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Abstract

In this thesis, we consider a homogeneous and isotropic closed model of the Universe

with a real massive scalar field. Hawking showed that if such a model of the Universe

is fine-tuned, it can have an infinite number of bounces [1]. We study the case for

the Universe that is microscopically time-symmetric about a homogeneous, isotropic

bounce [2]. We begin by considering a classical periodic solution in which a Universe

has a time-symmetric bounce and expands to a large maximum size with a fixed large

number of zero crossings of the scalar field between each pair of consecutive bounces.

After the inflation, the scalar field oscillates with a phase constant which we will call

θ. A perturbation of the solution will be quantified by the change in this oscillation

phase θ, and we are seeking to find the probability for two successive bounces.
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Chapter 1

Homogeneous and Isotropic
Universes

1.1 General Information

Cosmology is an ancient area of science and has reached many achievements recently

due to the discoveries in quantum physics and the improvements in observational

astronomy. There have been many attempts to explain the origin of the Universe

[3] [4]. The good part of studying cosmology is that lots of theories are combined

together in order to explain the cosmos. The toy models of cosmological models with

homogeneous scalar fields seem to match the observations, enabling us to understand

our cosmos better [5].

In this chapter, we will start with a toy model of the Universe with a massive

homogeneous scalar field [6]. However, this toy model is not to be at all close to

a realistic model for our Universe. We will first find the probability of successive

bounces for a simple case and later we will try to find a general expression for when

the Universe grows large and there there is a large amount of the oscillatory regime.

Usually, anisotropy tends to increase when the Universe gets smaller [2][7]. We

will use this toy model to illustrate that even without the inflaton decaying to other

matter, and even without anisotropy, the probability of successive bounces is still

very low.

1



1.2 Established Facts

Based on the observations so far, the Universe seems to be homogeneous and isotropic

on a large scale. Our Universe is expanding (described by Hubble’s law) [8], and the

expansion is accelerating due to the presence of dark energy [9], which represents

about between 70 to 75 percent of the mass-energy of the Universe. The remaining

20 to 25 percent is composed of mainly dark matter and about an extra 5 percent

accounts for baryons, radiation, and neutrinos [10][11][12].

Another exciting thing is that the whole Universe is filled with cosmic microwave

background radiation also abbreviated as CMB [13]. It is a type of electromagnetic

radiation that is believed to be a remnant from the early stage of the Universe. It

provides us with a picture of the Universe at the time when neutral atoms were formed

[10]. As we will see in the next chapter, the early Universe was approximately a de

Sitter spacetime. In the next part, we will discuss the de Sitter spacetime.

1.3 The de Sitter Spacetime

To study the homogeneous Universe, it might be helpful to discuss the maximally-

symmetric spaces, so in this part, we will focus on maximally-symmetric spaces. A

maximally-symmetric space is an n-dimensional manifold and its construction is based

on the embedding in (n+1)-dimensional space. Maximally-symmetric spaces are the

same as spaces of constant curvature. In this part, we will give the Riemann tensor in

any n-dimensional maximally-symmetric geometry of signature (p, q) and Ricci scalar

curvature R. The Riemann curvature tensor for any maximally-symmetric n-manifold

at any point and in any coordinate system is:

Rabcd =
R

n (n− 1)
(gacgbd − gadgbc) , (1.1)

where n is the dimension of the space, R is the Ricci scalar, which is constant over

M . In the case where the cosmological constant Λ is present, the Einstein equations
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are given by

Rab −
1

2
Rgab + Λgab =

8πGN

c4
Tab. (1.2)

Here, Tab is the stress-energy tensor, Rab is the Ricci curvature tensor, R is the Ricci

scalar, gab is the metric tensor, GN is Newton’s gravitational constant which in 4-

dimensional spacetime has the dimensions [G] =M−1L3T−2, and c is the speed of light

in vacuum. Restricting to n = 4, the Ricci tensor for a maximally symmetric space

is equal to Rab =
Rgab
4

. The de Sitter spacetime is a maximally symmetric vacuum

solution of the Einstein field equations with constant curvature and cosmological

constant Λ > 0. In this part, the discussions of de Sitter spacetime, which has

topology R1 × S3, is for n = 4. It can be visualized as a hyperboloid

−v2 + ω2 + x2 + y2 + z2 = α2 (1.3)

in flat five-dimensional space R5 with metric

ds2 = −dv2 + dω2 + dx2 + dy2 + dz2. (1.4)

Therefore, the maximally-symmetric solutions are regarded as solutions of Eq. (1.2)

with Λ = R
4
and zero stress-energy tensor, Tab = 0. Let us introduce coordinates

(t, χ, θ, ϕ) on the hyperboloid by relations

v = α sinh

(︃
t

α

)︃
, ω = α cosh

(︃
t

α

)︃
cosχ, x = α cosh

t

α
sinχ cos θ,

y = α cosh

(︃
t

α

)︃
sinχ sin θ cosϕ, z = α cosh

(︃
t

α

)︃
sinχ sin θ sinϕ, (1.5)

where {t ∈ R5, χ ∈ [0, π], θ ∈ (0, π), ϕ ∈ [0, 2π)} and the coordinate χ is not to

be confused with the notation we will use in the next chapter. In these standard

coordinates, the de Sitter metric reads [14]

ds2 = −dt2 + α2 cosh2

(︃
t

α

)︃[︁
dχ2 + sin2 χ

(︁
dθ2 + sin2 θdϕ2

)︁]︁
, (1.6)

where α2 = 3
Λ
.
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Figure 1.1: A maximally-symmetric Lorentzian manifold with constant positive scalar
curvature, de Sitter space. The spatial sections of constant t are spheres S3 of constant
positive curvature and are Cauchy surfaces [14].

In the next part, we will discuss the Friedmann–Lemâıtre–Robertson–Walker space-

time, a model that is sometimes called the Standard Model of modern cosmology.

1.4 Robertson-Walker Spacetimes

As astronomical observations advanced, physicists have been trying to find a space-

time that gives a good representation of the large-scale properties of the observable

Universe. On a spatial slice, our Universe is isotropic and homogeneous. Robertson-

Walker spacetimes give a good approximate representation of our observable Universe.

We can choose coordinates so that the metric of the Robertson-Walker spacetime has
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the form

ds2 = −dt2 + S2 (t) dσ2, (1.7)

where dσ2 is the metric of three-space of constant curvature and is time-independent.

The geometry of these three-spaces can be of constant positive, negative, or zero

curvature. By rescaling the function S, one can normalize the curvature k of dσ2 to

be +1, -1, or 0. As a result, the metric dσ2 can be written

dσ2 = dζ2 + f 2(ζ)
[︁
dθ2 + sin2 θdϕ2

]︁
, (1.8)

where f(ζ) is a function of ζ only and for different values of k is has the form

f(ζ) =

⎧⎪⎨⎪⎩
sin ζ k = +1

ζ k = 0

sinh ζ k = −1.

(1.9)

The coordinate ζ ∈ [0,∞) for k = 0 or -1, and ζ ∈ [0, π] if k = +1. If k =

+1, the three-spaces are diffeomorphic to a three-sphere S3 and so are compact.

For k = 0, the Friedmann–Lemâıtre–Robertson–Walker metric is conformal to the

Minkowski spacetime, also called stretched Minkowski spacetime. We will discuss the

Friedmann–Lemâıtre–Robertson–Walker metric in subsection 1.4.1.

Next, let us try to derive the physical velocity which we denoted by xp. We are also

going to denote the rescaled function S(t) by a(t). The distance over a hypersurface

of constant t from the spatial origin ζ = 0 to some other value of ζ is

xp = a(t)ζ. (1.10)

The physical radial velocity is found to be

vp = a(t)
dζ

dt
+
da

dt
ζ = a

dζ

dt
+Hxp, (1.11)

where a(t) is the scale factor depending on time only with t having the dimensions

of time, and H = 1
a
da
dt

is the Hubble parameter. As it can be seen, when dζ
dt

= 0,

vp = Hxp is equivalent to the Hubble law, the velocity due to the expansion of the

Universe. In other cases, adζ
dt

is called the peculiar velocity. One can also define the

peculiar velocity as the velocity of an object relative to a rest frame.
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1.4.1 The Friedmann–Lemâıtre–Robertson–Walker Metric

The Friedmann–Lemâıtre–Robertson–Walker metric, also known as the FLRW met-

ric, describes the cosmic spacetime and assumes homogeneity and isotropy throughout

the Universe and can be written as [15]

ds2 = −dt2 + a2(t)(︁
1 + k

4
r2
)︁2 [︁dr2 + r2

(︁
dθ2 + sin2 θdϕ2

)︁]︁
, (1.12)

where we have used units with c=1, k is the curvature index and can take values

-1, 0, or +1, and a(t) is an arbitrary function of time only. The expression for the

stress-energy tensor Tµν , corresponding to the perfect fluid, is

Tµν = Pgµν + (ρ+ P )uµuν , (1.13)

where uν is the 4-velocity of the fluid (comoving observer), ρ and P are the energy

density and pressure measured in the rest frame of the fluid (by comoving observers),

respectively.

Einstein’s equations then lead to the following two independent equations

H2 =
8πGN

3
ρ− k

a2
,

dρ

dt
= −3H (ρ+ P ) , (1.14)

where H ≡ 1
a
da
dt
. In order to solve the Einstein field equations, we need to assume the

equation of state as well, which we will do below. From the equation above, we note

that one can define a critical density as

ρc(t) =
3H2(t)

8πGN

. (1.15)

As a result,

k

a2
=

8πGN

3
(ρ− ρc) . (1.16)

By measuring the current density ρ and the Hubble parameter H, we can determine

the sign of k, and therefore we would be able to tell whether the Universe is open,
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closed, or flat. One problem widely encountered by cosmologists is to explain why the

Universe was created in such a way that at the beginning, the density of the Universe

was close to the critical density. This is often called the flatness puzzle. This puzzle,

together with many other ones, is successfully explained by inflation.

