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ABSTRACT

Different program analysis tasks need different infor-
mation from the source code. For some applications,
an AST (Abstract Syntax Tree) representation of the
source may be sufficient. However, we want to be able
to specify assertions on the structure of C++ programs
directly in terms of semantic entities and their relation-
ships, rather than syntactical ones such as the names
of source files, thus ASGs (Abstract Semantics Graph)
rather than ASTs are needed. This paper documents
the design of a program called dzlinker that can gen-
erate ASGs. dzlinker is based on Bell Canada’s Datrix
schema and the tool dxparscpp. It has been used to an-
alyze both MFC (Microsoft Foundation Classes) source
code and C++ programs that use STL (Standard Tem-
plate Library). Difficulty with dzparscpp are summa-
rized.
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1 Introduction

Many software analysis tasks involve analyzing source
programs. Typically, the analyses involve parsing the
code and extracting facts from it. A parser is usually
used to generate an AST (Abstract Syntax Tree) from
which many facts such as “class X has method m” can
be extracted.

An ASG (Abstract Semantics Graph) [16, 2], compared
with an AST, embodies more semantics. Examples in-
clude relations between the use of a variable and its
definition, a function call and the definition of the func-
tion, the use of a type name such as the target type in
a type cast, and its definition, and so on.

For our purpose, we wanted to be able to perform whole—
program queries of the source programs, checking asser-
tions about their structures [9]. To achieve that, we need
an intermediate representation of the source that is more
suitable for the task than the source itself. Furthermore,
because the kinds of queries that we want to perform are
still evolving, ideally we would also like the model to re-

tain from the source as much information as possible.
For example, we do not want to prematurely exclude
expressions from the model; in fact, it has turned out
that they are often needed when we specify constraints.

Bell Canada’s Datrix model [2] and the associated C++
tool, dzparscpp, are adopted. The tool dzparscpp works
on compilation units. It processes one compilation unit
at a time and generates a textual representation for it,
which is based on the Datrix model.

int v;

class X {
public:
void foo() { bar();};
void bar() { v++;};
private:
int v;
1

Figure 1: Sample C++ Source: exl.cpp

The C++ code of Figure 1 will be used as an example to
introduce the Datrix model. dzparscpp is used to parse
the code and a textual model is generated. Due to the
size of the generated model (32 nodes and 37 edges),
only an abbreviated version is provided, as visualized in
Figure 2.

As shown in Figure 2, the output of dzparscpp is not
a pure AST, since some leaf nodes, specifically those
representing types, have outgoing edges that lead back
to higher level nodes of the tree. Type information for
the global variable v and the data member v of the class
X, both of which are int, are presented. The figure also
shows the return types of the methods foo and bar, both
of which are void.

dzparscpp, however, can only generate partial ASGs. Al-
though the tool provides type information for both the
definitions of variables and the return type of functions,
it does not resolve any function calls and variable uses.
For example, in Figure 2, the invocation of bar by foo
is only represented as a “NameRef” node, so is the use
of the data member v in bar.
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Figure 2: dxparscpp—generated ASG for ex1.cpp

ASTs, or the partial ASGs like what dzparscpp pro-
duces, can make certain types of analyses inconvenient,
if not impossible. For example, if we ask from Figure 2
who uses the global variable v, based only on the ASG, a
tool would have to do name resolution first so as not to
confuse with the data member X::v. But doing queries
in such an ad hoc way is not deemed to be good.

In contrast, we want an ASG like that of Figure 3. The
difference is that the two “NameRef” nodes, one for the
call to bar and the other for the reference to the data
member v, are now resolved: the “NameRef” nodes are
deleted and the edges that point to them previously are
redirected to their definitions. Given such an ASG, the
above question can be immediately answered by merely
examining all the incoming edges of the global variable
v.

Our goal is to create a linkage program, dxlinker, that
takes a set of dzparscpp—generated ASGs as input, and
converts them into one single system-wise ASG.

Overview of Paper

The rest of this paper is structured as follows: Section 2
presents an overview of the Datrix model. Section 3
introduces the types of problems that our tool has to
deal with. Section 4 describes the design of dzlinker.
Section 5 briefly summarizes some problems with the
dxparscpp tool. Section 6 describes some related work.
Section 7 concludes the paper.

