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ABSTRACT

Left amenability, in it’s modern form, was introduced by M. M. Day, in the

1940s. Amenability of groups and semigroups turned out to be quite common,

and many interesting results are known, which motivated the introduction

of extreme left amenability by Granirer in the 1960s. Extreme amenability

turn out to be equivalent to a very strong nonlinear fixed point property,

but examples of topological groups having this property are rather hard to

construct. The purpose of this thesis is to study an intermediate property

that we call strong left amenability.

If S is a semi-topological semigroup, and A denotes either AP (S), WAP (S)

or LUC(S) (the spaces of almost periodic, weakly almost periodic or left uni-

formly continuous functions on S respectively), then we say that A is strongly

left amenable (SLA) if there is a compact left ideal group in the spectrum of

A. We then say that S is SLA if LUC(S) is SLA.

The first part of the thesis investigates the structure of such semigroups.

We give some elementary properties, and characterize those semigroups for

AP (S), WAP (S) and LUC(S). We also characterize the strong left amenabil-

ity of a semigroup when S is discrete, compact or connected. Finally, we show

that homomorphic images of an SLA semigroup is SLA and so is the product

of an extremely left amenable semigroup by a compact group. We conclude

the first part of the thesis by giving some examples.

Amenability in general is closely related to non linear fixed point properties,

and strong amenability is no exception. In the second part of this thesis, we

characterize strong amenability in terms of a fixed compact set. We then

obtain various fixed point properties related to jointly continuous actions and

non-expansive mappings. We then extend some results on ultimately non-

expansive mappings, a concept introduced by Kiang and Edelstein, to right

reversible semigroups, and show that one of the conditions is always satisfied

when the semigroup is indeed strongly amenable.
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Chapter 1

Introduction

Amenability traces its origins back to the work of Lebesgue on finitely additive

measures in 1904 [48], and to the work of Banach and Tarski on their well-

known paradox [3, 61]. The first study of this class of group was done by von

Neumann in 1929 [64] as the class of non-paradoxical group. This class was

later named amenable by Day, who started the modern period of amenability

in the 1940s, when amenability shifted from the study of invariant measures to

the study of invariant means [12]. For a more detailed account of the history

of amenability, see [54].

Extremely amenable semigroups were introduced by Mitchell [52, 53] and

Granirer [22] in the 60s. This is a very strong non-linear property, which is

never possible for locally compact groups [23, 63] except in the case of the triv-

ial group. More recent developments in the theory of extremely left amenable

groups are presented in [19, 57]. A weaker version of extreme amenability,

namely n-extreme amenability, was introduced in 1970 by Lau [37, 36]. The fol-

lowing year, Lau and Granirer [23] proved that all locally compact n-extremely

left amenable (n-ELA) groups are finite groups, which was a major drawback

since no non-trivial examples of n-ELA group were known. The first example

A similar version of this chapter has been accepted for publication in N. Bou↵ard,

Strongly amenable semigroups and nonlinear fixed point properties, Journal of Nonlinear

Analysis
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of an extremely left amenable topological group was given by Herer and Chris-

tensen in 1975 [25]. It is now known that extremely left amenable topological

groups are quite common and many examples are known [19]. The concept of

strong left amenability, which is our main interest in this paper, sits somewhere

between n-extreme left amenability and left amenability. The second chapter

of this thesis, deals with all basic definitions, which are necessary later on to

define strong left amenability. In particular we give the definition of extreme

amenability and n-extreme amenability.

In the third chapter of this thesis, we study the structure of strongly left

amenable (SLA) semigroups. We give the definition of such a semigroup,

and characterize them. We also justify the use of the Banach algebra of left

uniformly continuous functions for most of our work. In this chapter, we

also provide the reader with some ways of constructing them, and give some

examples. Some special classes of semigroup, such as discrete semigroup and

compact semigroup are also studied.

Amenability is particularly interesting due to its closed relationship with

fixed point properties. The fourth chapter of this thesis studies fixed point

properties related to strong left amenability. In this chapter, we characterize

strong left amenability in terms of a fixed compact set, and we get as corollary

a fixed point theorem.

When K is a non-empty bounded closed convex subset of a Banach space

E, we say that K has the fixed point property if for every non-expansive

mapping T : K ! K, K contains a fixed point for T . We say that a Banach

space E has the weak fixed point property if every weakly compact convex

subset of E has the fixed point property. It is known [6] that if E has the

weak fixed point property, then any weakly compact convex subset K has the

common fixed point property for any commutative semigroup acting on K.

Every uniformly convex Banach space has the weak fixed point property.

This was proved by Browder [5] in 1965, and improved on by Kirk [35], who

proved that every weakly compact subset of a Banach space with normal struc-

ture has the fixed point property. Many examples of Banach space having the
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weak fixed point property are known [41]. These include c0, l
1 and the Fourier

algebra of a compact group. Notice that not all Banach spaces have the weak

fixed point property. As was proved by Alspach [1], there exists a weakly

compact convex subset K of L1[0, 1] without any fixed point for some non-

expansive map on K.

Representations of semigroups as non-expansive mappings are interesting

to us since in many cases they characterize the existence of left invariant means

on some C*-subalgebra of l1(S) [47]. In 2007, Kang [29] studied fixed point

for representations of a semi-topological semigroup S as strongly continuous

non-expansive mapping on a weakly compact convex subset of a Banach space,

where CB(S) is n-ELA. At the end of chapter 4, we generalize some of the

work by Kang [29] to SLA semigroups.

Fixed point properties for a semigroup S acting on a Banach space X have

been widely studied. Many results are known [28, 47, 39, 42, 30, 59, 58, 60],

in particular, in the case where S is commutative, amenable or reversible.

It is well known that every commutative semigroup is amenable, and every

left amenable semigroup is left reversible. Papers investigating fixed point

properties for left reversible semigroups include [49, 46, 34].

Similarly, fixed point properties for semigroup of non-expansive mappings

have been studied extensively. In 1965, Kirk [35] proved that if C is a weakly

compact convex subset of a Banach space with normal structure, then every

non-expansive mapping T on C has a fixed point. As is well known, not ev-

ery non-expansive action of a semigroup on a subset of a Banach space has a

fixed point [1]. Many generalizations of this concept have also been investi-

gated. For example, Holmes and Narayanaswami [28] introduced the concept

of asymptotically non-expansive mapping and Kiang [32] studied eventually

non-expansive mappings. In 1972, Goebel and Kirk [21] proved that if X is a

uniformly convex Banach space, and C is a weakly compact convex subset of

X, then every asymptotically non-expansive mapping on C has a fixed point.

In 1982, Edelstein and Kiang [16] introduced the concept of ultimately

non-expansive mappings. They proved in particular that if S is a commu-

3



tative semigroup of ultimately non-expansive mappings on a reflexive locally

uniformly convex Banach space X such that S(x) is precompact for some

x 2 XS, then there is a common fixed point in X. Here XS denotes the

S-closure points of S.

In 1984, Edelstein [15] generalized this result to the case S is generated

by a single map, replacing the precompactness condition by the existence of a

S-closure point whose orbit is bounded. Finally, in 1985, Edelstein and Kiang

[17] extended this result for general commutative semigroups. In the fifth

chapter of this thesis, we extend this result to right-reversible semigroups, and

show in corollary 5.4.2 that one of the condition of theorem 5.4.1 is always

satisfied when the semigroup is SLA.

4



Chapter 2

Preliminaries

2.1 Introduction

In this section, we give some basic definitions and results related to the theory

of analysis on semigroups, and we define amenability, extreme amenability and

n-extreme amenability of a semigroup, and of a semi-topological semigroup.

Since semi-topological semigroups is the basic structure that we will use to

define strong amenability, those results are required for the rest of this thesis.

For a more complete treatment of the theory of semigroups and semigroup

compactification, we refer the reader to the book of Berglund, Junghenn and

Milness (see [4]).

2.2 Semigroup: Algebraic properties

Definition 2.2.1. A semigroup is a set S with a binary operation which is

associative, i.e., for any elements x, y and z in S, we have

(x · y) · z = x · (y · z).

A similar version of this chapter has been accepted for publication in N. Bou↵ard,

Strongly amenable semigroups and nonlinear fixed point properties, Journal of Nonlinear

Analysis
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Example 2.2.2. The sets N of natural numbers, Z of integers, Q of rational

numbers, R of real numbers, and C of complex numbers are all commutative

semigroups with addition and multiplication.

Example 2.2.3. The set M(n, C) of all n ⇥ n matrices over the complex

numbers C under matrix multiplication is a noncommutative semigroup.

Example 2.2.4. If X is a set of cardinality greater than 1, then the set of all

functions from X into X is a noncommutative semigroup under composition

of functions.

An element z 2 S is a right zero, if sz = z for any s 2 S. A subset I ✓ S

is a left ideal [resp. right ideal] if SI ✓ I [IS ✓ I]. A left ideal [resp. right

ideal] is minimal, if it does not contain any proper left ideal [resp. right ideal].

