. From Theorem 6.2.4, we know there exists a function 

Vo such that 

dt 89 \ dz J dz 

dVs 

89 
^ fcs 

where t > 0, kg ^ 0. Taking the Lyapunov function candidate V = kfjTPfj+ Vg, k > 

0, P > 0, we have its time derivative 

, - r ^ ~ dve dve*,T fdh{z)\T dh{z)^~ 

dVe T(dh(z)\TlzTd2h(Qz 

1 ' dz J 2Z ae do 

^ - kfQf) - t¥~e + i 

where \\M{t)\\ < kM, 6h(z) < khi, and d^2 

kgkMkhikh2ZTz, 

^ kh2- Expanding zrz gives 

zTz = (fj + M6)T(rj + MB) 

= Wfjtf + eTMTM6 + 2f}TM6 

C II2 4- h2 

II + KM 
+ 2kM\\fj\\ 

V can be simplified as 

y < - ( ^ - i ) | | ^ | | 2 - e 

+ 
kgkMkh\kh2 ^ n 2 , 1.2 

+ KM 

^-{kn- 1) 

+ 

+ 

+ 2fcM||»7l|-p||) 

2 e | | - | | 2 KeKMKhlKh2 n-||4 

4e 
^Mkhlkh2 I.-1.3 e || ,|4 kjkjjklkl, 

+ 
1,21.4 JL2 JL2 I . 2 I . 2 ju2 L 2 

2 e kgkljkhikh2 

- « 4 " 
61 ) 0 

2 e , 

" 4 » 
61 

2 
— 0 ), 

where /f is the minimum eigenvalue of Q. Given the initial error ||T}|| < oo, there 

always exists a sufficiently large A; > 0 such that 

1.21.4 iu2 1.2 1.2 t2 1.2 L 2 
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We conclude that V is negative definite if the initial error of 6 satisfies 

Local exponential stability of the error dynamics (6.12) is therefore concluded. • 

If system (6.9) has linear outputs, which corresponds to k\a = 0, Condition (6.13) 

becomes < co. This fact implies that GES of state and parameter estimation 

errors is guaranteed; we thus recover the previous results in work [105, 103] as a 

special case. 

6.3 Adaptive Observer Design Based on a NLP OF 

In this section, we consider local adaptive observer design for nonlinear systems 

having NLP dynamics and linear output maps. This class of systems is more general 

than that considered in [105, 103, 104, 171]. As indicated below, applying the same 

filtered state transformation to a NLP system cannot yield a partially decoupled 

error dynamics, i.e., r),9 still affect each other. Compared to the LP case, where 

the error dynamics is simplified to be LTV by the filtered state transformation, the 

error dynamics of a NLP system is NLTV. We first transform a system (2.1) into a 

NLP OF (6.1), then consider the adaptive observer design for (6.1). The existence 

conditions of a parameter independent state transformation from (2.1) to (6.1) are 

given in the following theorem. Its proof is omitted since it is straightforward. 

Theorem 6.3.1. There exists a local diffeomorphism in a neighborhood UQ of the 

origin, 

z = $(C), z € Mn 

transforming system (2.1) into (6.1) if and only if in Uo in addition to Conditions 

(i)-(iii) of Theorem A.0.2, 

dadifgi/dOj = 0, < 

0 ^ k ^ Xi - 1; 

1 < i < p; (6.14) 

k l < j < m. 

The state transformation $(£) is solved from PDEs (A.3). 

Remark 6.3.2. Conditions (6.14) ensure the state transformation is independent of 

parameter vector 6. This is because the state transformation can be constructed by 
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the composition of flows of the vector fields ad!l *#,. If none of &dt. tgi has parameter 

dependence, neither the composition of flows nor the state transformation does. The 

existence conditions of a parameter dependent diffeomorphism locally transforming 

system (2.1) into (6.1) can be similarly presented. To simplify the presentation, we 

only consider a parameter independent state transformation. • 

As shown in Section 6.2, a filtered state transformation removes the effect of 

parameter error 9 from the rj dynamics. This requires a stable filter driven by the 

coefficients of the unknown parameter. For NLP systems, we use a Taylor series to 

approximate the term 7(2/, 9) along the trajectory of parameter estimate and define 

the stable filter 

M = (A-LC)M + ?1, (6.15) 

where 7 = 7(1/, 9), and L is an observer gain matrix such that A—LC is Hurwitz. We 

propose the following theorem which provides a local adaptive observer for system 

(6.1). 

