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Abstract In the work, we evaluate the performance

of machine learning approaches for predicting suc-

cessful eradication of aquatic invasive species (AIS)

and assess the extent to which eradication of an

invasive species depends on the certain specified

ecological features of the target ecosystem and/or

features that characterize the planned intervention.We

studied the outcomes of 143 planned attempts for

eradicating AIS, where each attempt was described by

ecological and eradication-strategy-related features of

the target ecosystem. We considered several machine

learning approaches to determine whether one could

produce a classifier that accurately predicts weather an

invasive species will be eradicated. To assess each

learner’s performance, we examined its tenfold cross-

validated prediction accuracy as well as the false

positive rate, the F-measure, and the Area Under the

ROC Curve. We also used Kaplan–Meier survival

analysis to determine which features are relevant to

predicting the time required for each eradication

program. Across the five typical machine learning

approaches, our analysis suggests that learners trained

by the decision tree work well, and have the best

performance. In particular, by examining the trained

decision tree model, we found that if an occupied area

was not large and/or containments of AIS dispersal

were employed, the eradication of AIS was likely to be

successful. We also trained decision tree models over

only the ecological features and found that their

performances were comparable with that of models

trained using all features. As our trained decision tree

models are accurate, decision makers can use them to

estimate the result of the proposed actions before they

commit to which specific strategy should be applied.

Keywords Aquatic species � Machine learning �
Survival analysis � Ecological features � Planned
intervention

Introduction

Non-indigenous species are one of the greatest threats

to the biodiversity of ecosystems (Cambray 2003;
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Houlahan and Findlay 2004). Due to growth of

commerce, recreation, and global transportation, the

rate of introduction and establishment of aquatic

invasive species (AIS) worldwide is likely to increase

in coming years. These invasive alien species may

radically alter local ecosystems, rendering the habitats

inhospitable to native species. The establishments of

aquatic invaders, such as Asian carp, zebra mussels

and round goby in North America, have had devas-

tating impacts on native ecosystems (Kolar and Lodge

2001, 2002; Ricciardi et al. 1998; Gurevitch and

Padilla 2004). Existing and imminent threats from AIS

motivate conservationists to create management

strategies to eradicate these invaders. Current strate-

gies often use information from managers’ experience

and/or from experts’ advice to create and set policies

to prevent, control, and eradicate invasive specie-

s (Pullin et al. 2004). Unfortunately, this approach is

not always informed by systematic review of the

outcomes of previous actions (Drolet et al. 2014). In

addition, if one can use only ecological features, such

as taxonomy, status of invaders, habitat, etc., to train

risk prediction models, it is possible to predict the

survival of AIS in an target ecosystem even before an

eradication attempt. This can be useful in the

management of AIS.

Many scientific approaches have been used to

assess the feasibility of eradicating AIS and to

determine primary factors leading to successful erad-

ication. From a mechanistic perspective, Raymond

et al. (2011) adopted a mathematical model, based on

differential equations, to predict outcome of eradica-

tion campaigns on three pests—rabbits, rats, and

mice—from the Macquarie Island. From a statistical

perspective, Drolet et al. (2014) developed a user-

friendly tool, ‘Model Informing Probability of Erad-

ication of aquatic non-indigenous species’ (MIPE),

that used logistic regression to predict the probability

that a planned intervention of AIS will succeed, and to

prioritize ecological and eradication-strategy-related

features that should be collected/selected first, to

increase the reliability of model estimation. The

performance of the model was shown to surpass

predictions based on the advice from experts (Drolet

et al. 2015). Recently, machine learning approaches

have been applied to ecological problems. They have

been widely adopted to identify the complex structure

of datasets, and to train risk prediction models in

ecology (Fielding 1999; Olden et al. 2008). Bayesian

belief networks (Boets et al. 2015) and decision

trees (Reichard and Hamilton 1997) have been used

to classify invaders by the level of invasiveness (for

alien macro-invertebrates and plants in North Amer-

ica, respectively). Artificial neural networks, system-

atically discussed by Olden and Jackson (2002) in the

application of ecological modelling, have been

applied to monitor and predict the density of invasive

species, and also have been used as a tool to suggest

eradication strategies (Pu et al. 2008; Lek and Guac-

gan 1999). Drake et al. (2015) successfully used the

classification trees to predict the risk of jeopardizing

local environment by anthropegenic release of fish

(including some AIS) into the wild.

Another way to access the efficiency of eradication

attempts is to observe the time that an invasive species

will continue to survive under an eradication inter-

vention. Survival analysis tools, such as Kaplan–

Meier (K–M) curves (Cox and Oakes 1984; Lawless

2002; Kleinbaum and Klein 2005) and log-rank

tests (Mantel and Haenszel 1959; Kleinbaum and

Klein 2005), have been widely used to deal with

survival times in medical disciplines. Others have

adopted this type of survival analysis to estimate the

survival rate of invasive species. For example, K–M

curves and log-rank statistics have been used to

estimate and compare the survival of groups of

invasive Argentine ant population under varying

climate conditions (Cooling et al. 2011) and the

survival rates of both invasive and native ladybird

species at different temperatures (Barahona-Segovia

et al. 2015). Also, Nagar and Shenkar (2016) have

used the survival curves to reveal the sensitivity of the

aquatic invader, Microcosmus exasperatus, to three

different salinities and temperatures (Nagar and

Shenkar 2016).

