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;fﬁli}A}fi The research work repprted.in.this dissertatioq.deals‘With

;h’the“inelastic behaviorfof multistory, planar steel frames. The study °

¢+

includes a review of different types of formulation for stability and

-

strength analyses A method to compute elastic buckling loads for

multistory frames is discussed -

Y
£y o~

A general approach to the;elasticjand inelastic n nlinear
analyses of multistory‘frames is:presented and a finite evement‘ “
formulation is developed. A technique.to_determine.thefload+-
deformation characteristics of‘frames,ﬁuSing‘the finite elementht

<equations, 1is discussed; The inelastic analysis includes the effect

of axial loads on the stiffness of the frame, graduai penetration—of

yielding in the cross section and the spread of inélastic zones along

. the member length. The effects.of reSidual stresses ang strain.hard— '

]

ening-have been taken into account-ih.the analysis...
| The features of the'elastic-plastic response of frames for
first and second order analyses are presented Throughout the study

numerical efamples are given and’ compared with 'available results.

In fhe final section.the behavior of a number of frames is
examined;thrpugh inelastic and-elastic;plastic analyses, Comparisons
are made between the two.approaches and;the effects of residual. |
: s.tr‘esses_lﬁnd s,trainlhard'ening" on the‘ behavior of f:ratnes are- studiec‘l.

..

©. - KBSTRACT S
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_LIST OF SYMBOLS.

FE S . . . s
. .

In this diSSertation, the .notation generallY‘corresponds

~»
-,
.

with the notation commonly encountered in textbooks. " All symbdis
~ are defined ‘where they first appear in the text. However, in
bcertain cases it has not been possible to maintain uniform symbology

throughout the thesis. b

Special Symbols

. L v -
{}r - ' 4 denotes a column vector
<> . o denotes a row vector
-y ~denotes a matrix
.[T]T' - denotes a matrix transpose
-1 - . . o o
[1 denotes . a matrix inverse o -
Il ' . denotes a determinant .
'Z S . denotes a sujmation”
A ' . prefixed to other term denotes en'increment ‘
§ /2 o prefixed to other term denotes a virtual
' ‘ - variation- .
. B ' N . ‘(
3 denotes partial differentiation
d . denctes ordinary differentiation '
- . ) ' . -l : ' N
"C,8, deﬁote cosa and sina; respectively

denotes differentiation with respect to the -
single argument P :

xviii
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(D]

E{ Ep’ ES;

B Eg

L

: .{F(r)}

{Flx] 3 ... {F(r 2

'[F]
'[?]

-~

"\equi\'ralent %’bﬁﬁnc fact‘gr' '

" vector of- integraggon constants Cl’ C

' a-function to be integrated

vector {F(r)} evaluated at points rl, r2, ...,r

area of the cross section, arbitrary point.
“in Fig 3- 1 - . S .

arbitrary constants in Sect. 2.2.1

tranéformed ‘area of the k q“segment

'transformed area of the cross section-

‘

initial midspan deflection (Fig. 2- 3a)

' quantities defined by Eqs. 3. 5 lO

'.compatibility;matrix inth. 2.2.36

equilibrium matrix in Eq. 2.2.48
arbitrary constant

original and transformed thickness respectively,
of a particular region
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CHAPTER I
. INTRODUCTION

¢

(3

) J "'- ‘
Almost 311 analysis carried out in engineering practice is C
based onl linear theory Lineﬁr analysis, ‘rather than nonlinear, is
performed because of its relative simplicity ) ' .

In Tecent yeatrs, there has been a considerable amount of tneore-
~tical work. carried out @n the effects of geometric and material non- .

linearities oh'%he behavior of structures. Nonlinear analyses by the

» . N .

finite element method were first introduced for geometric nonlinearity

by Turner et al. (1960), and'for elastic-plastic analysis by Gallagher

et aZ; (1962).- More recent %ork has dealt withilarge,strains (Hofmeister

et aZ 1971), creep strains !(Greenbaum and Rubinstein 1968), dynamic

“

.forces (Stricklin et al. 1971), and variation of material properties

with temperature (Marcal 1972).

1.1 Types of Frame Analysis

h N

Several types of frame analysis may be illustrated'with reference.-

&
to Fig. 1-1, This figure shows the relationship between the graviﬁy 1qad
P, and the lateral deflection at the top, A, for a simple portal frame,

as predicted by various approaches.
| - % .slhe‘simplest form.of frame‘analysis:is one‘ﬁhich predicts the
elastic'critical'load oflthepframe; P_. In.thisumethod the material v., ' "\\\\
-ig essumed:to b: elasfici the horizontallloads applied tofthe frame. | l

are zero, and all‘prebuckling deformationsi(e}g. initial out-of-

v
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. b3 .- . .
straightness) are ignored. When the deformations due to lateral loads

afe,included, a linear load-deflection curye, A, is produced; This

~ . -

solution ;é'usually'referred to as a 'first order elastic anal&sis'.
When nonlinear effects, such as nonlinear st:ain—displacement'relation—.
ship and the effeét of defor;atioﬂs on the equil}brium equations, are
cénsidé;ed, the formulation rééﬁlts in a ngnliﬁear load-deflection v
‘response, curve B.':fhi% method is usually called a 'second order

~elastic analysis'. The elastic analyses give no.indicétion of the

ullimate“capacitf of the frame or‘the true behavior in the regibn of
: e , . :
ultimate load.

If the material rgspépse of the frame is no longer perfectly
e;astié,.énother critical load may be reached befgre the élastic

buckling load. This critical load, Pp, results from the formation of

s v

a pi;sﬁic mechanism, ignoring all prebuckling deformations. This

method is referred to as a first order riéid—plastié analysis, and is

¥

illustrated by curve C of Fig. 1<1. A second order rigid—plastié-

approach considers the effect of the.mechanisgwdeflections oun the ,
. : : : ' L

‘equilibrium equations, and the lo&ds therefore must decrease to maintain
v ¥
equilibrium, as shown by curve D.

A7 I first order elastic-plastic analysis the material is assumed

P '\

\

elastic—*erfectly plastic, and prebuckling deformations are considered.
The load¥deforma;ion response for such a solution is shown as curve E.
The uppdr limit of the first order elastic-plastic analysis is the first
ordef fi id—pléstic limit, Pp. When the effects o? sway deformations

on the equNibrium equations are.éonSidered, the formulation results in

~a 'second orgkr elastic?plastic analysis, shown as curve F, in Fig. 1-1.

\ ,
\ _

\



" The 'true' behavior of the frame is shown as curve T. The
idifference between the results of a second order elastic—plastic analysis
and the 'true’ behavior is due to gradual penetration of the yielded
zones, residual stresses, initial imperfection, and strain hardening.
The,magnitude of the difference depends on the geometry and stiffness

‘ L . 1
of the frame, material properties, and loading conditions.

1.2  Inelastic Frame Analysis

Extensive research has been COnducted in recent years to
"'investigate the behavior of multistory frames‘and theit components.
Much of this work has.been aimed at the development oflpractical design
procedures which could account for material ﬁonlineanity (Majumdar and
Adams 1971 Davison and Adams 1974).

Several authors (Hodge 1959; Mcnamee and lu 1972) haye,assumed
that yielding takes -place only at generalized plastic hinges of zero
length (the concept of concentrated plasticity) The researchers have '

- considered multidimensional yield surfaces, with proposed procedures

S

for- modifying the elastic stiffness of a frame member to account for
yielding.. General computational procedures have not heen developed and
only simple cases have been considered. A few researchers (Moses.1964;l
Kitipornchai and Trahair 1975) considered exterded regions of plastic
deformations_rather than discrete hinges,'but no conclusions‘were‘ '
reached regarding their effect on the behavior of'frames.‘

| Although.steel expibits some strain hardening,“most investiga-

.tors have assumed that the material is ideally elastic-plastic. The

. influence of strain hardening on the ultimate load was studied by

“
Te



Hrennikoff (l965), Sawko (1965), and Horne and Medland (1966). In

most cases an- idealized moment-curvature relationship, as shown in'

.Fig l -2, was assumed However, a rigorous solution that takes strain

.hardening into'account is at best a,cumbersome and impractical approach.
| A few authors (Alvarez and Birnstiel 1969) considered the

effect of axial load on the stiffness of columns and girders. Oth

(Korn and Galambos 1968) developed stability functions for columns on

the assumption that the axial forces nnthe girders were small enough

to neglect their effect on girder stiffness. Parikh (1966) modified

the column moment -curvatute relationship to compensate for the decrease,

in bending stiffness due to the yielded condition of the cross section,

o

‘for axial loads greater than O 7 Py, where Py represents the yield load
of the column. - ) | |

. The influence‘of residual stresses was considered by Parikh
(1966) and AlVarez and Birnstiel (1969) .- The latter formulated the
member stiffness matrix so as ‘to account for the gradual penetration of
yielding, the Presence of residual stresses, the spread of inelastic
zones along the member length and strain reversal in previously: yieldedl
_,fibers However, their method was applicable only to relatively small\
structures. S ' ' - - A

Extensive experimental work has been performed to investigate

the 'true' behavior of frames. Results of combined gravity and lateral

loading tests on large scale multistory frames have been reported by
Yura (1965),_Yarimci (1966), and Majumdar et al. (1970) Schilling
. et al. (1956), and Arnold et aZ (1968) performed some tests on single

’story steel frames.
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1.3 ijective
The purpose of this investigation is to develop a nonlinear
:'method of frame analysis, based .on large deformation theory, that is

applicable to both elastic and inelastic solutions of plane frame

problems under ary conditions of loading and geometry. L

In the inelastic formulation the effect of axial loads on the-”

. stiffness of the structure is considered Gradual penetration of

.'yielding, the spread of inelastic zones along the member length, the -;7
R o
"presence of residual stresses, and strain hardening of the material are

also accounted for. . = e
Numerical solutions are obtained by developing a set of finite."

t

element equations applicable to stability problems. However general
" purpose computer programs ‘have been developed to solve- a variety of

. problems. The most advanced of these can handle very complex nonlinear-
analyses, but does not require an excessive amount of computer time;.

1.4 Outline of Contents

Chapter 2 reviews stability theory and discusses different
.:Ftypes of formulation for stability and strength analyses.v

P

Chapter 3 is divided into two parts An elastic buckling
formulation is presented in the first part with a solution technique ‘~l
to determine the- elastic critical load of frames. Numerical results
‘for a variety Of problems are compared with those obtained through |

classical techniques.‘ ‘The detailed derivation of the equations for o

this approach is carried out in Appendix A. ’



: The second part of Chapter 3 presents the nonlinear formula-<-"
) tion, based on large deformation theory : The equations are then =

: specialized ‘to - elastic respOnSe and a finite element model is developed

‘for this case.' A solution method to solve for the response of the .

: frame using the finite element equations is discussed and a variety :

a,
\

“of problems are solved to determine the accuracy and efficiency of the-pi

« . .

Vi,hjproposed technique. The detailed derivation of the equations for this

method is presented in Appendix B with a large displacement trans-r P

r:formation matrix derived in Appendix C.

Features of the elastic—plastic response of frames for first

&aud second order analyses aré presented in Chapter 4 Two techniquesgﬁ;fﬁ

] .

are discussed namely, the incrqnental method and the iterative technique;
The two methods and their results are compared with\some published data.'
| ‘ The extension of the approach presented in Bart 2 of Chapter ‘3,
to the'case of inelastic response, is presented in, Chapter 5 The
'finite element equations are formulated with respect to local reference
axes through the original.centro;d Some experimental results are x'
compared with those obtained using the inelastic formulation The
gdetailed derivation of the section properties and’ stress resultants
for an - inelastic element is given in Appendix D, and details of the
v vinelastic formulation are shown in Appendix E. _
Chapter 6 illustrates a behavioral gtudy for a number of .
fframes subjected to combined ver&ical and lateral loads. Comparison"
iis made between the inelastic and ‘the’ elastic-plastic methods of analysis.

"7'.— ./'_
'_The effeéts of residual stresses and strain hardening on the behavior of.

L
s

,frames are also- studied.
A summary of the investigation and the conclusions reached are
H presented in Chapter 7. e R .

J

[

v -
v



';':2.1 Introduction -

”,i*"as the theqry of stability of metal structure

2.2 Introductionfto;Linearly~Elastic.Formulationv'

CHAPTER II

REVIEW OF STABILITY THEORX

Knowledge of structural stability theory‘is o paramount
S . 4 .' - o ; -

<importance to the practicing structural engineer.' In many instances, ,[
1'T-buckling is a primary consideration in the design of various structural
.“”configurations Because of this, and because the formulation for

e
stability‘problems is more complex than for strength problems, few

other fields within structural engineering have such a varied history

(Bleich 1952)

This chapter presents a- review of the-”_ff?;{

'problems Jare discussed.; o

. l"/‘

In elastic first order strength analysis two main aSSumptions

are’ considered " The material of the’ structure is’ assumed to be linearly~

I

.elaStic and the equilibrium equations are formulated on the undeformed

shape of the structure.} In elastic first order stability analysis the

"\

material i,sLL assumed to’ behave linearly elastic, but the formulatiou of).\- .

: the equilibrium equatidns must include the effect of displacements.

Ly

2 2 l Bifurcation and Buckling 'q-" : .

[

“ when slight changes in loading do ot produce disproportionate «ff'-l-7'

e

:Qu A structure is considgred to be in a itate of stable equilibrium

,stability The various methods of analysis used in solving stability o

A

o



e o o *
- I

: distortions of the system A 1oad—displacement histoty such as the'i
'.jlﬂone shown ‘in-~ Fig. 2-1 is called an equilibrium path.r Each point on the
;'fpath represents an eguilibrium configuration of the.structure.t In 112
fﬁ.linear elastic analysis all equilibrium paths are straight lines that. “
‘pass through the origin (Brush ‘and Almroth 1975) | . | S
| Consider a straight, simply supported cdlumn of length L
;subject to a. concentric applied compressive load P _as illustrated in
;fFig 2 2a. Under the assumptiona of "small" deflections, v, and.
. conStant moment of inertia, I-, the equﬁlibrium equation of the elastic:&fﬂ

'yl‘c“r"e 15 3iven by Timeshenko and Gere (1961) ‘as _,‘. S

- 2.
EI d

i d 2 + P v IE“aGfI :'V}‘u;[h.j:.'uf T S '(2,2Q1), ~{§L.

T o
ca e
¥

" Introducing the notation -

N . e . K P . oL - v ' ¢ ’ N . 3 L

Eqﬁ£§f5n52;z;1 can.be‘yritten‘in the form

" For constant k, this equation is a linear homogeneous differ—f

ential equation the general solution of which is thd homogeneous ‘
'solution and can be written as .' |

vraef‘A'sin-ka +Bcos kz . .- o D 2.2:4)
. For'simply.supported_ends thejhoundary'conditionfequationsuare.

’

Ym0 et =L guash)
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.Substituting condition 2 2. Sa into Eq. 2.2.% leads to B =-0,

4,Consequent1y : g '~ ’..f . . 1): B ():’
: v < Astnkz | A ; (~.2..2v.6).-
From oonoitioniZTZ;Sb_one obtains' o | ' ."‘“_ <
Asin kL 0 o f.g : - (2.2.7)

" Equation 2.2.7 can‘be'satisfied in. one of two ways, either
. . : N -

=0 A U (2.2.8a)
or
sthkL-="0 - . S (2.2.8b)
' ! ) ’ ’ % . N » ’ -

If A = O k and consequently P can. have*aaﬁ\xalne ‘ But if A ; 0, the-

displacement v of Eq. 2 2.6 'is identically zero. .This result is-
’ e .
known as the trivial solution, in which a column is 4n. equilibrium under

' any value. of axial load P, as long as the member remains perfectly

'straight. . o " St
) A o N “

There are'an‘infinite'nﬁmber of values of k for which

o

sin kL ='0. Thése are . ol

S kyL = am " L S (2.2.9)

Substituting this expression into Eq. 2 2.2 gives the 1oads for which
'nontrivial solutions of Eq.‘Z 2.1 can be obtained as

nz “2. EI ‘ :‘I LN . T



o

Problems of this type are.called eigenvalue problems (Ziegler 1968)
': The values k or the corresponding loads P are called eigenvalues of

the problem, and the corresponding displacenents

l -l . ' ’ n{n Z . . . . -. . o
v, = A sin T . e N (2.2711)
are called eigenfunctions. y -

The only significant Value of P arises from the lowest eigen~"

:value obtained: by setting n equal to 1 and is known as the "Euler

buckling load"' Coe _ o ST
ﬂz EIX . ) ] ) * C ’ .
P = — X o ~ O (2.2.12)

"Equilibrium paths for this column may be obtained by plotting

P versus midspan deflection (v at z = —0 “Such a plot for n = 17 is

~

shown in Fig "2-2b.. +In thiS'figure the prﬁmary equilibrium'path'
“(i.e. the\srivialhsolution) is intersected by a‘secondary'equilibrium
. 4

~path.’ The point at. which equilibrium paths intersect is called a bi-

furcation point At such a point the equilibrium equations have multiple

At ' o <

salutions, one corresponding to each branch This leads to the classi— .

cal concept of bifurcation as a condition in which two (or more)
}adJaeent equilibrium configuramions-exise‘at the same load.

In’theory, the change in deformatlon that _takes place when
the structure passes from a point on the primary eq ilibrium path tovav

point on a secondary equilibrium path is generally kno

as buckling.
For a linearly elastic stability formulation buckling oceurs at the
' bifurcation point. In general the load at which this hapgens is known

as the critical load.



.

Bifurcation of rectilinear framed structures occurs only if

N

.the mqnbers remain straight during loading Thus, if a column with an’

v;’initial imperfection v (z) ‘is considered as. illustrated—in‘Fif’"2\33-—-"“——"—-—'
(2.2.13)
and hence the differential equation ofheQuilibriun takes the form “_;“,—ﬂ—”'f”*’
d%y . S s
: EI gg—— +P (v+v ) = 0 : : ‘ (2.2.14)
Dividing by EIx and using'the’notation of Eq. 2.2.2 leads to
V' kP = - kv SR ©(2.2.15)
For constant k, this equation is a linear inhomogeneous N .
N

differential equation and the: solution consists of two parts.' The

first is the- homogeneous'solution, identical to Egq. 2 2.4, which can be toe

v

obtained by setting. the right hand side in Eq 2.2.15 equal to zero. a
__The second term is any particular solution which satisfies Eq 2.2, 15

If the initial shape of ‘the axis of the bar is assumed tb be

o

. Wz ‘ : ‘ .v
Yo(z) = a sgin T _— . .(2.2.186)
. e . \\\. ) :

~

in which a is‘‘the initial midspan deflection, thEh\Eg. 2.2.15 becomes

s ’ a .o
.

Ny

‘ ~.. ‘ ' .
V' + kv = - k% a sinle- S | T a2an

and the general solution of this equation is (limoshenko and Gere 1951’ BN

.l
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. . . K
L 4 : . i ‘ Y ~ :
-~ . ' .

) e Tz
vV = ‘A sin kz + B cos kz + "Ik -1 @ sin L

(z.z.is)

To satiSfy the boundary conditions (v =0at z =90 and z = L) for any
value of k, A and B both must be equal t£3kero. If tﬁe ratio between
" the applied load and the critical load is defined as

P P kZL?

B = P = TI'ZEI/LY = -—;r-z— ) ’ (2.2.19)
' cr ‘

then Eq. 2.2.18 becomes
\

and the final ordinates of . the deflected curve can be obtained by adding

Eq. 2.2. 16 to Eq. 2.2, 20 which yields

a
1 — B | L W e ™ .._—...-.---‘—-——-'

a sin — v _(2,2;20)

17

sin T2 T @2y T

’ | - | | /ﬁ_

The lpad-deflection curve for this imperfect column, as P

varies, is nonl: ear ' as shown in Fig. 2-3b. The deflection_increases"

without 1 approadheS'P-r,

olution to the homogeneous'equation (Eq. 2. 2 I) is

unique and identically zero until the load reaches the critical load
which corresponds to the lowest eigenvalue of the differential equation.
At this point the magnitude of the deflection is undefined because

Eq. 2.2.7 is satisfied for arbitrary values of A. The solution to the
inhomogeneous equation (Eq 2 2.15) 1is unique and nontrivial until

the load . reaches the critical load of _the homogeneous problem,’ at which

point. it increases without 1imit. Therefore, for this-type Qf problem,

R R DT T R P R T



the critical load of the homogeneous'solution 1s adequate to determine
R , ) , ‘ -0
the stability limit. of the structure.
It should be noted that the above conclusion is valid for any

arbitrary initial imperfection, since it can always be expanded in a

,/Fourier series (Timoshenko and Gere 1961) Thevconclusion also:feméin§4,

7

valid for a’ colufn with transverse loads, since these s%mgi}jiead to a
different form. of the inhomogeneous kerm in Eg, /,Z/T
o . ) /

e
- -

2.2.2 Linearly Elastic Formulatiﬁn:for'Frames

The study.efiffame stability 1s associated with the determina—
/

&

/
‘tion of the/buckling condition of a system of interconnected members

T<as well as with the determination of the maximum capacit?’of-such a
'system. Frame critical loads have been the_subiect‘of numerous investi-
gations (Lu 1962), and many classical techniques are available for

’ evaluating such Critical:loads (Bleich 1952)._~The following discussion
attempts to place these methods in a general context.

The most fundamental method of’ determining critical loads for
‘frames.is a direct analytical solution. It is analogbus to the solu—
..tion'of~the'buckling problem for a pin-ended column (see Sect. 2.2;1).

Equation 2.2.1 is.valid only for pin—ended coIﬁmns. \If a
' column is fixed at both ends and loaded as shown in Fig 2 4, the -

S

differential equation can be expressed as

\

By = -M@ o (2.2.22)

in which M(z5 is the.moment at any point on the column, due to the
_end éffects and the transverse loads. The boundary conditions influence

“M(a)'in'an indeterminate manner, However, as: shown by Timoshenko .and



-

19




Gere (1961), a single fourth order equation, applicable to any prismatic

column regardless of the boundary conditions, ~can’ be employed._ ‘ , ‘y}

[ . .. a.

Differentiating Eq. 2 2,22 twice with respect to z yields
r"'- A\ B .

-l e d" dz -

d22

.

d

Dividing by EI, and using Eq. 2.2.2, leads to

db 57 d%y

1 JE . o :v '
I’:—‘;-* k iz = E—Iq(z).., . _ o . (2.2.24)

. The- general solution of Eq: 2;2;24:is

vioE G

in which the integration constants Cl’ C2,'C3, and C4 are- determined
from the" boundary conditions of the .case under investigation

In most structures the ends of the columns are neither hinged
nor fixed In frames the columns may be rigidly connected to the other‘
'members, which permits a lbmited amount of rotation to®occur at ‘the
ends of the columns Supports of this type are referred to as elastic
‘restraints (Chajes 1974) o |
o Both flexibility solutions and stiffness solutions of - frame
. buckling problems can be obtained directly from the solution of the

'differential equation expressed by Eq. 2. 2 25 All the classical

elastic approaches which use stability functions, become special cases :

- of this method A general treatment of the problem may be carried(but :

as follows. ' I o .-'n."i ' K | '[ . B o }
Equation 2.2.25 may be written 1n matrix~form as -

.

R ,*‘ d(z)5 L T (2.2.23)

+ C,z +'C3‘sin,hz +'Ca costhzf+ vp(z) ' - .(2.2.25)'



¢

in whioh

. <'¢‘>.-5<1,'z;-51§ kz;'eos'ke‘>7'fﬁfi.."“: U T (2.2.268)

Cand
R % <wc ¢ Cow €, ST
. .1’ 2"‘.3’ 4 #

: Using Eqs 2 2. . 26 to evaluate the transverse displacements and’ rotations
at’ the ends of the member, and adopting ‘the. notation of Fig 2 Sa,,
ylelds ) : _

s || <ecoy > | v, (0)
80 | [<dr0) >] 1 (0)
s [ RRIOCE S BEN RA

Lom | [ ¢ @] v
o ' 0N P
which ,may be written, symbolically, ‘as »
‘ .

