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Abstract

Envelopes, introduced by Cook et al. (2007), encompass a class of methods

for increasing e�ciency in multivariate analyses without altering traditional

objectives. Envelopes have been successfully incorporated to a variety of re-

gression models from generalized linear models to quantile regression. Despite

the potential of achieving substantial e�ciency gains, inference based on an

envelope is not invariant under rescaling and other transformation of the vari-

ables. Furthermore, envelopes have mostly been studied in the context of re-

gression, but not hypothesis testing. This thesis mainly contains three parts.

In the first part, we develop adaptive estimation and inference methods for

envelope models that achieve the same performance without the knowledge

of the marginal transformations of the responses and predictors in the con-

text of response envelopes. In the second part, we study predictor envelopes

and sparse envelopes. Using a Kendall’s tau based covariance matrix estima-

tor and the scaled envelope models, we propose an envelope-based Gaussian

copula estimator. In the third part of the thesis, we propose an envelope-

based high-dimensional multivariate test for mean vector that can e�ciently

exploit the dependency structures within the high-dimensional vector. In all

three parts, theoretical properties of the procedures are studied, and exten-
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sive simulation studies and data analysis have been conducted to illustrate the

usefulness of the proposed procedures in practice.

iii



Preface

Some of the research conducted for this thesis forms part of a collaboration

with Dr. Linglong Kong and Dr. Rohana Karunamuni at the University of

Alberta, Dr. Zhihua Su from University of Florida and Dr. Lan Wang from

University of Miami. The model formulation and data analysis in Chapters 2,

3 and 4 are my original work.

Chapter 2 of the thesis is currently under preparation to be submitted

as W. Tu, L. Kong, Z. Su and R. Karunamuni, “Gaussian copula response

envelope model”. I will be responsible for the manuscript composition. Dr.

Linglong Kong and Dr. Zhihua Su will be the corresponding author, involved

with data analysis and manuscript composition. Dr. Rohana Karunamuni will

contribute to manuscript edits and assist with the data analysis.

Chapter 3 of the thesis is currently under preparation to be submitted as

W. Tu, L. Kong, Z. Su and R. Karunamuni, “Predictor envelope model and

partial least squares under Gaussian copula regression”. I will be responsible

for the manuscript composition. Dr. Linglong Kong and Dr. Zhihua Su

will be the corresponding author, involved with data analysis and manuscript

composition. Dr. Rohana Karunamuni will contribute to manuscript edits

and assist with the data analysis.

iv



Chapter 4 of the thesis is currently under preparation to be submitted

as W. Tu, L. Kong, Z. Su, L. Wang and R. Karunamuni, “Envelope-based

high-dimensional multivariate test for mean vector”. I will be responsible

for the manuscript composition. Dr. Linglong Kong and Dr. Zhihua Su

will be the corresponding author, involved with data analysis and manuscript

composition. Dr. Rohana Karunamuni and Dr. Lan Wang will contribute to

manuscript edits and assist with the data analysis.

v



To my grandmother

For everything.

vi



Acknowledgements

First and foremost I want to thank my supervisors Dr. Linglong Kong and

Dr. Rohana Karunamuni for supporting me during the last 5 years. I want to

thank Dr. Kong for his patience with me and for guiding me in the road of

research, showing me what qualities a good researcher should have and all the

encouragement and opportunities. I could not have been where I am today

without the tremendous e↵orts he has dedicated to me. I want to thank Dr.

Karunamuni for his help for the last 7 years. Seven years ago, I did not know

much about statistics and thank you for guiding me through my Masters and

PhD degrees.

I would also like to express my sincere thanks to Dr. Linglong Kong, Dr.

Irina Dinu and Dr. Ivan Mizera and Dr. Niu Di for serving in my dissertation

examination committee. My sincere thanks are extended to other members of

my examining committee: Dr. Jiguo Cao for his thorough review, insightful

comments. I want to thank Dr. Zhihua Su for introducing me to the world of

Envelopes. I would also thank all the professors who taught me before for the

mentorship. Also, I could’t finish this degree without all the help, financially

and many others, from Department of Mathematical and Statistical Sciences.

Last but not least, I would like to thank all my friends, and my grandmother

vii



who passed away, my parents and my sister for supporting me unconditionally.

viii



Contents

1 Introduction and Overview of the Thesis 1

2 Gaussian Copula Response Envelope Model 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Response Envelope Model . . . . . . . . . . . . . . . . . . . . 14

2.3 Scaled Response Envelope Model . . . . . . . . . . . . . . . . 18

2.4 Gaussian Copula Response Envelope Model . . . . . . . . . . 21

2.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Model Formulation . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Rank-based Estimator of Correlation Matrix . . . . . . 24

2.4.4 Estimation of � . . . . . . . . . . . . . . . . . . . . . . 25

2.4.5 Selection of u . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Simulations and Data Analysis . . . . . . . . . . . . . . . . . . 30

2.6.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Gaussian Copula Predictor Envelope Model and Partial Least

ix



Squares 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Predictor Envelope Model and Partial Least Squares . . . . . 48

3.3 Scaled Predictor Envelope Model . . . . . . . . . . . . . . . . 52

3.4 Gaussian Copula Predictor Envelope Model . . . . . . . . . . 55

3.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Model Formulation . . . . . . . . . . . . . . . . . . . . 57

3.4.3 Rank-based Estimator of Correlation Matrix . . . . . . 58

3.4.4 Estimation of � . . . . . . . . . . . . . . . . . . . . . . 60

3.4.5 Selection of u . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Simulations and Data Analysis . . . . . . . . . . . . . . . . . . 64

3.6.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Envelope-based High-dimensional Multivariate Test for Mean

Vector 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Envelope-based Hotelling T
2 Test . . . . . . . . . . . . . . . . 75

4.3 Likelihood ratio test . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Simulations and Data Analysis . . . . . . . . . . . . . . . . . . 80

4.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 89

5 Conclusion 93

x



References 96

Appendix 101

xi



List of Tables

2.1 Response Envelope Models Setting 1 with �
2
0 = 5: Comparisons

of the angle between the true envelope subspace and the esti-

mated subspace using the correct envelope dimension u = 5.

The results are based on 200 replications. . . . . . . . . . . . . 32

2.2 Response Envelope Models Setting 1 with �
2
0 = 25: Compar-

isons of the angle between the true envelope subspace and the

estimated subspace using the correct envelope dimension u = 5.

The results are based on 200 replications. . . . . . . . . . . . . 32

2.3 Response Envelope Models Setting 2 with �
2
0 = 5: Comparisons

of the angle between the true envelope subspace and the esti-

mated subspace using the correct envelope dimension u = 5.

The results are based on 200 replications. . . . . . . . . . . . . 33

2.4 Response Envelope Models Setting 2 with �
2
0 = 25: Compar-

isons of the angle between the true envelope subspace and the

estimated subspace using the correct envelope dimension u = 5.

The results are based on 200 replications. . . . . . . . . . . . . 33

xii



2.5 Response Envelope Models Setting 1: Comparisons of the stan-

dard deviation of b� between copula response envelope estimator

and standard model estimator. The results are based on 200

replications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Response Envelope Models Setting 2: Comparisons of the stan-

dard deviation of b� between copula response envelope estimator

and standard model estimator. The results are based on 200

replications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Response Envelope Models Setting 1: Comparisons of the actual

standard deviation of b� under di↵erent error distribution. The

results are based on 200 replications. . . . . . . . . . . . . . . 36

2.8 Response Envelope Models Setting 1: Comparisons of the boot-

strapped standard deviation of b� under di↵erent error distribu-

tion. The results are based on 200 replications. . . . . . . . . . 37

2.9 Characteristics of ADHD subjects and healthy controls . . . . 39

3.1 Predictor Envelope Models Setting 1 with �
2
0 = 5: Comparisons

of the angle between the true envelope subspace and the esti-

mated subspace using the correct envelope dimension u = 5.

The results are based on 200 replications. . . . . . . . . . . . . 66

3.2 Predictor Envelope Models Setting 1 with �
2
0 = 25: Compar-

isons of the angle between the true envelope subspace and the

estimated subspace using the correct envelope dimension u = 5.

The results are based on 200 replications. . . . . . . . . . . . . 67

xiii



3.3 Predictor Envelope Models Setting 2 with �
2
0 = 5: Comparisons

of the angle between the true envelope subspace and the esti-

mated subspace using the correct envelope dimension u = 5.

The results are based on 200 replications. . . . . . . . . . . . . 67

3.4 Predictor Envelope Models Setting 2 with �
2
0 = 25: Compar-

isons of the angle between the true envelope subspace and the

estimated subspace using the correct envelope dimension u = 5.

The results are based on 200 replications. . . . . . . . . . . . . 68

4.1 (a) the F norm between the true mean µ and the estimated bµ

; (b) the angle between the estimated b� and the true �, which

is the last eigenvector of ⌃. . . . . . . . . . . . . . . . . . . . 87

4.2 Percentage of H0 rejected using ↵ = 0.05. . . . . . . . . . . . . 88

xiv



List of Figures

1.1 Berkeley guidance study . . . . . . . . . . . . . . . . . . . . . 4

2.1 Illustration of the e↵ect of rescaling . . . . . . . . . . . . . . . 19

3.1 Illustration of the e↵ect of predictor rescaling . . . . . . . . . 53

4.1 Histogram of test statistics case 1 . . . . . . . . . . . . . . . . 81

4.2 Histogram of test statistics case 2 . . . . . . . . . . . . . . . . 82

4.3 Histogram of test statistics case 3 . . . . . . . . . . . . . . . . 83

4.4 The histogram of the test statistics for the Hotelling T
2 and

proposed envelope test (small u) when H0 is true. he red curve

is the density function of Fr,n�r. The parameters of this exper-

iment are specified on the bottom. . . . . . . . . . . . . . . . . 85

4.5 The histogram of the test statistics for the Hotelling T
2 and

proposed envelope test (large u) when H0 is true. he red curve

is the density function of Fr,n�r. The parameters of this exper-

iment are specified on the bottom. . . . . . . . . . . . . . . . . 86

4.6 An example of significant regions normal . . . . . . . . . . . . 90

4.7 An example of significant regions normal . . . . . . . . . . . . 91

xv



Chapter 1

Introduction and Overview of
the Thesis

The evolution of data acquisition technologies and computing power has al-

lowed researchers nowadays to collect and store data with high dimensionality

and complex structure much more e�ciently. Examples can be found in gene

expression microarray data, single nucleotide polymorphism (SNP) data, mag-

netic resonance imaging (MRI) data, high-frequency financial data, and others.

Estimation and testing are unarguably the most fundamental tasks in statisti-

cal inference. As a rule of the thumb, with the increase of the dimensionality

of the data, the amount of data needed to achieve certain level of statistical ac-

curacy increases greatly. However, in practice, it is often too expensive or even

impossible to collect the amount of data needed; for example, in the setting

of clinical trials and neuroimaging experiments. The blessings come from high

dimensional data is that many of the variables collected might be correlated

with each other, and some of them are not relevant to the tasks. Thus it is of

great importance to learn the inner structure of the data and find an e�cient

representation of them. Broadly speaking, dimension reduction represents the
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action of replacing data with a lower dimensional function of the data. In

this thesis, we study a specific type of dimension reduction methods called

envelopes.

Envelopes, which were introduced by Cook et al. (2007)[10] and developed

for the multivariate linear model by Cook et al. (2010)[11], encompass a class

of methods for increasing e�ciency in multivariate analyses without altering

traditional objectives. The original goal of the envelope model is to improve

the estimation e�ciency of standard multivariate analysis methods, which is

equivalent to obtaining the same estimation e�ciency with much fewer ob-

servations. The e�ciency gains are usually obtained by removing immaterial

information for the data. The monograph of Cook (2018)[7] gives a com-

prehensive review of the di↵erent types of envelope models and Lee and Su

(2019)[30] presents a shorter review paper that provides a quick introduction

to the envelope models.

Before we formally introduce the notation and structure of envelopes, we

first explain the intuition behind the envelopes using an example. The first

envelope model is proposed in the context of multivariate linear regression,

where the goal is to estimate the e↵ects of multiple predictors on multivariate

responses. For example, the government initiated a new job training program,

and several characteristics of the participants as well as many performance

metrics of them in the job market before and after participating the program

have been recorded. While some (or some linear combinations of) performance

metrics are a↵ected by the participation of the program, some of the linear

combinations do not respond to the change in the predictors at all. These

linear combinations can be called the immaterial part of the data. The in-
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clusion of the immaterial part does not bring any extra information to the

estimation process, rather it brings extraneous variation in the estimation, re-

sulting in wider confidence intervals of the regression coe�cients. The goal

of envelope methods is to improve the estimation e�ciency while still keeping

the objectives of the regression analysis. For example, di↵erent tools such as

multivariate linear regression, quantile regression or penalized linear regres-

sion can be used here and envelope models can be combined with any of these

models to achieve more e�cient estimation.

With the goal of envelope models in mind, here we use the Berkeley guid-

ance data to see how it achieves the goal. The Berkeley Guidance Study [42]

was a longitudinal study that monitored the growth of children born in Berke-

ley, California between 1928 and 1929. The data recorded the weight, height,

leg circumference and strength of these children from age 2 to age 18. Here

we use the heights at ages 13 and 14 as the bivariate responses (Y1, Y2)T and

sex as the predictor X, with X = 1 being boys and 0 being girls. The re-

gression coe�cient � = (�1, �2)T estimates the height di↵erence between boys

and girls at ages 13 and 14. Both standard multivariate linear regression and

envelope response model were applied to the data. Both models result in the

same estimation of b� with very di↵erent standard deviations. The bootstrap

standard deviation of � based on the residual bootstrap with 200 replications

are 1.90 and 1.81 for standard multivariate linear regression and are 0.19 and

0.19 for envelope response model. This implies that the sample size needed

for standard model is about (1.80/0.19)2 = 90 times of the envelope model

to achieve the same accuracy. Figure 1 visualizes the di↵erences in inference

using the standard method and the envelope model. In this scatterplot, the
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Figure 1.1: Berkeley guidance study: height at age 13 versus 14 with blue
triangles represent males and red circles represent females. The lines marked
by "⌃(B) and "

?
⌃(B) denote the estimated envelopes and its orthogonal com-

plement.

two histograms in dash represent the projection of data onto horizontal axis,

and there are a lot of overlap between these two histograms, which means that

the height of boys and girls are not separable at age 13. The two histograms

in solid represent the projection of the material part of the data found using

the envelope. The material part G
T

0Y here can be interpreted as the height

di↵erence Y1 � Y2, and the two solid distribution curves are well separated.

This example shows that the e�ciency gains in the envelope model allows us

to detect weak signals that standard models fail to detect.

The first envelope model was introduced by [10] under the classical mul-

tivariate linear regression model. Consider a multivariate response vector

Y 2 Rr and multiple covariates X 2 Rp. A standard multivariate linear
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regression assumes that Y and X are linearly related as follows:

Y = ↵+ �X+ ✏, (1.1)

where the predictors are centered in the sample such that
P

n

i=1 Xi = 0, the

errors ✏ 2 Rr are independently and identically distributed normal vectors

with mean 0 and covariance matrix ⌃ > 0, ↵ 2 Rr is an unknown vector of

intercepts, and � 2 Rr⇥p is an unknown matrix of regression coe�cients.

Under the classical multivariate linear regression model (1.1), the estima-

tion of � does not use the relationship among the response variables. The

response envelope model exploits the dependencies among Y to achieve e�-

cient estimation of �. The intuition behind the envelope model is that there

exist linear combinations of the response vector whose distribution is invari-

ant to changes in the predictor vector. If such linear combinations exist, the

variation of estimation for � in (1.1) can be drastically reduced.

Denote S as a d-dimensional subspace of Rr with u < r. Let G 2 Rr⇥u be

an orthonormal basis of S and G0 2 Rr⇥(r�u) be an orthonormal basis of S?,

the orthogonal complement of S. The envelope model arises by imposing the

following two conditions on GTY and GT

0Y:

(i) GT

0Y|X ⇠ GT

0Y and (ii) cov(GTY,GT

0Y|X) = 0.

Condition (i) implies that the marginal distribution of GT

0Y must be unaf-

fected by changes in X, and condition (ii) requires that GT

0Y must be un-

a↵ected by changes in X through an association with GTY. The above two

conditions combined imply that any dependence of Y on X must be concen-

trated onGTY, andGT

0Y carries no material information for the estimation of
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� in (1.1). The two conditions above hold if and only if (a) B := span(�) 2 S

and (b) S is a reducing subspace of ⌃. There are many subspaces that reduce

⌃ and contain B. We define the ⌃-envelope of B as the smallest reducing

subspace of ⌃ that contains B. The smallest here means the intersection of

all such subspaces. The ⌃-envelope of � is often denoted as "⌃(B). The mul-

tivariate linear regression model (1.1) now can be reparametrized in terms of

"⌃(B) by using a basis. Let u = dim(E⌃(B)), and let �,�0 2 Rr⇥r be an

orthogonal matrix with � 2 Rr⇥u, span(�) = E⌃(B), and span(�0) = E?
⌃(B).

Then the envelope copula model can be written as

Y = ↵ + �⌘X+ ✏, with ⌃ = �⌦�T + �0⌦0�
T

0 ,

where � = �⌘, and ⌘ 2 Ru⇥p is the coordinate of � with respect to ⌘.

The matrices ⌦ 2 Ru⇥u and ⌦0 2 R(r�u)⇥(r�u) are the coordinates of ⌃

with respect to � and �0, respectively. The variable of interest is still �,

and we normally do not infer about the constitute parameters �,⌘,⌦ and

⌦0. The values of the ⌘,⌦ and ⌦0 depend on the choice of �. It should

also be noted that the basis matrix � is not identifiable because �O for any

orthogonal matrix O will lead to an equivalent model. However, the envelope

"⌃(B) = span(�) is identifiable, which is the key for the estimation of �.

Under this formulation, it is also straightforward to see the covariance matrix

⌃ can be decomposed as the sum of the covariance matrix of the material

part of the response var(P"Y) = �⌦�T and immaterial part of the response

var(Q"Y) = �0⌦�T

0 .

Unlike most su�cient dimension reduction methods, which usually avoid

specifying the parametric form of a model, envelopes work mostly in model-
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based contexts without altering traditional objectives. As we can see from the

last example, envelope methods can result in massive e�ciency gains relative

to standard methods, gains that are equivalent to increasing the sample size

many times over. Since its introduction, many advances have taken place,

including but not limited to response envelope model, predictor envelope model

and partial least squares, generalized linear models, Bayesian analysis, variable

selection and quantile regression. At the same time of the potential in bringing

in huge e�ciency gains, envelopes are very “sensitive” to many aspects of the

data generating process. For example, the original envelope models were not

scale-invariant; the current algorithms used in computing envelopes strongly

depends on the starting values and in general do not have global minimizer;

almost all envelope models essentially relies on the normality assumption of the

error; the envelope models can only handle linear models and are quite sensitive

to any transformation of the data. Some of the previous issues have been

addressed. For example, scaled response envelope was proposed by Cook and

Su[12] to address the scale-invariant issue. Quantile envelope model proposed

in [17] does not rely on the normality assumption and is based on generalized

estimating equations.