The goal of this paper is to develop and test an

accurate and interpretable model that can predict the

outcome of eradication attempts. We use several

machine learning algorithms to train classifiers—here,

artificial neural networks (ANN), decision trees (DT),

logistic regression (LR), naive Bayes (NB) and

support vector machines (SVM)—to predict the

success of eradication. Each instance is described by

six features: four are ecological features, describing

the intrinsic characteristics of both target ecosystem

and invader; and the two are related to eradication

strategies. To assess model performance, we examine

the prediction accuracy as well as false positive rate,
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F-measure, and the Area Under the Curve (AUC) for

each of the five algorithms. (‘‘Appendix 1’’ explains

these terms.)

We show that DT models are significantly more

accurate than other models. Moreover, DT models can

provide a clear and easy-to-read model—which

matches our secondary goal of interpretability. This

means that the trained model can be used as a decision

support tool to help decision-makers estimate the

effectiveness of a proposed approach to eradicate AIS,

which can be used to decide whether to commit to the

approach. We further train a DT model based on only

ecological features; this simpler system has an accu-

racy of 80.40%. To evaluate the performance of

eradication strategies, we also train a third set of

models using only the features that characterize the

eradication attempt—here, Containment and Method

of eradication. In addition, We perform survival

analysis (K–M) to identify features that help deter-

mine the effectiveness of the eradication action.

Finally, we use DT models to further predict the

outcome of a planned eradication attempt in a fixed

time period.

Data and methods

Study data

We adopted the dataset from the Drolet et al. (2014)

paper, which was collected from hundreds of relevant

articles that described 143 attempts of eradicating AIS

from many aquatic target ecosystems. The dataset

records observations of six of features for each attempt,

including four ecological features of the invasive

species itself and two features related to planned

interventions. The ecological features of AIS are:

(a) the taxonomy of the target species (plant/algae,

invertebrate, or vertebrate); (b) the status of an invad-

ing species (‘introduced’ if no evidence of reproduction,

‘established’ if reproducing, or ‘invasive’ if reproducing

and causing economic or ecological harm); (c) the

habitat or the type of ecosystem (marine intertidal,

marine subtidal, river/stream, or lake/pond); and (d) the

area occupied by the invading population and treated in

an eradication attempt (unit: m2; we use log2ðareaÞ for
better visual presentations only); see Fig. 1a–d. Here,

features (a) and (b) describe invaders, while (c) and

(d) describe environmental factors. The remaining two

features describe planned interventions: (e) the

method of eradication attempts used (mechanical,

chemical, biological or a combination of methods) and

(f) containment (‘yes’ if some actions were taken to

prevent natural or anthropogenic dispersal to or from

the target areas, and ‘no’ if no action was taken); see

Fig. 1e, f. In each eradication attempt, we considered

two possible outcomes: ‘Success’ or ‘Failure’, where

‘Success’ means that no individuals of AIS were

detected during surveys conducted after the eradica-

tion intervention. If multiple independent interven-

tions were reported in the same article or report (e.g.,

arising from different water bodies or timeline), they

were recorded as separate instances. Drolet et al.

(2014) also records the duration of each attempt,

which was used as an input feature. However, since the

duration is not known when the attempt is initiated, we

do not consider it as an input feature, but rather as an

outcome, along with the label that specifies the

outcome of attempts, see Fig. 2.

Machine learning algorithms

Our goal is to produce classifiers that take, as inputs,

features of each eradication attempt, and predict

whether that AIS in that target ecosystem would be

eliminated. We explored ways to ‘train’ such a

classifier based on the entire set of observations from

our dataset with labeled outcomes, using standard

machine learning techniques.We applied fivemachine

learning algorithms to our training dataset to search for

patterns in features (both characteristics of the target

ecosystem and eradication strategies) that explain the

success of eradication of AIS and lead to classifiers

that can accurately predict the chance of success. (The

next subsection discusses how to validate such trained

classier.)

Below, we give brief descriptions and references

for these learning algorithms. For notations, we use

x ¼ ½x1; x2; . . .; x6� to represent the values of the

features describing an instance/attempt, and c 2
fSuccess; Failureg to refer to the class label. For

probability models, we used ‘Success’: prob C 0.5;

‘Failure’: prob\ 0.5.