A R B (R 3 ":T o R .<2.2127a)'

21

w2 - *‘¢(z) > (o} 4 v, (z) T ey

| o S P 4(2-‘2‘."26c_)

{A}-';“ [G.] o fn{A }l e <2~2‘275>"'

_Similarly, ‘the end forces may be evaluated from Eqs <2 2 26 Using the .
' N

fundamental relations for moment and shear (Timoshenko and Gere 1961),.
the following expressions can be writte#

M o= -ED v B L (i2asa)

" .and

“.Adopting the notation of Fig. 2 5a, Eqs. 2.2. 28 yield;

e~ v.(_q)_ :er'<¢“%e)> 32 <¢' >4 EI v;," (0) P (0)

|ror| | -Ex < om0y > { S ERE B ST O)

H(L)J o EI < ¢"(L) > . _l EI v"(L) J

A i ) : - 1. Y

Lol e R
e -n<¢'"<m> - P<g" <L>> ‘_-Hv"'(m P"' <L>,;'i



oMo 'f"-":., S | o, M(L) | :

= l"w.) va.)...',_--.

4+— '
D
N -
z
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R
2
b

nEs

‘ bifurcation point-

Yo
&

e |s acemen A R T
(d). D s L

FIGURE 2-5 Behavior of Frames

o,



0
R :

Using the notation of Eq. 3.2.2 leada to “;f';4eﬂf";'7 S B

. ’. ) ! . ot : _"__: )
.. o " : w BEPIICIIRES A
,-_-_g(v<o> .}'-'.-.r<¢'"(o>> kz <¢'<o)> "'(0)~k2v (0)\
e <@ W's"?ﬂs»a S BTN
o nf = <EI|" - | ‘-fc}ﬁfEI{] -
v [ ;'-<¢"'(L)> k2<¢'$n)> BN R R kzv )

' o"' ‘,. N ‘.-."‘ ‘ " B /‘ N B "
B C) . +<¢ (L)> ST v (L)

o . : . e s
’..which may be written, symbolically, as’ ’ ’

23

. 2. 29b)“;}7?“

{M} [G ! {c} + {M } | ";'i't Q'f?""fiib,f RNCE RS R

J"' Equations 2 2. 27 and 2. 2 29: become the basis for the following .

developments

2 2 Za- Flexibiligy Approach

Solving Eq. 2.2, 29c, for {C}, yields

“«

e} - [Gzl 2 fu u} S @k

Substituting this result into Eq. 2 2 27b yields_'r

-

{A} m - M)+ {A ' (2 2. m)
.iThe matrix [F] in Eq..Z 2 3lb is the (4x4) member flexibility mptfﬁf

~for the\displacement coordinates and tbeir aSSOCiated forces (Murray g]'
retzal 1977), as indicated in Fig 2 Sa. “T;b'

‘. A classical flexibility analysis can nom be carried ont by |
_en;arranging all the element vectors aPPearing in Eq. 2 2 31b sequentially

/

'-”finto global vectors, and writing the result 88

{A} [G 1[62]"{M M } + {A } N i-'f,d'!'f»?L(éﬁé;?;a)l,f7



- appear as

gmoments, in which each component rypresents the difference betwaen o

| -f‘;r;}i R R H o ;' ST (@232

N .
e

. For the frame illustrated in Fig. 2-Sb and 2 Sc the vector {r} would

Lo . ....,.'ljlz 1 i . PR s s ::
',. b . <r>., b <611 91:5.2962’ 61)61, 52-3'-62"”6' » Y1 52)'62

‘ --The vector {r } is a similar array of particular sokption displacements,'

L3

flwhereas the vector {R*} is the associated array of end forces and

.'the total value andthatassociated with the particular sqution. The S

" matrix tPJ contains the element flexibility matrices of Eq 2 2 3lb

¢

. on its principal diagonal - ‘g-‘7‘ ‘;f‘_, ' :.’f‘

= Compatibility equations for the frame illustrated in Fig. 2—5b '

&

are. . .o _." R

8y ) 1# 5 _‘5:2- § = 8 =0 L (2234) _

‘v5 + 53 01 f’”f‘ﬂ’ T 2iiasa

) zae‘ .

-y =0 L (2.2.358)

_:’. Qzﬁ'<9b 0. PR B 3 Lo i(2-31§?C)..-

[A] {r} {o} T aaan



"that

o

- FN PO . . . fl. - .
. . . . o . . -~
. . B o . . DY
: . . B o “ ' N - !

' 'yin which all elements of the compatibility matrix [A] are either

,ftﬂo 1 or. -1 Substituting Eq 2. 2. 32 into Eq. 2.2, 36 yields,

EN
R |

5 fAi-tEi {R*l‘.ad - LAT{;b}. ; -fd »=‘l' o c ot 2.02.37)

This compatibility equation cannot yet be solved for the indeterminate‘

-

'.forces {R*}, since there are only 9 equations but there .are 12 unknowns.”

":' To complete the solution, the left-hand side of Eq 2 2. 36

~v.may be considered to define a set of reIative displacqnents {q}, such

' {q}= '[A];_,{r,}, SO o o o -.;("2:'2.-38‘.)2-. o

-_A set of generalized forces {Q*} may be associated with these relative.
- displacements and £or work equivalence, it is necessary that f'ﬁb' :

I;(Przemieniecki 1968)

) ,=-'t,A1T,{Q*'}'.:"-'f"’f".\ el @aass

“Substituting Eq. 2.2.39 into E, 2:2.37 yields.

v

which may be written symbolically as - . ' ,,'" 7.
rt‘ o . | : ’

' _IA].tFJ.[A]T {Q*}‘.*,;~J£A1u{rﬁ} R : lil'. (ng.gba)

(F] "{"-'Q*} - :{q'p-}" T R L 41:.,(72-.29-_‘49‘1;). |

Equation 2. 2 40b is a set of compatibility equations which
'afpermit the solution for the generalized redundant forces {Q*} which
restore continuity to’ the frame by counteracting the incompatibility



displacements {qp}. The matrix [F] is the flexibility matrix.associated
PR T \ -

with thbse relative displacements. ' o

. For the condition where distributed loads are applied to the

;frame, the particular solution v (z) of . Eq 12,2, 25 is non-zero

":’jHence, {qp} of Eq. 2 2 40b is non-zero For any value of distributed -

i*load and axial forces, Eq 2 2:40b can be solved for {Q*} {R*} can

26

B 8
" be determined from Eq. 2 2. 39' {c} from Eq 2 2 30, and hence the
_solution of Eq. 2 2 26a is, known for each member However, as
LRSI e . (2.2.41). 4.

: &‘.‘. . B : -
in which ]IF H indica@es the determinant of [F], the redundants
. o

V{Q*} and hence all displacements, increase without 1imit 2 Similarly,

‘3

'if all v (z) are identically equal to zero, only the trivial solution
;__is possible until ) |
.|"|* Fll o T e RCEROS
| . h S o ¢ :_‘~ . e
- at which time the eigenvectors of the homogeneous form of Eq 2.2, 40b
;Tcan be determined and forces and the associated displacements of . |
arbitrary magnitude may exist. Thus, a bifurcation solution of the
homogeneous problem and unbounded solutions of the inhomogeneous problem

RS . . A

o arise in the same manner as: for a simple column,_and permit the.same

interpretation, as’ illustrated ‘in Fig 2—5d.

The above technique is a general approach and has“been~used“;;

m—
;.

.for simple structures. Normally an analyst ihposes the boundary o :“;i_

.”conditions Of Eq. 2 2 34 on the differential equations prior to

'writing the inuﬁrmember compatibility conditions of Eq. 2 2 35



(Timdshenko and Gere 196l? This reduces the size of the flexibility ;;;

matrix in the illustrative problem from 9 x- 9 to*3'x 3 In uon—

i

—-———eomputerized analysis this could reduce the problem from an intract-,

“"able solution to a tractable one. However determining critical loads

by bhe flexibility method is still formidable It is necessary to

assume . or, calculate the value of the axial: force in each member in

order tqidetermine the values of k in.the general soiution Eq. 2. 2.25.

rft may then be assumed that ‘these axial forces, and hence the k—

values of the members, are proportional to the aoplied loads; If

the load factor from the reference load is denoted by A, the stability ’
.condition (Eq. 2 2 242) becomes a transcendental function of A. It is
,.necessary to find the’ smallest rqnt, Acr,'of this.,characteristic' ) ;
;_.equation B

The most practical method of doing this is by trial and error,

%

and this is called the 'determinant search' technique Values of X

are assumed, ‘and ” F|| is evaluated for each assumed value By plotting,

o

"or 1nterpolating between pairs of values, the value of l can.be

determined (Bleich 1952)

_2.2.2bv Stiffness‘Approach‘

;C l ;- A classical stiffness formulation, exactly parallel to' the
flexibility formulation may be derived as follows For a stiffness
formulation Eq. 2.2. 27b instead of Eq 2. 2 29c is solved: for {C} . T

" to yield

_{c}. st a-a) o @24,

T
A



¥

Substitution into Eq. 2.2.29c, yields : { js

{M} = [GZ] .["Gll-J' {aA - A‘p} + {Mp} . ‘, - L : (2.2.44a)

‘.Which may be written symbolically as -

2

a

M) - m a-a) Y T8 728
‘ in which the matrix [k]’is tHe &Z x 4) memoer stiffness matrii,
\‘expressing the‘nenperpend,forces of:Fig. 2-5a in‘terms,ofmthe'corres-r
ponding aisplacements. ' > ' , | .p Coe o
Arranging the element‘vectors appearing in’ Eq 2. 2. 44b
sequentially into global vectors, Eq 2; 2 44b for all members may

be combined into the single matrix’ equation

.28

{R} =..-fK'I'{r*}.‘+'{Rp} - o o q2a2as)

| For the frame illustrated‘in Figs.é—Sb‘and-Z-Sc the‘yeCtor {r} would be °
. » ‘<R>. < 'Vil]:, M-;, VZ, MJZ-, Vl, Mi’ -ng ,Mg’ Vi:. M-]?_’ V-;r Mg >
‘ ‘ P e . .f ' ) © o (2.2.46)

.l :///
The vectdr {R } is’ a, similar array of particular solation end forces;
and’the vector {r*} is the corresponding array of end. displacementS,
__,»where each term represents the difference between the total value and
pthe particular solution value of the variable ‘ The matrix FkJ
contains the element stiffness matrices of Eq. 2 2. 44b ‘on its princi-

pal diagonal

|;Equilibrium'equstions may now be written which, for the frame
) } ° ' ) .- ‘. " . @ . . ‘ [ . - . T
of Fig. 2-5b, are - . L ST
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-

l | . .’ . ' ! v - "'_':.”.u . .
MM HV oL = 0 S (2.2.47a)., .
- . “ V3 ‘ . .
§§\+ +ve oL = 0 , , 7 (2.2.47b)
_ TR 2 2 . . o
N ) 3 '3 . - . ,. ’, - . 4 .‘ |
L Am Y L = 0 - L f2.2.478)
ce 11 2. .2 3. 3 S
v, + V1 0, Vv, + V°2 0, Vl + V2 0 (2.2.478)
1.2 2.3 _ 1 3
My My = 0 MM = 0,V -V = 0 (2.2.47e)
Equationé'2.2.47 may be expressed symbolically as ' . ,
. - . o -y AR
[A) {r} = {0} S | (2.2.48)
in which the elements Bf themequilibrium'matrix [A] are either O, l;'i‘
\ ' ' ' . ' .
or -~1. _
SubstitUtiﬁé Eq. 2.2.45 into Eq. 2.2.48 yields
(AL PR {r*} = -[A] {Rp} s - (2.2.49)
. ‘ _ . , .

Since Eq. 2.2.49'con£éins,on1y;9 equations, -and .there are 12 unknowns ™
in {r*}, it cannot be solved directly. 'Hoﬁevgr, Eg,>~2.2.48 éaﬁ'be".
considered to define a set of unbalanced forces {Q}, such that

- {Q} = [A] {Rr} : (2.2.50)
" ,

for which the associated work equivalent set of generalized relative

' displacements {q*} are related to the displacements {r*§ by‘;he

‘equation . e . . : .. v

Arx} = (AT {q*} - O (2.2.5D)
‘Substituting Eq. 2.2.51 into Eq. 2.2.49 yields
o _ . _ Lelds v

» : >4}

-

R txd (B () = - (A (R )

LS

W Y2.2.520)



Pt

which may be,written s&mbelically as.

R S
Equations 2.2.52 are a set of equilibrium equations that

permit the evaluation of the generalized displacements {q*} which

establish equilibrium between members of the‘frame. The matrix [K]

is the stiffness matrix associated with the generalized displacements.

For any distributed loading and axial forces, the’ particular solution

forces and the. vector {Q } may be” formed Similarlyy the matrix [K]

~ may be cinstructed. Once {q*} has been determined from Eq. 2.2.52b,

I

{r*} may be determined from Eq. 2.2.51 and‘all‘member end forces from

Eq. 2.2.45.

The stability condition is determined in the same manner‘

.

as was done for the flexibility formulation of Sect.- 2 2.2a. A unique
set of finite displacements arises from the solution of the equilibrium

)
equations (Fq. 2.2.52b). However, as axial forces’increase and

s
~

Ik || - o : L (2.2.53)

disPlacementszincrease without limit. For the homogeneous case, the

solution to Eq. 2.2.52b is the trivial solution unless

[ ' ' 3
et = o. | ' (2.2.54)°

in whichncase.nontrivial.eigenvectors of-arbitrary magnitude exist
" as solutions. The intetpretation of these 901utions is, again, as

‘illustrsted in Fig. 2-5d. The determination of the critical load

Acan be accomplished by a determinant search technique as discussed in

:Sect. 2. 2. 2a. :

>
», k O 4 .



The above stiffnese technique represents a general approach."

It has been widely used in the more conventional form of the slope—
s N s

.deflectiou technique or the moment distribution procedure. The element.
. slope-deflection matrix ariseg directly from Eq. 2.2. édb as showu in
the .following: - o " . :'_:‘ ; Ty .
'h Equation 2.2.44b cin,beiwritten ae
sy o

4

RORERGRTY

RN RN

ar

N

. /
For zero member displacemen the total forces, called the fixed end

_forces and denoted by {M }, a¥e obtainééffrom Eq '2.2: §§ as
S | ' b o cpn
M} o= M} - (k] {A} . (2.2.56)
. T P P , ' ‘ ,
Consequently Eq. 2.2.55 may be written as ° -
. ' (2.2;57)

{M} = [k] {a} + F)

In the slope~deflection méthod, only the end momerts are selected_from
- . . =

the_yecton {M},'to.yield'

in which <k>' is the ith row of'the matrix [k] Recognizing thet the

coefficients of 6 "and 6 in these rows are numerically the same but

w o

. opposite in sign permits Eq. 2.2, 58 to be written as

R R T O o : (2.2.58)

[

31 .
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»_'-/,,,/-/'/; : .“— e \ S
_. (_M,l/f’. s ¢ -(c .&_s?...rel' ’ 1 u}l’ L R
- s o o ‘J/BZ' - r+"“'54". r (2.2.59)
N PR i N P I
T B R Rl et B |

. in which C and S are the standard stability functions (Galambos 1968)
Assembly of Eq. 2. 2 59 into the equilibrium equations Eq 2 2.47

by a standard slope deflection technique gives Eq 2.2, 52b, and the

éolution~procedure then follows as described above Thus, the magni—

tude of the axial forces which satisfy Eq 2 2 54 are sought by a

determinant search technique. ./

| Equation 2 2 59 is also the starting point for a moment distri-

bution search for critical loads (Hoff lQAq\ In this technique the -

magnitudes of . the‘axial forces are assumed and the stiffnesses, S,

and carry-over factors, C, are. evaluated DistriSution factorsgare'

computed:with these. . At the critical load the moment distribution

process diverges, leading to end forces and displacements which become_'

" arbitrarily large (Winter et aZ 1948) This is, in effect, a test-
that Eq. 2.2.54 has been satisfied.

2.3 Elastic ﬁonlihear'Formulation
= .

i,

An elastic nonlinear formulation may be carried out to deter-
mine the behavior of the structure after the. deflections are large
enough to cause significant changes in the . geometry. 'ThiS‘phenomenon
',is referred to as geometric nonlinearity. To account for the effects
‘of changes‘in the geometry as the applied loading is” increased an

'exact expression for the curvature must be used.

-



In Sect 32“2v11the‘def1ection of a'columnfwas found to be

' indeterminate at the critical load.; This 1is strictly correct on

ly as

long as the. deflection remains small" and may be better understood

by recognizing that the governing equation, Eq. 2. 2. 1 is. based on the

~
approximate expression for the curvature of the buckled column

If the exact expression is used the solution will not exhibit'

B ‘zv
dz

=

.indefiniteness in the valuezof.the deflection Tﬁe shape of the'f'h

) elastic curve of a simple column, when develqped on the basis of

| exact"vdifferential equation, is called the elastica .

2 3. 1 Large—Deformation Formulation For Columns (The Elastica)

To obtain a solution for the elastica 5 consider the s

',supported column shown in Fig ‘2-6a. Except for the now invalid

the ]

imply -

assumption of small" deflections, all idealizations are the same as

'those of the‘Euler column If the y-z-coordinate system is taken as-

shown in Fig 2- 6a and the column is 1in equilibrium in a bent con-'“

33

figuration, then the moment (Pv) at any section is equal to the resisting B

hmoment (- EI¢) Thus,

3

in'which.¢-isvthe angle_change per unit'length. If the 31ope is

o CERI

by -9, and the distance along the curve from the origin_to the point

is s, then

. de
¢"a—;

.Z'Substituting this éxpression into Eq. 2.3.1 leads to -
6

‘EI-d—-i-Pv “- ,-_«'0,‘

(2.3.2)
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(b) Load-Deformation Curve
FIGURE 2-6 Column Behavlor for Lame Deﬂections



(2.}3b)

..Differentiating Eq. 2 2 3b with respect to s and\replacing %— by

sine, yields

2 EPAERE
ale. + k% sinf

om

1

~

which 1s a nonlinear differential equation in 6 .i'l CENEN

Multiplying Eq. 2 3 4. by (2 de). and 1ntegfatingiglv88j--‘
61952‘;“2gk? cos®y = ¢ . o fi-" c2.3;5)--ﬂ,‘
ds’ T RSN e 43
B ?Q\\lntegration constant C, is eyaluated from the boundary conditions'~
gf, namely, J.“ e . '

Wi e

of Fig. 2~

/~ e = =akeesa o loa T STy

and Eq.:2.3.5 Beconeal

) I/ . ' ! . N P ' o e T .
'(;—92 - 2K (cos®. - cosa) . - R R (2.3.8) "
B S PR DR

or

fdGlJ

"E;f,iw

= ER/T Vet o gm0



/T eoat - cesa

| in which the positive sign haa been dropped because 6 always decreases .,J:T/

: as s increases. ;:_L”
The total length of the column is obtained from B

\ wt T TEE

.aan

“in which '

det e

Ldeg g /,'--Si.‘.:"z."%"'f sinzg . ST

is a complete elliptic integral of the first kind which is

'ﬂ tabulated in.mathematical handbooks (Jahnke and Emde 1945), , ;f'.g' - ot;"”lﬁibf'

SOlving Eq. 2 3 12 for P yields




"..",'_o» R S S .-_"

"7 theory
‘ nz‘ﬁt The 1oad—deformation characte;istic.of the column can be,;xuwg,

. obtained as follows..uﬁﬁ‘."' SR

! Noting tbat dv - sine ds, and making use pf Eq 2 3 10, gives o

dv ; -;Vibﬁ”'ﬂ sinG de
A k / 2 / cOse - cosa

; .:\

| -.1<;-‘;:3_; e

. i sine de _ ;v  S
k / 2 / cose --cosa“i:.'

. from which 1t can be shoun-that (Timoshenko and Gere 1961y - | . .

L e e e T  93(2ﬂ?ﬁ18?*1 S

SRR = 23

el

‘: ;sting Eqs. 2 3 14 and 2 3 18 it 13 possible to compute for 7':'}:?“:”:¥




' ?fl-éthe equilibrium equations is considered.-<'

- displacement relationship (Turner et aZ

' vh,overall behavior of the structure (Nair 1975)

7;;between this figure and Fig._2-2b shows that large deformationqtheory.jf
'leads to the same critical load as 1inear theory, but predictsfa veryfl;”
.:l;iflslight 1ncrease in load with inqreasing deflection above the criticale;i
g?}load fhe increase in load becomes pronounced only after consider—»'*

g:able deformation has taken Rlace. This indicates that the predictionﬂ'

”:g:of bending at constant load as implied by the 1inear theory, is a':

'ﬁ,good approximation for a co':iderable range of deformations

sy

'.f'2 3 2 Elastic Nonlinear Analysis of Frames .ﬂh.kE.A

In a structural framework made from a linearly elastic

':ﬂ:”material, nonlinearity arises when the effect of the deformations on

{-was used and the axial force in each column ‘was assumed to remain

:g:constant during buckling.v These assumptions result in .a linear o

. 1
a

'l';formulation of the problem. The classical solutions, as presented
. o r

’lin Sect 2 2 2 may be modified to account for geometric nonlinearity

/ ;In this case an exact expression for the curvature is uSed resulting

"in an exact differential equation (See Sect. 2 3 l) The axial

-

‘force also may be assumed to be changing in,each column during

'”buckling.' A modified classical formulatiox, however, would not be_.v

easy to solve. A few authors have consi“ered the nonlinear strain-'
.'960, Martin 1965), and
"ﬂmany others have incorporated the effect of

-

An approximate method of analysis f0r elastic nonlinear

ffproblems has been described by Adams (1972) Thegeffect_of jointg."z

,2 2 2 an approximate expression for the curvature‘ |

f;nt displaCement on the
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“'displacements on the overall behavior of a multistory frame 18 .':

: J

"!eaccounted for by modifying the re:i}ts of a standard (1inear formula— o

w:,tion) analysis.- The method is- usually referred to as the*P-A method

N .

ffects as the P—A effects.

*,

'*}f?and the secondary

~rd

PR

The mechanics of the P A method can. be described as follpws,r:T

C b

f‘flusing Fig 2 7 (Johnston 1916)
1 = The loads are applied to. the frame, and the lateral displacements o

']'Ai due to- primary moments are computed

Z'rhThe additional story shears that are caused by the displaced e

Vvertical loads are calculated as

-g .M
| ’

T e r(Ai+l,. A - (2.3.19)
‘fin which Vi is the additional shear in story i due to the sway
J'"fL.forces, ZP ''''''' is-\H\rsum of the column axial loads in story i, h

‘L”is the’ height of story i and A and &- are the lateral dis— .

"placem\nts_of_the frame at levels i+l and i respectively

‘LyiirfThe fictitious sway forces, H\, are computedwat each floor level as '
©Hy j,Yi-l', Vi: : ””f"lvf\w R TR ‘(g,3fzq)a‘

. 'L:IThe sway forces Hi’ are added to the applied loads and a new l

-linear a jlysis is performed..n r“.“;:e fl}i_ﬁ .gﬁ‘ - B ‘

_ ';‘5 = When the deflected shape remains unchanged from one iteration cycle
| S .
‘ o to the next the solution has converged, and the resulting forces o

Lfﬁ; :ulfnow'include the secondary moments.t‘;4«1 SR -5l*-5

In practical applications the convergence ia fast and the jf:j_i
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" FIGURE 27 Sway Forces Due to Veitical Loads
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e

>1972); ‘Slovtconvergence isia'sign that the Structure is exoessively

T_;flexiblég'andilack of'convergence indicates:thatfthe structure is .
J unstable (Woodbat.ai. 19?6). h

-

2.4 Inelastic First Order -'Sta'bil'ity'Theoryk,

Early tests of steel columns of practical proportions showed

that failure occurred at loads less than the'’ Euler load - The difference

'-can be attributed to the assumptions made . in deriving the/Euler load.-

In each of the preceding sections it has been assumed that . the 3.

fmaterial behaves 1inear1y elastic, but in order for this to be valid

b

: the total stresgses in the member must\remain below the proportional

limit of the material. However, in most columns the elastic limit is

exceeded before the load reaches the Euler load. The results of the

,‘elastic analysis therefore are not valid and _the buckling load must '

. be determined by taking inelastic behavior into account

:A"'

"-?.4;1 ?Tangent"Modulus Theory

Engesser (1889) suggested that if column failure occurred _
~at a- stress above the proportional 1imit of the material, the column v

y'strength could be obtained by simply replacing E by Et; the tangent
imodulus, in. the Euler formula (Eq 2. 2 12) The slope of the tangent

to the stress—strain curve ‘of -the material at any ‘point A is E 3 as.
'showii in Fig 2-8 f That 1s -

) Tomjustify the aubstitution of E instead of E it ia

’aasumed that t@g column remaina straight and that the stress-strain o '

';‘- Ca

-



- Stress, 0

- 'E_.t, ='T3a_ng‘e'n§ Modulus
" E = Young's Modulus

e

- ‘ ; >
- Strain, ¢

s

K FIGUBE 2:8 General Stress Strain”ReI,ationSHip

“4

I : o ._D_e.flectipn...a

Dl
.. FIGURE2-9 Load-Defléction Curve of Shanley's Model . -
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characteristics are the .same throughout the length of the member.

