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ABSTRACT

A literature survey on various types of superﬂpopulation models
and their uses in finite population sampling 1s.g1ven. Toplcs like
optimum sampling, balanced samples and randomization in survey sampling
are discussed in detail. We have proved some properties of univariate
distribution of quantile of a sample from a finite population. One of
our main objectiyes was to explore the possible use of auxiliary
informations for estimating finite population quantiles. Keeping this
goal in our mind we have derived the bivariate distribution of smaple
quantiles and their asymptotic distribution. Assuming a certain super-
population model we‘have suggested aﬁ estimator for finite population

@3

quantiles which involves the auxiliary Qariable. Further study will be

-

required to establish useful éroperties of the suggested estimator.

iv,



ACKNOWLEDGEMENT {

I wish to express my grateful thanks to my supervisor,
Professor K.L. Mehra for introducing me to the problem and for
the considerable time and effort that he has spent on my work
in preparing this thesis.

I would also like to thank Mr. Andrew Luong and
Ms. Martha S$. Rhodes for helping me in proofreading and

M. June Talpash for her excellent typing of this thesis.



CHAPTER

1T

ITI

Iv

TABLE OF CONTENTS

INTRODUCTION .
A

SUPER-POPULATION MODELS AND PREDICTION

2.1 INTRODUCTION . . . . .Y . . . .
2.2 DIFFERENT SUPER-POPULATION MODELS .
2.3 SOME DEFINITIONS AND TERMINOLOGIES
2.4

PREDICTION UNDER DESIGN ORIENTED
SUPER-POPULATION MODEL

2.5 PREDICTION UNDER DESIGN FREE
SUPER-POPULATION MODEL

2.6 ROBUSTNESS IN MODEL BASED INFERENCE .

RANDOMIZATION AND BALANCED SAMPLING

3.1 RANDOMIZATION .
3.2 BALANCED SAMPLING . . . . .

RANKS AND ORDER STATISTICS FOR FINITE
POPULATION . . e e e

4.1 ORDER STATISTICS IN SAMPLING FROM
FINITE POPULATION . . .

4.2 CONFIDENCE INTERVAL OF QUANTILES IN
FINITE POPULATION . . . . . . . .

4.3 JOINT DISTRIBUTION OF QUANTILES OF
A SAMPLE FROM BIVARIATE FINITE
POPULATION . . . . . + . « « &

4.4 PREDICTION OF FINITE POPULATION
QUANTILE USING AUXILIARY VARIABLES

PAGE

10

10
11
18

22

26
39

46

46
50

60
60

68

71

79



.

CHAPTER
~N R
\
V. ASYMPTOTIU RESULTS FOR SAMPLES FROM
\ FINITE POPULATION . . . . . . .
5.1 INTRODUCTION . .
5.2 SOME ASYMPTOTIC RESULTS
) 5.3 ASYMPTOTIC BIVARIATE DISTRTBUTION

- ~ OF SAMPLE QUANTILES .

'REFERENCES . - - « - « . . .

-t

vii

84
84 -

89

93



CHAPTER 1 '

INTRODUCTION

. In sample survey theory tbe basic assumption is that we have
a fixed finite populétion of N identifiable units under study. Due
to lack of time and resources which includes money, expertise, étc., we
are constrained to study only a part of the population concerned. Of
.course, there are situations where a complete study of the population
is not at all feasible and one has. to depend on sample survey methods.
The objectfve in survey sampling is to make inferenFe about some
characteristics of the population. Most of the literature on sample
surveys deals with the estimation of the population total, bopulatibn
mean, poplulation proportion and standard errors of their estimates.
VThe‘object of this thesis is to’;tudy recent developments in
survey sampling.dealing with the estimation of quantiles of finite
population and inference under super population models. It is a common
practice to use auxiliary information for estimating population mean
or total. %Palogously, our interest in this work is to study the use
of auxiliary information for improving the estimation of finite
population quantiles. For example, can we use with benefit the inform-
ation on quantiles of auxiliéry variables in estimating the quantile
of the main variables? Keeping this objective in mind we have derived
th;\Btvariate distribution 3? sample quantiles and studied its
asymptotic behaviour.

In this chapter we shall try to point out some shortcomings

of the conventinal approach and a brief history on the development of

-1 -



thé model based approach to inference in survey sampling as an alter-

native to the conventional one.

Let there be N - = units in the population. N 1{s called
the population size. The units are identitiable, that is units of the
populatfion can be uniquely labelled from 1 to N and the label of
each unit is known. We can denote the population by U - {1,2,...,N}.
With each unit 1, there is associated a measurement y, ona variable
character y. For all practical purposes Yy is real for all 1 ¢ Q‘.
We shall represent the auxiliary information on U by a real measure-

i

ment x; or by vector X - Our target is to estimate the population
total, y = g yi. The method is to draw a representative sample of the
population ;nd on the basis of sample observations we have to estimate
population total. LLt s = {11,...,in} be sampled units without

repetition and g'-le-s =?(—{11,...,in} be units not in the sample s.

Then, we have population total,

(1.1) y= § vy, + ¥y

In estimating y, the first sum on the right hynd side of (1.1) is

\
exactly known to us (assuming there is no measufEEEﬁt“error) and our
object is to estimate the second sum, namely the total of the non-sampled
part of the population. Survey methodology available in common survey
sampling textbooks, (e.g. Cochram, 1977) is devoted primarily to finding
a good survey design, suitable to the practical situfation for estimating
the unknown part of the population total. This approach is now commonly

known as the conventional approach or the design based approach. At this

point it is interesting to mention a few lines from Basu (1969):



"The objective of planning a survey should be to end up with
a good sample. The term 'representative sample' has been useed in survey
terminology. But no one has cared to give a precise definition of the
term. It is implicitly taken for granted'uhat statistician with his
biased mind is unable to select a répresentative sample. So a
simplistic solution 1s sought by turning to an unbiased die (the
random number tables). Thus, a deaf and dumb die {s supposed to do
the job of selecting a 'representative sample' better than a trained

statistician.”

Broadly speaking, there are three main methods of estimation
of finite population parameters. These are: Methods based on
1. measurements of units which are exact, that 1s, there 1is no
error in\measurements;
2. measurements which are not exact but subject to random
errors; and
3. knowledge of some process which generates the measurements on

a given unit.

Traditionally, rapdomization has been regarded as an essential part of

\
survey sampling fbr objective inferences and estimability of the
standard errors of estimates. In Case 1 above, randomization is created
by the sampler through specific survey designs. This was t‘e approéch ’
adopted by statisticians in developing the subject of sample survey:
In this design based approach it is assumed that the population values
yl,...,yN are fixed and hence y = {yl,...,yN} can be treated as a

parameter of the population under consideration.: Our interest is on

some function of this parameter saj g(z): There are certain authors,



*

for examble, Neyman (1971) who Eend to focus attention only on
estimation based on man-made randomization in the form of design.

In Case 2, there are two sources of randomization, (i) created
pandomization based on survey design, and (ii) rand;m error assoclated
with the measurements of the sample unit which is commonly kgpwn as non-
sampling error or biaa. This latter aspect is beyond the scope of this
thesis. Modern development of survey sampling techniques mainly follow
the line of Case 3: This is widely known as the super-population appraach

or model based approach. Under this approach it is assumed that to each

population unit is associated a random variable for which a stochastic
structure is specified. The actual value associated with the population

unit is treated as an outcome of that random variable. We shall discuss
various super—population models and methods of estimation under these models

)
in Chapter 2. Super-population approach is an elegant development of

statisticians, through which important new methods are currently being
added to traditional methodology of survey sampling. Authors like Barmard
(1971), Kalbfeisch and Sprott (1969), Royall (1970, 1971), etc. consider
inference based on super-population modeis not only desirable but almost
necessary. Some of the authors have strongly criticized the idea of the
gsample design ﬁroducing the only source of randomness in data injected

by the survey statistician himself. "The survey statistician does

not lean on probability-theory for the purpose of understanding and

aatrolling the mess created by an unavoidable source of randomness or

atey

Jcértainty\(observation error)”, Basu (1969). Basu examined the random-
ization principle in survey sampling and came to the conclusion that
there 18 very little, if any, use for the survey designs. Chapter 3
?eals with the randomization principle and its alternatives.

3
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Although, we have called the common and well-known approach
of survey sampling as traditional or conventional, the idea of super-
populations is also not new. Cochrap (1939, 1946), Deming and
Stephan (1941), Madow and Madow (1944), Mahalanobis (1944) are early
users of the super-population idea. Deming and Stephan (1941) were first
to clearly mention the idea of variable status of the population,
rather than fixed. They made the comment that the census Is a sample
only and suggested that it is one of maﬁy populations that might
have resulted. The differencevbetween census and sample survey is a
matter of degree and c0n§idered the population census whose state of
nature is changing with time. Cgchran (1946) firsc clearly assumed
that the finite population we have at our disposal is actually a sample
from an infinite population. He considered the population in which
the variance among the elements in any group of contiguous elements
increases as the size of the group)increases. This type of population
was also considered by Smith (1938), Jessen (1942), Mahal;nobis (1944)
and Hansen and Hurwitz (1943). Various mathematical’models have been
considered by these authors for representing the situation where the
variance within a group 1s directly proportional to the size of the
group measure X, . Cochran (1946) considered that elements x; are
drawn from different populgtions and assumed that the population
chagées in some regular manner with the value 1. Alternatively,-he
suggeste4 that xi belomgs to the same population but ig serially
correlated, and found it more reasonable to consider the finite
population as a sample from an infinite population.

The idea of super~population models i.e. the ideahof

considering the existing population as a sample from an infite

*



population, started much earller, wunfortunately, the theoretical aspect
of the model based approach did not attract much attention from
statisticians until the 1960's. It is well-known that the use ot

supp lementary information in estimation of finite population parameters,
in general, increases the accuracy of the estimator. So, samplers felt
the need for a comparison of the relative accuracy of sample designs
using such information. This comparison becomes difficult if we cannot
assume any functional relationship of the data. One solution té the
problem is to regard the finite population as a random samp le from an
infinite super-population model having certain properties. The results
so obtained do not apply to any single finite population but to the
average of all finite populations that.can be drawn from the infinite
population, (Raj, 1958).

Early works 5n super-population models are based on some type
of linear regression models with h;teroscedastic error variances.
Hacking (1965) has proposed the concept of "chance set-up" és a logical
superior to the postulate of a hypothetical infinity of populations. For
example, the linear regression super-population model may be viewed as
defining a random set-up rather than an infinity of hypothetical
populations, if so desired. But, the analyses are mathematically
identical. Forman and Brewer (1971) have given comparisons of the
efficiencies of six methods of sampling in common use. The model they
used (also commonly used super—population model) is an infinite set of
theoretical populations, each of size N. Units are identifiable,
having two measures Yi and Xi on the ith unit, where Yi is the

measurement of the character of interest and X, is measurement of the

.auxiliary . information (e.g. size of the unit), and related to Yi



as follows

(1.2) ~Yx = a + HXi + e f=1,...,N,

where, o and & are constants, ei's are random variables with

2 y ' .
E(ei) = 0, E(ei) =- uf (somet imes E(ef) is some function of Xi)

and E(ei.ej) = (0, for all 1 # j. Here, expectation, E,-is over all
hypothetical populations and of 1s constant over all these populations
but varies with {.

During the 1960's, statisticians have devoted much attention
to the theoretical aspects of survey sampling. For a long time there
were big gaps between survey sampling theories and statistical infereALe
theories. In the traditional books of survey sampling, authors used
the statistical inference theories under the assumption of large
samples. The maximum likelihood method of estimation in statistical
inference was essentially (for a long time) a failure in survey sampling
situations. If the sample is drawn with probability proportional to
size of the unit then how valid are traditional methods in the theory
of hypothesis testing or the theory of statistical inferences? The
answer of this question is still unkpown. However, in the late 60's
and early 70's it became possible to relate likelihood methods and
Bayesian methods with finite populations. Some examples are Royall (1968,
1976a), Hartley and Rao (1968, 1969), Kalbfleish and Sprott (1970),

C.R. Rao (1971), Ericson (1969a, b), Solomon and Zacks (1970),  Basu
(1969), Zacks (1969), and Godambe (1966, 1968), Godambe and Thompson
(1971), Godambe and Joshi (1965), etc.

The most remarkable and striking development in survey sampl-

ing theory during the 1960's is the development of design free inferences.



There are some strong critics on the use of survey design for interence
on finite populations. Godambe (1966) noted that the application of the
likelihood principle in sampling situation would mean that the sampling
design is {rrelevant for data analysis. Basu (1969) examined the role
of sufficiency and the likelihood principle and gave the conclusion,
"Once the sample has been draw, the inference should not depend in any
way on the sampling design. This poses the problem of designing a

survey which will yield a good (representative) sample."” He also
examined the randomization principle (the man-made randomization
through survey design) and pointed out very limited use, if any, for
it in survey design.

Carrying this idea further, statisticians in the 1970's
started suggesting the use of subjecfive sampling for an optimum
estimator. Royall (1970) suggested a subjective sample, called a
'‘balanced sample', for estimating the population total. For estimating
population total his estimator based on this balanced sample under the
assumption of linear-regression super-population model proved to be
mogt efficient. Brewer (1963) first suggested this type of purposive
sampling. Later Royall (1973a, b) studied the robustness of the
estimator based on balanced samples. This idea w;s further developed
and extended by many other authors, namely, Holt (1975), Sigha (1976),
Mukhopadhyay (1977), Tallis (1978), Scott, Brewer and Ho (1978), Singh
and Garg (1979). There is considerable criticisms of this type
of purposive sampling although the mathematical basis of this approach

is sound. However, it seems that as yet there 1s no conclusive

decision on the use of design based approach and model based approach.



Both approaches have some merits and demerits. Some authors are trying
to mix these two streams. For example, Kolehmalnen (1981) suggested
that stratification of the finite population should always be made,

tf possible, and sampling within strata can be made purposively.

Basu (1978) also suggested some type of post-stratification of data.

In Chapter 3, we discuss this matter in greater detail.

In Chapter 4, we discuss the use of order statistics in the
estimation of quantiles of finite populations. There we have given
some results on properties of the distribution of order statisticsy
in finite population sampling, bivariate distribution of sample
quantiles and estimation of quantileé using auxiliary information.