In this thesis, we focus on a few issues that have not been properly ad-

dressed in the current literature. First, most of current envelope models are

based on the multivariate linear regression model. The linearity assumption

there can be very strict and essentially uncheckable in practice. For example,

it is very common to log transform a highly skewed variable such as white

cell counts or viral loads to improve the linearity between responses and co-

variates. Other transformations such as Box-Cox transformation, Fisher’s z
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transformation and variance stabilization transformation have been frequently

used to improve the linear fit. The envelope models available in the current

literature are not invariant or equivariant to these transformations, and even

the dimension of the envelope will change. We have observed in practice that

such transformations often resulting in envelope based estimators reduce back

to ordinary least square estimators, which means no e�ciency gain can be

achieved. In order to address this issue, we propose to combine Gaussian cop-

ula regression model and envelopes. The essential tool we are using is the

rank-based correlation estimators, which are invariant to continuous mono-

tone transformations. Specifically, we focus on both response envelope model

and predictor envelope model. In Chapter 2, we study the response envelope

model and propose a novel Gaussian copula response envelope model, which

is equivariant to a large class of popular transformation of the responses. In

Chapter 3, we focus on the predictor envelope model, which aims to achieve

dimension reduction in the predictor space. Even though the goal is the same,

the techniques used in Chapter 3 are di↵erent from those in Chapter 2. The

proposed Gaussian copula envelope models have the potential for bringing

huge e�ciency gains when the original envelope model fails to do so.

Most of the current literature on envelopes focus on regression models.

In the area of hypothesis testing in high-dimensional data, envelope models

actually can bring in huge e�ciency gains. In Chapter 4, we focus on the

use of envelope models in the domain of hypothesis testing. Specifically, we

focus on an envelope-based Hotelling’s T 2 test and a likelihood ratio test. The

proposed tests are more e�cient when the high-dimensional mean vector can

be represented using a lower dimensional envelope structure in the covariance

8



matrix.

The rest of the thesis is organized as follows. Chapter 2 introduces the

Gaussian copula response envelope model and describes the framework of

model formulation, estimation, selection of envelope dimension and inference

under the model. Chapter 3 introduces the Gaussian copula predictor envelope

model and partial least squares. The theoretical results highlight the scenar-

ios when the proposed model can result in substantial e�ciency gains, which

were verified by the simulation results and data analysis. Chapter 4 introduces

several envelope-based test statistics for high-dimensional data. The reference

distribution of the test statistics have been established and simulation studies

suggest substantial improvement over the methods in the current literature.
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Chapter 2

Gaussian Copula Response
Envelope Model

2.1 Introduction

Regression analysis is one of most common tasks in data analysis, where we

try to establish the relationship between a set of responses and a set of covari-

ates. Linear regression analysis is arguably the most commonly used method

in statistics. However, the linearity assumption is often too restrictive in prac-

tice. To deal with the nonlinearity, one can either transform the data so that

there is relationship between the transformed variables or use a non-linear

function. The use of linear models is greatly enhanced through the use of

various transformations of the data. There are a few reasons why a transfor-

mation of the data makes sense in practice. For example, sometimes there is

some prior information that the data generating process corresponds to a the-

oretical model, which has a specific parametric form; sometimes the data itself

appears a nonlinear pattern between the responses and covariates. What kind

of data can be transformed into linear relationship is often hard to determine.

Data transformations, such as the Box-Cox transformation, Fisher’s z transfor-
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mation and variance stabilization transformation, have been frequently used

to improve the linear fit. However, typically these transformations need to be

applied before the regression, and various transformations have to be applied

in order to find the right one.

Consider multivariate response vector Y 2 Rr and multiple covariates X 2

Rp. A standard multivariate linear regression assumes that Y and X are

linearly related as follows:

Y = ↵+ �X+ ✏, (2.1)

where the predictors are centered in the sample such that
P

n

i=1 Xi = 0, the

errors ✏ 2 Rr are independently and identically distributed normal vectors

with mean 0 and covariance matrix ⌃ > 0, ↵ 2 Rr is an unknown vector of

intercepts, and � 2 Rr⇥p is an unknown matrix of regression coe�cients.

Model (2.1) is not always realistic as we have discussed in the Introduction.

The question is whether it is possible to estimate � without knowing specific

transformations that can make the linearity assumption more realistic. Let

us consider the following model, which has been widely used in a range of

applications,

g(Y) = ↵+ �f(X) + ✏, (2.2)

where f(X) = (f1(X1), . . . , fp(Xp)> and g(Y) = (g1(Y1), . . . , gr(Yr)> are un-

known functions. Examples of model (2.2) include the additive regression

model, single index model, copula regression model, and semiparametric pro-

portional hazards models. Typically when we apply a transformation to data,

the transformation functions are continuous and one-to-one; for example, log

transformation, Box-cox transformation and Fisher’s z transformation. The
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functions that satisfy these two assumptions must be strictly monotone.

The model can be further formulated as follows. Suppose we have an inde-

pendent and identically distributed random sample Z1 = (Y1,X1), . . . ,Zn =

(Yn,Xn) 2 Rp+r. The observations (Yi,Xi) satisfy a Gaussian copula regres-

sion model, if there exists a set of strictly increasing functions g = {g1, . . . , gr}

and f = {f1, . . . , fp} such that the marginally transformed random vectors

eZi = (eYi,
eXi) = (g1(Y1), . . . , gr(Yr), f1(X1), . . . , fp(Xp)) satisfy eZi ⇠ Np+r(0,⌃Z)

for some positive-definite covariance matrix ⌃Z . Under Gaussian copula re-

gression model, one has the following linear relationship for the transformed

data:

eYi = � eXi + ✏i, i = 1, . . . , n, (2.3)

where � 2 Rr⇥p and ✏i are i.i.d. zero-mean Gaussian variables. The fundamen-

tal di↵erence between the Gaussian copula regression model (2.3) and the con-

ventional linear regression model is that one observes {(Y1,X1), . . . , (Yn,Xn)},

instead of {(eY1,
eX1), . . . , (eYn,

eXn)} as the transformations f and g are un-

known.

Cai and Zhang (2018)[4] focused on a high-dimensional setting where p is

comparable to or much larger than n and � is sparse and they only consid-

ered the situation of univariate response. Compared with other methods such

as those for the additive regression model and single index model, a signifi-

cant advantage for their proposed estimation and inference procedures is that

they do not require estimation of the marginal transformations. For exam-

ple, one can select the important variables xi without any knowledge of the

transformations fi. This makes the methods more flexible and adaptive, and
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achieves the same optimal rate as that for high-dimensional linear regression.

Zhao and Genest (2019)[47] generalized their work to multivariate responses

scenarios, and also covered cases in which the variables exhibit greater tail

dependence than if they were jointly normal; for example, the multivariate

Student t distribution.

Borrowing the idea from Cai and Zhang (2018)[4], in this chapter, we apply

the use of Gaussian copula regression on response envelope models. Originally

proposed envelope models are not invariant or equivariant under the rescaling

of the variables, let along other strictly increasing transformations. This brings

some inconvenience for the practical use of envelope models. For example, it is

di�cult to ensure all the responses are measured by the same or similar scales,

and sometimes the responses might measure di↵erent things, which make them

not comparable. We have observed in practice that such transformations often

resulting in envelope based estimators reduce back to ordinary least square es-

timators, which means no e�ciency gain can be achieved. The use of envelope

models will be a↵ected greatly as certain variable with large variance might

dominate the results, just as what we see in methods like principal component

regression, ridge regression and partial least squares. To address this issue,

Cook and Su (2013)[12] proposed scaled response model, which is invariant

to a scaling of the response variables. In both Cai and Zhang (2018)[4] and

Zhao and Genest (2019)[47], the response variables were standardized to have

the same variance. However, since the original response envelope model is

not variant towards scaling, the direct application of Gaussian copula model

will not work. Instead, we combine the scaled response envelope model and

Gaussian copula model.
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The rest of this chapter is organized as follows. In Sections 2.2 and 2.3,

we first introduce the background of response envelope model and scaled re-

sponse envelope models. In Section 2.4, we introduce the proposed Gaussian

copula response envelope model. The model formulation, estimation, selection

of envelope dimension have been established. In section 2.5, the theoretical

properties have been established, including the uniqueness, consistency and

asymptotic normality. Simulation studies and data analysis can be found in

Section 2.6.

2.2 Response Envelope Model

Under the classical multivariate linear regression model (2.1), estimation of �

does not use the relationship among the response variables. The response enve-

lope model exploits the dependencies among Y to achieve e�cient estimation

of �. The intuition behind the model is that there exist linear combinations of

the response vector whose distribution is invariant to changes in the predictor

vector. If such linear combinations exist, the variation of estimation for � in

(2.1) can be drastically reduced.

Denote S as a d-dimensional subspace of Rr with u < r. Let G 2 Rr⇥u be

an orthonormal basis of S and G0 2 Rr⇥(r�u) be an orthonormal basis of S?,

the orthogonal complement of S. The envelope model imposes the following

two conditions on GTY and GT

0Y:

(i) GT

0Y|X ⇠ GT

0Y and (ii) cov(GTY,GT

0Y|X) = 0.

Condition (i) implies that the marginal distribution of GT

0Y must be unaf-

fected by changes in X, and condition (ii) requires that GT

0Y must be un-
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a↵ected by changes in X through an association with GTY. The above two

conditions combined imply that any dependence of Y on X must be concen-

trated onGTY, andGT

0Y carries no material information for the estimation of

� in (2.1). The two conditions above hold if and only if (a) B := span(�) 2 S

and (b) S is a reducing subspace of ⌃. The definition of reducing subspace is

given below:

Definition 1 A subspace R 2 Rr
is said to be a reducing subspace of M 2

Sr⇥r
if R decomposes M as M = PRMPR +QRMQR, where P represents a

projection operator and Q = I�P. If R is a reducing subspace of M, we say

that R reduces M.

There are many subspaces that reduce ⌃ and contain B. We define the ⌃-

envelope of B as the smallest reducing subspace of ⌃ that contains B. The

smallest here means the intersection of all such subspaces. The ⌃-envelope

of � is often denoted as "⌃(B). The multivariate linear regression model

(2.1) now can be reparametrized in terms of "⌃(B) by using a basis. Let

u = dim(E⌃(B)), and let �,�0 2 Rr⇥r be an orthogonal matrix with � 2 Rr⇥u,

span(�) = E⌃(B), and span(�0) = E?
⌃(B). Then the envelope copula model

can be written as

Y = ↵ + �⌘X+ ✏, with ⌃ = �⌦�T + �0⌦0�
T

0 , (2.4)

where � = �⌘, and ⌘ 2 Ru⇥p is the coordinate of � with respect to ⌘.

The matrices ⌦ 2 Ru⇥u and ⌦0 2 R(r�u)⇥(r�u) are the coordinates of ⌃

with respect to � and �0, respectively. The variable of interest is still �,

and we normally do not infer about the constitute parameters �,⌘,⌦ and
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⌦0. The values of the ⌘,⌦ and ⌦0 depend on the choice of �. It should

also be noted that the basis matrix � is not identifiable in (2.4) because �O

for any orthogonal matrix O will lead to an equivalent model. However, the

envelope "⌃(B) = span(�) is identifiable, which is the key for the estimation

of �. Under this formulation, it is also straightforward to see the covariance

matrix ⌃ can be decomposed as a sum of the covariance matrix of the material

part of the response var(P"Y) = �⌦�T and immaterial part of the response

var(Q"Y) = �0⌦�T

0 .

Estimation of the parameters in (2.4) depends on the dimension of the

envelope u. Assuming that u is known and a normal likelihood function,

Cook et al. (2010)[11] developed some estimation procedures. The maximum

likelihood estimators bE⌃(B) of E⌃(B) and of the remaining parameters are

determined as

bE⌃(B) = span{argmin
G

(log |GT
SY|XG|+ log |GT

S
�1
Y G|)},

b⌘ = b�
T b�ols,

b� = b�b⌘,

b⌦ = b�
T

SY|Xb�,

b⌦
T

0 = b�
T

0 SY
b�0,

b⌃ = b�b⌦b�
T

+ b�0
b⌦0

b�
T

0 ,

(2.5)

where SY and SX are the sample covariance matrices of Y and X, respectively,

SYX is the sample covariance matrix of Y and X, b�ols = SYXS
�1
X is the ordi-

nary least square (OLS) estimator of �, SY|X is the sample covariance matrix

of the conditional distribution of Y given X, minG is over all semi-orthogonal

matrices G 2 Rr⇥u, �̂ is any semi-orthogonal basis matrix for bE⌃(B), and �̂0
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is any semi-orthogonal basis matrix for the orthogonal complement of bE⌃(B).

The fully maximized log-likelihood for fixed u is then given by

Lu = �(nr/2) log(2⇡)� nr/2� (n/2) log |SY|

� (n/2) log |�T
SY|X�|� (n/2) log |�T

S
�1
Y �|.

(2.6)

The above log-likelihood can be further simplified as the following objective

function for the estimation of bE⌃(B)

bE⌃(B) = argmin
�

log |�T
SY|X�|+ log |�T

S
�1
Y �|,

where the minimum is taken over all semi-orthogonal matrices � 2 Rr⇥u.

It is worth pointing out that the envelope model (2.4) does not rely on the

normality assumption, and only the estimation procedure used the normal

likelihood. The performance of envelope models under the departure from

normality has been studied by Cook (2018)[7], Su and Cook (2011)[39] and

Park et al. (2017)[36].

The optimization problem here is not trivial due to two reasons: (1) this is

a constrained optimization problem since � is semi-orthogonal and the opti-

mization is done on a Grassmannian manifold instead of the Euclidean space;

(2) the objective function in (2.6) is not convex with respect to �, which means

a global optimizer does not always exist and good starting values are essen-

tial. Chapter 6 in Cook (2018)[7] provides a good summary of state-of-the-art

developments of envelope algorithms. Popular algorithms include the one-

direction-at-a-time (1D) algorithm (Cook and Zhang (2016)[14]), envelope co-

ordinate descent algorithm (Cook and Zhang (2018)[15]) and non-Grassmann

estimation algorithm (Cook et al. (2016)[8]).

The maximum likelihood estimation method described above are based on
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a known u. The dimension of the envelope subspace, u, is a model selection

parameter. In practice, the popular ways of selecting u include sequential

likelihood ratio test, information criterion such as AIC or BIC, and cross-

validation.

2.3 Scaled Response Envelope Model

The response envelope model presented in Section 2.2 has the potential to yield

an estimator of � with much less variation than the ordinary least squares es-

timator, which is of great importance since this is equivalent to the increase

of sample size in practice. However, suppose we rescale the response Y by

the form of Y ! ⇤Y, where ⇤ is a non-singular diagonal matrix. Similar to

principal component analysis, partial least squares and other methods, enve-

lope is not invariant or equivariant under scale transformations. Figure (2.1)

shows an example of how rescaling the response can a↵ect an envelope anal-

ysis. After the rescaling, all linear combinations of Y are material to the

regression and the envelope model is the same as the standard model and no

e�ciency gains have been achieved. This could potentially greatly limit the

use of envelope models in practice since the measuring units might vary greatly

for di↵erent response variables. In order to address this issue, Cook and Su

(2013)[12] proposed scaled response envelope model. The essential idea in the

scaled response envelope model is that the process of estimating ⇤P�⇤�1 is

the same as treating ⇤�1 as a diagonal similarity transformation to represent

P� in original coordinate system as ⇤P�⇤�1.

We introduce a diagonal scaling matrix ⇤ = diag{1,�2, . . . ,�r}, and the
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Figure 2.1: Schematic illustration of how rescaling the response can a↵ect an
envelope analysis. (a) original distributions, (b) rescaled distributions.

first element of ⇤ is set to 1 for identifiability. Assume that the scaled response

vector ⇤�1Y follows the response envelope model (2.4), so the scaled envelope

model for the original responses Y becomes

Y = ↵ + ⇤�⌘X+ ✏, with ⌃ = ⇤�⌦�T⇤+ ⇤�0⌦0�
T

0⇤. (2.7)

The scaled response ⇤�1Y follows an envelope model with u-dimensional en-

velope "⇤�1⌃⇤�1(⇤�1B) and semi-orthogonal basis matrix �. The material

and immaterial pairs of Y are ⇤P�⇤�1 and ⇤Q�⇤�1, respectively. To show

that model (2.7) follows the same envelope structure as (2.8), we denote

U = ⇤P�⇤�1 and V = ⇤Q�⇤�1. It is easy to verify that

(i) VY|X ⇠ VY and (ii) cov(UY,VY|X) = 0. (2.8)

The maximum likelihood estimators b⇤ and b� of ⇤ and �, respectively, can

be obtained by minimizing the objective function

Lu(⇤,�) = log |�T⇤�1
SY|X⇤

�1�|+ log |�T⇤S�1
Y ⇤�|. (2.9)
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Compared with the standard response envelope model, the scaled response

envelope introduces a new scaling parameter ⇤. The maximum likelihood

estimators of the remaining parameters are as follows:

b↵ = Ȳ;

b⌘ = b�
T b⇤�1b�ols,

b� = b�b⌘,

b⌦ = b�
T b⇤�1

SY|Xb⇤�1b�,

b�
T

0 = b�
T

0
b⇤�1

SY
b⇤�1b�0,

b⌃ = b⇤b�b⌦b�
T b⇤T + b⇤b�0

b⌦0
b�
T

0
b⇤T

.

(2.10)

The algorithms used in minimizing (2.9) are similar to those used in the stan-

dard response envelope model. The strategies used in choosing the envelope

dimension u here are also similar, including likelihood-based methods such

as AIC and BIC, and nonparametric methods such as cross validation and

permutation test.

By introducing a scaling parameter for each response, the scaled envelope

model further broadens the scope of envelope model, and can potentially bring

e�ciency gains that can not be o↵ered by the ordinary envelope model. Cook

and Su (2013)[12] also found that the scaled response envelope gives good

results when the error distribution does not deviate substantially from the

multivariate normal. The idea of furthering applying scaled envelope model to

partial envelope model and inner envelope model has also been mentioned by

above authors. The transformation matrix used in scaled envelope model is a

diagonal matrix ⇤. However, in practice, the linear relationship assumed in the

multivariate linear model cannot be fixed by simply rescaling of the variables.
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For example, in medical data, variables such as white cell counts and viral

loads are often log transformed. The original response envelope model is not

variant to such transformation, in fact, the original envelope model almost

always reduce to the standard linear model, which brings no e�ciency gain.