Next, we will discuss the equation of state which tells us how pressure is related to

the density (P ≡ P (ρ)). One simple form is P = wρ, where w is a real constant. This

is not our Universe today but simple models help us to understand more complicated

models. From the second equation above we get

dρ

dt
= −3H (ρ+ wρ) = −3

ρ

a

da

dt
(1 + w) . (1.17)

Integrating both sides we obtain

ρ ∝ a−3(1+w), (1.18)

where w takes different values for different components of the Universe. Below is

a table which summarizes that possible values of w for different components of the

Universe.

Table 1.1: Equation of state for different components of the Universe.

Typical
component of
Universe

Equation of
state

Density

matter P = 0, w = 0 ρ ∝ a−3

radiation P = 1
3
ρ, w = 1

3
ρ ∝ a−4

cosmological
constant

P = −ρ, w = −1 ρ =const.
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1.5 Geodesics Equation: Motion of Test Particles

In this section, we will study the motion of a test particle, either massive or massless,

in the Friedmann–Lemâıtre–Robertson–Walker background. Consider the metric in

Eq. (1.12) and the geodesic equation given by [15]

dpν

dλ
+ Γνβγp

βpγ = 0, (1.19)

where ν = 0, 1, 2, 3. The non-vanishing Christoffel symbols are [16]:

Γ1
01 = Γ2

02 = Γ3
03 =

1

a

da

dt
, Γ3

13 = Γ2
12 =

4− kr2

(4 + kr2) r
, Γ0

11 =
a
(︁
da
dt

)︁
(4 + kr2)2

= Hg11,

Γ0
22 = 16

ar2
(︁
da
dt

)︁
(4 + kr2)2

= Hg22, Γ
0
33 = 16

ar2 sin2 θ
(︁
da
dt

)︁
(4 + kr2)2

= Hg22, Γ
1
11 = − 2kr

4 + kr2
,

Γ1
22 =

r (kr2 − 4)

4 + kr2
, Γ1

33 =
r2 sin2 (kr2 − 4)

4 + kr2
, Γ3

23 = cot θ, Γ2
33 = − sin θ cos θ. (1.20)

For ν = 0 we have:

dp0

dλ
+ Γ0

11

(︁
p1
)︁2

+ Γ0
22

(︁
p2
)︁2

+ Γ0
33

(︁
p3
)︁2

=
dp0

dλ
+Hg11

(︁
p1
)︁2

+Hg22
(︁
p2
)︁2

+Hg33
(︁
p3
)︁2

=
dp0

dλ
+Hp2 = 0. (1.21)

Here, λ is an affine parameter such that pν = dxν/dλ and p2 = gijp
ipj is the square

of the spatial magnitude of the momentum for both massive and massless particles.

For a massive particle

−
(︁
p0
)︁2

+ p2 = −m2. (1.22)

It is clear that for a massless particle like a photon, we have pνpν = 0. Differentiating

both sides of the Eq. (1.22) we get p0dp0 = pdp. Here, we obtain an expression for

dp0 and we substitute it in Eq. (1.21). Therefore,

p
dp

p0dλ
+Hp2 = 0, (1.23)
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where p is the spatial momentum of the particle. This equation yields

p

(︃
dp

dt
+

1

a

da

dt
p

)︃
= 0. (1.24)

For all particles, either massive or massless, moving along geodesics we have momen-

tum p ∝ 1
a
. In the case of a photon, m = 0 and in units with c = 1 we have E = p,

where E is the energy of the photon. This gives

p = E ∝ 1

a
. (1.25)

In other words, the energy of the photon is proportional to the inverse of the scale

factor.

1.6 Radiation

For a massless particle like a photon, p = p0 = E ∝ ω, where ω is the angular

frequency of the photon. The cosmological redshift is found to be

ω ∝ 1

a
, λ ∝ a. (1.26)

We denoted the wavelength of the electromagnetic wave by λ. Now let us introduce

the redshift parameter given by the equation

z =
λobs − λem

λem
, (1.27)

where λobs = λ(t0) is the wavelength of the photon measured on Earth now and

λem = λ(t1) is the wavelength of the photon emitted by the galaxy at time t1. Using

the equation above we have

z =
a(t0)

a(t1)
− 1. (1.28)

For nearby galaxies and for small z, we make the following expansion

a(t1) = a(t0)[1 + (t1 − t0)H (t0) + ...]. (1.29)
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This gives us z ≈ Hd
c

= v
c
, where d is the proper distance and v is the recessional

velocity. Therefore, Hubble’s law is obtained and given by

v ≈ H0d, (1.30)

with H0 being the Hubble parameter at t = t0.

1.7 Remarks on the Cosmological Constant Λ

The cosmological constant is usually understood as a form of matter with the following

energy-momentum tensor

8πGNT
Λ
µν = −Λgµν . (1.31)

Since the energy density does not dilute, energy has to be created as the Universe

expands. The energy density is thus found to be

ρΛ = −PΛ =
Λ

8πGN

. (1.32)

There are many suggestions about the cosmological constant and the factors that

determine its value. The value of Λ can be calculated from the observational param-

eters which is found to be approximately Λ ≈ 10−52 m−2. It is also thought that the

vacuum energy fluctuations contribute to the value of the cosmological constant. As

predicted by quantum field theory, it has the following energy-momentum tensor:

T(vac)µν = −ρvacgµν . (1.33)

A naive application of quantum field theory tells us that ρvac
ρobs

∼ 10120, a huge number

which is also called the “old cosmological constant problem” [17].
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Chapter 2

Solutions of a Simple Cosmological
Model with a Massive Scalar Field

In this chapter, we will derive the solutions of equations of motion for a simple cos-

mological model with homogeneous massive scalar field φ(t) with mass m, minimally

coupled to a k = +1 FLRW Universe with zero cosmological constant and with metric

ds2 = −N2(t)dt2 + a2 (t) dΩ2
3, (2.1)

where dΩ2
3 = dζ2+sin2 ζ

(︁
dθ2 + sin2 θdϕ2

)︁
is the standard line element on S3 [18][19][20].

In the units with ℏ = c = 1 the Lorentzian action is [21][20]

S =

∫︂
2π2a3N

{︄
3

8πGN

[︄
−
(︃

1

Na

da

dt

)︃2

+
1

a2

]︄
+

1

2

(︃
1

N

dφ

dt

)︃2

− 1

2
m2φ2

}︄
dt. (2.2)

We are going to rescale the lapse function N as n ≡ mN , where n is dimensionless if

t is considered to be dimensionless, and where N is dimensionless when the product

mt is dimensionless. Notice that our scale factor a has the dimensions of length, so

we will also introduce a dimensionless ma to be equal to ma = eχ. We can also obtain

a dimensionless inflaton scalar field

ϕ =

√︃
4πGN

3
φ. (2.3)

Next, we will define the overdot as the dimensionless derivative with respect to mt

and for any function of t, say f(t), we have

ḟ(t) ≡ 1

m

df

dt
. (2.4)
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Also, GN ≡M−2
Pl has the dimensions of the inverse mass squared. Using the definition

for χ = ln (ma), we can have another form of the action that we will be using in the

derivation of the equations of motion and has the form

S =
3π

4

M2
Pl

m2

∫︂
ne3χ

[︂
−n−2

(︂
χ̇2 − ϕ̇

2
)︂
+ e−2χ − ϕ2

]︂
dt =

∫︂
L
(︂
χ, χ̇, ϕ, ϕ̇, n

)︂
dt.

(2.5)

The variation of the action in Eq. (2.5) with respect to n and then setting n = 1

yields

χ̇2 − ϕ̇
2
= ϕ2 − e−2χ. (2.6)

Using the definition of the overdot, the Euler–Lagrange equation 1
m

d
dt
∂L
∂ϕ̇

− ∂L
∂ϕ

= 0

gives

ϕ̈+ 3χ̇ϕ̇+ ϕ = 0. (2.7)

As we can see, m does not appear in the equations of motion, which can simplify our

calculations where in the next chapter we will take m to be equal to unity.

Both Eq. (2.6) and Eq. (2.7) are very important and we will use them in the

next chapter to construct a second-order differential equation for χ that will describe

any trajectory in the (χ, ϕ) plane. For now let us use them by writing explicitly

χ = ln (ma) and the overdot as 1
mN

d
dt

with N = 1 and mt dimensionless, we can

directly obtain from Eq. (2.6) the following:

H2 ≡
(︃
dχ

dt

)︃2

= − 1

a2
+

(︃
dϕ

dt

)︃2

+m2ϕ2. (2.8)

On the other hand, Eq. (2.7) will be

d2ϕ

dt2
+ 3H

dϕ

dt
+m2ϕ = 0, (2.9)

where H ≡ dχ
dt

≡ mχ̇ = 1
a
da
dt

≡ m ȧ
a
. It is worth reminding that ϕ is dimensionless and

will be equal to
√︂

4πGN

3
φ with φ measured in mass units as mentioned earlier.
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Having obtained the equations of motion, we will give an approximate formula for

the size of the Universe near the end of inflation which we will call ae. Before we do

this, we will discuss inflation, which is a theory of the exponential expansion of space

in the early Universe. It occurs when the potential energy density dominates over the

kinetic energy density. In this project, we will only focus on slow-roll inflation and

before we move into the next step, let us discuss slow-roll inflation and the conditions

for the slow-roll inflation.