2 Overview of the Datrix Model
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Figure 3: Desired ASG for ex1.cpp

The Datrix model is based on TA (Tuple—Attribute lan-
guage) [7]. TA allows recording of information about
certain types of graphs. The information includes (1)
nodes and edges in the graph, and (2) attributes of
nodes and edges. Program entities such as files, names-
paces, classes, functions, statements, expressions, tem-
plates and so on, are represented as nodes. The relations
between these entities are captured by edges that con-
nect the nodes.

Both nodes and edges can have attributes. For exam-
ple, a class member can have a visibility attribute, and
a global variable can have the “external” attribute, or
a storage attribute like “register” or “volatile”. For an-
other example, an inheritance relation can have both
“virtual” and/or visibility attributes, the ownership re-
lation between a block and its statements can have the
attribute “order” to tell the order of the statements
within the block.

The Datrix model is designed for C/C++ style of pro-
gramming languages. It has been used to represent C,
C++, and Java programs. Overall, the model is a union
of the features of the languages. For example, it includes
nodes for templates, which is only available for C++
but not Java and C, and similarly the synchronization
mechanisms for Java, which are not available elsewhere.

Nodes and Edges

At the system level, a C++ program consists of a set of
compilation units. dzparscpp generates a partial ASG
for each compilation unit. The ASGs are independent



of each other.

The root of each ASG is an artificial “cSystem” node
that is meant to represent the whole system. The only
child of the system node is the global scope, which
is represented by a “cScopeGlb” node. The compi-
lation unit itself is represented as a “cScopeCompil”
node, which is currently treated as a child of the global
scope. A compilation unit may contain more than one
file through header file inclusion. Each file is represented
as a “cScopeFile” node. The entities within each file are
treated as its child nodes.

Data types are represented by different types of nodes.
The builtin types include signed char, char, long dou-
ble, double, float, unsigned long long, unsigned long,
unsigned int, unsigned short, long long, long int, int,
short, and void. Other types include aggregate types,
enumeration, array, pointer type, reference type, func-
tion pointer, template type, template parameter type,
template generated type, forward type, and alias type.
Builtin types are children of the global namespace. Cur-
rently, pointer type, reference type, forward type and
function pointer type are treated as children of the
global namespace, which is inappropriate, see section 5
for more discussion.

Function bodies are represented by “cBlock” nodes. A
“cBlock” node may have statement nodes and expres-
sion nodes as its children. There are also various types
of nodes designed to represent statements and expres-
sions. See the Datrix reference manual [2] for complete
reference.

Currently, dzparscpp does not resolve any name refer-
ences, thus “cNameRef” nodes are used to represent
name references.

Edges are also typed. For example, “cArcSon” edges
are used to represent all scope relations, such as those
between a class and its members, a function and its
parameters and body. “cArcOpd” edges represent the
relation between an expression and its operands.

There are also several other types of edges representing
relations such as inheritance, friendship, and that be-
tween a non-inline method definition and its class. See
the Datrix reference manual [2] for other types of edges.

3 Requirements for dzlinker

Given a set of Datrix ASGs, dzlinker should (1) merge
them into one ASG, and (2) resolve all the referenced
names. In the output ASG, information about each pro-
gram entity should appear once and only once, which
normally should be its definition. dzlinker, however,
should be able to handle incomplete input too. For ex-

ample, if the ASG that defines a variable is not pro-
vided, as in the case of libraries, the declaration may be
reserved in the output.

Merging Multiple ASGs

Due to the way that the C++ programming language
organizes source code and its compilation model, viewed
from the whole program standpoint, information about
one program entity can redundantly appear within
and/or across multiple compilation units. One example
is the separation of function declarations and definitions;
a function may have multiple declarations appearing in
multiple compilation units but one definition. Another
is forward types and the concrete types that they re-
fer to. A third one is external declarations and their
corresponding definitions.

Therefore, when merging ASGs, dzlinker needs to re-
move the redundant nodes. At the same time, care must
be taken to maintain the correctness of the resulting
graph. We call this the type node reference problem.