To address this issues, we further generalize the original response envelope

model using Gaussian copula regression in the next section.

2.4 Gaussian Copula Response Envelope Model

2.4.1 Motivation

The two sections above illustrates the potential e�ciency gains of using enve-

lope response models. However, model (2.4) and (2.7) are not always realistic

in practice. The linearity assumption here between X and Y is often too re-

strictive and unrealistic. In introductory statistics classes, we teach the use

of data transformation such as log transformation and Fisher’s z transforma-

tion to improve a linear fit and sometimes an the equal variance assumption.

Carroll and Rupert (1987)[5] presented some detailed discussions on the use

of transformations in linear regression.

The linearity and constant covariance conditions posed in the envelope

models are essentially uncheckable, which can be dangerous in practice. Lee

et al. (2013)[28] extended the foundations of su�cient dimension reduction to

allow for nonlinear reduction. Li and Song (2007)[31] developed foundations

and methodology for nonlinear su�cient dimension reduction for functional

data. Unlike most su�cient dimension reduction methods, envelope methods

do require a parametric form of the regression model for estimation. Inspired
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by the use of Gaussian copula regression in variable settings such as variable

selection [4], variable screening [25], Gaussian mixture model [3] ,etc., we relax

the linearity assumption on response envelop model to allow certain parametric

form of the responses.

Let us consider the following model, which has been widely used in a range

of applications,

g(Y) = ↵+ �f(X) + ✏, (2.11)

where f(X) = (f1(X1), . . . , fp(Xp)> and g(Y) = (g1(Y1), . . . , gr(Yr)> are un-

known functions. Examples of model (2.11) include the additive regression

model, single index model, copula regression model, and semiparametric pro-

portional hazards models. Typically when we apply a transformation to data,

the transformation functions are continuous and one-to-one, for example, log

transformation, Box-cox transformation and Fisher’s z transformation. The

functions that satisfy these two assumptions must be strictly monotone.

Under model (2.11), the linearity is assumed between g(Y) and f(X), and

if the transformation functions f and g are known, we can use envelope models

to further more e�ciently estimate �. In practice, often one has to try di↵erent

transformation functions and decide whether they improve the linearity fit

between the response and covariates, and this process can be arbitrary and

exhausting. To address this issue, we propose the Gaussian copula response

envelope model.

2.4.2 Model Formulation

The model (2.11) can be further formulated as follows. Suppose we have an in-

dependent and identically distributed random sample Z1 = (Y1,X1), . . . ,Zn =
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(Yn,Xn) 2 Rp+r. The observations (Yi,Xi) satisfies a Gaussian copula

regression model, if there exists a set of strictly increasing functions g =

{g1, . . . , gr} and f = {f1, . . . , fp} such that the marginally transformed ran-

dom vectors eZi = (eYi,
eXi) = (g1(Y1), . . . , gr(Yr), f1(X1), . . . , fp(Xp)) satisfy

eZi ⇠ Np+r(0,⌃Z) for some positive-definite covariance matrix ⌃Z . Under

Gaussian copula regression model, one has the following linear relationship for

the transformed data:

eYi = � eXi + ✏i, i = 1, . . . , n,

where � 2 Rr⇥p and ✏i are i.i.d. zero-mean Gaussian variables. The fundamen-

tal di↵erence between the Gaussian copula regression model and conventional

linear regression model (2.11) is that one observes {(Y1,X1), . . . , (Yn,Xn)},

instead of {(eY1,
eX1), . . . , (eYn,

eXn)} as the transformations f and g are un-

known.

Under Gaussian copula regression model, the linear relationship is assumed

between the unobserved {(eY1,
eX1), . . . , (eYn,

eXn)}. Similarly, we assume an

envelope structure exists for the unobserved {(eY1,
eX1), . . . , (eYn,

eXn)}, and

we can use the observed {(Y1,X1), . . . , (Yn,Xn)} to estimate the envelope

structure, which means the proposed Gaussian copula response envelope is

invariant towards any strictly increasing transformation of the responses and

predictors.

The key element in Gaussian copula regression is the use of rank-based

estimator of correlation matrix. If we take a closer look at the likelihood func-

tion in (2.6), the essential information we need is the covariance matrix of eY

and the residuals, so the question now becomes how do we estimate S eY and
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S eY|eX using only the observed X and Y. In Cai and Zhang (2015)[4], the co-

variance matrix ⌃Z is assumed to satisfy diag(⌃Z) = 1. This condition is for

identifiability because the scaling and shifting are absorbed in the marginal

transformations. However, the original response envelope model is not invari-

ant to the rescaling. In other words, if we only know the correlation matrix of

eY and the residuals, it will be impossible to get the same envelope estimates.

Thus we need to use the scale invariant response envelope model. Before we in-

troduce the estimation procedures, we first introduce the rank-based estimator

of correlation matrix.

2.4.3 Rank-based Estimator of Correlation Matrix

The goal here is to estimate the ⌃Z , the covariance matrix of eZ, using only the

observed (Y,X). Since the marginal transformations f and g are unknown,

we use rank-based correlation of the observed data Z to estimate the covari-

ance/correlation matrix ⌃Z . Given that f and g are strictly monotone, Z and

eZ have the same elliptical copula. Set d = p + r. If eZi ⇠ Nd(0,⌃Z) with

⌃Z = (�jk)1j,kd, then

�jk = sin(
⇡

2
⌧jk),

where ⌧jk is Kendall’s tau and is defined as

⌧jk = E[sgn(Z̃1j � Z̃2j)sgn(Z̃1k � Z̃2k)] (2.12)

with eZi = (Z̃i1, . . . , Z̃id)T , i = 1, 2 being two independent copies of Nd(0,⌃Z).

The Kendall’s tau ⌧jk in (2.12) is invariant under strictly increasing marginal

transformations. This promises that using the observed data Z will return the
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same correlation matrix as using the observed eZ. Specifically, we have

b⌧jk =
2

n(n� 1)

X

1i1i2n

sgn(Z̃i1,j � Z̃i2,j)sgn(Z̃i1,k � Z̃i2,k)

=
2

n(n� 1)

X

1i1i2n

sgn(Zi1,j � Zi2,j)sgn(Zi1,k � Zi2,k), 1  j, k  d.

(2.13)

Using the Kendall’s tau correlation estimator, we obtain the following estima-

tor for the correlation matrix ⌃Z,

b⌃Z = (b�jk) with b�jk = sin(
⇡

2
b⌧jk). (2.14)

We divide b⌃Z into four sub-matrices, denoted by ⌃XX ,⌃XY ,⌃Y X ,⌃Y Y , and

their corresponding Kendall’s tau based estimators are b⌃XX ,
b⌃XY ,

b⌃Y X ,
b⌃Y Y .

These covariance estimators will be essential in the estimation of �. However,

keep in mind that here we assume diag(⌃Z) = 1, so the correlation matrix

is the same as covariance matrix. Since the original response envelope model

is not invariant to rescaling of variables, we use the scaled envelope response

model.

2.4.4 Estimation of �

The goal of envelope methods is to increase the e�ciency in multivariate re-

gression estimation and prediction by exploiting variation in the data that is

e↵ectively immaterial. In the setting of Gaussian copula model, if eZ were avail-

able, the standard envelope response model can be used. However, as shown

in previous examples, some simple changes such as rescaling and log transfor-

mation to the variables can result in serious changes in the envelope structure,

even the dimension of envelope can change. We assume the following sparse
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response envelope exists between the unobserved eY and eX.:

eY = ↵ + ⇤�⌘ eX+ ✏, with e⌃ = ⇤�⌦�T⇤+ ⇤�0⌦0�
T

0⇤. (2.15)

The scaled response ⇤�1 eY follows an envelope model with u-dimensional en-

velope "⇤�1⌃⇤�1(⇤�1B) and semi-orthogonal basis matrix �. The material and

immaterial pairs of Y are ⇤P�⇤�1 and ⇤Q�⇤�1, respectively. The maximum

likelihood estimators b⇤ and b� of ⇤ and �, respectively, can be obtained by

minimizing the objective function

Lu(⇤,�) = log |�T⇤�1⌃ eY|eX⇤
�1�|+ log |�T⇤⌃�1

eY
⇤�|.

The quantities ⌃eY and ⌃ eY|eX can be estimated using the Kendall’s ⌧ estimator

as discussed in Section 2.4.3. Specifically, we use b⌃Y Y and b⌃Y Y �b⌃Y X
b⌃�1
XX

b⌃XY

as estimators for ⌃ eY and ⌃ eY|eX respectively. By substituting them into the

objective function, we have

⇤ = argmin
⇤,�

log |�T⇤�1(b⌃Y Y � b⌃Y X
b⌃�1
XX

b⌃XY )⇤
�1�|

+ log |�T⇤b⌃�1
Y Y

⇤�|.
(2.16)

Note that Kendall’s tau based correlation matrix may not be positive

semidefinite and we do need to invert some of these matrices in (2.16). Take

b⌃XX for example, we can project b⌃XX onto the cone of the positive semidefinite

matrices. This can be done using the following convex optimization problem

b⌃+
XX

= argmin
⌃�0

||b⌃XX � ⌃||2,s.

The || · ||2,s norm is used here is mostly for theoretical considerations, and

other norms such as the spectral norm and lmax norm can also be used, and
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they di↵er very little in practice. Define

b↵ = Ȳ;

b⌘ = b�
T b⇤�1e�,

b� = b�b⌘,

b⌦ = b�
T b⇤�1(b⌃Y Y � b⌃Y X

b⌃�1
XX

b⌃XY )b⇤�1b�,

b�
T

0 = b�
T

0
b⇤�1b⌃�1

Y Y
b⇤�1b�0,

b⌃ = b⇤b�b⌦b�
T b⇤T + b⇤b�0

b⌦0
b�
T

0
b⇤T

.

where e� = (b⌃XX)�1b⌃XY is the Kendall’s tau based coe�cient estimator.

When solving (2.16), the objective function almost always has a unique pair

as the global minimizer. However, occasionally � and span(�) are not identifi-

able. When this happens, objective function will be flat along some directions.

However, this potential non-uniqueness is not an issue since the parameters we

are interested in � and⌃ are always uniquely defined. This implies that we ob-

tain the same estimators b� and b⌃ whether the global minimizer {b⇤, span(b�)}

is unique or not.

2.4.5 Selection of u

The dimension of the envelope u is an important parameter in determining

the right envelope structure. Likelihood-based methods such as AIC, BIC or

other information criteria can be used to select the dimension u.

Before we introduce the AIC estimator, let us first count the number of

parameters in the estimation problem. For a copula response envelope model

with dimension u, we need r parameters for ↵, (r � 1) parameters for ⇤,

pu parameters for ⌘, u(u + 1)/2 parameters for ⌦, and (r � u)(r � u + 1)/2
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parameters for ⌦0. For the envelope, � itself is not identifiable, but span(�)

needs u(r � u) parameters. The total number of parameters is N(u) = 2r �

1 + pu+ r(r + 1/2).

The AIC estimator of u is argmin�2bL(u)+2N(u), where the minimum is

taken over the set of integers. The maximized log likelihood under the copula

response envelope model with dimension u takes the following form

bL(u) = �nr

2
log(2⇡)� n

2
log |�T b⇤�1(b⌃Y Y � b⌃Y X

b⌃�1
XX

b⌃XY )b⇤�1�|

� n

2
log |b⌃�1

Y Y
|� n

2
log |�T b⇤b⌃�1

Y Y
b⇤�|,

where b⇤ and span(b�) are the maximum likelihood estimators. The BIC esti-

mator of u is argmin�2bL(u) + log(n)N(u).

2.5 Theoretical Results

The proposed copula response envelope model enjoys most of the theoretical

qualities similar to the scaled response envelope model since the objective

functions are essentially the same. Here we establish the consistency and

asymptotic normality of the proposed estimator.

We introduce the operator vec : Ra⇥b ! Rab stacks the columns of a matrix,

and the operator vech : Ra⇥a ! Ra(a+1)/2 stacks the lower triangular part of

a symmetric matrix. We combine the parameters in model (2.15) into the

vector � = {�T
, vec(⌘)T , vec(�)T , vech(⌦)T , vech(⌦0)T}T = (�T

,�
T

0 )
T , where

�0 = {vec(⌘)T , vec(�)T , vech(⌦)}T contains the constituent parameters and

� = (�2, . . . ,�r)T is the vector of the 2nd to the rth diagonal elements of ⇤.

Both � and ⌃ are functions of �. First we establish the identifiability of �

and ⌃.
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Theorem 2.5.1 Assume that (2.15) has independent but not necessarily nor-

mal errors with finite second moments, and that n
�1

P
n

i=1 XiXT

i
> 0. Then

�(�) and ⌃(�) are identifiable and b� and b⌃ are uniquely defined.

As we mentioned earlier, sometimes �̂ might be trapped in local minimum

during the optimization, but � and ⌃ will still be identifiable.

The copula response envelope model in (2.15) is similar to a regular enve-

lope model with response ⇤�1Y, which we use the subscript o to denote. Based

on Cook et al. (2010)[11] , the gradient matrix

Go = @{vec(�
o
)T , vech(⌃o)T}T/@�T

0 for model (2.4) has dimension {pr+r(r+

1)/2}⇥ {pu+ r(r + 1)/2} and has the following form
✓
Ip ⌦ � ⌘T ⌦ Ir 0 0

0 2Cr(�⌦⌦ Ir � �⌦ �0⌦0�
T

0 C � r(�⌦ �)Eu) Cr(�0 ⌦ �0)Er�u

◆
.

The Fisher information for {vec(�
o
)T , vech(⌃o)T}T is the {rp+ r(r+1)/2}⇥

{rp+ r(r + 1)/2} block diagonal matrix Jo = bdiag{⌃X ⌦⌃�1
o
, 0.5ET

r
(⌃�1

o
⌦

⌃�1
o
)Er}, where bdiag(.) indicates a block diagonal matrix with the diagonal

blocks as arguments. Let ho = {(�
o
⌦Ir), 2(⌃o⌦Ir)CT

r
}T , which is the gradient

component ho = @{vec(�)T , vech(⌃)T}T/@⇤ for the copula model evaluated

at ⇤ = Ir. Let Ao = QGo(Jo)hoL and let D⇤ = bdiag{Ip ⌦ �, Cr(⇤ ⌦ ⇤)Er},

which is a block diagonal matrix with the same dimensions as Jo.

The gradient matrix H = @{vec(�)T , vech(⌃)T}T/@�T

0 for the copula re-

sponse model (2.15) has dimension {pr+r(r+1)/2}⇥{r�1+pu+r(r+1)/2}

and can be represented asH = {D⇤ho(Ir⌦⇤�1)L,D⇤Go}. The Fisher informa-

tion J under the copula response envelope model can be obtained by replacing

⌃o with ⌃ in Jo, J = bdiag{⌃X ⌦ ⌃�1
, 0.5ET

r
(⌃�1 ⌦ ⌃�1)Er}. Now we es-

tablish the asymptotic normality of the proposed Gaussian copula response
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envelope model.

Theorem 2.5.2 Under model (2.15) with normal errors, assume maxin pij !

0 as n ! 1. Then
p
n[{vec(b��vec(�))}T , {vech(b⌃�vech(⌃))}]T converges in

distribution to a normal random vector with mean zero and covariance matrix

V = H(HT
JH)†HT = D⇤{Ao(A

T

o
JoAo)

†}D⇤+D⇤{Go(G
T

o
JoGo)

†}D⇤ = V1+V2,

where V1 = D⇤{Ao(AT

o
JoAo)†}D⇤ and V2 = D⇤{Go(GT

o
JoGo)†}D⇤.

Consequently, we have

Corollary 2.5.2.1 Assume that the conditions in Theorem (2.5.2) hold. Then

the copula envelope model (2.15) is asymptotically more e�cient or as e�cient

as the standard model in estimating � and ⌃.

The component V1 in the asymptotic covariance matrix can be interpreted as

the asymptotic cost of estimating ⇤.

2.6 Simulations and Data Analysis

2.6.1 Simulations

Similar to the scaled response envelope model, we adopt an alternating algo-

rithm when estimating � and ⇤.

To evaluate the finite sample size performance of the proposed Gaussian

copula response envelope model, we conducted simulation studies under dif-

ferent circumstances.

Following the settings as in Cook and Su (2013)[12], we set r = 10, u = 5

and p = 5. Each element in X were generated independently from a N(0, 1).
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For the covariance matrix, we took ⌦ = �
2
I5 and ⌦0 = �

2
0I5. The matrix

⌘ was generated as a 5 ⇥ 5 matrix of independent N(0, 2) random variables,

and � was obtained by orthogonalizing a 10⇥5 matrix of independent U(0, 1)

random variables. We took �2 as 0.25 and �
2
0 as 5 and 25. The scale matrix � as

taken as diag(⌃)�0.5. The sample sizes were 100, 200, 300, 500, 800, 1200 and

200 replicates were used for each sample size. After generating ⌃ based on the

above descriptions, we then obtain n samples of eYi ⇠ Nr(0,⌃). We consider

two settings, for the first setting, we set Yij = exp(Ỹij) and Xij = 3 ⇤ X̃ij � 10

for j = 1, . . . , 5; Yij = 2 ⇤ Ỹij + 5 and Xij = exp(X̃ij) for j = 6, . . . , 10. For

the second setting, we set Yij = �(Ỹij) and Xij = X̃
2
ij
+ 5 for j = 1, . . . , 5;

Yij = Ỹ
3
ij
� 10 and Xij = �(X̃ij) for j = 6, . . . , 10.

We compared the performance of (1) original response envelope, (2) scaled

response envelope and (3) the proposed Gaussian copula response envelope

using either original data (eY, eX) or the observed data (Y,X). We first report

the angle between the true envelope space and the estimated envelope space

using di↵erent envelope models. The angle \{span(A1), span(A2)} between

the subspaces spanned by columns of the semi-orthogonal basis matrices A1 2

Rr⇥u and A2 2 Rr⇥u was computed in degrees as the arc cosine of the smallest

absolute singular value of AT

1A2.