In Chapter 5, we discuss the asymptotic behavior of some estimators
of finite population parameters and derive the asymptotic joint

distribution of sample quantiles.



CHAPTER 11

SUPER-POPULATION MODELS AND PREDICTION

52.1 INTRODUCTION

In this chapter we shall s‘;.qdy different types of super-
W
population models and sampling theor{és based on these models. Tdeas
and write-up of this chapter are mostly as in Cassel, Sarndal and
Wretman (1977). A
N In Chapter 1, we have mentioned that the super-population model

arises when we consider the measurement y = (yl,.-.

population to be the outcome of a random variable,

Let us denote the joint distribution of Y by §&. Before proceeding

to the next section let us introduce some useful definitions.

Ordered sagple: A sequence s* = (kl,...,kn(s*)) such that ki e U
for 1 =1,...,n(s8*) 1s called an ordered sample. The number of

components of s*, denoted by n(s*), is called the sample size.

U

Unordered sample: A non-empty set s such that s E_Ql is called

an unordered sample. The number of elements of s, denoted by v(s)’

i1s called the effective gample size.

If the context 18 only with unordered sample, then we shall call

unordered sample and effective sample size simply by sample and sample

- 10 -
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size respectively. The set of all sets s will be denoted by ,€§

Unordered sample design (or simply sample design): A funcsion p(s)

on EI satisfying p(s) > 0 for all s eAcf and X p(s) =1 will

be called an unordered sample design. Some authors refer to the pair

(RJ, p(.)) as the design.

The definition of the ordered sample design is similar.

Non-informative design: A sample design p(.) 1is called a non-

informative design,if and only if, p(.) 1is a function that does not
depend on the y-values assoclated with labels in s or s*. But p(.)

may be function of auxiliary variables.

Fixed size design: If n(s*) or v(s) are fixed then the respective

design is called a fixed size design.

§2.2 DIFFERENT SUPER-POPULATION MODELS

By super—population model or simply ''model" we shall refer
to a class of distributions § with various types of specifications.
These specifications may be only on the first few moments of £ or
to be more specific we may assume £ has some specific well-defined
statistical distribution. However, in both cases it is assumed that

the vector of finite population values y = (yl,...,yN) is an out-
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come of the random variable Y = (Y Y ) having distribution ¢.

) R

Definition: If Q= Q(Yl,...,YN) is a function of Yl,...,Y , the

g-expectation of Q, denoted by (£(Q) 1is defined as
(2.1) €@ = fode ,

and f-variance of Q, denoted by W¥IQ) is defined as
(2.2) V@ = [lo-&@ 1’

LY - 5 of
If Q1 = QICYl N) and Q2 QZ(Yl YN) are two functions o

1’
is defined as

&
Y ...YN, the f{-covariance of Q1 and Qz, -denoted by e(Ql,Qz),

(2.3) €@ Q) = flo- €@liia,- €(Q))de

In particular, we shall define for k =1,...,N,

2 —-—
b €(Yk)’ % T ’(Yk), Oy 8(Xk,Y2) for k # 2,
(2.4) ’
N N
- 1 = 1
u = ﬁ- % uk and ¥ = E g Yk

There are two broad classifications of models used in survey
sampling. They are (i) general models, denoted by G and
(11) exchangeability models, denoted by E. Often there will be

subscripts to further specify both Model G and Model E.
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Model ET (transformat{on model). This model specifies the class of

distributions & such that, for given a > 0 and bk, the variables

k .
Y - b
z = k ko K =1,...,N -
a
. .k
2 2
have common mean 4, variance U and covariance poU for any pair
k # £ . Unless, otherwise stated, in general u, ¢ and ¢ are
N
unknown, - N-1 <p <1, and z ak = N. The condition on p {15

1
required to have non-negative W (Y). Therefore, under Model GT,

Yk has the following moments:

(,
= = 4+
My €(Yk) a,u bk
2 22
(2.5) ok ’(Yk) ako
5 = B ,Y) = a,a poz k # 2
k2 K’ 2 k ¢ ’

Model GT implies that the first two moments of the transformed

»Z are unchanged. So we can suitably choose a

i y e
variables Z1 N

k

and bk for specifying a good sample design. for the problem in hand.

Model G 0 ° The special case og Model GT where a

=1, b =0 for
H2Peed Sn ‘

k k

all k=1,...,N 1is Model GTo' This model expresses that labels

are uninformative.

’
i
Model G (multiple fegression model). The class of distributions

£ such that Y .L.,YN are independently distributed and

1’

2 2
Uk = €(Yk) = BO + igl Bi xki’ Ok = ﬂYk) =0 “-k ’
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2
where 8 ,8 .,Bq and o are unknown and xkl,...,xkq, uk is a set

0’1’
of known numbers for all k, k = 1,...,N.

Model GR (ratio model). The class of distributions £ such that

Yl,...,YN are independently distributed, and

My = SXYk) = Bxk’ Oi = '77Yk) = Ozu(xk) , k = l;...,N .

2
where 8 and o are unknown. u(.) 1s a known function and xl...,xN

are known positive constants. A common assumption is u(xk) = xE, where
g 1is known.
Next, let us consider various types of exchangeabildty models.

In order to be exchangeable, the distribution ¢ must be symmetric in

accordance with the following definition.

.

Definftion. Random variables Yl,...,YN are called exchangeable if
Y ,...,Y have, for every permutation r_ ,...,r of 1,...,N, the
rl rN 1 N :
same joint distribution, which is called an exchangeable distribution.
t

The idea of exchangeable distribution in the context of finite

population was given by Ericson (1965). Variables Y .,YN themselves

1

may be assumed to be exchangeable. However, it is usually assumed that

the transformed Yk’ under change of origin and scale, are exchangeable.

Model E . This model defines the class of distributions § such that,
N

for known a > 0 and b k=1,...,N satisfying Z a = N, the
1

k,

random variables

z, = (Yk - bgyak , k=1,...,N ,

have an exchangeable absolutely continuous distribution. Common mean,
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variance and covariance implied by the exchangeability will be denoted
by u, 02 and poz respectively. The first and second order moments
of Yk are given by (2.95). Yk's themse lves’bec ome exchangeable in the
following special case of Model ET.
Model E 0° The special case of Model ET such that ak =1, bk =0,
for all k = 1,...,N.

Let us now consider the discrete exchangeable suber—population
model. This is mostly known as random permutation or random labeling
models. This model was first used in Madow and Madow (1944) and not
addressed again until Kempthorme (1969). Recent works on random per-
mutation models are Royall (1970a), Ramakrishnan (1970), C.R. Rao (1971),
Godambe and Thompson (1973), Rao (1975) and Rao and Bellhouse (1978).
Under the random permutation model we assume that N population values
of .Z are fixed but are labeled at random. So that, each permutation
r = (rl,...,rN) of 1,...,N 1is assumed to have probability equal to
1/N! of being assigned as labels for the units. The equivalent statement
is- that the gzxed but unknown number yl,...,yN are assigned randomly
to wnits with labels 1,...,N so that each permutation of yl,...,yN
has a probability equal to 1/N! for fixedAlabels 1,...,N. Under both
versions it is implied that there is no systematic relationship between
labels and corresponding Y values. This y-value corresponding to

t
the k h label can be regarded as the outcome of a random variable

Yk. Let us now consider the following general model.

Model EE]' (random permutation model). The class of distributions &

1,...,zN and for given

k=1,...,N such that

such that, for any fixed, unknown numbers z

a, =N, the

numbers a, >0 andA b K

k’

= )



random variables -

have an exchangeable distribution such that
= = = 1/N!
P(Z1 zrl, ,ZN er) /

, T of 1,...,N. The

for each permutation rl,... N

tor any n, 1 <n <N, the marginal distribution

- o - (n)
P(zk1 2 seenl =z ) 1/N ,

1 n n

(ﬂ) ] N

Model ERP implies,

f or each N = n. (n) different sequences rl,...,rn of n numbers
chosen from Zl,...,ZN, where the corresponding random variables are
Zk ,...,Zk for a fixed subget of labels kl,...,kn. The £-moments
1 n
for the Zk are for k = 1,...,N,
€(Zk) = uz
2 2
(2.6) )" = o ,
-0,
p— Z —_ = —_—
£z -u)( ) 1 k#g2 ,
2
where the unknown M, ad 9, are given by
N N
1 1 2
= —_— Z R = -— Z _ .
Hz N g k ¢ N } (Z )
Therefore (2.6) implies
- Y = +
uk €( k) akpz bk
2 2 2 2
2.7 = - -
@.7 O €(Yk uk) a0,
2
2 -akalcz y
= Y Y - - =
Ty T BT o1 o KERT
It 18 to be noted here that in general Yk are not exchafh’ge- \
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able. But, in special cases when ak = 1 and bk = (0 for all
k =1,...,N so that Zk = Yk in Model ERP’ then Yk are exchangeable.
i
9 3 . ~as ‘ 5 = = 0
Model E Po The special case of Model ERP such that ak 1, bk )
p N 2 2 1N 2
f k =1,...,N, = = - , d = - = - .
or 1 N M, uy N Z yk an oz o N Z (y1 py
1 1
So under this model any one of N; permutations of yl,...,yN {s an
equally likely outcome of the random variables Yl,...,YN-
Parametric Super—Population Models: Usually in parametric super-
population models the joint distribution § of Y = (Yl,---,YN) is assumed
to have known shape but depends on the unknown parameter 8 = (81,...,8r),
8 ¢ 0O, the parameter space. Let us assume that the distribution 58
is continuous and g(y/6) is the density of Y.
Model G (parametric independent). The class of absolutely continuous

—P1

distributions £ such that Y ""YN are independently but not

1)
necessarily identically distributed. Their joint density functiéh is:
N

g(y/0) = z gk(yk/e) , B0, :

where gk(./e) is the demsity function of Yk.

Model EP (parametric). The class of absolutely continuous distribu-
tions £ such that Yl,...,YN are exchangeable; their joint density

function is symmetric in its N arguments, being g(y/0), © € o.

Model E - The class of absolutely continuous distributions £ such

that Yl,...,Yk are indepemdently and identiéally distributed (and hence



.
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exchangeable), their joint density function being,
N
g(y/0) = T g(yk/e), B e O,

where g(./9) 1is the density function for all Yk.

§2.3 SOME DEFINITIONS AND TERMINOLOGIES

In survey sampling, we mostly deal with prediction of

" N 1 N

population total vy = X y1 or the population mean y = E z yi and
1 1

their standard errors. For inference on ; we need data. Under the

model based approach, we have 1n general two sources of randomization
in data. We can represent the observed data by d = {(k,yk); k ¢« s},

where s ¢ 21 , the set of all unordered samples and yk € R1 for

{

all k=1,...,N. Data d 1is outcome of the random variable
B = {(k,Yk); k ¢ S}, where S 1s random and for each realized value

s of S, Yk for k € s 1s random, also. At this stage we can define

two more random variables, namely, D1 = {(k,Yk); k ¢ s} and

D = k 5 . = =
2 {( ,yk), k € S} In Dl’ S s 1s fixed and in D2, Yk Yie

is fixed for k = 1,...,N. So we have the sample space of ) taking

value d:
Cg? = {d : s«exd: y € 2},

where, usually Q = RN’ the N-dimensional Euclidean space.
Let us define the statistic T = T(s8). If S = s 1s given

then T depends on Y ,...,YN only through Y k € s.. On the

1 k'’
other hand, if Yk = yk, k=1,...,N 1is fixed or given, then T

depends on only S, {i.e. T depends on the design only. Now if we



b use T(,,O) for interence on ?, then we shall call TH) a

predictor or estimator of Y. Hence we can replace a@ ot the predictor

g
@é’h T(B) by Dl' to get a new predictor T(Dl) for Y. This is still

a function of random variables Yk, k « 5. We shall often use simply

‘L‘gd’ for T(;G) or T(Dl) just to indicate that T 1is a ftunction of

random variables Yk, where k may be {n S or in s respectively.

On the other hand the random variable obtained from T(ag) for

Yk = yk, k=1,...,N 1is fixed but k ¢ S will be written as t(Dz).

The value of T(aé) for S = s and Yk = Y k ¢ s will be written
as t(d). Thud t(d) 1is no longer a random variable and will be termed
as’thg estimate or predicted value of ;. As above, we shall simply

write 't for t(Dz) or t(d). The small letter t will indicate that

t 4is a function of the realized value yk of Y for k€S or

k
k € s.
If T 1is a predictor of Y then, let us define p-expectation
as,
i E(T) = ) p(s) - T ﬂ
&
p-varilance -as,
2
. V(T) = ] p(s)(T-E(T))

and p-mean-square-error (p-MSE) as,

MSE() = ] p(s)(-D)° .

Jt is to be noted here that E(T), V(T) and MSE(T) are functiomns of

N
!
ot



random varaibles YI.....Y

N
qiﬂz

Definition. T 1is called a p-unbiased (design unbiased) predictor ot

§’ if and only it, ftor a given design p, FE(t) = v tor all

y = (yl,...,yN) ¢ RN, where t 1s the realized value ot T tor
Yk = yk. k ¢ S. The strategy (p,T) 1s called p-unbiased it T |is

a p—~unbiased predictor under p.

Definition. T 1is called E-unblased predictor ot ?, if and only it
for any distribution £, 5('{‘—?) = (0 for all s ¢ J, where 5 is

the expectation operator with respect to ¢£.

Remark: A predictor can be p-unbiased but not E-unbiased and vice-

versa. For example, if p 1is a simple random sampling plan, then

under‘the model GR, T = N z Y1 is a p~unbiased predictor, but with

N n 8 ’
Y = Y ,

21 ®

1

N N
N
— _Ya —_— - O,
€C:Z'yi ) B(ngxi gxi)#

and hence not g-unbiased. On the other hand the ratio predictor,

L]

is not p-~unbiased but £-unbiased.

Definition. T 1s called pg-unbiased predictor of ?, if and only 1if,

for given p and &, é?E(T—?) = 0.