Theorem 6.3.3. Given Assumption 6.2.2, with M(t) replaced by M(t) in (6.15), 

and considering the system 

k = Az + <y + L(y-Cz) + M9, 

M = (A-LC)M+?Z, 
89 

9 = MTCT(y - Cz), 

where L 6 RnXp is a constant observer gain matrix such that A - LC is Hurwitz, 

the above system is a local adaptive observer for (6.1). 

Proof: Denoting the errors z = z — z,6 — 6 — 9, we have the error dynamics 

I = (A-LC)z + 7 - 7 -M§, 

M = (A-LC)M + -Z, 
de 

9 = -MTCT(y - y). 

As in Section 6.2, we introduce the filtered state transformation 

77 = z - M9, fj-z- MB, 

and parameterize the output error y — y — Cz as 

y = C(fj + M6), 
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where f/ = 77 — fj. We perform the stability analysis in the neighborhoods of 0, z(Q), 

denoted by Bg c lS.m,Bz C Rn respectively. Given that §(t),y(t) remain in Bg and 

Bz, - | and M(t) are therefore bounded. The dynamics of rj and 6 are given by 

^ = ( ^ _ L C ) » j + ( 7 - 7 - ^ ) , 

6 = -MTCTCM9 - MTCTCT). 

Similar to the proof of Theorem 6.2.5, we take the Lyapunov function candidate 

v%o) = tfPf\ + v-e. 

A positive definite matrix P is to be determined such that 

P{A - LC) + {A- LC)TP = -Q, 

where Q > 0, and the minimum eigenvalue of Q is sufficiently large. Given an 

arbitrary Q, such a P always exists if A - LC is Hurwitz. Since 7 is smooth and 

locally has a Taylor expansion along the trajectory of 9(t), we have 

|2 
•,-t-^Kt, 

where k-y is the upper bound of gTJr in Bz,Bg. Also, for the fj-subsystem, its 

homogenous part is GES. The time derivative of the Lyapunov function candidate 

is given by 

y <7?TQ^ + 2fc7 | |p^||- 0 

<-fc1 | | r? | |2 + 2fc7||Pr?|| 

< -h \\fj\\2 + 2k7 \\Pfj\\ — e 

86 
2 

+ ks 

,TnT Ml Cl Cfj 

e 
+ 2 

MC'C 

2 

+ 
k2k2 

2e 

MTCTC < k^ since where k\ > 0 can be taken as the minimum eigenvalue of Q, 
2 

is higher than those of the 7 is bounded in Bg and Bz. Since the order of ||Pijj|| • 

other terms, this term can be ignored by assuming sufficiently small initial errors 

6(0),fj(0). Thus we simplify the time derivative of the Lyapunov function candidate 

to 
k2k2 
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By choosing an appropriate matrix P such that the inequality holds 

klk2 

k\ > 6 M 
2e ' 

we have V is negative definite. The locally exponential convergence of the zero 

solution of the error dynamics fj, 6 is therefore established. • 

R e m a r k 6.3.4. Given the neighborhoods B$ and Bz, Assumption 6.2.2 should 

is be satisfied for any y € Bz,6 e Be- To ensure the dropped term 2 ||P?j|| • 

sufficiently small, we must impose conditions on the initial errors of f\ or 6. That is, 

a large j)(0) results in a very small range of 6(0) allowed. This is different from the 

adaptive observer design based on a NOOF, where fj(0) can be large and still not 

affect the permissible range of 9(0). • 

6.4 An Observer Design Example 

We consider a two-output system 

jury ZiX -I 

x\x\ + sm(x\6\) - T^ 
x\ - (1 + ex\^)x\ + x\ 

\cos(xl9i) - x\ - x\ + sin(92x\)J 
(6.16) 

y = Cx = -1*1 

where 61,62 are unknown parameters. It is easy to verify system (6.16) is observable 

with indices (2,2). System (6.16) is NLP, thus we first apply Theorem 6.3.1 to 

check if the system is transformable to the form (6.1). We solve the starting vectors 

g1 — d/dx\,g2 — d/dx\, and verify that the other conditions in Theorem 6.3.1 

are satisfied. System (6.16) can be put into the form (6.1). Applying the state 

transformation z = $(x) solved from (A.3) 

/ \ 
1\2 

Z — 
x2 2^ X l ) 