2.1 Slow-Roll Inflation

Slow-roll models include inflation by scalar fields that are defined according to the

model that is chosen. In our case, inflation by a single scalar field, also called an

inflaton, with a suitable potential V (φ) is a subset of slow-roll models. Assuming

that the scalar field dominates the Universe let us define the energy density and

pressure associated with the field. Eq. (2.6) can also be written in this form by using

the rescaled scalar field ϕ =
√︁
4πGN/3φ:

H2 ≡ 1

a2

(︃
da

dt

)︃2

= 2

[︄
1

2

(︃
dϕ

dt

)︃2

+
1

2
m2ϕ2

]︄
− 1

a2
= 2ρ− 1

a2
, (2.10)

where one sets the lapse N = 1 so that t has the dimensions of time or length, and

ρ is 4πGN

3
times the energy density of a homogeneous scalar field that is the sum of

kinetic and potential densities and given by

ρ =
1

2

(︃
dϕ

dt

)︃2

+
1

2
m2ϕ2. (2.11)

We know from Eq. (2.9) that d2ϕ
dt2

+ m2ϕ = −3H dϕ
dt

so the time derivative of the

rescaled energy density is

dρ

dt
=

(︃
d2ϕ

dt2
+m2ϕ

)︃
dϕ

dt
= −3H

(︃
dϕ

dt

)︃2

. (2.12)

Comparing this with the continuity equation

dρ

dt
= −3H (ρ+ P ) (2.13)
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the similarly rescaled pressure induced by the field is

P =
1

2

(︃
dϕ

dt

)︃2

− 1

2
m2ϕ2. (2.14)

An equation of state usually has the form P = P (ρ), but here P does not depend

only on ρ and temperature T if there is also entropy, so one would not normally say

the scalar field has an equation of state. However, reminding the definition of the

overdot, one can define an equation of state parameter w for the homogeneous scalar

field as

w =
P

ρ
=

(︁
dϕ
dt

)︁2 −m2ϕ2(︁
dϕ
dt

)︁2
+m2ϕ2

=
ϕ̇
2 − ϕ2

ϕ̇
2
+ ϕ2

. (2.15)

To make the equation of state parameter w a constant, we take two limits that are

described below.

• Rapidly time-varying field: m2ϕ2 <<
(︁
dϕ
dt

)︁2
, giving w = 1.

This would lead to ρ ≈ a−3(1+w) ≈ a−6.

• Slowly time-varying field: m2ϕ2 >>
(︁
dϕ
dt

)︁2
, giving w = −1.

This leads to ρ ≈ constant, and it is considered to mimic the cosmological constant.

A scalar field seems to be a good matter candidate for the inflaton, but it could

have a potential V (φ) different from that of the massive scalar field considered here,

which has potential V (φ) = (1/2)m2φ2 = 3
8πGN

m2ϕ2.

One issue that needs to be explained is how the was the matter created. There

is still active research in an attempt to find how the Standard Model particles are

produced from the energy of the scalar field and how hot the Universe was at the

time of the big bang. One of the theories that explain the creation of elementary

particles is the reheating process. In the reheating process, which happens at the end

of inflation, the energy of the scalar field is transferred to the particles, and the hot

big bang starts [4].
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An important parameter to discuss in the inflation is the slow-roll parameter de-

fined as

ϵ ≡ − 1

H2

dH

dt
. (2.16)

Inflation is defined as an epoch in which d2a
dt2

> 0, which is

ϵ = 1− a
d2a
dt2(︁
da
dt

)︁2 ≡ 1− aä

ȧ2
< 1. (2.17)

Slow-roll inflation is called when ϵ << 1. Let us find an expression for the slow-roll

parameter. Differentiating Eq. (2.7) with respect to t and plugging it into Eq. (2.8),

we get

H
dH

dt
=
H

a2
− 3H

(︃
dϕ

dt

)︃2

. (2.18)

Therefore, the time derivative of H is

dH

dt
=

1

a2
− 3

(︃
dϕ

dt

)︃2

. (2.19)

Using the formula we got for dH
dt

and H2 in the definition for the slow roll parameter

we get

ϵ = − 1

H2

dH

dt
=

3
(︁
dϕ
dt

)︁2 − 1
a2(︁

dϕ
dt

)︁2
+m2ϕ2 − 1

a2

. (2.20)

For the slow-roll inflation case, the kinetic energy density makes a small contribution

to the total energy density. Therefore, the first condition to impose on the slow-roll

parameter for the slow-roll inflation to occur is

ϵ << 1. (2.21)

However, just for the inflation to occur ϵ < 1 will be enough.

Now that we have introduced slow-roll inflation, let us find an approximate formula

for the size of the Universe after the inflation. Suppose that the Universe model starts

with ϕ = ϕi >> 1 at t = 0. We also chose ϕ̇ = 0, and ȧ = 0 and initially there is no

15



kinetic energy 1
2

(︁
dϕ
dt

)︁2
= 0, but ρ = −P = 1

2
ϕ2
i . Then the Friedmann equation sets

the curvature term to 1
a2i
, and as such the initial value of the dimensionless rescaled

scale factor mai is
1
ϕi
. There is a step of increasing H from zero to some value H ≈

constant where the Universe is exponentially expanding. Then much later H will go

back to zero at a = am, the maximum size of this epoch of expansion. After that, the

Universe will shrink, and can either collapse to a singularity for most of the possible

large ϕi, or for an infinite set of tiny ranges of ϕi, the collapse can reverse to give

another bounce with ȧ = 0 at some small value of a, not necessarily at ai. If it does

bounce, there can be another epoch of inflation followed by dust dominance and then

recollapse, which again usually will go to a singularity but for some small ranges of

ϕi can lead to the third phase of expansion and contraction.

In the next chapter we have shown some graphs where for some different values

of the maximum size of the Universe, say am, the Universe will have another bounce

rather than going to a singularity. We will also use those graphs to demonstrate how

one can find an approximate probability for another bounce or let us call it a strong

bounce after deflation.

Consider a large initial scalar field ϕ ≈ ϕi >> 1. If m2a2ϕ2 >> a2
(︁
dϕ
dt

)︁2
, then(︁

da
dt

)︁2 ≈ (maϕ)2-1. Taking the square root of both sides, with the sign giving t

increasing from 0 as (maϕ)2 increases, we get

da

dt
≈
√︁
m2a2ϕ2 − 1. (2.22)

Rearranging Eq. (2.22) and integrating with ϕ to be approximately a constant, say

ϕ = ϕi, gives

t ≈ 1

mϕi
ln

(︃√︂
m2ϕ2

i a
2 − 1 +mϕia

)︃⃓⃓⃓⃓a
ai

=
1

mϕi
ln

(︄√︁
m2ϕ2

i a
2 − 1 +mϕia√︁

m2ϕ2
i a

2
i − 1 +mϕiai

)︄
. (2.23)

Again, the conditions in which this is a good approximation is that at t = 0, ϕ =

ϕi >> 1, ϕ̇ = 0, ȧ = 0, and m2a2ϕ2 = 1. For t not too large in the range t << ϕi
m
,

16



one has ϕ ≈ ϕi, so

a(t) ≈ 1

mϕi
cosh (mϕit). (2.24)

As we discussed earlier, the early Universe was approximately a de Sitter spacetime.

The scalar equation we have obtained in the equations of motion can be written as

d

dt

[︃
a3(t)

dϕ

dt

]︃
= −m2a3(t). (2.25)

Suppose t << ϕi
m

and ϕ ≈ ϕi. If we substitute the expression we found for a(t) in the

previous equation and if we integrate both sides we get

a3
dϕ

dt
≈ −m2ϕi

1

(2mϕi)
3

∫︂ t

0

(︁
emϕit + e−mϕit

)︁3
dt. (2.26)

Let x = emϕit, then one can easily get the following equation

dϕ

dt
≈ −m

3

x6 + 9x4 − 9x2 − 1

x6 + 3x4 + 3x2 + 1
. (2.27)

Assuming that the scalar field is sufficiently large, for 1
mϕi

<< t we have

dϕ

dt
≈ −m

3
. (2.28)

Integrating both sides we get

ϕ(t) ≈ −m
3
t+ ϕ0, (2.29)

where ϕ0 and ϕi are slightly different. This is only an approximate equation for the

time derivative of ϕ and is valid only for very large ϕi. We can use the approximate

formula that we found for ϕ(t) in Eq. (2.9) so that one can find an approximate

equation for the size of the Universe near the end of inflation.

Neglecting 1
a2

for t >> 1
mϕi

we have(︃
1

a

da

dt

)︃2

≈ m2

9
+m2

(︃
m2t2

9
− 2mϕit

3
+ ϕ2

i

)︃
. (2.30)
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For most of the inflation, we assume a2
(︁
dϕ
dt

)︁2
<< m2a2ϕ2. As a result, the equation

above reduces to

1

a

da

dt
≈ m

(︂
−m

3
t+ ϕi

)︂
, (2.31)

and

d ln a

dt
≈ m

(︂
−m

3
t+ ϕi

)︂
. (2.32)

Integrating both sides where time runs from zero to te ≈ 3ϕi
m

we get

ln
ae
ai

≈ 3

2
ϕ2
i . (2.33)

Hence, at the end of inflation, the size of the Universe is

mae ∼ e
3
2
ϕ2i . (2.34)

It is worth mentioning that
(︁
dϕ
dt

)︁2
<< m2ϕ2 does not apply all the way down to ϕ = 0.

This result is only a crude approximation as we have assumed that the inflation lasts

sufficiently long and have ignored lnϕi terms in ln ae
ai
. However, one can use another

way of finding ae by using Eq. (1.43). We assume that at the end of inflation, ϕ = 0.