Naive Bayes (NB) Naive Bayes is a probabilistic

linear classifier that is popular in biological applica-

tions (Mitchell 1997; Keller et al. 2011). In general,

the posterior probability PðcjxÞ of each class label c,

given the values of the features x, is

Evaluations of models for invasive species eradication 2487
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Fig. 1 a–d The bar plots for

the four features that

characterize AIS and target

ecosystem; e, f the two
features related to the

eradication strategies. The

height in each column

reflects the number of

instances, and the two colors

represent the outcome of

planned interventions,

‘Success’ (dark) or ‘Failure’

(grey)
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PðcjxÞ ¼ PðxjcÞ PðcÞ
PðxÞ : ð1Þ

A Naive Bayes classifier assumes that, for each

instance, the value of one feature is conditionally

independent of that of the other features, given the

class label—that is

PðxjcÞ ¼
Y

i

PðxijcÞ: ð2Þ

After computing Pðc ¼ SuccessjxÞ, the classifier then
returns ‘Success’ if Pðc ¼ SuccessjxÞ is above 0.5,

and ‘Failure’ otherwise. The learning process involves

estimating the values of PðcÞ and PðxijcÞ for each

value of c and xi (for each i ¼ 1; 2; . . .; n1). This

classifier is relatively insensitive to irrelevant features

that are independent of the class label. When the

assumption of independence, Eq. (2), holds, the Naive

Bayes classifier often performs better than other

models.

Logistic regression (LR) Logistic regression is a

generalized linear model that takes the form,

LRðx; bÞ ¼ 1

1þ e�b0�
Pn

i¼1
bixi

; ð3Þ

where b ¼ ½b0; b1; . . .; bn� 2 Rnþ1 is the vector for the

constant term and coefficients of n input variables,

x1; x2; . . .; xn. The learning process involves comput-

ing the appropriate values of b, which maximize the

log likelihood. This model forms the basis of MIPE,

the assessment tool developed by Drolet et al. (2014)

that was previously applied to this dataset.

Artificial neural networks (ANNs) Artificial neural

networks are computational models motivated loosely

by biological neural networks and widely used in

medical science and control. Neural networks are

typically organized by layers of nodes, with the first

layer corresponding to the input values (here, the six

features defining an instance, x), and the final layer

being a single node, corresponding to the class label.

In between are one or more ‘hidden layers’. The

learning algorithm trains the values of weights con-

necting the output of one node to the input of a

succeeding node, which in our case corresponds to a

logistic regression function, like (3); see (Lawrence

2005).

Support vector machines (SVMs) This SVM algo-

rithm is popular for learning classifiers in bioinfor-

matics (Keller et al. 2011). An SVM learner seeks

‘optimal’ hyperplanes for categorizing new instances.

It can often perform well even if the training data is not

linearly separable in the base feature space, by using

some nonlinear kernels. Here, we used a polynomial

kernel.

Decision trees (DTs) Decision tree learn-

ers (Breiman et al. 1984; Quinlan 1993; Hall et al.

2009) produce a classifier represented by a tree where

each internal node corresponds to a feature and each

leaf node corresponds to a class label (here, Success or

Failure). Each arc descending from an internal node

corresponding to feature xi is labeled with one value of

that feature xi. Jumping ahead to Fig. 4, one can

observe that there are four arcs descending from the

intermediate node labeled x3 � ‘Habitat’, one for

each of its values. An instance withHabitat = Marine

SubTidal would follow the first of these arcs. In this

way, an instance x will traverse a tree, from the initial

node (root) to a leaf node; the decision tree will then

assign that instance the label associated with that leaf

node. This machine learning approach has been

previously applied for risk assessment in invasion

biology (Kolar and Lodge 2001; Keller et al. 2011).

We used C4.5, a classification tree algorithm devel-

oped by Quinlan (1993), to train our DT models. This

Fig. 2 Feature: duration of

eradication attempts

1 Here, n = 6 as we are considering 6 features.
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algorithm uses information gain ratio as the splitting

criteria and error-based pruning during the training

process.

With the consideration of the complexity of models

and efficiency of training processes, the ANN model

we trained has at most nine nodes in one hidden layer,

the SVMmodel was trained by selecting a polynomial

kernel with the highest degree up to five, and the DT

model was pruned based on error to avoid overfitting.

Model validation and evaluation

We first ran each of our five learners on the entire

dataset, to produce five classifiers. Then, to evaluate

the performance of each classifier, we ran tenfold

cross-validation, for each of the five learning algo-

rithms. Here, we randomly partitioned the dataset into

ten roughly equal-sized subsets with balanced class

labels in each subset. Of the ten subsets, we used nine

subsets to train each of the classifiers, and the

remaining subset to test the resulting model. The

training process was repeated ten times, such that each

subset was used exactly once as the validation data.

We evaluated each classifier, denoting by C, on each

held-out dataset S, by

AccuracyðC; SÞ ¼ TPþ TN

TPþ FPþ FN þ TN
: ð4Þ

where TP, FP, FN, TN come from the following

confusion matrix.

Prediction

Success Failure

Truth Success TP FN

Failure FP TN

We also applied paired t test (McDonald 2014) to

determine whether accuracy of the five classifiers are

significantly different. In addition, we checked other

statistics of model performances, such as precision,

recall, and F-measure. ‘‘Appendix 1’’ provides

detailed definitions and formulae for these criteria.

Survival analysis and censored data

As mentioned earlier, we considered ‘the duration of

an eradication attempt’ in a target ecosystem as an

outcome variable rather than an input. If the eradica-

tion is successful, the duration will be considered as

the time required to claim the eradication of the AIS.2

However, if an eradication attempt failed, then the

recorded duration time is an underestimate of the time

required for eradication (which may be in finite, if this

eradication never happens).