_Thus, the average stress at the tangentrmodulus load. for a short

v A
column, -such as- the one shown in Fig 2-23, is ©

213 . Do _. ‘ |
(L/r) - o | - C(2.4.2)

2.4.2 Reduced Modulus Theory

.

When a column begins to bend at the critical load, there/is

. a possibility that stresses on the convex side decrease. Referring
to Fig. 2—8, any,incremeutal decrease in the compressive strain from
point A involves a decrease in-stress equal to (AE)E whereas an

incremental increase in the strain invodlves an- increase in stress

T . '

" equal to (As)E . This line of reasoning is the basis for the reduced
modulus theory, or as it 1is sometimes called, the double modulus

theory. . : ‘ ' . L ‘ T
. , .

Based on the above reasoning,'Engesser (1895) realizedcthe

-

" theoretical contradictions inherent in the tangent modulus' theory, and .

suggested the use of a reduced modulus, Ef’ for E in the Euler fOrmula;
t n . .{

The magnitude of E lies between those of E and E . The expression
for E and the position oftheaxis of bending at critical 1oad are
determined so0 as to satisfy the traditional buckling contept-that

o .
the load remainms constant during buckling. ) i S 4

Von Karman (1910) revised the theory, and determined the

a

expressions for the reduced modulus for a rectangular cross section
_ and for the idealized I—section. His\subsequent experimentallwork

.showed that the actual buckling loads were closer to the tangent o

. modulus values than to the reduced modulus values. In contradiction //*\~:
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to the understanding of column behavior at that time, this. problem wasg,

-

not resolved for another 35 years. o . f' :i~¢
' 2.4.3 Shlnlez's Conﬂribufion ’

Shanley (1947) resolved the apparent, contradiction between -
Q

' theory and tests through a revised tangent modulus model. "ue *

demonstrateg that uponvreaching the. Langent modudus load, P e’ there

1s nothing to prevent the column from”bending and at the same time

support an increasing axia wload

’

Figure 2-9 illustrates the load-deflection curve according

te Shanley 8 model. He concluded"that the column'load mhy exceed

the tangent modulus load, ”hut'cannot_ he greater than the reduced ,
:moduluslload :PT Shanley also notﬁg that the tangent modulus theory :

predicts more accurately: the maximum load that an inelastic column

»\‘

may sypport.i

13

2.4.4 fnelastiéﬁhehavior of Beam—Columns

' Inelastic actioﬁ must be. considered in the determination ‘of

-~

the ultimate strength of a beamrcolumn The behavior of * beam—columns

\is different from the behavior of either columns or beams.' The term
. ! < R . e
" defines a member.subjected“tOjaxial load as well as bending moment.

A set of tests oas performed by'Ketter‘et al. (1955) on W8 x 31 beam--
oolumns loaded up to failure.fThe resudts showed that the fully |

'plastic moment capacity of a beamicolumm cannot be reached. The study
. ;.‘-
aconcluded that the maximnm moment capacﬂty of members is a function
4 /
-of ‘the axial force as well as the momen applied to the member.

y Galambos and Ketter (1961) p ented theoretical ultimate
\\.

strength interaction curves for he&ﬁ-columns with various end

. . . P
KRN .- . s o
o I R



conditiona, correlating the analysia with earlier tests by Mason
" et al. (1958). ‘One set of such curves is shown in Fig. 2—10
repreaenting strong axis bending of a W8 x 31, subjected to equal
end moments, The curves are a reasonable approximation for most
typical wide—flange sections.~ The validity of:such interaction
_curves has been verified by extensive experiments (Van Kuren and
. Galambos 1964), and the correlation ‘between tests and theory is good
" The strength of members subjected to bending moments, and.

axial loads can be approximated by interaction.formulas in terms of
’ the ratios P/Pu and MO/Mu as . |

c, M R . _
M - P/Pe) < 1.0 , . .. (2eé;3)

=+
¢
in which P is the axial load at failure, P is the ultimate load for
a concentrically loaded pin-ended column, M is the maximum applied
momerrt (not including second order effects), and M 1's the ultimate
moment capacit%-in the absence of axial load The co;fficient
C ~1s the equivalent moment factor that accounts’ for unequal ‘end
moments, and P is the elastic critical load for‘buckling in the
plane of the applied moments The ‘term l/(l - P/P ) in Eq. 2 4.3 1s
~

' - the amplification factor, covering the effect of the axial load '
acting on the deflected column.

' Equation Z. 4 3 is based on failure of the beam-column due to
instability.. It approximates the experimental interaction curves,;

'and is the basis for. the Canadian Standards Asaociation Specification
(csa 1974) B - |

x .
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4'2 4, 5 Simyle Plastic Analysis |
: The objective of the plastic methods of analysis is tO'"‘.‘
'predict the loads at which a structure may fail by the development of
.excessive deflections. It is assumed that whenever ‘the moment at any
2section reaches the plastic moment capacity, Mp, a plastic hinge.
forms, which can undergo extensive rotation while the moment remains
~‘constant The arrangement of plastic hinges together with real .
'hinges which are functioning at collapse is knoWn as- the collapse ' ,
~mechanism or, simply, mechanism (Neal 1977) The plastic limit load |
for a frame is the maximum load it can carry, assuming that no ”
increases will’ take place after a mechanism has formed.
| Two approaches were commonly used in plastic analysis in !

'early studies (Pippard and Baker 1968) namely, ‘the equilibrium method
.1.and the mechanism method ' - "a“.
The equilibrium method of analysis.consists of constructing a |
‘moment diagram for the structure after it has been rendered statically:
f:determinate by replacing a- sufficient number of ‘the redundant moments -
. with the fully plastic moment Mp (Phillips 1956) Since it is not
.always possibﬁbcge choose the correct locations of the plastic hinges, -
: the method essentially is based on trial and error. If Mp is. not | |

Vexceeded at any point in the moment diagram but is attained at a
’i“sufficient numﬁar of points to form a mechanism, che proper pfastic ,{,:

: ﬁoment diagram has been found. If a moment greater than Mp appears at

~any point, it becomes necessary to assume another moment distribution."

e

K When the correct moment diagram has been found the plastic limit '

load may be evaluated by statics.'



f; and error procedure is needed where there are two or more possible e

A

Y

The mechanism method is often less cumbersome than the equili- )

'{-briUm method. It consists of equating the external work done by the

1oads acting on the deflected structure to the internal work performed '
by plastic hinge rotations during a virtual displacement of an

assumed mechanism. "As in the case of the equilibrium method a trial

S ____,___‘.,_._A———-‘——'
e —

Jmechanisms“” The" mechanism which yields the smallest collapse load

‘1

. governs the solution of the problem o l‘-f‘

".number of possible mechanisms may be very large

-

"The above methods predict thepfailure load, " but give no . . .

indication of the load—deformation characteristics of the structure.‘

*The methods also are difficult to use for large frames, since the

K]

The" complete load—deformation response of complex frames can .'
_be determined by a computerized step-by—step analysis (Wang l963)
In this approach the difficulty of locating and verifying plastic_.
mechanisms for large structures is avoided., During the first step

‘a linear elastic computation is performed based on the original
)

”: geometry and stiffness of the structure.- The search for the location

J'of the first plastic hinge is conducted and the loads on the K

Y

structure are increased until the section with the highest moment

', has reached the plastic moment of the member at that point The first

‘plastic hinge now has formed, and the stiffness of the structure must

"be modified by changing the particular member stiffness., The search -

s

Rt A . . o
EIRY: . . o umrrt?

o

e

for the next hinge to be formed is then conducted by the same procedure,sﬂ,"'

'which 18 continued until a’ plastic mechanism has been formed.‘:f5 e

Two different step—by-step approaches can be utilized One

is an elastic—plastic analysis, where elastic behavior is sssumed



"{Ushown in Fig. -lla is used., According to this assumption, the

i

'_until the hinge has formed and the moment-curvature relationship

segments of the frame between the hi?ges will remain elastic.'iTheff
~resulting load-deformation characteristic is termed the first ordet

-‘elastic—plastic curve .and’ is illustfated by curve E in Fig 1-1.

SN 2
i g et

& p—

R I aer)

The sec¢ ond approach baSed on the step—by—step method is ‘nr-f
~‘a rigid-plasticﬂghalysis which gives a first estimate -of the ,

-t”ultimate load of the frame (Beedle 1958) According to this theory :h

the frame remains undeformed until ‘a mechanism has formed.: This is ;. :

consistent with the moment-curvature relationship assumed in f”

Fig 2= llb.. The behavior 15 termed first order rigid-plastic“and -

is illustrated by curve C in Fig. 1-1.3 .

2.5 InelasticiNonlinear.Analysisl .viV ,QT_ o : R L A
The determination of the ultimate strength of a frame is a'
| llnonlinear bendfng problem (Alvarez and Binnstiel 1969) The non—

'.linearity results from changes in stiffnes%es of the members due to _.'f_ el

axial force and plastification, and from cﬁanges in the geometry of
_the structure due to displacements.; The tr:efultimate strength has
. : : E . \ : ..{¢

_ ate strength/is less 0
~than that predicted‘:y simple plastic theory 'Tsed on the plastic

.. hinge concept.
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d.;; in Fig. 2 llb,! In this approach the frame remains undeformed untiL

[

2511msm-”"

ted Method of Analtsis‘,s¥"

the'aualysis This'can be}done by performing a P—A analysis,-

Fig 2—lla, indicating an elastic-plastic material, a second order;-“nlt;fffff

‘[ elastic~p1astic analysis can be performed., Such a model can g;g,ﬁ,,:.

adequately represent complex inelastic behavior within the limita-Tﬁ._,f;J‘?f
:'a'tions imposed by confining inelastic effects to individual cross

sections The results of the analysis is the complete load-deformationﬁ'-f”Jf

I 'r

response of a frame, and is shown as curvefF“:n Fi ‘fi%lk‘ A second

Ljﬂ‘order rigid-plastic analysis can, be performed on, the‘frame for which

the moment—curvatu;e{relatibnship for the material is'

sfilluscrated >

y.'

a-mechanism is developed at which point the frame exhibits lateral
\d deformation with a decrease in load This behavior is shown in .

Fig. l-l as curve D. The plastic collapse load obtained from the

rigid-plastic analysis will always give an upper bound value for thefffﬁfgsff

true maximum 10ad

"‘.
[

N
LN

.,f.\w :



‘,ifIn this procedure the frame is given a lateral diSplﬁ

'ﬁzfjprocedure]for the analysis of portal frames, symmltrically loaded

:'di;into the inelastic region.' Moses (1965) showed a procedure for theﬁ'dfj'L

"vf inelastic analysis of pgigal frames with hinged bases, considering Jfﬁ

K

”f”the spread of the inelastic zones and the effects of axial forces. ,1:'

~snent and. thef??lf

L compatible forces and moments are determined By iterations. Adams:dﬁ'“

"lj(1964) presented s similar method but neglected the axia{ force in;

jL'!:elastic behavior of the beam.f :l“"‘

'glneglected.: This is the method called the;P-A approach as discussed

2s{£in Sect. 2 3 2

'?fin plastic moment capacity due to axial forces but restrictions are

fconsidering only bending deformations..e

'i..

mﬁfgthe beam,3as did Chu and Pabarcius (1964) The latter also assumedﬁil.i_aftll

The effect of 1atera1 joint displacementstonvthe inelastic“f f::

WJ?behavior of a hinged base portal frame was fncluded in a paper by

x;::Yura and.Galambos (1965) The influence of beam axial force was

Horne and Majid (1966) fncorporated hoth design and analysis ;E?f“’f

'ﬁ{ffeatures'into a second order program capable of considering reductiOnﬂ

S

T‘“,placed on the column plastic hinges.: The prdgram is limited.toii:“;.;ffgv_7‘7'




'l71istability of braced and unbraced frames The formulation is based

Vo

':'ftogether with an initial strain procedure

:plastic behavior is implied ﬂ;ﬁ;;iyggliif.,‘ -

. concept, as - well as considering the axial forceﬁ

e a“‘md o ““e Pl"ce at discrete points, and ‘an idealized elastic- R

A e

.‘- - ..; -

Davison and Adams (1974) develOped a method to analyze the

n'on the slope-deflection equations, modified to inco:porate theneffectu’ R
"fof plastic hinging and finite column widths The material is assumed*?&%,'

'ﬂelastic-perfectly plastic, and-P~A effects are covered . The plastic;Z'u

$.7

moment~ capacity of the column is reduced for axial f&ce and the
. . ‘4 . R

effect of axial force on the stiffness and carry-over factors for a

dcolumn is considered by dsing eléhtic stability functions

Al

,'1(1976) The concepts of geometric and tangent stiffness are used

An attempt was made tOEﬂfU o

d;inCorporate most of the factors that inflyence frame.ggllapse intog&"
7L fa single anal/éis Extended plastic zones, axial deformations, and

lfjstrain hardening are considered but residual stresses are ignored.aq; o

\\ Cohn and Rafay (1977) investigated second order analysis H‘

.;fusing the P~A method The analysis made usei%f the plﬁstic hinge f”‘

"h’the membgrs.io.fw‘"“ E

ﬂResidual stresses and strain hardening were neglected, and only stress

i'distribution at collapse is obtained with no information about the

~

=jcomplete load-deformation characteristies ﬂ.'jt:ff@;U':,vo,);éfj

e

Frame collapse analysis haswbeen presented by Tranberg et alr‘ T -



CHAPTER III o
B AR ELASTIC FORMULM‘IONS AND sow'rlons "'

In Chapter 2 a number of. different kinds of classical formu--' :

.’ “ﬁ\lations were reviewed for the solution,of member and frame stability f~i

l

l“f'problems Relatively recently, the finite element method has proven 43;?#'5

',itshlfiﬁs one of the, most versatile techniques available for the
“ r ‘ .

. -numerical solution of complex structural problems (Gallagher and

f\Padlog 1963) In this chapter the elastic solutions of frame stability
".i“problems, using the finite element method are.compared with those ‘

. "~;iobtained by the classical solutions, reviewed in Chapter 2

| y- The finite element,method as a solution technique is reviewed y‘\

]}in Sect’ 3. l. Section 3 2 is devoted to the basic equations and “
."}fﬁassumptions The formulation of stability equations of equilibrium

f‘is derived in Sect 3 3 together with a solutioh technique to solve -f‘
;yfor the elastic critical load of frames. Numerﬁcal results for a |

'-;-fivariety of problems are presented in Sect 3. 47 i Formulation of non—ihi

"l'linear equilibrium equations as well as finite lement models are

ideveloped in Sect 3 5 which also contains a s lution technique to
'Visolve for the load—deformation response of a fr%med structure using

:ithe finite element equations. A.variety of nonIinear problems are ?l'.

s checked for accuracy and efficiency of the solution technique, in

"ISect 3 6.:; '._ o ff ;;f'jg;ﬁ,-h, - ivlq: {.,;J»ffjf



Ul ,.aév:t'ew Of ‘the Fﬁte '-Element" He_thod )

Lo R , q" ,
‘ The dedelopment of the finite element method as an analysis
"tool vas initiated with the.advent of the electronic digital computer. t,' ’
-hIn the solution of a continuumlproblem it is necessary to establish
and solve a system of governing differential equations. Using the t
g ;:finite element method and a digital computer it is possible to discre-'f‘
l;.tize and solve the governing equations for complex system in a very
beffective way (Zienkiewicz 1971) | |
In the finite element method structures can be”visualized‘l
i-as an assemblage of structural elements interconnected at a discrete Gl

>

fnumber of nodal points.: In an elastic continuum the true number of

4

.:;!interconnection points is infinite and therein lies the difficulty

e

fof its. numerical solution The concept of finite element as originally

' introducéd by Turner et aZ (1956) attempts to overcome this

fdifficulty_ y assuming the real’ continuum to be divided into elements
_ﬂinterconnect d only at ‘a finite number ‘of nodal points at whichcwork'
:equivalent fictitious forcés are’ introduced If such an idealizationq’:. h

‘.is possible the problem reduces to that of a conventional structural.
A . D

dﬁﬁtype well suited 68 numerical treatment

| Although finite element formulations can. be based on’ either o

stress fields or displacement

~

f*ffinite element formulatiOn is applied in practice since it can easily;f,

“ields, most. often a displacement based ffla
‘ﬁefbe programmed for digital computers ‘The procedure of the finite o

' ﬁelement method as applied to a: frame can be described by the following
f»steps (Chen and Atsuta 1977) 1“f .:.fli._;ff 3 -.- f*;.
‘f;(a) Each member is separated~by imaginary 1ines into a numberhof
T finite elements, vf{ : ':"f"‘f e d3:,,=ﬁ '& .

o



. e : . . . - . st =

"~ (b) The elements<are asSumedff&;be‘interconnected‘at a discrete number

oL of nodal points. The displacementS”of_;heSeénodalzpoiﬁts become'

‘{Jf-jlthe unknown parameters of the problem, as in simple structural

analysis

- o

f"(c) A set of functions is chosen to uniquely define the sthte of . e
.fdisplacement within<each finiteselement in terms of it nodal
displacements. These"funCtions are'so'chosenfthat'they ensure
S M o d

‘continuity throughout the member. . L o . P
(d) The displacement functions uniquely define the state of strain
within an element in. terms of nodal displacements These strains
together with any initial strain define the state of stress
throughout the elementﬂand also at‘its,boundaries.
(e) A Systen'of forces;concentrated at the nodes of the'element,-
. equilibrating the boundary-stresses and any distributed loads, '
T is determined "This results_in_a stiffness-relationshipjof
- S :
;

FE-VIN

-, the form

T {q} = ‘{Q_} k e D '-(‘3.'1.;‘1’)-

-

in which {q} is the vector of nodal- displacements, {Q} is the L.
: vector of nodal forces, and [k] is. the element stiffness matrix
.: whOSe typical influence coefficient kij‘is ‘the force Q due to a ,f'f”
: . ynit - displacement q:l when all other displacements (q s) are zero,
(£) énce this stage has been reached the solution proced;re can ‘jtf‘}'
pfollow the standerd direct stiffness structural analysis.ﬁ.
| Variational principles may be: regarded as one of the most

. important baSes for the finite element method (Washizu 1969) They

"have contributed to the development of structural analysis by leading

~ .

56 .-
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. to rigorous finite element formulations\: Numerous types of finite

~

..

element,models may be;derived based on vﬁriational principles. Since

0

continuum problems cannot usually be solved exactly s the variational
method provides an approximate formulation-of the problem which yields ;
a solution compatible with the assumed degree of approximation. The
variational - technfque used herein, for the formulation of equations

rx,7 - P

N
such as Eq. 3 1. l .is the principle of rtual work (Fung 1965)

3.2 Basic Equations and Assumptions

The folloying,assumptions are used to formulate the basic
equations of beams and beam-columns throughout this work, unless other-

“

wise stated , w . ° / X
; . < S
'S

l The member is straight, prismatic and symmetric about the plane

Sof -the frame (the y-z, plane) The member z axis (the reference
axis) coincides'with the centroidal axis of the cross-secfion.
o N .
2 - LQads are applied in. the plans of the frame only at the ends of

an element. ) v

3~ Only in—plane deformations occur and sections that were originally

e

normal to .the z axis’ will remain undistorted and normal to the"\.:

—_ beam axis after deformation

. 4 The slope at any point along the reference axis is given by

" 2 o .
L vy = g o= sind - T & I R D B

N 0 ‘ .' . ¢
%ssumption 4« is basic td the nonlinear formulation developed

herein. Since a Lagrangian coordinate systém is used this expression

’

is exact"when ‘the . elemental length of beam (Az) does ot change in
T ' ) » B N lr/,--' &'\

: : l, L . I3
P DN . ) . . : 1



. ’ ’ . N . .
i . r\
! ' . + ’ . » :

.lengtb.‘ Since the axis of a member may be expected to undergo only -
{very small deformations up to the point of collapsc (of the order of-

T or2 percent) Eq. 3 2 .1 permdts accurate solutions for large ,
. B \ .
Coe displacement problemswof frames, as will subsequn_tly be demonstrated.

b " ‘ v .'.\'
' “The above assumptions permit the displacem, ts u and v of

N\

an arbitrary point A on a. beam cross section ‘to. be exﬁtessed in terms
\. . v, . ‘,.

of .the displacements of the reference axis of the beam Thus, referring

) to Pig. 3-1, the displacements ‘éan be writteén as

. .’ - e ‘{ . . 6\'\.- . . . ;

u .-.-"‘u'é -ysind . o (3.2)2a)
s S - Co

v i.ﬁvo -y (l - cosﬁ)' S S - .(3.2.2b) |

A' L / R . ‘ ' R .l .
\/ssmnption 4 pemits Eqs. 3 2. 2 to be swritten as -

1
SR ’_u.\=""u§-f,y'v; SUo et L (3.2.3a)
."and' < -~ i : T

R 3

' .—»""v‘-.,-‘_; v.bf-'-' y (i‘--_- ,coaé)' ’ B o RN ' ..('3"..2‘{31:)'

»

" The axial strain at the arbitrary point A may now be obtained
e large displacement strainedisplacement eguations (Saada
T » _ ,33 "}:M'f.f" ORI T I
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"'»Substitution of - Eqs. 3.2. 3 into Eq 3 2 4 permits the strain to be SR

.o-'

:determined through$ut the beam in terms of displacements of the

'.reference axes.

A variety of beam formulations are now available depending‘ ‘

{

on_ the degree to wfich Eqs. 3 2 3 and 3 2 4 are approximated during IR

e'the formulation :The assumptions that yield the classical linear "'i

stability equations are followed in Sect.&?

o 4 e
';displacement formulation, which retains all terms ﬁmplied by Eqs.~-

;3.' However, a large

'3 2. 1 3 2 3 and 3. 2 4 is developed in Sect 3 5

~

‘- "- ’ 0 “"‘ B .
3.3 Formnlation;of,Linear_fseability-quationsk- R o Ty
Iu this sectio_f flineat stabil;ty formulatiOn 1is derived
,?.”and a solution technique to solve for the elastic critical load of .f '1
- plane frame is. described I ;,,; "“:f“‘,“‘,f-“
Detailed derivation of the equations of this sectibnlis
':a fﬂcarried out dn. Appendix A. E ‘fﬁp"ﬂ,','“f'. '5",3 L A f”:f‘ A
‘j'3 3, 1 Secant Stiffness fof .Ela stic Element : i
| Within/;he limitation of "small" displacements and elastic ,ff
“',.

"'“ig‘stresses/tﬂe equ ibrium equation for an element, as shown in Fig

, 3ﬂ2a, can be written as (Ghali and Neville 1972) ,‘d::i: Lf-g;:;;?“l
[k] {q} Q@

L,

"'qi







- eqiation ".f.f.', ‘q“ﬂﬂ”i‘“ . Eq. R ;r:_m_,_ 1s: cade betones_ (Chajes 1974) . '~

\m\whi_ch
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ge@*%:An approximate normalized buckling mode {r} 1s assumed

";7554 By substituting theovector {n} into the right hand side of Eq..-w'

]FJtVf‘53 3 23 -the equation'can be rewritten as

Do "--“‘..' L

in which

U3




{‘} f\” S e _— (3327b)

',7By forward substitution fe can solve Eq. 3 3 27b,‘for the vector

'J;{f}. Then substituting f”. Anto Eq- 3. 3.27a and back substitution ;T“

:'yields {X}

+ - < - *

. \
!