A semigroup does not need to contain any minimal left or right ideal, but if

it does, every left ideal [resp. right ideal] contains a minimal left ideal [resp.

minimal right ideal].

Proposition 2.2.5. [4, Page 16, Proposition 2.4] Let S be a semigroup. Then

a left ideal L is minimal if and only if Ls = Ss = L for all s 2 L. Also, if S

has a minimal left ideal L, then {Ls : s 2 S} is the family of all minimal left

ideals in S.

Notice that the same result holds for right ideal if we change the order of

the product. An element e 2 S is an idempotent if e2 = e. An idempotent e

is minimal, if it respects any one of the following equivalent properties:

Proposition 2.2.6. [4, Page 17, Theorem 2.8] If e 2 S is an idempotent,

then the following are equivalent:

1. Se is a minimal left ideal

2. eS is a minimal right ideal

3. eSe is a group

6



Proposition 2.2.7. [4, Page 19, Corollary 2.13] Let S be a semigroup with

minimal idempotent. Then the minimal left ideals of S are groups if and only

if S has a unique minimal right ideal.

2.3 Semigroups with a topology

Now, let S be a semigroup with a Hausdor↵ topology. We say S is a right

topological semigroup [resp. left topological semigroup] if for any net s
↵

! s

in S, and t 2 S, we have that s
↵

t! st [resp. ts
↵

! ts]. A semigroup with a

Hausdor↵ topology is a semi-topological semigroup if it is both right and left

topological ( i.e. the product is separately continuous). Finally, a semigroup

with a Hausdor↵ topology is a topological semigroup if for any net s
↵

! s and

t
�

! t in S, we have that s
↵

t
�

! st (i.e. the product is jointly continuous).

That is, if the product is continuous in the product topology.

Example 2.3.1. Any semigroup S with the discrete topology is a semi-

topological semigroup.

Example 2.3.2. The set of real number R with multiplication and the usual

topology is a semi-topological semigroup.

Proposition 2.3.3. [4, page 31, theorem 3.11] If S is a compact, Hausdor↵,

right-topological semigroup, then S has a minimal idempotent. Moreover, all

minimal left ideals of S are closed and pairwise homeomorphic.

If S is a right-topological semigroup, then we define the topological center

of S to be the set ⇤(S) = {s 2 S : the map t ! st is continuous }. It is

known that every compact right topological group admits a left Haar measure,

which is not necessarily unique unless some extra assumptions are satisfied

[4, 51]. Notice that such a Haar measure is left invariant by members of the

topological center, but not necessarily by all elements of the group. For some

recent developments on compact right topological semigroups, see [40].

7



2.4 Function spaces

Let S be a semi-topological semigroup, and let l1(S) be the C*-algebra of all

bounded complex-valued functions on S with the sup-norm topology, that is,

f 2 l1(S)() ||f || = sup
s2S

|f(s)| <1.

For any f 2 l1(S) we define the left translation operator l
s

by l
s

f(t) = f(st),

and the right translation operator r
s

by r
s

f(t) = f(ts), for any s, t 2 S. We

also define the following C*-subalgebras of l1(S):

1. CB(S) is the C*-subalgebra of l1(S) consisting of all bounded norm

continuous complex-valued functions.

2. LUC(S) is the C*-subalgebra of CB(S) consisting of all functions f 2
CB(S) for which the map s! l

s

f is continuous. Similarly we can define

RUC(S) by replacing l
s

by r
s

.

3. AP (S) is the C*-subalgebra of CB(S) consisting of all functions f 2
CB(S) for which the set LO(f) = {l

s

f : s 2 S} is norm relatively

compact in CB(S).

4. WAP (S) is the C*-subalgebra of CB(S) consisting of all functions f 2
CB(S) for which the set LO(f) is weakly relatively compact in CB(S).

For any semi-topological semigroup S, we have AP (S) ✓ WAP (S) and

AP (S) ✓ LUC(S) \RUC(S). Also, we have AP (S) = AP (S
d

) \ CB(S) and

WAP (S) = WAP (S
d

)\CB(S), where S
d

is the semigroup S with the discrete

topology. If S is a compact topological semigroup, then AP (S) = CB(S), and

if S is a compact semi-topological semigroup, then WAP (S) = CB(S) and

AP (S) = LUC(S) = RUC(S).

2.5 Amenability

Let A be a left translation invariant C*-subalgebra of l1(S) containing the

constants. A mean on A is a linear functional µ : A ! C such that ||µ|| = 1

8



and µ(1
S

) = 1, where 1
S

is the constant one function on S. A mean µ is

left invariant if l⇤
s

µ = µ for all s 2 S, where l⇤
s

µ(f) = µ(l
s

f). A mean µ is

multiplicative if µ(fg) = µ(f)µ(g) for all f, g 2 A. A is said to be [extremely]

left amenable if there exists a [multiplicative] left invariant mean on A. S is

said to be [extremely] left amenable, if LUC(S) is [extremely] left amenable.

Note that for a compact semi-topological semigroup S, CB(S) is left amenable

if and only if S has a unique minimal right ideal.

Example 2.5.1. If G is a compact group, then G is amenable [12].

Example 2.5.2. If G is an abelian group with the discrete topology, then G

is amenable [12].

Now, let SA denote the set of all multiplicative means on A with the

weak*-topology, and �(S) = SLUC(S). We define the left introversion operator

determined by µ 2 CB(S)⇤ by T
µ

: A ! l1(S), (T
µ

f)(s) = µ(l
s

f) for all

f 2 A, s 2 S, and we say A is m-left introverted if T
µ

A ✓ A for all µ 2 SA. If

A is m-left introverted, we define the Arens product � on SA by:

µ� ⌫(f) = µ(⌫
l

(f)), 8f 2 A

⌫
l

(f) = ⌫(l
s

f), s 2 S.

For any semi-topological semigroup, AP (S), WAP (S) and LUC(S) are all

translation invariant, left introverted C*-subalgebra of CB(S) containing the

constant functions. Also, with this product, �(S) is a compact right topo-

logical semigroup, and SAP (S) is a compact topological semigroup. For every

s 2 S, we define the point measure �
s

: A! C by �
s

(f) = f(s) for all f 2 A.

The point measures are dense in SA, and define an embeding of S in SA.

As is well known, a semigroup S is extremely left amenable (ELA) if and

only if there exists a right zero in �(S) (See [52, 53]). Also, when S is a

discrete semigroup, then S is ELA if and only if every two elements of S have

a common right zero ( i.e. for all s, t 2 S, there exists z 2 S such that

sz = tz = z, see [22]).

9



For any n 2 N, we say A is n-ELA if there exists a set F ✓ �(S) such that

|F | = n and which is minimal with respect to the property l⇤
s

F = F for all

s 2 S. A semigroup S is n-ELA if and only if there exists a left ideal group

of order n in �(S) (See [37, 36]). When S is a discrete semigroup with finite

intersection property for right ideals, we define the equivalence relation (r) by:

a(r)b , ac = bc for some c 2 S. We denote by S/(r) the semigroup S with

this equivalence relation, and we have the following characterization due to

Lau:

Theorem 2.5.3. (See [37])

1. If S is n-ELA and F0 is a coset representative of S/(r), then for each

finite subset � of S, there exists t
�

2 S, depending on �, such that

aF0t� = F0t� for all a 2 �.

2. If for any finite subset � of S, there exists F
�

✓ S, |F
�

| = n, such that

aF
�

= F
�

for all a 2 S, then S is m-ELA for some m  n, m dividing

n.
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Chapter 3

Strong left amenability

3.1 Introduction

In this chapter, we want to study the general structure of strongly left amenable

semigroups. Strong amenability is a property that sits somewhere between

amenability and extreme amenability. In section 3.2 we give the definition of

such a semigroup and explore some of its elementary properties, most of which

are necessary later on in this chapter.

In section 3.3, we give a characterization of strong amenability of LUC(S),

WAP (S) and AP (S). This section also explains why most of our study has

centered around the LUC(S) case, since we prove that the two other cases are

nothing else than amenability.

In section 3.4, we prove that every homomorphic image of a strongly

amenable semigroup is also strongly amenable, and the product of an ex-

tremely amenable semigroup by a compact group is strongly amenable. This

will allow us in section 3.6 to give some examples of non-trivial strongly

amenable groups. But before we give examples, we study in section 3.5 the

strong amenability of some special classes of semigroups, which includes the

A similar version of this chapter has been accepted for publication in N. Bou↵ard,

Strongly amenable semigroups and nonlinear fixed point properties, Journal of Nonlinear

Analysis
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compact and discrete cases.

3.2 Strong left amenability

Definition 3.2.1. A semi-topological semigroup S is strongly left amenable

(SLA) if there exists a left ideal group in �(S).

Notice that all n-ELA semigroups are SLA. Also, all compact groups are

SLA, this is because if G is a compact group, then G = �(G).