We therefore applied survival analysis, where we

consider the duration time to be ‘‘right censored’’ if an

attempt is a failure. We want to calculate the

probability that an invasive species will survive for

at least T years—i.e., P(time until Eradication C T).

We adopted standard Kaplan–Meier survival analysis

to display these probabilities for various classes of

instances—here, defined based on values of certain

features (e.g., is the eradication time longer for

vertebrate or for invertebrate, ceteris paribus.). We

then ran the log rank test to see whether each value of

feature (individually) made a significant difference in

AIS eradications (Mantel 1966; Peto and Peto 1972).

‘‘Appendix 2’’ describes how to calculate these

Kaplan–Meier survival curves. When K–M curves

cross (for example, survival curves shown in Fig. 7b–

d), we run the Kolmogorov–Smirnov test (K–S

test) (Massey 1951; Miller 1956) to determine if two

curves differ significantly (Klein and Moeschberger

1997).

Based on the duration of the attempts/the time

required for eradication, we also examined the

efficiency of intervention during fixed periods—e.g.

whether a species could be eradicated in 1 year? The

right-censoring problem makes this challenging:

recall that an attempt, whose outcome is ‘Failure’, is

considered censored. Therefore, we created a new

dataset (named ‘1-year survival data’) by the follow-

ing two steps. We first excluded attempts whose

outcomes were ‘Failure’ and durations were less than

1 year, as we do not know whether the AIS were

eradicated by 1 year. Next, we labeled attempts whose

2 Some successful eradication attempts had records of several

annual follow-up surveys at the end of the attempts (Rowe and

Champion 1994; Akers 2009). (This is because confirmations of

some species being eradicated may need several years of

continuous observations on target ecosystems and assessments

on the trade-offs arising in any decisions.) Here, we defined

these recorded durations as the time of that final follow-up

survey—i.e., as time required to confirm the eradication of the

AIS. For the other successful trials, without records of follow-up

surveys, we set the recorded time as the eradication time.
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durations were greater than 1 year as ‘Failure’ (fail-

1 year, independent of the original labels) as we know

that the AIS was not eradicated within 1 year. Finally,

we labeled every attempt that was originally labeled

‘Success’ and with durations no more than 1 year as

‘Success’ (success-1 year). We ran machine learners

on this modified dataset (same six features, but with

labels of ‘‘1-year success/failure’’), to produce a

predictor of 1-year survivorship of AIS. We also

modified our dataset to train a 5-year survival (resp.,

10-year survival) dataset and to produce 5-year

survival (resp., 10-year survival) models.

Data preparation and model comparison

In our analysis, we converted all nominal features to

one hot encoding (binary form, e.g., the three

categories of feature ‘Taxonomy’ are coded as 001,

010, 100) to train the five machine learning models

(NB, LR, ANN, SVM, DT). We undertook several

tasks. First, we took all six features as input to train

different classifiers and compared their performances.

Next, we applied only the four features that charac-

terize the target ecosystem (in Fig. 1a–d) along with

the outcome labels, to train DT models. This helped

identify the importance of the four characteristics of

target ecosystems in successful eradication of AIS.We

also trained DT models using only the two features

related to strategies. Finally, we used the k-year

survival dataset to train DT models that predict the

outcome of an eradication attempt during fixed periods

(i.e., k = 1, 5, 10). Table 1 summarizes the features

and outcomes involved in each analysis.

Result

Performance of machine learning models

We trained models that predict the outcome of an

eradication attempt, using five different machine

learning models. The performances of these models

trained are displayed in Table 2; we see that DT has

the largest tenfold cross-validated accuracy. Figure 3

shows the median and 1.5 interquartile range of

accuracy of the models.

Since the statistics presented in Table 2 shows that

the DT model surpasses the other models, we only

present the detailed results of DT models in the

following situations.

Prediction

Success Failure

Truth Success 61 14

Failure 18 38

Also, as a quick comment on all of the DT models

presented in the following figures: each leaf node

includes a pair of numbers—e.g. the ‘‘(2, 29)’’ shown

in Fig. 4 under its far right node—represents the

number of succeeded or failed attempts. As these

reflect the results on the training set (rather than a

held-out set), these values only suggest the perfor-

mance of this part of the tree; n.b., they are not part of

the evaluation itself. The performance statistics for the

DT model displayed in Fig. 4 is based on the

confusion matrix below.

Table 1 Features and outcomes of eradication attempts used for various tasks

Features Outcomes

Ecological (Fig. 1a–d) Strategic (Fig. 1e, f) Duration (Fig. 2) Label

Predict from all features (Fig. 4) 4 4 4

Predict from ecological features (Fig. 5) 4 4

Predict from strategic features 4 4

Survival analysis (Fig. 7) 4 4 4 4

Evaluations of models for invasive species eradication 2491
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Fig. 3 Comparison of

a prediction accuracy and

b area under the curve, for

NB, LR, ANN, SVM, DT

models. The top and bottom

of each box are the 25th and

75th percentiles. Lines

extending vertically from

the boxes (whiskers)

indicate variability outside

the 95th and 5th percentiles.