V / 
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we rewrite the system (6.16) in ^-coordinates 

z = Az + 

( \{yx?-1yx \ 
s in^ i^ ) - iyi 

y i - ( l + eV^)y2 

\cos(y28i) - yx - y2 + sin(92y2)J 

y = cz=[% 

We take the adaptive observer as proposed in Theorem 6.3.3 

z =Az + -\v\ 
y\ - j /2 

\ -y\ - y2) 

( 

+ 

0 
sin(j/i<9i) 
-eVl8*y2 

\cos(y29i) + sm(92y2)J 

+ L(y -y) + M(t)§, 

( °. 
cos(yi0i)j/i 

0 
0 

-eyi°2yiy2 

\-sm(y26i)y2 cos(02y2)y2J 

M(t) =(A - LC)M{t) + 

§ =MT(t)CT(y - y), 

where 9 — {9i,92)
T, and 

is the constant observer gain matrix. Assuming 8\ = \,92 — 0.5 and taking lj = 

4,k,j = 1,2 to place all eigenvalues of A — LC at - 2 , with the initial conditions 

(ICs) *(0) - (0.3,0.5,0.2,0.3)T,M(0) = 0, and 

ICi : 2(0) - (1.2,1.4, -0 .3 ,1 .2) T , 0(0) = (0.8,0.4)T, 

IC2 : 2(0) - (1 ,1 , -0 .3 ,0 .6)T , 9(0) = (0.8,0.4)T, 

ICz : i(0) = (0.2,0.4,0.3,0.2)T, 0(0) = (0.5,0.4)T, 

we have the simulation results as shown in Figures 6.1, 6.2, and 6.3 respectively. 

The simulation demonstrates that for the error dynamics generated by the adaptive 

observer in Theorem 6.3.3, the convergence of its zero solution is affected not only 

by the ICs of 9 but also by the ICs of z, and that PE is not sufficient to guarantee 

the convergence of the error dynamics. 
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Figure 6.1: Simulation of adaptive observer with IC\ 

6.5 Summary 

In this chapter, we first considered the adaptive observer design for a LP system in 

NOOF. Then adaptive observer design for a class of NLP systems admitting OF was 

studied. Local exponential stability of the error dynamics for both cases was shown. 

The previous results in [105, 103] were recovered as a special case. The stability of 

the error dynamics was established using a filtered state transformation, and a PE 

assumption. The PE assumption was defined on signals which depend not only on 

the measurements (y, u) but also on unknown parameter estimates 6. 
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Figure 6.2: Simulation of adaptive observer with IC2 
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Figure 6.3: Simulation of adaptive observer with IC% 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

This thesis considered observer design for uncontrolled multi-output nonlinear sys­

tems using geometric methods. The main contributions lie in four areas: existence 

conditions for special forms; extensions of OF and BTOF using time scale transfor­

mations, observer designs based on the proposed forms and the stability analysis of 

the resulting error dynamics, adaptive observer designs for two classes of parame­

terized systems. The main conclusions can be summarized as follows 

(i) The existence conditions for a change of coordinates transforming the ith sub­

system into BTF or BTOF were presented. An entire system is transformed to 

BTF or BTOF subsystem-at-a-time by applying these conditions sequentially. 

(ii) We extended the OF and BTOF by introducing multiple time scale transfor­

mations. Output dependent TSFs were taken in the TOF case. Generalized 

TSFs, which can be functions of upper subsystems' state and output, were 

adopted for the TBTOF case. The existence conditions for both cases were 

established. 

(iii) We presented observer designs based on BTOF, TOF, and TBTOF, and per­

formed the stability analysis of the resulting error dynamics. For a BTOF-

based observer design, the zero solution of the error dynamics was shown to be 

GES, GUAS, and semi-globally GES under different conditions. For the TOF 

and TBTOF cases, we presented necessary and sufficient conditions on TSFs 

to preserve stability in different time scales. 
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(iv) We investigated adaptive observer designs for two classes of systems: those 

transformable to a LP NOOF or a NLP OF. For each class of systems, an 

adaptive observer was proposed and the resulting error dynamics was shown 

to be locally GES with a PE assumption. 

7.2 Future Work 

(i) There are two problems left regarding BTF existence conditions. The first is 

to develop simplified methods to avoid solving high order PDEs in Theorem 

2.3.6. The second is to remove the parameter assumption made when deriving 

BTF existence conditions in Section 2.3. 

(ii) As with the BTF, a more constructive algorithm for computing the BTOF 

coordinates using Theorem 3.3.1 could be developed. 