20



Detinftion. It '1‘1 and T, are predictors such that tor the glven

design p, C?MSI'](L),'I"I) - C’,QMSF.(p.T,)) for all + - ?, a gliven c¢lass
ot super-populations, then Tl fs called at least as good a predictor
as TZ tor the desfign p. [t strict inequality holds tor at least one

£ . € . then Tl will be called better than T,

Detinition. It (pl,'I‘l) and (p,),TZ) are strateglies such that

€MSE(p1,Tl) < C.MSE(pz,TZ) for all f « ¥, then we shall say that
(pl.'l“l) is at least as good a strategy as (pz,Tz). It strict

inequality holds for at least one § ¢ e , then we say that (pI‘Tl)

is better than (pZ'TZ)
(]

1f tl = tl(Dz) and tz = tz(Dz) are estimators of y and

- - S s, 2
if E(t —y)z < E(t —‘)')2 for all y ¢ RN, then €E(T —Y)2 < €E(T -Y)
1 - 2 1 - 2
for any super—-population model ¢, where T1 and T2 are predictors

of Y corresponding to estimators tl and t2 respectively. Hence

if t1 1s at least as good as t2 for estimating ;, for a given

design p, then T1 is at least as good as predictor T2 for any €.

Lemma 2.1 (Cassel et al., 1977). Let T be any predictor of Y. For

any & and for any non-informative design p,
2.8)  EMSE(,T) = EVID+E(F (D 14V DH-2 E1F-DET-D)]

where, 'V(T) = g(T- é‘('l‘))2 and .73 (T) = €(T—§) are f-variance and

g-bias of T respectively. In particular:

(a) If T 1is p-unbiased then



(2.9) Ev(r)y = () + kc[ﬁ('r)]‘)' -~ WY
(b) If T 1is p- as well as L-unbiased then
(2.10) Ev(ry = eHm - 7N

u

In the next two sections we are golng to discuss various
predictors under design oriented super-population model and design-

independent super—population model.

§2.4 PREDICTION UNDER DESIGN ORIENTED SUPER-POPULATION MODEL

Since the publication of the paper by Horvitz and Thompson
(1952) the estimator THT’ well known as Horvitz-Thompson estimator,
is considered in traditional literature of survey sampling as the most
attractive estimator. Though it possesses some good optimal
properties, but after development of super-population ideas 1t has
lost some of its attractiveness. The Horvitz-Thompson estimator is

defined for any arbitrary design as,

.

Y
a

HT

=z
=

(2.11) T. = )
S

N

where ak is the inclusion probability of unit k =1,...,N. Basu

(1971) suggested a modified form of THT which is known as the

generalized difference predictor and is defined as:
Given an arbitrary vector e = (el,...,eN) and a design with
inclusion probabilities ak >0, k=1,...,N, the generalized dif-

ference predictor is given by
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Yk—e B
. = B 4 e
(2.12) GD > Na ° o
S k
A N
where e = > e [/ N.
g k
1
The estimator TCD has the tollowing properties:
(1) TCD is p-unbiased;
(1) T, has zero p-variance for any value y of Y that
satisfies (y-e)= a = (ul,...,uN), provided that p s
a design with fixed effective sample size, n,
abbreviated as FES(n);
(111) TGD is ¢-unbiased for any model {f ek = uk ,
k = 1,...,N;
(iv) TGD lreduces to THT (a) if e =0 or (b) ek « uk,
k= 1,...,N and. p 1s FEBS(n) design;
(v) TGD is origin and scale invariant.

€V(p,TGD) is minimized for the choice e

k=1,...

(P’Tcn

(2.13)

(2.14)

)

If p 1s an FES(n) design with ak >0, k=1,...,N,

K = uk and ak = fak s
,N, where f = n/N. So, the optimal strategy of type

is given by (po,TCDo), consisting of

(1) any FES(n) design,
po = po(s) , such that a = fa , k=1,...,N

(41) the predictor,

Y -b N
k k = = 1
T = ) b, b = =) b
GDo S Nak N 1 k

then
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| .
The predictdar TFD has the following properties:
;Do

is f~unbiased and pf-umbiased for any § satisty-

(1) r(?l)()

ing model (:T and for any FES(n) desigﬁ p.

(11) TCD) is p—unbiased under p = p), but for any arbitrary
120.¢ <

FES(n) design TCDO is not necessarily p-unbiased.

>

[.Let us now consider the predictor T such that T - Zf ,
u

the class of all p-unbiased linear predictors of Y. Hence, E(T) = Y

and T 1is of the form:

(2.15) T = w .t ) w
S

Theorem 2.1 "(Cassel et al. (1976). Under Model GT, and for
N

1 2
A= — 2 . a >
N oT k
€' 1-p) (1-fA 02
. (A-p)(1-fA)o
(2.16) Evip,m) > EVip LT ) - ,

for any strategy (p,T) such that p 1is an FES(n) design with

ay >0, k=1,...,N and T ¢ xiu; equality holds 1if and only if

(p,T) = (po,T ).

GDo
{]
Remark. A strategy based on the p-unbiased predictor THT as in
(2.11) can never, under model GT’ be better than the strategy
p ,T .
(po GDO)
g

In the light of above theorem, in general, under model GT
it 1is advisable for an optimal predictor to use a design giving large

inclusion probabilities of units considered by the model to be highly



variable. However, if all Yk

that is, ak =1, for all k= 1,...

strategy, where p = p (s) 1Is such
O

(0]

satisifed for example in the case of

T = Y +

(2-17) Do S

the well known difference estimator,

(2.18) €V(p0,TDO) -

25

are assumed to have equal variances,

,N, then (p ,T_) s the best
o Do

that for all k = 1,...,N,

¢ = f,
K
simple random sampling and

b-b. ,
S

where b =

E bk and

1
NS

Under stratified random sampling, we know that if we have

optimum allocation,

is proportional to the variance of that stratum.

larger numbers of units from a stratum having large varilance.

stratified random sampling is also a

sampling for units not in the same stratum.

the number of samples to be selected from a stratum

That 1is we select
So,
technique of unequal probability

In Horvitz-Thompson

strategy we also give larger selection probability to units for which

the variance 1is large, but here the problem of optimization was attacked

\

from different angles omly.

We have mentioned in Theorem 2.1,

is optimal in the class of p-unbiased linear estimators.

that the strategy (po,T )

GDo

But 1if we

have an exchangeable model, then as mentioned in Theorem 2.2 below,

(Po: TGDO)

is also optimum in the wider class of p-unblased estimators.

We do not have to adhere to linear estimators only.

Lemma 2.2 (Cgssel et al., 1977).

design with @ >0, k=1,...,N.

Let

Then, under Model E

p be any given FES(n)

T,
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- - 2 - 2 {1+p (n—-1) tu "
. S(T- COEE(T, —u)T = e
(2.19) Erer-u)" = EE(T . -u) N
for any linear or non-linear pg-unbiased estimator T of ;; equality
holds 1f and only it T = TGDO.
1 N 2
Theorem 2.2 (Cassel et al., 1977). Under Model ET, letting A = N E ak,
1
(1-p) (1-fA)0*
) ~ - - ¢
2.20 V(p,T) » Ev(p ,T = . ,
(2.20) Evip,T) = EVG LT ) -

tor any strategy (p,T) such that p is an FES(n) design with @ 0,
k=1,...,N and T ¢ Ja , the class of all (linear or non-linear)
u
p-unbiased predictors of ?; equality holds if and only if
(p,T) = (po,TGDO), where P, and TGDO are given by (2.13) and

(2.14) respectively. 0

Theorem 2.2 is also true for random permutation model ERP'
An extensive investigation of random permutation models has been done
by Rao and Belhouse (1978). Using generalized random permutation models
and general class of linear estimators of finite population mean, Rao
and Belhouse have shown that many.of the conventional estimators are
optimal in the sense of maximum average mean-square error. They
investigated optimality under the-following sample designs: unistage

design, stratified design, post-stratified design, double sampling

design, sampling on two occasions and two-stage sampling design.

§2.5 PREDICTION UNDER DESIGN FREE SUPER-POPULATION MODEL

Most of the survey statisticians, who believe in the model

based approach of estimation in survey sampling argue that p~unbiased-
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ness 1S an unnecessarily heavy restriction, and instead E-unbiasedness or

possibly pf-unbiasedness should be required. Thelr opinion is, average
of (T-?)2 with respect to design p s a matter of presampling interest
only. In this section, we shall deal with the design-free model based
approach of prediction. Here the distribution £ is the essential element
of inference, where s Is treated as given, giving less attention to
design p producing the sample s. So, our object {8 to choose T,
for any given s, to minimize €XT—?)Z_ The average with respect to
p Iis of secondary importance. [t turns out that the predictor T that
minimizes éXT—?)Z for any given s 1is also the predictor that
minimizes é~E(T—?)2 for any given non—-informative design p.

Here we shall assume that super-population distribution QO’
depends on certain parameter (or parameter vector) 8 ¢ 6, which is
unknown. Once we can specify 56’ the method of prediction of Y

becomes a classical inference problem.

For an arbitrary set s ¢ o, 1let 58 = CS g be the marginal
distribution of Yk ,...,Yk ! where kl < ... < kv(s) is an
1 v{(n)
enumeration In increasing order of the labels k ¢ s and let
5_ = 5_ be the joint conditional distribution of Yk, k € g,
s/s s/s,8
(taken in increasing order of k) given Yk ,...,Yk . Let the
1 v(s)
corresponding density function be g(y/6), gs(zs/e), 8 (18/6).
o S/S

Note that if £ is an exchangeable distribution, then so

are £ and ¢ . Let €, € and &€ be expectation operators
& s/s s s/s
associated with ¢, gs and g_ respectively. Now, if p 1is non-
8/s

informative, which we shall in generaliassume, then the operators é?

and E may be interchanged, that is

-

LN
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_ - . -2
(2.21) EMSE(p,T) = é?’E('r—Y)‘Z - E €Nt - EFSé_ (T-Y)
7S/

Here our objective is to minimize €XT;§)2 tor any sample s. So if
we can tind a T* which minimizes «?(T—Y)Z ter any s - C{, and

p 1s any non-informative design, then T* also has the property ot
‘minimizing é?MSE(p,T) for any given design p. Alternatively, if T*
is such that 1£ minimizes €(T—?)2, then in the presampling stage we
can look for the best design p which uses T* and minimizes
EMSE(p,T*) for different p.

Let the population mean

(2.22) Y = £Y 4+ (1-f )Y ,
S s S -

s

= Xisl Y = 1 E Y and Y = 1 We

h f = =
where, s 3 v(s) s k s N-v(s)

W~
a3

realized the value y of Y and this can be expressed as

(2.23) fy + (1-f )y
S s S -

S

<
]

I& this representation of population mean ;, the first part of the
right hand side is known due to sampling. So, Basu (1971) suggested

that attempts should be made for a post survey estimation of the

unknown part y_ . But this idea is criticized by the decision-theorist

s
as here the estimator is selected after observing data.

Let U be a predictor of ?_ , then it follows from (2.22),
s
for any given sample s,

2.24 T = £33 + (1-
(2.24) J, + (-£)u

\
is a predictor of Y. Since s 1is given, the distribution U = U(Dl)



and T(Dl) = fY + (1-f )U(Dl) depends entirely on £. In terms of
s s s
U, the MSE c¢an be written as
o = 2 % R 2 A © o Z
(2.25) E E(T-Y) = *r:{(HS) cg E (U-Y )"}
) ) S/S S
[f & s completely known, minimum éhMSE is obtained {f, tor any

>

given s, we choose

(2.26) u =& ()
S/s s

However, {f & depends on the unknown parameter vector 68, then at
first we shall have to estimate ¢, and then attempt to predict
Y. Note that T 1is g-unbiased for ?, if and only if, for every
s 6‘6 , U 1is E-unbiased for §§

Let us now consider some £-unbiased predictors. If we relax
the condition of p-unbiasedness of the last section and imp&se the more
loose restriction of f-unbiasedness then we can find predictors with

smaller mean-square-errors. This is demonstrated by the following

theorem of Cassel et al. (1977).

Theorem 2.3. Let p be any given design. Then, under Model CT,

(2.27) CE(T-1)?2 > ECr(T*-D)?

. {
where T 1is any linear f-umnbiased predictor of Y and for any s € zf,

(2.28) T* = fY + (1-f )(Za +b)
S 8 8 S — -
8 S
where
_ (Y -b. )
(2.29) z = —i k k&

3 v(s) Z Zk” Zk = ay ’

k = 1,...,N. Equality holds if and only if T = T* . 0
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Next, let us consider the predictor T* under various special

cases of Model G_..

T
(i) It under Model (JT, bk = () tor all k = 1,...,N, then
(2.30) T* = 7 ¢ L Y (a - a )z
S N : k sk
s
where 7 {s as in (2.29) and 2 = Y /a . If p is an FES(n)
s k k k
design, then
(2.31) T* = T v 17 @iz
HTo N & k sk
s
h ' S ¢
vhere YiTo R ACEN)
s
({1) If under Model (}T, a = 1 for all k, then
(2.32) T™* = Y +b6-b
s s

the usual difference predictor.

(iii) Finally, under Model C’I‘o’ ey
7

T™* = X
S

the sample mean.

For the sake of comparison let us discuss the intuitively

appealing predictor,
(2.33) ™ = z +b .

This predictor has the following properties.

(1) 1° 18 E-unbiased predictor of Y under.Model GT.

(11) T minimizes, under Model Gy for any fixed s, the

-2
criterion 8('1‘— u)~, among linear £~unblased estimators of the super-

population parameter ; = u+.l.>; hence T° would be preferred if



inference were directly to the super-population and not to the realiza-

ti 3o - .
on yl YN

(1ii) I1f p 1is an FES(n) design, T° = T, #iven by (2.14).
21O

(1v) Lf all b =0 and p s an FES(n) design, then T' =
From the above discussion, it comes out that T#* and T
are both optimal, but by different criteria. If the criteria is
min é.MSE then T* 1is optimal and better than T® to an extent as

shown in the following theorem (Cassel et al, 1977).

Theorem 2.4. Under Model GT’ for any design p,

B J(a 30" ) (1-0)0”
(2.34) Ee(1°-1)” - EE(Tr-1)? = > 2
. N

v
(=]

where T* and TO are given in (2.28) .and (2.33). Moreover,

ZE(A—aS)

%} S (1-0)0°

l —_—
v(S)

(2.35) € £(1°-1)% = [E{

and A =

Z |-

- 1
where aS v(S) g a

in (2.34) if p(s) > 0 for some s uch that not all ay for

N
, y a’ . Sstrict inequality holds
Kk k
1
S

k € 8 are equal. 0

The comparison given in Theorem 2.4 hold for any p but
neither T* nor T° are necessarily p-unbiased. However, both are
g~unbiased under Model GT.