Theorem 3.2.2. If S is a semi-topological semigroup with a left ideal group

K in �(S), then the following holds:

1. K is a minimal left ideal

2. K is compact

3. K is a right topological group

4. l⇤
s

K = K for all s 2 S.

5. For any µ, ⌫ 2 K and s 2 S, l⇤
s

µ = l⇤
s

⌫ ) µ = ⌫

6. K � µ is a compact left ideal group for all µ 2 �(S).

Proof.

1. Let M ✓ K be another left ideal in �(S) and let m 2 M , then: K =

K �m ✓M . Therefore K = M , and K is a minimal left ideal.

2. It su�ces to show that K is closed since �(S) is compact. Take a k 2 K.

Then �(S) � k is a left ideal of �(S) that sits in K. It is closed since

�(S) is compact and the multiplication is right continuous. But K is a

minimal left ideal from (1). Therefore K = �(S)� k and thus is closed.

3. By assumption, K is a group. Since �(S) is right topological then so is

K.

12



4. Let s 2 S, µ 2 K and �
s

� µ = ⌫. Then since K is a left ideal, we have

that �
s

�K ✓ K, also, since K is a group, we have ⌫�K = µ�K = K.

Therefore, we have that:

l⇤
s

K = �
s

�K = �
s

� (µ�K) = (�
s

� µ)�K = ⌫ �K = K.

5. Let  be the identity in K, then we have:

l⇤
s

µ = l⇤
s

⌫

) �
s

� µ

= �
s

� ⌫

) �
s

� ( � µ)

= �
s

� ( � ⌫)

) (�
s

�  )� µ

= (�
s

�  )� ⌫ ) µ

= ⌫,

where the last implication follows from the fact that K is a left ideal,

and therefore �
s

�  is in the group K.

6. Consider the map f
a

: K ! �(S) defined by f
a

(µ) = µ�a. This map is

continuous by continuity of the Arens product in the first variable, and

therefore K � a is a continuous image of a compact set, and is therefore

compact. Since K is a minimal left ideal, then by proposition 2.2.5,

K � a is also a minimal left ideal. K � a is associative since �(S) is a

semigroup. We only need to prove the existence of an identity and the

existence of an inverse for any element in K � a to complete the proof.

The identity is given by e
a

= x� (a�x)�1� a for any x 2 K, where the

inverse is taken in the group K. This e
a

is independent of the choice of

13



x since if y 2 K, we have

y � (a� y)�1 � a = (x� x�1)� y � (a� y)�1 � a

= x� (y�1 � x)�1 � (a� y)�1 � a

= x� (a� y � y�1 � x)�1 � a

= x� (a� x)�1 � a

= e
a

.

To see that e
a

is an identity for K � a. Let (y � a) 2 K � a, then we

have:

(y � a)� e
a

= (y � a)� x� (a� x)�1 � a

= y � (a� x)� (a� x)�1 � a

= y � a

e
a

� (y � a) = x� (a� x)�1 � a� (y � a)

= x� (a� x)�1 � (a� x)� (x�1 � y)� a

= (x� x�1)� (y � a)

= y � a

Also, for any y � a 2 K � a, its inverse in K � a is given by

y � (a� y)�1 � (a� y)�1 � a.

This is true since if y � a 2 K � a, then:

(y � a)� [y � (a� y)�1 � (a� y)�1 � a]

= y � (a� y)� (a� y)�1 � (a� y)�1 � a

= y � (a� y)�1 � a

= e
a

Similarly. we have: [y � (a � y)�1 � (a � y)�1 � a] � (y � a) = e
a

, and

therefore, it follows that �(S)� a = K � a is a group.
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Theorem 3.2.3. Let S be a strongly left amenable semigroup and let K1 and

K2 be two left ideal groups in �(S). Then K1 and K2 are isomorphic (as

right-topological group).

Proof. We define the map f : K1 ! K2 by f(x) = x � e2, and the map

g : K2 ! K1 by g(y) = y � e1, where e1 is the identity in K1, and e2 is the

identity in K2. This is well defined since K1 and K2 are left ideal. We first

show that those maps are onto. To see that, first notice that f(K1) is a left

ideal contained in K2. Let y be any element in �(S), and x be any element of

K1. Then we have y � f(x) = y � (x� e2) = (y � x)� e2 2 K1 � e2 = f(K1),

and therefore f(K1) is a left ideal in K2, so by minimality of K2 this implies

that f(K1) = K2. It follows that f is onto. We now want to show that those

maps are homomorphisms:

f(x� y) = (x� y)� e2 = x� (y � e2) = x� [e2 � (y � e2)]

= (x� e2)� (y � e2) = f(x)� f(y).

Therefore, f is a (semigroup) homomorphism. The same proof, replacing e2

by e1, shows that g is also a homomorphism. To see that they are actually

group homomorphisms, we need to show: e
i

� e
j

= e
j

. To prove that, let

y 2 K2. Since f is onto, there exists x 2 K1 such that f(x) = y. It follows

that:

y � (e1 � e2) = f(x)� (e1 � e2) = f(x)� f(e1) = f(x� e1) = f(x) = y

(e1 � e2)� y = (e1 � e2)� f(x) = f(e1)� f(x) = f(e1 � x) = f(x) = y.

Therefore, e1 � e2 is the identity of K2, and therefore e1 � e2 = e2. The same

proof can be used to show e
i

� e
j

= e
j

, where i, j 2 {1, 2}. And to finish

the proof that f is a (group) homomorphism, we have: [f(x�1)] � [f(x)] =

f(x�1 � x) = f(e1) = e2. Since this is true for any x 2 K1, it follows:

[f(x)]�1 = f(x�1). Therefore, it is a group homomorphism. To finish the

proof of this theorem, we only have left to prove that f is continuous. Let x
↵

15



be a net in K1 which converges to x 2 K1. Then it follows: f(x
↵

) = x
↵

�e2 !
x� e2 = f(x). To finish the proof we need to show f � g = id and g � f = id.

(f � g)(y) = f(y � e1) = y � e1 � e2 = y � e2 = y, 8y 2 K2,

(g � f)(x) = g(x� e2) = x� e2 � e1 = x� e1 = x, 8x 2 K1,

and therefore, K1 and K2 are isomorphic as right topological group.

Theorem 3.2.4. Every strongly left amenable semigroups is left amenable.

Proof. This proof is inspired by a similar proof in [2]. Since K is a compact

right topological group, it admits a left Haar measure ⌫ [4]. Then we can

define the following function:

�(f) =

Z

K

hf, µid⌫(µ).

We want to show this is a left invariant mean on LUC(S). First, if 1 is the

constant one function on S, then we have

�(1) =

Z

K

h1, µid⌫(µ) =

Z

K

1d⌫(µ) = 1.

Also, we have

||�|| = sup
||f ||1

|�(f)|  sup
||f ||1

sup
µ2K

|µ(f)|  sup
||f ||1

sup
µ2K

||µ|| ||f || = sup
||f ||1

||f ||  1,

and therefore, � is a mean on LUC(S). Now, we want to show that this mean

is left invariant. Let s 2 S, and  be the identity of K. Then we have:

l⇤
s

�(f) = �(l
s

f) =

Z

K

hl
s

f, µid⌫(µ) =

Z

K

hf, l⇤
s

µid⌫(µ)

=

Z

K

hf, l⇤
s

( � µ)id⌫(µ) =

Z

K

hf, (l⇤
s

 )� µid⌫(µ)

=

Z

K

hf, µid⌫(µ) = �(f).

Notice that the 4th and 6th equalities follow from the fact that the Haar

measure is left invariant by elements of the topological center ⇤(K), and both

 and l⇤
s

 are in ⇤(K). It follows that � is left invariant, and therefore if S is

strongly left amenable, then S is left amenable.
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3.3 Characterization

We are now ready for our characterization theorem for SLA semigroup. Re-

call first that since �(S) is a compact right-topological semigroup, it follows

from proposition 2.3.3 that �(S) has a minimal idempotent. Therefore by

proposition 2.2.6, there exists a minimal left ideal and a minimal right ideal

in �(S).

Theorem 3.3.1. Let S be a semi-topological semigroup. Then the following

are equivalent:

1. There exists a left ideal group in �(S).

2. There exists a compact left ideal group in �(S).

3. All minimal left ideals of �(S) are compact groups.

4. There exists a 2 �(S) for which �(S)� a is a group.

5. There exists a compact group K ✓ �(S) such that l⇤
s

K = K for all

s 2 S.

6. There exists a unique minimal right ideal in �(S).

Proof.

(1) ) (2): This follows from theorem 3.2.2.

(2) ) (1): Trivial.

(3) , (6): Since �(S) is a compact right topological semigroup, it follows

by Proposition 2.3.3 that �(S) has a minimal idempotent, so we can apply

Proposition 2.2.7, which gives us that all minimal left ideals of�(S) are groups

if and only if there is a unique minimal right ideal in �(S).