7 Q,The largest value in the new vector { } is determined and the vector

is divided by this value to obtain a new normalized buckling mode :}?”"F-ﬁ

. T

_gf-’The new buckling mode {r}, obtained from Step 7 s ﬂ!@Pared with f-:f“f ;‘
'f;the previous one.a: Co
8- '--Steps 5 eo 8 are. FePeated usins the new vector {r}" " until the I

:'Fifference between ghe buckling modes from two sucdessive iteratea

.,(,'

jfis arbitrarily small o i] 4;g

i‘j}lOﬁﬁ‘Ehezlargest value in vector {r},,obtained in Step 7 after convergence,

- .

-;fb '*his equal to i and the critical load on the frame is obtained:by waflf‘“-f'

mulLiplying the particular set of loads assumed in Step 2 by the

‘-.r

inverse of this value.,ﬁi_

\,n?” £
3 3 5 bomppfér Prognam

Frames'(ESTANF), has?heenldeveloped tb perform an'eigenvd'u_‘analysis



e

ta‘wide variety of problems.; At this stage it is appropriate tg :;amine

’ v

d_to check the efficiency of the computer programn In general the ade-'
J,f”quacy and validity of numerical formulation may be measured by comparing

faits performance on p'vblems for vhich accurate solutions ha#e been o

\

‘ : ; In order to demonstrate the efficiency of the finite element
- L .

-“fpfderiVed by classical ethods._ :

ﬁﬁ 354.1; Sample Solutionsﬂf;
'_fmethod 1n the solution of linear stability problems several examples
_are solved in this section and compared with classical solutions ? For. )
:”each problem the Cpu computer time is given as a measure of fhe cost ?".“33;
' : : - N B IR
’\ oL »"y: }. R .o . X o . L . .. . R ,

"'.‘of running the program._,,"g s ;‘3vlf,fﬁ.?:°f' S ' ‘¢;;J]*;\s R

Y e L

ﬁt}-E—l Critical Buckli g Load of Columnslf: Co ' v .

Three column types, shown in.Fig. 3—3 are analy;ed Each o

“7:type is solved twice, by dividing the member into two. elements and"

.”;then four elements., As can be observed from the results, 1n Table 3-2 o n;;f

.‘:

..‘the difference between the classical solutions given by Timoshenko and .

'fi;fGere (1961) a“d the present analysis is less than 1 oz For all foes m;

—gi - ..1_ R

;ﬁf of columns analyzed the cpufﬁime ranges between 1
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FIGURE 3-4 One Storéy - One Bay Frame
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Ic_./Lc . . : ' .
g .8 \'

? : ' o ‘ -
in ﬁhicﬁ Ic and Ig dre the moment of inertia of the'éqlumn and beam{

and Lc and'Lg are the length of column and bean tespeetively; “ For eecn;
value of G the frame is eolved twice, first ;%Eﬁming the'member~as one
element and second by dividing each member intd three elements with

'the gﬁptral element being 80% ®»f the length of the member. The reason
for the unusual subdivision with three ‘elements will be given lafer in

the thesis, when inelastic behavior is considered.

. . ’ @m
The results for frame (a), with hinged bases, is given in

" Table 3-3 while the numerical results for frame (b), with fiked bases;
is ekgzzv}arTableiB—é. The differences in critical loads between,the

. e
present analysis and the classical solutions tabulated by Lu (1962) are
; p | -

less than 17 even when treating edch member as one'element.\ It is

noted that thg present analys s\gives an upper bonnd'to'the classical
solution. The cpu time rarges befween 0.25 to 0.35 seconds.
: . . ) _
. ¢

E-3 Two Story — Two Bay Exemple Frame a

The frame shown in Fig. 3-5vis solved treating each member as

-

one element. An energy formulation derived by Johnson (1960) gived’a

critical load of 780.2 kips while the present fbrmulation‘prdvides

E

a critical load of 778.4 kips with a difference of 0.23%. Unfortunately

N

cpu time is about 0.5 sec. &

‘E-4 Multistory Multibay Example Frame

A classical method of analysis based on the energy formulation,

_fnr the large frame shown in Fig. 3-6, is presented by Johnson (1960).

A °

there was not an exact solution available for this problem. The coWputer

,74:‘
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\

.rectllinear framed structures. The analysis, as it can be seen from .6.1)

" kY N T -
— v L
L —

It giVes a critital load of 1189 6 kips compared to 1187 4 kips

";.obtained from the present analysis furnishing a difference of 0. 22

No exact solution was aVailable. Thercpu computer'time is, approxi— e

Ki

';mately, 1 second

3.4.2 Comments on‘Results-

The examples presented in this section have been selected ‘to,

e

test the ability of the computer program to analyze a variety of

»

the previous examples, exhibits good results.

9

3.5 Formulation of Nonlinear Equations‘

\ In this, section a: technique for nonlinear stability formula—
zion of elastic multistory frames is presented "The’ formulation of

nonlinear equilibrium equations 1is. derived based on the principle of
,X

virtual work Nonlinearities enter. the formulation as a result of non—7

linear strain—displacement relationships, which contain strain products
of the same order of magnitude as the engineering strains

~ The Newton—Raphson method is used to solve for the overall

'load displacement characteristics of multistory building frames

3.5.1 Description of Basic Formulation ,

The basic equations from which a nonlinear formulation may

~

be derived have been given in Sect. 3.2, In Appendix A approximations

were made which produced a linear stability formulation. An effort‘is L?

..made in thisg section to retain all nonlinear terms. Retaining the

(l - cose) term in Eq. 3 2.2b, the expression for v' required in Eq.

3.2.4 1s obtain by differentiating Eq. 3.2. 2b. This yields



."‘ - ,-y sin e d—e. l .\

c\

To evaluate the term dG/dz differentiate the expression for

l appearing in Eq 3 .2, l to obtain : . "L . -
. v‘": =  cog O .d_e_ y o : -
o dz o o s .

. from which

' N n : . . ) ] JL
e . . Yo

dz cosB

3 - N
\ : .

C @3y

V
o

- (3.5.2)

(3.5.34) -

«

The physical interpretatlonlof vg‘contained in Fig. 3-1b allows cos 8

to be approximated as .. - -

cos B = ¥ 1= (v)?

,'<'3.,s.3,b)'

' Substltnting Eqs. 3.5.3 into Eq. 3.5.1, and using Eq. 3.2.1 jields

N

. - oy Ly vlwv

11) ) s
Nom vy =2 °o % . ..

/1= w)°

In contrast to the linear formulation (Sect. A.1), b

linear'terns in Eq 3.2.4 are now‘retained. Substituting Eqs

‘and 3.2.3a into Eq 3 2. 4 yields the strain-displacement q

the nonlinear formulation as . s ‘-7 S
' E \. :- u' + i (ur ) 2 + (v") 2 _ ) o' h 1 -+ u"
Z -0 2 o’ 7 Mot YV, . .
. . '.;? ‘ - Lo )

E . : T . (vl),z" . )
1 "y X (o) C -
2 yivy)® E‘ t1c (vé)'zj.' .

(3.5.4)

oth non-

3:5.4

tion for

' oo
—_—
- 32 | )
o/ 4 -

(3.5.5)



D
“ @

‘The variation in strain 6€ can be obtained frém Eq. 3 5 5 noting that

= ub,'vo, and v may vary independently. . The result is

_ . SR o
o S ’ ‘ Zyv vo '
. ‘.- - [N | {10 NP SOR B P S
Gsz-,'~‘{1 +(uo ‘yLvo] 6u°;+A[§°_ == (v 3T

‘ y (V )3 ; y2 (v")Z 2 (vv)3 (vu)z S
gheEcy )Tﬁff T < N+ -G Rl EA

! '..- %

' . R 1] | y(v(’))z . yz (V')z o t -l
+ [}y (1.+ uo) + ? vojefji_:iz;gyr .+ -(v )2 :] GV

oo ;l“ - . o . o (3.5.6)
% - ' o
. . AS in ApnendixiA;otﬁé ptinciple df'vittu;} work may be written

f

W .= J‘cz 8 dv = <@> {(5q} = 0 S ('3..5‘.7)'

Substituting Eq 3.5. 6 into Eq 3 5 7 results in the equilibrium

equation ' ' b B
- N ‘Zy\‘v' " . y (vv)3i "
i 1+ - v y"] Su’ 4 L .0 ‘0 __ 0 -0
[ IAU [. u :}: ?9] G_uo‘ + vy i’l—'_@? - (vé)z)sjz' -
.‘. ' . (V”)z ’ 2 (V )3 (V") , ]— . , | X ;
- ‘+‘ 1,' (\q,,>,2 * - oy )2)2' 8 ”’*L‘X (A ) +y" v
T | | o o
S (YQ)Z o y? (v )2 V" . SR
- — + ° Sy b dA ¢ dz
I D2 1-<vo)2_| o :
, = <@ {8} = 0 . S , ' (3.5.8)



)
oed

-

r

35,90

~

(5.5.9c)' 

[

thén,Eq,'3f5.8 can’ be rewfitteﬁ,,using the'definitiOns'in-Eqs. 3.5.9, as

: {fﬂ(ailéqg'+‘azv6vé + ay.6v) az]‘
j ".. . . . :

in‘which-

a1;)=‘ n (1+ uc”) - m V; (;;s_l-Ob)
o oo e ty2 -

a, = nv' -m o Yo {2 +-__(v9) 1

2 ° Y 1- (T T 1-(v))2

CoviemE AN o
+“Tfmvb+fjva + (3.5.10c)
L A ek -10

s | Rl B T . b .
mm?] MR ;(‘1 N T‘—“(W} o

(315.10a)

(3.5.95) .

" <> {8g} = 0 (3.5.108)7

g3



; . ' - )
Equations 3 5 10 ate approximate only to. the extent intro-.,
duced. by assumption 4 of’ Sect 3. 2 . 'd ' . . /
. ~ ) . . ’ . ) ‘
: If the displacthents, ud and’ Vs are: functions of a discrete o " /»fl
:‘ ,r/
set- of N displacement coordinates, qi, Eq 3 5. 10a may be written as v
b =0 e ‘. @y ?
in . which
»7 : . ( ‘Bu;' oo Bvé ' ng . . o
,'4’_1 = J L’al'aq'i.f a, a‘qi + a, 34, J,da - Qi . .(3.5.12) ’
‘ I 3 1 . i , ) .

and for which i has a’ range of N. (In this and the following equations : ‘)Tf'rff

4) Equations 3 5. ll are nonlinear If Eqs. 3.5. 11 are not satis—'

. fied, corrections to the q may be obtained by Newton—Raphson iteration
i .

P,
s

according‘to (Murray et aZ 1979) :

4

Ay, = -ffgi-A .- ¥ o o | | <3 5 13)l" )
T i T Tvy I e

o

in which the'summation conventiongis used fOr'repeated indices. and j

'alsofhas a range of N. S Coo Co 7;.' 'S
' ' o . . o f.AHQ.j ' R -
SuBstituting Eq, 3.5.12 into Eq. 3.5.13 results in | e
J'(eal Buo +.8 av N aé3,3v°"%.dz. .
. cy v av;' o '
= .Q, - f a : + a, ~— | dz +(3.5.14)
. i .g[ 1 ,Bgi,“. 3 qu]




] .

Equation 3 5 14 is the basic Newton—Raphson equation and may be :

'adapted to geometric and material nonlinearity. : ' o A ’
Once the expressions for uo and v are defined in terms of
the q 8, all terms in Eq. 3 5. lh maii&e evaluated and numerical inte—

gration with respect to 'z may be carried out to form an incremental

o

.tangent stiffness matrix [kT] and unbalanced load vector {AQ} Equation;

3.5.14 may then be written symbolically as . B
e - N - '

!

[kT] (8a} - {AQ} *_'” o g Gsas)

in which the.influence coefficient,(kT)ij istevaluated as

o ey au da, av! o daavny ’--f,,f IR
(k) = J [ . + = + 3 ] * dz 4 ~(3.5.16)
Tp)y | T aqi 3, 3, %, 39, a3

. ‘ . Y : . \ ) °

5 and the unbalanced'load AQi; is evaluafedlas "

< ;‘n - augﬁ3\-i 3v' - Bv; S - R

AQ, = Q. - I_[a ~254 ———] dz - 3.5.17y
A T PG TR aq %33 B

e All equations derived above are applicable to inelastic as
well as elastic behavior The equations are specialized for elastic

response An Appendixlé resulting in a. tangent stiffness matrix [kT],

(4

éiven by Eq B 4, 4 for a flexural element, or Eq B.4, 11 for-a truss,
' element The unbalanced load vector {AQ} is’ given by Eqs. B. 3 4 and’

-B 3.11 for flexural.and truss elements, respectively. o ?
. | B 7 o ‘ N

'3 5 2 Finite Element Moder

»

" For computational purposes a finite element model ds: developed

to obtain a set of algebraic equations using a beam element function.

In the finite element approach ‘the displacements at any point are

N
.’1 . . . .



fJ ~
represented by interbolating functions denoted as {¢}, and‘che.general-

1zed displacements {{i} and {V} at the nodes. Thus

»

<¢> {0} ' o (3.5.18a)

°

u
.0

and

v
Q

<> {V} > (3.5.18b)
in which {U} and_ {V} are defined in Fig. 3-7 for a flexural element aund,
(in Fig. 3-8 for a truss element.

The formulation developéd in this stﬁdy uses two types of

~

interpolating functiqns for two types of element, namely a flexural

N

 element ;nda trugs element. The functions selécted‘for the flexural
element are cubic polynomials that can be expressed as lineay combina—-
tion of the four base.functiéns illustrated in F4g. A~-2 and given by
"Eq. A.2.3b.
For a truss element, linear functions are uged that may be
expressed as combinatidén of the two base fuactions fllustrated in
Fig. A~1 andfgiven in Eq. A.2.3a.
. Equations 3.5.18 are nned in Arpendix B to évalﬂdre the finire

element equatfeng, Fq. 3.5.15,

3.5.3 Assembly of Finite Element Equations
Equation 3.5.15 ie the incremental equilibrium eqdation, for
) ’
an element. In this equation the element stiffness matrix has been
evaluated with respect to ﬁoda] digplacements {q}, referenced ﬁo a
local coordinate system shown in Fig. 3-7 %o; a flexural element and

Eig;i3—8 for a truds element.. The local nodal displacements can be
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| ) BN
(07 = <ul,(uly), ul(ud)>
W7 = v, gt v, 69>

(")’ = <ululy), vi gt

FIGURE 3-7 Local Nodal Displacements for Flexura’l Element

*

e i



{U)T = Cul, udd
VT = v, wi)
AQ)T = <ul, vh

-

FIGURE 3-8 Local Nodal Displacements for Truss Element
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<@ = < <U>,'<V> > ' . : N(3.5.19a):

or . cL D

"~

I

@ = < I I 3

u , (%E.I v- uJ» ng)J sV, 67, v, GJ > (3.5.19b)
for a flexural element; and

<@> = <u ,u ,v , v > ) ) (3.5.19¢c)

for a truss element; and T and J are nodal numbers.
In rame énalysis it is convenient to select a different set .

‘of reference agis for the global system of nodal displacements {rE}C as

shown in Figl.3¥9. The global nodal displacements can be written as

<rE>G = < rE f ? >G (3.5.20&)
in which ' ~
N ! )
I I I ,3U0.I . OV.I e
g T UL v, en, G, @t (3.5.20b)

R

The elementudisblacements with respect to the local coordinate
systeﬁ'caﬁ be related to those in the global coordinate system by the

transfg;métion ' v
fs} = 1) {rgl, - (3q5,2})

in which the transformation matrix [T] for a flexural element is derived
in Appendix C and given in Table 3-5. Also, the transfdrqation matrix

[T] for a trusq element is given in Table 3-6..

88



I = <U' VY, 6% (U, (Vi) g

o

'FIGURE 3:9 Global Nodal Displacements
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TN

e, ‘ .
' Using_the_transformation procedure .describedfin Sect. 3.3.2 .

I

‘bhresults in

o ,_'{kT]G*{ArElG = (R}, f ' - (3.5.22)

e e 3

‘ The element stiffness matrices can now be assembled to form
‘ L
] . , : : .

,7 . = .
‘ in which [KT] is thestructuraltangent stiffness matrix assembled for

/

”i displacements, and {AR} is the assembled vector of - incremental nodal

.f0rces,'called the. unbalanced forces

»

Once Eq. 3 5 23 is assembled the Newton—Raphson method can

T

be used/ to solve for the load-deformation characteristics of the

<

structurer

. oL ' P . ' 9.
N , . .o N

3.5.4 jNewtonQRaphson'Solution Procedure

‘The.Newton-Raphson:method has proyen tolbe‘one of'theimost
useful solution techniques available for: nonlinear analysis (Rajasekaran
‘and Murray 1973) Many investigators have adapted the method quite
successfully Walker and Hall (1968) used it to study large deflec-
.tions of beams while Brebbia .and Connor (1969) used it to study the )
geometrically nonlinear behavior of arbitrary shells

The Newton-Raphson solution technique can be best described
with reference to Fig 3-10 and the following algorithm. '
d - For any spproximate {r} » the stiffness matrix [KT] and the vector .

.~ of unbalanced forCes {AR} are evaluated

'[.KT] {Ar}l - {aR) R € - 5 Y

. ;ﬂthe entire structure, {Ar} is . the assembled vector of incremental nodal

92
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2 ~ The increment in displacements {Ar} necessary to equilibrate ‘the -
unbalanced forces, evaluated in step l are evaluated using

Eq. 3.5.23 as

L R TR I = o
Aor) = [KT]n”.{éR}d o R (3.5.24)
. o o . T A SN
3 -~ The displacements are updatedf..?hat‘is

R Y

Ary o= (x} o+ far}, | _ | - 'c.‘ 'l(3.5.25)

4 - Steps 1 to 3'are repeated until"theivector.of unbalanced forces
{AR} is arbitrarily small: At this*stage'a‘point on the loade.
displaCement dia%ram is obtained. 4;;“ | | _

5- & new load level: is applied and steps l to\é are repeated to obtain -

"\

the load deformation characteristics of the structure

e

-3.5. 5  Summ ary

.

A 1arge ﬂeformation theory for plane frame problems has been

formulated‘in this.section; ,A finite element method has been developed e
and a NewtOnfRaphson'solution procedure, tofsolve for the complete -
oad~deformation curve, is explained. ;

1 ’

/3 5. 6 Computer Program

To show the capability of the theory, formulated above, a
¢

computer program, called Nonlinear Elastic Analysis (NONELA), is developed

~ to solve the set of. equations presented in this séction for the case of

| 1inearly elastic material. The method of . Newton-Raphson is used the

stiffness matrix [KT] being evaluated at each step of the procedure..

. Some applications are presented in the next section 8o demonstrate the

P

capability of the.theory"and the,efficiency of the computer ‘program.



3.§,.ﬁonlineardElasgic.Solutions

-
kN

. "~ The. examples presented in Sect. 3 4 have. dealt with elastic p
buckling or bifurcation problems.. When large deformation theory,.

presented in Sect. 3 5 is considered the problem becomes nonlinear.

RN

For this type of problem the load-deformation response is obtained by.
:applying the load incrementally and itetating to find the equilibrium

configuration for each loading condition as described in Sect. 3.5.4;

[y

N

3.6.1‘ Examples of Beam—Columns L

.. NL-1 'The Elastica Problem

This example considersbthe elastic post-buckling behavior of
a'simpBy supported.beam—colnmn. A small ‘transverse load was applied
to act asuanuinitial imperfection. Results are shown in Fig. 3-11.
Agreementlwith the 'Elastica"solution, discussed in Sect. 2}3.1,
;‘(Timoshenko and Geye 1961) is very good The number”of elem\nt\
used was 4 elements. The average number of iterations to get from one

load level to the next with a relative error of 1 X 10’“ was 4 with

an: average cpu time’ per iteration of‘O.l sec.

v

NL-2 Cantilever Under Pure Moment .

, In this'eaample a cantileverhbeam acted upon by a moment at
~its free end is analyzed. . A‘very good %greement.nitb.the solution'of
.‘sEpstein and hurray (1976) , yas;obtained Vith four elements for defor-.
Vmations up‘fb'the semicircumference. Then the number of elements was f
increased to six and deformations pursued up to the complete circum-
ﬁerence.. Fig. 3-12 shows some .of the exact deformed configuration

jwith the corresponding positions of the nodes as obtained from the

95
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N ‘
computer brogram. The number of iterations averaged 4 iterations per

‘

each load increment with an average cpu ‘time of 0.1 sec. /iteration.

. e : ‘
NL-3 Cantilever Beam With One Concentrated Load ~ ? ' W

" The- results summarized in Fig. 3= 13 are for a- cantilever beanm-

loaded with a concentrated load, at its tip. The solid’ line represerits

the exact solution, given by Bisshop and Drucker (1945). Two solutions

for the present formulation are introduced. One uSing-Q elements and
the other using 4 elements It is seen that the solution obtained

using 4 elements is in excellent agreement with the exact solution

]

NL—A,"Cantilever'Beam With Two Concentrated toads

~

P

A comparative study by Ebner and Ucciferro (1972) gives

numerical results obtained by’ several different finite element techni—

'ques for the cantilever beam shown in Fig. 3—14 The results reported
are repreduced in Table 3-7 along with results obtained by the present

-
2

formulation., It is seen that the present solution with two elements

is as accurate as the solution by various other versions of the finite

element approach.

“

3.6.2 Examples of Frames

-

NL-S One Story Frame ’ . e

\

'Fig‘A3-lS The results are: compared with an approximate solution pre- -

AY

yﬁssnted by Oran and Kassimali (1976) It is\important to note that the

‘v

formulation developed as part of the’ present investigation did function

properly, with no significant convergence difficulties, up to even

beyond the critical load”of”the limiting case of the perfect bent. It
N,*w——f-*”'

: The results obtained for ¥ simple one story bent ‘are’ shown in .

"H98-
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may be of interest to note, in this connection, that an alternate

iterative technique, suggested by James et aZ (1974), failed to ‘con-

‘verge at substantially lower load levels. A lack of'convergence in
R I ‘
the iterative process was viewed by those authors as an indication of

instability. 'In the 1light of data presented herein, such a conclusion

4 pA . Y

'would not necessarily be justified

The solution obtained averaged about 4 iterations per each

.

load increment with average cpu time per iteration of 0.1 sec. '

NL-6 Multistory Frames.

The two frames shoyn in-fig. 3-5 and Fig. 3-6 are analyzed

here. The results for the two Story-two bay frame are shoWn‘in Fig.

o, .

3-16 : In ‘this example the average number of iterations to get from
one load level to the next was 5. with an average cpu time .per iteration

of O;2,se¢ondL' The results,obtained ‘for the multistory multibay frame

o

are illustrated in’ Fig 3-17. 1In this case the number of itetations’l

a ' :
averaged 6 iterations per load increment with an average cpu tnme of )

1.2 seconds per iteration. S . .

“

. Unfortunately there is no exact, or'approximate,fsolutionr
available for these frames to compare with. However, aCCording to the -
results obtained from the previous examples, the author strongly feels

that the present-formulatiOn providés.good results for these frames.

3.6.3 Comments on ?esults ‘: . e ’“f‘;“'

Results obtained in this section codpafed favorably to the

i

:exact and approximate solutions available. The examples demonstrate

that the computer program devglOped is capable of analyzing a wide

'variety of nonlinear frame problems with very good results.
. \ l, .
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CHAPTER IV

| BEH.AVIOR OF ELASTIC - PLASTIC FRAMES

The determination of the complete load—deformation respOnse g
for. plane frames, loaded to the inelastic range, is possible by a

o computerized step-by-step elastic-plastic analysis, Hescribed in j'

I

‘ ~Sect 2.4, 5 In this chapter, features of elastic—plastic analysis‘of

N\

o frames are: presented Two methods have been adapted, one is an incre-
. : % T :
‘mental solution while the other is an iterative technique. For each .