G , Y are

G agsume that Yl"“ N

R M%

independently distributed. Under the'assumpt'ion of independence, the

podels GPI’ EPI’

optimal §-unbiased predictor is given by the follewing theorem.

31
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Theorem 2.5. (Cassel et al., L977). Let p be any given design, let

T=fY + (1-f )U and T' = £ Y + (I-f )U' be two f-unbiased
S s S S S S

predictors of Y. Then if § is a product measure (as under Model GPI’
EPI’ GR, GMR) the inequalit?

€ E(T-Y)? < € E(T'-T)°

holds if and only 1if, for any s «,(i such that p(s) » 0, and
- 2 ' [ 2
Y = Ew-)° « P = E@-n)
s s

I[f for some s with p(s) > 0 the latter inequality {s strict, then

the former inequality is also strict. 0

A similar type of result was derived by Fuller (1970). In
view of these results, much of classical parametric estimation is
relevant to finite population sampling. If we know something about
the shape of the distribution it is possible to construct predictors of
Y which are more efficient than samp le mean ;s' For example Fuller
(1970) proposed simple predictors of Y when the tail of the distribution
is well approximated by the tail of a Weibull distribution and Ringer,
Jinkins and Hartley (1972) proposed a square root predictor for a
positively skewed population.

Much of the literature on super-populations contains
discussion on models GR and GMR' We have already mentioned in
Chapter 1, that idea of super-population first came from analysis of
ratio 4nd regression estimators. The following theorem due ta Brewer
(1963) and Royall (1970b) is the most important result under Model GR.
The theorem is true for any design p and gives the best lingar

£€-unbiased (8-BLU) . predictor of Y. Here the best



is Iin the sense of min €WBE. We shall‘denote this (-BLU predictor by
»

TBR' It also comes out from this theorem that TBR does not depend

»

explicitly on design but {ts é?MSE does.

Theorem 2.6. Under Model GR, and for known au%iliary variable
measurements xk >0, k=1,...,N, the £-BLU predictor of Y is,

for any design p, given by

(2.36) T = fY + (-f )4 x_
S

where

N-v(s)

» !

—
@i~
!

R and

(2.37) ‘ 8 = 1§
S

’7»(Yk) = 02 u(xk) .

Furthermore, - [ &ug
2., - 2 B
E(C) x) 7B + 0" | ulx)}
(2.38) EMSE(p,Ty,) = 2 > S ,
N
- 2 2
where, F(g) = 5 / z (xk/u(xk))-
- . 8 0
ﬁ‘ ‘. c = g
Spe¢ial Casges: Leg us denote TBR by TBRg 1f uéx) = x°. IF
u(x) = xg, as assumed in many earlier literature of Qurvey sampling,

we have the following special cases. v

(1) If u(x) = x, di.e., g =1, then TBRl = TR,

clagsical ratio predictor

‘¥
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(2.139) T =

with

(2.40) € MSE(p,T ) = D

The predictor TR s £-unbiased.

2
(11) It w(x) = x , {i.e., g= 2, then

2.4 = X +f (Y - x

(2.41) TBRZ x RYx s( s xSRYx)

where

(2.42) R = L7 vy

yx v(s) S 1 M

nxk

If p 1is an FES(n) design, 1i.e., v(s) = n and assuming a = —
Nx

in the Horvitz-Thompson predictor THT of (2.11), then we have
THT = xRYx. Royall (1970b) has shown that if (1) p 1is any FES(n)
design, (11) nx /Nx <1 for k = 1,...,N and (i11) u(x)/xt s

a non-increasing function (usually 0 < g < 2), then under Model GR,

A

EwE(p, xR, ) > EMEP.T,,)

or in the present form of THT’ .

EMER,T,) > €Msx-:(p,'rBR2) .

It is clear from the above that €MSE of the strategy
(p,TBR) depends on p through E(.) 1in (2.38). A pre-sampling
judgment may be required as to how p should be chosen such that

€MSE(p,T ) 1s minimized. Under model ¢, after the sample has
’

BR

already been selected, the inference problem is simply the classic one

34
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of predicting unobserved random variable Y. and the sample s should
s
Al

be one which permits a good predictor. This {dea ot Rovall (1970b) has
been criticized by S()I&‘, authors for adopting purposive samples.

Expression (2.38) can be rewritten as follows:

, S e . g2, L . Joe s 22
(2.43)  EMSE(p,T ) Mé‘(TBR N = F.[(% X )T E -+ Loulx) 1

Z

S S
Now {t our objective is to find a design p tor which this is minimum
then we have two options;

(i) to select a sample which will give a good estimate of the

expected value of the mean of non-6ampled units,i.e., to chodse s so

\
!

that \

\

is small, or
(11) to observe those y-values which have greatest variances, so
that only sum of the least variable values are to be predicted, i.e.,

to choose 8 such that 2 u(xk) is small.

8 .
So it turms out that for wide class of variance functions,

the optimum strategy is to use TBR with a purposive sample s of
FES(n) which contains the n largest x-values of the population.
Formally, let gd; = {8 : v(8) = n} and s* be the set of

labels such that

(2. 44) , max Exk ) X

8 ¢ s*

and let the design p* = p*(s), such that
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(2.45) p*(s) =
0 if s £ s*

Then the theorem ot Royall (1970b) tollows:

Theorem 2. 7. let p be any FES(n) design, and let p* be defined

by (2.45). If u(x) 1s non-decreasing and u(x)/xZ {is non-increasing,

then, under Model GR,

E MsE (p,T) > €m‘E(p*,TBR> ,

where T 1s any linear {-unbiased predictor of Y, and TBR is given

by (2.36). 0

Use of this type of extreme design is open to much
criticism. J.N.K, Rao (1975) points out that there are, no doubt,
situations inwhich the extreme design p* can be highly efficient for
prediction of one y-mean. But in most of the surveys, we also estimate
mean values of other characters. In such situations extreme sample 1is
not likely to work well if several means have to be estimated in the
same survey. So, it is preferred and safe to use simple random sample
in the case of multipurpose studies.

It is also obvious, from the above, that the result depends
too much on the assumed model. If Model GR is not true, that
is, 1if €KY ) =8 - , m¥ 1l (m=1 1in case of G_ ), then

k % "R

IE—bias of TR is

- N N
(2.46) 1N = ie[{(z x)/ g x } - {« § {) / g x 1]

Simple random sample is likely to give small bias in such cases, but
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extreme design p* 1is supposed to produce higher f(-bias.
Results based on Model GR can be easily extended tor
Models G . Various results umder Model G have been given by
MR MR
Hartley and Sielken (1975), Royall (1976), Royall and Cumberland
(1978a) and Tallis (1978). To present some of these results, let us
introduce the following notations.

EX)=Xxg, EX)=X8
S S ; -

S

7”(Y)=czv,7’(Y)=o2v, €x ,y)=0
8 S 's‘ - s -

s s
where. Y is v(s)-vector, i.e., vector of sampled yk—values, k ¢« s,
s .
Y is {N-v(8) }-vector, having non-sampled Y-values as its components.
s

Let us further assume that in both cases yk's are enumerated in order
of increasing k. g = (Bl,...,Bq) is a vector of unknown parameters.

Known matrix X8 and Y are of order v(s)xq and {N-v(s)lxq
s

respectively. Let the row vector corresponding to unit k of XS or

Xg be denoted by Xi = (xkl,...,xkq) where Xq © 1, for all values
f k. S h -1 1 1 ' d
o o we have (q-1) auxiliary variables, ka ’xkq measure

on each unit k of the population. Diagonal matrices Vs and V_
* s
are of order v(s)xv(s) and {N-v(s)l}x{N-v(s)} respectively. The
diagonal element of unit k is ., a known quantity. Hence
Y,) = ozuk ,» where 02 is unknown.
|3
Under Model GMR following theorem due to Cassel et al., (1977)

gives the §-BLU predictor.

Theorem 2.8. Under Model GMR’ and for known auxiliary measurements

xs and X_, the £ -BLU predictor of ?, for any design p, 1is:
8 ' L]



: = £Y + (1-f - ,
(2.48) "sLu oty T U m Bary
S
where, m: = (m ,...,m ), and tor 1 = 1,...,q
S sl sq
m = ) x_ /(N=v(s))
- ki
si. -
3
Moreover,
A~ . _1 _l —_
2.4 = vV X 'V >
(2.49) BBLU (Xs s s) (Xs les)

6?MSE(p,TBLU) is equal to p—expectation of

2 _ 9 e y2 v yryl -
(2.50) c?(TBLU-Y) - 3 g u + (1 fs) {mg(xsvS xs)
3

It is clear that under models CR and GMR’ g-unb lased
predictors are weighted least square estimators. They do not depend
on any particular design. On this point Scott and Smith (1974) says,

"The fact that the estimators do not depend on the design

p(.) may worry some people, but it seems to us that when prior

knowledge 1is so strong that it can be specified by model of

the form (1) (simple linear regression model) then the relation-

ships expressed in the model should override the sampling

scheme for certain purposes.”

Obviously, model based inference depends very much on the

model assumed. So the natural question is, what will be the behavior
of optimal predictors 1if the assumed model is not true or deviate

slightly. This leads us to study the robustness of predictors.

38
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§2.6 ROBUSTNESS IN MODEL BASED INFERENCE

In real life, it {8 not known which model {s producing our
actual population. So, whenever we have doubt on the assumed super-
population model, the correctness of results established in the
preceeding sectlions becomes questionable. Royall and Herson (1973a, b)

first discussed this problem with a polynomial regression model:

. = h + , k =1,...,N
(2.51) Yk (xk) ek
where
J .

(2.52) hix) = ) 38, x

% L0 K

; j=o
and Bj = 0 or 1 depending on whether the term xJ is present in
the model or not. Also ek's are uncorrelated random errors with
2

E(ek) 0 and V(ek) o u(xk) , k = 1,...,N. They denoted this

model as g(ao,...,aJ : u(x)). In our present notation this is a

special case of Model GMR' In particular if 3 =0, 3,6 =1

and 32 = ... = aJ = (0, then the above model reduces to £(0,1 : u(x))

which is Model GR. Let us consider the following two cases:

Case 1. Misspecification of variance function under Model GR.

The Brewer-Royall predictor, T as defined in (2.36) and

BR’
(2.37) is &-BLU predictor of Y under Model GR. The form of TBR

obviously depends on the specification of u(x). In previous sections
g

we also introduced Model GR which is Model GR with u(x) = x and
g

the corresponding §-BLU predictor is TBRg' If the assumed model 1is

G then T is supposed to be optimal. But, if it so happens

Rgo’ BRgo

4
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that the true model is GRgl’ 8, # gO then in general TBRgO is

no longer most efficient, although {t is still gf-unbiased. In this

case the prefered predictor 1is TBRgl' For fixed values of 8 and

8> neither of which is necessarily true value of g, the tollowing
theorem due to Royall (1970b) gives us indication for preterence for

one or the other predictor.

Theorem 2.9. If 0 < gO < gl, then, for any FES(n) design p, and

for any specification of the function wu(x) 1in Model GR such that

14
u(x)/x v i{s non-increasing,

(2.53) €PSE(p,TBRgO) < é‘MSE(p,TBRgl)

g
For any function u(x) such that u(x)/x 1 is non-decreasing, the

inequality in (2.53) is reversed. For strict inequality in (2.53),
it is sufficient that p(s) > 0 for some s such that v(s) = n,

.

and X ¥ x, for some k # ¢ in °‘s.

O
Case 2. Misspecification in polynomial regression model.
Theorem 2.10. (Royall and Herson, 1973a). Under the model
g(ao,al,...,aJ : u(x)) and for known auxiliary variable measurements

X >0, k=1,...,N, the &-BLU predictor of ¥ is for any design
p 1is given by
J

. - I 1-f B
(2.54) T f8 s ( s) jZo ajsj m;j

where, for j = 0,...,J,
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(2.55) m =) xi/(N—V(S))
8] g
and ﬁ{s are the least square estimates of Hj's under the model
1 S IR R -
£( 0 1 J u(x)) {]

This theorem gives §-BLU predictor of Y 1in the
situation assuming that Bj's are estimable.

Royall and Herson (1973a) analyzed robustness using model
£(0,1 : x) and corresponding predictor, TBRl = TR = x §S/;s . By

Theorem 2.9, this predictor is §&-BLU and is the classical ratto

,d. 1 u(x))

estimator. If, however, the alternative model 5(80,31,... j

is true, then the preferred predictory for any design, is given by

Theorem 2.10. Moreover TR is £-biased under model g(ao,...,aJ : u(x))
# £(0,1 : x). The bias of TR is

_ J
(2.56) €10 = jzo 2,8, m ((m /1) - (m,/m)))

where

m, o= — 7 &, a -
s3 T v Lo Tk 3 .

i 12
I

2Z |-

It is clear from (2.56) that g-bias is zero if

(2.57) /m = m/m
sl

31

mSj

for all j such that Bj = 1 4in the model g(ao,...,a : u(x)). The

J
i{dea of balanced sample comes in survey sampling, g%bm this relation

Royall and Herson (1973a) defined balanced sample as follows:

Balanced Sample: A balanced sample denoted by s8(J) 18 a sample
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satisfying (2.57) ftor j = 1,...,J; that is 5(J) 1is such that
(2.58) m ., = m, , = 1,...,J
8] ]
A sample s such that (2.58) holds for | = jo < J 1is said to be
th
balanced on the j moment. A design p which selects, with

probability one, a balanced sample will be called a balanced (sample)

design and will be denoted by pr. 0

It 1s difficult to get a sample which i{s balanced up
to Jth order. Simple random sample usually gives an approximately
balanced sample. We shall discuss methods of approximating balanced
sapples and their alternatives in Chapter 3.