Let H = d
dt
ln a = dϕ

dt
d ln a
dϕ

, where d ln a = H
dϕ
dt

dϕ. Integrating both sides, one can easily

get

ln
ae
ai

=

∫︂ ϕe

ϕi

H(︁
dϕ
dt

)︁ dϕ. (2.35)

Assuming a considerable amount of inflation and ignoring d2ϕ
dt2

in Eq. (2.8) we get

3H
dϕ

dt
+m2ϕ ≈ 0,

ln
ae
ai

≈ −3

∫︂ ϕe

ϕi

H2

m2ϕ
dϕ. (2.36)

Now we need to find an expression for H2. If we use dϕ
dt

≈ −m2ϕ
3H

in Eq. (2.7) we

obtain

H4 − m4ϕ2

9
−m2ϕ2H2 ≈ 0. (2.37)

18



After solving this equation for H2, the only root that satisfies our conditions is

H2 ≈ m2

2

(︄
ϕ2 +

√︃
ϕ4 +

4ϕ2

9

)︄
. (2.38)

Substituting this result in the integral above we get

ln
ae
ai

≈ −3

2

∫︂ 0

ϕi

(︄
ϕ2 +

√︃
ϕ4 +

4ϕ2

9

)︄
1

ϕ
dϕ =

=
3

4
ϕ2
i +

1

4
ϕi

√︂
9ϕ2

i + 4 +
1

3
ln

(︄
3

2
ϕi +

√︃
9

4
ϕ2
i + 1

)︄
. (2.39)

However, there are other O(1) uncertainties in ln ae
ai
, so this is only an order of mag-

nitude approximation. Note that for large ϕi we get ln ae
ai

≈ 3
2
ϕ2
i +

1
3
ln (3ϕi) or

mae ∼ 1

ϕ
2/3
i

e
3
2
ϕ2i .

One can also analyze how ρ changes with time at the early Universe wheremϕ >> dϕ
dt
.

The slow roll inflation requires dϕ
dt

≈ 0, it can be seen that

P + ρ =

(︃
dϕ

dt

)︃2

≈ 0. (2.40)

Let us approximate our case to the case of a perfect fluid to get

dρ

dt
= 3H (P + ρ) ≈ 0. (2.41)

That said, ρ changes slowly during the slow roll inflation.

At the end of inflation, all energy is concentrated in the inflaton field and then it

produced many elementary particles which interacted with each other and came to

a state of thermal equilibrium. However, as we mentioned earlier, we do not take

in our model of the Universe a scalar field that decays into other matter. After the

inflation, the scalar field oscillates and we will call it the oscillatory regime. In the

next section, we will discuss this oscillatory regime, and further discussions will be

done in the next chapter.
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2.2 Oscillatory Regime

Let us do some calculations for the oscillatory regime and try to find an equation for

ϕ that oscillates with an amplitude that is a function of the size of the Universe, a.

Let ϕ ≈ F (t) cos (mt+ θ0) where θ0 is a constant phase and F (t) a slowly varying

function of time where the rescaled energy density ρ << m2 (well into the oscillatory

regime). Substituting this in the expression for ρ, we get roughly

ρ =
1

2

(︃
dϕ

dt

)︃2

+
m2ϕ2

2
≈ m2F 2

2
. (2.42)

Therefore,

ϕ ≈
√
2ρ

m
cos (mt+ θ0). (2.43)

Before we proceed we need to make an assumption that ρ at the end of inflation is

close to the ρ at the beginning of oscillation ρe ≈ ρosc. This way we can get a rough

estimate on ρ. It is easy to confirm that ρe ∼ m2, which is an order of magnitude

estimate. When the scalar field ϕ oscillates, the average over each oscillation of the

pressure P is zero to a good approximation, so the stress-energy tensor of the scalar

field is close to that of dust with zero-pressure matter, giving a3ρ approximately

constant. Using this idea, if we denote ϕ ≈ c1a
−3/2 cos (mt), at t ≈ te, where te is the

value of t at the end of inflation, we have

c21a
−3
e m2 ∼ m2, (2.44)

so c1 ∼ a
3/2
e . Substituting the expression we found for the constant c1 back into the

equation for ϕ we have

ϕ ∼
(︂ae
a

)︂3/2
cos (mt+ θ0). (2.45)

By comparing this with the ϕ we have found, we can get a rough expression for ρ as

a function of a

ρ ∼ m2
(︂ae
a

)︂3
. (2.46)
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As we can see from the equation above, ρ ∝ a−3. One can easily find from Eq. (2.43)

that the period of oscillation is equal to 2π
m
. Based on the definition of the rescaled

pressure P that we made while discussing the slow-roll inflation and that the average

value over one period of oscillation of either sin2 (mt+ θ0) or cos
2 (mt+ θ0) is equal

to 1
2
, the pressure will average to near zero over each oscillation. Hence, during the

oscillatory regime the Universe will behave approximately as if it were filled with dust

of total rest mass M that depends on ϕi and M is expressed in the conventional form

as density times volume.
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Chapter 3

Bouncing Universes

3.1 Introduction

In our previous discussion, we considered a model of the Universe with a homogeneous

massive scalar field φ with mass m, minimally coupled to a k = +1 FLRW metric

with zero cosmological constant. The same model of the Universe will be considered

in this chapter as well. Suppose that the Universe starts to expand and we have

the inflationary regime, where P ≈ −ρ and later on the oscillatory regime with

the pressure averaging to approximately zero. Eventually, the Universe will stop

expanding at some larger a which we called amax, or local maximum. We are going

to fix the scalar field to zero at a = amax and then we will have a deflationary regime

where the Universe gets smaller and we will have two possibilities. One possibility is

that the Universe goes to the stiff regime and thus goes to singularity, and the other

possibility is that there is a bounce at some smaller a.

In this chapter, we will be starting with a random initial condition near the local

maximum, say near a = amax and a will be measured in units of 1
m
. We will focus on

the simplest case where the cosmological constant is set to zero and we will briefly

discuss some kind of non-singular trajectories which we will be calling the periodic

solutions, first noticed by Hawking in 1983 [1].

Before we do any numerical work, we will also discuss the strong bounces, traverses,

and some simple calculations which demonstrate what a periodic solution looks like
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for some small values of the initial conditions of a = am.

The same idea will be implemented when we have a Universe that goes through a

large amount of inflation and oscillation of the scalar field. In order to discuss further

the oscillatory regime, we will also introduce the phase of oscillation of the scalar field

which we will call the phase constant θ, asymptotically approaching a constant that

we will calculate numerically and then compare it to the value already published.

If this phase constant changes by a small amount then as the Universe reaches a

maximum size and then contracts, it will either have another bounce at some other

value of either positive or negative value of the scalar field or there will be another

singularity.

In order to explain the main goal of the project, we will be approximately calculat-

ing the probability of a strong bounce at small a = eχ to return back to much larger

a = eχ.

Before we further discuss the results, let us first introduce the equations of motion.

In order to get them into a simpler form, let us define f ′ ≡ df
dϕ

= ḟ

ϕ̇
, where f is

a function of time t. Using Eq. (2.7) and Eq. (2.8), we can find a second order

differential equation of the form [21]:

χ′′ =
(1− χ′2) (ϕχ′ + 3ϕ2 − 2e−2χ)

e−2χ − ϕ2
, (3.1)

for any trajectory representing the evolution of this model in the (χ, ϕ) plane. If we

look at Eq. (3.1) carefully, the denominator becomes zero when ϕ = ±e−χ. We are

going to call these two lines as the boundaries in the (χ, ϕ) plane. Therefore, we can

say that there are three separate regions [21]:

• Region I: e−χ < ϕ

• Region II: −e−χ < ϕ < e−χ

• Region III: −e−χ > ϕ.
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The boundary I separates region I and II whereas boundary II separates the region

II and III.

If the trajectory crosses one of the two boundaries, then at the boundary we have

either χ
′
= ±1 with ϕ̇ ̸= 0 or χ

′
= −ϕ if dϕ

dt
= 0. The latter one can be interpreted as

the trajectory momentarily halting at the boundary and then turning directly around

going back out the same path it came in. This is a similar case to what we refer to

as the time-symmetric bounce. The idea of bounces and traverses is described below

[21]:

• Bounce: The trajectory goes from either region I or III into region II (or just to

its boundary), and then returning back to the region it came from, the region I

or III. We are interested in strong bounces where there is another inflation after

a bounce with many traverses but we will also consider weak bounces where

the Universe goes to singularity after the bounce. The special case is the time-

symmetric bounce where there will be a special case of periodic solutions that

we will further discuss below.

• Traverse: The trajectory goes from region I to region II and the crosses ϕ = 0

which is the χ-axis and then goes to region III or the inverse.

Numerical results show that no traverse segment within region II can have any points

with χ < 0, so we expect the traverse segment to have all points with χ > 0.

Eq. (3.1) is very important in understanding the evolution of the Universe model

and we will also use it later to derive an approximate series expression for what we

shall call the repeller solution. Any solution for which ϕ changes significantly during

the bounce, will either follow the repeller solution in region II up to some value of

positive or negative ϕ until it turns to the right, towards larger χ and hence gives

another bounce, or will cross the repeller solution and go to the singularity, so the

repeller solution seems to be in between.
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3.1.1 Time Symmetric Bounce and Periodic Solutions

Hawking noticed that there exist non-singular trajectories that are time-symmetric

about the bounce [1]. That said, a(−t) = a(t), ϕ(−t) = ϕ(t) and the time derivative

of both a and ϕ reverses sign. In other words da(−t)
d(−t) = −da(t)

d(t)
and dϕ(−t)

d(−t) = −dϕ(t)
d(t)

.

The trajectory halts at the boundary and returns to the same path it came from.

Each successive bounce is separated by an odd number of traverses for the periodic

solutions that are also symmetric under reflections about the χ-axis.