The red line inside the box is

the median and outliers are

marked by ‘?’s

Area

Failure(2, 29)Habitat

Lake/Pond

Success(57, 12)

River/Stream

Failure(7, 18)

Marine Intertidal

Success(3, 1)

Marine Subtidal

Containment

Failure(1, 8)Success(5, 0)

Yes No

≤340000m2 >340000m2

Fig. 4 The decision tree model trained over all six features (in

the following context, we name it the ‘‘six-feature model’’).

Each leaf node is labeled ‘{Success, Failure} (ns, nf )’, where ns

is the number of successful eradication attempts (in the training

set) that reach this node, and nf is the number of failed attempts

Table 2 Comparisons of model performances

Method Accuracy (%) AUC F-measure Precision Recall

NB 65.03 0.76 0.62 0.69 0.65

LR 71.33 0.81 0.71 0.71 0.71

ANN 69.23 0.78 0.69 0.69 0.69

SVM 70.63 0.71 0.71 0.71 0.71

DT 77.62 0.75 0.79 0.77 0.81

Of all 143 attempted eradication trials, 52.45% succeeded. The formulae for Accuracy (Eq. 4), AUC, F-measure, Precision and

Recall are listed in ‘‘Appendix 1’’
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Ecological features

Our analysis suggests that this DT model, displayed in

Fig. 4, can effectively evaluate the feasibility of an

eradication attempt on AIS. We now explore the other

applications of DT models in AIS management.

Recall, there are two groups of input features: the first

group includes ecological features describing intrinsic

characteristics of AIS (Fig. 1a–d) and the second

group characterize eradication strategic features

(Fig. 1e, f).

We learned a decision tree using only ecological

features; this produced the DTmodel, shown in Fig. 5,

which is as good as the model trained by all six

features in Fig. 4; see Table 3. The result of a paired

t test statistically shows that there is virtually no

difference between the two models; see also Fig. 6. To

further confirm that training a decision tree model with

only ecological features is feasible, we ran several

statistical correlation tests. Here, we found that the

strategy-related features (‘Method’ and ‘Contain-

ment’) were highly correlated with the ecological

feature ‘Taxonomy’ (correlation coefficients:

- 0.5638 and 0.4493). This may because managers

implicitly used the taxonomy information to deter-

mine eradication strategies.

We also trained a decision tree model using only the

two features related to strategies, leading to the ‘‘two-

feature model’’. The performance of this model does

not surpass the six- and four-feature models, so we

only present the statistics of its performance in

Table 3.

Survival analysis

We ran survival analysis tests on our dataset to explore

the roles of these features on the survival of AIS under

a planned intervention. Figure 7 presents the Kaplan–

Meier survival curves with respect to all six features;

see ‘‘Appendix 2’’ for detailed calculations. Regard-

ing the ecological features, Fig. 7a suggests that the

eradication of invasive plants (Taxonomy = Plant) is

different from that of invasive invertebrates and

vertebrates; this is confirmed by the log-rank tests on

their survival curves ðmaxfpg ¼ max pplant;vertebrate;
�

pplant;invertebrateg� 0:0008: We observed that it took

longer to lower the survival probability of invasive

plants under an intervention. Figure 7c suggests that

AIS living in lakes or ponds have a different survival

curve compared to those living in other habitats. We

also performed K–S test on the survival curves sorted

by habitat and get maxfpg� 0:0008. Figure 7d shows

the distinctions between the eradications of invasive

species with feature Area below versus above

210 m2—i.e., for log2ðareaÞ� 10 versus [ 10,

maxfpg� 0:025 by the log-rank test.

Regarding the strategy-related features, Fig. 7e

deals with ‘Method’, showing that the survival curve

related to chemical methods is significantly different

from that of other three (maxfpg� 0:02 by the log-

rank test). The K–M curves show that chemical

Area

Failure(2, 29)Habitat

Lake/Pond

Success(57, 12)

River/Stream

Failure(7, 18)

Marine Intertidal

Success(3, 1)

Marine Subtidal

Area

Failure(1, 6)Success(5, 2)

≤ 14697m2 > 14697m2

≤340000m2 >340000m2

Fig. 5 Decision tree model trained on only the four ecological features (four-feature model)

Evaluations of models for invasive species eradication 2493

123



methods eradicated AIS faster and more efficiently

than other methods. The survival curve related to

combined methods (Method = Combination) also

differs from that of the other three (maxfpg� 0:008

by the K–S test). As suggested by Fig. 7f, contain-

ments (Containment = Yes) played an important role

in the successful eradication of AIS (p = 0.00097 by

the log-rank test).