Using a balanced sample we can eliminate the bias incurred
by the ratio estimator TR, if the actual model is E(1,1 : u(x)).
But to have this property for the estimator, he shall have to
compensate for efficiency. Assuming FES(n) design, Royall and Herson
(1973a) compare the balanced sampling strategy RBAL = (pbl’TR) to
Ripr ™ (p*,T.) which has mimimum E£MSE under £(0,1 : x), where
p* is the optimum design as given in (2.45). We have

EMSE(Ry,;) =  min (= /x)(1-Dx’/n
cid G
and
EwSE®R ) = (1-Dx m
-
where
e zin = {s : v(s) = n}

Therefore, efficiency loss is the absolute value of



43

P

(2.59) min <;—/;5) -1 < 0

8 txiin s

Royall and Herson (1973a) have given some numerical results on efficiency
tor ditterent types ot populations. General conclusion of their study is:
Shape of the distribution is less {mportant tactor i{n determining
the efficfency than is vy, the ratlio of extremes ot the distribution
‘'with finite lower and upper limits of range. Another resuls 1s
that the protection against £-bias is often costly trom an efticiency
point of view.

The balanced design, pbl, protects the predictor TR
against £-bias which would be incurred 1f ¢(1,1 : u(x)) not
£(0,1 = x) &%S'Ché true model. The most attractive property‘of

, 7 .
balanced""s"gh;%e design is that if .conditions msj = mj, j=1,...,J
are satisfied, then TR 1s protected agalnst ¢-bias under any model
g(ao,...,a : u(x)). There is no additional loss of efficiency of

J

(pr, TR) relative to ROPT' It is also observed that TR reduces

to Y under balanced sampling. Royall and Herson (1973a) have also
s

shown that 1f T = T('ao,...,;)J : u(x)) denotes ¢-BLU predictor given

by Theorem 2.10, then under balanced design pr,

T(1,9,50,5+-+53

1’ % 1) = T(ao,l,a s eee3d. 1 X) = ..

J 2 J

e .50 1t x) = Y ,

B NS LR s

for any configuration 30,81,...,8J of 0 and 1's.
The idea of balanced sampling is also extended for the

classical regression predictor,

(2.60) T = Y +8kx-%x) ,
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with

B o= () (xk—;)Yk AV ) (xk—i)2 b,
S

S

which is §-BLU tor model £(1,1 : x). Now, if alternative model
L(?O,Bl,...,aJ : u(x)) were actually true, then in general TREG

is f{-biased. This bias can be removed if we choose the balanced design

pb]. For any balanced sample, the predictor TREC also reduces to

samp le mean Ys. .

Balancing the design is on the average equivalent to
p-unbiasedness, and the prediction sought by balancing eliminates the
efficiency gain realized under model based approach if we were willing
to accept an extreme, purposive sample as a basis for inference.

Recently attempts have been made by many authors to compare
and if possible to mix both design based approach and model based
approach in survey sampling. Royall (1976a) and Scott and Smith (1969)
have applied super-population model to two-stage sampling. Scott and
smith derived results by using Bayesian techniques and established
optimality among linear unbiased estimators. Royall (1976b) has
studied linear least square prediction approach in two-stage sampling
and then used a probability model to analyze various conventional
estimators and certain estimators suggested by theory as an altermative
to the conventional estimators. Sarndal (1978) has compared two
approaches for estimating population mean. He showed that several of the
conventional results can be obfained and reinterpreted through model

based theory and found that the model based framework often offers

advantages over the design based one when it comes to present a lucid
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argument in favour of some given sampling procedure. Thompsen (1978)
has given some exdmples where super-population ideas in survey sampling
were applied to different surveys in Norway. Empirical studies of

=

prediction theory has been done most recently by Royall and Cumberland

(1978b, 1981).



CHAPTER I1L1

RANDOMIZATION AND BA%NCED SAMPLING
By

§3.1 RANDOMIZQTION

Randomization is a well-known and widely used method of survey
data collection and analysis. The main purpose of this method is to make
objective inference and presenting results of survey in a convincing way
to users. Keeping these and other advantage%\in mind, under varied
population struétures, survey statisticians have developed, in past years,
different survey designs and Hence various estimators for parameters of
interest. These design based inferences are still overwhelmingly in u?e.
Since 1960, design based inference has faced new challenges. This has
been briefly discussed in Chapter 1.

The method of maximum likelihood is still one of the most
important waysbf estimation in statistics. However, for a long time,
likelihood method was essentially a failure in survey sampling especially
under design based approach. For any design p(.) and for any
population vector y = (yl,...,yN), Ffeated as a parameter, the
probability that the random quantity D, will take a value

d = {(k,yk) : k € g} 1is given by

p(s) if d 1s consistent with vy,
or if y ¢ Qd
(3.1) d) =
pY
0 otherwise ,

where a specified value d = {(k,yk), k € s}\\is said to be consistent

- 46 -
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with a population vector yO,— (yOls. ..,yON), it and only 1ft, yk = yOk

tor all k « s = {kl....,kn}, the sample. ud {s the set of all
y RN such that d 1s consistent with X
It tollows from (3,1) that Pr(D2= d/s = s) =1 {1t d 1is
consistent with y, and zero otherwise. It our interest {s for the
parameter y and 1f the design is uninformative, then from (3.1) we also
find that the likelihood function L(y/d) = pz(d) ts independent ot
Y- That i{s likelihood is flat, so every consistent value ot y |is
equally likely and no unique maximumblikelihood estimator is available.
Likelihood function of the form (3.1) which is not informative in
nature was first studied by Godambe (1966). But with a super-population
model at the back of the finite.population, the appropriate likelihood
. :
function may be more informative, Royall (1976a). In view of (3.1), when
the likelihood principle is applied to the survey sampling under fixed
population approach has the following two consequences.
(1) Ipference from survey data should be independent of the
sample design.
(1i) The only inference about y sancsioned by likelihood principle

is the trivial one that the componeﬁts for k ¢ s must

"
coincide with the observed values. It does not admit dis-
crimination among the possible values of the unobserved

components of y» since all the values of y € Qd° have the

same lﬁelihood .

However, with a somewhat different point of view another likelihood

function emerges which can yield a maximum likelihood estimate of y

under certain conditions, Royall (1968) and Hartly and Rao (1968, 1969).
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Verv interesting and detailed discussions on likelihood
function, sufficiency, randomization, etc. tor tinite population sampling
are given in a series ot papers, namely Basu (1969, 1971, 19/8). Basu
wrote in the summary ot his 1969 paper, "We examine the role of
gufticiency and likelthood principle in the analysis of survey data
and arrived at the revolutionary bat reasonable conclusion that, once
the sample has been drawn, the interence should not depend in any way
on the sampling design. This poses the problem of designing a survey
which will yield a good (representative) sample. The randomi zation
principle is examined from this view point and it is noticed that there

*

is very little, if any, use for it in survey design.’ In this design
based approach of sampling theory, as we mentioned earlier, there is
only one source of randomization in the data. The artificial
randomization created by the sampler himself 18 not inherent to the
problem. All results of conventional theory are based on this
randomization. Basu (1969) suggests in the Bayesian point of view:
Once the data d 1s in our hand, forget about the sampling plan

(24, p(.)), which 1s an artificial source of randomization. In the
Bayesian plan for selecting the data d, there is no place for

1
symmetric dice or random number tab/les. But, unfortunately, until

recently sufficient attention has not been given to the problem. Basu

suggests that any reasonable Bayesian sampling strategy would have
the following characteristics.
(a) The sampling plan would usually be sequential. The statistician

should continue sampling (one or a few units at a time) until he is

satisifed with the information thus obtained or until he reaches the end

of his resources (time and cost). His decision to select the units for
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a particular sampling stage would depend (non-randomly) on the sample
|

obtained in the previous stages.

(b) The probability that the statistician would end up observing
the units s = (kl.k,),...,k ) in this order, would depend on s and
2 n
the state of nature Y- This probability would be degenerate i.e.,

zero for some values of y and unity tfor the rest ot the values ot y.

We have already mentioned that viewing the likelihood
tunction from a different angle some authors arrived at different
types ot likelihood which readily yield a unique maximum. But it is
to be noted here that in all those likelihood functions they ignored
the lasel part k of the data d = ((k,yk) : k ¢ 8} and considered
the unlabeled data dS = {yk : k ¢ s}. Basu (1971) pointed out that
the label past k is an ancillary statistic, that is, énmpling
distribution of the statistic k does not involve the state of
nature y = (yl,...,yN). The sampling distribution of k = (kl,...,kn)
is uniquely determined by the sample design. It is therefore obvious that
the label part of the data cannét, by itself, provide any information
about y. Knowing k, we only know the names (labels) of the population
units that are selected for observation. Usually, we incorporate the
prior knowledge of the auxiliary variable x = (xl,...,xN) in the
sampling plan. But this does not alter the above situation. The
label, k of the data d will still be an ancillary statistic. Now
the question is: If the label part k 1is informationless then, does
the observation part of the data, namely, ds’ contain all the
available informatioﬁ about y? Basu (1971) answers this question

with a definite "no" and says that a great deal of the information will
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be lost it the label part ot the data is suppressed. Without the
knowledge ot k, the surveyor cannot relate the components ot the
observation vector y to the population units and so he cannot make

any use ot the auxiliary character x = (x

y...,%X.) and whatever
~ 1 N

other prior knowledge he may have about the relationship between vy
and x.

Basu (1978), has given a counter example (Example 4.1) where
the optimum sampling plan would be sequential and non-randomized. In
that example it is very difficult to get any justification for random
sampling. Randomization is deeply rooted in statistics which is quite
difficult to ignore with some counter examples. In view of the above
mentioned statisticians, chq main use of randomization is to safeguard
the sample against unknown' biases. Like the conventional approach, survey
design can no more be the only determinant }or judging the quality of
the data. Basu (1978) suggests that the principal determinant of how
a particular datum ought to be analyzed is the datum itself. The key
concept in survey theory ought to be the notion of poststratification.
"Randomization is widely recognized as a basic principle of statistical
experimentation. Yet we find no satisfactory answer to the question,

Why randomize?', Basu (1980).

§3.2 BALANCED SAMPLING

Prsently it is a general feeling of statisticians that
artificial randomization in survey sampling should not be the only
means of inference. Purposive sampling is now-a-days increasingly

getting justification for the analysis of survey data.
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Purposive samples are subjective but there are some rationale and

objective justitications available tor them. From the discussion ot

the previous section, it is indicated that we need an alternative tor the
*

randomization principle. Prediction approach or Bayesian approach in

survey sampling may work as useful alternatives. These approaches usually
lead us to the selectfion of purposive samples. We have already mentioned
in Chapter ! that under certain super-population models, optimum
sampling strategy (2.45) or balanced samples are more desirable than
the random samples.

We have defined the balanced samaple in Chapter 2 and hav%

discussed the robustness of the estimators under balanced samples. In

this sectidbn we shall discuss how to get balanced samples and extensions.

Approximate Balanced Samples

Selection of exact balanced samples of higher order is a big
practical problem. Usually, not all values of auxiliary variable x are
known to the sampler. In such a case it is impossible to get a balanced
sample. Even if all values of x are known, exact satisfaction
of ;;j) - ;(J), j=1,...,3, 41s usually impossible. However, when
J and the sampling fraction ‘f are small, it is easier to get
approximate balanced sample s(J). It 1s expected that a random
selection of units is supposed to give an‘approximately balanced
;éJ)

sample. The average value of , over all (E) samples s, 1is

;(J)

for j =1,2,... . So we can expect that random sample s 1is

approximately s(J). Simple random sample is supposed to yield fair

approximation to s(J) for J 2> 1, so when we use this approximate
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balanced sample the ratio and regression estimators are approximately
unbiased under Jth degree regression models. The estimators will
also be approximately optimal under models where the varfance of Y
is a polynomial in x of degree J or less. It is true that there 1is
possibility of large deviations of the sample from the balanced sample
depending on the dispersion of x values. It this circumstance arises,
then it is advisable to use restricted randomization, censoring or post-
stratification in the data. Royall and Herson (1973a) have given an
expression for the extent of bias in ratio estimators using approximate
balanced samples.

In surveys ususally more than one auxillary variable is
available. It is yery difficult to get a balanced sample with
respect to all those characters. However, random selections will at
least justify some degree of confidence that the selected sample is
approximately representative. It is to be mentioned here that neither

-+

purposive selection of a balanced sample nor restricted randomization

nor unrestricted random selection will guarantee balanced on other

variables not explicitly considered in choosing the sample.

Extensions and Other Types of Balanced Samples

Up to this point we have only discussed the balanced sample
suggested by Royall and Herson (1973a). There are other forms of
balanced samples whose definitions depend on the super-population model
under consideration. Some of these are direct extensions of the already
defined balanced sample, Holt (1975) has extended the idea of balanced

sample for a linear multiple regression model and defined the balanced
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sample as the sample tor which the first moment of each ot p-auxilfary
Qariables tor the sampled and non-sampled part of the finite population
are equal. Using this balanced sample he obtained BLU estimator for
tinite population total.

Scott, Brewer and Ho (1978) proposed an alternative to balanced

1

sample which they called "overbalanced sample'. Their overbalanced
sample provides more etficient estimators than the balanced sample.
Principal results of this article followed by using the model §(0,1:V(x)).

Regardless of manner in which sample observations have been

obtained, the BLU predictor of the population total Y under this model

is
% Yixi/V(xi)

(3.2) Ty = Tyl0,1:v(x)) = ) Y+ : P E X

° TR s

8

Let s*(J) be a particular sample for which,

&) i+
x, g Xy /V(xi)
(3.3) = , j=0,1,...,J ,

2
z x1/V(xi)

W~ 10 e
O
=

then the following Lemma and Theorem follows, (Scott, et al. (1978)).

Lemma 3.1. If 8 = s*(J), then TO is §g-~unbiased under the model

(30,81,...,3j : V¥(x)) for any V*(x).