(3) ) (2): By proposition 2.3.3, we know that �(S) has (at least one) a

minimal left ideal. Since all minimal left ideal of �(S) are groups, it follows

there exists a compact left ideal group in �(S).

(2) ) (3): Let K be a compact left ideal group in �(S). Then {K � µ : µ 2
�(S)} is the collection of all minimal left ideals in �(S) by Proposition 2.2.5.

17



Also, we proved in proposition 3.2.2 that K � µ is a group for all µ 2 �(S),

which completes the proof.

(4) ) (1): �(S)�a is a left ideal since if µ 2 �(S) we have µ�(�(S)�a) =

(µ��(S))� a ✓ �(S)� a. Therefore �(S)� a is a left ideal group in �(S).

(2) ) (4): Let K be a compact left ideal group in �(S), Then K � µ =

�(S)� µ = K for all µ 2 K. Therefore �(S)� µ is a group.

(1) ) (5): If K is a left ideal group in �(S), then µ � K ✓ K for any

µ 2 �(S), but since K is also a group, then for any x 2 K we have that

K = K � x = x�K, which implies for any µ 2 �(S),

µ�K = µ� (x�K) = (µ� x)�K = ⌫ �K = K,

for some ⌫ 2 K. Therefore, for any s 2 S, we have that l⇤
s

K = �
s

�K = K.

(5) ) (1): By continuity of the Arens product in the first variable, l⇤
s

K =

�
s

�K is a left ideal. By assumption this is also a group.

If S is a semi-topological semigroup, and A is a left translation invariant

C⇤-subalgebra of CB(S) containing the constants, then we say that A is m-

admissible if the function s ! (T
µ

f)(s) = µ(l
s

f) is in A for all f 2 A and

µ 2 SA [4]. In this case, SA is a semigroup with the Arens product. A closed

invariant (left and right) subalgebra of WAP (S) containing the constants is

always m-admissible [10]. If A is an m-admissible subalgebra of LUC(S), then

we say A is strongly left amenable, if SA is strongly left amenable.

Theorem 3.3.2. Let A be an m-admissible subalgebra of WAP (S). If A is

left amenable, then A is strongly left amenable.

Proof. We define the following maps:

✏ : S ! SA, ✏(s) = �
s

, 8s 2 S

✏⇤ : CB(SA)! A, ✏⇤(f̃)(s) = f̃(✏(s)), 8f̃ 2 CB(SA),8s 2 S

✏⇤⇤ : A⇤ ! CB(SA)⇤, ✏⇤⇤(µ)(f̃) = µ(✏⇤(f̃)), 8µ 2 A⇤, 8f̃ 2 CB(SA)

Notice that if � is a mean on A, then µ = ✏⇤⇤(�) is a mean on CB(SA).

We want to prove that if � is also left invariant, then so is µ. Let s, t 2 S and
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f̃ 2 CB(SA). We define f 2 CB(S) to be the restriction of f̃ to S. Then we

have ✏⇤(l
✏(s)f̃)(t) = l

✏(s)(f̃)(✏(t)) = f̃(✏(st)) = f(st) = l
s

f(t), and also we have

that ✏⇤(f̃)(t) = f̃(✏(t)) = f(t). Therefore we have

l
✏(s)µ(f̃) = µ(l

✏(s)f̃) = ✏⇤⇤(�)(l
✏(s)f̃) = �(✏⇤(l

✏(s)f̃)) = �(l
s

f)

= �(f) = �(✏⇤(f̃)) = ✏⇤⇤(�)(f̃) = µ(f̃).

Now, using the continuity of the map s ! l⇤
s

µ, we get that l⇤
x

µ = µ for all

x 2 SA, which shows that µ is a left invariant mean on CB(SA).

Now, we want to show that that SA has a unique minimal right ideal.

Suppose that R1 and R2 are two distincts minimal right ideals in SA. Since A

is a subalgebra of WAP (S), SA is a semi-topological semigroup, and therefore

minimal right ideals of SA are closed. Therefore, we can apply Urysohn’s

lemma [65] to construct a function g which is 0 on R1 and 1 on R2. If we

take x 2 R1 and y 2 R2, then we get that: µ(l
x

g) = 0 and µ(l
y

g) = 1,

which contradict the left invariance of µ. Therefore, there is unique minimal

right ideal. Now, pick any minimal left ideal L in SA, then RL is a left ideal

contained in L, therefore by minimality of L, we have that RL = L. But

we also know that the product of a right ideal by a left ideal is a group. It

follows that L is a left ideal group in SA, and therefore SA is strongly left

amenable.

Notice that the only place in the proof where we use the fact that A is

an m-admissible subalgebra of WAP (S) is to prove that minimal right ideals

are closed. Also, the previous theorem justifies our definition of strong left

amenability of a semi-topological semigroup S using LUC(S), and the choice

of focusing almost all our e↵orts on this algebra.

Corollary 3.3.3. Let S be a semi-topological semigroup. If LUC(S) is left

amenable and if the minimal right ideals of SLUC are closed, then LUC(S) is

strongly left amenable.

Proof. If the minimal right ideals of SLUC are closed, then we can apply the

same proof as in the theorem.
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Corollary 3.3.4. Let S be a left amenable locally compact, non compact group.

Then the minimal right ideals of SLUC are not closed.

Proof. If the minimal right ideals of SLUC are closed, then S is strongly left

amenable. But, we know that the only locally compact strongly left amenable

groups are the compact groups. Therefore it is impossible.

Theorem 3.3.5. If S is a semi-topological semigroup, then the following are

equivalent:

1. AP (S) is left amenable.

2. AP (S) is strongly left amenable.

3. There exists a compact set K ✓ SAP (S) which is minimal with respect to

the property l⇤
s

K = K for all s 2 S.

Proof.

(1) ) (2): AP (S) is an m-admissible subalgebra of WAP (S), therefore we

can apply theorem 3.3.2.

(2) ) (1): This is the same proof as in the LUC(S) case.

(2) ) (3): See theorem 3.2.2.

(3) ) (2): Since l⇤
s

K = K for all s 2 S, it follows that µ � K ✓ K for all

µ 2 SAP (S), and therefore K is a left ideal. Let µ 2 K, then K � µ is also a

left ideal in SAP (S), and K � µ ✓ K. Therefore it follows from the minimality

of K that K = K � µ. Now, we want to show µ �K = K. Let  2 K, and

s
↵

be a net in S such that �
s↵ ! µ, then since l⇤

s↵
K = K for all ↵, there is a

net '
↵

in K such that �
s↵ � '↵

=  for all ↵. Now since K is compact, there

exists a subnet '
�

of '
↵

such that '
�

converges to some ' 2 K. It follows

that �
s�
� '

�

=  for all �, and �
s�
� '

�

! µ� '. Therefore µ� ' =  , and

it follows that µ�K = K. Now since K is both left and right simple, it must

be a group, and AP (S) is strongly left amenable.
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3.4 Construction

In the next theorem, we want to establish that every homomorphic image

of a SLA semigroup is also SLA. Let S, T be semi-topological semigroups,

and let f : S ! T be a continuous surjective homomorphism. We define

f̃ : LUC(T ) ! LUC(S) by [f̃(g)](s) = g[f(s)] for all s 2 S and we define
˜̃f : �(S) ! �(T ) by [ ˜̃f(µ)](g) = µ[f̃(g)] for all g 2 LUC(T ). We first want

to show that those maps are properly defined. Let g 2 LUC(T ), we want to

show f̃(g) 2 LUC(S). Let s
↵

be a net in S which converges to s 2 S. Then we

have f(s
↵

) ! f(s) since f is continuous, therefore since g is also continuous,

g(f(s
↵

))! g(f(s)). It follows that:

[f̃(g)](s
↵

) = g(f(s
↵

))! g(f(s)) = [f̃(g)](s).

Therefore f̃(g) is continuous. To see it is actually left uniformly continuous,

let t 2 S. Then we have

sup
t2S

|l
s↵(f̃(g))(t)� l

s

(f̃(g))(t)| = sup
t2S

|f̃(g)(s
↵

t)� f̃(g)(st)|

= sup
t2S

|g(f(s
↵

t))� g(f(st))| = sup
t2S

|g(f(s
↵

)f(t))� g(f(s)f(t))|

= sup
t2S

|l
f(s↵)g(f(t))� l

f(s)g(f(t))|! 0,

since g 2 LUC(T ) and f(s
↵

)! f(s). Therefore f̃(g) 2 LUC(S).

Now, we want to show that ˜̃f(µ) 2 �(T ). First, notice that if e : T ! C,

defined by e(t) = 1 for all t 2 T , then [f̃(e)](s) = e(f(s)) = 1. Therefore,

[ ˜̃f(µ)](e) = µ(f̃(e)) = 1 for all µ 2 �(S). Now, let g 2 LUC(T ) be such that

||g||  1. Then

||f̃(g)|| = sup
s2S

|[f̃(g)](s)| = sup
s2S

|g(f(s))|  sup
t2T

|g(t)|  1.