Eleminating Redundant Nodes
The following is the list of situations where one needs
to remove nodes and subtrees:

e The subtree rooted at a header file should be
deleted if it has been seen in a previous compila-
tion unit.

e The subtree for a namespace should be deleted if it
has been seen in a previous compilation unit.

e The subtree for an aggregate type should be re-
moved if its definition has been seen previously.

e A forward type node should be removed once its
concrete type is found.

e The declaration of a member function should be re-
moved and replaced by its definition once the def-
inition is found. The definition node should also
“inherit” from the declaration node attributes such
as visibility and virtuality.

e A variable declaration should be removed and re-
placed by its definition once the definition is found.

The example in Figure 4 demonstrates the elimination
of both the whole subtree for a class and the declara-
tions of member functions. As visualized in Figure 4 (c),
the whole subtree of class X in ex22.cpp is marked as
deleted. Also note that all the declarations of member
functions are also marked as deleted. And their corre-
sponding definitions are connected to the class X (note
that member function definitions are connected to their
classes by “DeclaredIn” edges). Furthermore, the visi-
bilities of the deleted declaration nodes, which are pub-
lic, should also be transferred to their corresponding
definition nodes. Figure 4 (d) shows the desired out-



come.

class X{ class X{

public: public:
void foo(); void foo();
voi d bar(); voi d bar();

X::foo(){ X: o bar () {

} }

a) ex21.cpp b) ex22.cpp

X ggrType
ame: "X

AggrType
ame: "X"
/ w \

T
. i
. i S
i
i
Function
name: "foo"

wmwmnmnz> DeclaredIn

c) ASGsfor ex21.cpp (left) and ex22.cpp (right)

d) thefinal ASG

Figure 4: Example of Eliminating Redundant Nodes
and Subtrees

Type Node Reference Problem

Generally, when removing a type node, one has to make
sure that the old edges that point to the node are prop-
erly reconnected. Figures 5 and 6 are two examples that
illustrate two special cases, one has to do with forward
types, and the other with nested types.

Figure 5 shows one case of the problem caused by for-
ward types. Datrix model assigns each program entity
a node regardless whether it is a definition. For exam-
ple, a forward type name is allocated a “ForwardType”
node, which will become redundant and need to be re-
moved once the concrete type is found.

In Figure 5 (b), the node “X*” points to the node “For-
wardType X”, which is shown by the dashed arrow line
between them. Since the forward type node would be
of no further use in terms of the semantics of the pro-
gram, both the node and its associated edges should be
removed. At the same time, dzlinker must create a new
edge from the “X*” node to the “AggrType X” node, to
preserve the meaning that the former is a pointer type
to the latter.

Figure 6 shows another case of the problem caused by
nested types. As shown by Figure 6 (c), when merging
the ASGs of ex41.cpp and ex42.cpp, only one of the
two subtrees for the class X should be kept. Particularly,
the “AliasType INT” node is deleted, to which the node
“b” points previously. dzlinker has to ensure that there
be an edge from “b” to the reserved “AliasType INT”.
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Figure 5: Type Node Reference Problem: Forward Type
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Figure 6: Type Node Reference Problem: Nested Type

Name Resolution

In Datrix model, the “NameRef” nodes are used to rep-
resent the uses of names. Such nodes can represent the
uses of variables and types, the invocation of functions,
and so on. Two examples from Figure 2 are the use of
the variable v and the invocation of the member func-
tion bar.

A type name can be used not only as the type of vari-
ables, but also as the argument to template instantia-
tions, or as the target type of type cast expressions. dz-
parscpp generates “NameRef” nodes for all these uses
of type names.

The uses of the keyword this are also treated as
“NameRef” nodes.

In name resolution, dzlinker needs to resolve all uses of



names to their definitions. Essentially this is the stan-
dard name resolution problem, with the added complex-
ities of C++ [10, 11, 20, 19].

4 Design of dzlinker

dzlinker takes a set of Datrix ASGs produced by dz-
parscpp and merges them into a full ASG. It performs a
top down (in the direction along which that the pro-
gram text goes), depth first traversal of each input
ASG, merging its nodes and edges into the output ASG.
During the traversal, dzlinker adds, deletes, replaces,
and/or retrieves entities to/from the corresponding sym-
bol tables.