We did some research to find the initial value of χ at the boundary between regions

I and II, which gives one traverse between each successive pair of time-symmetric

bounces for this perhaps simplest periodic solution. The numerical results show that

χ ≈ −0.271723 at the boundary between regions I and II or regions II and III. The

trajectory moved to higher χ until it reaches a maximum χ at ϕ = 0 which we will

denote by χ1. If the trajectory intersected the χ-axis at the exact value of χ1, the

curve would go to the boundary between regions II and III, halt, return back the

same path it came from, and reach χ1 again. However, we found an approximate

value of χ1 so the trajectory crossed the χ-axis at χ = 0.85399 and after coming from

boundary II it intersected the χ-axis at χ = 0.855237. Since the deviation from the

true periodic solution is growing with time, the approximate value of χ1 is χ1 ≈ 0.854

numerically. In the case of three traverses between two successive bounces, we will

denote the maximum size of the Universe after a bounce by χ3 where the solution

crosses the χ-axis. We want to find as precise values of both χ1 and χ3 as possible

in order to get an approximated probability for another strong bounce which we will

denote by pi, where i denotes the number of traverses between successive bounces.

Before we calculate this probability, we need to show a few more graphs later on

and use the numerical results to illustrate the probability for the case of one traverse

but in the end, we will try to find a general formula of this probability for a large

number of traverses. If we were able to find the exact value of χ1, the shape of the
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solution curve would look like a reverse letter C where one traverse after each bounce

repeats forever and hence forming a sequence of traverses, say {...1, 1, ...}. A similar

case would happen if we knew exactly what χ3 was. After three traverses we would

have one bounce and then three traverses and so on, forming a sequence of traverses

{...3, 3, ...}. The numerical value of χ3 is approximately χ3 ≈ 1.43328. We showed

what this curve would approximately look in Figure 3.1. As Hawking noticed, these

kinds of periodic solutions will have an odd number of traverses between two bounces

and we illustrated them with one and three traverses as in the graphs below. In

other words, i will be a positive odd number and suppose i = 1. For an exact value

of χ1 = ln a there would be only one ϕ = 0 crossing at χmax but since we cannot

calculate it precisely there will be two such ϕ crossings close to each other and we got

an average of both them giving the desired approximate value for ai = eχi . In other

words, the curve does not come back exactly the same path it came from. A similar

case would happen when i = 3 and so on.

The two graphs below start from the time symmetric bounce and then the curve

crosses the χ-axis at ϕ = 0 then goes to boundary II without entering region II. The

curve come back on the same path it came from and intersected the χ-axis again and

reached boundary I again. For the exact value of χi, this pattern repeats forever.
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Figure 3.1: A plot of time-symmetric bounces with i = 1, 3. (a) The value of ϕ at
the time-symmetric bounce is ϕ ≈ ±1.1956 or φ ≈ ±0.5843MPl. (b) The value of ϕ
at the time-symmetric bounce is ϕ ≈ ±1.312 or φ ≈ ±0.6412MPl.
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3.1.2 Calculation of an Approximate Probability pi for Strong
Bounces with i = 1

In this section, we will calculate an approximate probability of another strong bounce

for the case i = 1, where i is an odd number and is equal to the number of traverses

between successive bounces. After we set m = 1, we did some numerical research

on finding how much amax can be different from ai so that the solution curve will

approach the repeller solution without crossing it and hence have another bounce at

some other value of either positive or negative ϕ.

In this part, we will consider t = 0 at the maximum size of a which we denoted it

by amax. We are going to denote by ai−0.5 and ai+0.5 the value of a at the farthest

distance from ai for which we have a bounce. It is worth mentioning that a and χ

can be used interchangeably and given by the relation χ = ln a. Let us consider the

case with one traverse between two successive bounces, i = 1. Ideally, if the solution

curve starts from amax = a0.5 then it will approach the repeller solution to ϕ = ±∞.

Assuming that the round-off and the step size are not much larger than a few times

10−6 the approximate value of a0.5 is a0.5 ≈ 2.3347 numerically. If the trajectory

starts with a value slightly different than this value, then the trajectory will either

follow the repeller solution up to some positive value of ϕ and then turn right to have

another inflationary period followed by many traverses or turn left, cross the repeller

solution and go singular.

Below are two graphs that represent this case. We started with the initial conditions

ȧ(t = 0) = 0, ϕ(t = 0) = 0, a(t = 0) = amax, ϕ̇(t = 0) = 1/amax. For values of amax

less than a1.5 but above a1 the solution approaches the repeller solution in negative ϕ

and then turns right to have another period of inflation followed by many traverses.
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Figure 3.2: (a) amax = 2.3346 < a0.5, m = 1, (b) amax = 2.33471 > a0.5, m = 1
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If amax is slightly bigger then a1 up to the value which we will call amax = a1.5 the

solution will approach the repeller solution in negative ϕ. If amax = m1.5 then the

solution will approach the repeller solution to ϕ = −∞. This is similar to the graphs

above but this time the solution curve is following the repeller solution in the negative

ϕ. We started with the initial conditions ȧ(t = 0) = 0, ϕ(t = 0) = 0, a(t = 0) = amax,

and ϕ̇(t = 0) = a/amax. For values of amax less than a1.5 but above a1 the solution

approaches the repeller solution in negative ϕ and then turns right to have another

period of inflation followed by traverses. On the other hand, for values of amax more

than a1.5 the solution approaches the repeller solution in negative ϕ and then crosses

it and goes to the left until reaches the singularity. Numerical calculations show that

a1.5 ≈ 2.349. As it can be seen in Figure 3.3 (a), we started at a = amax and ϕ = 0

with da
dt

= 0 and dϕ
dt

= + 1
amax

initially, evolved up to an approximate time-symmetric

bounce at a minimum for a, evolved back down to so close to the initial point that the

difference is not visible in the graph, and then we evolved further down to negative

phi where the bounce is visibly not time-symmetric but still led to inflation for ϕ < 0.

So far we have found numerically the approximate values of a0.5, a1, and a1.5. In

order to find the approximate probability of a strong bounce with amax near a1 we also

need to find the approximate value of a2.5. If the curve starts from amax = a2.5 then

the solution will approach the repeller solution at ϕ = −∞ after three traverses. The

value of a2.5 will be slightly smaller than the value of a3. The higher the value of the

positive odd number i gets, the closer ai−0.5 to ai gets. When i is large, there will be

many traverses before the strong bounce and hence the phase of the oscillation θ will

be well defined and we will see later that it approaches a constant. We will calculate

its numerical value later. Numerical calculations suggest that a2.5 ≈ 4.2736. When

the curve starts from amax slightly smaller than a2.5 then the solution will follow the

repeller solution up to some negative ϕ and cross the repeller solution and go singular.

When the curve starts from amax slightly greater than a2.5 then the solution will follow

the repeller solution up to some negative ϕ and turn right to have another period of
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inflation. We chose amax = 4.271 and amax = 4.274 to show this in Figure 3.4.
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Figure 3.3: (a) amax = 2.3489 < a1.5, m=1 (b) amax = 2.3491 > a1.5, m = 1
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Figure 3.4: (a) amax = 4.271 < a2.5 m = 1, (b) amax = 4.274 > a2.5, m = 1
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Having found numerically what a0.5, a1, a1.5, and a2.5 are approximately, we can

find a rough estimate what the probability p1 is. We estimate p1 as:

p1 ≈
χ1.5 − χ0.5

χ2.5 − χ0.5

. (3.2)

Since χ0.5 ≈ 0.8479, χ1 ≈ 0.8499, χ1.5 ≈ 0.8539, and χ2.5 ≈ 1.4526 one can approxi-

mately calculate the probability p1 as:

p1 ≈
0.8539− 0.8479

1.4526− 0.8479
= 0.01. (3.3)

Now, our final goal is to find an asymptotic formula for pi for very large i. To de-

termine this, we need the behavior of the solutions in the dust-like oscillatory regime,

inflation, bounce, repeller solution, and the stiff behavior going to the singularity at

a = 0, including the perturbations from the behaviour for the periodic solutions with

am = ai. Therefore, in the next part, we will discuss the approximate solutions and

the various perturbations from the periodic solutions.

3.2 An Approximate Series Expression for the Re-

peller Solution

In this part, we will discuss the repeller solution and we will find an approximate

series solution for it. Every trajectory during a bounce with a large change in ϕ, or

after crossing into Region II for χ < 0 has a large change in ϕ before entering the

stiff regime with ϕ̇
2 ≫ ϕ2 to go singular, will follow close to the repeller solution for

a large range of ϕ.

For large |ϕ|, let the repeller solution be approximated by the series

χ = − lnϕ+ ln

√︃
2

3
+
c2
ϕ2

+
c3
ϕ4

+
c4
ϕ6

+O(ϕ−8). (3.4)

First, we need to determine the coefficients c2, c3, c4 so that the curve satisfies our

conditions mentioned above. It can be immediately determined that χ′ = − 1
ϕ
− 2c2

ϕ3
−

4c3
ϕ5

− 5c4
ϕ7

+O(ϕ−9) and χ′′ = 1
ϕ2

+ 6c2
ϕ4

+ 20c3
ϕ6

+O(ϕ−8). Before we proceed, we make
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an expansion for e−2χ as follows

e−2χ =
3

2
ϕ2

(︃
1− 2c2

ϕ2
− 12c3 − 2c22

ϕ4
− 4c32 + 4c2c3

3ϕ6
+O(ϕ−8)

)︃
. (3.5)

We can get the coefficients by plugging these in Eq. (3.1):

(︁
e−2χ − ϕ2

)︁
χ′′ =

(︁
1− χ′2)︁ (︁ϕχ′ + 3ϕ2 − 2e−2χ

)︁
, (3.6)

obtaining(︃
ϕ2

2
− 3c2 +

3(c22 − c3)

ϕ2
+

18c2c3 − 6c22
ϕ4

+O(ϕ−6)