‘;technique first and second order analyses are presented A comparisonf”

,ibetween the methods is furnished and results are compared to published r~n

reports. . o S .-,: -

4.1 Basic'Assumptions"and Limitations:

——

5

' In addition}to the first three aisumptions presented in Sect.,'
-l3 2, the following assumptions are also co

sidered.ﬂ

1 = 'The material is assumed to b% linearly elastic—perfectly plastic
| ff(i e. strain hardening is not: considered) | .

2’- Residual stresses are ignofed |

’\

' 3]* Plastic deformations are’ concentrated in generalized hinges.

b~ﬁ3 in thebpresence'of axial load P

Plastic moment capacity, o

-
T

' at a particular section is~reduced in accordance with the inter-'

action yield curve shown in Fig. 4-1.



MMp

M=t 18(1 p/Py) Mp

Yt

- '_'*Ef»lG.UB:Ef 4-1 .>,.:’l_'rifﬂeradtion_ Curve -

M/Mp

For '~ .0s P/Py_ 15

For 15< P/Py<1,0°

. lw7y
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,.' 4%2 fThevInctemental‘Methodwof Analysis[ :

Equation 3.3.11 is the equilibrium-equation, for a structure,l “‘
assembled in a global coordinate system. In that equation the geometrie
.:lstiffness matrix.{Kcl dependsvon the a;ial torcesiin the individual
: members'whichdin‘turn depend’bn.theilevel'of‘loading;'
| fSince the geometric stiffness matrix [K ] varies between two -

f levels of loading, Eq. 3. 3 11 can be put in an- incremental form -as

C o (k.2.1)

(4.2.2)

which s an incremental equilibrium equation that can be’ used in the
step-by-step elastic—plastic analysis to obtain the complete load—

- deformation_characteristics;of a,frame. P

;4.2.1..Incremental First'Ordef~Analysis

Consid . a frame subjected to” two sets of loads, one of which

. is constant, {R },ow ile the other, {AR }, varies proportionately In
v‘.conducting a first order analysis the geometric stiffness is not con—ih.

- sidered and Eq. 4 2.2 becomes

| fKTf-{Af}”-i”{AR}' B L (6.2.3)

nonlinearity




~

‘— N .‘. o . | v' . . . . logﬁ»'

.The step—byéstep,'elastic#blasticbfirst order analysis; to

obtain the load-deformation response of a frame,'can be best described

',. using the following procedure.

R Y

1 - An elastic analysis is performed based on the original elastic‘?

stiffness matrix of the structure The vectors of nodal displace— -

T

" ments {r\} and {Ar } as well as, the vectors of member forces {Q }

and {AQV} due to the two sets of loads considered above, are obtained

The moment capacity of each critical section is calculated as:

P
= g
N
I

in which (M )i is the moment capacity that would resiSt the moment

“at the i;h section due to the variable set of loads {AR } (M )

}the plastic mement . capacity of" the ith section and, (M ) is the

moment at té; ith section due to’ the constant set of loads {R }.

The load factors k are calculated for. each section,as

- ) (M‘v)i S e l {Léf: - o |
N | i L (4.2.5)
. vy - | ”

in which (AMQ)i is the moment at the ith section, due to the variablem

setnof loads,'{AK'} The section having the smallest load factor will >

' called A which will cause the first hinge to be formed.

4 2

be: the first section to be plastified This load factor then is - ©

The applied lqadS,'nodal displacements, and member forces are up—
g , .

dated, using the factor Al’ as
{R} = {RC}L'+ A {A‘.Rv} S e ([‘32,'6,3)

‘b .{rl}' - {r;} +3 iArv}': B """ .ﬁ.f f "(432?6b): )
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and

"{dl} {Q Y4 {AQV} | :' g ;"'je N (4;2.6@)

in which { } {r }, and ' {Q, } are vectors. of applied loads, nodal
R1 1

displacements, and member forces respectively at the formation of

.o

the first plastic hinée L '.l S s ‘f o
15 - Now thég;irst plastic hinée has been formed -A'real hinge is.'
placed at this section and tne incremental stiffness matrix of
the structure is modified bp changing the particular member stiff-
'ness matrix where the plastic hinge has appeared ‘
6 - An increment in the variable set of 1oads {AR } is applled to
the. structure and a. new elastic analysis is performed on. the
. bbasis of the modified-stiffness matrix._ The member forces,:nodalh'
Z‘displacementssandrplaStic;dgggrmations due'to thehload increment
.can_then be'evaluated. “ | |
"7.; The moment'capacity remaininé‘in each section mai then be

. calculated as =~ = - T

~+in which (Ml)- is the moment at the ith section developed‘at.the‘
“formation of the first plastic hinge and can be obtained from the
updated vector of member forces {Ql} given in step a'
8. - The search for the next section to be plastified is conducted'.
~.f””—g_ﬂ—jas_described in step 3 and the applied loads, nodal displace-.

" ments and member forces are updated accordingly as -

‘d(Ml)i o | S (4.2.7)

A}

{Ri}-;’ Ry} +*lg;{AR§} 1 AR o 'lf(a.g.aa)



.
-

a FT . ~

L 7 . .
. . and .

o} = o)+, {aq} P TS 80)

ég;>hicth2-1s the smallest }oaq factor obtained. \\\\\\\i

" The. above procedure is coﬂkinued until a failure mechanism

is formed. The failure criteriof, §g far as the: incremental analysis
v

__~_”,iS—EQﬁG&fﬁ&d—*isafhe singulacity of che global ‘tangent stiffness matrix

of.the.structure When a mechahism forms,a zero element appears on the

main diagonal of the triangular1¢ed tructure'stiffness‘matrixvand the
’ * Vv . . .

solution is completed

e~

4 2 2 Incremental Second Ord

eif%nél\vﬁ&

‘In the case of a second Qfdef aﬂalysis,geometric nonlinearity

o

.;p'g//-
* 1

is considered and Eq 4.2, 2 is. qud~ The same procedure for first order

analysis, described in Sect. 4 2 l, 19 used for second order analysis

-

with few changes f' ; : ’”:ww“" o R ' )

-

First ‘a new geometric gtiffﬂess matrix [K ] has t0<be assembled

't the beginning of each load in¢remQ¢t This macrix is a function of

:the axial forces in the members uP tb this stage of loading

3

.

'The second_change, that has tO_be introdu6Ed,'is to modifyf;he

vector of incremental loadS'{ARv}ygo.gcqount for the quan;i;y [
. ° : U * -uc;
in Eq. 4.2.2. The incremental gBOmetfic stiffness matrix [AK 1718 )

function of the incremental axial foyces, 1n the members due to {AR JA

‘1 AN N
while {r} 1s the. vector ‘of ‘total’ nodm displ,&cements obtained from’ a/ ‘

-previous step o : ' L oo e



. . . e ] :
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To account for the reduction in plastic moment capacity due 6

~

.. the presence of axial. forces in the members,the interaction curve shown
in Fig. 4-1 s used Two alternative :methods are suggested. The first

-‘*EEEHBd‘is to estimate approximately, the final axial force in each

member and reduce ‘the moment capacity according to this estimate. . The . -

other alternative is to calculate the moment capacity based on the

axial force developed at the beginning of the load increment, neglecting’

<

any change in this value due to any change “in axial force onde a hinge

2

' has formed at this particular location. Both alternatives suggested .

above are approximate solutions and result in some error. The second
suggestion is adapted in the analysis presented in this section. A

more precise method is presented in the following section

Y

Once the above modifications are introduced, the procedure

,

o described in Sect 4.2.1 is followed ‘until a mechanism 1s formed.

When a mechanism forms ‘the determinant of the decomposed structure stiff—

L

ness matrix will have a negative sign. ‘At _this stage a negative incre-
ment in load is applied to the structure to obtain the descending line

of load-deformation characteristic, shown in Fig, 1-1 (Curve E).

o
i -
4.3 The Iterative Method of Analysis

[~4

| In this section the equilibrium equation, Eq. 3 3. ll is
‘satisfied at each equilibrium position, (i.e- at the  formation of
each hinge).

4.3.1 First Order Analysis

L 2 . L
For first order analysis thengeometric nonlinearity that appears

L

“y// "in Eq. 3 3412 18 not considered In suchelcase, Eq. 3.3.11 can be written

N

i

[N



‘v
(R

CoOIR] e (RE ' C 4.3.1)

. < . ) .
in which [K] 1is the elastic stiffness matrix agsembled;for the entire

I'4

s

strycture,. : 7 " o ;

° ’ . - ’ - 3

The procedure presented in Sect. 4.2.1 can be used here, with

Eq. 4.3.1, up to and including step.5;~ Howe?er,(the new stiffness matrix

, in this case, obtained;from step 5, is a cén§eng stiffness matrix.
’ “ A . : .

~

The loads that producéd the figét plastic hinge are then applied

to the modified structure together witﬁ‘an applied moment equal to the

+

.plastic moment qapaéity, Mpc’ at the lécation of the hinge. The first

!

set of loads {Rv} increases until the formation of the second hinge
o

while the applied moment which .can be/assembled into the load vector -

{Rc}'is kept constant. It Is‘tﬁﬁartantlto note that because the stiff-

- 1

ness matrix is a tangeut stiffness, the set of displacements {rv} and .-

’

o

{IE} are fictitious d}splgceﬁents. However, the difference is'the real
displaéemené vector {r} defined in Fig. 4-2.

| The maximum moment capacity 1eft in any section after the first
hinée was formed can be obtained from Eq. 4.2.4vand.tﬁé seargh for the

second section to be plastified is based on'the‘éméL;est factor A defined

.

by Eq. 4.2.5.

Once A is determined,.the applied loads, nodal displacements

and member. forces are updated. Also, the constant set of forces {Rc} ¢
. {‘,- .

is modified to include the plastic moment capacity as an applied moment

at the second hinge preparing for'the nextfequiiibrium position.

\

The aSo&e procedure isg conzinued until a mgchaniém ?orms,

o‘ | . . .zv

L)
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. 4.3;2: Iterative Second Order.Analysis
| The first order analysis as described in Seck. 4.3.1 neglects

the effects/of axial forces in the members as they influence the geo-'

metric’nonlinearity of the structure. '

To account for-the geometric nonlinearity;‘the geometric
stiffness matrix is included in . the analysis (Eq "3.3. 12) " In this
case,a;new geometric stiffness matrix is formed at each load-leuel
i.based'onbthe previcus ioadvlevel. This geometric stiffness‘matrix is
tocbe corrected through an_iterative process up'tonthevnew leuellof
"lodding to be consisteﬁt'witb the updated\applied loads {Rv}.

Thé reduction in moment capacity Mp due to the'presence of
axial force P at any section is4considered based on'the‘interaction :
'curve'shown in Fig. 4-1. The ratio P_/Py at any section is checked: to
ensure tbat the moment capacity of the section does‘not exceed the plastic
foment capacit?, npc. | . -

‘ A neu moment capacity #pc should be calculated~at'each'itera-
tion to account for the'cbange,in~the axial forces.. Consequerntly, the
constantfset of forces {R;}, described invSect. 4.3.l, must be;modified
in accordancEJwith the‘new moment capacity, Méc, atﬁeach iteration}.

The same procedure, described‘in Sect. 4.3.1, i; tben used

for an iterative second-order analysis.

4.4 -Comparison Between Incremental and Iterative Approaches

In the incremental method the geometric stiffness matrix is

“:evaluated at the beginning of the load increment as a function of the

°

total axial,forces in the members up to this:stept "in the itetative



approach however, the: geometric stiffness‘matrir is re-evaluated with
. each iteration as a’ function of the total member axial forces. This
i results in a‘more accurate geomgtric stiffness matrix and,consequently.
.more‘accurate solution. | | |

As. diSCuSSed in.Sect. 4, 2 2 the incremental procedure does

not allow any change in the plastic moment capacity, ;é,of a-section..

*
.

due to any change -4n the axial force, once a hinge has formed at this

particular section. Two alternative solutions were suggested in Sect.

4.2.2 to overcome this_problem. However, both.alternativeslare approxi—'

mate and result in some error when'eValuating'the3load#deformation

response of the structure. In the iterative procedure,the plastic

' mément capacity. of each section is re-evaluated with eachgiteration to. -

_ account for any change in-the'axialvfbrces. This results in a more

accu{éte analysis.

The effect of the approximations made in the incremental method

will”be.demonstrated.hy some example applicationslin Sect. 4n6.

4.5 ‘Computer Programs ‘ o " ' o Co

4

Two computer programs have been developed t0'solve;for the load-.

: deformation"characteristics of frames byvplastic~analysis. 'T first
program performs an incremental plastic analysis of frames, bas d on

- the procedure described in Sect. 4, 2 and 1is called INPLAF The second'

program performs plastic analysis of frames using the iterative technique,'

ljdescribed in- Sect. 4.3, and is- called PLAFIT.- Each program has the

“option to perform first or second oxder analysis.

1_1-6_'
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! 4.6’-ElasticePlastic‘Solutionskh'At .. s .
. Three example frames are checked in this section using the

fincremental and iterative procedures presented in Sects 4 2 and 4, 3
vrespectively The load—deformation characteristics for each frame

©.are obtained using the different analyses and the results are compared

with published results For each analysis the cpu computer time is |

Agiven as"a measure of the cost of running the program

4, 6 l Sample Solutions

*

EP-l Four Story_Frame.b » - . ' IR ';&

The frame shown in Fig 4-3 was analyzed by Korn and Galambos.‘
‘(1968). In\the analysis the loads were increased proportionately
Figure 4 4 illustrates the load—deformation curves obtained by the
different analyses A Curves (l), (2), (32, and (4) represent iterative.“
first order, iterative second ' order incremental first order, and
incremental second order analysis, respectively The results obtained ‘
by Korn and Galambos (1968) are identical to curves (1) and (2)
The cpu computer time for first order analysis is about 1. 7
‘vseconds using.the incremental approach and 5 seconds for the iterative:
approach . For second order analysis the incremental‘technique used d‘ -( s
iabout 1. 3 sec compared to 20 sec. for the iterative technique
) As ‘can be observed from Fig.vé 3athe incremental second order“'
analysis (curve 4) is considerably different from the iterative secondp ‘l ’l
'ﬂorder analysis (curve 2). This difference basically occurs during thef:
formation of the first hinge as the geometric stiffness matrix in the
'incremental analysis is formulated at the beginning of the load incre-‘i o
.3.ment which in this cage results in a null geometric stiffness matrix. :;

L d

\
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At this stage it was thought thst bettfr results colhd‘be

'fpobtained if an iterative procedure were applied ouly up to the develop-:ffh

'ment of the first hinge followed'by an incremental procedure hp to the -

yhcollapse mechanism.; This procedure which man be called iterative-" -

: increantal second order analysis, results in.a load-deformation u‘;?-<'

\\

d compares favorably to

"relationship given by curve (5) in Fig 4 4 i
,‘ . :
'gcurve (2) The cpu computer time used to obtain curve (5) is about 5 sec

=gwhich is considerably less than that used to;obtain curve (2) A"fl-f

‘EP-Z Three Stq;y,Frame -

McNamee and Lu (1972) performed a second order analysis on the

ce

.ldeflection cunVe they obtained is curve (2) in Fig. 4-6 Curves (1)

: frame shown in Fig. 4-5 increasing the loads proportionally.; The Ioad—-ﬂ"

iand (3) represent the iterative and incremental second order analysis,"*‘

f_ﬁrespectively, presented in this chapter. While the cpu computer time’

V-Tfor the iterative technique is about 4 seconds, it is 1 2 sec for the

i'incremental technique., It is important to note that an iterative-:fii'f

';fincremental analysis, suggested in- the previous example results in’ a 1f?‘”:

"'_1oad-def1ection curve identical to curve (1) and ‘uses’ only about 2 sec
..cpu computer time. ;‘J s o

_'HEP-3 One Story Three Bay,Frame

.-n..'

i ”1In the frame shcwn in Fig._4—7 the vertical loads, P are kept,gi"'“ :

constant while increasing the horizontal force H The results of first

as curves (3) and (6), respectively, in Fig.‘ .4-8 The present study

L and second order analyses presented by Galambos and Lay (1965) are given ;

o gives an. iterative first«order analysis (curve 1) and an incremental ’Jﬂﬁdfdx"

first order analysis (curve 2) which are almost identical.‘ The cpu time

‘e
B O
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1s about 0.6 sec. for the iterative technique and 0.45 sec. for the e

.incremental one.\:'

“oo The secend order analyses result. 1; curves (4) and (S)Grepresent-'
‘ing the iterative and incremental technique, respectively.' THe cpu N
tomputer time is about 2. see. and ,90 sec. for the iterative and N"w
”incremeptal.techniqge,.respectrvely;“_Wﬁeh;an;iterative-;ncremental )
»proeedurekis‘performed curve . iqloRtained.vith a epu tiﬁe of 1.4 sec.:

4 ‘ ' s 7 4

v ; .:\-

_4.6.2 Comments on Results e N

The eiamples ﬁreéented above»iﬁdicate that'the iterative
method of analysis,'presented in Sect. 4. 3, exhibins good results.
? . ¢
fHowever, an iterative method up to the development of the first hinge

,followed by an incremental procedure until collapse gives %pproximately
the same results\and doeé’not cost as much as the iterative method

B B e
_'..\ e

3



’ \ CHAPTER V ’
N d -NONLINEAR\INELASTIC FORMULAIIONvAND SOLUTIONS

i S , r
> - . =

Nonljinear formulations relating kinematic and mechanical
yariables may fall into one of the three categories: geometric non- -

linearity, material nonlinearity, or combined geometric and material

s

nonlinearities. The. formulation presented in Chapter 3 falls into ‘the

' 'first category while this chapter is. devoted to problems fall!ng into

—

the third one.

i

w . In this chapter an inelastic stability‘analysis of multistory
frames is presented based on a stiffness formulation which accounts

for geometric as well as material nonlinearity. The formulation is an

-
°

extension of that presented in Sect. 3.5 to include material nonlinearity.

)

‘The formulation results in finite element equations and the Newton-

Raphson method is then used to solve for the overall load deformation /

characteristics of the structure.
In the analysis presented herein, the effect of axial load on
’,the stiffness and strength of the ‘individual member;'is considered.
Partial plastification of sections is taken into account. The influence
6f residual stresses as well as strain hardening of the material is in-
cluded in the analysis. The'formulation'alsoqpermits considerationfof"
extended regions of-plastic deformations rather-than discrete'hinges
in beams'and'beam4c01umns. _

/3 "Also in this chapter, the formulation is checked by comparing

computed results with some of the available experimental test results._
s . ’,.\‘

Lt
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-v5.17 Basic Formulation for Inelastic pehavior i-~ < -

e

. ' Equation 3.5.14 1s the basic incremental equilibrium equation;.

derived in Sect. 3.5.1, and is applicable to elastic and'inelastic

response. Equation 3.5.14 can be written in matrix form, for inelastic :

response, as.

o

o [kf.] {Aq_} = {'AQI}. S : e (5.1.1)

.in which [kT] is the inelastic element tangent stiffness matrix and is

.a function of geometric and material nonlinearities and {AQ } is the

» )
9

vector of incremental forces, evaluated for ,an- inelastic element.

The difference between the equilibrium equation for an ebastic

ielement Eq. 3.5.15, and that for an inelastic element Eq. 5 1.1, basic-

ally arises in the evaluation of the tangent stiffness matrix and the

incremental load vector,a . ~
- ' N
L]

5.1.1 Main.Assumptions'
In deriving the tangent stiffness for a partially plastic
section, it is assumed that no strain reversal occurs. If one’ considers

e

a section which has already yielded and an infinitesimal increment in

-bending moment. is applied, the resistance to this moment is a measure
'of incremental bending stiffness. The yielded Zones increase somewhat,
iwhile -some strain reversal may take place. in the already yielded zones.
'lThese effects are. neglected in this study and’ the additional moment is

‘assumed to be. resisted by ail parts of the cross section with the stress

increment determined from the tangent modnlus of the materisl at the

current value of strain. 'The section properties relating increments’

in stress resultsnts to increments in displacements may then be computed

-

127
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by a transformed area concept as described in Sect. D.1. 'This concept

. 1s applicable to thin wall open beam sections gince the stress is
l AN

essentially uniaxial and the effect of shear stress on the principal

. \
stresses may be neglected; T _ d o !

5.1.2 Evaluation of Incremental.Forces'{AQI} “

To evaluate the vector of incremental forces {AQ }, in Eq 5. 1 1‘
it 1is necessary to ‘evaluate the stress resultants n, m, and m¥*, defined
by Eqs. 3 5. 9, at any section prior to the load incrééent. Equations»'

B 3 4 and B 3 ll give the vectors of incremental forces, for a flexural

. €lement and'truss element;krespectively, assuming'an.elastic_response.
The same equations'are-applicahle to ipelastic response provided that_
the‘stress resultants;are_evaluated.by direct inteération of'stresses . ‘
as detailed.invAppendix D; Egs. D.3.l-throu§h D.3.3}> ~ s

' o
Ed

S 1.3 Evaluation of Element Tangent Stiffness Matrix . ._:-f

The element tangent stiffnesa matrix for an, elastic element.
is given by Eq. B. 4 4 for a flexural elqnent, ‘and by Eq B 4. ll for a.
truss element.- These equations are applied to inelastic response with

" two modifiCations?

<

o

"First the stress resultants'n 'm and m*tare numeriCally'
(-]
evaluated by direct integration of stresses (Eqs. D. 3. lb D.3. 2b

‘and-. D. 3 3b). ’ o h" - .” »  : . ‘. | | .p,'

The second modification .that ‘should be introdueed for inelastic-

’

analysis is in the evaluation, of the incremental stress resultants

jhl:} jEL , and — am . 'These increments are evaluated 1n detail in -
a4 3qy °

Sect.. BJ2 for an elastic elenent.' Fon an inelastic eleneﬁt detailed

" L - ik ; : > s s



U of incremental forces (called the unbalanced load vector)

129

' .\ ) . * ' . ' "; | L . . l'l, .
and the incremental'stress res?ltantlveCtors\are given in Tables‘Ejl
and E-2 for a flenural element'and a truss elementg respectively.

-

Once the stress resultants are evaluated ang the incremental

stress resultant vectors are formed the same formulation, presented

-

' in Sect. B.4 to derive the elastic tangent stiffness matrix can be
. 4 .

o used to derive the inelastic tangent stiffnessjmatrix for. an inelasticvﬁ

»

element It-should‘be noted that the'finite element'shape'functions'

{selected for an elastic analysis (Eqs.'A 2.3) are. also applicable
td'inelastic response evaluation. -

C -

5.2 Transformation and Assembly;

9

The incremental equilibrium equation (Eq. 5.1. l) is formulated
" in the y-z. coordinate directions which. are the reference axég of the
_lmember The local incremental displacements {Aq} may be related to the

' ;incremental displacements in the global system {Ar} for a- typical
element by the transformation matrices. given in Tables 3-5 and 3-6 for
a flexural element and a truss element, respectively Assembly of the

incremental”equilibrium equation then proceeds by the direct stiffness

s pe ey

3method presented in Sect 3.3.2, to yield
. gn RN

(K11 {A;} S AR B ¢ I 3O I
in which‘{Kij is the inelastic.tantent-stiffness»matrix for the entireff
'_structure and'is obtained by directfaddition; {Ar}-is the assembled

4
vector of incremental d&splacements, and {AR } is the assembled vector

P

. . , .
Equation 5.2.1 is the equilibrium equatidn for the structure '

: and becomes. the basis for the Newtonrnaphson solution.