Therefore, the structure of dzlinker can be characterized
as the repository architecture style [17]. The ASG is the
centralized data, and the traversal algorithms are the
computational processes that mutate the data.

dxlinker assumes that all its input compilation units
are well-formed according to the semantics of C++ [10].
This assumption is necessary for the correct operation
of the tool. For example, the DBU (Declaration Be-
fore Use) rule guarantees that the use of a variable will
eventually be linked to a declaration in some symbol ta-
ble. Similarly, ODR, (One Definition Rule) can guaran-
tee that once the definition of an entity is inserted into
its symbol table, it will not be replaced by any other
entities in the future.

A list of features of dzlinker are summarized as fol-
lows:

o dzlinker merges a set of ASGs into one ASG, re-
moving all duplicated nodes and edges.

e dzlinker resolves forward types to their concrete
types.

e dzlinker can resolve the reference to a variable to
its declaration. This includes both global and lo-
cal variables, parameters, data members from both
classes and base classes, and data members of tem-
plate classes.

e dzlinker can resolve a function call to its declara-
tion. This includes not only ordinary functions,
but overloaded functions, overloaded operators, im-
plicit conversion functions, and template functions.

e dzlinker can resolve the reference of a function
name in an expression to its declaration.

e dzlinker infers the types of all expressions and adds
that information into the ASG.

e dxlinker supports scopes such as namespaces and
nested classes, and related operations such as
namespace imports and scoped name references.

e dzlinker can handle C++ specifics such as default
arguments, initializer expressions, and initialization
lists for constructors.

e dzlinker fixes some problems of dzparscpp. For ex-
ample, dzparscpp uniformly treats all forward types
as the sons of the global namespace, which is in-
appropriate since a forward type defined within a
class should be the son of that class instead. Even
worse, the global namespace might have a forward
type with the same name, which will confuse with
the forward type of the class. Similar things happen
with both pointer and reference types.

The rest of this section outlines the design of dzlinker,
with an emphasis on function resolution, since it is prob-
ably the most complex task.

The Data Structure For ASG

An ASG is a directed graph that consists of nodes and
edges, which are modeled by the classes Node and Edge
respectively.

Class Node and Class Edge

The GraphFElement class captures the common proper-
ties of both nodes and edges: both are typed entities,
both have attributes that are name-and-value pairs, and
they all can be marked as deleted through setting the
attribute useful false.

+usef ui :_bool ean
[Fget At L1 (name: const string &: string
+set At tr(name: const_string & value:const string &: void

[

Node
+refid: int
+from vector<int> [+source: int
+to: vector<int> +target: int
A
—
[+synbol Tabl e: Symbol Tabl e * =

Figure 7: Node and Edge

Both Node and Edge are subclasses of GraphElement.
Each node is assigned a unique id to identify itself. Each
edge records the ids of its source and target nodes.

If a redundant node represents types, and there are
other nodes referencing it, simply setting useful to false
is not enough: then the reference nodes will lose its type
information. The refld field is added so that the redun-
dant type node can use it to record the id of the node
that it is resolved to.

The class Asg (Figure 8) implements the ASG. It has
two important data members, the map nodeMap and
the vector edgeVec. edgeVec stores edges, which can be
accessed through their positions in the vector. nodeMap
is used to store nodes, whose ids are used as the map
keys.

To flexibly traverse the ASG, the implementation of the
Node class uses a slight variant of the adjacency list



data structure. Each node maintains two sets of indices
to edgeVec, from and to; from stores the indices for all
the edges that leave the current node, and to stores the
indices for all the incoming ones.

The class Node is further specialized into subclasses
such as Unit and FExpression. The class Unit repre-
sents scopes such as classes and functions. In order to
do name resolutions, it has a data member symbolTable
to access its symbol table.

Class Asg

The behavior of the class Asg can be divided into three
phases: loading ASGs, name resolution, and persistence.
It comprises the main body of dzlinker.

Asg
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Figure 8: Class Asg

The first thing that the class Asg does is to read and
merge all the ASGs that belong to the same system into
one single final ASG. Two details have to be taken care
of here. One is to correctly assign new ids for the nodes
of the final ASG, and the other is to correctly merge the
duplicated cSystem and cScopeGlb nodes.

A system may comprise more than one independent
ASG, each of which corresponds to a compilation unit.
This causes the first problem, that is, the sets of ids of
the ASGs overlap. In order for the new ASG to main-
tain the invariant that each node has a unique id, the
class Asg has to assign new ids to all the nodes of all the
ASGs but the first one. This is done together through
two fields, nodeldBase and availableld. The field nodel-
dBase records the id for the last node of the last ASG,
that is, the largest id so far, and availableld records the
next available id.