Finally, we evaluated the outcome of attempts after

fixed durations of interventions—here of 1, 5 and

10 years. The probabilities of attempts being success-

ful were 12.86, 41, and 65.48%, correspondingly. We

then trained DT models, on the three modified

datasets, to predict the outcome of attempts after

these fixed durations leading to 1-, 5- and 10-year

models; see Figs. 8, 9 and 10. The tenfold cross-

validated prediction accuracy (AUC) for these trees

were 91.43% (0.89), 81.00% (0.81) and 82.14%

(0.67). We further trained a DT model based on the

two strategy-related features and modified labels for

5-year survival data (see Fig. 11). This model pre-

dicted (with 76% accuracy) whether AIS in target

ecosystems is successfully eradicated after a 5-year

intervention based on a selected eradication strategy.

Discussion

We applied the six features, including four that were

ecological (i.e., taxonomy, habitat, status and area) and

two that were strategy-related (i.e., method and con-

tainment), to the 143 recorded eradication attempts from

an existing data set from Drolet et al. (2014) as so to

train classifier and to assess the feasibility of producing a

model for eradications of AIS. We first used all six

features to train five machine learning classifiers. The

statistics presented in Table 2 and Fig. 3 show that the

six-feature DT model is more accurate than the other

Fig. 6 Comparisons of the performance of six- and four-feature models

Table 3 Performance statistics for the six-, four- and two-feature models

Features Accuracy (%) AUC F-measure TPR TNR

Six-feature model (Fig. 4) 77.62 ? 2.31 0.75 0.78 0.81 0.74

Four -feature model (Fig. 5) 80.40 ? 2.63 0.75 0.80 0.83 0.78

Two-feature model 69.93 ? 2.16 0.70 0.80 0.75 0.65

For accuracy, it shows mean ± standard deviation, based on the 10 values obtained in the tenfold cross validation. TPR (TNR)

abbreviates for the true positive rate of ‘Success’ (‘Failure’) class

2494 Y. Xiao et al.
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four (NB, LR, ANN and SVM). We next trained DT

models on first just ecological features, and then just

strategy-related features, and found that the accuracy of

our four-feature model (80.40%) surpasses the six-

feature model (77.62%) and the two-feature model

(69.93%). This suggests that the four-feature model can

be invoked by managers as a pre-evaluation tool before

they commit to a specific strategy; see statistics of these

models in Table 3. We also performed Kaplan–Meier

survival analysis to examine the efficiency of ecological

and strategy-related features on eliminating AIS. This

shows the key roles of the size of occupied area and the

settings of containments in eradicating AIS. Finally, we

adopted DT models to predict the possibility of

successful eradication of AIS after a fixed period of

intervention, for varying durations.

Fig. 7 Survival curves for

invasive species under

eradication attempt by

a taxonomy; b status;

c habitat; d area (log2);

e method; f containment
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Our analysis suggests that DT models work well in

predicting outcomes of AIS management tasks. We

did consider choosing more complicated models (e.g.,

more complex kernels for SVMs, or more hidden

nodes for the ANN), but we chose not to do so as both

would lead to models that are harder to understand,

which is contrary to our secondary goal of inter-

pretability. It is natural to compare our models,

especially the LR model, with the LR model used in

Drolet et al. (2014) as both were trained on the same

dataset. However, as described in ‘‘Data and methods’’

section, we did not consider the duration of eradication

programs to be a feature, as it is unknown when

attempts are initiated, which means it cannot help

managers make decisions at the beginning of inter-

ventions. So our trained models do not use ‘duration of

attempts’ as an input, while Drolet et al. (2014) did.

This additional information allows Drolet et al.

(2014)’s LR model to have a slightly higher accuracy

than our LR model; interestingly, its accuracy is still

lower than our DT model.

In general, DT models have several advantages

over other models. First, DT models are intuitive and

can be easily interpreted. Users with little skills in

mathematics/statistics/computer science can apply

models to predict the outcome of new attempts by

simply answering true/false and/or multiple choice

questions. There are no functions, probabilities, or

complicated computer codes presented in the final

graphical models. Second, this learning algorithm can

produce DTmodels that select key features that impact

eradication attempts and will include only the combi-

nation of features that optimize classifications. Note

that these combinations can be non-linear. Third, users

do not need to pre-organize/digitize/normalize fea-

tures in a dataset to avoid fitting problems that arise

from scale differences between featured parameters.

DT models consider various values of features as

different categories and require less preprocessing of

the input data. Some learners require that input

features be discretized, or that they be converted to

real values. For instance, we need to discretize the

values of feature Area to several categories for

effective training; SVMs needs real input values.

These re-codings of feature values may impact model

outcomes. Fourth, in our specific situation, the tree

structures trained are reasonable in that they align with

our understanding of invasion theory. The six-feature

model displayed in Fig. 4 shows that the area occupied

by invaders (feature: Area) and the availability of

spatial dispersal (feature: Containment) play impor-

tant roles in successful eradication of AIS. If an

occupied area is not too large (e.g.,

Area B 340,000 m2) and/or with containments of

AIS dispersal, AIS are more likely to be eliminated.