)︃(︃
1

ϕ2
+

6c2
ϕ4

+
20c3
ϕ6

+O
(︁
ϕ−8
)︁)︃

=

=

(︃
1− 1

ϕ2
+

4c2
ϕ4

+
4c22
ϕ6

+
8c3
ϕ6

+O(ϕ−8)

)︃(︃
− 1− 2c2

ϕ2
− 4c3
ϕ4

+ 6c2 − 6
6c2c3 − 2c22

ϕ4

+O(ϕ−8)

)︃
. (3.7)

Following the same procedure for c4 and c5, we got the following expression for the

unstable repeller solution, χ(ϕ), up to order O(ϕ−10)

χ = − lnϕ+ ln

√︃
2

3
+

1

4ϕ2
+

11

48ϕ4
+

77

144ϕ6
+

297

128ϕ8
+O(ϕ−10). (3.8)

3.3 Linearized Equation for the Perturbation of

the Repeller Solution

In this part, we will analyze the perturbation of the repeller solution, β. Suppose

χ = χr + β. Then χ′ = χ′
r + β′ and χ′′ = χ′′

r + β′′. To linear order in β,

e−2χ ≈ (1− 2β) e−2χr . (3.9)

Using these in the Eq. (3.1) and using the fact that χr obeys that equation, we get

the following linearized equation

(︁
e−2χr − ϕ2

)︁
β′′ +

(︁
3ϕχ′2

r + 6ϕ2χ′
r − ϕ− 4χ′

re
−2χr

)︁
β′

+
(︁
−2e−2χ2χ′′

r + 4χ′2
r e

−2χr − 4e−2χr
)︁
β = 0. (3.10)
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If we make the approximation χr ≈ − lnϕ+ ln
√︂

2
3
, then χ′

r ≈ − 1
ϕ
and χ′′

r ≈ 1
ϕ2
. We

plug these relations in the equation above and we obtain

ϕ2

2
β′′ +

(︃
3

ϕ
− ϕ

)︃
β′ +

(︁
3− 6ϕ2

)︁
β ≈ 0. (3.11)

For ϕ >> 1, we can approximate the differential equation above as

β′′ − 2

ϕ
β′ − 12β ≈ 0. (3.12)

This has a general approximate solution for ϕ >> 1 and which does not lead to

collapse of the Universe to a = 0 of the form

β ≈ Cϕ cosh
[︂
2
√
3(ϕ− ϕ∗)

]︂
. (3.13)

Here, the minimum distance between the curve and the repeller solution happens

at ϕ∗. For the particular solution given in Figure 3.2 (b), the minimum value of

β = χ− χr was β ≈ 0.1352, occurring at ϕ∗ ≈ 1.4234 numerically. This corresponds

to C ≈ 9.5 × 10−2. As a result, the perturbation of our particular solution has the

form found numerically as

β = 9.5× 10−2ϕ cosh
[︂√

12(ϕ− 1.4234)
]︂
. (3.14)

3.4 Approximate Solutions for the Inflationary

Regime

In this part, we will find an approximate equation for the attractor solution. As

the Universe expands, m2a2 >> 1 so the solution approaches the attractor solution

which we will find an approximate series expression for it. With χ = ln (ma), let the

function U be defined as U = −dχ
dϕ
. It easy to check that χ̇ = ȧ

a
and ϕ̇ = − χ̇

U
. If we

use these in Eq. (2.6), we get χ̇2 =
(m2ϕ2a2−1)U2

a2(U2−1)
and χ̈ = −3ϕ̇

2
+ 1

a2
. These will be

very useful to find

ϕ̈ = − χ̈U − U̇ χ̇

U2
= − χ̇

2U ′

U3
− 1

Ua2
+

3χ̇2

U3
, (3.15)
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where
′
= df

dϕ
. Using the expression for ϕ̈ in Eq. (2.7) yields

dU

dϕ
=

1− U2

m2a2ϕ2 − 1
+ 3− 3U2 +

m2ϕa2U (U2 − 1)

m2ϕ2a2 − 1

=
(︁
U2 − 1

)︁(︄U
ϕ
− 3 +

U
ϕ
− 1

m2a2ϕ2 − 1

)︄
. (3.16)

As Universe expands, the Universe grows very large and m2a2ϕ2 >> 1, so

dU

dϕ
≈ 3− 3U2 +

U3 − U

ϕ
=
(︁
1− U2

)︁(︃
3− U

ϕ

)︃
. (3.17)

The equation for dU
dϕ

is exact with the assumption that 1/a2 = 0 except near a =

am where 1/a2 becomes important again. It is worth mentioning that it does not

apply near each point where ϕ crosses zero and when a gets close to its maximum

value. During slow-roll inflation with ϕ >> 1, the solution will rapidly approach the

attractor solution

U = 3ϕ+
a

ϕ
+

b

ϕ3
+

c

ϕ5
+

f

ϕ7
+O(ϕ−9). (3.18)

In order to find the coefficients a, b, c, and f , we plug this expression into the differ-

ential equation for U , obtaining the following expression:

3− a

ϕ2
− 3b

ϕ4
− 5c

ϕ6
− 7f

ϕ8
+O(ϕ−10) = 9a+

(︁
6a2 − a+ 9b

)︁ 1

ϕ2
+
(︁
a3 − b+ 12ab+ 9c

)︁ 1

ϕ4

+
(︁
3a2b+ 6b2 − c+ 12ac+ 9f

)︁ 1

ϕ6
+
(︁
3ab2 + 3a2c+ 12bc− f + 12af

)︁ 1

ϕ8
. (3.19)

By comparing both sides of the expression, we found the following coefficients a = 1
3
,

b = −2
27
, c = 11

243
, f = −10

243
. Therefore, the attractor solution has the form

U = 3ϕ+
1

3ϕ
− 2

27ϕ3
+

11

243ϕ5
− 10

243ϕ7
+O(ϕ−9). (3.20)

We also want to remark that since Eq. (3.20) is a good approximation only for

m2a2ϕ2 − 1 >>
U
ϕ
−1

U
ϕ
−3

≈ 6ϕ2, the attractor solution will only become a good ap-

proximation for m2a2 >> 1 and not just m2a2ϕ2 >> 1.
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3.5 Approximate Solutions in Both the Inflation-

ary and Oscillatory Regimes

In this part, we will use a different representation that applies to both the inflationary

and oscillatory regime, so long as the dimensionless 1/a2 can be neglected. Let us

define T as

T =
2

3h
, (3.21)

where h ≡ χ̇, a dimensionless Hubble expansion rate and we have defined the overdot

so that it means the dimensionless derivative 1
m

d
dt

when the lapse is N = 1 so that t

is the comoving proper time.

Next, by assuming a2ϕ2 >> 1 let us define ϕ = h cosψ, ϕ̇ = −h sinψ, and ḣ = χ̈ ≈

−3ϕ̇
2
. Henceforth in this section, we shall use = instead of ≈ for the equations we

get when we ignore terms going as inverse powers of m2a2ϕ2. We will later see that

here we can get the phase constant θ, basically the phase of the oscillation, and we

will calculate its asymptotic value numerically. The dimensionless time derivative of

the dimensionless T is

Ṫ = − 2

3h2
ḣ =

2

h2
ϕ̇
2
= 2 sin2 ψ. (3.22)

Similarly, we can find the time derivative of ψ by calculating the time derivative for

ϕ:

ϕ̇ = ḣ cosψ − (h sinψ) ψ̇ = −h sinψ. (3.23)

Using the fact that ḣ = −3ϕ̇
2
, we have

ψ̇ = 1− 1

T
sin(2ψ). (3.24)

In order to find dT
dψ

we need to divide dT
dt

by dψ
dt

and we obtain

Ṫ

ψ̇
=
dT

dψ
=

2 sin2 ψ

1− 1
T
sin(2ψ)

. (3.25)
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3.5.1 Approximate Expression of T for Very Small ψ

In this part, we will find a series form for T so that we can find the value of T for

some small ψ. To do so, we need to go back to the attractor solution, where ψ and T

are both small and we consider a great amount of inflation so that we can neglect the

spatial curvature. Consider a series with increasing positive orders of ψ of the form

T = c1ψ + c2ψ
2 + c3ψ

3 + c4ψ
4 + c5ψ

5 + c6ψ
6 + c7ψ

7 + c8ψ
8 +O(ψ9). (3.26)

We can use this expression in the differential equation for dT
dψ

but in order to get rid

of T in the denominator, we make the following rearrangement for the differential

equation (︃
T − sin(2ψ)

)︃
dT

dψ
= T

(︃
1− cos(2ψ)

)︃
. (3.27)

A more detailed calculation of the coefficients is given in Appendix B. The coefficients

we got are

c1 = 2, c2 = 0, c3 =
2

3
, c4 = 0, c5 = −26

15
, c6 = 0, c7 =

2764

315
, ... (3.28)

As a result, in this regime where ψ << 1 the series for T in terms of increasing

positive powers of ψ is

T = 2ψ +
2

3
ψ3 − 26

15
ψ5 +

2764

315
ψ7 +O(ψ9). (3.29)

The reason why we searched for such a series is that we are trying to find an

initial value for T when we do the numerical integration for the first order differential

equation for dT
dψ
. Even though the initial value will be accurate up to some order, in

fact, it will help us to find the integration constant θ up to some order and satisfactory

enough to give some meaning to the model. However, starting at too high a value for

ψ, the error would depend on the starting value mainly from the error from truncating

the infinite series in ψ of T (ψ), but on the other hand, if we start at too low a value

for ψ, we would expect that the error would depend on the starting value mainly from

round-off error in doing the integration.
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3.5.2 The Linearized Perturbation for T

In this part, we will find a linear perturbation equation for T , which we can use it to

determine the power of am when finding an asymptotic expression for δθ, the range of

the phase constant that gives another bounce. Let us introduce a small perturbation

of T denoted by t, here not to be confused with the time. Therefore, T ′ = T + t. If

we substitute this into the Eq. (3.79), we get(︃
T − sin(2ψ) + t

)︃(︃
dt

dψ
+
dT

dψ

)︃
= (T + t)

(︃
1− cos(2ψ)

)︃
. (3.30)

As a result, the general differential equation for the linearized perturbation t in terms

of T and ψ is (︃
T − sin(2ψ)

)︃
dt

dψ
= t

(︃
1− dT

dψ
− cos(2ψ)

)︃
. (3.31)

In the case of small ψ we can use the series expression we found for T above and

substitute this instead of T and we obtain(︃
2ψ3 − 2ψ5 +

44

5
ψ7

)︃
dt

dψ
= t

(︃
−2 + 8ψ4 − 184

3
ψ6 − 2

315
ψ8

)︃
. (3.32)

This is a first-order ODE and integrating both sides we have a truncated series for t

whose leading term for small ψ gives

t ≈ c

ψ
exp

(︃
1

2ψ2

)︃
. (3.33)

For very small ψ, the leading term in the exponent is 1
2ψ2 . As can be seen in the

equation above, the linearized perturbation diverges at ψ = 0. Numerical integration

of Eq. (3.31) to large ψ will then give the coefficient of the expression for t(ψ) for

small ψ.