It follows that

|| ˜̃f(µ)|| = sup
||g||1

| ˜̃f(µ)(g)| = sup
||g||1

|µ(f̃(g))|  1,

and therefore ˜̃f(µ) 2 �(T ) for all µ 2 �(S).
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Finally, we define the map ⇡ : S ! �(S) by ⇡(s) = �
s

and we define the

map ⇢ : T ! �(T ) by ⇢(t) = �
t

. Now, let K be a compact left ideal group in

�(S), and let K 0 = ˜̃f(K). We will show that K 0 is a compact left ideal group

in �(T ), but first we need a lemma.

Lemma 3.4.1. The following is true for the maps we just defined:

1. l
s

f̃(g) = f̃(l
f(s)g) for all s 2 S and g 2 LUC(T ).

2. l⇤
f(s)

˜̃f(µ) = ˜̃f(l⇤
s

µ) for all s 2 S and µ 2 �(S).

3. ˜̃f(�
s

) = �
f(s) for all s 2 S.

4. ⇢ � f = ˜̃f � ⇡.

5. ⌫
l

(f̃(g)) = f̃(⌫ 0
l

(g)) for all g 2 LUC(T ) and ⌫ 2 �(S).

6. f̃ and ˜̃f are homomorphism.

7. f̃ and ˜̃f are continuous.

8. l⇤
t

K 0 = K 0 for all t 2 T .

9. K 0 is a group.

10. K 0 is compact.

11. ˜̃f is onto.

Proof.

1. For all x 2 S we have that:

[l
s

f̃(g)](x) = f̃(g)(sx) = g(f(sx)) = g(f(s)f(x))

= (l
f(s)g)(f(x)) = [f̃(l

f(s)g)](x)

and therefore l
s

f̃(g) = f̃(l
f(s)g).
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2. For all g 2 LUC(T ) we have that:

[l⇤
f(s)

˜̃f(µ)](g) = ˜̃f(µ)(l
f(s)g) = µ(f̃(l

f(s)g)) = µ(l
s

f̃(g))

= (l⇤
s

µ)(f̃(g)) = [ ˜̃f(l⇤
s

µ)](g)

And therefore l⇤
f(s)

˜̃f(µ) = ˜̃f(l⇤
s

µ).

3. Let g 2 LUC(T ), then we have:

˜̃f(�
s

)(g) = �
s

(f̃(g)) = (f̃(g))(s) = g[f(s)] = �
f(s)(g)

And therefore, it follows that ˜̃f(�
s

) = �
f(s).

4. Let s 2 S, then we have that:

(⇢ � f)(s) = ⇢(f(s)) = �
f(s) = ˜̃f(�

s

) = ( ˜̃f � ⇡)(s)

and therefore ⇢ � f = ˜̃f � ⇡.

5. Let s 2 S, then we have:

⌫
l

(f̃(g))(s) = (l⇤
s

⌫)(f̃(g)) = ⌫(l
s

f̃(g)) = ⌫(f̃(l
f(s)g))

= [ ˜̃f(⌫)](l
f(s)g) = ⌫ 0(l

f(s)g) = (l⇤
f(s)⌫

0)(g)

= (⌫ 0
l

(g))(f(s)) = f̃(⌫ 0
l

(g))(s)

And therefore: ⌫
l

(f̃(g)) = f̃(⌫ 0
l

(g)).

6. Let g, h 2 LUC(T ) and s 2 S. Then we have:

f̃(gh)(s) = (gh)(f(s)) = g(f(s))h(f(s))

= f̃(g)(s) f̃(h)(s) = [f̃(g)f̃(h)](s)

And therefore f̃ is a (semigroup) homomorphism. Now, to show that ˜̃f

is also a (semigroup) homomorphism, let µ, ⌫ 2 �(S) and g 2 LUC(T ).

Let ˜̃f(µ) = µ0 and ˜̃f(⌫) = ⌫ 0. Then we have:

˜̃f(µ� ⌫)(g) = (µ� ⌫)(f̃(g)) = µ(⌫
l

(f̃(g)))

= µ(f̃(⌫ 0
l

(g))) = ˜̃f(µ)[⌫ 0
l

(g)]

= µ0(⌫ 0
l

(g)) = (µ0 � ⌫ 0)(g)

= [ ˜̃f(µ)� ˜̃f(⌫)](g)
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And therefore, ˜̃f is also a (semigroup) homomorphism.

7. Let g
↵

be a net in LUC(T ) which converges to g. That is

sup
t2T

|g
↵

(t)� g(t)|! 0.

We want to prove that f̃(g
↵

)! f̃(g).

sup
s2S

|f̃(g
↵

)(s)� f̃(g)(s)| = sup
s2S

|g
↵

(f(s))� g(f(s))|

= sup
t2T

|g
↵

(t)� g(t)|

! 0

And therefore f̃ is continuous. Now, to show that ˜̃f is continuous, let

µ
↵

! µ, that is µ
↵

(h)! µ(h) for all h 2 LUC(S). It follows that:

˜̃f(µ
↵

)(h) = µ
↵

(f̃(h))! µ(f̃(h)) = ˜̃f(µ)(h)

And therefore ˜̃f is continuous.

8. We have that: l⇤
t

K 0 = l⇤
f(s)

˜̃f(K) = ˜̃f(l⇤
s

K) = ˜̃f(K) = K 0.

9. This is a direct consequence of the fact that ˜̃f is a homomorphism onto

K 0, and K is a group.

10. Since ˜̃f is continuous and K is compact, then K 0 = ˜̃f(K) is compact.

11. Let ⌫ be any element in �(T ). Then there exists a net of point measure

�
t↵ in �(T ) which converges to ⌫. Now, since f is onto, there exists

a net s
↵

in S such that f(s
↵

) = t
↵

, and therefore ˜̃f(�
s↵) = �

t↵ . Now,

since �(S) is compact, there exists a subnet �
s�

of �
s↵ which converges

to some µ in �(S). Now to prove that ˜̃f(µ) = ⌫, we use the continuity

of ˜̃f . Since �
s�
! µ we have that �

t�
= ˜̃f(s

�

) ! ˜̃f(µ). But since �
t�

is

a subnet of �
t↵ , it also converges to ⌫. Therefore, by unicity of the limit

in a Hausdor↵ space, it follows that ˜̃f(µ) = ⌫, and ˜̃f is therefore onto.
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Theorem 3.4.2. Every homomorphic image of a strongly left amenable semi-

group is strongly left amenable.

Proof. Let S be a SLA semigroup, and f : S ! T be a homomorphism onto a

semi-topological semigroup T . If S is SLA, with K a compact left ideal group

in �(S), then ˜̃f(K) = K 0 is a compact left ideal group in �(T ). That K 0

is a compact group follows from Lemma 3.4.1. To see that is is also a left

ideal, let µ 2 �(T ). Then there is a net t
�

in T such that �
t�
! µ. Since

l⇤
t�

K 0 = K 0 for all �, it follows from the compactness of K 0 that for any ⌫ 2 K 0,

l⇤
t�
⌫ ! µ � ⌫ 2 K 0. Therefore µ �K 0 = K 0 for all µ 2 �(T ). So K 0 is a left

ideal.

We already know that every compact group, ELA semigroup and n-ELA

semigroup is strongly left amenable. Now, we want to prove that the product

of an extremely left amenable semigroup by a compact group is also strongly

left amenable, which will prove, using Pestov [19], that the unitary group

U(M) of an injective von Neumann algebra M with the s(M, M⇤)-topology is

strongly left amenable.

Let S be an extremely left amenable and G be a compact group. We define

S ⇥ G using the Cartesian product, with the product topology. If µ 2 �(S)

and ⌫ 2 �(G) = {�
g

: g 2 G}, then we define µ⇥ ⌫ 2 �(S ⇥G) by

(µ⇥ ⌫)(f) = ⌫(h), h(t) = µ(⇡
t

f), ⇡
t

f(s) = f(s, t),

for any f 2 LUC(S ⇥ G). Notice that whenever ||f ||  1, then ||⇡
t

f || 
1. Therefore, we have ||µ ⇥ ⌫|| = sup||f ||1 |(µ ⇥ ⌫)(f)|  1. Also, since

(µ⇥ ⌫)(1) = 1, then ||µ⇥ ⌫|| = 1. Therefore, µ⇥ ⌫ 2 �(S ⇥G).

Lemma 3.4.3. Let S be an extremely left amenable semigroup with µ 2 �(S)

be a right zero, and let ' 2 �(S). Let G be a compact group, and let  , ⌫ 2
�(G), with  = �

g

and ⌫ = �
g

0. Then the following holds:

1. �
s

⇥ �
g

= �(s,g).

2. (µ⇥ �
g

)(f) = µ(⇡
g

f).
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3. ⇡
g

(l(s,g0)f) = l
s

(⇡
g

0
g

f).