Tables (2.1) and (2.2) report the results related to the angles under setting

1, and Tables (2.3) and (2.4) report the results related to the angles under

setting 2. We have the following findings: 1) both the original and scaled

response envelope model fail to detect the envelope structure given the trans-

formed data, while the proposed copula response envelope model successfully

detect it; 2) with the increase of sample size, unsurprisingly the proposed cop-
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Table 2.1: Response Envelope Models Setting 1 with �
2
0 = 5: Comparisons

of the angle between the true envelope subspace and the estimated subspace
using the correct envelope dimension u = 5. The results are based on 200
replications.
Angle n Original Envelope Scaled Envelope Copula Envelope

{eY, eX}

n = 100 79.35 6.21 6.34
n = 200 75.45 4.34 4.56
n = 300 70.22 3.21 3.19
n = 500 73.32 2.22 2.33
n = 800 68.43 1.05 1.24
n = 1200 69.32 0.93 0.98

{Y,X}

n = 100 78.54 78.45 6.36
n = 200 79.32 68.43 4.55
n = 300 68.34 56.43 3.22
n = 500 66.24 42.34 2.35
n = 800 64.15 41.22 1.21
n = 1200 69.32 39.24 0.99

Table 2.2: Response Envelope Models Setting 1 with �
2
0 = 25: Comparisons

of the angle between the true envelope subspace and the estimated subspace
using the correct envelope dimension u = 5. The results are based on 200
replications.
Angle n Original Envelope Scaled Envelope Copula Envelope

{eY, eX}

n = 100 74.15 2.94 3.14
n = 200 70.12 2.14 2.16
n = 300 68.29 1.15 2.26
n = 500 71.81 1.02 1.63
n = 800 69.27 0.85 0.94
n = 1200 68.36 0.76 0.78

{Y,X}

n = 100 74.13 71.39 3.16
n = 200 72.13 69.23 2.17
n = 300 71.52 64.41 2.31
n = 500 69.58 53.14 1.63
n = 800 66.21 45.27 0.98
n = 1200 67.38 38.14 0.78
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Table 2.3: Response Envelope Models Setting 2 with �
2
0 = 5: Comparisons

of the angle between the true envelope subspace and the estimated subspace
using the correct envelope dimension u = 5. The results are based on 200
replications.
Angle n Original Envelope Scaled Envelope Copula Envelope

{eY, eX}

n = 100 71.37 4.16 4.45
n = 200 68.55 3.34 3.46
n = 300 69.42 2.18 2.17
n = 500 65.78 1.51 1.58
n = 800 68.19 1.01 1.03
n = 1200 67.27 0.87 0.89

{Y,X}

n = 100 78.54 78.45 4.64
n = 200 69.32 68.43 3.45
n = 300 65.34 56.43 2.22
n = 500 66.24 42.34 1.59
n = 800 64.15 41.22 1.01
n = 1200 69.32 39.24 0.90

Table 2.4: Response Envelope Models Setting 2 with �
2
0 = 25: Comparisons

of the angle between the true envelope subspace and the estimated subspace
using the correct envelope dimension u = 5. The results are based on 200
replications.
Angle n Original Envelope Scaled Envelope Copula Envelope

{eY, eX}

n = 100 70.67 3.27 3.56
n = 200 67.25 2.64 2.66
n = 300 66.12 1.99 2.01
n = 500 58.12 1.78 1.79
n = 800 61.23 1.03 1.09
n = 1200 60.87 0.68 0.68

{Y,X}

n = 100 80.46 73.46 3.55
n = 200 78.43 69.13 2.68
n = 300 71.35 65.36 2.01
n = 500 76.21 62.46 1.77
n = 800 74.36 56.37 1.10
n = 1200 78.12 59.14 0.68
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Table 2.5: Response Envelope Models Setting 1: Comparisons of the standard
deviation of b� between copula response envelope estimator and standard model
estimator. The results are based on 200 replications.
log(SD(b�)) n Standard model Actual Copula Bootstrap

�
2
0 = 5

n = 100 -1.9 -2.5 -2.6
n = 200 -2.2 -3.1 -3.2
n = 300 -2.6 -3.4 -3.5
n = 500 -2.9 -3.9 -4.0
n = 800 -3.2 -4.1 -4.2
n = 1200 -3.6 -4.3 -4.4

�
2
0 = 25

n = 100 -1.3 -2.0 -2.1
n = 200 -1.5 -2.1 -2.2
n = 300 -1.6 -2.3 -2.4
n = 500 -2.1 -2.6 -2.6
n = 800 -2.5 -3.2 -3.3
n = 1200 -3.1 -3.6 -3.7

ula response envelope model has better performance; 3) when the di↵erence

between the material part and immaterial part is bigger (�2
0 = 25), it is easier

to uncover the envelope structure; 4) as long as the transformations introduced

here are strictly monotone, the proposed copula envelope model can detect the

envelope structure without any di�culty. For the next part, we evaluated the

amount of e�ciency gains that can be achieved using the proposed copula en-

velope model compared with the standard least squares estimator. For each

realization, the standard deviation of each element in b� over the replicates is

computed, which we call the actual standard deviation of the elements in b�.

We also computed the bootstrapped standard deviations by bootstrapping the

residuals 200 times.

Tables (2.5) and (2.6) report the log-scale comparisons of the copula re-

sponse envelope estimator and the standard least squares estimator for one
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Table 2.6: Response Envelope Models Setting 2: Comparisons of the standard
deviation of b� between copula response envelope estimator and standard model
estimator. The results are based on 200 replications.
log(SD(b�)) n Standard model Actual Copula Bootstrap

�
2
0 = 5

n = 100 -1.8 -2.5 -2.6
n = 200 -2.2 -3.1 -3.2
n = 300 -2.7 -3.2 -3.3
n = 500 -2.9 -3.8 -3.9
n = 800 -3.1 -4.1 -4.2
n = 1200 -3.7 -4.2 -4.4

�
2
0 = 25

n = 100 -1.4 -2.0 -2.1
n = 200 -1.5 -2.1 -2.2
n = 300 -1.7 -2.4 -2.5
n = 500 -2.1 -2.6 -2.6
n = 800 -2.6 -3.3 -3.5
n = 1200 -3.1 -3.6 -3.7

element in b�. We report the following findings: (1) the proposed copula re-

sponse envelope estimator achieves significant e�ciency gain compared to the

standard least squares estimator; (2) the e�ciency gain remains roughly con-

stant as the sample size increases; (3) the bootstrapped standard deviation is a

good estimator of the actual standard deviation; (4) settings (1) and (2) result

in very similar numerical performances, suggesting that the actual transfor-

mation used here are irrelevant as long as they are monotone and continuous.

Even though the envelope structure posed on the model does not depend

on the normality assumption of the error, the likelihood we used in the esti-

mation process relies on the assumption of normality. Here we examined the

performance of the proposed copula response envelope model under di↵erent

error distributions, specifically, we considered centered and consistently scaled

t6, U(0, 1) and �
2
4 distributions to represent cases with longer tails, shorter
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Table 2.7: Response Envelope Models Setting 1: Comparisons of the actual
standard deviation of b� under di↵erent error distribution. The results are
based on 200 replications.

log(SD(b�)) n Normal t6 Uniform �
2
4

�
2
0 = 5

n = 100 -2.5 -2. 6 -2.7 -2.8
n = 200 -3.1 -3.2 -3.3 -3.2
n = 300 -3.2 -3.4 -3.1 -3.1
n = 500 -3.8 -4.0 -3.9 -3.9
n = 800 -4.1 -4.2 -4.2 -4.3
n = 1200 -4.2 -4.4 -4.4 -4.2

�
2
0 = 25

n = 100 -2.0 -2.1 -2.4 -2.5
n = 200 -2.1 -2.3 -2.2 -2.1
n = 300 -2.4 -2.5 -2.6 -2.5
n = 500 -2.6 -2.5 -2.2 -2.1
n = 800 -3.3 -3.2 -3.6 -3.4
n = 1200 -3.6 -3.7 -3.8 -3.9

tails and skewness respectively.

Table (2.7) and (2.8) report the actual and bootstrapped standard devi-

ation of an element of � using the proposed copula response envelope model

under di↵erent error distributions . We have the following findings: (1) over-

all there exist no significant di↵erences for di↵erent error distributions, which

means the proposed copula response envelope model is robust to moderate

deviation from the normality assumption; (2) the bootstrapped standard de-

viation still a reasonable estimate of the actual standard deviation under mod-

erate deviation from the normality.

In summary, comparing these di↵erent envelope response models, we have

the following conclusions: using either the original data ( eY, eX) or the observed

data (Y,X), the original response envelope model failed to pick up the right

envelope structure and reduced to the standard estimator, which means no
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Table 2.8: Response Envelope Models Setting 1: Comparisons of the boot-
strapped standard deviation of b� under di↵erent error distribution. The re-
sults are based on 200 replications.

log(SD(b�)) n Normal t6 Uniform �
2
4

�
2
0 = 5

n = 100 -2.6 -2. 6 -2.7 -2.7
n = 200 -3.2 -3.3 -3.1 -3.3
n = 300 -3.3 -3.5 -3.2 -3.3
n = 500 -3.9 -4.1 -3.8 -4.0
n = 800 -4.2 -4.1 -4.3 -4.4
n = 1200 -4.4 -4.3 -4.2 -4.3

�
2
0 = 25

n = 100 -2.1 -2.2 -2.4 -2.1
n = 200 -2.2 -2.5 -2.2 -2.4
n = 300 -2.5 -2.4 -2.6 -2.5
n = 500 -2.6 -2.7 -2.2 -2.5
n = 800 -3.5 -3.4 -3.6 -3.5
n = 1200 -3.7 -3.8 -3.8 -3.9

e�ciency gain was obtained. The scaled response envelope model was able

to estimate the right envelope structure using the original data ( eY, eX) (not

observed) but not using the observed data (Y,X). The proposed Gaussian

copula response envelope model was able to pick up the correct envelope struc-

ture using either the original data (eY, eX) or the observed data (Y,X).

2.6.2 Data Analysis

We apply the proposed copula response envelope model to an ADHD study to

examine the relationship between brain connectivity and a few demographic

variables including age, gender and the ADHD status.

Attention deficit hyperactivity disorder (ADHD) is one of the most com-

mon childhood neuropsychiatric disorders. The psychopathology of ADHD is

marked by developmentally inappropriate and pervasive expressions of inatten-

tion, overactivity, and impulsiveness, and it often persists into adulthood. The
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understanding of the underlying pathophysiology of neuropsychiatric illnesses

remains insu�cient [55], and clinically useful biomarkers are rarely attained

for ADHD [56]. Recent studies have demonstrated the potential of medical

imaging such as functional magnetic resonance imaging (fMRI) and di↵usion

tensor imaging (DTI) in predicting patient outcomes and understanding the

underlying pathophysiology of diseases [57, 58, 59].

The data used here is the publicly available resting-state fMRI (rs-fMRI)

data from the ADHD-200 Consortium [60]. fMRI is a neuroimaging procedure

that measures brain activity by detecting changes associated with blood flow,

and rs-fMRI is acquired when a subject is not performing an explicit task.

rs-fMRI is useful for exploring the brain’s functional organization and deter-

mining whether it is altered in neurological or psychiatric diseases. The data

set contains 120 subjects (n = 120) from the NYU site (New York University

Child Study Center) of the ADHD-200 Consortium. The data were prepro-

cessed through the Athena pipeline [61] and are region of interest (ROI) based.

The Anatomical Automatic Labeling (AAL) atlas [62] was used for the par-

cellation. For each subject, there are 172 time courses and the AAL has 116

ROIs. The cerebra include 90 regions (45 in each hemisphere), and the cerebel-

lar include 26 regions (9 in each cerebellar hemisphere and 8 in the vermis). Of

the 120 subjects, 42 are typically developing children and 78 are diagnosed as

ADHD. The ADHD group is further separated into ADHD-Combined (n = 33)

and ADHD-Inattentive (n = 45). Table 2 gives the demographic characteris-

tics and neuropsychological scores of the subjects analyzed in this study. The

verbal IQ scores measure general knowledge, language, reasoning, and mem-

ory skills, while the performance IQ scores measure spatial, sequencing, and
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Table 2.9: Characteristics of ADHD subjects and healthy controls

Characteristics ADHD (n = 78) Controls (n = 42) p-value

Gender (female/male) 41/37 27/15 0.297 a

Age (year) 9.75 ± 0.37 10.93 ±0.55 <0.0005 b

Verbal IQ 107.37± 2.31 114.31 ± 3.11 <0.0005 b

Performance IQ 110.85 ± 3.31 106.81 ± 4.07 0.1255 b

Full-scale IQ 110.14 ±2.56 111.69 ±3.39 0.4656 b

a The p value was obtained by �
2 test.

b The p value was obtained by two-sample two-tailed t-test.

problem-solving skills. The verbal and performance IQ scores are summed

and converted to obtain the full-scale IQ scores. No significant di↵erences in

gender, performance IQ, or full-scale IQ were found, and a significantly higher

age and verbal IQ were found in the healthy control subjects.

For each subject, we obtained the mean time series for each of the 116

regions by averaging the fMRI time series over all voxels in the region. We

computed partial correlation coe�cients between each pair of ROIs. Each

partial correlation measures the degree of association between two regions

while controlling the e↵ect of the remaining regions. In the variable selection,

the goal is to find the significant brain functional connectivity that contribute

to the level of ADHD. Each partial correlation is considered to be a predictor,

so initially we have p = (116 ⇥ 116 � 116)/2 = 6670. Figure 1 shows the

histograms of the mean partial correlations between ROIs in ADHD subjects

and controls.

Because of the large p small n scenario (n = 120, p = 6670), we first

applied a variable screening to remove some partial correlations that are not

significant. We used a Fisher’s r-to-z transformation to improve the normality
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of these partial correlation coe�cients. We used a two-tailed t test between

the z values of the ADHD group and the control group to determine whether

the functional connections are di↵erent. The selected significant functional

correlations between the ADHD subjects and the control must satisfy two

criteria: (1) significantly di↵erent z values at the threshold of p < 0.001; (2) z

values for the correlations that are significantly di↵erent from zero in at least

one group at the threshold of p < 0.001. We did not apply a multiple-testing

p-value correction because the screening step is a preliminary step, and a

more complicated analysis will be applied using the proposed variable selection

algorithms. After the screening, we selected p = 12 functional connections for

the robust variable selection.

Due to the strong correlation existing among the functional connectivity

between the regions, there are potentially lots of room for e�ciency gain. We

take the selected 12 functional connections as the response variables, for the co-

variates we consider gender, age, verbal IQ, performance IQ, and ADHD index,

which is a measurement of the overall level of ADHD symptoms. It is a contin-

uous variable ranging from 40 to 90, and typically developing children usually

have a score below 50. This variable is more informative than the ordinal

ADHD diagnosis result. Typically the ADHD index is log transformed, how-

ever, in our case, since the proposed method is equivariant towards log transfor-

mation, we do not need to do that here. We compare the standard errors of the

ordinary least squares estimator �̃ to the standard errors of the scaled envelope

estimator b� by using the fractions fij = 1 � davar1/2(
p
n�̃

ij
)/davar1/2(

p
nb�

ij
),

where the subscripts i, j indicate the elements of the estimator of �.

We first fit an ordinary envelope model to the data and BIC suggested that
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u = 9. Compared to �̃, the standard deviations of the elements in the ordinary

envelope estimator were 2.0% to 15.6% smaller. A sample size of about n = 100

observations would be needed to reduce the standard error of the ordinary least

squares estimator by 15.6%. Then we fit a scaled envelope model to the data

and BIC suggested that u = 7. Compared to �̃, the standard deviations of

the elements in the scaled envelope estimator were 5.0% to 35.4% smaller.

A sample size of about n = 100 observations would be needed to reduce

the standard error of the ordinary least squares estimator by 35.4%. At last

we fit the proposed copula envelope model to the data and BIC suggested

that u = 5. Compared to �̃, the standard deviations of the elements in the

scaled envelope estimator were 7.0% to 64.7% smaller. A sample size of about

n = 100 observations would be needed to reduce the standard error of the

ordinary least squares estimator by 64.7%. Based on these empirical results,

it seems the proposed copula response envelope model has the potential to

o↵er more e�ciency gains.

2.7 Discussion

Multivariate linear regression is one of the most fundamental tools in data

analysis. Response envelope model o↵ers a great framework to potentially

utilize the dependencies between the response variables to obtain more e�-

cient estimation for the coe�cient �. The linear combinations of Y that are

useful to the regression are called material parts. The e�ciency gains can be

quite substantial. However, the original envelope model is quite strict on the

data generating process. For example, the original response envelope model is
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not invariant or equivariant on scaling, which can be a challenge in practice,

since this means that a simple rescaling can change the envelope structure.

To address this issue, scaled envelope model was proposed by Cook and Su

(2013)[12]. The proposed scaled envelope model can handle the rescaling of

response variables.

Another strong assumption imposed on the model is the linearity between

response and covariates. The linearity assumption is often too restrictive in

practice. To deal with the nonlinearity, one can either transform the data so

that there is linear relationship between the transformed variables or use a

non-linear regression method. The use of linear models is greatly enhanced

through the use of various transformations of the data. There are a few rea-

sons why a transformation of the data makes sense in practice. For example,

sometimes there exists prior knowledge that the data generating process corre-

sponds to a theoretical model, which has a specific parametric form; sometimes

the data itself appears a nonlinear pattern between the response and covari-

ates. What kind of data can be transformed into a linear relationship is often

hard to determine. Data transformations, such as the Box-Cox transforma-

tion, Fisher’s z transformation and variance stabilization transformation, have

been frequently used to improve a linear fit. However, typically these transfor-

mations need to be applied before the regression, and various transformations

have to be applied in order to find the right one.

In this chapter, we presented the Gaussian copula response envelope model,

which can be seen as a hybrid of the Gaussian copula regression and scaled

response envelope model. The proposed model can handle continuous and

monotone transformations of both response variables and covariates. The
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proposed model is highly useful in practice since it is not necessary to try

di↵erent transformations now in order to find suitable envelope structures

to the data for more e�cient estimation. Under the current framework, the

transformation has to be continuous and strictly monotone. Possible relaxation

of the current method is a generalization to continuous piecewise monotone

functions, or even piece-wise continuous functions. For example, when we

have a binary response, the current framework can be generalized to envelope

logistic regression model. Also, when the response or covariates are censored,

the censoring can be expressed using a transformation function or as a nested

model. Another example is the use of splines to accommodate more nonlinear

e↵ects. If the current class of transformation functions can be generalized to a

broader class, many other useful models can be further incorporated, and thus

more complex types of data can be handled by response envelope models.
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Chapter 3

Gaussian Copula Predictor
Envelope Model and Partial
Least Squares

3.1 Introduction

In the last chapter we considered the response envelope model and its several

variants, where the dimension reduction is applied to Y relying on the notion

of material and immaterial components. However, for most applications in

practice, it is the dimension of the covariates X that needs to reduced. For

example, in clinical trails, di↵erent information of the trial participants have

been recorded including the demographic, clinical, drug-related and psycho-

logical related variables. All of them could be potentially related to the many

di↵erent response variables we are considering in the study. Nowadays espe-

cially with the popularity of the use of electronic patient record data, there

might be thousands or even hundreds of thousands of variables available for

each trial participant, including past drug intakes, hospital admittance and

family medical history.
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Traditional variable selection methods such as forward selection, backward

elimination and best subset selection become computationally expensive or

even infeasible at these conditions. To address these problems, a family of

penalized least squares based methods has been developed. Examples include

Lasso and Adaptive Lasso ([41, 49]), SCAD [19], elastic net [50], and MCP [46].