Similarly to the shared ids problem, each compilation
unit has a ¢System node and a cScopeGIlb node, but
the final ASG only needs one pair of them. The fields
theSystemNode and theScopeGlbNode are used to record
the pair. All other pairs are deleted.

Once all ASG files are loaded, name resolution is done
through the method nameResolution. Based on the type
of the current node, this method delegates the task to
other appropriate methods such as the protected meth-
ods doNR/CmpdType (process compound types such as
classes), bindVarName (resolve variable references), re-
solveFctCall, and resolveOperatorCall, and so on.

Finally, the ASG is printed to the standard output using
the Datrix format.

Symbol Tables and Symbol Table Stack

C++ supports three primary categories of scopes,
namespace scopes, class scopes, and local scopes, and
C++ programs are organized into tree-structured hier-
archies with scopes as nodes and the global namespace
as roots. The outermost namespace scope of a program
is called the global namespace scope or global scope.
Each class definition introduces a distinct class scope. A
local scope can be either the portion of a program that
defines a function, a compound statement, or a block. A
fourth type of scope, the file scope, is due to the legacy
of the C programming language; If a file defines any
static variables, then the file forms a file scope.

A scope can contain program entities such as variables,
functions, and types, and so on. Each entity of a given
scope can be referenced from both within the scope and
any of the other scopes that are enclosed within it.

To resolve name references, each scope needs a symbol
table to maintain the program entities that are defined
within it. The symbol table is essentially a map from
identifier names to the corresponding program entities.

Symbol tables can be further divided into subtables,
with one for each of variables, functions, types, and
namespaces. Each type of scope can only have the sub-
tables appropriate for it. For example, a namespace
symbol table can have all four subtables whereas the
symbol table of a class cannot have the namespace sub-
table.

The implementation is straightforward. Both the vari-
able and type subtables are implemented as maps from
names to node ids. Giving a name, the corresponding
node information can be retrieved from the ASG. The
function subtable is a bit complex; Since function names
can be overloaded, the table is implemented as a map
from a function name to the set of signatures for the
overloaded functions.

SymbolTable
CvarTabl e: map<string, int>
- typeTabl e: mep<st ring,
-fctTable: map<string, set<Signature *> *>

- def Node: i nt

[+addVar (nane: const_string &1d:int): bool ean
+addType( name: const string &id:int): bool ean
+addFct (sig: Signature *): bool ean
+1 ookupVar (nane: const string & name): Var

+1 0okupType( nare: const _string &: Type
+1 0okupFct (name: const string & : set<Signature *> *
+get )i Unit *

[ NSSymbolTable | [
[FnsTable: map<string, int> | [FLnpor t edSymhol Tabl e: _Synbol Table - |
[*addNS( nare: const string &1d:int): bool ean [~get | mpor t edSynbol Tabl e(): Synbol Tabl e

[+ ookupNS( nane: const_string & : Namespace * +get Name() : string

ImportedSymbolTable |

Figure 9: Class SymbolTable

C++ allows to import a namespace and a name, using
“using directive” and “using declaration”, respectively.



The class ImportedSymbolTable can distinguish an im-
ported scope from a regular scope.

Each identifier can have a context. The context of an
identifier consists of a sequence of symbol tables whose
scopes enclose the identifier. At runtime, a searchable
symbol table stack is needed to maintain the context in-
formation. The class SymbolTableStack implements the
abstraction. push, pop, and top implements the usual
stack operations. size and the operator “[]” allow the
iteration of the stack. lastScope, globalScope, and file-
Scope allow access to the respective symbol tables. num-
berOfScopes returns the number of scopes that enclose
the current point. getFileNode returns the node that
represents the current file. hasTemplate tells whether
the current point is within the body of a template.