In fact, TO is the BLU predictor when 8 = s*(J) for a

wide class of models.
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Theorem 3.1. Suppose s = s*(J), then TO is the BLU predictor
under the model &(Jo,dl,...,JI : VX (x)) tor any variance tunction ot
the form
J ji—1
VA(x) = V(x) ) 3 a,xJ

I=0

Special cases:

If V{(x) = x then we get the Royall and Herson (1973a)
results leading the balanced samples, so that T reduces to ordinary

0

ratio estimator,
N
(3.4) T, = Ly [lx) ]
s s 1

2
On the other hand {f V(x) = x , T0 becomes

1
(3.5) T, ) Yo+ z Y, /%)) Z X

s
and (3.3) becomes

xj—1
i

]
j=20,1,...,J

a

(3.6) )
S

]
~

"
[
~
0l r~

]

oY

w

Obviously, this is always true for j = 1. Scott et al. (1978)
called samples satisfying condition (3.6) as "overbalanced". The

mean square error of T under E(O,l:xz) is

2

2

(Ix) } -

B

(3.7 of { I+
s

If the sampling fraction is small and no single Xy dominates the
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others, the MSE 1is atfected very little by the cholce ot sample and
S

little efticiency is lost by choosing an overbalanced sample.
In many practical situations, V(x) increases more quickly

2
than x but less quickly than x , so that F'("()’Jl"“")l : V(X))

2 2
with V(x) = a_x + a xZ is often a fairly realistic model. Both T

1 2 1

with balanced sample and T2 with overbalanced samplénare BLU tor their

respective samples under this model and it {s interesting to cowmpare

their performances. Scott et al. (1978) shows that MSE of T1 with

balanced sample 1is

2— 2-(2
(3.8) M. = N(N-n)(a_ x + a,x( ))/n s
1 1 2
-(2) 1 N 2 .
where x = = Z x1 , while MSE for T2 with overbalanced sample is
1
(3.9 M. = N(N-m)x (a’ + alx)/
. M _{a) ’82 n ,
s
where i_ is the mean of x~values not included in the overbalanced
s
sample.
It follows from (3.6) that 1if j = (0, then x <x . So
- s
s
that, Ml > Mz. Thus ratio estimator T1 with balanced sample will

be less efficient than using T, with overbalanced sample. The loss

2

of efficiency will be small in general, if ai dominates ai but

2
can be substantial if a, is relatively large. These results apply

to any polynomial model 5(30,31,...,8J : V(x)) with variance function

2
V(x) = a;x + agx2 ; hence T2 with overbalancea sample (j = 0,1,...,J)

is more efficient than 'I‘1 with balanced sampling of the same order.



How to get overbalanced sample:

If the sample selection i{s with probability proportional to

XL' then

' -1 N . /N
(3.10) E( > X /n) = } x] } X
! -1 S ¢
s
This indicates that selection with probability proportional to X

yields an approximate overbalanced sample {f the sample size 1s large

and sampling franction {s small. On the other hand {f the sampling

traction is large, then Scott et al. (1978) suggest selecting units with

probability equal to

T AKX
i

4+ A
1 x1

(3.11)

where A 1is the solution to the equation

(3.12) j —3Li - - 4

Iterative solution for (3.12) is suggested with starting value

(]

element ts (1 + Axi)—l, so that, for all j,
_ N . 1
(3.13) E( ] xji) = § ——— = E( ] x) )}/
- 1 s
s

It follows that,

SR £( ] i /m) = E(Ix) rE(Dx)

N
A = nf Z L. Using (3.11), the probability of not sampling the ith
1

56
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)

such that, we would expect to obtain an approximately overbalanced sample,

it the sample size 1s large enough.

Rovall and Herson (1973b) and Scott et al. (1978) have extended
their detinition of balanced sampling and overbalanced sampling schemes
respectively for stratified population. Royall (1976b) has given some
different ideas ot balanced sample for two-stage sampling. Let the tin{te
population consists of N elezents and K cluster with Mi eiements in
the 1th cluster, such that Z Mi = N. Suppose, first we have chosen

L th
a sample s of k c¢lusters and then from the sample i cluster
a random sample sy consisting of mi elements has been selected out of
Mi elements.
Let,

n = Z mi ,
s

K

=(3) J

M = Mi/K
i=l

S v
Ms g Mi /(n ,

then Royal (1976b) says that the above two-stage sample is balanced if,

(3.15) M = M and ﬁ;z) = ﬁ(z)

This type of balanced sample gives unbiased ratio estimtors in two-stage
sampling under a quadratic regression model and the ratio type estimator
is best. This result also holds for higher order-polynomial models

when the sample is balanced on the corresponding higher-order moments.

y ¢
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In the literature on survey sampling we also find a comp letely
ditterent detinition of balanced sample given by Singh and Garg (1979).
This is actually some kind of systematic sample with random start. The
suggested balanced sample is: Assuming population size N and sample
size n both even (for odd values N and n modification of the
definition is also available), first draw n/2 wunits at random from the
tifst N/2 units of the population and rest of the n/2? elements are
taken from (N/2+1)th to Nth units of the population with indices
N+l—r1, i=1,2,...,n/2, where ri is the findex of the ith unit
drawn from tirst N/2 wunits.

This sampling plan has the advantage of both simple random
sampling and systematic sampling and works best for population exhibiting
linear trend or periodicity. Their empirical study shows that this
balanced sampling is generally better than simple random sampling and
in most of the cases even.better than systematic sampling and stratified
sampling.

[t is clear from the above discussion of randomization and
purposive sampling that there are some cases where the randqmization
princip;e does not carry much meaning but purposive selection like
optimu sampling or balanced sampling etc., gives meaningfiul and higher
percision estimators. It may be sometimes feasible to dr;w these type
of éu:positive samples, but in large scale surveys with many items the
pu;posive design could lead to very inefficient estimators for some
of the items. Rao (1975) says, "Of course, this criticism also'

applies to conventional designs such as the probability proportional

to size sampling plans or stratification by size with a 100Z sampling

’



rate in the stratum containing Lhé units with largest X, [n such
a situation, it might be advisable to employ equal probability
sampling and utilize any quantitative concomitant information only at
the estimation state.” The role of randomization in survey sampling
cannot be taken as the only basis of data analysis and inference as

the conventional survey samp lers used to think.



CHAPTER 1V

RANKS AND ORDER STATISTLICS FOR FINITE POPULATION

§4 .1 ORDER STATISTICS IN SAMPLING FROM FINITE POPULATION

There are few works In survey sampling literature on the use
of ranks and order statistics In estimating finite population parameters.
[t seems that Wilks (1962, p. 243) is the first to discuss distribution
of order statistics 4in samples trom a finite population. There he

considered a finite population m consists'of N distinct elements,

N

<y <l s yON’ and derived the probability function of the

t
sample r b order statistics. Let s be a random sample of size n

from this population and let us denote the order sample by
th
Y <Y < ... <X . So it follows that probability of the k
(" @ (n) P Y

order statistic of the sample being equal to the tth order statistic

®

of the population is

()

—— N~ _ - P (t)

Yay “ Yoyl ~ <N> N.n,k
- g a

where t = k,k+l,...,N-n+k.

(4.1)  P[

We can consider (t) either as (i) the probability function of

pN,n,k

the random variable Y its mass points being yO(t)’

(k)’
t = k,k+1,...,N-n+k, or (i1) the probability function of the random
variable t, that is, the rank of the y-value ih the population to

which the kth order statistic 1in the sample is equal.

- 60 -
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Wilks (1962) has given the tollowing results on moment s ot

PN
t. Moments of t are easier to derive trom the following relation
+
(r] (k+r_l)[r] <N+r>
(4.2) N O e
(.)
where, x[r] = x(x-1) ... (x-r+l) and r {is fixed. Putting r =1

R

and 2 in (4.2), we can get after some simplification,

//N‘/
- ( - k (N+1)
(4.3) E(t) e
4. 4) V(t) _‘E—Fl) QN—n%(n-kﬁ»l)
(n+l) (nt+2)

On the other’hand, considering (4.1) as probabflity function of Y(k)'

ve get

N-n+k t-lXN—t N
(4.3 B = L Yo '(k-l n-k> /<n> SR

t=k

Obviously this has no simple form and so is the variance of Y

k)’
‘We have mentioned earlier that (4.1) can be considered to be
t
the probability that the k B order statistic of the sample will be the
t B
t h order statistic of the population. So we may want to know the

most likely value of t for given k. This is given by the value of

t satisfying the following relationm,
oy . - [

(4.6) "N,n,k("l) < pN,n,k(t) > pN,n,k(“’l)

61



i.e.
L—ZxN—rH <t—1>
- k—l,,49-5“> : -1/\

4 < R

G Q)

This implies atter some algebric manipulations,

(4.7) N(Eil) t < N(Eil) + 1
n—-1 - n~-1
or '
k-1 t k-1 1
— < —_ — + —_—
(4.8) -1 — N - n-1

62

As a particular case of (4.7), we can find that sample median is also

the ML-estimator for the population median of finite population.

can be illustrated by the following example.

Let our population size N = 25 and sample size

Example.

so that the Sth largest sample value is the sample median,

k = 5. So using k =5 in relation (4.7), we have

5N < t < .5N+1
-0r

12.5 < t < 13.5

which shows that maximum likely integer value of t 1is 13,

yO(t) = y0(13) is the median of our population.

¥ _ \
(5)‘,19 the ML-estimator of population median y0(13).

This

n=9;

hence

but

Hence sample median
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Median unbiasedness: We have already mengjoned that the

samp le median {s the Ml-estimator tor the finite population median.
Now, we are goling to show that sample median is median unbiased when
sampling {s done from finite population.

Definition. I1f A 1{s the median of a distribution and A 1{is an

estimator of A4, then we say & 1s median unbiased 1if
(4.9) P{a < a] = Pla - 4]

For continuous population P[K = A)] = 0 and hence the above
probabilities are equal to 1/2. But 1in general, for finite population,
P[Z = A] # 0, 8o for median unbiasedness in finite population we shall
consider the relation (4.9). To show median unbiasedness of sample

median, we have to consider the following four cases.

(1) N and n both are odd
(2) N 1is odd and n 1is evEn
63) N 1s even and n 1is odd

(4) N and n are both even.

Case 1. N and n are both odd.
Let N=2M+1 and n = 2mtl, M and m are integers.

and Y are respectively population and

Therefore yO(M+1) (m+1)

sample medians. Since (4.1) is probability function, we have

N-n+k :
2 P (t) = 1. So for k = m+l, we have: N-n+k = N-m and
tek N,n,k
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ot = L COCOAD
CAPLW DA IR W
() COO-C)

[t 18 clear from (4.10), that

(4.10)

M N—-m
}oP(Y =y 1] = 7 P =y ]
rmmt) | (mHD) 0(t) M2 (m+1) 0(t)
or
PUY ey = Yoomn)) = Py 2 Youe)!
P ] = P[ ]

Y1) < Yo1) Y1) ~ Yo(url)

Hence sample median is median unbiased. But the situation

Y
(mt+1)
is a little complicated in other cases, where there 1is no unique

median.

Case 2. N 1is8 odd and n 1is even.

As before, let N = 2M+1 andA n=2m Mandm are integers,
d Y .
so that, conventionally sample median is an average of Y(m) an (m+1)

For k = m, we have N-n+k = N-m, n-k = m, so that
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' -m AR VA
X _ S = 1 )
(4.11) z ”Y(m) y()(t)] <N> tzm (m“1>< m>

and also tor k = mtl, N-ntk = N-w+l, n-k = m-1;

N-m+1

} 1 N—x;ﬁl -1 N-t
(4.12) : P(Y =y ] = —< } ( >< > = 1
t=mrt+1 (w+1) 0t <N> t=m m o1

n

Expanding (4.11) and (4.12) as in Case 1, we find that

(4.13) P(Y } + P J

(m) ~ {o(M+1) YD)~ Yosl)

= Py > Yo Y P ) Yoomn !

(4.14) PIY oy = Yoaeny) = Py 2 Yooen)
and
(4.15) PIY 0y 2 Yomee)! ™ Bl¥(ae1) S Vo))
Y + Y
If we denote ? = (m) (1)

as the median of sample

2

then it follows from (4.14) that, ]

PIY < Yomr1)) = PIY > Yo(M+1)

and hence median unbiasedness of ?

Example. Let N =15 n =6, so that M= 7 and m = 3. The@

~

sample median Y -(Y(3)+Y(4))/2, the population median y = Yo(8)’

(-2 =

]

and using (4.11),

3115

Pl 5005 ’

Y3y “Yocs)
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PLY 5y " Yol T So0s
PGy Yo ) T %%%2
Again using (4.12),
P Vo) T soos
P = o) T So0s
P4y " Yogy! = %%%%
Therefore, P[Y(B) < y0(8)] = P[Y(A) > y0(8)] = %%%% . And hence,
P[Y < y0(8)] = P[Y » y0(8)]
Case 3. N 1is even and n {is odd.

Let N=2M and n = 2m+l, M and m are integers. Let
i y. =(
the population median be Yo ( 0(M)+y0(M+19V2 and the sample median

is For k = mtl, N-n+k = N-m. Using these values and

Y (m+1)”

proceeding as in Case 1, we find that

(4.16) P P{

Y1) < Yo' Y1 2 You1)

and hence

P P[ >

Yom+1) < Yol Y (art1)

establishes that is median unbiased.

¥ (1)
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Casge 4. N and n are both even.
Let N =2M and n = 2m, M and n are integers. Sample
and population medians are respectively, ? ={Y +Y )2 and
pop p y Oy Y (1)

;0 x(yO(M)+y0(M+1P/2 . ,Proceeding as in Case 2, we tind that

(4.17) PIY oy = Yoan! * PIY (pe1y © Yo !
=Py 2 Yo ]t By - Yoown)

(4.18) Py 2 Yo0n ) = P(men) 2 Yoomn!
and
(4.19) PIY (pe1y = yO(M)l = P[Y(m) z yo(m+1)]
Now,
(4.20) PIY < y,] = PBIY < o 2 L

= P[Y i-yO(M)]

= P 2 Yoqn!
Similarly,
(4.21) Py > g1 = Fl¥(gygy 2 Yo 1))

Therefore, using (4.18), (4.20) and (4.21), we get
PIY <y, = PI¥>7,0 ,

which establishes median unbiasedness of ?.
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84.2 CONFIDENCE INVERVALS FOR QUANTILE IN FINITE POPULATION

Let t be a fixed integer {n the range 1 < t < N. Then we

t
can consider as the (t/N) h quantile of the population =«

Y0 (1) N
If GN(Y) = (#YO1 <y, 1 <«1 < N)/N then we formally define the pth
quantile of finite population as sup{y : GN(y) <pl, 0 <p < 1.
Similarly, the sample quantile is also defined.