3.5.3 Approximate Expression of T for Very Large ψ, Oscil-
latory Regime

In this section, we will find an approximate series expression for T when ψ >> 1, or

in other words, well into the oscillatory regime but before the Universe reaches the
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maximum size. Eq. (3.25) will be very important in order to find a Fourier series for

T in the oscillatory regime in terms of ψ, and there will also be a phase constant for

each solution which we call θ. This constant will come from the integration to be

done in the coming steps and we want to find out how much of a deviation from this

θ will give another bounce after the Universe starts to re-collapse. For a large number

of zero crossings of ϕ, this phase constant is well defined. In the research paper for

the symmetric bounce quantum state of the Universe, the phase constant is found by

the formula [2]

θ =
2

3χ̇
− ψ + sinψ cosψ. (3.34)

In this part, we will find a better approximation for the phase constant θ, and to

do so we need to rearrange the differential equation above into this form(︃
1− 1

T
sin (2ψ)

)︃
dT

dψ
−
(︃
1− cos(2ψ)

)︃
= 0. (3.35)

Let T be expressed as a series sum,

T = ψ + f0 +
f1
ψ

+
f2
ψ2

+
f3
ψ3

+ ... = ψ +
∞∑︂
m=0

fm
ψm

, (3.36)

where f0, f1, f2, ... will be linear combinations of only constants, sin (2mψ), and

cos (2mψ) with integer values of m.

In Appendix B, we have found the following four differential equations for the first

of these fm functions:

df0
dψ

= − cos(2ψ), (3.37)

df1
dψ

= 2 sin (2ψ) sin2 (ψ) = sin(2ψ)− 1

2
sin(4ψ), (3.38)

df2
dψ

= f1 − f0 sin(2ψ) + f0
sin(4ψ)

2
+ 2 sin2(2ψ) sin2(ψ), (3.39)

df3
dψ

= 2f2 + f 2
0 sin(2ψ)− 2f1 sin(2ψ) + f 2

0

df0
dψ

sin(2ψ)− f1
df0
dψ

sin(2ψ)− f0
df1
dψ

sin(2ψ)
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+sin (2ψ)
df2
dψ

. (3.40)

We can find the integral on both sides for each equation obtained but the problem is

that we will end up with the integration constants which will have to be determined.

For example,

f0 =

∫︂
df0
dψ

dψ = −
∫︂

cos(2ψ) dψ = −1

2
sin(2ψ) + θ. (3.41)

Similarly, we can also find f1, f2 and so on∫︂
df1
dψ

dψ =

∫︂ [︃
sin(2ψ)− 1

2
sin(4ψ)

]︃
dψ. (3.42)

This will give us

f1 =
1

8
cos(4ψ)− 1

2
cos(2ψ) + θ1. (3.43)

To find the value of θ1 and the other integration constants θn, we make sure that

the average value of dfn+1

dψ
vanishes over one period of 2π and therefore no increase in

fn+1 over one period will happen. We can get recursion relations for f
′
n’s in terms

of the fn’s and their derivatives with smaller n. This will determine the integration

constant for fn−1. The functions fn will be oscillatory functions of ψ that do not have

monotonically growing or shrinking terms. Imposing all of these we have,∫︂ 2π

0

df2
dψ

dψ =

∫︂ 2π

0

(︃
f1 − f0 sin(2ψ) + f0

sin(4ψ)

2
+ 2 sin2(2ψ) sin2(ψ)

)︃
dψ = 0.

(3.44)

After we did this integration, we found out that

θ1 = −3

4
. (3.45)

As a result,

f1 =
1

8
cos(4ψ)− 1

2
cos(2ψ)− 3

4
. (3.46)

In order to get a reasonably accurate value for the integration constant θ, we need

to truncate the series for T up to order ψ−3 so that our results would be satisfactory
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enough and assuming that the series converges fast enough. However, we did not

prove and it seems quite cumbersome to prove that the actual Fourier series for T

will converge when we consider all the terms. Since this is not the aim of our project,

we tend to truncate the series up to this order. Integrating df2
dψ

we get∫︂
df2
dψ

dψ =

∫︂ [︃
f1 − f0 sin(2ψ) + f0

sin(4ψ)

2
+ 2 sin2(2ψ) sin2(ψ)

]︃
dψ

=
1

16
sin(6ψ)− 5

32
sin(4ψ)− 7

16
sin(2ψ) + θ

[︃
1

2
cos(2ψ)− 1

8
cos(4ψ)

]︃
+ θ2. (3.47)

As we mentioned earlier, we set the average of df3
dψ

over one period of 2π to be equal

to zero so that will give the value of θ2. Therefore∫︂ 2π

0

[︃
2f2 + f 2

0 sin(2ψ)− 2f1 sin(2ψ) + f 2
0

df0
dψ

sin(2ψ)− f1
df0
dψ

sin(2ψ)− f0
df1
dψ

sin(2ψ)

+
df2
dψ

sin(2ψ)

]︃
dψ = 0. (3.48)

After doing this integration, one can obtain θ2 =
3θ
4
. As a result, f2 is equal to

f2 = − 7

16
sin (2ψ)− 5

32
sin (4ψ) +

1

16
sin (6ψ) + θ

(︃
3

4
+

1

2
cos (2ψ)− 1

8
cos (4ψ)

)︃
.

(3.49)

The more terms we get, the better the approximations will be but we think that

truncating the series up to order ψ−3 would be sufficient enough to get satisfactory

results. Substituting these expressions in the series for T we get

T = ψ+f0+
f1
ψ
+
f2
ψ2

+O(ψ−3) = ψ− 1

2
sin(2ψ)+θ+

[︃
−3

4
− 1

2
cos(2ψ) +

1

8
cos(4ψ)

]︃
1

ψ

+

{︃
− 7

16
sin(2ψ)− 5

32
sin(4ψ) +

1

16
sin(6ψ) + θ

[︃
3

4
+

1

2
cos(2ψ)− 1

8
cos(4ψ)

]︃}︃
1

ψ2

+O(ψ−3). (3.50)
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3.6 Numerical Calculations for the Phase Constant

In this part, we will find numerically the value of the phase constant θ for the attractor

solution that represents a large amount of inflation.

θ ≈
[︃
1 +

1

ψ2

(︃
3

4
+

cos(2ψ)

2
− cos(4ψ)

8

)︃]︃−1{︃
T−ψ+ sin(2ψ)

2
− 1

ψ

[︃
cos(4ψ)

8
− cos(2ψ)

2

−3

4

]︃
+

1

ψ2

[︃
7

16
sin(2ψ) +

5 sin(4ψ)

32
− 1

16
sin(6ψ)

]︃}︃
. (3.51)

The phase constant θ is an asymptotic constant late in the ‘dust regime’ but before

the spatial curvature term becomes important. As shown in Figure 3.5, for large ψ,

the value of θ approaches a constant. For the attractor solution, the initial value for

T can be roughly calculated from the series expression of T at ψ small enough. The

oscillations of the truncated formula for theta should fairly rapidly damp to almost

zero oscillations, especially in the range of ψ ∈ [0, 100]. We did different integrations

starting at different initial values of ψ and we found a range where the asymptotic

value of theta stays the same to several decimal places when you change the starting

value of ψ within this range. Numerical calculations showed that θ approached 1.9777

asymptotically as ψ goes to infinity.

Below are two graphs that show our numerical results for the asymptotic value of

θ. The previously published value of θ was 1.978 [2]. In the next step, we will find

the linearized perturbation of T . We plan to integrate the linearized perturbation

numerically across the intermediate region between large ψ and small ψ. We will

calculate the perturbation in θ from its value in the attractor solution.
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Figure 3.5: Numerical plot of the asymptotic expression for the phase constant θ. It
seems that the expression goes to 1.9777 asymptotically.
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Chapter 4

Conclusions, Recommendations, &
Future Work

4.1 Conclusions

In this thesis, we considered a Universe that has a bounce and expands to a large

maximum size with a large number of zero crossings of the scalar field between two

consecutive bounces. We tried to find the perturbation of the solution as a change in

a certain phase θ defined in Section 3.5. We are still seeking to find for what fraction

of this phase change would the Universe have another bounce as a function of the

maximum size of the Universe, amax.