SymbolTableStack
- scope: vector <Synbol Tabl e *>
+push(sst: S\/rrbol Table *): void
+pop(): void
+top(): Synbol Table *
+size(): unsigned int
+operator [](index: unsl gned int): Symbol Table *
+| ast Scope(): Synbol T:
+gl obal Scope(): S/n‘bol Tab\ e *
+fileScope(): Synbol Table *
+nurrberCIScopes() unsi gned int
+getFile(): File
+hasTenpl ate() : bool ean

Figure 10: Class SymbolTableStack

Function Call Resolution

Function calls, as shown in Figure 11, are special ex-
pressions. Resolving a function call needs 3 steps: (1)
collect all the candidate functions, (2) select the viable
functions from the set of candidates, (3) decide the best
one.

ExpFctCall
“context: Synbol Tabl eStack *
set Synbol Tabl eSt ack( cont ext: Synbol Tabl eSt ack ¥): void
+cr eat eFct Cal | (fct Cal [ Node *): ExpFet Cal
+ esol veFct Cal 1 () bool ean
#get Candi dat e( candi dat e: vect or <Si gnature *> &): void
#conpar e(si g: Si gnature *): RankVect or

[FreeFctCall ] [ MethodCall | [ ScopedFetCall |

TemplateFctCall

[_operatorcall

Figure 11: Function call expressions

The method resolveFctCall implements the three steps
as an abstract algorithm. It invokes two other virtual
functions, getCandidate and compare. As their names
suggest, function getCandidate collects all the candi-
date functions for the current function call, and func-
tion compare evaluates the current function call against
a function signature fctSig and returns a vector of ranks
(see section 4). The one with the best vector of ranks is
then chosen as the match.

A function call needs its symbolic context to resolve
itself. setSymbolTableStack can be used to set up the
context.

There are several syntactical forms for function calls,
for example, f(...), ns::f(...), o.m(...), and a op b, and
so on. Different forms require different ways of function
resolutions, which are implemented in the correspond-
ing subclasses. createFctCall is a static method that
constructs objects of the subclasses.

Both function declarations and definitions are modeled
with the class Signature (Figure 12). Each function may
have more than one declaration but at most one defini-
tion, and there may exist multiple Signature objects for
the same function at certain moment. But eventually
the ASG will allow one and only one of them to ex-
ist. The equality operators and replace With member
function help ensure this: the equality operators decide
whether two Signature objects are for the same func-
tions, and the replace With function replaces the current
signature with the parameter. Together with its sub-
classes, the class Signature uses “double dispatch” to
implement the equality operations.

Each function has a return type and a sequence of pa-
rameters. The member functions, size, iTh, and getRe-
turnType, collectively implement an interface to query
the type information of the function.

Signature
+cvea& eSi gnature(fctNode: Node &: Signature *
s >

=(sig:
+::(s| g QOper ator Met hodSi g &) : bool ean
+repl aceW t h(sig: Signature &: void
+si ze(): unsigned int
+i Th(index:int): const Typel nfo *
+get ReturnType(): Type

| FreeFctsig | [ Methodsig | [ TemplateFctSig |

[ TemplateMethodSig | [ OperatorFctSig | OperatorMethodSig

Figure 12: Function Signatures

Ranking Argument—to—Parameter Conversion
Comparing the type of an argument with the type of
its corresponding parameter can yield one of the follow-
ing six results: exzact match, promotion, standard con-
version, user-defined conversion, ellipsis, and no match.
These ranks are implemented as classes shown in Fig-
ure 13.

One can compare two ranks, r; and rs, with the opera-
tors == and <. “ry==r»” means that both r; and ry
are at the same rank. “r; < r9” means that r; ranks
better than r5. Therefore, a no match is “greater” than

all the other ranks.

Some ranks can be further refined into subranks. For
example, the exact match category comprises 5 situa-



tions that can be considered as exact match, i.e., exact
match, lvalue-to-rvalue conversion, array to pointer con-
version, function to pointer conversion, and const quali-
fication, with const qualification considered greater than
the other four.

Thus even if two rank objects are both ezact match,
one cannot say that they are equal, and further com-
parison between them is required. Again, this is also
implemented as a “double dispatch”.