Both the six-feature and the four-feature models in

Figs. 4 and 5 indicate that the eradications of AIS fail

when the habitat is river/stream—which is not

surprising, as flowing waters may provide potential

pathways that can be used by invasive species to

Taxonomy

Plant

Method

Chemical, Biological, Combination

Failure (1, 39)

Mechanical

Area

Failure (0, 4)Success (2, 0)

≤ 1700m2 > 1700m2

Vertebrate, Invertebrate

Area

Failure (1, 7)Success (37, 9)

≤ 213000m2 > 213000m2

Fig. 9 The 5-year model that predicts the outcome of a 5-year eradication attempt, trained on 100 trials (41 cases of ‘Success’ and 59

cases of ‘Failure’)
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expand their territory or enter new ecosystems. When

there are no natural barriers and man-made barriers are

difficult to set, the eradication effort would be less

effective. Large areas and containments correspond to

the propagule pressure and ability of dispersal, which

have been previously recognized to have great impact

on the eradication of AIS in invasive biology (Lock-

wood et al. 2005).

Among all DT models we trained, we would

recommend the four-feature model (Fig. 5) to the

decision-makers for predicting outcomes of planned

interventions. This model can be applied to quickly

access the feasibility of AIS eradications in target

ecosystems before initiating interventions. For exam-

ple, if the reported area of a target ecosystem is greater

than 340,000 m2, our four-feature model predicts a

low chance of a successful eradication (with a training

set probability of only 2
2þ29

� 0:065. Note probability

is in [0, 1]); otherwise, if the habitat is marine subtidal

and the reported area is less than 14,697 m2, the

chance that an attempt of AIS will succeed is
5
7
� 0:71%.

Although the model we trained based only on

ecological features does predict the outcome of

eradication attempts well, the features related to

eradication strategies are also useful in predicting

outcomes of eradications. The six-feature model

presented in Fig. 4 shows that, in an attempt with

Area B 340,000 m2 and marine subtidal habitat, the

setting of containments plays an key role in success-

fully eradicating AIS.

Figure 7 presents the survival curves for eradication

success, with respect for various features. Note that

Fig. 7a–d are purely observational, describing the effects

of some characteristics of the AIS or target ecosystems.

This is fundamentally different from Fig. 7e, f, which

describe the effects of some actions by a person, as that

action might be based on observations—perhaps about

ecological features. For example, while Fig. 7e does

show that chemical methods lead to faster eradications

than other methods, this might be simply because that

managers selectively apply chemical methods to certain

specific scenarios—perhaps only the situations where

eradications were known to be easy. This does not

necessarily mean that chemical methods would have

done better in general. In addition, Fig. 7f suggests that

the two survival curves are significantly different with

versus without containments (p = 0.00097). This signif-

icance of containments may be because containments

were only performed for ‘‘easy’’ ecosystems, where the

existing natural barriers or man-made barriers are easy to

build. However, consider two attempts, by Caudron and

Champigneulle (2011) and Kulp and Moore (2000),

where invasive trouts lived in the same habitat (river/

stream), with similar reported areas (1463 and 2000 m2),

at the same status (established), and applied with same

method (mechanical, more specifically, electro-fishing).

The attempt with containments succeeded after 1 year of

eradication effort, while the other one without contain-

ments failed after 4 years. This suggests that under

certain circumstances (e.g., small areas, certain habitats),

containments can increase the chance of eliminatingAIS.

Method

Mechanical

Containment

Failure (5, 11)Success (9, 4)

Yes No

Biological, Combination

Failure (8, 37)

Chemical

Success (19, 7)

Fig. 11 The decision tree model to predict the outcome of a fixed 5-year eradication attempt with only the two strategy-related features,

trained on all 100 relevant trials. The accuracy and AUC of this tree model are 76% and 0.67
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The correlations between ecological features and

strategy-related features indicate that our dataset of

actual trials is a biased subsample of all feasible

combinations—for instance, the chemical methods are

applied to vertebrate pests in most eradication pro-

grams (Kaukeinen 1983). Their correlations also

suggest that, if attempts are predicted to be ‘Failure’

by our 1-, 5-, and 10-year models, decision-makers

may consider avoiding methods that listed in recorded

failed attempts among our dataset with similar

ecological features. On the other hand, we should

continually collect data after future attempts, to

produce a growing dataset that covers larger range of

eradication conditions. We anticipate that training on

such larger, more comprehensive dataset will increase

the accuracy of the resulting models (assuming users

continue to follow the standard policy), especially the

four-feature model.

To evaluate the impact of the duration on the

outcome of attempts, we suggest 1- (resp., 5-, 10-) year

model displayed in Fig. 8 (resp., Figs. 9, 10). For the

1-year eradication program, our model predicts that

aquatic invasive plants are hard to eradicate: all fifty-

six attempts on invasive plants were claimed to fail

within 1 year. We noticed that when the duration of

attempts extend from 1 year to 5 or 10 years, invasive

plants are more likely to eliminate if the feature Area is

not too large. For example, Hydrilla verticillata

detected in a lake in California (Akers 2009) with

Area � 125;500m2 (resp., reported in Deer Point

Lake in Florida with Area � 170;000m2 (Van-Dyke

et al. 1984) were successfully eradicated after 5-

(resp., 9-) year of eradication treatments. When

planning eradication programs on invasive vertebrates

or invertebrates with interventions up to 10 years, our

model indicates that chemical, biological and combi-

nation methods may be more effective than mechan-

ical treatments. Our model in Fig. 11 provides some

evaluations on the efficiency of eradication methods

and the setting of containments under a 5-year

intervention. We found that mechanical methods with

containments or chemical methods have approxi-

mately a chance of 69.23 or 76.08% to eradicate AIS

within 5 years, while the total chance of the other two

methods is only around 17.78%.