5,3'-NewtonfkaphsonﬂWithkéradient-Qestﬂ”
. The Newton-Raphson technique, described in Sect. 3. 5 4 is
‘used in this chapter to trace the behavior of Inelastic structures._
The procedure is identical to that of Sect 3. 5 4 except for the
detailed evaluation of tangent stiffness matrix and theyvector ofl
unbalanced forces. The.computational procedure ‘and the associatedl
g incremental equikibrium equation (Eq 5.2, 1) are applicable up to the hf
ppeak of the load-deflection curVe . Ly
To be able to trace the load-deflection characteristics
. beyond the peak of the curve; a special treatment must be adapted
(Rajasekaran and Murray 1973) The descending branch of: the load—“.
f.deflection curve ip the inelastic region 1s characterized by a negative:.~~‘
definite stiffness matrix. This means that the structure can only
.withstand a decrease in the load
To obtain the descending branch of the 1oad deflection curve,- C
: 2‘the determinant of the tangent stiffness matrix is checked for sign
vchange to determine if the stiffness matrix is still positive definite.&ai.t'
IE this sign is negatiVe the load is’ decremented. The test for sign

'is called a gradient test' and will. determine exactly where to start

decreasing the applied loads in order to maintain equilibrium. ‘

5.4 Residual Stresses and Strain Hardeni g of t 1' férfhlfV'-‘f'

¥ Residual stresses are caused by a variety of factors and in
'lsome cases they may ‘be as’ large as the yield stressea (Huber and Beedle-m

. 1954 Tall 1964) They are a result of thermal effects and plastic

:deformation during the manufacturing procesa.' Tall (1964) Buber and .
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Beedle (1954), and Beedle and Tall (1960) provide a large number of

illustrations showing the measured residual stresses caused by hot ”

'“. rolling, welding, or flange cutting for steel cross sections of various '

v . . . LB

a‘. .

In this investigatiOn residual stresses are considered

;‘,shapes and sizes. )\ |

These ‘may. have a considerable effect on the behavior of’the structure,u_'f'

especially during the transition from the fully elastic to the partly

yielded condition. Full treatment of residual stresses is qiscussed in

Sect..D.l.

In most of the elastic—plastic formulations developed for

. frame analysis the material is assumed to be idsally elastic-plastic and

the influence of strain hardening on the ultimate 1oad‘1s neglected. In

the formulation,presented in this chapter an attempt is made to include

the strain hardening of thewmaterial in~the analysis. In this cage’ the..

idealized stress-strain relationship shown in Fig. D-2 is assumed.: The t‘”

g treatment is detailed in Appendix D (Sect.‘D 1)

S.Sg“Plastification of-thefEnd Zones-" _

o Because of the distribution of the Gauss sampling points,

discussed in Sect B 3 1, plastification at the ends of members does ."

 not immediately show its effect .on the element tangent stiffness matrix '

when treating each member a8 one element. For\this reason better ..'

results may be obtained by subdividing the member into three elements -

with the central element being 801 of the length of the member., The

result is that a number oi Gauss points are-located -on each end within

the outer 102 of member length. Therefore, the influence of inelastic R

strains is felt shortly after they are initisted at the member ends.' fi ‘

LR
N
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y 1.
'characteristics of an inelastic structure.; The progrll

S

‘ 5.773iﬁéiascié,saiatidﬁs,
E To demonstrate the accuraﬁy and to test the ef3iciency of theﬂh“-‘””w
‘hinelastic formulation presented in this chapter, some of the available Z?,ftf.'[
_fexperimental test results are checked using the computer 'rogram. The'ilﬁt%

'Jiresults are presented in this settion.‘s‘fj ;;{

el

'5'7~1 ,Samplefzxamﬁiés p:;;;?;-

-IN—l BeanhColumn Test

A wa x 13 beamrgplumn was tested by Van Kuren and Galamboa

(1964) , in which the axial load P was kept constant while the TETNh""

‘

:f;moment, Hb’ was 1ncreased until failure took place._ Figure 5-1Jshows >ﬂfuﬂ.z.
: fthe cpmparison between the test results (curve 1) and the theoretical FERARE
' [

‘jjmnment-rotstion curve dbtained using the present forMulation (curve 2).$%Lj; ':

'luResidual stress date were not given by th Knren andhh‘pembo 'and'therefore
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j’»_c 'Arnold et aZ (1968) he mechanical and member properties are gi\(en )

i'v,?t:he lateral load 'H_.-*" Figure 5-4 illustrat .‘s.'," the resul ‘:.‘j.obtained using':- o

I"".":',”.‘different formulations. 3 The loa, dleformation curves (l), (2), (3) and |

' :".'(4) representf the inelastic'analysis presented ::in' this chapter, the

E experimental ‘test results, the second order elastic-—plsstic a\lysis

" ‘ -and the first. order elastlc—plastic analysis, ‘spectively In. the.

. . "inelastic analysis the effects of residual 'tresses and st:,:, in. hardening:':-,"v'_';‘;'_"'"_'
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B 'IN-3 One Story Frame With Hingf;,Base o

‘!J
¥

R

Schilling et aZ (1956) tested the frame shown in Fig 5~ 3._

->.‘.

’f5During the test the applied loads on the frame were increased propor—-

‘vsecond order elastic-plastic analysis (curve 3), obtained using the

.;iterative solution presented in Sect 4, 3

. T

tionally. Good agreement between the test results (curve 2)- and the

Ainelastic analysis (curve l) is observed frqm Fig 5—5. The figure 1

fl:also shows the first order elastic—plastic analysis (curve 4) and the

't In examples IN—Z and IN—3 about twelve load increments were

:,needed in the inelastic analysis to obtain the load—deformation character-

<

ipfor each load inJ;ement with an average o£.0 25 second per iteration. _'"'

5, 7 2 Comments on Results

-

o

A . ".’

Results thained from fhe inelastic analysis compare favorably

..ﬂ

'-fto the experimental test results available.' The results show the s

l‘cfefficiently. lc'

e

capability of the computer program to analyze inelastic frame problems '

. o o o -

./_4

o138

- istics of the frames. The average number of iterations was 5 iterations -
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. BEHAVIORAL STUDIES = b

In Chapter 5 -an inelastic stability analysis based on a stiffness

. . ;
: formulation was prebenteda The validity of the ?heory was then

evaluated by comparing the results with some sample problems. The

’

s~

.‘primary objective of this chapter is to compare the results obtained Co
.",using the formulation given in Chapter 5 with those of the simple . -
‘ lplastic theory given in Chapter 4~(i e. elastic-plastic analysis)

To this end a cantilever beam-column and single story frames have

‘ 2
.been analyzed

In addition to the basic study outlined above, the effects
of residual strésses and strain hardening on the%behavior of singie
story and multistory frames are egamined.. Although these.effects
have been investigated by many reQEarchers, their influence on |
. frame behavior and strength has not\been considered“in debail. 3
Mild steel with a yield stress of 36 ksi is used in\the-

followin analy es, unless otherwise specified.u A maximum compressiVe’

residual str of OR '=.0.3 dy is considered ;and the resid&hl strain
',‘distribution shown in Fig, D—lb is assumed A strain hardenﬁng modulus“
7‘of 900 ksi is used and the strain—hardening strain is aSsumeh equal
to twelve times the yield strain Although the strain hardening

- modulhs is rather high it is thought to- represent conmerciall

available structural steel grades.
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. S o :-q.u‘.\' o . : .
N 6.1 Behavioral'Study.of'a.Beam—Colnmn o NP .

<o

\v/::). © The cantilever beam-column shown “in Fig. 6-1 is’ used in
t

his. study. The axial force, P, is kept constant while the lateral

load Q, is in reased monotonically. -
%
. f . o

\.' 6 1. 1 Inelastic Analysis Vs. Rajasekaran s Method

This example problem was previously analyzed by Rajasekaran
(19711 for a slenderness ratio (—) equal to 14.4 and P/Py of 0.6.
Rajasekaran used an iterative incremental technique based on an
equilibrium balancé to solve for inelastic beam—column problems
Figure 6-2 shows the load—deformation curyes that vere obtained
using different solution approaches It should be noted that in

the inelastic analysis, ‘the residual stresses are not considered

e results obtained by Rajasekaran are identical to curves 3 and 4

which were obtained using the present analysis S ~

Y " . .

6 1 2 Inelastic Vs. Elastic—Plastic Analysis
| , To compare the inelastic method to the elastic—plastic . 9—
' solution, the cantilever shown in Fig. 6-1 was analyzed using each |
l. method ‘ In each approach the axial faeuce was kept constant and thev
jcg££E§ponding ultimate value of Q is’éalculated usiné the inelastic
as well as: the elastic-plastic analysis.; In the inelgstic approach

however, residual streasea and strain hardening are ‘mot considered

- ‘as faey are. not accounted for in the elastic-;plastic formulation.

. ratid p between the ultimate values df Q obtained by the two metho ,{,'=5

£ beenﬁcomputed as -ﬁs"’4

: :j
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-

< . - FIGURE®1 Cantilever Beam - Column
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. (Q )in o A i R
P 76—7_——__ x 100 (in percent) o -+ (6.1.1)
oo el—pl - B : w , .
in which (Q ) and (Q )el pl’ .are the ultimate values of Q obtained _“.r

. using the inelastic and the elastic-plastic analysis, respectively. '
’Figure 6—3 shows the relationship between P and P/P for différent
' values of L/r. The results show that the ultimate lateral load as

_ predicted by the inelastic analysis is less than that obtained from
® Y
the elastic—plastic approach. The plot also shdws'that'p.is a’
: 6 T ' o
function of L/r and P/Py. e o Cl ’ -

The conclusions that can. be drawn from Fig 6-3 may be mis— R
"leading The figure actually comparea the lateral strength of the .

: cantileVer, as predicted by the inelastic solution, to that obtained

<

g from the elastic—plastic approach. The overall strength of the .

cantilever as predicted by both methods 18’ analyzed more appropriately
through interaction curves as shown in Fig.?6 3a.v In these curves |
: the nondimensionaliZedhéi:st order moment QL /M > at the maximum

,strength of the beam—column is plotted against the nondimensionalized

o

axial load P/P ‘ Figure 6~3a indicates that the difference between.”

vthe overall strength given by the inelastic method and that obtained
Y e

from the elastic—plastic analysis is very small.' The reason for the

'--difference in results between the two solutions will be examined iv

in Chapter 7 (Sect 7 2) SO D S

Vot

.

“.ﬁ6 1 3 Effects of Residual Stresses and Strain Hardenigg

A .

A cantilever beam—column with different L/r—values is used

'to study the effects of residual stresses and strain hardening
A

flfrhe data are illustraf"a\in Figs. 6-4 through 6—7 Thesq figures ,TL” :

Y

');.:"“
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V~lflespecially for members with lerge axial loads. The results of the

,i;show,that when only the lateral strength Gs considered reﬁidua1

”{stresses will have significant effect on the maximum lateral capacity,

‘are plotted as: dashed lines in Fig 6-3a. The results show that

'jwhen the overall strength is considered the effect of residual
w,. o

‘ stresses is relatively insignificant._ilg ' -l,j g

Except for the case of’ low values of L?ﬁ and P/P (Fig. 6 4),

L 'the data demonstrate that strain hprdening of the material has no’

':effect on. the maximum value of Q'l Actually, it 's found that the '

| strain hardening tends to affect only the slop of the deseending

'lzline of the load-deformation characteristics However, for the case._

of L/r = 14 4 and P/Py-= 0. lS, the effect

:*attriQ ted to the 1 w-slenderne%s ratio _;the.member.gff

l6 2 Behavioral Study of Sing}enStOry Frames

*f6 2 1 Inelastic Vs. Elastic—Pl;xtic Analysis T

A study similar to that of Sect 6 l 2 has been performed for :’

F

) U]plastic analyses when applied to frames. The results are then ;@&

.Qmillustrated on plots similar to Fig. 6-3_

"r

As in the casewof'the cantilever, the elastic—plastic method f‘7j;

i

sfprpnOunced. -Thiswcap_bevo

A

53?'ﬂu1timate strength analysis, including the effeCt of residual stresses ;':f

lefthe frame shown in Fig. 6-8 to compare the inelastic and the elastic7 B
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considered (0 1, and 3), where G s evaluated ;E the top joint

- from Eq. 3.3, l The results are given in Fig.'6-10 (L/x = 40) and

N

Fig. 6—11 (L/x = 60) The effective 1ength factors corresponding to
GT values of 0, l .and 3, with the bottOm end of the column pIﬁned

(GB = «), are 2.0, 2.3, and 2,92, respectively. “This gives.a range

)

" of effective slenderness ratios frem KL/r = 80 (K = £10, L/r.= 40)

to KL/r = 175.2 (K = 2. .92, L/r = 60)

-
.

Generally, the results show that the strength decreases as

. the slenderness ratiosincreases. Also, the results of Figs.‘6-10

| and 6 11 indicate that the difference\in overall strength, as Y )

predictedlby the two methods,gis insignificant.' iy

'.'S i
6 2.2 Effects of Residual Stresses and Strain Hardening

The effects of residual stresses and strain hardening are:

evaluated in a study of the frame shown in Eig. 6-8u' The gravity

loads are keﬁt constant and the relation hip between Q and ‘AlL is‘_

, developed using different values of L/r and P/P . The results are

Q

given in Figs. 6~ 12 through 6—15

-~

. It is clear that the residual stresses have a significant .

effect qn the lateral strength of the frame particularly for frames-,

with high gravity loads (high P/P values) In Fig. 6- 12 where S

L/r = 40 and P/Py = 0 15, the reduction in- ultimate lateral load due"

CE Y

to residual stresses is about ZZ When the value of P/Py is

increased to 0 6" (L/r - 40) the ultimateolateral lqad of the frame

(Q ) is reduced by about 302 (Fig. 6-13) The reductiou in ultimatel
lateral load is aboat 4% for the fqame witth/r = 60 and P/P - 0 15

. (Fig. 6—14) When P/P is increased to 0. 4, for the same frsme
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Q‘In mable 6-1., Beam and column'sections far Frame 24-3 are givenfin ‘;ff

6 3 2 Presentation of Results

The load—deformation characteristits for he three frames S

.Hcare shown in Figsaf6*19 61 0 and 6-21. Each frame‘was'analyzed o

the ulﬁimate'capaciqy ofjframes. ﬁé&éﬁéﬁ;fthéyéﬁ§§g §7'iiﬂhf7§ffé§f ?:“5'
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bin thé siﬁgle s;ory—-sihgle bay fréme, as the qfitiéal séé@iéné ,' 
: , : . L T
develop plasticity within a short time of one.afiother.. '~ .. -, L
It is important to note thatytﬁe\résults.dgﬁtﬁe'first and-;- .
. , : T
second order elastic-plastic analyses fér Frames. 8-1 and '6-2,. .. "

\ '

obtained using-;he iterative procedufe,desqribed in Chapfér-é;ﬂqrgi o

identical to those obtajned by Korn and Galambdé'(i?SB%. fThéﬁ,. i;f'i"

results obtained by Parikh (1966) for Frame 24-3.aré very similépT”

to curve (2) of Fig..6-21 (up to the peak load). 1t is noté&"tﬁgt~ 

Parikh took ipto gonsideration residual stresses in the  cglufns.

In Figs. 6-19 through 6-21, a coﬁparisdh‘bétweén-tﬁe:
‘ . . ' . 8t o :‘ o
.inelastic response (curve 1) and the elastic-plastic response .

(curve 5) shows a slight differenée-only near the.ultimate 105d2”
This difference, ranéing between 2"59 4%, may be atéributed\ta thé
' gradial penetration of yielding. If ghe strain hardening effect': |
is incluéed in the iﬁélastic analysis, there is‘np aéparent.

,difference between ultimate loads. Thus, wheh.the overall behavior
. : Lo . . . . -
of the frame is considered, local losses in frame stiffness die to
inelastic action are often compensated for by the behavior,of. other

members and hy the effects of strain hardening.
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R , _' _ CHAPTER vn ."-.:
Y sum«m ANI‘J coNCLUSIONS ;
‘;uy“ﬁ?'jf An investigation of inelastic behavior of multistory.steél

. R '

frames has been presented The investigation includes a review of
(R .o ‘

S stability theory, with a disoussion of the different approaches to-

.
k3

fd!hul ting stability and strength analyses. An elastic buckling
v tv'.
formulation with a solution technique to determine the elastic

» .
. c-

e

.o critical 1oad of frames is also given. :g;(f oy ;”ﬂ‘ﬁ

s
S le

R o ." N ' . ' . .9

A nonlinear method of frame analysis, based on-a simplified

large deformation theory that is applicable to both inelastic and
elastic responses has been developed A finite element model has

5.

o o been used for»this purpbse and a solution method to solve for the'

s .

response of frames using the finite element equations is discussed

In the 1ne1astic.anaiysis the effect of axial loads on the stiffness

v

of Ehe structure is considered Gradual penetration of yielding

r PO X g
o

through the cross section,\the spread of inelastic zones*along the

w

.member.length the presence of residual stresses, and strain
hardening of the materjal ate also accounted for.

| _ The investigation alsolincludes .the features of the elastic~
plastic response of frames for first and second order analyses. The

-

incremental and the iterative solution techniques are-discussed in
: ' \

vthis context. ,

During the course of the investigation conputer~programs

" have been developgd for all types of analyses. A variety of problems

are solved to determine the accuracy and efficiency of the proposed

~173~
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.

téchﬁiqugs and to demonstrate Eheif performance in comﬁarison with

pother methods.
v

The Behavior_of a number of frames. under the action of

combined vertical 'and lateral loads has been presented. Comparisons '
are made Eetween the inelastic and the elastic—plastic'methdds of

analysis. The effects of residual stresses .ani strain hardening are -

also studied. ‘ -
N v * . . . v .
The following sections outline the major conclusions.

]
~

7.1- Nohlinear Strain-Displacement Relatipnship

In an enefgy fétmulatioﬁ, defofmatfons affect the equilibrium
equations through the'ﬁonlinear fe;ms in the strain;displacgment
eqyations for virtuél étrains. Additionalingnlinear terms must alsé
be included in'fhe formulation if th; large.geoﬁe;ric effects on
stresses are to bé considered. Thus; in the formuiafibn eresented
in Sect. 3.5.1, the’effect of the deformations on the equilibrium
equatiops arises frqm thg nonlinear térﬁs of the expression fqr GEZ-
in the virtual work equation'(Eq. 3.5.75. The nonlinear terms as
they affe?t stresses arise.from'thé nonlipéar strain—displacément’
eﬁuations:% Thus, a stability formilation arises fromlthe fifst éffect,
while the second effect simply gives a more'accurafe estimate of
stressés in tﬁe deformed configuration qf'the structure.

»

7.2 1Inelastic V8. Elastic-Plastic Analysis

\

The elastic-plastic method of analysis is found to over-

estimate the ultimate capacity of frames under the action of lateral

1
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.

loads, together with large axial loads and column slenderness ratios. ‘

#" When the overall capacity is cogsidered, the difference .between the

inelastic method and the eiastic-piastic solution 1is fairly small.
This difference arises primarily because of two factors.
Firstly, the assumed interaetion curve in the elastic-plastic
’ : .

-analysis (Fig. 4-1) overestimates the capacity of the sectipn. This

o »

" curve is applicable only for.strength-analysis, since it applies to
— . J" *

-

" the case of L/r = 0., However, the actual ultimate strengthvintgr—

action curvés afe‘functions of. the slenderness ratio,‘L/r (Fig. 2-10). .

-~
-

The™rue interaction curve values are tlie ones calculated as stress ¢
. . o . v l R
resultants in the inelastic method of analysis as presented in this

[

3

investigation.

Secondly; the P-A moments which dre included in tﬁq elastic-~
plaqtit'analy%§s, through the geometric stiffness matrix, are under-
eséimated. For a cantilever member with an axfdl‘éompressive fofce,
VP, and a sQay displacement‘at ghe'top, A, the P-A method considers
the méiimum secondary.moment at.tﬁe.bdttpm of the cantileve;. This
implies' a ‘triangular diétriﬁutioﬁ‘of secondary moments along the
member . The'true distribution; however,vis a parabola with zero
momentlat the tbp and PA at the sottom. This difference becomes

more significant for members with large axial loads and slenderness

ratios.

t
”n

7.3 Gradual Penetration of Yielding

As the results of'the.examples.presented in Chapter 5 show,

13

the load-deformation curves obtained using the inelastic and the
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: flaqtic—plastic'methods are almost‘identiéalifor fra@es with low

L/; values aﬁd P/Py ratioél This indigétes that gradual penetration
fof y}elding has a neél;gibié effect on the-behavior‘bf ﬁﬁe frﬁmes,=
Howé;é¥, for the lapgevframeé preseﬁtéd in Sect. 6;3; there .is a
differ;nqg'between,the two analyses as the ultimate load is ;pproached.
This may be:attributed té the gradual penetration of yield. The
effect is aépargnt in l;rge'frameS'because qf the largé number of . -
sections that develop fully plastic behavior before thelfltiﬁate
.frame load is ‘reached. I?/Eﬁ;gie story f;ames; howgverh'only a, ﬁ }\
few sections had to be plastified for the ffamks.to form mechanisms.

Thus, partiai plastificétiéq of séctions-does not show its efféct

N . 4)
immediately on the element tangent stiffness matrix. -

7.4 Effects.of Residual Stresses and Strdin Hardening

The effect of residual sfresses;oﬁ the overall strénéfﬁvof a id
frame- is found to be very smail. It decreasés as the axial loé&
decreases, and as the slenderness ratio‘increases. |

Straiﬁ hardening of the material is more significant for‘
large frames than for single story frames. Although it only affedts'
the slope of the descending portion of thé load-deformation curve

for a single story frame, it causes an increase in the ultimate

_strength of large frames by up to 10%.
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~

v

7.5 Incremental Vs. Itgrative'Méthod in the Elastic-Plastic Analysis

Although more expénsive, the itaerative ﬁechniquevis found'
to g;ve more accurate results ghan'the inq;émental method. ﬁowever,
" . good results‘éan be obtained if an iterative ﬁgocedﬁég is uggd
untii qhe first hinge is developed, followed 5y an,incrementai
approach uniil tﬁe collapse mechanism‘has been reached. This
procedurg has been called the itefative—incremental teéhnique, and
it gi?eg'aﬁproxiﬁately.th; same.re;ules as the itérative method,
but‘the cost_df producing the‘éolutién is significantly less than

N I3 '
that of ‘the latter. S , . "

]

e
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- ~ APPENDIX A o .
ELEMENT STIFFNESS MATRIX. FOR |
. BEAM-COLUMNS
, ?
In this‘gppendix the "small-displacement" e}ement beam—éolgmn
stiffness matrix‘is derivedh o o e |

o

A.1 Virtual Work Equations for Linear Stability Problems

% To formulate the virtual work equations for a linear stabiliiy
fofmulation it is necéessary to s{ﬁplify the strain-displacement equations

.presented in Sect. 3.2. ”Assuming that 8, of Fig: 3-1, remains "small"

¢

such that

1-cosb” 2 O : , . ) (A.1.1)

1

Eqs. 3.2.3 bécome'

u = u ~-yv' ‘ ~ (A.1.2a)

v ="v p, : ' (A.1.2b)

3
4 “a

In additioh, the' (u')? term in Eg.'3.2.4 is assumed "small" with resﬁect

to the other two terms so that Eq. 3.2.4 becomes

ez = qu' +% (vv()2 . . . : . CA.1.3)

« . : ’

Substituting Eqs. A.1.2 into Eq. A.1.3 yields

0

= v n. _l   ' 2‘ | ’ _ .
€, T U YVt (V) (A.1.4)
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‘Equation A T.4 is the strain—displacement equation from which classical

linear stability formulations arise. o T
]

The principle of virtual work may be written for the length

of beam illustrated in Fig. 3-1 as

. r

W = *J o, 6. dv - <> {8q} = 0 | © (A.1.5)
}" ¥4 YA ‘ ‘ ‘ .
From Eq. A.l.4 "
'i‘ ,dez = Gué‘— y Gv; +v! ayé ' (A.1.6) .