Confidence interval for quantile in finite population 1is
available in Wilks (1962, p. 333). Years later Meyer (1972) and

Sedransk and Meyer (1978) extensively studied and extended results

on this confidence interval. For fixed t = t',

(4.22) P(

C

So for fixed N,n,t' and y > 0, there is a largest k, say k'

such that
tl
(4.23) tzk' Pynk 12 Y -

4

We shall consider as the best lower 100vZ confidence limit

Yx")

for Except for values N, m, t' and 1- which are
7 Y, .

yo(tl)'

uninterestingly small, such lower confidence. limits can be shown to

exist. Similarly, the best upper 100YZ confidence limit for yO(t')

is obtained by choosing the smallest k, say k", such that

N—n+k"
(4.24) L by ae® 2 v
t=t' >

For the best 100YZ confidence interval for yO(t that is the

l)!
simultaneous upper and lower confidence limits, the probability

.
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function involved here is cumbersome. Meyer (1972) has given the

following exptession for simultaneous confidence interval [Y ,Y

(k) (r)]

for where

Yo(t)’

(4.25) P ] =

Yoo Yoy = Yo

tik <t—1—1XN—t+i> t—i—i t—i—ZXN—c+1+1
- i=o0 k-1 n-k " i=0 <; r—1 n—-r ;>
) |
" [ ]
‘n )

$

A simpler form of this expression is available in Sendransk and Meyer
(1978). This paper also states that in forming a donfidence interval for

t N ~ -
the (ﬁ) quantile, the confidence coefficiemt for population @ith ties

th
is larger than the confidence coefficient for popula&ion without ties,
proof 1is available in Meyer (1972). In fact the confidence coefficient
for the q&)th quantile for a population withqut ties is the lower,

bound for the confidence coefficient for the cemparable confidence

interval for any finite pdbulation.

Confidence intervals in case of stratified samﬁliqg

Let us now consider a stratified population of q strata
having strata gsize N_.,...,N , g N, = N, the population size.
1 T 4. i .
Let the population values in ascending order be:

426 Yoy <t Vo Yoz * vt Yoy

<

.

s Foq) © S Yoaw )
\ . o

We have drawn a stratified random sample of size n frog this

population with n = Zni, where ni° 18 the number of u;aits selected

[

at random"from ith gstratum. Let the sample values be: ¢
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Yoy Yl(nl) <oy YZ(n2>

<

<Y < L., <Y
1
'Q( ) q(nq)

. t .
Let our finterest be on confidence interval tor (t/N) h quantile of
the population. It is sufficient to look at the stratum which contains
th . th .
the 1 order y-value of the population. Let the t order value be in
th ) v
m stratum. Since a sample from each stratum is drawn independently,

t
we shall consider for the (t/N) h quantile, the sample drawn from

t
the m b gtratum only. Let &' = t—(N1 + ...+ Nm_l). Proceeding the

similar way as in section one of this chapter, we can find the probability
‘ <

t
that the kth order statistic of the m h stratum will be equal to the

t . . :
t h order—statistic of the population, 1i.e.,

t'-1 Nm—t' Nm
(4.27)  P[Y =y = Youtety ) = X )/( > ’
m(k) 0(t) Om(t') < k-1/\n_-k n_

t'" = k, k+1, ..., N -n +k
m m
th

t
If the ¢t h order statistic of the population is not in the m

th
stratum, but is in ¢ h stratum, then

(4.28) PlY

<

o Yo Yosen) T 0 for m#rand

o= - + ...+ ).
t - (N N, )

-

It appears from (4.27) and (4.28) that results for unstratified.
popuiation can easily be ied for stratif;ed population with few
chénges in nd®ations. Sedransk and Meyer (1978) have given results
for a'mogé general Fase Qf pobqlation. /Ihe(g‘thex‘have not imposed
,the'restrici}on'(4.26) tb the populaEi and established results

for population with two strata.

”~
. '

A

=3

(S

e
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543 JOINT DISTRIBUTION OF QUANTILES OF A SAMPLE FROM BIVARIATE

FINITE POPULATION

Let our bivariate finite population be (x| ,y(

or Vo)

027702

., (XON’YON) of size N. For simplicity let us assume that there

are no ties among x's and as well as among y's. Let ordered x-values

be and ordered y-values be

) S0 T T oo

yo(l) < YO(Z) < L..x yO(N)' yO(i) does not necessarily beong to the

same pair as that ot We have drawn a simple random sample of

Xo(i).

size n from this population. Let the sample be (Xi’Yi)’

i=1,...,n . As above let us denote the sample ordered X-values and
M é
Y-values as X < ... < X and Y? X respectively.
(1) (n) (L (w) P y

. th
Qur objective is tu find the bivariate distributfon of sample (1i/n)
. th _ .
quantile of x and (j/n) duantile of y. Let us assume X(i) and
/“

Y(j) be corredponding sample quantjles. Siddiqui (1960) has derived

the joint distribution of ) when the sample was drawn from

Xy ()

a continuous bivarfate distribution.

Distribution of, (X ) for a~sample from finite

W

population depends upon the nature of pairs of values ( »Y...) in

*01’ 701

the population. Analogous to Siddiqui (1960), we shall introduce two

new variables m and M, where,

0 ¥

<

(1)

M 1is a random variable which may vary .

M = number of pairs (Xk,Yk) in the sample with Xk < X

and Yk < Y(j)'

from sample to sample.

m. = number of pairs ( ) 1in the population with x_ 7 <

%01’ Y01 . o1 = Fo(s)
%

and y,, < Yoe)® o is non-random if one considers the
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finite population as fixed and o, varies tor difterent

values of s and t.

EX -

Here, M is a dummy variable which is to be summed out trom the joint
distribution of (M, X(i)’ Y(j)) to get our desired joint distribution
of X , Y ).
i o
' i f t
Let -(KO’YO(C)) and (XO(S)’YO) be two units of the
popul¥tion which lig on the lines vy ='y0(t) and x = X0 (s)
R 7 .
respectively. So any one of the following ftive case way occur.
D 1. - . , “
. Case *o > Fos)’ Yo " Yoo
.as 2. < N >
Case X0 . ®o(s) Yo 7 Yo(e)
Case 3. X, >

o Xogs)’ Yo * Yo(o)

Case 4. X. > xQ(s)’ y0 > yo(t)

Case 5. x in which case there is only ¢one point

0o~ *o(s)

(xo,yo) common to both lines x = and

*0(s)

y = yO(t)' In such a case, the pair (xo,yo) =

( ) 1s a measure o% a unit in the

X0(s)’Y0(t)

population.

M = = =
Let us r? find the }’[ m, X(i) . xO(s)’ Y(j) yO(t)] under
the above mentioned different cases.

®

-

Case 1. If our populption.satisfies Case 1, then a possibli‘

distribution of populat}on and sample values is given 1in Figure 1.

For simplicity ef figures, we shal§gassume that x-values are all
£

positive. B,
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Y X = XO(S)
s~m0—2 N—m0~s—t+2
i-M-2 n-M-1{-3y+2
(x ,yo(t))
—_— e . o =
‘ Y 7 Y0()
—— — e e ————— —— x
(0,0)
@ -m -1
m (xo( ),yo) t mo
M j-M-
FIGURE 1

In the above figure, N+m0—s—t+2 (or n+M-1-j+2) represents the

number of pairs (in,y01) (or (Xiin)) in the population (or sample)
satisfying X01 > xO(s) and Y01 > yO(t) (or Xi > xO(s) and
Ty > Yoo

). Similar meanipgs apply for other numbers of the figure. \\

Points marked by ® corrspond to the units of population which lead N

us to consider Case 1.

Since our sample is a simple random sample of size n and

drawn without replacement, therefore,

(4.29) Pl[M = m, X ]

W " %o’ (3 T Yoo

(G2 1
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where,

m = 0,1,...,m"'" = min (mo, i-2,31-2)
s = i,i+l,...,N-nt+i
t = j,j+l,...,N-n+j

£
So (4.29) can be considered as the joint probability function of M,

X and Y with mass points at M = 0,1,...,m", X = x ,
(1) (1) P (1)~ To(s)

s = 4,i+1,...,N-nti and Y t = j,j+l,...,N-ntj. Here

S T o

and for the rest of the thesis, we shall assume that for any integers

p and g,
0 if .p <0 or p<q or q=<20 «
p> @ > -
<;q
1 if p=q=20
Case 2. Proceeding as in Case fb the configuration of the sample as

well as the pdpulation values that satisfy Case 2 is given in Figure 2.
: X

Hence the required probability is %

(4.30) 3PZ[M =m Xy T X’ Y(j) - yO(t)]

(T 7O
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Y -
X XO(S)
N+1n0—s—t+l
—i-4+1 )
¢(x0(s)‘y0)‘ BRSNS
2 a .
s-m_~2 *
0 N /4\
1-M-2
— e e — =

(x Y T Yo (o)
_ 0’ Y0(t)
| C— e

. (0,0)
m
t.. —_
0 g? mo 1
}
M .j-aM—l \
N v
N LS
FIGURE 2
&

where \\.’ -
v , AT )
: m = 0)1"'-)m' “ minr(mop i ‘2¢J_lt)

4

s =1, 1+l, ..., N-np+i

. =3, 34, ., N | :

Py *

. -

.Case 3.° The appropriate configuration for the qhmple as well as for

the popuiatioﬂ is given in Figure 3, below.
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s—mo—l Nﬁno—s-t+1 .
1-M-1 nHM-1- 41
(xo'yo(t))
IR S - ——
- y Y0(t)
o
— . I . SR X
(0,0)
) ) ) t—mO—Z
M ® . j—M—2
(KO(S) yo) j
FIGURE 3

The required probability for such a configuration is

(4.31) P3[M = m, X = x

(1) )

o)’ Y T Yo

- (OGSO

where,

m = 0,1,...,m' = min (m., 1-1,j-2)

s = 1i,i+1,...,N-n+i

re
[}

$,3+1, ..., N-n+ .

Case 4.. The configuration for the sample and population corresponding

to Case 4, is given in Figure 4, below. -
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0
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The probability for such a configuration is

(4.32) PA[M a m, X ]

W " %o T T Yoo

- (G

where

m = 0,1,...,m' = min (mo,i—l,j—l)
s = 1,i+l,...,N-nt+i

Cto= §,3+l,...,N-n¥]

Case 5. A suitable configuration for Case 5 is given in Figure 5,

below.
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Y

x = x()(s)

s - _«-‘_ +

s mo 1 N+mO s—-t+]

{-M-1 ntM-1i-j+1

T A>—‘_.1i7 ) T Yz yO(t)
*0(s)*70(t)
— — X
(0,0)

mo t—mO—l

M j-M-1
FIGURE 5

The required probability is

(4.33)

BsIM = m Xy ™ %oey” Yy T Yooy
( ><sm l><t mo l>< -8- t+l>/< )
i-m-1 j—o-1 n+o-1-J+1
where

m = 0,1,...,m' = min (my»1-1,3-1)
g = 1,i+l,...,N-n+i
t = §,j+l,...,N-n+j

Therefore,

gy Yg?) 18

L d

finally, the rgquired probability function for
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(4. 34) P X -

o T M Yy T Yoo

m‘

" M = = .Y -
mi() P M= m Xy T %06y Y T Yo

|-

k =1,2,...,5 depending on which case we have at hand and
s = {,i+l,.. . ,Nnti{; t = j,i+l,...,N-n+j.
Now, if we consider our finite population is a sample from
a super—population with continuous distribution function F(X,Y), then

our m. ,

o xO(s) and yO(t) become random variables. In this

circumstance (4.34) will be treated as a conditional distribution of

(X given m Since the finite population,

Ty’ 0’ *o(s)

in such a case, 1is a-sample from a continuous distribution, so the

and yO(t)'

y Y will be as given in

marginal distribution of (m_, 0(t) §

0’ %o(s)’
Siddiqui (1960).

§4.4 PREDICTION OF FINITE POPULATION QUANTILE USING AUXILIARY VARIABLES

In this section we would like to investigate the possibility of
using available informatién on the auxiliary variablé, x, to get.a
better estimate qf population quantile of y 1in finite‘population samp 1~
ing. Keeping the above objective in mind, we derived the bivariate dis-

tribution of quantiles (X ) as given by (4.34) of the preceeding

SO )
section. But we could not give a simpler form to this distributiom.
Consequently we were unable to propose or investigate any reasonaﬁle
estimator for the population quantile of y using quantiles of =x.
However, if we assume certain multivarite models, namely,

Model MR or perhaps the more traditional multivariate normal

distribution model at the back of our realized finite populationm, .
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then it appears that we can get a ''predictor" of finite population
quantiles using auxiliary information.

Here we are going to use notation developed in Chapter 2.

' -

Let Y = (Yl,...,YN) be the N-dimensional random vector giving the
- [
fini ti = yee ey . , 1
nite population y (y1 yN) Under Model MR et the
{-expectation and g-variance of Y be
) = x8 and Ty = v,

where X is Nxp matrix, g is px1 wvector and

2
V = diag (ol,...,oé), a known NxN non-singular positive definite

matrix. Let sample size v(s) = n > p. Let us partitio; Y as:
Y
s
X =
Y_.
8

where Ys is nxl vector of sampled units and Y_ is the (N-n)x1
8
vector of non-sampled umits. Accordingly we can partitjon X and V

as follows:

xs A A 0
8
X -= , A\ -
X_ 0 v_
8 s
A4 .
. where Xs 18 nxp and VB is nxn, etc.
The minimum variance unbiased estimate tBLU for
N ’ .
population total z Yi’ as given in Theorem 2.8 is
1 .
. ' = o'y + L'X B
(4.35) sLU Vs "zx;BBLU
where .
) PO voml =1 -
8BLU - (xsvs xsz stSle



1
and % and ¢ are vectors of the form (1,...,1) having

1 2
dimensions n and N-n respectively.
On the other hand, {f we assume our super-population
model 1s N(XB8,V), 1.e. Y ~ N(X8,V), then the following theorem

due to Royall (1976a) gives the maximum likelihood estimator for

the population total.