However, when the dimensionality p is much larger than the sample size n or

even grows exponentially with n, the aforementioned penalization methods can

perform poorly or even become infeasible due to the simultaneous challenges

of computational expediency, statistical accuracy and algorithm stability [21].

For example, in MRI studies, images with dimension 1024 ⇥ 1024 ⇥ 200 can

be acquired for each subject, and due to the high cost of the MRI scanning,

studies might only contain less than 100 subjects. If we treat the signal from

each voxel as a feature, the dimension of feature space p is much higher than

the sample size n.

A natural idea to address these challenges is to reduce the dimensionality

p from a large scale to a relatively small scale d using a fast screening algo-

rithm, and then the ultrahigh-dimensional problem can be greatly simplified

into a moderately high-dimensional one. Subsequently, the standard penal-

ized variable selection methods can be applied to the remaining variables. Fan

and Lv [20] first introduced the sure independence screening (SIS) by rank-

ing the marginal correlation of each covariates and the response. The good

numerical performance and novel theoretical properties have made SIS pop-

ular in ultrahigh dimensional reduction. As a result, SIS and its extensions

have been generalized to many important settings including generalized linear

models [22], multi-index semi-parametric models [48], nonparametric regres-
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sion [18], quantile regression [24], among others. Other marginal screening

methods based on di↵erent measure of association between predictors and re-

sponse have also been studied, such as Kendall’s ⌧ [32] and distance correlation

[33]. We refer to [34] for a more comprehensive list of references.

Besides the methods mentioned above in variable selection and screening,

another type of method to reduce the dimensionality in the predictor space

is through su�cient dimension reduction. Specifically, we focus on the use of

predictor envelope model in this chapter. Consider the following multivariate

linear regression

Y = ↵+ �(X� µX) + ✏ (3.1)

where the error vector ✏ has mean 0 and covariance matrix ⌃, the random

predictor vector X has mean µX and variance ⌃X, and ✏ ? X. Similar to

the response envelope model, the predictor envelope model seeks to find the

immaterial information in the predictor space that are not relevant to the

estimation of �. The predictor envelope model is actually tightly connected

to the popular partial least squares (PLS) model.

The originally proposed predictor envelope models are not invariant or

equivariant under the rescaling of variables, let along other strictly increasing

transformations. This brings inconveniences to the practical use of envelope

models. For example, it is di�cult to ensure all the covariates are measured by

the same or similar scales, and sometimes the responses might measure di↵er-

ent things, which makes them not comparable. We have observed in practice

that such transformations often resulting in envelope based estimators reduce

back to the ordinary least square estimators, which means no e�ciency gains
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can be achieved. The use of envelope models will be a↵ected greatly as certain

variables with large variance might dominate the results, just as what we see in

methods like the principal component regression, ridge regression and partial

least squares. To address this issue, Cook and Su (2016)[13] proposed scaled

predictor envelope model, which is invariant to a scaling of the predictors.

Similar to the scaled response envelope model, the basic idea is to introduce

scaling parameters to estimate the best rescaling of the variables under consid-

eration. Unlike the scaled response envelope model, Cook and Su (2016)[13]

allowed groups of predictors to be scaled in the same way, but not individually.

This brings some constraints on the applicability of the scaled predictor enve-

lope model. For example, there is no point in rescaling all the predictors in

univariate linear regression since the asymptotic variance of the scaled predic-

tor envelope estimator reduces to that of the ordinary least squares estimator.

However, the gains can still be substantial in multivariate linear regression

and when there are natural intuition to rescale the predictors in group, for

example, when several predictors are measured in similar or the same scale.

In this chapter, we further broaden the scope of predictor envelope model

and partial least squares. Specifically, we allow the estimators to be equiv-

ariant against continuous increasing transformations, which includes a large

class of the popularly used transformations such as log transformation, box-

cox transformation and variance stabilization transformation. Similar to the

proposed Gaussian copula response envelope model in Chapter 2, we combine

the framework of Gaussian copula model and scaled predictor envelope model.

The proposed Gaussian copula predictor envelope model relaxes the linear as-

sumption between covariates and responses, and it can pick up the envelope
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structures when scaled predictor envelope reduces to ordinary least squares.

This is also di↵erent from the work in both Cai and Zhang (2018)[4] and Zhao

and Genest (2019)[47], where a penalized regression framework has been used.

The rest of this chapter is organized as follows. In Sections 3.2 and 3.3,

we first introduce the background of predictor envelope model and scaled re-

sponse envelope model. In Section 3.4, we introduce the proposed Gaussian

copula predictor envelope model. The model formulation, estimation, selection

of envelope dimension have been established. In Section 3.5, the theoretical

properties have been established, including the uniqueness, consistency and

asymptotic normality. Simulation studies and data analysis can be found in

Section 3.6.

3.2 Predictor Envelope Model and Partial Least
Squares

PLS is a popular method in dimension reduction, and it has been widely used

in chemistry, agriculture and medicine. Historically, it was defined in terms

of the iterative algorithms NIPALS (Wold, 1966[45]) and SIMPLS (de Jong,

1993[16]). Nowadays it has been used as a method to improve the predictive

performance of ordinary least square regression. The idea behind PLS is to find

a few linear combinations X ! �TX that maximizes the covariance with the

responses subject to certain constraints. Here � 2 Rp⇥u, is a semi-orthogonal

matrix that we temporarily assume to be known, and u is called a number of

components. Estimation and prediction are then based on the OLS fit of the
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reduced model

Y = ↵+ ⌘T�T (X� µX) + ✏, (3.2)

where the coe�cient ⌘ 2 Ru⇥r .The PLS estimator of � is

b�
PLS

= �b⌘ = �(�T
SX�)

�1�T
SXY = P"SX

b�
ols
, (3.3)

where b�
ols

is the OLS estimator of �. Compared to OLS, PLS has a dimension

reduction step, which reduces p predictors X to u components �TX. When

u = p, � = Ip and PLS degenerates to OLS. When u < p, PLS often shows

better prediction performance over OLS, especially when there is collinearity

among the predictors.

The SIMPLS version ([16]) of PLS uses the following algorithm to construct

an estimator of �. Set b�1 equal to the eigenvector of SXYS
T

XY corresponding

to its largest eigenvalue, and let b�k = (b�1, . . . , b�k), k = 1, . . . , p. Given b�k and

k < p,

b�k+1 = argmax
g

g
T
SXYS

T

XYg, s.t.gTSX
b�k = 0 and g

T
g = 1. (3.4)

Then b�PLS = b�u is the SIMPLS estimator of �.

The predictor envelope model is derived under the linear regression model,

but Y can be either univariate or multivariate. The predictor envelope model

is constructed based on a dimension reduction of the predictor space X. Cook

et al. (2013)[9] used envelopes to account for immaterial variation in the

predictor space, resulting in a di↵erent envelope estimator that outperforms

OLS and PLS estimators.

Denote S as a u-dimensional subspace of Rp with u < p. Let G 2 Rp⇥u be

an orthonormal basis of S and G0 2 Rp⇥(p�u) be an orthonormal basis of S?,
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the orthogonal complement of S. The envelope model arises by imposing the

following two conditions on GTX and GT

0X:

(i) GT

0X|Y ⇠ GT

0X and (ii) cov(GXY,GT

0X|Y) = 0. (3.5)

Condition (i) implies that the marginal distribution of GT

0X must be unaf-

fected by changes in Y, and condition (ii) requires that GT

0X must be un-

a↵ected by changes in Y through an association with GTX. The above two

conditions combined imply that any dependence of Y on X must be concen-

trated on GTX, and GT

0X carries no material information for the estimation

of �. The two conditions in (3.5) hold if and only if (a) B := span(�) 2 S and

(b) S is a reducing subspace of ⌃X. The definition of reducing subspace has

been given in Chapter 2.

There are many subspaces that reduce ⌃X and contain B. We define

the ⌃-envelope of B as the smallest reducing subspace of ⌃X that contains

B. The smallest here means the intersection of all such subspaces. The ⌃-

envelope of � is often denoted as "⌃X(B). The multivariate linear regression

model (3.1) now can be reparametrized in terms of "⌃X(B) by using a basis.

Let u = dim(E⌃X(B)), and let �,�0 2 Rp⇥p be orthogonal matrices with

� 2 Rp⇥p, span(�) = E⌃X(B), and span(�0) = E?
⌃X

(B). Then the predictor

envelope copula model can be written as

Y = ↵ + ⌘T�T (X� µX) + ✏, with ⌃X = �⌦�T + �0⌦0�
T

0 , (3.6)

where � = ⌘T�T , and ⌘ 2 Ru⇥r is the coordinate of � with respect to �.

The matrices ⌦ 2 Ru⇥u and ⌦0 2 R(p�u)⇥(p�u) are the coordinates of ⌃

with respect to � and �0, respectively. The variable of interest is still �,
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and we normally do not infer about the constitute parameters �,⌘,⌦ and

⌦0. The values of the ⌘,⌦ and ⌦0 depend on the choice of �. It should

also be noted that the basis matrix � is not identifiable because �O for any

orthogonal matrix O will lead to an equivalent model. However, the envelope

"⌃(B) = span(�) is identifiable, which is the key for the estimation of �.

Under this formulation, it is also straightforward to see the covariance matrix

⌃X can be decomposed as a sum of the covariance matrix of the material

part of the response var(P"X) = �⌦�T and immaterial part of the response

var(Q"X) = �0⌦�T

0 .

The estimation problem of the parameters in (3.6) depends on the dimen-

sion of the envelope u. Assuming that u is known and a normal likelihood func-

tion, Cook et al. (2013)[9] derived estimation procedures. The log-likelihood

for fixed u can be written as

Lu(�) = log |�T
SX|Y�|+ log |�S�1

X �|. (3.7)

After obtaining a minimizer of the above objective function, the remaining

parameters are determined as

b⌦ = b�
T

SX
b�

b⌦0 = b�
T

0 SX
b�0

d⌃X = b�b⌦b�
T

+ b�0
b⌦0

b�
T

0

b⌘ = b⌦
�1b�

T

SXY

b� = b�b⌘.

Assuming that (X,Y) is multivariate normal, Cook et al. (2013)[9] showed

that the likelihood based estimator b� of � is more e�cient or at least as e�-

cient as the OLS estimator asymptotically, and that the e�ciency gain can be
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substantial when ||⌦|| > ||⌦0||, where ||.|| is the spectral norm. Additionally,

they proved that b� is a
p
n�consistent estimator under model (3.6) without

normality.

PLS and predictor envelope models are closely related. Cook et al. (2013)[9]

showed that b�PLS is a
p
n- consistent estimator of a basis for "⌃X(B) and that

the number of PLS components corresponds to the dimension u of "⌃X(B).

The envelope and SIMPLS estimators, b� and b�PLS, have the same form and

are based on the same population construct "⌃X(B), but di↵er in their meth-

ods of estimating a basis for "⌃X(B). Additionally, b� typically dominates

b�PLS in both estimation and prediction and is less sensitive to the number of

components selected [9].

The maximum likelihood estimation procedure described above are based

on a known u. The dimension of the envelope subspace, u, is a model selection

parameter. In practice, the popular ways of selecting u include sequential

likelihood ratio test, information criterion such as AIC or BIC, and cross-

validation.

3.3 Scaled Predictor Envelope Model

Like PLS and the principal component regression, the predictor envelope model

presented in Section 3.2 is not invariant or equivariant under scale transfor-

mations. Figure (3.1) shows an example of how rescaling the response can

a↵ect an envelope analysis. After the rescaling, all linear combinations of Y

are material to the regression and the envelope model is the same as the stan-

dard model and no e�ciency gains have been achieved. This could potentially
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Figure 3.1: Schematic illustration of how rescaling the predictor can a↵ect an
envelope analysis. (a) original distributions, (b) rescaled distributions.

greatly limit the use of envelope models in practice since the measuring units

might vary greatly for di↵erent response variables. Cook and Su (2016)[13]

proposed a scaled predictor envelope model to achieve scale invariance for re-

sponse envelope model, and the details can be seen in Section 2.3. The basic

idea for the scaled predictor envelope model is similar to the one in the scaled

response envelope model. However, the problem itself is quite di↵erent, and

the techniques used in both models are di↵erent.

In the scaled response envelope model, each response variable is assigned a

scaling parameter. In the scaled predictor envelope model, we adopt a di↵erent

strategy. Consider ⇤ 2 Rp⇥p to be a diagonal matrix with repeated diagonal

elements in blocks 1, . . . , 1,�1, . . . ,�1, . . . ,�q�1, . . . ,�q�1, where 1,�1, . . . ,�q�1
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are q positive numbers. Suppose that the i-th of these q scalings has ri replica-

tions,
P

q

i=1 ri = p. The range of q can go from 1 to p, and the implications of

di↵erent q will be discussed later in the theoretical results section. Assume that

the scaled response vector ⇤�1X follows the predictor envelope model (3.6),

so the scaled predictor envelope model for the original responses X becomes

Y = ↵+⌘T�T⇤�1(X�µX)+ ✏, with ⌃X = ⇤�⌦�T⇤+⇤�0⌦0�
T

0⇤. (3.8)

The scaled response ⇤�1X follows an envelope model with u-dimensional en-

velope "⇤�1⌃⇤�1(⇤�1B) and semi-orthogonal basis matrix �. The material

and immaterial pairs of X are ⇤P�⇤�1 and ⇤Q�⇤�1, respectively. To show

that model (3.8) follows the same envelope structure as (3.5), we denote

U = ⇤P�⇤�1 and V = ⇤Q�⇤�1. It is easy to verify that

(i) VX|Y ⇠ VX and (ii) cov(UX,VX|Y) = 0.

The SPE model has N(u) = r + p + q � 1 + ur + p(p + 1)/2 + r(r + 1)/2

parameters. The maximum likelihood estimators b⇤ and b� of ⇤ and � can be

obtained by minimizing the objective function

Lu(⇤,�) = log |�T⇤�1(SX � SXYS
�1
Y SYX)⇤

�1�|+ log |�T⇤S�1
X ⇤�|. (3.9)

The optimization of (3.9) can be performed in an alternating fashion. Given

a fixed value of ⇤, we can obtain the optimal value for �; given the obtained

value �, we then obtain the optimal value for ⇤. We iterate between � and ⇤

until the di↵erence between the objective functions in two adjacent iterations is

smaller than a pre-specified value. Once we obtained b� and b⇤, compared with

the standard response envelope model, the scaled response envelope model
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introduces the new scaling parameter ⇤. The maximum likelihood estimators

of the remaining parameters are as follows:

bµX = X̄;

b↵ = Ȳ;

b⌘ = (b�
T b⇤�1

SX
b⇤�1b�)( � 1)b�

T b⇤�1
SXY;

b� = b⇤�1b�b⌘,

b⌦ = b�
T b⇤�1

SX
b⇤�1b�,

b�
T

0 = b�
T

0
b⇤�1

SX
b⇤�1b�0,

b⌃ = b⇤b�b⌦b�
T b⇤T + b⇤b�0

b⌦0
b�
T

0
b⇤T

.

The algorithms used in minimizing (3.9) are similar to the ones used in the

standard response envelope model. The strategies used in choosing the en-

velope dimension u here are also similar, including likelihood-based methods

such as AIC and BIC, and nonparametric methods such as cross validation

and permutation test.

A global minimizer in (3.9) is not unique; however, span(b�) is typically

unique. Also, both ⇤ and � are constituents of the parameters of interest �

and ⌃X, which are identifiable. The e�ciency gain depends on the relative

magnitude of ⌦ and ⌦0.

3.4 Gaussian Copula Predictor Envelope Model

3.4.1 Motivation

One of the key assumptions in the previously introduced predictor envelope

model and scaled predictor envelope models is the linearity between the X and

Y, which is often too restrictive and unrealistic. For example, there might not
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be an e�cient envelope structure among X. However, such structures might

exist in transformed f(X), where f includes a large class of popularly used

functions such as log function. This greatly enhances the power of predic-

tor envelope model and partial least squares since potential extra dimension

reduction can be discovered.

We consider the following model, which has been widely used in a range of

applications,

g(Y) = ↵+ �f(X) + ✏, (3.10)

where f(X) = (f1(X1), . . . , fp(Xp)> and g(Y) = (g1(Y1), . . . , gr(Yr)> are un-

known functions. Examples of model (3.10) include the additive regression

model, single index model, copula regression model, and semiparametric pro-

portional hazards models, among others. Typically, when we apply a transfor-

mation to data, the transformation functions are continuous and one-to-one,

for example, log transformation, Box-cox transformation and Fisher’s z trans-

formation. The functions that satisfy these two assumptions must be strictly

monotone.

Under model (3.10), the linearity is assumed between g(Y) and f(X), and

if the transformation functions f and g are known, we can use envelope mod-

els to e�ciently estimate �. Unlike in Chapter 2, we consider the dimension

reduction in f(X). This problem is often addressed under the name of penal-

ized least squares, where a penalty term of f(X) is added to the estimation

equation to achieve sparsity in �. Here we take a di↵erent perspective: instead

of selecting the predictors that influence the response the most, we seek linear

combinations of the predictors that carries all the essential useful information
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in explaining the responses. Specifically, we allow the predictors to be trans-

formed into f(X) and this greatly broaden the scope of the scaled predictor

model.

3.4.2 Model Formulation

Let us further formulate (3.10) in more details. Suppose we have an inde-

pendent and identically distributed random sample Z1 = (Y1,X1), . . . ,Zn =

(Yn,Xn) 2 Rp+r. The observations (Yi,Xi) satisfies the Gaussian copula

regression model, if there exists a set of strictly increasing functions g =

{g1, . . . , gr} and f = {f1, . . . , fp} such that the marginally transformed ran-

dom vectors eZi = (eYi,
eXi) = (g1(Y1), . . . , gr(Yr), f1(X1), . . . , fp(Xp)) satisfy

eZi ⇠ Np+r(0,⌃Z) for some positive-definite covariance matrix ⌃Z . Under a

Gaussian copula regression model, one has the following linear relationship for

the transformed data:

eYi = � eXi + ✏i, i = 1, . . . , n, (3.11)

where � 2 Rr⇥p and ✏i are i.i.d. zero-mean Gaussian variables. The fundamen-

tal di↵erence between the Gaussian copula regression model (3.11) and conven-

tional linear regression model is that one observes {(Y1,X1), . . . , (Yn,Xn)},

instead of {(eY1,
eX1), . . . , (eYn,

eXn)} as the transformations f and g are un-

known.