4. ⇡
g

(µ⇥ �
g

0)
l

(f) = µ
l

(⇡
gg

0f).

5. ('⇥ �
g

)� (µ⇥ �
g

0) = µ⇥ �
gg

0.

6. �(s,g) � (µ⇥ �
g

0) = µ⇥ �
gg

0.

Proof.

1. (�
s

⇥ �
g

)(f) = �
g

(h) = h(g) = �
s

(⇡
g

f) = ⇡
g

f(s) = f(s, g) = �(s,g)(f)

2. (µ⇥ �
g

)(f) = �
g

(h) = h(g) = µ(⇡
g

f)

3. ⇡
g

(l(s,g0)(f))(t) = l(s,g0)(f)(t, g) = f(st, g0g) = (⇡
g

0
g

f)(st) = (l
s

⇡
g

0
g

f)(t)

4.

⇡
g

(µ⇥ �
g

0)
l

(f)(s) = (µ⇥ �
g

0)
l

(f)(s, g) = l⇤(s,g)(µ⇥ �g0)(f)

= (µ⇥ �
g

0)(l(s,g)f) = �
g

0(h) = h(g0)

= µ(⇡
g

0l(s,g)f) = µ(l
s

⇡
gg

0f)

= l⇤
s

µ(⇡
gg

0f) = µ
l

(⇡
gg

0f)(s)

5.

('⇥ �
g

)� (µ⇥ �
g

0)(f) = ('⇥ �
g

)((µ⇥ �
g

0)
l

(f)) = �
g

(h)

= h(g) = '[⇡
g

(µ⇥ �
g

0)(f)]

= '[µ
l

(⇡
gg

0f)] = ('� µ)(⇡
gg

0f)

= µ(⇡
gg

0f) = (µ⇥ �
gg

0)(f)

6.

�(s,g) � (µ⇥ �
g

0))(f) = (�
s

⇥ �
g

)� (µ⇥ �
g

0))(f)

= (µ⇥ �
gg

0)(f)
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Theorem 3.4.4. The product of an extremely left amenable semigroup by a

compact group is strongly left amenable.

Proof. This follows from lemma 3.4.3. Let µ 2 �(S) be a right zero, then we

want to show K = µ ⇥ {�
g

: g 2 G} is a left ideal group in �(S ⇥ G). Since

the point measures are dense in �(S ⇥ G), it is enough to show that K is a

group, and l⇤(s,g)K ✓ K. We have l⇤(s,g)K = �(s,g) � K ✓ K by property (6)

of lemma 3.4.3. Also, by property (6) of lemma 3.4.3, it is clear that K is a

group. Therefore S ⇥G is strongly left amenable.

3.5 Special classes of semigroups

In this section, we want to characterize strong left amenability for some partic-

ular classes of semigroups that include compact semigroups, locally compact

groups, discrete semigroups and connected semigroups.

Theorem 3.5.1. If S is a compact semi-topological semigroup or a totally

bounded topological group, then LUC(S) is strongly left amenable if and only

if LUC(S) is left amenable.

Proof. It is known [4, Proposition 4.4.8] that if S is either a compact semi-

topological semigroup or a totally bounded topological group, then AP (S) =

LUC(S) = RUC(S). Therefore we can apply corollary 3.3.5, which gives the

result.

In the particular case where the semigroup is indeed a group, it is known

that the only locally compact groups, which are strongly left amenable, are

compact. (See [43]).

Let S be a SLA semigroup and K be a compact left ideal group in �(S).

We define an equivalence relation ⇠ by s ⇠ t if and only if l⇤
s

µ = l⇤
t

µ for all

µ 2 K. We denote this semigroup by S/K. On this semigroup we use the

topology induced by S. Let  2 K be the identity in K. We define the map
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f : S ! K by f(s) = l⇤
s

 , the map ⇡ : S ! S/K by ⇡(s) = s and the map

f̂ : S/K ! K by f̂(s) = f(s). Then f is a homomorphism since if s, t 2 S

then

f(st) = l⇤
st

 = l⇤
s

l⇤
t

 = �
s

� �
t

�  = �
s

� [ � (�
t

�  )]

= (�
s

�  )� (�
t

�  ) = f(s)� f(t).

Also, f is continuous since if s
↵

is a net in S which converges to some s 2 S,

then f(s
↵

) = l⇤
s↵
 = �

s↵ �  ! �
s

�  = l⇤
s

 = f(s). Also, the map f̂ is well

defined, since if s, t 2 S such that s = t then f̂(s) = l⇤
s

 = l⇤
t

 = f̂(t).

Lemma 3.5.2. The map f̂ is a continuous, one-to-one, homomorphism. Also,

f̂(S/K) is dense in K. Therefore, |S/K|  |K| and if |K| = n we have that

S/K is a group of order n.

Proof. The continuity and the fact that f̂ is a homomorphism, is a direct

consequence of the fact that f is a continuous homomorphism. Now to see it

is injective, let s, t 2 S/K such that f̂(s) = f̂(t). For any µ 2 K we have:

f̂(s) = f̂(t) ) l⇤
s

 = l⇤
t

 

) �
s

�  = �
t

�  

) �
s

�  � µ = �
t

�  � µ

) �
s

� µ = �
t

� µ.

Since this is true for all µ 2 K, it follows that s = t and the map f̂ is injective.

Now, to show that f̃(S/K) is dense in K, let µ 2 K, then there is a net {s
↵

}
in S which converges to µ, then

f̂(s
↵

) = �
s↵ �  ! µ�  = µ.

By injectivity of f̂ , we have |S/K|  |K|. Finally if |K| = n, then K is

discrete, and since f̂(S/K) is dense in a discrete group, |S/K| = |K|.

Lemma 3.5.3. If S is a SLA semigroup with a compact left ideal group K in

�(S), then S/K is a cancellative semigroup.
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Proof. Let r, s, t 2 S/K and suppose that st = rt. Then we have

st = rt ) f̃(st) = f̃(rt)

) f̃(s)� f̃(t) = f̃(r)� f̃(t) since f̃ is a homomorphism

) f̃(s) = f̃(r) since K is a group

) s = r since f̃ is one-to-one.

A similar proof shows that st = sr ) t = r, and therefore S/K is a cancellative

semigroup.

Corollary 3.5.4. If K is finite or if S is compact, then S/K is isomorphic

to K.

Proof. In either case, using Lemma 3.5.2, it follows the map f is onto. There-

fore f̂ is a continuous bijective homomorphism; hence it is an isomorphism

between S/K and K.

Theorem 3.5.5. If S is a discrete semigroup, then S is strongly left amenable

if and only if S is n-extremely left amenable for some n 2 N, that is, if S is a

discrete semigroup, then the Stone-Čech compactification �S never contains a

compact left ideal group of infinite order.

Proof. We know that if S is SLA, then S/K is a cancellative SLA semigroup.

Therefore �(S/K) has a unique minimal right ideal. In [11, Proposition 6.23],

it is proved that if T is an infinite cancellative semigroup, then �T has at least

2c minimal right ideal. Therefore it follows that S/K is finite. Now, since

f̂(S/K) is dense in K, it follows K is also finite, and therefore S is n-ELA for

some n 2 N.

There is a characterization of n-ELA discrete semigroups and of SLA dis-

crete semigroups in [26]. In view of our last theorem, those two characteriza-

tions actually describe the same objects. Let S be strongly left amenable. If

|K| =1 we will say S is 1-ELA. Otherwise it is n-ELA for some n 2 N.

Theorem 3.5.6. If S is a connected SLA semigroup, then S is either ELA or

1-ELA.
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Proof. We know that every connected n-ELA semigroup is ELA (See [37]).

Also every SLA semigroups are either n-ELA or 1-ELA. So we only need to

see that a connected SLA semigroup can be 1-ELA. For example, if we take

the circle group T with its usual topology induced by R2. By compactness of

T, we can take K = T, which show that S is 1-ELA.

3.6 Examples

We conclude this chapter by giving some examples of strongly amenable semi-

groups and groups. The first set of examples were actually mentioned at the

beginning of this chapter, but we thought it would be worth rewriting them

here.

Example 3.6.1.

1. All compact groups are strongly amenable.

2. All extremely amenable semigroups are strongly amenable.

3. All n-ELA semigroups are strongly amenable.

Many examples of extremely amenable groups are now known. This allow

us to give the following non-trivial examples of strongly amenable groups:

Example 3.6.2.

1. The unitary group U(l2) with the strong operator topology is strongly

amenable [24].

2. The group L0(I, U(1)) of measurable maps from the standard Lebesgue

space to the circle rotation group U(1), equipped with the topology of

convergence in measure, is strongly amenable (Glasner [20], also unpub-

lished Furstenberg and Weiss).