Theorem 4.1. If Y has a N(X8,V) probability distribution in
which the known diagonal convariance matrix satisfies Vg = Xy,

L' = (1,...,1) for some p-vector Yy, 1.e. 02 = E Y.Xx
when Ys = Yo is observed, the likelihood functionjzir t =1y 1is

proportional to the N{EB , var(EBLU)} probability density function,

LU
where tBLU is given by (4.35), and
> vy —1 [ vyl -1_,
(4.36) var(t,. . ) =2'V "2 + ¢'X (X'V 'x ) X"t
BLU - = - - - 88 8 - =
8 8 8 s s s 8
§]
(4
The above theorem suggests that, EBLU is the best linear

. ,
unbiased estimator under the normal super-population model, and that

var(t ) 1s its variance under the same model. *°

BLU

It is interesting to look more closely at (4.35). The term -

v 'ty Ao
llys is the observed sample total and ZZXEBBLU is a prediction of

1iy‘ , the total yi‘s for non—sampled units. So, we can consider
8

(l‘- 37) ) . ‘ f; - x-é .
< & 8 s BLU

as the predictor of Y . Now if our interest is on prediction of

8 . Y

tile, then we can combine Vg and ;_ (the
8

.

finite population quan

81
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predicted value of Y , obtained using vy in B ) to get the
8

= BLU
s
- o v Ot (‘,
predicted population values of y-characters, viz., y = (ys,yg)_ mce
we have the predicted opulation i at hand, &e can easily sort out the

required predicted quantile for finite populatfpn. A predictor ot

(t/N)Lh quantile of finite population will be the corresponding

quantile of the above mentioned predicted populatioﬁ. Obviously, the

predictor suggested above uses/auxiliary information through 8
. \ -

t
As before, let Y(t) be the (t/N) h quantile of the finite

BLU®

population which we are going to predict by Y as per above

()
suggestions. At this stage it is required to invesEigatevproperties

Such as g-unbiasedness and {-MSE of Q(t)' Let £’= q, 0 <q <1,
and Y . be the sample q"™® quantile obtatned from X, without
using the auxiliary information. This qu is the commoﬁly used

predictor of corresponding population quantile

- 2
E () ~ Y = € - Y

we shall have our proposed predictor i(t) at leas§ as good as the

Y(t)' Nownif

2
) for amy sample 8‘6,21;, then

o

predictor YSQ“and if the strict inequality holds for some s, then
our predictof Q(t) will be better than the predictor qu under the
Model GMR or multivariate normal sqper—population-modgl.

To study these properties we need moments or distribution
* . : . >

of i(t) which at present we are unablé to find. If we assume the

[

dbove mentioned‘multivariate normkl.sﬁper—population, then the «
marginal distribution of ?_ is also multivariate normal. But the _

8 ; .
joint distribution of Y' = (Y;,Yl) is multivariate normal with .
" T 8 R
singular variance-covariance matrix with rank n. ObviouSigi Yi'p -

are no longer independent as well as identically distributed rather

. i
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the distribution depends on the columms of X. Exact distribution or
moments of order statistics for dependent variates have been studied .
by Young (1967), Grelg (1967) and Afonja (19/72). But thefe they
considered the parent distribution is either exchangeable or has

equal correlagion among the variates or-has noﬁ—singular variahce-
covariance matrix. In survey sampling both N and n are usually
very large. So, asymptotic préperties (as N,n » «») may be of some
interest. Some general results on the asymptotic behaviour of function
of order statistics with different mixing types of dependence are
avaflable in Gast;irth and Rubin (1975) and Mehra and Rao (1975). But
these types of dep;ndence apparently do not correspond to the nature

of depéndence we have 1in our z . So, for developiﬁg ;seful properties
Q(t)’ f%?ther study will be required on the exact

and asymptotic distribution of order statistics and their functions

b

of our estimator

where the sample is drawn from the population with singular variance-

covariance matrix.

-~ [



CHAPTER V

ASYMPTOTIC RESULTS FOR SAMPLES FROM FINITE POPULATION

§5.1 INTRODUCTION

[t 1s a common practice in .survey sampling to use the central
limit theorem for large populations and through this central limit
theorem Qe use standard tests for testing hypbthesis concerning finite
population para?fters. Rosen (1964) has given a systematic analytic
basis for asymptotic behavior of our sfatistics based on sampding
from finite populatioh: There ate also some earlier works in this
area, namely, Erdos and Renyi (1959) and Hajek (1960). Recent works
on the asymp;ocic behavior of order statistics and quantiles of a sample
from finite population are Jha (1975) and Singh (1980). 1In this

chapter we shall state some of these results and then we shall derive

the asymptotic biv;"éte distribution of sample quantiles.

§5.2 SOME ASYMPTOTIC RESULTS

o 4

‘ Usually we consider our population, ®

n o= (y01,...?y0N), as a finite set of fixed numbers and the sample
of size n _drawn from this Population is. yl,...,fn. When the
sampliﬁg is done without replaéement, samplenébservations become
correlated due to sampling. ‘Although this deﬁendency can be ignored
for sufficiently large popﬁlation size N, for samples drawn
withdut replacemeht the conveﬁfional limit procedure for indepepdent

observations as = + = does not have any meaning. The population
- . /

will be exhausted after a finite number of drawings. So ﬁany authors

!
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considered a double sequence of random variables as followa:

YIL’YLZ’“"Y fs a random sample from ”l

Kl kZ"“’Yk,nk is a random sample from e

They considered the limiting behaviour of statistics based on the

w0

. .
sequence {ﬂk} of population and assumed that the k h population

1
size Nk » = as k +» =. Let <>
N
(5.1) w, = — Z y and o, = — Z (y -u )
- N -1 j
k Kk §=1 Ok 9 k Nk j=1 Ok j ;]:

th

t
respectively k h population mean and variance. Let Fk be the k
I 4

population distribution function obtained by giving weight 1/Nk to

each element of, " Fk is assumed to be right continuous. The

k.

centered distribution function FE(y) is defined by F;(y) = Fk()'—u ).

- (k
Let Yn ) - (Ykl + ... +Y )/n. Then the following two theorems

kn

es‘tab/lis'h the convergence of sample mean in finite population sampling.
'y /

s
/

]" : ) {

.- - ’
Theoren 5.1. (Rosep, 1963) : Let {nk} be a sequence of populat'ions.

A sufficienfy condition for §r(1k)—uk to convérge aln;ost surely fo 0

}"  1is that,

=
—

for the sample size sequence (SSS) {n
2 1
(5.2) ” o 1im Ck ( - N = (0 o

If {r } satisfies -
k)
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e
‘

v ¢

(5.3 lim  sup [ y dF (y) = 0

A ly|~a

oy N B 5 (k) . .
then condition (5.2) is necessary for Y —uk to converge in

n
probability to 0 for  S$SS (nk}
1
’ . ()
Theorem 5.2. (Rosen, 1964). Necessary and sufficient conditions
that ?ik)—uk converges to ( with probability 1 for every SS5S
I

}m with nk » » when k +» «» is that {nk}w satisfies,

{n
k1 1

(5.4) 1im sup | IyIdFk(y) = 0
A= k |y|l>aA

Central limit theorem for fimite population has been studied

86

by Erdds and Renyi (1959) and Hajek (1960, 1961). The following theorem,

due to Hajek (1960), gives a necessary and sufficient condition for

sample total to be asymptotically normally distributed. As mentioned

in Chapter 1, let Y, = {1,2,...,N ) be the label set of the kP

population (nk) uits. Let 8, be a simple random sample of size

‘ th (k)
nk from 1ik' So that the k sample total nk Y - I Y has

- ki
iesk

mean and variance equal’'te nkpk and ((Nk—nk)/Nk)nkoi = Dk’

‘respectively, where e and ci are ag defined in (5.1).

-

iggeorem 5.3. (Hajek, 1960). Let s _ be the subset of elements of

U, on vhich the inequality .

(5.5) |y0ki -
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] th =
holds, where Dk is the variance ot k samp le total, nkY(k)
Suppose o o and (Nk—nk) > o,

. S (k) §
Then the random variable nkY has asymptotically normal
distribution with parameter (nkuk,Dk) if and only if
2
L O™
1es,q
(5.6) lim = 0, for any v > 0.
N
k > oo k .
) (yoki_“k)z
i=1 -
O

Estiﬁation of quantiles is usually considered with hargly any

restriction concerning the distribution. In the first situation an
efficient estimator for the unknown quant#le can be derived fggm thé
efficient estimator of the unknown paréméter. In the second case,
the natural estimator, namely the sample quantile, cannot be beaten,

Reiss (1980). We shall now discuss asymptotic behaviour of sample

quantiles. For this, we need the concept of empirical distribution

function G(t,n) corresponding to the sample Yl,...,Yn from w,
which 1is defined as
[y
1 n
G.7 G(t,n) = = 2 I(e-Y,)) , - <t < ®
noys ] \

where I(:) 1is indicatoryg- function with

(5.8 I(u) = O if u<o

= 1 if u>0 .

If no complexity arises then we shall use G(t) for G(t,m).

’
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\

- th
Let O < p < 1. Then the p quantile of a distribution
function F(t) 1s defined as supremum over the t-values for which

t

F(t) < p. Analogo"ly, we define the empirical p h quantile
corresponding to a sample of sf&; n “from w as the surpremum over

. # .
the t-values for which G(t,n) < p. The fgllowing theorem, dug,to Rosen

t

(1964), gives the asywptotic behaviour of empirical p b quantile.
Theorem 5.4. Let Y(p’nk) be the empirical pth quantile in a

sample of size o from nk, k = 1,2,... . We assume that there 1is

a continuous distribution function F(t) such that (4]

(5.9) n /A swp [F () - F(©)] = 0
k >« t - k ~ . R
and, furthermore, that F(t) 1s continuous and positive i:ha vicinity
# O
of the pth qpanggie n of F(t). Now, if lim n = » . and .
' P k » «
1{m N 1
k -

then for every real a,

F'(n )Y(p,n )—n _ a2,
(5.10)  1lim. P|. b S SRR A & [ X /2

- —_ 21[ o :
k »+ = 1 1 —00
/p(1-p) (— - ) ’
N N b ‘

” - - & d
. ‘ 0

-
-

This work of Rosen was lsfér extended by Sirgh (1980). Singh

(1980) has shown that gfterrproper-normalization, the weak 1limit of the

process Gk (t) 1is Wo, where W° is a Brownian bridge on D[0,1],

the space of all right continuous functions on [O0,1] having left hand

limit (for'details on the space 'DIO,l] please see Billingsley (1968)).

b
K
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85.3 ASYMPTOTIC BIVARIAFE DISTRIBUTION OF

In Chapter 4, we have derived the

) for a sample from a bivariate

K Y

opulation. There we considered X and Y . -
popu (1) E))

t
quantile of x-values and (j/n) b quantile

and depending on the population configuration, we derived five

different forms of probability functions for
]

SAMPLE QUANTILES

<
joint distribution of

\

89

distrihution of finite

of

as sample

(1/n) " ~—

y-values respectively

Xy Y-

In this

section we shall study asymptotic behaviour of those distributions.

We shall first consider the probability function under Case 1

of Chapter 4, (relation (4.29) witk. s replaced by r). Let us

assume that N 1s so large such that mo,

r-

m

0

-2, t-m -2

0

and

- »
N+m0—r—t+2 are also sufficiently large for applying the following

approximations:
mO mo. mo(mo—l) (mo—m+1)
(5.11) - m'(m _m)v = t
m 0 : m-
me (1. (1- ) -2 - =)
- 0 0 0
m!
m
~ M
= = , for large m0 .
Similarly,
r-m_~2 (r-m.-2) 172
(5.12 () S
i-m-2 ~ =2l
t-m-2 (t-m.-2)3 72
~ 0
(5-13) ) ~ U_m_z)i ?
j-mr-2 : ‘
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Am- 1+
<:N+m0—r—t+2 (N+m0—r—t+2)n L=j+2
~§i+2)!
ot 1- +2 (ntm-1-3+2)
N n
-~ N
(5.1%) <: :>f~ —
n.
n
Case 1 implies that units (xO(r)’YO) and (xo,yo(t)) are both in the
< . P i that
sample s, and X5 < xo(:) , yO yO(t) robability at these

two particular units will be in the sample is,

1

(5.16) ETE:IT

For large N, (5.16) can be

(5.17) = = Pr((

Let us denoté lim r/N =

N + =

Pr{(x Y} ¢ s}

O(r)?yo)y (XO’YO(C)

approximated by

p 3 .yo) e 8] - P[(xo,yo(t)) e s8]

0(r)

’

a, lim t/N =8 and the joint
N+ ~

distribution function of (X,Y) as N + = by F(X,Y), which we

shall assume continpuous.

hand side of (5.17) as
Pr[x <X <x_ +
a a
But

(5.18) Pr[xa <X < x, +

Pr(X < x_+ Ax, Yo < Yo,] = Pri{x < x,, Yo < Y.l
a 0 B a* 70 B

So for large N, we can express the right-

bx, yq < yB] - Prlx, < x, Yg.< Y < Yo + Ay] .

Ax, yo < YB] =

ax

EESE*ZL dx’ as Ax - O

Ax Ax



I .
.J‘?” i
R

G
(.‘.ﬁrﬁ;";é\
TeBimilarly,
aF
(5.19) Pr{x. - x , vy, Y <y +Aday] = _7(_)(‘)_1‘)’ dy
0 a 8 i3 3y I(X )
: ().’YLS
as Oy + 0
“ d P.[M = - Y = f
So, finally considering 1[ m, X(i) XO(r)’ 1) yO(t)] o

finite case equal to Pl[m, L yB] dxdy as N » «», we get by

~

using (5.11)-(5.19) in (4.29)

n'

m!(i—m—2)!(j—m—Z)E(n+m—i—j+2)!

(5.20) P im, x, yB]dxdy
m i-m-2 j-m—
) TQ, r mo 2 t mo 2
N -N N

ntm-1-j+2

' N+m‘~ -t+2
B il Ml _3F 3F .
N ax 3y yoo

L 3
where partial derivatives are evaluated at (xa, yB). Let as N > =,

%o .
N Py
r-mO-Z .

N Py
t—mo-2 )

N = Py X
N+m0-r-t+2

N T Py o

_So that, we can write (5.20) as:
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, m {i-m2 j-m-2 ntm—i-j+2
5.21 P (m Jdxdy = S W: i T S
(5.20) P Xy yB xay @ (1-m-2) ' (J-m-2) ! (ntm-1-§+2) !

x — — dxd
v y

Our (5.21) is exactly the same as in (3.1) of Siddiqui (1960). Similarly
we can approximate for Case 2, Case 3, Case 4 and Case 5. Hence our
bivariate distribution of (X(i)’ Y(j)) for finite population, as

N » = conforms to the bivariate distribution of (X(i)’ Y(j)) for

13

continuous population as derived by Siddiqui (1960).
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