For model (3.11), the linear relationship is assumed between the unobserved

{(eY1,
eX1), . . . , (eYn,

eXn)}. Similarly, we assume an envelope structure exists

for the unobserved {(eY1,
eX1), . . . , (eYn,

eXn)}, and we can use the observed

{(Y1,X1), . . . , (Yn,Xn)} to estimate the envelope structure, which means the

57



proposed Gaussian copula response envelope is invariant towards any strictly

increasing transformation of the responses and predictors. We assume the

following predictor envelope exist between the unobserved eY and eX.

eY = ⌘T�T⇤�1 eX+ ✏, with ⌃eX = ⇤�⌦�T⇤+ ⇤�0⌦0�
T

0⇤, (3.12)

The scaled response ⇤�1 eX follows an envelope model with u-dimensional en-

velope "⇤�1⌃⇤�1(⇤�1B) and semi-orthogonal basis matrix �. The material and

immaterial pairs of Y are ⇤P�⇤�1 and ⇤Q�⇤�1, respectively.

As one can notice, the structure of the proposed Gaussian copula predictor

envelope (3.12) is very similar to the ones in scaled predictor envelope (3.8),

with slight di↵erences where one only observes the transformed {Y,X}, in-

stead of {eY, eX}. The key obstacle now is to estimate the parameters in (3.12)

without observing {eY, eX}. If we take a closer look at the likelihood function

in the objection function in scaled predictor envelope (3.9), the essential infor-

mation we need is the covariance matrix eX and the residuals, so the question

now becomes how do we estimate SeX and SeX| eY using only the observed X

and Y. Similarly, a key to this question is the use of rank-based correlation

estimator. To keep the autonomy of this chapter, we introduce the rank-based

estimator of correlation again, which is essentially similar to Section 2.4.3.

3.4.3 Rank-based Estimator of Correlation Matrix

The goal here is to estimate the ⌃Z , the covariance matrix of eZ, using only the

observed (Y,X). Since the marginal transformations f and g are unknown,

we use rank-based correlation of the observed data Z to estimate the covari-

ance/correlation matrix ⌃Z . Given that f and g are strictly monotone, Z and
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eZ have the same elliptical copula. Set d = p + r. If eZi ⇠ Nd(0,⌃Z) with

⌃Z = (�jk)1j,kd, then

�jk = sin(
⇡

2
⌧jk),

where ⌧jk is Kendall’s tau and is defined as

⌧jk = E[sgn(Z̃1j � Z̃2j)sgn(Z̃1k � Z̃2k)]

with eZi = (Z̃i1, . . . , Z̃id)T , i = 1, 2 being two independent copies of Nd(0,⌃Z).

The Kendall’s tau ⌧jk is invariant under strictly increasing marginal trans-

formations. This promises that using the observed data Z will return the same

correlation matrix as using the observed eZ. Specifically, we have

b⌧jk =
2

n(n� 1)

X

1i1i2n

sgn(Z̃i1,j � Z̃i2,j)sgn(Z̃i1,k � Z̃i2,k)

=
2

n(n� 1)

X

1i1i2n

sgn(Zi1,j � Zi2,j)sgn(Zi1,k � Zi2,k), 1  j, k  d.

(3.13)

Using the Kendall’s tau correlation estimator, we obtain the following estima-

tor for the correlation matrix ⌃Z ,

⌃Z = (b�jk) with b�jk = sin(
⇡

2
b⌧jk). (3.14)

We divide ⌃Z into four sub-matrices, denoted by ⌃XX ,⌃XY ,⌃Y X ,⌃Y Y , and

their corresponding Kendall’s tau based estimators are b⌃XX ,
b⌃XY ,

b⌃Y X ,
b⌃Y Y .

These covariance estimators will be essential in the estimation of �. However,

keep in mind that here we assume diag(⌃Z) = 1, so the correlation matrix

is the same as covariance matrix. Since the original response envelope model

is not invariant to the rescaling of the variables, we use the scaled envelope

response model.
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Note that Kendall’s tau based correlation matrix may not be positive

semidefinite and we do need to invert some of these matrices. Take b⌃XX

for example, we can project b⌃XX onto the cone of the positive semidefinite

matrices. This can be done using the following convex optimization problem

b⌃+
XX

= argmin
⌃�0

||b⌃XX � ⌃||2,s. (3.15)

3.4.4 Estimation of �

In order to estimate the parameters in (3.12), we use the maximum likelihood

estimators. The derivation of the maximum likelihood estimators can be ob-

tained similar to the ones in the scaled predictor model. Under (3.12), the

scaled predictor ⇤�1 eX follows an envelope model with u-dimensional envelope

"⇤�1⌃⇤�1(⇤�1B) and semi-orthogonal basis matrix �. The material and im-

material pairs of X are ⇤P�⇤�1 and ⇤Q�⇤�1, respectively. The maximum

likelihood estimators b⇤ and b� of ⇤ and �, respectively, can be obtained by

minimizing the objective function

Lu(⇤,�) = log |�T⇤�1(⌃eX�⌃eX eY⌃
�1
eY
⌃ eY eX)⇤

�1�|+log |�T⇤⌃�1
eX
⇤�|. (3.16)

The covariance related quantities such as ⌃eX and ⌃eX| eY can be estimated using

the Kendall’s ⌧ estimator as discussed in Section 3.4.3. Specifically, we use

b⌃XX and b⌃XX � b⌃XY
b⌃�1
XX

b⌃Y X as estimators for ⌃eX and ⌃eX| eY respectively.

Substituting them into the objective function, we have

⇤ = argmin
⇤,�

log |�T⇤�1(b⌃XX � b⌃XY
b⌃�1
Y Y

⌃Y X)⇤
�1�|+ log |�T⇤b⌃�1

XX
⇤�|.

(3.17)

The optimization problem in (3.17) can be performed in an alternation fashion.

We iterate between ⇤ and � until the di↵erence between the objective functions
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in two adjacent iterations is smaller than a pre-specified value. Once we have

b⇤ and b�, the maximum likelihood estimators for the rest of the parameters

can be obtained as follows:

b⌘ = (b�
T b⇤�1b⌃XX

b⇤�1b�)�1b�
T b⇤�1b⌃XY ;

b� = b⇤�1b�b⌘,

b⌦ = b�
T b⇤�1b⌃XX

b⇤�1b�,

b�
T

0 = b�
T

0
b⇤�1b⌃XX

b⇤�1b�0,

b⌃ = b⇤b�b⌦b�
T b⇤T + b⇤b�0

b⌦0
b�
T

0
b⇤T

.

(3.18)

3.4.5 Selection of u

The dimension of the envelope u is an important parameter in determining

the right envelope structure. Likelihood-based methods such as AIC, BIC

or other information criteria can be used to select the dimension u. BIC is

often preferred for parameter estimation and cross validation is preferred for

prediction.

The number of free parameters in model (3.11) can be counted as

Nq,s = s� 1 + r + p+ rq + p(p+ 1)/2 + r(r + 1)/2.

The AIC estimator of u is argmin�2bL(u) + 2Nq,s. The maximized log like-

lihood under the copula predictor envelope model with dimension u take the

following form

bL(u) = �n(p+ r)

2
log(2⇡)� nr

2
� n

2
log |b⌃X|�

n

2
tr(b⌃

�1

X SXX)

� n

2
log |b⌃XX � b⌃XY

b⌃�1
XX

b⌃Y X |.
(3.19)

The BIC estimator of u is argmin�2bL(u) + log(n)N(u). The properties of

BIC under Gaussian copula model is similar to the ones in predictor envelope
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models. If the true model is in the candidate set then, as n ! 1, BIC will

select the true model with probability tending to 1, AIC will select a model

that at least contains the true model and LRT will select the true model with

probability 1� ↵, where ↵ is a significance level.

3.5 Theoretical Results

Here we establish the consistency and asymptotic normality of the proposed

estimator.

We introduce the operator vec : Ra⇥b ! Rab stacks the columns of a matrix,

and the operator vech : Ra⇥a ! Ra(a+1)/2 stacks the lower triangular part of a

symmetric matrix.

First we establish the consistency and asymptotic normality of the pro-

posed copula predictor envelope (cpe) estimator. Although the CPE esti-

mators of � and ⌃X are derived using the normal likelihood, they are
p
n

consistent without the normality assumption.

Theorem 3.5.1 Assume model (3.12) holds and that (Y,X) has finite fourth

moments. Then

p
n[{vecT (b�

cpe
), vechT (b⌃X,cpe)}T � {vecT (�), vechT (⌃X)}T ]

is asymptotically normally distributed, and b�
cpe

and b⌃X,cpe are
p
n consistent

estimators of � and ⌃X, respectively.

Without the normality assumption, it is di�cult to give a useful expression

for the asymptotic variance of the proposed estimator. However, if we are

wiling to assume the normality, we can obtain the asymptotic variance of the

proposed copula predictor envelope estimators.
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If a quantity is derived from the ordinary predictor envelope, it is des-

ignated with a subscript o. For instance eY and ⇤�1 eX follow an ordinary

envelope model and thus we write �
o
= ⇤�, and ⌃o = ⇤�1⌃eX⇤

�1. The

gradient matrix under model (3.6) is then

Ho = @{vecT (�
o
), vechT (⌃o)}T/@{vecT (⌘), vecT (�), vechT (⌦), vechT (⌦0)}.

Let bdiag(.) denote a block diagonal matrix with diagonal blocks as ar-

guments. The column vector � = (�1, . . . ,�q�1)T contains the q � 1 unique

elements of ⇤, so that �T = vecT (⇤)L, where L = (er1+1⌦ er1+1, . . . , ep�rq+1⌦

ep=rq+1) 2 Rp
2⇥(q�1) extracts the q � 1 scaling parameters from vec(�), ⌦ de-

notes Kronecker product, ei 2 Rp⇥1 contains a 1 in the i-th position and 0

elsewhere.

The Fisher information for {vecT (�
o
), vech(⌃o)} is

Jo = bdiag{⌃�1
eY|eX ⌦⌃o, E

T

p
(⌃�1

o
⌦⌃�1

o
)Ep/2} 2 R{rp+p(p+1)/2}⇥{rp+p(p+1)/2}

.

Let K = bdiag{�⌘T�T⌦Ip, 2Cp(⌃
�1
o

⌦Ip)}(LT
, L

T )T , G = QHo(Jo)K and D =

bdiag{Ir ⌦ ⇤�1
, Cp(⇤ ⌦ ⇤)Ep}. Then the Fisher information for

{vecT (�), vechT (⌃)}T is D�1
J0D

�T .

Theorem 3.5.2 Under the normal Gaussian copula predictor envelope model

(3.12),

p
n[{vecT (b�

cpe
), vechT (b⌃X,cpe)}T � {vecT (�), vechT (⌃X)}T ]

converges in distribution to a normal random vector with mean zero and co-

variance matrix

V = DG(GT
JoG)†GT

D
T +DHo(H

T

o
JoHo)

†
H

T

o
D

T = V1 + V2.
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The estimators b�
cpe

and b⌃X,cpe are more e�cient or are at least as e�cient

as the OLS estimators asymptotically; that is, DJ
�1
o

D
T �V is a positive semi-

definite matrix.

The asymptotic covariance matrix V is decomposed into two parts: V2 is the

asymptotic variance when the scaling ⇤ is known, and V1 can be thought

as the asymptotic cost of estimating ⇤. The above theorem also states that

the proposed copula predictor envelope estimator is asymptotically at least as

e�cient as the OLS estimators. Specifically, let us discuss when the proposed

estimator is more e�cient.

Theorem 3.5.3 Under the normal CPE model (3.12), when u  p�(q�1)/r,

the estimators b�
cpe

and b⌃X,cpe have the same asymptotic covariance as the OLS

estimators.

Let u0 be the ceiling of p � (q � 1)/r. The above theorem states that when

u  u0, the CPE estimators and the OLS estimators have the same asymptotic

variances. This means that there is no point to rescale all of the predictors

in the univariate linear regression and the the proposed model works better

when considering multiple responses.

3.6 Simulations and Data Analysis

3.6.1 Simulations

Following the settings as in Cook and Su (2016)[13], we set r = 8, u = 5

and p = 10. The elements in ⌘ were generated from the U(0, 2) distribution,

and (�,�0) was obtained by normalizing a p⇥ p matrix whose elements were
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generated as independent and from the U(0, 1) distribution. For the covariance

matrices, we take ⌦ = �
2
I5 and ⌦0 = �

2
0I5 with � = 5 and �0 =

p
5 or 5.

The scaling parameter ⇤ takes diagonal elements 20, 20.5, 21, . . . , 24.5. We

simulated the error term ✏ from the multivariate normal distribution with

mean 0 and covariance matrix ⌃Y|X = ADA
T , where A is an orthogonal

matrix obtained by normalizing an r ⇥ r matrix of U(0, 1) random variables,

andD is a diagonal matrix with diagonal elements 1, 2, . . . , r. The sample sizes

were 100, 200, 300, 500, 800, 1200, and 200 replicates were used for each sample

size. We consider two settings. For the first setting, we set Yij = exp(Ỹij) and

Xij = 3 ⇤ X̃ij � 10 for i = 1, . . . , 5, Yij = 2 ⇤ Ỹij + 5 and Xij = exp(X̃ij) for

i = 6, . . . , 10; and for the second setting, we set Yij = �(Ỹij) and Xij = X̃
2
ij
+5

for i = 1, . . . , 5, Yij = Ỹ
3
ij
� 10 and Xij = �(X̃ij) for i = 6, . . . , 10.

We compared the performance of the original predictor envelope [9] the

scaled response envelope [13] and the proposed Gaussian copula response en-

velope using either original data (eY, eX) or the observed data (Y,X). To

evaluate the performances of these models, we considered two important met-

rics: the angle between the true envelope space and the estimated envelope

space using di↵erent envelope models and the standard deviation of b�. The

angle \{span(A1), span(A2)} between the subspace spanned by columns of

the semi-orthogonal basis matrices A1 2 Rr⇥u and A2 2 Rr⇥u was computed

in degrees as the arc cosine of the smallest absolute singular value of AT

1A2.

Tables (3.1) to (3.4) report the comparison of the angles between the es-

timated and true envelope space for di↵erent simulation settings. Again we

point out that the range of the angle is between 0 and 90 degrees. Usually if the

angle is larger than 40 degrees (depending on the size of the space), it means
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Table 3.1: Predictor Envelope Models Setting 1 with �
2
0 = 5: Comparisons

of the angle between the true envelope subspace and the estimated subspace
using the correct envelope dimension u = 5. The results are based on 200
replications.
Angle n Original Envelope Scaled Envelope Copula Envelope

{eY, eX}

n = 100 84.56 10.35 10.23
n = 200 89.24 8.45 8.56
n = 300 84.56 8.56 8.45
n = 500 85.45 8.32 8.24
n = 800 82.35 7.84 7.38
n = 1200 89.34 7.34 7.37

{Y,X}

n = 100 85.67 75.24 10.26
n = 200 88.34 78.56 8.45
n = 300 85.65 74.34 8.89
n = 500 86.34 78.23 8.56
n = 800 83.24 77.21 7.29
n = 1200 89.12 74.56 7.40

that the envelope models failed to find the right structure. As expected, we

have the following findings: 1) the original predictor envelope did not pick up

the envelope structure on all occasions; 2) the scaled predictor envelope model

is able to pick up the envelope structure using (eY, eX), which is not observed

in practice, but not the observed (Y,X); 3) the proposed copula predictor

envelope is able to pick up the correct envelope structure using either (eY, eX)

or (Y,X), and the performances are very similar; 4) with the increase of sam-

ple size, the performance of the proposed copula predictor envelope estimators

improves; 5) with the increase of the contract between material and immate-

rial parts (increase of �0), the performance of the proposed copula predictor

envelope estimators improves.
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Table 3.2: Predictor Envelope Models Setting 1 with �
2
0 = 25: Comparisons

of the angle between the true envelope subspace and the estimated subspace
using the correct envelope dimension u = 5. The results are based on 200
replications.
Angle n Original Envelope Scaled Envelope Copula Envelope

{eY, eX}

n = 100 88.45 8.45 9.01
n = 200 84.56 7.45 7.54
n = 300 82.34 6.78 6.79
n = 500 83.45 6.03 6.05
n = 800 83.45 5.84 5.88
n = 1200 81.23 4.85 4.89

{Y,X}

n = 100 85.67 74.56 9.05
n = 200 84.32 73.24 7.50
n = 300 87.45 74.56 6.89
n = 500 89.34 74.56 6.06
n = 800 84.56 72.91 5.88
n = 1200 83.45 68.45 4.89

Table 3.3: Predictor Envelope Models Setting 2 with �
2
0 = 5: Comparisons

of the angle between the true envelope subspace and the estimated subspace
using the correct envelope dimension u = 5. The results are based on 200
replications.
Angle n Original Envelope Scaled Envelope Copula Envelope

{eY, eX}

n = 100 85.67 10.38 10.24
n = 200 88.34 8.44 8.53
n = 300 85.43 8.53 8.46
n = 500 84.25 8.31 8.22
n = 800 82.24 7.89 7.41
n = 1200 84.45 7.40 7.37

{Y,X}

n = 100 84.34 74.53 10.26
n = 200 84.56 79.54 8.56
n = 300 86.65 73.45 8.45
n = 500 81.23 78.32 8.25
n = 800 84.24 71.23 7.40
n = 1200 86.24 72.34 7.39
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Table 3.4: Predictor Envelope Models Setting 2 with �
2
0 = 25: Comparisons

of the angle between the true envelope subspace and the estimated subspace
using the correct envelope dimension u = 5. The results are based on 200
replications.
Angle n Original Envelope Scaled Envelope Copula Envelope

{eY, eX}

n = 100 84.56 8.46 9.02
n = 200 81.56 7.51 7.56
n = 300 82.34 6.81 6.81
n = 500 83.34 6.02 6.07
n = 800 85.45 5.89 5.87
n = 1200 86.78 4.84 4.88

{Y,X}

n = 100 84.56 73.45 9.04
n = 200 83.45 71.12 7.61
n = 300 82.34 74.34 6.83
n = 500 84.56 76.56 6.04
n = 800 89.24 78.34 5.67
n = 1200 81.24 72.31 4.85

3.6.2 Data Analysis

To evaluate the usefulness of the proposed copula predictor envelope model,

we use the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [2] 1 data. In

Chapter 2, we used the ADHD-200 data to predict brain connectivity using

some demographic and clinical variables. In this data analysis, we take a

di↵erent perspective. The goal is to use demographic, clinical variables and

brain connectivities to predict the Alzheimer’s Disease assessment scores of

the participants. This is an excellent data to test the proposed method since

the response variables are multivariate (di↵erent aspects of the psychological

1Data used in preparation of this thesis were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investiga-
tors within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in the analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf
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testing scores), and there are a large number of predictors with di↵erent scales

collected. Also, preliminary analysis show that the linearity does not hold well

between some predictors and responses. First, let us explain a bit about the

background of the data set.