Substituting Eq. A 1. 6 into Eq ‘A.1.5; integrating over the area of

cross section A, and defining the stress resultants n and m as

n = | o, da - - ' © (A.1.7a)
. A
and :
“m” = J‘ dz yda o ‘J,; (A.1.7b)
A ' .
yields .
" . r ' , . .
W = J (n Gué-mldv; + n v 8v' ) dz - <Q> {8q} = o (A.1.8)
Jg |

4

For linear elastic responge it is assumed that
o = Ee . : . (A.1.9)

Substituting Eq. A 1. 4 into Eq. A.l. 9 and the result into Eqs. A. l 7,

.the stress resultants may be expressed in terms of- displacements as
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n = EAul 7 ' © (A.1.10a)
" and ‘ : ' \\\
o | \

_.‘ g " ‘ . . .
. m EI v \\ . //,g,——f- (A.l.lOb)
in which T is the moment of 1ner:§:\ar’f£; cross—-section, and the first

moment of area vanishes because the axis is the centroidal axis. A term -

involving (vc'>)2 has been disc;rqed from Eq. A.l.lOé for simplicity of
cqlculation.

To form the classical equation'of linear stébiliFy,‘Eqs; A.1.10
are substituted into the first two terms of_Eq. A.1.8, resulting inlthe

equilibrium requirement that . o

f (EA u' Su' + EI v"\§¥") dz
R 2’ [o] (o] o 0

)
f

+ J nv! vl dz - <Q> {8q) = O C(A.1.TD)
. |

° 1

v
o

Equation A.1.11 is now used to determine finite element matrices.

¥ .

A.2 The Finite Element Model

e

The displacements u, and v, may be approximated in terms of the

displacement cooydinates <q>, of Fig. 3-2a, as
u = <¢> i k) ' (A-Z-l)

and
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q2 :
v o= <¢> 93 ' | (A.2.2)
o . : -
) s ™ "
. %6 , - .
Standard linear shape functions (Fig. A-1) are used for <¢>, and -

‘standard cubic shape functioris (Fig. A-2) are used for <¢?. In

terms of the nondimensional coordinate Z, shown.in Figs. A-l1 and A-2,

the shape functions are

a

F> o= <-F@-D,EE+Dn > (A.2.3a)

N

and . ' \
ir3

> = <T@+ (C-D2,E@+n (- DY,

2@-0C+D? L E@-D @+D2> @A)

The derivatives required for Eq. A.1.11 a¥e now evaluated by

differentiation of Egs. A.2.1 and A.2.2 to yield

o T
“é = <‘(?)' > < qap» 9, >0 - (A.2.4a)
vio= <4 > <, qp, 00, Q0 | (a2law)
) T 22 137 N5 g T
Vo= > < >t (A.2:4¢)
0 qz’ q3, qu q6 o 4o
in whT&h
<(®'> = 7% <-1,1> . _ (A.2.5a)
< & = 1 .1 a2 L o3r7 o oor -
< ¢ > - 2‘ < 2 (3C 3)‘ ’ 4 (BC 2C l) )
- %.(“3C2 - 3, .% (3i1;2 + 2z - 1) > ('A.Z.Sb)

s

<" > = .E% < 6L, 230 - 1) , - 6Z, (3T +1) >  (A.2.50)
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FIGURE A-1 Basic Functions for Linear ,Displacemer'\‘ts
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FIGURE A-2 Basic Functions for Cybic Polynomial
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Substituting Eqs. A.2.4, and their derivatives, into Eq. A.1.11;
LA . ! -

using Eqs. A.2.5; carrying out the integratjon; and recognizigg the

arbitrary nature of <8q>; Eqs.’A.1.1] way be written as

[ks] {q} = {q} " (A.2.6a)

in which the "secant stiffness matrix", [kq]. can be subdivided into
< . s

the "elastic stiffnesr marrix", [k], and the "goametric stiffneas matrix'",

[Pl That ie

R A S B AT 15,2, 6h)
A |24
in bt h
FA/O
12 EI
0 9—" (oyre
0 6F§T ’.%T
"l,] -
TATC 0 0 EA
0
0 '12_EI "@.,,E.I 0 1.2_._EI
Q.2 9 92
o (s_Ej' : _I‘T 0 . 6__FT 4 _EI
" " 9 ¢

‘A ?"“p)
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’ Yy
0 8 &~
' (SYM.)
0 2 2.2 .
* o 10 15
k1 = < ’ . i
g Yo o 0 0 , : ‘
. -6 -2 ) | K
° 3 10 0 5 - o
1 ' 2 2 ' S
0” 2 . 2 0 -2 287 g
10 30 10 : IS_J (A2, 6)

Th¥ matrix [k] is the~§tandard elastic stiffness matrix commonly ﬁsed
for frame analysis (Ghali and Neville 1972). The matrix [kg] is called
the geometric stiffness matrix (Chajes 1974; Porter and Powell 1971)

and is a function of the element axial force. ' 0
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_ APPENDIX B
\

’

DETAILS OF NONﬁINEAR.ELASTIC FORMULATION

»

This appendix presents the analytical development of the basic

nonlinear equations used in this study. Also, a finite element model \\T\\\\~)//

is develoﬁed and the f;nite element equilibrium equations are formulated.

~.

B.1 Basic Equations ‘ . T . ’)

In Sect. 3.5.1 the incremental equilibrium equation for amn . .

element (Eq. 3.5.14) was written symbolicéliy as ,
- : ¢ : . .
[kT] {Aq} = {aqQ} - S (B.1.1)

in which the influence.coefficients (k;r)ij of the tangent stiffness

matrix were evaluated by Eq. 3.5.16 which may bg-rewfitten as

' Bué avé | avg .
(k),., = J (e,., — + e, — %+ e,.,——) * dz (B.1.2)
T }J 2 ¥J dq 2§ 9q, "33 9qy
in which elj’ e2j’ and e35 are defined as
. Bal
elj = - 5ET (B.1.3a)
]
332 | . .
®25 T 9q o (B.1.3b)
]
> )
and
. 383 ]
e3j = —aq—j 4 | (B.1.3C) .
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“The qhantities al, az, and a, are given by Egs. “3i5 .10. To'evaluate
. the eij terms Eqs 3.5.10pre differentiated with respect to qj, which

results in-

B S
. elj = (L+u ) q + n Bq - 3q - SE— ‘ (B.;.ée)
i i %Y -
) Bnr av' ; vg ( (v )2 o
~ %25, Vodq T3 2{24-1'(")2] .
: 9 1 /1= %y
. ) ,,V' ( (v')Z ' 3V"_ —" _
-m | —— - tz 4 20 ,2] aq°u+ o [2
) ./]'f(Yo)‘ 1- (vo) ,j /]'_(V;) .
t ' & . .
N - ¢ Y . ' TH . "2 )
. 3(Vb) _.‘ 5(v ) ] Bvq N vl vo; {14_ (vo) J Yo%
(1- (v.c'))zl)2 | 1- (v )2 3qj ; 1-(vi)? 1 L (v))2 qu'
2 vlv v" o (V )2 N av" (vn)z (
- -0 _9 0 ~ o
o+ m* l:l.'.(vo')z [l + l- (v )ZJ aqj 3' 1- (vé)z ll
P *
REICA »oo 5(v;)2 y av) |
+ (1..(v )z)z 1 - (vé)ZJ ?qj_J | ) , (B.l.&p)
and- . : . ._2 . )
| T . ve) m ' s ) dm*
e3; = - kl + ul 4 _7——_7_3J 3ﬁ + v [1 1o (vl) ]
YI-(v) i

[_Bu , v' ‘ (v )4 Bv _1 )
Ut e o |
iV I-Gh N 3



® H (* Yy v ent o
) , "+ m* 1 +',; ) + 3 % + = 2]
o [\ 1 (vo) aqj . L- (vo);'l (v ) aqj
.- . , ' s (B.l.4e)

To.eyaluate the incremental force AQ;, of Eq. B.l.l, Eq. 3.5.17 is

used. Thatlis,

All equations derived abdve apply to~elastic and inelastic

response. ' ' ) . o v

B.2 Nonlinear Elastic Respdnse

-

To specialize the problem. to . elastic response the material

N

is assumed to be linearly elastic and the stress—strain relationship

.obeys Hooke,s law (Eq A. l 9. - ) C , » o . “
To eValuate the‘stiffness coefficients (kT)ij and the

incremental forces AQi’ it is necessary to- evaluate first the stress

: *
reSultants n, m and. m* and also their derivatives gn , g%L , and}%%—

that appear in Egs. 3.5.10 and B.1.4:

,Subst%tuting Eq. A.1.9 into the stress resnltants defined in

Egs. 3.5.9 yilelds. - = - g S8

a ='—j.E-.e . dA A L (Bi2.1a) .
‘ A z | o Lo ) . ’

. (B.1:5)

, 5 %Y Ny
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m o= [ Ece cycab - s  (B.2.1b)

and \ T e ‘ L N

2

© . A *
hd

Lét'the'crosé section propertieéifor a symmetrgg,segfiqn be:

dgfined as

oL

(B.2.2b)

S
-
-
Al

. P

1]

o

yz‘dA_ = 1 "f‘ ) "‘. Ve .ol '(§7352c)

(B.2.2d) |

‘<w
B
T
<

. .'[ y* dA = I, : . | S (B.2.2e)
. A :

- Substitutiﬁg Eq. 3.5.5 into Egs. B.i.l-and*intégfatiﬂg, hsing‘w"
‘ T e T s

the definitions given by Eqs. B.2.2 leads td
T , o " : . : o _ .
¥ .'z 2 5 ' ;z‘ N2

' (whH* (v _— A CAD TN C'Ad) o

n - lEA [uo +' ) + 2 ].+ > EI [(vo.)_ A s v R ] .

' ’(B.2.3a)



—~— /"”. . .
. 203
e ' (v'_) 2 " 3 Co
m = - EI {u' v+ v+ —0———-2—-J .. (B.2.3b)
.9 ° J1-@NH2 2, =
: g o . .
‘and r '
O N A L (v (vM? :
) - ' [») o} l-_ 1 "y 2. Q 0 ‘
) L | - (B.2.3¢)
Diffe,r,:ent:.la'ting Egs. B.é,3 Witﬁ‘ respect to \the 'g;aheralizégl-
displacement q.j" yields | _
L PO T ' »
ts o PR SR Suc')" ' 8v(')
% = EA |[(1 +u") + v — ]
3q, ]: 5q, T Vo3
S s TR
TV M2 e (e? oy v A R A
, "0 0! o o, o o
~. +EI | 2% 11+ ] + " 1+ ] :
[1— ('Yc'z)z_ l ) ?‘ v)2) 39y o l 1-(v])? ng .
B . (B.2.4a)
. B A
-
om el S S av!
= = EIV =24 (1 +u') =2 _— [2+' . ,2]~ :
SR K R IS T LA R
A0 L 1" L o - Sl
+ 2 . (B.2.4b)
Y 1I-(vhz %Y ' S ‘
: "o o . R
.
and '
s . ‘ v"&u' ! '
S0 [‘1 YU we Ve ae “
“9 | 0 0y
o ’
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yields

-(v )_

’ (V")“ : (V ) Bv-" . (v )2 Jfav"'.-' N
,+'EI { ] 2 v"'[1.+ ] Q.

LY (v )2 1- (v’yf' 3, "o 3q,

C S . (B.2.4c)
3 : .
Equations B.2.3 and B. 2 4 are expressions for the stress

resultants and their derivatives, - respectively, derived for an elastic

element subjected to axial force and bending moments.

.

’ For an elastic element'subjected only to axisl force (truss-

- element) the bending effect'is'eliminatedfandythe displacements at

any pointfslong thefelement;_Eqs, 3.2.3, become

u = u, ' ’ - o o , (B.2.5a) -
and N
v o= v S - ‘ (B.2.5b)
Consequently |
Culo=owl (B.2.6a)
and y
- .
. vto= ! o : ’ " . (B.2.6b)

-
)

Substituting Eqs.-B.2.6 into the strain ekpreSsiOn given by Eq.'3.2.5

R A

Coe, = ould +-— [}u )2+ (v )2:] L R (B.2.7)

Substituting Eq. B 2 7 into Eqs. B, 2 1 and integrating using Eqgs. B 2 2.

yields the stress resultants

.294'”
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a | L e a0s
c S T N
n°- = EA Elc" + ‘2’ + ‘2’] (B.2.8a)
‘mo=0 - \ . (B.2.8b)"
’ I . ' . " ’ ' “ }
" and-

. . .; ) (u,)z (v(;)z o B . E R N
F,* = ‘EI,EJC')..-g. ‘2). + 2 ] ' . -« (B.2.8c) . -

Differentiating Eqs B.2.8 witp respect to qj yields.

o oo = EA [(l + u 2 4+ v av'o ’ - (B:.2.9a)
DR .- S o A (B.2.9b)
‘ . aqj . . . {K s . e
. ' ) N '\ © ,ﬂ »
o du! v v S
. dmk ' o, %% . . :
IV B[ ) 9q, " 3qj:[ K\C/ (B.2.9¢)

. . ' ' \

"'B.3 Evaluation of Unbalanced Forces Vector {AR} For Finite Elqnent Model

W IR

—/f"\xﬁl; The - incremental force AQ as given by Eq B 1 5 can be evalu—

\\\' ated knowing the quantities uo, v0 and vo, their derivatives with

respect to qi, "and the stress resultants n, m and m¥%, -

. The quantities uo; vo and v0 can be evaluated; frnm'Eqs.

z Lo
. A X P Co L
. R \ '
- o . S el , . .

.u; - <¢l >r{ﬁ} | . A . : o : . (B.3.la)

3.5.18 as
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<
L]

and

< -
[]

<¢" > {V}

Differentiating Eqs. B.3.1 with respect to qi-yields .

aué
¢ = ¢’
8y Tay ,
. L3
[.
) av!
— = ¢
Say  Tqy
<?
and
Y
, / __2 - ¢ll
LW ay

.(B.3.1b)

(B.3.1c)

(Bf3.2a)

' (B.j.Zb),

(B.3d2c)

in,which ¢’ or ¢"i is the term of the differentiated shape functigns

l
assoc1ated with the generalized displacement q; in {0} or {V} as

defined in-Fig. 3-7. : . o i

B.3.1 Vector of Incrd;egpal Forces {AQ} of Flexural Element

Substituting Eqs. B.3.2 into Eq. B.1.5 yields
N = _ o 4! ..
8y =g f e L T
. 2 i

for 1 =1 to 45 and

AQi =’ Qi - I h2¢q'i +a3 ¢c'l'i ] » dz
. I . :

(B.3.3a)

(B.3.3b)

. 206,
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-

for i =5 to 8; and the quantities as a, and aq are defined in-

Eqs. 3. 5 10b, 3.5. lOc, and 3. 5 10d, respectively
. Arranging Eqs. B.3.3 in matrix form leads to o
a, {¢"} | o ~///g5

{sQ}Y = {q} -

(¢ } + a {Cb"} de . (B . 3.4)
. ) ‘2‘ .
which can be’written, symbolically;,as " ‘
{8} = {q} - QM | o - (B.3.5)

in which {AQ} is the ¢é:tor,of incremental forces (8 x 1) associated
with ‘the vector of nodal displacements defined By Eq. 3.5.19b, {Q}

is the vector of applied Loads and. {Q } is called the vector of

‘resisting forces and is defined as
| !
e [ e} - |
{Q } = J a T¢ } T a f¢"} dZ : . (B.3.6) |
2 | . . :

-

vTo evaluate the vector {QR} Gaussian integration method is
used: The'basie assumption in Gaussian numerical integration is that

(Bathe and Wilson 1976)
. b N -
[ {F(x)} dr-= oy {F(rl)}d-a2 {F(tz)}-+ ...i- o fFfrn)} .

a (B.3.7)

in which {F(r)} is the matrix to be'integrated, oy az,'.;. and a are
weighting factdrsa rl,'rz, e and‘wrn are sampling points and {F(r )}

is the matrix {F(r)} evaluated at the ith sampling point.. : s

g



N

. o zos.\\\\

.a Accdrding to Ea; B.3.7, Eq. B.3.6 can be written as
. B
: a; {¢"}
‘i R . 1
- @} = [ o, {75 T .. (B.3.8)
- 4 % )E, B E e T (®.3

i
in which n is the number of dampling. points (Gauss points) assumed

along the element and a, is thé’weight associated with the ith Gauss

i
point. Many references have tabulated a variety of sampling points
and the corresponding weights (Loxan et al. 1942; Ratha and Wilson

[N

1976).

In this study four sampling'points are asgumed along the
element. For each Gauss point assumed the matrices {é'} and {¢"}
are evalu;ted.v Alsg, the quantities ué, vé, and vg are caleulated
using Egs. B:3Jl..vAtfthis point the stress resultants can be evalu-

ated from Eqs. B.2.3. Consequently the quantities 3y, ag, and a, can

3
Se calculated from Eqs:.3.5.10b, 3.5.10c, and 3.5.10d. Substituting

the results into Eq. B.3.8‘and using thehappropriété'wefght yields

the contribution of one Gauss point to the vector TQR}. Summing over )
all the Gauss points gives the vector of resisting force {QR} which

- can be subtracted from the vector of applied loads {Q} to eobtain the

ﬂvector of incremental forces {AQ} as defined in ﬁq. B.3.5.

}

4
B.3.2 Vector of Incremental Forces .{AQ} of Truss Element

For an element subjected only to axial Torce the linear inter-
polation functions of Eqs. A.2.3a are used. Thus g&e. B.3.2 become

du' /

o , , I
T G | N RS



Y
<

[ 2
d -
5 = (o )
%y cAy
and -
a av' ' ' ,/ o
0 .
——— = 0 :
qu

Substitutiﬁg Eqs. B.3.9 'into Eq. B.1l.5, and using Egs. 3.5.10b,

. 3.5.10c, and 3.5.10d, yields\\\‘_

N
Ay

j ‘ ' )
’ AQi = Qi - [ n(l + ué) ($q )' dz
. Q[ i

for 1 = 1,2; and

N [Qn_v; B, )" 42

“for 1 = 3,4.

Writing Eqs. B.3.10 in matrix form leads .to

¢ o +u") (')
{aQ} = {q} - ?

T @ az

which can be written symbolically as

<

q} = {@) - ™

1ﬁ which {AQ} is the vector of incremental forcés éssocigted with the

vector.

AN

.
LS

(B.3.9b)

(B.3.9¢c)

(B.3.10a)

(B.3.10b)

i

(B.3.11)

(B.3.12)

vector of nodal displhcements defined by Eq. 3.5.19¢c and it is a 4 x 1

-

209
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Again’the vector {QR} c;{ be evaluated by numerical integration

°
-

using Gauss method explainéd above. , -

B’3.3 Assembly of Unbalanced Forces

. To solve for the incremental displacements' {Ar} in Eq. 3.5.24

the vector‘of-unbalanced forces {AR} must be evaluated. Thé inc;emental
forces {AQ} are first obtained in }ocal coordinate system by Eq. B.3.5.

These forces can be assembled into the global coordinate system using

Eq. 3.3.8 and the appropriate'tréngformation. Assembling Eq. B.3.5

.

or Eq. B.3:12 into the global coordinate system yields

{AR} = ‘Hﬂ«} - (RR} ‘ (3.3.‘13)

in which {AR} 1is the vector of unbalanced forces, {R} is the assembled

vector of applied goads and {RR] is the assembled vector of resisting

’

forces.

v

B.4 Evaluation oﬁ.Stiffnéss Matrix [Kr]

To solve for the incremental displacements {Ar}, in Eq. 3.5.24,

the structure tangent stiffness matrix [KT] must be evaluated. In

()

" this section two different element stiffness matrices are developed,

one for a flexural element and the other for a truss element, The

element stiffness matrires are then assembled tn form the styunecrure

s;iffness matrix [KT].

B.4.1, Element Stiffness Matrix for a Flexural Element

J

The influence coefficient (kT)ij must be evaluated to form

: 0 Fad
the element stiffness matrix [kT]. Substituting Eqs. B.3.2 into
7 . :

"Eq. B.1.2 yields:

210
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(kT)ij = [i elj . ¢ai . dzl . . (B.4.1a)

and ¢’ N 1

(b) for 5 < i < 8

-

., = e., *¢' + e, o P dz ‘ B.4.1b
(k) J[ 23 " ¥ty ¥y 1 (8.4.1b)
Q' .
. )
in which elj; e.:, and e are defined in Eqs. B.1.4. Thus, the jth

2j 33

column in the element stiffness matrix [kT] can be written as

{¢'} « e
(] 3

T j = Jl {¢.}e2Ij + {?"}e’;j dz (B.A.Z)

The full matrix [kT] can be written as

[ t¢'} <el> '. —1 ‘ f
[kT] = Jz —{¢'T. <e2>+ {d?"j <e3>“l dz (B.4.3)

or it can be written, symbolically, as

i e

(B.4.4)

in which [kT] is an 8 ¥ 8 matrix, while [kl]' [k2] and [k3] are 4 x 8

matrices defined asg

e
e
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—

n

: [kl]'=f {¢}rg1+u)<—>-v"<a—m->

(k,] = f{¢'} vt o< dn, v;v; : [2+ Y ) dm,
2 ) 2 (o] aq . ',11—_—(—‘,—5-3—2-» —(vo)2 3 ‘

and

[k

aq o 9dq

+ n < ¢' > -m < @g %] « dz | _, o (B.4.5a)

. £ i
1 ny 2 = 1y 2
Yo (vo) f (Vo) ) Jm* )
+l—(V('))'2 ll+1-(vé)2 3q >4+ n < ¢ .
v v'! . (Vv)z ]
- m | -_o% 2 +—°'__g < ¢u >
[ f—_l_(vé)z [ l—(vo)z] 2‘
A= oz BT <v;))2”2 =7 )zJ <

)

2vi VW
+ m* {——ZQ_ZQ__ [1 + ___:Sl____] < ¢g >

1 - (Vé)z_ ) 1 —-(Vé)?