We have discussed the inflationary regime and the oscillatory regime for a sym-

metric bounce solution as well as the perturbations around them. We have found

an approximate numerical value of the phase constant θ for the attractor solution

representing a large amount of inflation as shown in Figure 3.5. As it can be seen in

the figures mentioned, the asymptotic expression for this phase constant in the limit

that the initial value of the scalar field, ϕi, is taken to be arbitrarily large and rapidly

damps and approaches to a constant as the Universe gets very large.
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4.2 Future Work

Although we have found numerically what the value of the phase constant is, up to

about five significant figures, when the solution in the inflationary regime approaches

very near to the attractor solution, and we found the equation for linearized pertur-

bations around T , we still need to use this perturbation to determine what fraction of

this phase gives another bounce, or in other words stays close enough to the attractor

solution so that it does not go to a singularity.

46



Bibliography

[1] S. W. Hawking, in Relativity, groups and topology: Proceedings, 40th Summer
School of Theoretical Physics - Session 40: Les Houches, France, June 27 -
August 4, 1983, vol. 2 (edited by B. S. DeWitt and R. Stora), Amsterdam:
North-Holland, 1984, pp. 333-379.

[2] D. N. Page, “Symmetric-bounce quantum state of the universe,” Journal of
Cosmology and Astroparticle Physics, vol. 2009, no. 09, p. 026, 2009.

[3] S. Singh, The origin of the universe. Harper Perennial, 2005.

[4] A. Vilenkin, “Quantum origin of the universe,” Nucl. Phys. B, vol. 252, p. 141,
1985.

[5] W. Yang, M. Shahalam, B. Pal, S. Pan, and A.Wang, “Constraints on quintessence
scalar field models using cosmological observations,” Phys. Rev. D, vol. 100,
no. 2, p. 023 522, 2019.

[6] A. Y. Kamenshchik, I. Khalatnikov, and A. Toporensky, “Simplest cosmological
model with the scalar field,” Int. J. Mod. Phys. D, vol. 6, no. 06, p. 673, 1997.

[7] J. B. Hartle, S. W. Hawking, and T. Hertog, “No-boundary measure of the
universe,” Phys. Rev. Lett., vol. 100, no. 20, p. 201 301, 2008.

[8] G. Paturel, P. Teerikorpi, and Y. Baryshev, “Hubble law: measure and inter-
pretation,” Found. Phys., vol. 47, no. 9, p. 1208, 2017.

[9] W. Yang and L. Xu, “Testing coupled dark energy with large scale structure
observation,” J. Cosmol. Astropart. Phys., vol. 2014, no. 08, p. 034, 2014.

[10] J. Henning et al., “Measurements of the E-mode polarization and temperature-
E-mode correlation of the CMB from SPT-3G 2018 data,”Astrophys. J., vol. 852,
no. 2, p. 97, 2018.

[11] L. Ying, “Dark energy is stellar nuclear fusion replicated in a mirrored universe,”
The Open Astro. Jour., vol. 4, no. 1, 2011.

[12] I. Sendra and R. Lazkoz, “Supernova and baryon acoustic oscillation constraints
on (new) polynomial dark energy parametrizations: current results and fore-
casts,” Monthly Notices of the Royal Astronomical Society, vol. 422, no. 1,
p. 776, 2012.

[13] S Hancock et al., “Direct observation of structure in the cosmic microwave
background,” Nature, vol. 367, no. 6461, p. 333, 1994.

47



[14] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time.
Cambridge University Press, 1973.

[15] T. Dereli and R. W. Tucker, “Signature dynamics in general relativity,” Class.
Quant. Grav, vol. 10, no. 2, p. 365, 1993.

[16] T. Müller and F. Grave, “Catalogue of spacetimes,” arXiv e-prints,0904.4184,
2009.

[17] M. A. Persinger, “A possible explanation for the vacuum catastrophe,” Int. J.
Astron. Astrophys., vol. 2014, 2014.

[18] R Brout and R. Parentani, “Time in cosmology,” Int. J. Mod. Phy. D, vol. 8,
no. 01, p. 1, 1999.

[19] R. Penrose, in General relativity, (edited by S. W. Hawking and W. Israel),
Cambridge University press, 1979, pp. 581-638.

[20] F. L. Zhi and W. Z. Chao, Galaxies, quasars and cosmology. World Scientific
Publishing Company, Pte. Ltd., 1985, p. 147, vol. 2.

[21] D. N. Page, “A fractal set of perpetually bouncing universe?” Class. Quant.
Grav., vol. 1, no. 4, p. 417, 1984.

48



Appendix A: Derivation of an
Approximate Expression of T for
Very Small ψ

Let us consider a series with increasing positive powers of ψ of the form

T ≈ c1ψ + c2ψ
2 + c3ψ

3 + c4ψ
4 + c5ψ

5 + c6ψ
6 + c7ψ

7. (A.1)

Before we plug this series for T in this equation(︃
T − sin(2ψ)

)︃
dT

dψ
= T

(︃
1− cos(2ψ)

)︃
, (A.2)

we will use the expansion of both sin (2ψ) and cos (2ψ) given by the Taylor expansion

sin (2ψ) ≈ 2ψ − 4

3
ψ3 +

4

15
ψ5 − 8

315
ψ7, (A.3)

and

cos (2ψ) ≈ 1− 2ψ2 +
2

3
ψ4 − 4

45
ψ6. (A.4)

Also the approximate expression for dT
dψ

is given by

dT

dψ
≈ c1 + 2c2ψ + 3c3ψ

2 + 4c4ψ
3 + 5c5ψ

4 + 6c6ψ
5 + 7c7ψ

6. (A.5)

With all this information, we plug them in the Eq. (A.2) and we get[︃
c1ψ+ c2ψ

2 + c3ψ
3 + c4ψ

4 + c5ψ
5 + c6ψ

6 + c7ψ
7 −
(︃
2ψ − 4

3
ψ3 +

4

15
ψ5 − 8

315
ψ7

)︃]︃[︃
c1

+2c2ψ+3c3ψ
2 +4c4ψ

3 +5c5ψ
4 +6c6ψ

5 +7c7ψ
6

]︃
≈
(︃
c1ψ+ c2ψ

2 + c3ψ
3 + c4ψ

4 + c5ψ
5
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+c6ψ
6 + c7ψ

7

)︃(︃
2ψ2 − 2

3
ψ4 +

4

45
ψ6

)︃
. (A.6)

Comparing both sides with respect to each power of ψ we conclude that c1 = 2 and

c2 = 0. For the constant c3 we get the expression

c1

(︃
c3 +

4

3

)︃
+ 3c3(c1 − 2)− 4 = 0. (A.7)

Therefore c3 =
2
3
. Also c4 = c6 = 0. Next, c5 = −26

15
and c7 =

2764
315

.
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Appendix B: Derivation of
Differential Equations for the
Oscillatory Terms in the Series of T

For a large quantity like T with leading term T0 = ψ, we expand in (T−ψ)
ψ

= x.

As a result,

x =
f0
ψ

+
f1
ψ2

+
f2
ψ3

+
f3
ψ4

+ ..., (B.1)

also the derivative of T with respect to ψ can be calculated easily as

dT

dψ
= 1 +

df0
dψ

+
df1
dψ

1

ψ
+

(︃
df2
dψ

− f1

)︃
1

ψ2
+

(︃
df3
dψ

− 2f2

)︃
1

ψ3
+ ...

+

(︃
dfn
dψ

− (n− 1)f(n−1)

)︃
1

ψn
+ ... (B.2)

The expansion of 1
T
is

1

T
=

1

ψ
(1− x+ x2 − x3 + x4 + ...) =

1

ψ
− f0
ψ2

+
(︁
f 2
0 − f1

)︁ 1

ψ3
+
(︁
2f0f1 − f2 − f 3

0

)︁ 1

ψ4

+O(ψ−5). (B.3)

Inserting these in the differential equation(︃
1− sin(2ψ)

T

)︃
dT

dψ
=

(︃
1− cos(2ψ)

)︃
(B.4)

we get the following long expression

df0
dψ

+ cos(2ψ) +

[︃
df1
dψ

−
(︃
df0
dψ

+ 1

)︃
sin(2ψ)

]︃
1

ψ
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+

[︃
df2
dψ

− f1 +

(︃
f0 + f0

df0
dψ

− df1
dψ

)︃
sin (2ψ)

]︃
1

ψ2
+

[︃
df3
dψ

− 2f2 +

(︃
2f1 − f 2

0 − f 2
0

df0
dψ

+f1
df0
dψ

+ f0
df1
dψ

− df2
dψ

)︃
sin(2ψ)

]︃
1

ψ3
+O(ψ−4) = 0. (B.5)

Equating the coefficients in front of ψ−n to zero one gets the following first three

differential equations

df0
dψ

= − cos(2ψ), (B.6)

df1
dψ

= 2 sin(2ψ) sin2(ψ) = sin(2ψ)− 1

2
sin(4ψ), (B.7)

df2
dψ

= f1 − f0 sin(2ψ) +
1

2
f0 sin(4ψ)−

1

4
cos (2ψ)− 1

2
cos (4ψ) +

1

4
cos (6ψ) +

1

2
.

(B.8)

Hence,

df2
dψ

= −7

8
cos (2ψ)− 5

8
cos (4ψ) +

3

8
cos (6ψ) + θ

[︃
− sin (2ψ) +

1

2
sin (4ψ)

]︃
. (B.9)

Next, we can find df3
dψ

as

df3
dψ

= 2f2 +

(︃
f 2
0 − 2f1 + f 2

0

df0
dψ

− f1
df0
dψ

− f0
df1
dψ

+
df2
dψ

)︃
sin (2ψ). (B.10)

In order to calculate the coefficients f1, f2, and f3 we integrate on both sides the

equations that we got above and it looks as if one gets a new constant of integration

at each stage when one integrates f ′
i to get fi, where f

′
i =

dfi
dψ
. However, we have to

set each integration constant after the θ in f0 = θ− 1
2
sin(2ψ) so that the next f ′

i does

not have a nonzero average over one period of ψ.
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