ADNI is a global longitudinal study for AD through the enrollment and

follow-up of cohorts of individuals who have mild cognitive impairment (MCI)

and mild Alzheimer’s disease. The study is designed for the detection at

the earliest possible stage and tracking the progression of Alzheimer’s disease

with biomarkers to assess the brain structure and the brain function. The

participants enrolled by ADNI were between 55 to 90 years of age, selected

based on the particular criteria, and recruited at the 57 ADNI acquisition

sites located in the United States and Canada. The five cohorts in this study

are Normal Control (CN), Significant Memory Concern (SMC), Early Mild

Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and

Alzheimer’s Disease (AD), respectively. The selected subjects undergo clinical,

imaging, genetic, and also biochemical biomarkers at multiple time points [1,

2].

The general goals of the ADNI study are for validation of biomarkers’

data for the trials’ use in the illness clinical treatment and assessments, for

exploring methods for obtaining data and analyzing neuroimaging data in

longitudinal studies for clinical trials on patients with normal controls, mild

cognitive impairment, and Alzheimer’s disease, for making data repository

accessible for other researchers and communities, and for developing technical

standards of imaging in longitudinal studies [2, 26].

In this study, we employed a subset of the resting-state fMRI ADNI data
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which includes 57 subjects from two cohorts, one is 33 subjects from Nor-

mal Control group, and the other one is 24 subjects from Alzheimer’s Dis-

ease group. The resting-state fMRI data were preprocessed using Automated

Anatomical Labeling (AAL) template [43]. AAL is an anatomical atlas of to-

tal regions of interest obtained on one subject. The AAL template is broadly

employed in functional neuroimaging research, including resting-state fMRI.

It aims at deriving neuroanatomical labels in a space where the measurements

of brain function were captured [43]. The non-overlapping regions of interest

were then extracted for each subject. For each subject, each time-series and

ROI were computed through averaging all the voxels’ time series within the

ROIs [37]. Hence each subject has BOLD signal data at 116 ROIs through

134 equal spaced time courses. Also the demographic and clinical information

of 57 subjects were collected, which consist of ID, gender, age and diagnostic

information. For the variable gender, 0 represents female and 1 male. For

diagnosis (DX), 0 stands for Normal Control(CN), and 4 Alzheimer’s Disease

(AD). All subjects had 1.5 Tesla and 3 Tesla scans by Philips scanners, having

their eyes open when receiving the scanning [35]. For the responses, we con-

sider the Alzheimer’s Disease Assessment Scale (ADAS) sub-scores and here

p = 11. For most studies, a total score by combining the 11 di↵erent scores

is considered usually. In this data analysis, we aim to look at the e↵ect of

the predictors on each of the sub scores. This is of great importance since

although these sub-scores are correlated but each one represent a unique part

of the assessment. The predictors considered here include gender, age, and

“top” 10 brain connectivities. For computation of the brain connectivities,

more details can be found in Section 2.6.2. The “top” 10 candidates were
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found by ordering the p-values comparing the AD group and CN group, which

means only the top 10 that di↵erentiate AD the most were considered.

All variables in X and Y were standardized to have sample mean 0 and

sample variance 1. We considered 4 di↵erent methods: the ordinary least

square, the original predictor envelope, the scaled predictor envelope and the

proposed copula predictor envelope. We examined the average of the predic-

tion errors from 50 five-fold cross validations with random splits as the evalua-

tion metric. At u = 1, the ordinary least square estimator has prediction error

as large as 5.68. The original and scaled predictor envelope estimators reports

prediction error as large as 4.58 and 3.98, respectively. The proposed copula

predictor envelope model has prediction error of 2.38. This is about 40.49%

of reduction of prediction error compared to the ordinary least squares, and

another 40.20% reduction compared to scaled predictor envelope estimator.

Using cross validation, the selected u for the proposed copula envelope is 5

with the prediction error as 1.84.

3.7 Discussion

Dimension reduction in the predictor space is one of the most important tasks

in statistics. This problem has been addressed by many traditional methods

including reduced rank regression, principal component regression, ridge re-

gression and other type of penalized regression. Most of these aforementioned

methods are invariant or equivariant to a scale transformation of the predic-

tors. The sparse predictor envelope proposed by Cook and Su (2016)[13] is

the first scale-invariant method.
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In this chapter, we have developed the copula predictor envelope model,

which further generalizes the scaled predictor envelope model. The main idea

behind this work is the use of rank-based covariance estimators, which are

invariant to any monotone transformations. The block structure for ⇤ intro-

duced in [13] is kept in this work, although one would argue in practice that it

is di�cult to assume multiple predictors to have similar variances. However,

as the theoretic properties have shown, the proposed copula predictor enve-

lope model is still useful when the number of responses is larger than one. It

is worthy pointing out that the predictor envelope based methods depends on

the collinearity rather than the mitigation through regularization.

For future research, the proposed predictor envelope model can be further

applied to other special models, such as the latent factor model, where one

can treat the latent e↵ect as a linear transformation of the observed covari-

ates. Also, censored predictors can also be considered to further broaden the

applicability of the work. In the context of censored data, for the unknown

transformation we can consider here is a piecewise linear function. The dif-

ficulties lie in there includes the discontinuity of the transformation function

at points where the cuto↵ of the data happens. The work in this chapter is

confined to the cases where n > p. A scaled version of the work which allows

the cases when n < p is highly important.
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Chapter 4

Envelope-based
High-dimensional Multivariate
Test for Mean Vector

4.1 Introduction

Let Y1, . . . ,Yn be independent and identically distributed (i.i.d.) copies of

the random vector Y 2 Rr with mean µ and covariance matrix ⌃ > 0. In this

chapter, we consider the testing problem for the following hypothesis:

H0 : µ = 0, HA : µ 6= 0.

The Hotelling T
2 test has been widely used in multivariate analysis since its

proposal due to its many nice properties: it is uniformly the most powerful

of the a�ne invariant tests. However, its performance deteriorates quickly or

even not well-defined when the number of features r is comparable or even

larger than the sample size n. There has been many work proposed in the

literature to address this issue ( [44] [23] [6] [27]). In this chapter, we propose

a novel envelope-based high-dimensional multivariate test.

Envelope [11], as a descendant of su�cient dimension reduction, has wit-
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nessed its success in regression analysis since its proposal due to its ability

to achieve massive e�ciency gains in parameter estimation. More details of

envelopes can be found in Cook’s monograph [7]. Most of current research in

envelopes focus on regression models; however, envelopes can also be used in

the estimation of a multivariate mean. For example, Su and Cook (2013)[40]

proposed envelope models that accommodate heteroscedastic error structure

in the framework of estimating multivariate means for di↵erent populations.

To describe the use of envelopes for the estimation of a multivariate mean

µ, let S 2 Rp denote the smallest subspace with the properties

(a) µ 2 S and (b) PSY ?? QSY. (4.1)

Conditions (a) and (b) indicate that marginal information on µ is available

from PSY, which QSY supplies no marginal information about µ, which is

equivalent to say that S is a reducing subspace of ⌃. In short, we are led

to the ⌃-envelope of M := span(µ), "⌃(M). Then P"Y contains all of the

material information on µ with material variation P"⌃P", and Q"Y contains

all of the immaterial information on µ with material variation Q"⌃Q".

To gain intuition about the potential gain using the envelope-based mean,

we suppose the envelope "⌃(M) is known, and then the maximum likelihood

estimator of µ is just µ̂ = P"Ȳ, which has variance n
�1P"⌃P". Since ⌃ =

P"⌃P" +Q"⌃Q", we have

var(Ȳ)� var(µ̂) = n
�1Q"⌃Q", (4.2)

so the potential gain depends on the sample size and the immaterial variation.

When p is large, it is very likely for Y to contain immaterial information,

which means µ is very likely to fall in an eigenspace of ⌃.
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Here we are only consider the scenario when n > r, and when n  r, sparse

envelope models can be considered by assuming some of the elements in µ or

⌃ to be 0.

4.2 Envelope-based Hotelling T
2 Test

Let � 2 Rr⇥u be a semi-orthogonal basis matrix for the envelope "⌃(M),

where u = dim("⌃(M)), and let (�,�0) be an orthogonal matrix so that �0

is a basis matrix for the orthogonal complement of "⌃(M). Since µ 2 "⌃(M)

by construction, we can write µ = �⌘ for coordinator vector ⌘ 2 Ru⇥1 . Let

⌦ = �|⌃� > 0, and ⌦0 = �|
0⌃0�0 > 0, then the envelope model for the

multivariate mean can be summarized as

Y ⇠ N(�⌘,�⌦�| + �0⌦0�
|
0). (4.3)

The number of real parameters in model (4.3) is

Nu = u(r � u) + u+ u(u+ 1)/2 + (r � u)(r � u+ 1)/2

= r(r + 1)/2 + u.

The first count u(r� u) is the number of parameters needed to determine the

envelope "⌃(M).

Now let us consider the maximum likelihood estimator (MLE) of µ. After

some simplification, the log-likelihood can be written as ( see Chapter 5 in

[7]):

Lu(�) = �(n/2) log |�|SY�|� (n/2) log |�|TY
�1�|+ c, (4.4)

where SY denotes the sample covariance of Y and TY = n
�1

P
n

i=1 YiY
|
i

denote the matrix of raw second moments of Y, and c = �(n/2) log |TY| �
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nr/2. For a given dimension u, the MLE of model (4.3) can be now to written

as

b"⌃(M) = span{argmaxLu(�)}

b⌘ = b�
|
Ȳ

b⌦ = b�
|
SY

b�

b⌦0 = b�
|
0TY

b�0

bµ = Pb�Ȳ

b⌃ = b�b⌦b�
|
+ b�0

b⌦0
b�
|
0,

where the maximum is over the set of all semi-orthogonal matrices � 2 Rr⇥u.

From the standard likelihood theory,
p
n(bµ�µ) is asymptotically normal with

mean 0 and variance avar(
p
nbµ), which has the form

⌃env = avar(
p
nbµ)

= �⌦�| + (⌘| ⌦ �0)V
†(⌘ ⌦ �|

0)

 avar(
p
nȲ ) = ⌃.

(4.5)

After obtaining the envelope-based estimator of µ and ⌃, the envelope-

based Hotelling’s T 2 statistics for testing H0 : µ = µ0 can be written as

t
2
env = n(bµ� µ0)

| b⌃
�1

env(bµ� µ0). (4.6)

Also, we have
n� r

r(n� 1)
t
2
env ⇠ Fr,n�r.

Then, the quantity on the left hand side can be used to evaluate the p-value

using the F-distribution.
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4.3 Likelihood ratio test

Consider the following 4 di↵erent models:

1. Model under H0 : µ = µ0;

2. Model under HA : µ 6= µ0;

3. Model under H0 : µ = µ0 with µ0 = �⌘ and ⌃ = �⌦�| + �0⌦0�
|
0;

4. Model under HA : µ 6= µ0 with µ = �⌘ and ⌃ = �⌦�| + �0⌦0�
|
0.

The likelihood ratio test requires that the two models (under full and re-

duced model) be nested, which means that the more complex model can be

transformed into the simpler model by imposing constraints on the former’s

parameters.

Model 4 and Model 1 are not nested. In fact, model 4 is nested within

model 2 (imposing the constraints on � and ⌃), model 1 is nested within

model 2. These relationships can be summarized in the following diagram:

Traditionally, the hypothesis testings usually compare Model 1 and Model

2. Previously we have compared Model 4 and Model 1, however, they appear
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to be not nested. So here we consider comparing Model 4 and Model 3.

Specifically, we need to derive the MLE under these two models. Section 2

covered the scenario under Model 4, so here we derive the MLE under Model

3.

Under Model 3, the log-likelihood can be written as

Lu(�,⌦,⌦0) = �n

2
log |⌦|� n

2
log |⌦0|

� 1

2

X

i

(Yi � �⌘)|(�⌦�1�| + �0⌦
�1
0 �|

0)(Yi � �⌘)

�⌘ = µ0.

(4.7)

The u linear constraints �⌘ = µ0 here can be viewed as solving ⌘ given �

and µ0. Denote Lu,� as the penalized version of Lu, which has the following

form:

Lu,�(�,⌘,⌦,⌦0) = Lu(�,⌦,⌦0) + �||�⌘ � µ0||2. (4.8)

The penalization here is equivalent to a regression problem and the least square

solution ⌘̂ = (�|�)�1�|µ0 minimizes the l2 � norm. Substitute ⌘ = ⌘̂ into

equation (4.7) and after some simplification, we have

Lu(�,⌘,⌦,⌦0) = �n

2
log |⌦|� 1

2

nX

i=1

(�TYi � b⌘)T⌦�1(�TYi � b⌘)

� n

2
log |⌦0|�

1

2

nX

i=1

YT

i
�0⌦

�1
0 �T

0Yi.

(4.9)

Since � is semi-orthogonal and b⌘ = (�T�)�1�T
µ0 = �T

µ0, we have

Lu(�,⌘,⌦,⌦0) = �n

2
log |⌦|� 1

2

nX

i=1

[�T (Yi � µ0)]
T⌦�1[�T (Yi � µ0)]

� n

2
log |⌦0|�

1

2

nX

i=1

YT

i
�0⌦

�1
0 �T

0Yi.

(4.10)
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Taking derivative w.r.t. ⌦�1 and ⌦�1
0 , and using Sµ0 to denote 1

n

P
i
(Yi�

µ0)
|(Yi � µ0) and TY = 1

n

P
i
YiYi|, we have

@Lu

@⌦�1 =
n

2
⌦� n

2
�|

Sµ0�;

@Lu

@⌦�1
0

=
n

2
⌦0 �

n

2
�|

0TY�0.

(4.11)

So for fixed �, Lu(�,⌦,⌦0) is maximized at ⌘ = �|µ0,⌦ = �|
Sµ0�, ⌦0 =

�|
0TY�0. Substituting these relationships into equation (4.7) and simplifying

leads to a partially maximized log-likelihood

Lu(�) = �n

2
log |�|

Sµ0�|�
n

2
log |�|

0TY�0|�
nr

2

= �n

2
log |�|

Sµ0�|�
n

2
log |�|

T
�1
Y

�|+ c,

(4.12)

where c = �n/2 log |Sµ0 | � nr/2. For a given dimension u, the MLE under

H0 : µ = µ0 can be summarized as

b"⌃(M) = span{argmaxLu(�)}

b⌘ = b�
|
µ0

µ̂ = b�b⌘

b⌦ = b�
|
Sµ0

b�

b⌦0 = b�
|
0TY

b�0

b⌃ = b�b⌦b�
|
+ b�0

b⌦0
b�
|
0,

The LRT test statistics can be written as

⇤ = 2(Lu � Lu0)

= n log |b⌃µ0 |+
X

i

(Yi � bµ0)
| b⌃

�1

µ0
(Yi � bµ0)� n log |⌃̂|

�
X

i

(Yi � µ̂)|⌃̂
�1
(Yi � µ̂).

(4.13)
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The Wilk’s theorem states that for large sample sizes, ⇤ follows a chi-

squared distribution with v degrees of freedom, where v is the number of free

parameters under HA not in H0. In this case, it is equal to u.

4.4 Simulations and Data Analysis

4.4.1 Simulations

We first examine how the test statistics look like under H0 and HA. The

following histograms are based on 1000 replications. The red solid curve is

the null distribution �
2(u), and the parameters of the experiment are shown

in the bottom of each figure.

Here we compare the finite-sample performances of the proposed envelope-

based test with the Hotelling’s T
2 test. Based on (4.2), we can see that the

envelope-based estimator bµ is more e�cient than the sample mean Ȳ when µ

fall in an eigenspace of ⌃. We use the R package Renvlp [29] to compute the

envelopes in all simulations.

First we consider a special case when µ fall in the last eigenspace of ⌃ (the

eigenvector of the smallest eigenvalue), the envelope should provide massive

estimation gains in this case since the immaterial part in this case is huge. We

randomly generate a ⌃ using ⌃ = V
|
V , where Vij ⇠ N(0, 1), so here ⌃ is

randomly generated, and it has no specific structure. For µ, the three choices

are: (1) µ0 = vmin(⌃), where vmin(⌃) represents the eigenvector associated

with the smallest eigenvalue of ⌃; (2) µ1 = µ0 + max |µ0|, where max |µ0|

denotes the element in µ0 with the largest absolute value. This situation

represents a pure location shift of µ; and (3) µ2 = µ0 +N(0,max |µ0|), here
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Figure 4.1: The histogram of the test statistics under null hypothesis H0 (left)
and alternative hypothesis HA (right) with u = 2, r = 10 and n = 50. The red
curve here is the density function of Fr,n�r.
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Figure 4.2: The histogram of the test statistics under null hypothesis H0 (left)
and alternative hypothesis HA (right) with u = 2, r = 10 and n = 20. The red
curve here is the density function of Fr,n�r.
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Figure 4.3: The histogram of the test statistics under null hypothesis H0 (left)
and alternative hypothesis HA (right) with u = 9, r = 10 and n = 500. The
red curve here is the density function of Fr,n�r.
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we are mimicking a more stochastic change.

The last paragraph described a situation when we have the dimension of

the envelope u = 1. Similarly, we also consider a more realistic situation when

µ can be expanded using a few eigenvectors of ⌃. Specifically, we consider

u = 5.

Before we examine the performance of the proposed test, we first verify

that the null distribution of the proposed envelope-based test statistics follows

the reference distribution Fr,n�r. Figures 4.4 and 4.5 show the histogram of the

test statistics for the Hotelling T
2 and the proposed envelope-based test when

H0 is true for small and large u, respectively. The red curve is the density

function of the reference distribution Fr,n�r, and we can see that they match

each other quite well.
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Figure 4.4: The histogram of the test statistics for the Hotelling T
2 and pro-

posed envelope test (small u) when H0 is true. he red curve is the density
function of Fr,n�r. The parameters of this experiment are specified on the
bottom.
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Figure 4.5: The histogram of the test statistics for the Hotelling T
2 and pro-

posed envelope test (large u) when H0 is true. he red curve is the density
function of Fr,n�r. The parameters of this experiment are specified on the
bottom.

For each simulation run, a multivariate normal distribution is simulated

using one of the three ⌃ and the resulting µ0 mentioned above. Three hy-

potheses were conducted with H0 : µ = µ0, H0 : µ = µ1, H0 : µ = µ2, the

first null hypothesis is used to access the type I error of the test; whereas, the

other two tests can be used to access the type II error or power of the test.