3. The group L0(I, G) of measurable maps from the standard Lebesgue

space to an amenable locally compact group G, equipped with the topol-

ogy of convergence in measure, is strongly amenable [56]
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4. The group Aut(Q,) of all order-preserving self-bijections of the set of

rational numbers, equipped with the topology of simple convergence on

Q, when Q is discrete. [55]

If G is a locally compact group, then for any function f 2 L2(G), we define

f̃(x) = f(x�1). We then define the Fourier algebra A(G) to be the Banach

algebra

A(G) = {f ⇤ g̃ : f, g 2 L2(G)}

with the norm defined as ||f ⇤ g̃||
A(G) = ||f ||2||g||2 (See [18]). We define the

group von Neumann algebra to be the dual of A(G). Alternatively, one can

define V N(G) to be the von Neumann algebra generated in B(L2(G)) by the

left regular representation. In the case where G is a locally compact abelian

group, then A(G) can be defined as the Banach algebra of all Fourier transform

of functions in L1(Ĝ), where Ĝ is the dual group of G, and V N(G) = L1(Ĝ).

Finally, using theorem 3.4.4, we get the following examples of strongly left

amenable semigroups as given in the following theorem.

Theorem 3.6.3.

1. The unitary group U(M) of an injective von Neumann algebra M with

the s(M, M⇤) topology is strongly left amenable.

2. The unitary group of the group von Neumann algebra V N(G) of an

amenable locally compact group G is strongly left amenable.

Proof. (1): By Pestov [19], we know that U(M) is the product of an extremely

left amenable semigroup by a compact group. Therefore the result follows from

theorem 3.4.4.

(2): The group von Neumann algebra V N(G) of an amenable locally compact

group G is an injective von Neuman algebra [45], and therefore its unitary

group is strongly left amenable by (1).
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Chapter 4

Fixed point properties

4.1 Introduction

In this chapter, we want to investigate some fixed point properties related to

strongly amenable semigroups.

In section 4.2 we characterize strong amenability by the existence of a fixed

compact set whenever S acts on a compact Hausdor↵ space X. We also obtain

in this section as a corollary a result for strongly amenable semigroup similar

in flavor to the Banach fixed point theorem.

In section 4.3, we look at strongly continuous representations of semigroup

as non-expansive mappings, and extend some result of Kang [29].

4.2 Fixed point properties

We define an anti-action of S on l1(S) by:

S ⇥ l1(S)! l1(S),

(s, f) = s · f = l
s

f,

A similar version of this chapter has been accepted for publication in N. Bou↵ard,

Strongly amenable semigroups and nonlinear fixed point properties, Journal of Nonlinear

Analysis
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l
s

f(t) = f(st), 8s, t 2 S,8f 2 l1(S).

This map restricted to CB(S) define an anti-action on CB(S), and similarly

for LUC(S).

We define the following action of S on �(S):

S ⇥�(S)! �(S),

(s, µ) = s · µ = l⇤
s

µ,

l⇤
s

µ(f) = µ(l
s

f).

When we consider S as a subset of �(S), this map coincides with the Arens

product already defined: s · µ = �
s

� µ. If X is a Hausdor↵ topological space,

we define CB(X) to be the set of all continuous, bounded, complex valued

functions on X, and LUC(S,X) to be the subalgebra of CB(X) for which the

map S ! CB(X) defined by s! l
s

f is continuous (See [38]). As for LUC(S),

we define an anti-action of S on LUC(S,X) by:

S ⇥ LUC(S,X)! LUC(S,X),

(s, f) = s · f = l
s

f.

Fix x 2 X. We define the following map:

� : LUC(S,X)! LUC(S),

�(f) = T
x

(f),

T
x

f(s) = f(s · x).

Notice that this map commutes with the action of S, i.e. s · �(f) = �(s · f)

for all s 2 S, and for all f 2 LUC(S,X). To see that, let t 2 S then we have:

s · (�(f))(t) = (�(f))(st) = (T
x

f)(st) = f(st · x) = (s · f)(t · x)

= (T
x

(s · f))(t) = (�(s · f))(t).

Now, let �(LUC(S,X)) denote the set of all multiplicative means on

LUC(S, X). We define the action of S on �(LUC(S,X)) by:

S ⇥�(LUC(S, X))! �(LUC(S,X)),
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(s, µ) = s · µ = l⇤
s

µ,

and we define the following map:

 : �(S)! �(LUC(S,X)),

 (µ) = µ0,

µ0(f) = µ(�(f)).

Once again, this map commutes with the action of S. If f 2 LUC(S,X), we

have

(s · ( (µ)))(f) = ( (µ))(s · f) = µ(�(s · f)) = µ(s · �(f)) = (s · µ)(�(f))

= ( (s · µ))(f),

which proves that s ·( (µ)) =  (s ·µ) for all s 2 S and for all µ 2 �(S). Now,

if we associate X with the point measures on �(LUC(S, X)), then notice that

the actions of S on X correspond to the action of S on �
X

. That is, for any

f 2 LUC(S,X), we have

�
s·x(f) = f(s · x) = (s · f)(x) = �

x

(s · f) = (s · �
x

)(f),

and therefore we have �
s·x = s · �

x

for all s 2 S and for all x 2 X. We now

want to prove that  is continuous. Let µ
↵

! µ be a net in �(S). Then we

have.

( (µ
↵

))(f) = µ
↵

(T
x

f)! µ(T
x

f) = ( (µ))(f),

which proves the continuity of  .

Theorem 4.2.1. If S is a semi-topological semigroup, then the following are

equivalent:

1. There exists a compact set K ✓ �(S) such that l⇤
s

K = K.

2. Whenever S acts on a compact Hausdor↵ space X, where the action is

jointly continuous, there exists a compact set K 0 ✓ X such that s ·K 0 =

K 0 for all s 2 S.
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Also, |K 0|  |K|. Moreover, if S is a SLA semigroup, then the two conditions

holds.

Proof.

(1) ) (2): If X is compact, then LUC(S,X) = C(X) since the action of S

on X is jointly continuous. So �(LUC(S,X)) = X. Let K 0 =  (K). Then

K 0 is compact and s · K 0 = s · (K) =  (s · K) =  (K) = K 0.

(2) ) (1): Since �(S) is a compact Hausdor↵ space, and the action of S

on �(S) defined by (s, µ) = l⇤
s

µ is jointly continuous, there exists K ✓ �(S)

such that s · K = l⇤
s

K = K for all s 2 S.

(SLA) ) (1): This is trivial using theorem 3.3.1.

Corollary 4.2.2. Let S be a strongly left amenable semi-topological semigroup

acting on a compact subset X of a complete metric space. Suppose that the

action is jointly continuous and for at least one s 2 S, the map s : X ! X is

contractive, then there is in X a common fixed point for S.

Proof. Since s : X ! X is a contractive map, there exists a point x 2 X such

that sny ! x for all y 2 X. Therefore, diam(snX) ! 0 as n ! 1. Now, by

the theorem, we know there exists K ✓ X such that t · K = K for all t 2 S.

Now, since K ✓ snX for all n, we have that K = {x}, and x 2 X is a common

fixed point.

Now, if S is a semi-topological semigroup which acts on a compact Haus-

dor↵ space X, where the action is jointly continuous, then we can extend the

action S ⇥X ! X, to an action �(S)⇥X ! X, which is continuous in the

first variable in the following way:

µ · x =  
x

(µ), µ 2 �(S), x 2 X

Lemma 4.2.3. Let S be a semi-topological semigroup, and let K ✓ �(S) such

that µ�K = K for all µ 2 �(S). Then there is a compact left ideal group in

�(S), i.e., S is strongly left amenable.
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Proof. First, notice that K is a left ideal, but we don’t know if K is minimal.

Let ' 2 K and define J = K � '. Therefore for any µ 2 �(S),

µ� J = µ� (K � ') = (µ�K)� ' = K � ' = J

But also, since �(S) is a compact right topological semigroup, �(S) contains

a minimal left ideal, and therefore any left ideal of �(S) contains a minimal

left ideal. Let J = K � ' ✓ �(S)� ' which is a minimal left ideal (See [4]).

Therefore J is left and right simple, which implies that J is a left ideal group

in �(S). It follows that S is strongly left amenable.

Theorem 4.2.4. If S is a semi-topological semigroup, then the following are

equivalent:

1. S is strongly left amenable.

2. Whenever S acts on a compact Hausdor↵ space X, where the action is

jointly continuous, there exists a compact set K 0 ✓ X such that µ ·K 0 =

K 0 for all µ 2 �(S), where µ · K 0 denotes the extension of the action to

an (right continuous) action of �(S) on X.

Proof.

(1) ) (2) If K is a compact left ideal group in �(S), let K 0 =  (K). For all

µ 2 �(S), we have

µ · K 0 = µ · (K) = µ · (K · x) = (µ�K) · x = K · x =  (K) = K 0.

(2) ) (1) Let X = �(S), then we have K ✓ �(S) such that µ�K = K for

all µ 2 �(S). Now, we can apply lemma 4.2.3 to prove that S is strongly left

amenable.