Rank
irankLevel . RankLevel

e
{level : const Standar dConverstion &): bool ean
oi e

an
el i const ExactMaich &: bool ean

const StandardConversion & : bool ean
const_User Conversion & : bool ean

|

StandardConversion [Promotipr ]
[FTsQualificationConversi on: bool ean
EllipsisMatch

|- i nheri tanceD stance: int
«singl eton»
NoMatch

[+==(Tevel : const Rank & bool e
=={level : const Exactiatch &): boo\ ean
+<(1 evel : const Rank &: boo

1< vel onst Bxact i ch @) bool ean

[F==(T evel : const Rank &: b
1=c{Level : const Standardconversion &): bool ean

+set | 2r Transf or mati on() | voi d
|+set Qual i fi cati onConver sion(): void

<l vel Sonst Stanaar dconver olon &): bool can
voi

[+set Qual i fi cati onConversion() : voi

UserConversion
~Standar dConver si onFi st bool ean
- st andar dConver si on: I3
+==(T evel : const Rank &: bool e:
*=2{1 ovel  const User Cohversion @ bool ean
+<(I evel : const Rank &: bool ean
+<(l evel : const User Conversion &: bool ean
+set Conver si onLevel (I evel : Rank *): void
+set Standar dConver si onFi rst(): void

Figure 13: Ranking Arguments and Parameters

Comparing a function call with a function declaration
thus yields a sequence of ranks. A comparison is con-
sidered a match if there is no no match in the sequence.
The class RankVector of Figure 14 models the result of
the comparison. The operation isMatch tells whether
it is a match. In case of resolving overloaded functions,
one function is considered better than another if each
rank of the former is no worse than that of the latter.
The operator < implements this.

RankVector

-mat ched: bool ean

-rankVector: vector<Rank *>

-isTenpl ate: bool ean

+i sMatch(): bool ean

+<(rankVector:const RankVector & : bool ean

Figure 14: Rank Vectors

Type Information

Type information serves as the basis of comparing argu-
ments types of function calls with the parameter types
of functions. The Typelnfo class represents the type in-
formation for both arguments and parameters (see Fig-
ure 15).

The type information for a parameter or an argument
includes its base type (that is, the type with all modi-
fiers removed. For example, the base type for “const int
&” is “int”.), whether it has a const modifier, whether it
is pointer type, function pointer type, reference type, or
ellipsis, and for an argument, whether it is a literal con-
stant, and particularly, if so, whether it is the constant

0.

The method compare of the class Typelnfo ranks a Type-
Info object for an argument against the Typelnfo object
of its corresponding parameter, according to the rules
defined by C++ [10]. It calls SCS (Standard Conver-
sion Sequence) and UCS (User-Defined Conversion Se-
quence) to implement this.

Typelnfo
-isLiteral: bool ean
-isZero: bool ean
-isPtr: bool ean

- baseType: Typel nfo
“Fconpar e( par am const Typel nf o &) R‘ank *
#SCS( par am const Typelnfo &) :

#UCS( par am const_Typelnfo &) : Rank

1
[ TemplParamTypeinfo |

[
[ FctNameTypelnfo |

Figure 15: Type Information for Arguments and Param-
eters

Two special kinds of Typelnfo are FctNameTypelnfo
and TemplParam Typelnfo. FctNameTypelnfo is for
function names that are arguments to function calls, and
TemplParam Typelnfo is for the type information of tem-
plate parameters. Both need different ways of ranking:
the former will have to compare all the viable functions
with the parameter to find an exzact match, and the lat-
ter has to perform template argument deduction.

5 Limitation of dzparscpp

Although dzparscpp has been well enough for our pur-
pose, we do find some problems with it, which is listed
out as follows:

e The const modifiers in both types and functions are
not captured. This has impact on the accuracy of
function resolution.

e dzparscpp cannot correctly parse function pointer
declarations. For example, in int (*FUNC)(int,
int);, instead as a function pointer, FUNC is rec-
ognized as a function with a return type of int *.

e dzparscpp cannot correctly parse conversion func-
tions whose target types are template parame-
ters. For example, in a template with the parame-
ter TYPE, the conversion function operator TYPE
*(){...} is treated as a function with the name op-
erator TYPEFE that returns ¢nt. This is wrong.

o dzxparscpp does not distinguish char and unsigned
char. This problem is found when parsing the fol-
lowing code of the class istream:

# 32 "/usr/include/g++-3/iostream.h" 2 3
class istream: virtual public ios{

istream & operator>>(char & c);



istream & operator>>(unsigned char & c){

return operator>>((char &)c);}

3

As a result, the two overloaded operators >> are
treated as the same, which in fact are different.

e Arrays are treated as pointer types.

e The creation expression “new X(...)” has the type
“X” instead of “X*”.

e bool is not recognized as a builtin type.