All simulation results are based on 500 repetitions. Here we present results for

r = 50, and n = 55, 60, 75, 250. For the dimension of envelope u, we consider
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Table 4.1: (a) the F norm between the true mean µ and the estimated bµ ; (b)
the angle between the estimated b� and the true �, which is the last eigenvector
of ⌃.

u = 1
n = 55 n = 60 n = 75 n = 250

(a): ||µ̂� µ0||F

Hotelling’s T 2 6.67 6.13 4.88 3.14
Env (u = 1) 0.54 0.47 0.29 0.11
Env (u = 3) 0.80 0.63 0.41 0.20
Env (u = 8) 1.46 1.57 1.68 1.46

(b): angle
Env (u = 1) 4.21 3.68 2.29 0.88
Env (u = 3) 4.10 4.69 2.75 1.08
Env (u = 8) 3.03 3.85 1.46 0.85

u = 5
n = 55 n = 65 n = 100 n = 250

(a): ||µ̂� µ0||F

Hotelling’s T 2 6.67 0.85 0.68 0.43
Env (u = 5) 4.91 0.45 0.29 0.17
Env (u = 6) 4.58 0.49 0.36 0.23
Env (u = 12) 5.78 0.51 0.55 0.38

(b): angle
Env (u = 5) 6.34 6.17 5.43 2.14
Env (u = 6) 5.62 5.87 5.07 1.58
Env (u = 12) 4.63 4.46 4.43 1.04

the correct u, as well as a few u that are larger than the true one.

Table (4.1) provides a summary of the estimation process and Table (4.2)

shows the performance in hypothesis testing. Based on both tables, we have

the following main findings:

1. When the envelope dimension u is small, the proposed envelope test

shows great power improvement compared with the Hotelling’s T 2 test.

The proposed test performs reasonably well when the sample size n is

relatively small (n = 55, r = 50)

2. The advantage of the proposed test drops when u increases; this can be

expected because the variance gain is smaller.
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Table 4.2: Percentage of H0 rejected using ↵ = 0.05.
u = 1
n = 55 n = 60 n = 75 n = 250

H0 : µ =
µ0

Hotelling’s T 2 0.04 0.10 0.05 0.04
Env (u = 1) 0.05 0.09 0.05 0.05
Env (u = 3) 0.04 0.11 0.06 0.05
Env (u = 8) 0.05 0.12 0.04 0.05

H0 : µ =
µ1

Hotelling’s T 2 0.08 0.24 0.26 1.00
Env (u = 1) 0.98 1.00 1.00 1.00
Env (u = 3) 0.98 1.00 1.00 1.00
Env (u = 8) 0.58 0.78 0.81 1.00

H0 : µ =
µ2

Hotelling’s T 2 0.03 0.13 0.20 0.98
Env (u = 1) 0.93 1.00 1.00 1.00
Env (u = 3) 0.98 0.99 0.98 1.00
Env (u = 8) 0.47 0.54 0.68 1.00

u = 5
n = 55 n = 60 n = 75 n = 250

H0 : µ =
µ0

Hotelling’s T 2 0.05 0.08 0.06 0.04
Env (u = 5) 0.06 0.05 0.06 0.06
Env (u = 6) 0.05 0.06 0.07 0.05
Env (u = 10) 0.06 0.06 0.05 0.07

H0 : µ =
µ1

Hotelling’s T 2 0.04 0.11 0.06 0.14
Env (u = 5) 0.15 0.20 0.17 0.50
Env (u = 6) 0.14 0.27 0.18 0.48
Env (u = 10) 0.16 0.20 0.15 0.39

H0 : µ =
µ2

Hotelling’s T 2 0.03 0.06 0.05 0.07
Env (u = 1) 0.06 0.18 0.20 0.48
Env (u = 3) 0.07 0.15 0.16 0.45
Env (u = 8) 0.05 0.19 0.15 0.40
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3. The performance of the test is tightly related to the MSE of bµ. A reason

why the envelope-based test is more powerful is because the variance of

bµ is smaller than the variance of sample mean x̄ (imagine when r = 1,

we have two normal density functions with the same location, one with

smaller variance and the other one with larger variance).

4.4.2 Data Analysis

In Section 3.6.2, we studied the ADNI data. One of the main goals in the ADNI

study is to find phenotype related to Alzheimer’s Disease (AD). In Chapter

3, we looked at the predictive power of di↵erent demographic, clinical and

neurological variables. Specifically, the high-dimensional brain connectivity

computed from the fMRI data was studied carefully to see whether the brain

connectivity of patients with AD have di↵erent patterns. Instead of using the

brain connectivity between di↵erent regions as predictors to predict the AD

status, another approach to deal with it is to compare the brain connectivity

matrix (or vector) between AD and normal patients.

In this specific application setting, the phenotype (response) we are con-

sidering here is the brain connectivity matrix. The brain connectivity matrix

is computed by considering the similarities of the brain activities between

di↵erent voxels (or regions). The dimension of the matrix depends on the

parcellation of the brains; for example, in Chapter 3, we applied the AAL

template, which has 116 ROIs. For each element in the matrix, di↵erent

measures can be used to calculate the closeness of the time series between

di↵erent regions. Typical measurements used include correlation, partial cor-

relation and sparse correlation. Figure (4.6) visualizes the binary connectivity
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Figure 4.6: The connectivity matrix computed using correlation based on
original BOLD signals with threshold 0.4 (Control ID 002-4225).

matrix using threshold 0.4 for a control subject, and Figure (4.7) for an AD

subject. Di↵erent patterns can be found in certain “neighborhood” of these

two matrices.

Since it is di�cult to test whether the distributions of the matrices are

the same or not, typically researchers focus on testing each individual element

in the connectivity matrix, and it then becomes a multiple testing problem.

However, this type of analysis fails to consider the connection and pattern

among these brain regions. Another type of analysis uses some network-based
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Figure 4.7: The connectivity matrix computed using correlation based on
original BOLD signals with threshold 0.4 (AD ID 019-4477).
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summary statistics calculated from the matrix, such as the number of small

“neighborhoods” and the number of connected brain regions. In this analysis,

we stack the brain connectivity matrix into a vector and do the hypothesis

testing on the entire vector. Since the connectivity matrix is a symmetric

matrix, we only take the lower half of the matrix and stack the columns of the

matrix into a vector. Furthermore, since there is a small number of subjects

available in the ADNI study, we first only consider selected the cerebellum

region, which results in 14 ROIs. These 14 ROIs produce 14⇥13/2 = 91 brain

connectivity measurements. For the control group, we have 33 subjects, and for

the AD group, we have 24 subjects. In this case, the dimension of the response

(r) is larger than the sample size (n), and the traditional Hotelling’s T 2 test

no longer applies. We apply the proposed envelope-based Hotelling’s T 2 test.

The tuning parameter u was chosen using AIC and we selected u = 5, which

suggest that 91 closely related brain connectivity measures can be explained

using an envelope structure with dimension 5. The reported p-value is 0.00345.

This means that there are significant di↵erences between the control group and

the AD group using ↵ = 0.05. These results highlight the usefulness of the

proposed envelope-based test statistics, especially in the scenario when the

number of responses is larger than the number of observations, which is more

and more common in this era of big data.
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Chapter 5

Conclusion

The evolution of data acquisition technologies and computing power has al-

lowed researchers nowadays to collect and store data with high dimensionality

and complex structure much more e�ciently. Examples can be found in gene

expression microarray data, single nucleotide polymorphism (SNP) data, mag-

netic resonance imaging (MRI) data, high-frequency financial data, and others.

Estimation and testing are unarguably the most fundamental tasks in statisti-

cal inference. As a rule of the thumb, with the increase of the dimensionality

of the data, the amount of data needed to achieve certain level of statistical ac-

curacy increases greatly. However, in practice, it is often too expensive or even

impossible to collect the amount of data needed, for example, in the setting

of clinical trials and neuroimaging experiments. The blessings come from high

dimensional data is that many of the variables collected might be correlated

with each other, and some of them are not relevant to the tasks. Thus it is of

great importance to learn the inner structure of the data and find an e�cient

representation of them. Broadly speaking, dimension reduction represents the

action of replacing data with a lower dimensional function of the data. In
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this thesis, I studied a specific type of dimension reduction methods called

envelopes.

In this thesis, I focused on a few issues that have not been properly ad-

dressed in the current literature. First, most of current envelope models are

based on the multivariate linear regression model. The linearity assumption

in there can be very strict and essentially uncheckable in practice. For ex-

ample, it is very common to log transform a highly skewed variable such as

white cell counts or viral loads to improve the linearity between responses and

covariates. Other transformations such as Box-Cox transformation, Fisher’s z

transformation and variance stabilization transformation have been frequently

used to improve a linear fit. The envelope models available in the current

literature are not invariant or equivariant to these transformations, and even

the dimension of the envelope will change. We have observed in practice that

such transformations often resulting in envelope based estimators reduce back

to the ordinary least square estimators, which means no e�ciency gains can

be achieved. In order to address this issue, I proposed to combine a Gaus-

sian copula regression model and envelopes. The essential tool I used was the

rank-based correlation estimators, which are invariant to continuous monotone

transformations. Specifically, I focused on both response envelope and predic-

tor envelope models. In Chapter 2, I studied the response envelope model and

proposed a novel Gaussian copula response envelope model, which is equiv-

ariant to a large class of popular transformation of the responses. In Chapter

3, I focused on predictor envelope model, which aimed to achieve dimension

reduction in the predictor space. Even though the goal is the same, the tech-

niques used in Chapter 3 were very di↵erent from those used in Chapter 2.
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The proposed Gaussian copula envelope models have the potential for bringing

huge e�ciency gains when the original envelope model fails to do so.

Most of the current literature on envelopes focus on regression models.

In the area of hypothesis testing in high-dimensional data, envelope models

actually can bring in huge e�ciency gains. In Chapter 4, I explored the use

of envelope models in the domain of hypothesis testing. Specifically, I focused

on an envelope-based Hotelling’s T
2 test and a likelihood ratio test. The

proposed tests are more e�cient when the high-dimensional mean vector can

be represented using a lower dimensional envelope structure in the covariance

matrix.
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Appendix

Proof of Theorem 2.5.1. In order to use Proposition 3.1 in Shapiro (1986)

[38], we first match our notations to the ones in Shapiro’s. The ✓s in Shapiro’s

context is our � = {�T
, vec(�)T , vech(⌦)T , vech(⌦0)T}T . Shapiro’s x̂s corre-

sponds to our {vec(b�)T , vech(b⌃
T

)}T , and Shapiro’s ⇠s is {vec(�)T , vech(⌃)T}T

in our context. The discrepancy function Fs in Shapiro’s is our log likelihood

function, after omitting a constant factor

Fs = L1/n = �r

2
log(2⇡)� 1

2
log |⌃|� 1

2
tr{(U � F�T )⌃�1(U � F�T )T/n}

= �r

2
log(2⇡)� 1

2
log |⌃|� 1

2
tr[⌃�1{n⌃̃res + (b� � �)(F T

F/n)(b�
T

� �T )}].

As Fs is constructed under normal likelihood function, it satisfies the condi-

tions 1-4 in Shapiro’s. Shapiro’s �s is the gradient matrix @⇠s/@✓s, which

is equivalent to H in our context. Consider e = U � F�T , Shapiro’s Vs =

bdig{(F T
F/n) ⌦ ⌃�1

, E
T

r
(⌃�1 ⌦ ⌃�1)Er/2} is half of the Hessian matrix

@
2
Fs/@⇠s@⇠

T

s
evaluated at (⇠s, ⇠s). Since

P
n

i=1XiX
T

i
/n > 0, Vs is full rank

and rank(�T

s
Vs�s) = rank(�s). Therefore, all conditions in Proposition 3.1

in Shapiro (1986) are satisfied and the maximizers b� and b⌃ are uniquely de-

fined.

Proof of Theorem 2.5.2 As we have over-parameterization in �, we use

Proposition 4.1 in Shapiro (1986) [38]. The conditions of Proposition 4.1 are
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the same as those in Proposition 3.1 of Shapiro (1986) [38], except with an addi-

tional assumption that n1/2(x̂s�⇠s) is asymptotically normal. Since the condi-

tion on pii guarantees that the asymptotic distribution of

n
1/2{(vec(b�)T , vech(b⌃res)T )T �(vec(�)T , vech(⌃)T )T )} is multivariate normal,

so this additional assumption is also satisfied. Following Shapiro’s notation,

the asymptotic variance has the form

�s(�
T

s
Vs�s)

†�T

s
Vs�sVs�s(�

T

s
Vs�s)

†�T

s
,

where Shapiro’s �s is the asymptotic variance of {(vec(b�)T , vech(b⌃res)T )T}.

With the additional assumption of normality, Shapiro’s �s = V
�1
s

. Therefore

the asymptotic covariance matrix has the form �s(�T

s
Vs�s)†�T

s
, which is V =

H(HH
JH)†HT in our notation. Since V is invariant under full rank linear

transformations of the columns of H, we next transform the columns of H by

the non-singular matrix

T =

✓
Ir�1 0

�(HT

2 JH2)†HT

2 JH1 Ir(r+1)/2

◆
.

Then HT = (QH2(J)H1, H2) and

T
T
H

T
JHT = bdig(HT

1 Q
T

H2(J)JQH2(J)H1, G
T

o
JoGo).

We then have

V = HT (T T
H

T
JHT )†T T

H
T = J

�1/2
PJ

�1/2 +D�Go(G
T

o
JoGo)

†
G

T

o
D

T

�
,

where P is the projection onto the span of J1/2
QH2(J)H1. The second term on

the right of the last expression is the same as V2 stated in Proposition 4.1 in

Shapiro’s.

102



Proof of Theorem 3.5.1 Similar to the proof in Theorem 2.5.2, due to the

over-parameterization in �, we apply Proposition 4.1 in Shapiro (1986)[38].

The conditions of Proposition 4.1 are the same as those in Proposition 3.1 of

Shapiro (1986) [38], except with an additional assumption that n1/2(ĥ� h) is

asymptotically normal. This requires that
p
n(�̂

ols
� �) converge in distribu-

tion to a multivariate normal distribution. Since �̂
ols

= (XTX)�1XTY, and

XTX/n converges in probability to ⌃X. Since (Y,X) has finite the fourth

moment, the sequence
p
n(XTY/n � ⌃XY) converges in distribution. By

Slutsky’s theorem,
p
n(�̂��) converges in distribution to a multivariate nor-

mal distribution. Similarly we have
p
n(ĥ � h) is multivariate normal. Let

ĥ be the copula predictor envelope estimator of h, and then ĥ is a consistent

estimator of h, and
p
n(ĥ � h) is asymptotically normally distributed. As

p
n[{vecT (b�

cpe
), vechT (b⌃X,cpe)}T � {vecT (�), vechT (⌃X)}T ] is asymptotically

normally distributed, which proves Theorem 3.5.1.

Proof of Theorem 3.5.2 According to Proposition 4.1 in Shapiro (1986),

assuming normality, the asymptotic variance of the proposed copula predictor

envelope estimator of h has the form H
⇤(H⇤T

J
⇤
H

⇤)†H⇤T . As J⇤ and H
⇤ both

have block diagonal structure, the asymptotic variance of {vecT (b�), vech(b⌃X)}T

is H(HT
JH)†HT , where

J =

✓
⌃�1

Y|X ⌦⌃X 0
0 0.5ET

p
(⌃X

�1 ⌦⌃X
�1)Ep

◆
,

and H
T has the form
0

BBBB@

�(⌘T�T⇤�1 ⌦ ⇤�1)L 0
Ir ⌦ ⇤�1� 0
⌘T ⌦ ��1 2Cp(⇤�⌦⌦ ⇤� ⇤�⌦ ⇤�0⌦0�

T

0 )
0 Cp(⇤�⌦ ⇤�)Eu

0 Cp(⇤�0 ⌦ ⇤�0)Ep�u

1

CCCCA
.
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Let H = (H1, H2), where H1 is the first column of H. Define H2 = DH0,

where

D =

✓
Ir ⌦ ⇤�1 0

0 Cp(⇤⌦ ⇤)Ep

◆
,

and

H
T =

0

BB@

Ir ⌦ � 0
⌘T ⌦ Ip 2Cp(�⌦⌦ Ip � �⌦ �0⌦0�

T

0 )
0 Cp(�⌦ �)Eu

0 Cp(�0 ⌦ �0)Ep�u

1

CCA ,

then we have H2(HT

2 JH2)† = DHo(HT

o
JoHo)†HT

o
D

T , where Jo = D
T
JD. Let

T =

✓
Ip�1 0

�(HT

2 JH2)†HT

2 JH1 Ip(p+1)/2

◆
,

and then we have HT = (H1 � PH2(J)H1, H2) = (QH2(J)H1, H2). Then we

have

T
T
H

T
JHT =

✓
H

T

1 Q
T

H2(J)
JQH2(J)H1 0
0 H

T

2 JH2

◆
.

Since (T T
H

T
JHT )† = bdiag((HT

1 Q
T

H2(J)
JQH2(J)H1)†, (HT

2 JH2)†), we have

H(HT
JH)†HT = QH2(J)H1(H

T

1 Q
T

H2(J)JQH2(J)H1)
†
H

T

1 Q
T

H2(J)

+DHo(H
T

o
JoHo)

†
H

T

o
D

T

⌘ A+ B.

In B, the upper left pr⇥pr block ofHo(HT

o
JoHo)†HT

o
is equal to the asymptotic

variance of vec(b�
o
), which does not depend on scaling ⇤, hence the upper left

pr ⇥ pr block of B is the asymptotic variance of (Ip ⌦ ⇤�1)vec(b�
o
), which is

the cost of estimating � when ⇤ is known.

In A, QT

H2(J)
= DQHo(Jo)D

�1. Also

Q
T

H2(J)JQH2(J) = D
�T

Q
T

Ho(Jo)JoQHo(Jo)D
�1
.
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Now we simplify D
�1
H1,

D
�1
H2 = bdiag(Ir ⌦ ⇤, Cp(⇤

�1 ⌦ ⇤�1)Ep)

✓
�(⌘T�T⇤�1 ⌦ ⇤�1)

2Cp(⇤⌃o ⌦ Ip)

◆
L

=

✓
�⌘T�T⇤�1

p

2Cp(⌃o ⌦ ⇤�1)

◆
L

= bdiag(�⌘T�T ⌦ Ip, 2Cp(⌃o ⌦ Ip))

✓
⇤�1 ⌦ Ip

Ip ⌦ ⇤�1

◆
L

= bdiag(�⌘T�T ⌦ Ip, 2Cp(⌃o ⌦ Ip))(12 ⌦ L)⇤�1
1

⌘ K�
�1
1 ,

where ⇤�1
1 = diag{��1

1 , . . . ,�
�1
q�1}, 12 = (1, 1)T , and K = bdiag(�⌘T�T ⌦

Ip, 2Cp(⌃o ⌦ Ip))(12 ⌦ L). Since K does not depend on ⇤, then

A = DG(GT
JoG)†TDT . Finally we have the asymptotic variance of

{vecT (b�), vech(b⌃X)}T has the form A+ B. This completes the proof of The-

orem 3.5.2.
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