(V")2 ( (v')? ‘\( A(Vé)z ]
freopT ! 1-<v>2Jl“1-<vc',>2] IRCIE N

(B.4.5b)

< = >

1ty 2
(vo) -
aq

f
Lo e
L L ° VI-GHT
NCA LR . .
" : ) . dm* oy
+v0.[1+_1—.(v(')')2j<3q >-m{<¢l>_ _ p

~
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RN A/ RS R
+ {2 + — 0 < ¢l >
vy 1- (vo)fv“ oo1- (v,o)zJ ¢! J

. [2 vé v; ‘ (v')2 - :
+ m* tl'(vé)T [l 'l-(v )2] < ¢2 >

(V)Zl " \—l
,_(V vz) < 9 >J

+ ..(1 +—2 %(B.4.5¢)

’

In.Eds. B.4.5, <¢i>;'<¢é> and <¢;> are 1 x‘8 row vectors

defined as

N

| << ¢ 5 <o > o . (B.4.6a)
oy = Koo

< ¢' >

<¢t> g (B.4.6b)

and

< ¢§';A "<é‘0 > t < ﬁ"-%} S e (B.4.6c)

/

on,  Om . fmk !
; and the vectors <——>; S> and. <> are also 1 x 8 row vectors whic
Bt aq 3 aq , '
are called the incremental stress resultant vectors.
In order to be able to. use the Gaussian integration method
to evaluate [k, 1, [k2], and [k3] the incremental stress resultant vectors
must be evaluated at each Gauss point. This can be done as follows:

éubstituting Eqs. B.3.2 into Eqs. B.2.4 yields

(a) ‘, for- 1 .f_ J < 4
_31 = - ' v | v B
aqj. FA G? + uq)_¢’qj - , (B.4.7a)
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ﬂ = - l " v ‘ 4 : T .l ) i
aqj EI Vo ¢qj' o s . : , (B.f.?bz
g—n;* = EI (L.+u') ¢' - f ’(3.4'7(:)
qj 5 R . | , -/
,‘and, .
| (b) fér 5 < 3 <8
v (VH)Z (V )2
on o ‘o
- = ¢' + EI — [1 — ] s
3qj ] j L (v'o)z 1 (V )2 j
“ : . ! (V')z ) . " -l o ‘ ‘ o o
v (LT & )2J "@-jJ o . (8.4.79)
N (V-n)z. (v')é
T EI]}_A_/;—;*)T 2+ =ty ¢
] - Wl . 3
{ L (Vc'))2 ) ' ‘
+ ll +'u +______J " (B.4.7e)
Y1-(v1)2) 9y |
' ‘ o .v p1y 2 | 1y 2 o v N )
am* . : [;o (Vo) [ (Vo) } ' -
EY = ! : Ty (1 + —————] ¢ ,
qu EI:VO ¢qj. + EI4 L}-(ié)f’f + lc-(yé)z ¢qj | N,
(v! )z | .
+'v° [ 1 (v')z} qj_J . , j:._ (B.4.7F) . o
Equations B.4.7 can be written in a column vector form as

_1isted in Table B-1. ‘ ' P ' o



e : (v-')2 ";"f‘
~- EI (1 +u' + ———] {9}
B v l—(v')2

\

t

Y '. EA(1+u') {o'}. R
’lEAv0+EI—_—(_——'72—[l+_—(_')TJ]{¢}
(V)2 ‘

+‘EIv [1+ (v,)zJ {9"}
“
( .\H.
\ .“-‘ . . i
P “megien L
' RN - (V')2 Yy f .
- Ep —2_° [2 + ; ZJ {Cb}
/- ? <V>

TABLE B-1 Incremental Stress Resultant Vectors

" For Flexural Element

s
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s 7
.,r,' Y
. ' ’ -
T . <1+u>{¢} ol
R S c,(v;pz- LT f \
. : - ol
| ‘ [EIV +E141 (,)2 [1+ (')2]J {4)}
Y B (V )2 {‘ } .
+ EI, V"' |1 4 ———— d)" LT .
T4 1 - 2 S .
e o 60 ) |
\ <
‘ 4
Y - .
!
+ ﬁ' |
. Note:
fg%} is 8 x 1 column matrix
-{¢'} and {¢"} are 4 x,lvqolumﬁ matrices
TABLE ﬁ—i;(Cont}) ,Inérémenté118tre§s'Resqltant
‘ ' Vegtofs for Flexural Element -
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'\
s

Now to evaluate [kT], the quantities uo, vo and vo_are caldu-
N 1ated from Eqs. B.3. l at each Gauss point Thus the stress resultants
. can be eValuated from Eqs. B. 2 3 and also the incremental stress

. 4

resultant vectors can be evaluated as listed in Hable B-l. At this

stage the Gaussian integration method explained ébove:nsused to eva-, -
luate Eqs. B 4, 5 1eading to the element stiffne‘s matrix given by

Eq 344 4

"B.4.2 Element'Stiffness‘ﬁatfixlfor'a Truss'Elenent
: [ . : .
- For a truss element the influence coefficients (kT) e are o

obgained by substituting Eqs B.3.9 into-Eqs. B;l.Z to'yield &

y (a). for'1l. f_wi: < 2 N . R l,'.:"

‘ and

+ (b) fof 3 21 < 4

T

Gy @) e

-

zThe-jgh columnvin the element stiffneSs matrix can then be written

{(¢> }e e
“‘T} 3'((3’51}_1§ dz - - (B49)

and the’ ‘full matrix [kT] can be written as

.,



b
L S TI® Y T T
NN € 55 P J = | dz | L, (B.4.10)
R WLI® Y e T ‘

©or it.can be written,;symbolically, as'

r[m e
_— : ) (B.4.11)

I_Ikl S -

in which [k ] is a4 x 4 matrix and [k ] and [k 1 are 2 x 4 matrices

'_‘b

"defined by Eqs B.4. 5a and B.4. Sb In such a case {(¢) 1 replaces {¢ }
. and ‘it is a 2 x 1 vector Also <(¢ ) >, <(¢2) >;(2nd <(¢2)"? replace Z'.
<¢l>, <$5>, and <¢2 X reSpectively In this case <(¢l) >, <(¢2) >, and.

<(¢ )"> are 1 x 4 matrices given as ’ ‘J

< (¢ )v > <<§ (%) >f: < Q?5> T o o “l(B.4.12a)

T < <¢2>' > = <0 > 1< <$>'> L ewny

and " - .. o o e
< (B" > -<< O_>:]'<o>>‘ | ~ (B.4.12¢)

in which <$> is the shape functions for a truss elemgnt given by

’Eq ‘A.2.3a; aqo the incremental stress resultant, vectors are 1 x 4

row vectors._
To evaluate the incremental stress resultant vectors

‘Eqs. B.3.9 are substituted into Eqs.\B.Z.Q'to‘obtain

. . . PO .
5 . o

.(é) for 1 < § < 2
"-_3_[1 = (1 lv ';_ v - - - o L «j |
Bq, Ea (1 '+ ugy) (¢qj.)' , T (B,4.13a)‘“
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gﬂ- = 0 o T ' (B.4.13b)
. 9q - : '
- EL @) (B U (BL4.130)
q . .0 q . o
3 .4 3 - .
end. o , , -' L N o
(b) - for < 3 < 4 ‘
C dm '_EA‘V. Gy O (B.4:13d) -
.9q,. .- - o 'q . ‘ e /
L .‘ J ) j ) ‘. B
Y )
* Jm E ‘ § o Lo ) :
. == =9 B . . : (B.4.13e)
aq: . . S A
. j ’ -~ - ‘ ’ '
SL = EIv' (§ ) R  (B.4.13f)
-oq o 'q . o
13 i , A
. <
‘Equations B.4.13 can be written in a column vector as given
in Table 13,—2.-"7 - <
- Substitu—?ing the inc.remental stress resultant vectQ‘rs as. |
given in Table B~2 and the stress resultants as given in Eqs. B. 2.8 '
into Eqs. B.4.5a and B.4, Sb, the matrices [k I and [k,], in Eq B. 4 11,
“can be redefined as . |
e T B L, o
el o= J Ry, [(,1;+ ul) <=2 >+m < (§) >:| dz  (B.4.143)
) , N q , : .
and 7
| r- o ' _I v ( ,. y
NUSEE R R OL } o <,a > + n < (¢2) > | d= - (B.4.14b)

L
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1

i

B

1

‘

]

R

)

1

{

\

|

i

4 B
.
L}

{§§} 15'4 x 1 column matrix

@'} 15 2 x 1 column matrix.

.

@ny | |EA Qe (@)

9q JEAV @'}

dmy . _
fga} = {0}

° : _ 8.
3 ‘

EI v} {@®*}

‘Note -

5

TABLE B-2

Vectors for Truss Element °

Inérementél Stress Resultant

220
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’

-

. . o v
Integration leads to the element stiffness matrix [kT] in
Eq. B.4.1T. - T : | _ - )

B.4.3 Assembly of-Stfuctural.Stiffhéss [Kp]

" The assembly of_elemént stiffness matrix into the structutre .

stiffness matrix is explainéd in detail in'Sect;'$.3.2.

»
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! APPENDIX C

LARGE DISPLACEMENT‘TRANSFORMATION'

1

Consider the element shown in Fig. C-1. 'The relation between °’
v o

the reference uxis in local and .global coordinate systems can be.
' . 7

o

written as

3 ' ' \
z cos & -y sina ) (C.1la)

N
it

and

<
1]

zsin @~y cos a ' (C:1b)

A}

Also the relation between the local displacement 4 and v and

the global displacements U and ?, at any point, can be expressed as

t

-~

4 = Ucos a+ V gin q : ' o , (€.2a) *
ana - \
vV = Usina - V cos a " (Cﬁ?b)"

in which § and V are functions of z and y. Differentiating Eqs. C.2

with respect.to z yields

AU o 3 9z 3V 3z 3U Y v Y

v .
3 T %% T Oty sty sinae L
(C.3a)
Pt n
and o _ L - S

=223~
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£

- FIGURE C-1 Element Transformation
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U 3z vz - U 3Y AV 3Y ‘
3z ’a— T sina —a— a cos o +‘-§T 3z gina BY‘ a—z- cos O
4 . q - . (C-3b)
Differentiating Eqs. C.1 regdlts 1nA ‘ : .
. %—i/= cosd, ‘ : ‘ » (c.4)
%;{ = sina

(c.5)

Also there is no change in angle be;&ee‘n‘ the axes after deformation

This constraint has been approximated by imposing the condition that

Pd -
- oV
¥ T T3z _ (C.6)
y
Substituting Egs, C.4, C.5, and -C.6 into Egs. é 3 results in
N ot | | du _ 3y | 'a“v A
8_121 I = 3_: = 3/2 cos 20 + 2 ¥ sin’a -~ . (C.7a) ,
: =0 ,
r\_ . .
and ( | )

. : U v
v = 37 = 37 cosasina ~=%
y=0 - g

3y cosé sina-— A

57 FC.7b)
L)
Introducing the notation
oV IR .
o 37 - (c.8)
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°

then the t;ransformat:ibn from local to globgl coordinate systen may be

\_wfitten"in a,niét-rix form as ' ) ’
.
N —, ' — Y
ru Y -] ‘ [, U.
u' C2 sl . v ‘ ’ »
< 7 = J 6 . (.9
o R wl
v! ° ‘ -1 ¢s -ecs 9z o
)L R Yy
~ . : BYJ
. . . "

~

in which ¢ and s denote cdsa and sina, respectively,. . The trans-

formation matrix for the éiemen,t is tabulated in Table' 3-5.

- a
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APPENDIX D
CALCULATION OF SECTION PROPERTIES AND

STRESS RESULTANTS FOR I-SECTION

To evaluate the tangent stiffness matrix for an elastic

element it is necessary to know the cross section properties. "In’

3

- the case of inelastic analysis, it is important to’ evaluate the trans-

formed section in order to evaluate the tangent stiffness_matrix;.

Once theftransformed section has been determined, the evaluation
. of the cross section properties is identical to that of any arbitrary

elastic section.
. L ]

In this Appendix the method of determining the transformed R

' section,is discussed The equations for numerically evaluating .
-y

R

'section properties arg presented and the equations used to evaluate

L , . :
. LN

the - stress res ants for an inelastic section are given. .

~ ‘.

//
9’1 Determination of Transform 4 Section o B
\\ For any set of nodal displacements the strain at any point on

the element due to axial and bending displacements, may be evaluated

as (Eq. 3.5. 5)

uvZ v' b .
e T it mi Al ¢ IR R
z . VY 1-v'2
. 3
' y2‘§32 : v;z ‘ '.“ ef o .
+"—'—2'—' l+.'f_-—\'7_'.,—2- . o '(D.l.l)

~228-



Adding the,résidual,strainlatlthis partioular}point‘results in the

totaIQStrain,given as .

. , - S - : S
€6 = ez + eg o | | (1.)_.1_2.);.
. in which € 2t is the total strain at any point in the z direction, €,
is the strain given by Eq. D—l 1, and s is the residual strain.-

If the residual strain distribution varies in some arbitrary - R

. manner, as shown in’ Fig. D—la, it can: be approximated by linear‘

] “4

segments, shown ig,Fig D-lb.

| For‘equilibrium o . s 'qd;i B o ,'-:u(_:
[ LY | . : o
o, *«dA =0 . . - (D:l.3a)
A .
"‘at_ld'» .
A, o |
L ¥

1?Consider a plate segment of the cross. section with a linear--‘

variation of residual strains By superposition, the total strain
distribution will also be linear in the segment.i

The stress-strain curve used in the analysis is the tri—
*..
linear curve - shown in Fig.-D—Z To approximate the curve for mild

a

‘ steel curve 2 the dashed curve is used It is apparent from Fig.‘D—Z
| that the strain hardening of the material can approximately be accounted o f* ;

‘for in the analysis.j
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FIGURE D-2 Trilinear Stress-Strain Diagram
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;\\\~4;\§§__ggnsider -a plate segment under a 1inear variation of strain.

das shown in Fig.. D-3.

'the game sign,

‘.given below:

- respectively, defined inag D—2

In

C<

in which ey and €g

Ia

<’

e
st

€ .
st

€a
e, E £,
0 < ¢

1.
- T
. [

In .

€
st

€qt

i

When the strain at the two ends A and B are of

A and SB may be in any of the three strain ranges

" *

(D.liéa)'

(D.1.4b)
_(ﬁ‘l.QC)

are;the yield7strain andgstrain-hardening strain -

Thus, there are nine combinations of strain distribution when

EA -and _EZB

are of the same sign.

' .ations when they are of the opposite sign.

© cross section the-féh
. distribution assuming no strain reversal.
-fsegment into at most five regions as

‘lmoduli .are differenta(Rajasekaran 1971)

gent moduli E are determined from ‘the strain

Also, there will be nine other combin—'

In each segment-of-the

1

This divides the plate o

shown in Fig. D—3 in which
/,\~__"N\ oo

If ‘each element of -area is transformed such that the product

. aof the current tangent modulus Et’ times the original element of

area, A is equal to the original modulus, E, times the element-of,.

- transformed area*‘

«.

.E‘_

e 7 A

, then ‘

E - af -

% (D.1.5):
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~ FIGURE D-3 Transformed Section of a Plate Segment Region" .~
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In order to calculate the tangent properties it is sufficiently accurate

- to modify the, thickness between the corresponding regions by the modular

&a
‘ratio according so the form
: ‘ . . .
< EwsE : (D.1.6)
r -t r : . ) T ‘

in‘which~b;fis the‘transformed thickness of a particular,region T, and B
'bi is the-original.thickhess of this region.
;,‘ Now the section is transformed and the cross section properties
Qf the transformed area can be evaluated as indicatedvin the following
\T- '. R ' A -
section‘. . — R .

'1D.2 Eﬁaluatibn'of,Cross—Section Properties '

Y

‘ Once the transformed thichness'of each region isvevaluated
the area and moment of inertia of each region are calculated abouo
the centroidal axis of the transformed\gegment. Moments of inertia .
‘of each’ plate segment are then transformed to the global axis orienta—
tion of the cross section, Summing the properties for all segments

3.

. gives the centroid and moment of inertia of the total cross section.

- The section properties, A;, I;, I;, I3

" the inelastic analysis.are defined; using Fig. D-4, as

and IQ;Vneeded for

T At = 'I T e ST (D.2.2a)
- At . - “ o : . . ‘.
"Ii '-.'I yeaa®* N S
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FIGURE D-4 Cross Section
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'FIGURE D-5 Stresses in a Typical Plate Segment
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. a
J y2eda® | . (D.2.2c)

K

f 3.t | ‘

J y?eda ‘ (D.2.24d)
K o
[ y*edat - | - (D.2.2e)
At T

£
"

These properties can be written in;numeriéal form with respect to

‘ the x and y axes, of Fig. D-4, as

v

At

[l
[]

~
[}

and-

o
T4

'fﬂé - _\\‘
‘in which (I, )

¥ A# | . : | . | (D.2.3a)
k=1 T . '
s » v .
kz"Ag‘ Y S . (D.2.3b)
n ' ) : f .
k§1 (Ixx K +.k§1 A YR | | (Df2'3c)
n 'Q. ‘m 4 o
3 kzlv(lxx)k'yk + kgl A, Y2 - ((0.2.3)
) ' )
. Lowaft
i
. .
'kZ (1, ) +6 k{ (T )y Yz + Z A Y“ ‘ (D.2.3e)

is the moment of 1nert1a of segment k about the centroidal

' axis x—x of this segmeut and (I4 ) is defined by Eq. B. 2 2e for the kth

: aegment about X=X axis of the ségment : ‘ B L Lo
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. , . ,l ) J’ : - ; | | | . : l
;D.3 Evaluatipn of The Streép Resultants T S

“From the stress-strain relationship shoﬁn in Fig. D-2, and

ass&ming the strain distribution is khown, the stressés.injeach regiog

L]

of the plate segment can be évaluafed. The ‘'stress resultants may then =~ ;;
. LI ' ) L. . ' . o " L. .

be calculated numerically in the x;y reference system from their o
\ 2t ) . - . ) : . ’ . -

definitions. Referring to Fig. D-5, the numerical evaluation pf the

. . . ) - -~ | -
stress resultants can be written.in’ the foli::&;g forms (Rajasekaran N
97. L -

( ' o
n = J g hA (D.3-la)
A Z? . :
C \
3 »
n = 5% ot (o, +g.) (D.3M1b)
. k=1 r=1 2 r 'k Tir i S
alSO . . . ' . i . - | o ) ]
- | a ' (D.3.23) ,
m - J ‘ Oz }’ Do .%a) j
A ! | .
‘/ ) b'»v
R
F. 5. R'ftk L . o . ) ) . ‘\X A
: m o= ‘kZ’l rzl —= E’l‘r(y r +. Zy.ir) + Oj'r .(yir + Zyjf):l‘ N
| DTl (Da3a2b)
: ‘. -
and
m J, o,y dA B ' - R §D.3.3a) _
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\ i *
R R
' n* = " le ™33 |0 G y: +2y% -2% :
o " k=1 =1 12 ir ir ijr r : '
. i " . . . . N . , ., } ‘
\) o : o . -
' ' g 2 bW gt : 3
E o + 05 (4y je t 2 yi, - !gr):] . . (D.3.3b)
in which'r is the plate re¢gion, n is the number of plate segments, k is L

"the plate segmeﬁt index, tk is the plate segment thickness, kr_is the

plate region length and i and j refer to the two ends of each, region.
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APPENDIX E
. INCREMENTAL STRESS RESULTANT VECTORS
: - : ‘ ’

FOR INELASTIC ELEMENT

To evaluate the eiement tangent stiffness‘matrix, for an
inelastic element, it is neeessary to evalnate theiineremental stress
. c9n ' 3m * L : '
resultants +— , — y in- Eqs B 4 5. In this appendix the
3q qu 343 '

incremental stress resultant vectors are derived The transformed

N and

section properties needed to evaluate such matrices are determined in

Appendix D.

°

E.1 Incremental Stress Resultant Vectors

Consider variations in the stress resultants n, m, and m* at

any stage of - loading. These variations can be written, from Eqs. 3.5. 9,

- as -
" Sn = I E 8cda . (E.1.1a)
. N ) . , o o

S I's) 4 , {
ém = I"Et 8e y da , ~.  (E.1.1b)
R
'and:v E
| Sk = 'Jj E, 8¢ y* dA o (R

.

'\

in whic’hEt is}the,tangent'modnlus at this partiemlar stage of ioading.ﬂ

L
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'From. the transformed area concept,  discussed in Sect. D.1, .
it can be written that-' .
e Et s dA = E dAt .. ' N o - 3 (E.l.Z)
in which E is the. original modulus and A.and A are the original
element of area and the element of transformed area, respectively - Thus
Eqs. E.1.1 can be written as S o : R ‘ T
Bm [ g 2E gt . (E.1.3a)
aq aq
o j t j » -
A
' <
m o E——aey at (E.1.3b)
.and
%m—; = J E 0 y2 gt : - : (E.1.3¢c)
q '3q L o \ .
3 At. ’j' . . .
Let the transformed section isroperties be defined by Eqs. D. .2 2.
' Differentiating Eq. 3. 5 '5 with respect to qj and substituting into
Eqs. E,1.3 and integrating using Eqs. D'.24.2.lyie1d"s o
w “I. N ‘K
an ot RS ot - o : o
Rqp TR TPy TEL By FEL tby o (Bl
Bt e el P
T T T T T VI (E.1.4b)
3 “ \ <
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.and . Sl . o

dm* -
a— = EI + EI
qu 24

Nt

!Wblj‘— El3l' b

in.&hich

o ’au'i -:av;' 8 - o

. ) ' ‘Viyl" Co 2. "‘
. - 8u0'+ Ve Ve (v ) v,

. . T2+ “ |
Ho ey e A & )2J 2y - ’

Y Te

D e -
3

(vv)Z.. Y 3Vri S R .
o - =2 (E.1.5b) .

+ {l + u' +

fii??$:fﬂ =

and

>,

v | (v )2
by T 1 - o7 T (LY

(s

.l%vh ' : : .
I (2B : : <.
l__(v')zJ aqj : X N

R I R
oY E, L ELs

. :"' /."l-+.vg ll ¥

JFor each gauss point on’ the element ‘the values u', vo, -and

5 . v

vo are evaluated from Eqs. B 3.1. Then substltutlng;Eqs. B;3.2 1nto '

-‘Eqs.,E.l.é:yields.
(@8 Forl < 3§ < 4

I o g RS - ‘ . i

R
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om_

“

L =. Lo -v".'_v‘t" wyoar
[EL, 1+ ug) = EIy vi ] d;qj-

Yo . (v )2
0 [2 .

o EL, l_(v_)_z_J

t o

: ‘(vn)z ¥ (V )2. _,

/1 Cv )

: N
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; v. . V' va:v . . (V )l : . . o

1- (V')ZJ

' ." R '. L V" (vu)z " (V )2 -[ .
o : t o o) )
I (v )2 (14 - (v )‘]‘l ¢Qj

L (vo)‘ Y e g e T
- EI3' [l +. u'+ ] +EI[& Vo [l+m] ¢" .
: / I- (v )2 A o a3

[ 3

p

| ('E..;»l.._6f)'

. Equations E:l. 6 are the incremental stress: resultant equations for a-
.flexural element and can be written in a vector form ‘as in Table E-l

':> For a truss element the centroid of the transformed area

of any cross section remains at the centroid of the elastic section

~,
.~ by

because the section is subjected to axial force only’ resulting in uni—l

fform stress distribution._ This leads to

e ‘.-1,3' =0 [ S SRRt (E.1.78) -
Also for a truss element a linear interpolation function is used which '

‘o

"}leads to (Eq B. 3 lc)

b}

N T T R T ,

-
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R 4 . o [ﬁAF- (l'{l#ﬂ,pv'-:)' :'-"'EI»C"V":]‘.:{_‘-:&?}V o

aq - [EAt 1/ - | _vo vo ‘ ( o (V')Z ] L T .',,: .', ?
C v - t O o . o
IR lJT'(T)f TIs A A

J VO (Vo) (V ) ) {¢'} e
+E2TT)'7 1+WJ,- S

2. :‘ s N 1y2 |
1. T..¢ '"_ (V ) IR S (Vo) VT

‘] {4>"} ' |

V.1l= (V')z

..{'3“‘} =f J “ [EI ERE ) g m ;1 {¢ 3.
T

(v)"?'

.‘.'t;,', R R '
- v!i- Bl —20 2% ; .
: -i[E.I].;_.VO - E 2 /1-—(v )2 [ w1 = (v 52J;>‘._. v

R R <v:;>? ot
5§ * EIs TT;)B? [1 TTE—)"{]J {¢}

R

.o .t " Yo’ .
} + ,}13. VO._[l"+ 1 - (vé)z]'

.

TABLE E-l Incremental Stress Resultant Vectors S L ..3 e

for Flexural Element e

A S e
D ‘ ot ot . - .




[EI (1 + u’) - EI v"] {¢ i

3“‘*} | < _

ST V',,V" . ( (V )2 : L ‘
. O ol T § .
EI; v' .- EI., ——2F 12 + - - o .
[ X '-3/.1'--].1(#:,'):"“[ b ”]

v A 4 t 0. D"
oy _ ‘ +EI -—_*_—_‘—'ll 1 (v')2

4T (V)7 Aotk
£ |

-

-

- 'fw.\ ? [ —(v S J ' = | S 'l-;y)

I <v>2 o

T e

‘, Note - ",
T

° ' o . N . A . -

S R A R R SR
. {¢'} and " {¢"} 'are® x 1 column matrices - . - S
JEATRE o RS A

o TABLE E-l (COpt ) Incremental Stress Resultant S

Vectors for Flexural Element fﬂ,'”




;:fFrom,Eqsa'E,1}7;‘ﬁqb;i£§1.6.eénrbe medifiednfqr a trpss.element;aguh.

L

f{ formulated for an inelastic element they are used 1n Eq. B 4 4 or .
I
C
; f' Eq. B 4 11 to evaluate the inelastic tangent stiffness matrix..;

a_:' = EAT (A ug) (8gp)” o EaLsay

Fomerwdy T e

——‘g':‘ = EI v' (6 )' S LELT T (E.L.8E) -
The column vectors arising from,Eqs E. 1 8 are. given in Table
E—Z' All sectionmproperties needed to form.these mgtriCes hre given

by Eqs. D 2 3 Once the incremental stress resultant vectors are 5"' :
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TABLE_E;Z,JIné;emental Stress Reéultant"“

' Vectors for Truss Element -
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