(iii) As shown in Chapter 2, the complexity of observer design can be reduced by 

transforming an observable system into BTF. However, currently BTF-based 

observer design cannot be described in general. Lack of systematic observer 

design approaches restricts the applicability of the BTF. 

(iv) Considering the benefits of BTF and BTOF-based observer design, a ques­

tion that arises is "can a BTF or BTOF be useful in simplifying control de­

sign?". This question is natural given that normal forms are commonly used 

in nonlinear control, e.g. state feedback stabilization [28, 29, 35, 36, 34], out­

put regulation by state feedback [65, 27], stabilization by output feedback 

[106, 107, 108], state feedback stabilization by backstepping [87] etc. Partic­

ularly relevant work is in [149] where dynamic output feedback stabilizes a 

restrictive triangular form. Investigating the generalization of this work to a 

BTF structure would be a logical starting point. 

(v) Adaptive observer design for NLP systems is another challenging but interest­

ing problem. Many interesting results on adaptive state feedback control of 

NLP systems have recently become available. For example, adaptive control of 

systems having convex or concave parameterizations [78, 142, 79, 3, 9], adap­

tive control for partially feedback linearizable systems [94], etc. Given these 

132 



recent developments in adaptive control, it is natural to investigate solving an 

adaptive observer problem with similar techniques. 
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Appendix A 

Multi-output Observer Form 

Multi-output Observer Form relies on the uniquely denned observability indices 

Definition A.0.1 . [109, Def. 5.4.1] A set of observability indices {Ai,— , Xp} is 

uniquely associated to system (2.1) as follows: 

Aj = card {SJ ^ i : j ^ 0}, 1 < i < p 

with 

so = rank {d/ij(£) : 1 ^ i ^ p} 

sfc = rank {dhi(Q, ••• , dLk
fhi{Q : 1 ^ i < p] 

- rank {dft<(C), • • • A^h^Q : 1 < * < p} 

sn-i = rank {dhi(Q, ••• , dL^h^) : 1 < t < p} 

- rank {d^(C), • • • , dLnf2hi{C) : 1 < i < p} 

D 

The existence conditions of (1.5) are given by the following theorem. 

Theorem A.0.2. [109, Thm. 5.4-1] There exists a local diffeomorphism 

z = T(C), z G UQ, 

transforming system (1.4), up to a reordering of the outputs j / i , • • • ,yp, into an OF 

(1.5) if, and only if, in UQ 
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(i) the system is locally observable and Ai, • • • , Ap are constant; 

(ii) Qi — Qif]Q where the two co- distributions Qi, Q are given, for 1 ^ i ^ p, 

Qi = span{dLk
fhr,0 < f c < A i - l , l < r < p}\dL^~lhi, 

Q = span{dZ/f/ir, 0 < k < Ar — 1,1 < r < p}; 

(in) the vector fields gl, • • • , gp satisfying 

rfc-l LgiLf hj — JjjJfc^i-l, 

such that 

ik „i 
sAl^'M^rf = 0, 

I 1 < i,j < p ; 

[O^k^Xi-1, 

0 < k < Ai - 1; 

0 < / < Xj: - 1. 

(A.l) 

(A.2) 

T/iere exists o g/o&a/ diffeomorphism if, and only if, Conditions (i) -(iii) holds in R" 

and, in addition, the vector fields ad_ tg\ O ^ f c ^ A j — 1,1 ^ i ^ p are complete. 

The state transformation $(£) is obtained by solving PDEs 

M>(0 
Ĉ (adiyV,- ,adAp } > , . . . , / ) = / „ . (A.3) 
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Appendix B 

Derivation of (4.15) 

Since /(£) = W*/(z), taking its partial derivative w.r.t. z) gives 

dz) dz)n , + * dz) ' 

where W* — dW/dz. Given f(z) = S(Az + 7), we have 

wdj(z)_=Ui^ i^i^P;2^j^\u 

On the other hand, we know 

d/(C) _^lf(z) = ^fiOdW _ d_ dW\ 
dz) dz)JK ' dC, dz) dcydz))1^' 

, dW 
= ad_ f ——r-. 

(B.2) 

Combining (B.l) and (B.2), we finally derive (4.15a) and (4.15b). To show (4.15c), 

we follow the expression of h(z) and have dh(z)/dz = C, i.e., 

dhr(z) dhr(() dW 
dz) d( dz) 

&j,\br,%, 1 < j < AJ; 1 < r,i < p. 
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