Over our dataset, the six features including ecolog-

ical and strategic features are important in AIS

management, but there are many other aspects that

could be part of more accurate classifiers, such as

seasons at which attempts should start, costs of

different eradication strategies and expertise of prac-

titioners. For example, the four-feature model in Fig. 5

(if applied to the training data) falsely predicts the

outcome of two attempts among all 31 attempts at

large spatial scales to be ‘Failure’, even though both

attempts were successful. After careful examinations

on these two attempts, we suspect that the success of

the eradication attempt of an invasive cyprinid (Gila

bicolor) in Diamond Lake, Oregon (Eilers et al. 2011)

is highly related to the timing when the attempt started.

The eradication attempt started in winter, which seems

to be a perfect time to eliminate the AIS since the

reproduction rate is low and survival conditions are

poor. The other successful but mistakenly predicted

attempt, the eradication of hydrilla recorded in Akers

(2009), may exaggerate the ‘Area’ as there was only

100 acres of waters where hydrilla were reported. We

believe that our classifiers would use such information

for better predictions, if they had access to it—i.e., our

dataset includes these features.

We plan to explore the application of these useful

machine learning approaches for other issues arising

in invasive biology, such as planning the initiation

time of attempts and evaluating the role of experts in

risk assessment of AIS managements. We encourage

others to consider this technology in other fields, such

as ecology and epidemiology.
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Appendix 1: Definitions

In the main text, we used accuracy, AUC, F-measure,

precision and recall to compare the performance of

different machine learning algorithms (Powers 2011).

Here, we will give a precise description and formula

computed based on the following confusion matrix:

Prediction

Success Failure

Truth Success TP FN

Failure FP TN

Accuracy: The ratio of number of correctly pre-

dicted trials and the total number of

trials, TPþTN
TPþFPþFNþTN

.

Precision: the fraction of predicted ‘Success’ trials

that are true: TP
TPþFP

.

Recall: The fraction of successful trials that are

correctly classified, TP
TPþFN

.

F-measure: Harmonic mean of Precision and Recall:
2�Precision�Recall
PrecisionþRecall

.

AUC: The area under the receiving operating

curve (ROC) for a model; here, we

followed the method presented in Ferri

et al. (2002) for our decision tree model

and methods in Fawcett (2006) for other

models.

Appendix 2: Kaplan–Meier analysis

We viewed (various subsets of our) database as

‘survival data’, where we set ‘eradication time’ to be

the duration of eradication attempts and the ‘censor’

bit to uncensored if eradications succeeded, and to

censored if the eradications failed. We then use this

idea to compute a Kaplan–Meier survival curve, which

produces PðTime to eradication	 TÞ as a function of

time T (Cox and Oakes 1984; Lawless 2002; Klein-

baum and Klein 2005).

To explain this process, consider the subset of 61

instances with ‘containment = yes’. We first sorted

the durations of these instances from the shortest to the

longest (total of 25 durations without repetitions); call

these times: ½t1; t2; . . .; t25�. At each time ti, we defined

the ’eradicated trials’ for the instances whose dura-

tions were ti and whose outcome was ‘Success’, and

’censored trials’ for attempts with same duration but

whose outcomes was ‘Failure’. We also defined the

number of trials at risk at time ti to be the number of

trials whose durations were no less than ti. We used

these quantities to compute the survival probability

corresponding to these ti’s, which are the 25 Pi’s; the

curve then contains these 25 ½ti;Pi� pairs; see Fig. 7a.
The probability can be calculated by the following

formula

Pi ¼ Pi:ti � t 1� di

ni

� �
;

with di be the number of events and ni be the total

individuals at risk at time i. The survival probability at

each time point are listed in the following table.

Time (year) Number of

eradicated trials

Number of

censoring (failed trials)

Number of

trials at risk

Survival

probability

t0 ¼ 0:00 P0 ¼ 1

t1 ¼ 0:08 1 0 61 P1 ¼ 1� 1
61

t2 ¼ 0:17 1 0 60 P2 ¼ P1 � ð1� 1
60
Þ

t3 ¼ 0:25 3 0 59 P3 ¼ P2 � ð1� 3
59
Þ

t4 ¼ 0:33 0 1 56 P4 ¼ P3 � ð1� 0
56
Þ

t5 ¼ 0:83 1 0 55 P5 ¼ P4 � ð1� 1
55
Þ

t6 ¼ 1:00 2 3 54 P6 ¼ P5 � ð1� 2
54
Þ

t7 ¼ 1:33 1 2 49 P7 ¼ P6 � ð1� 1
49
Þ

..

. ..
. ..

. ..
. ..

.

t25 ¼ 18:00 0 1 1 P25 ¼ P24 � ð1� 0
1
Þ
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