Scope-related Problems

e dzparscpp cannot properly process scoped names
that involve more than one scope. For example, in
“Namespacel::Namespace2::Class”, both “Names-
pacel” and “Namespace2” are treated as “Forward-
Type” nodes, and “Class” as declared in “Names-
pace2”. Conceivably, we should be able to use these
information to look up the definition of “Class”.
However, the fact that “Namespace2” is a nested
namespace within “Namespacel” is not captured,
which makes it impossible for dzlinker to look up
the definition of “Class”. Similar problem also hap-
pens when the referred scopes are template param-
eters.

e dzparscpp only accepts using clauses appearing at
the global scope. Those at class scopes and local
scopes are treated as errors.

e Pointer types that point to types defined in user—
defined scopes such as namespaces or classes, are
treated as children of the global namespace. This
is inappropriate. Rather, they should have been the
children of the corresponding user—defined scopes.
Similar mistakes happen for reference types and for-
ward types.

Template-related Problems

e dxparscpp cannot handle template default argu-
ments.

e dzparscpp does not recognize the initialization of
the static data members of templates.

e dxparscpp cannot correctly process template spe-
cialization [20]. This problem was spotted when we
tried to link a C++ program that makes use of the
standard string, which is actually an alias type of a
partial specialization of the basic_string template.

6 Related Work

The concept of
ASG originates from Reprise (Representation including
semantics) [16], an early work on developing a schema
for representing C++ program. Reprise views ASG as

AST with additional semantics information from name
analyses. Reprise uniformly represents all semantic in-
formation as strongly typed expressions, that is, applica-
tions of operators to arguments. The simple conceptual
model can then be realized in a graph data structure.

Two more recent schemas are Datrix and Columbus [4].
They are intended to serve as general schemas for a
broad range of software engineering tasks, and as an
exchange medium between toolsets.

Different tasks seem to have different requirements on
the program database, in terms of both the kinds of
information needed and the precision of the information.
The authors of [4] distinguish three levels of abstraction
for source information: lexical structure, syntax, and
semantics. Transformational tools such as refactorings
would need lexical information such as the position of
an identifier so that source code can be reproduced in a
form close to the original. Syntax concerns the structure
of program elements such as types, functions, templates,
and so on, in a form more close to the concrete syntax of
the language. Examples of semantics are which entity an
identifier refers to, which function a function call really
uses, and from which template class a generated type
is instantiated, and so on. Most work handles syntax
better than semantics, and dzlinker is an attempt to
provide the semantic information that is absent from
the output of dzparscpp.

CPPX [3] is an open source project that dumps the
C++ parse tree into some text formats conforming to
the Datrix schema. The key idea is to view the prob-
lem of transforming the GCC schema to the Datrix
schema as a succession of relatively simple and inde-
pendent transformations. However, at the moment, it
seems that CPPX does not link multiple compilation
units as dzlinker does.

Many tools have been built for reverse engineering
tasks, from producing and manipulating architectural
views [8, 14], through defining intermediate schemas for
connecting architecture reconstruction frameworks [1],
to supporting program comprehension [5, 6, 13, 12, 15].
These tasks can all, to a degree, be tolerant to not only
certain amount of noises generated by the tools, but also
the omission of some information, whereas our work,
similar to compilers, requires the absolute correctness
and completeness of the information.

7 Concluding Remarks

This paper documents the development of the program
dzlinker that performs type analysis on top of the Datrix
ASGs and links them. dzlinker has been used to analyze
both MFC programs and C++ programs that use STL.



Difficulty with dzparscpp are also summarized.

C++ is a feature-rich language. This makes it rather
challenging to process it and to design an appropriate
intermediate representation. It takes us quite some ef-
fort to build a usable prototype. And generally, this
sort of work is deemed to be of “little research value”
and “less rewarding” [4, 3]. We disagree with this view.
Admittedly, many techniques can be adopted from the
theory and practice of compiler construction, but they
are not enough; applications in software engineering de-
mand new methods and algorithms. Experience should
be solicited and research should be encouraged in this
field so that effort can be reused and key problems can
be identified, as described in [18].
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