4.3 Non-expansive mappings

For this section, E will denote a Banach space, and C a weakly compact,

bounded convex subset of E. Also, S will denote a semi-topological semigroup,
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and S will be a strongly continuous representation of S as non-expensive map-

ping on C, that is, S = {T
s

: s 2 S} such that:

1. T
s

: C ! C, 8s 2 S,

2. T
st

= T
s

T
t

, 8s, t 2 S,

3. ||T
s

x� T
s

y||  ||x� y||,8s 2 S,8x, y 2 C,

4. s! T
s

x is continuous on S,8x 2 C.

For most of this section, we will be using SCB(S) instead of SLUC(S), but notice

that SCB(S) is not in general a semigroup, since it is not necessarily closed

under the Arens product. Let µ be any multiplicative mean on CB(S). Define

the equivalence relation ⇠
µ

on S by s ⇠
µ

t if and only if l⇤
s

µ = l⇤
t

µ, and we

denote by S/µ the quotient of S with this equivalence relation. Also, we define

the set S
µ

= {s 2 S : l⇤
s

µ = µ}. Notice that this section is mostly based on

[44, 29].

Now, for any µ 2 SCB(S) and z 2 C, we define T
µ

z weakly by: hT
µ

z, x⇤i =

µ
s

hT
s

z, x⇤i, for all x⇤ 2 E⇤. This map is well defined, since if {s
↵

} is a net in S

such that �
s↵ !w

⇤
µ, then hT

s↵z, x⇤i = �
s↵hTs

z, x⇤i ! µ
s

hT
s

z, x⇤i = hT
µ

z, x⇤i.
It follows that T

s↵z !w T
µ

z. By weak compactness, we then have that T
µ

z 2
C. Finaly, if z 2 C and x⇤ 2 E⇤ are fixed, we define f

x

⇤(s) = hT
µ

z, x⇤i for

all s 2 S. The map f
x

⇤ is in CB(S), but not necessarily in LUC(S), which is

why we need to work with CB(S) instead of LUC(S).

Lemma 4.3.1. Let S be a semi-topological semigroup. Let {s
↵

} be a net in S

such that �
s↵ !w

⇤
µ 2 SCB(S), let s 2 S

µ

, and let r, t 2 S such that r ⇠
µ

t.

Also, let z 2 C. Then:

1. T
ss↵z � T

s↵z !w 0,

2. T
rs↵z � T

ts↵z !w 0.

Proof.
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1. If x⇤ 2 E⇤, then we have:

hT
ss↵z � T

s↵z, x⇤i = f
x

⇤(ss
↵

)� f
x

⇤(s
↵

)

= (l
s

f
x

⇤ � f
x

⇤)(s
↵

)

= �
s↵(l

s

f
x

⇤ � f
x

⇤)

! µ(l
s

f
x

⇤ � f
x

⇤)

= (l⇤
s

µ� µ)(f
x

⇤)

= (µ� µ)(f
x

⇤)

= 0.

and therefore, it follows that T
ss↵z � T

s↵z !w 0.

2. If x⇤ 2 E⇤, then we have:

hT
rs↵z � T

ts↵z, x⇤i = f
x

⇤(rs
↵

)� f
x

⇤(ts
↵

)

= (l
r

f
x

⇤ � l
t

f
x

⇤)(s
↵

)

= �
s↵(l

r

f
x

⇤ � l
t

f
x

⇤)

! µ(l
r

f
x

⇤ � l
t

f
x

⇤)

= (l⇤
r

µ� l⇤
t

µ)(f
x

⇤)

= 0.

Therefore, it follows that T
rs↵z � T

ts↵z !w 0.

Theorem 4.3.2. Let E be a Banach space, and C be a compact convex subset

of E. Let S be a semi-topological semigroup and let µ 2 SCB(S). Assume S
µ

is non-empty, S = {T
s

: s 2 S} is a strongly continuous representation of S

as non-expansive mappins, and T
µ

z = z for some z 2 C.

1. Then T
s

z = z for all s 2 S
µ

.

2. If s 2 S is such that T
s

z = z. Then T
t

z = z for all t ⇠
µ

s in S/µ.
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3. If there exists an element s in each equivalence class of S/µ such that

T
s

z = z, then T
t

z = z for all t 2 S.

Proof.

1. Since C is compact, the weak and norm topologies coincides. Therefore,

if s
↵

is a net in S such that �
s↵ !w

⇤
µ, then we have ||T

s↵z� T
µ

z||! 0.

Also,

||T
s

z � T
s↵z|| = ||T

s

z � T
ss↵z + T

ss↵z � T
s↵z||

 ||T
s

z � T
ss↵z|| + ||T

ss↵z � T
s↵z||

 ||z � T
s↵z|| + ||T

ss↵z � T
s↵z||

! 0 + 0 = 0.

Notice that for the last inequality, we used the fact that T
µ

z = z and

lemma 4.3.1 (1). Therefore, T
s↵z ! T

µ

z = z and also T
s↵z ! T

s

z. By

unicity of the limit in a Hausdor↵ space, it follows that: T
s

z = z.

2. Let {s
↵

} be a net in S such that �
s↵ ! µ .We know that T

s↵z ! T
µ

z = z

and therefore, by the continuity of T
s

and T
t

, we have T
s

(T
s↵z) ! T

s

z

and T
t

(T
s↵z)! T

t

z. Therefore, using lemma 4.3.1 (2), we have:

0 ||T
ss↵z � T

ts↵z|| = ||T
s

(T
s↵z)� T

t

(T
s↵z)||! ||T

s

z � T
t

z||.

It follows, by the unicity of the limit, that T
s

z = T
t

z = z.

3. We apply (2) for each equivalence class.

Theorem 4.3.3. Let E be a Banach space, and C be a weakly compact convex

subset of E. Let S be a semi-topological semigroup and let µ 2 SCB(S). Assume

S
µ

is non-empty, S = {T
s

: s 2 S} is a strongly continuous representation of

S as non-expansive mappings, T
s

is weak-to-weak continuous for all s 2 S,

and T
µ

z = z for some z 2 C.
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1. Then T
s

z = z for all s 2 S
µ

.

2. If s 2 S is such that T
s

z = z. Then T
t

z = z for all t ⇠
µ

s.

3. If every equivalence class of S/µ contains an element s 2 S such that

T
s

z = z, then T
t

z = z for all t 2 S

Proof.

1. Let s
↵

be a net in S such that �
s↵ ! µ, then by lemma 4.3.1, T

s↵z ! T
µ

z.

By the weak-to-weak continuity of T
s

, T
ss↵z = T

s

(T
s↵z) !w T

s

(T
µ

z) =

T
s

z. Also, by lemma 4.3.1, T
s↵z � T

ss↵z !w 0. Hence T
ss↵z � T

s

z !w

T
s

z�T
s

z = 0. Therefore T
s↵z�T

s

z = (T
s↵z�T

ss↵z)+(T
ss↵z�T

s

z)! 0.

Thus T
µ

z � T
s

z = 0 and T
s

z � T
µ

z = z.

2. Let {s
↵

} be a net in S such that �
s↵ ! µ. We have that T

s

z � T
t

z w  
T

ss↵z � T
ts↵z !w 0. Therefore, it follows that T

s

z = T
t

z = z.

3. We apply (2) for each equivalence class.

Notice that most of the results at the beginning of this section are based

on the requirement that the map f
x

⇤(s) = hT
s

z, x⇤i is in CB(S). If we add the

extra assumption that the semigroup S is such that the map f
x

⇤ is in LUC(S),

the last two theorems are still valid if CB(S) is replaced by LUC(S). This

is the case in particular, if we assume S to be discrete. Also, some of the

theorems require the assumption that for some multiplicative mean µ 2 �(S),

the set S
µ

is non-empty. It would be interesting to know when this set is

non-empty.

Theorem 4.3.4. Let S be a strongly left amenable semi-topological semigroup

with compact left ideal group K in �(S). Let C be a nonempty compact convex

subset of a Banach space E, and let S = {T
s

: s 2 S} be a strongly continuous

representation of S as non-expansive mappings from C into C.

1. If S/K is a group, then S
µ

is non-empty for all µ 2 K.
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2. If there exists a z 2 C such that T
µ

z = z for some µ 2 K. Then T
e

z = z

where e is the identity of K.

Proof.

1. Let (s
↵

) be a net in S such that �
s↵ ! e. Then we have

T
e

z = lim
↵

T
s↵z = lim

↵

T
s↵(T

µ

z) = lim
↵

T
l

⇤
s↵µ

z = T
e�µ

z = T
µ

z = z.

2. Recall that for any s 2 S, we have l⇤
s

K = K. Let e be the identity in

S/K, and let e be any element of S in the equivalence class of e. Now

for any element µ 2 K, there exists ⌫ 2 K such that l⇤
s

⌫ = µ. Therefore,

we have l⇤
e

l⇤
s

⌫ = l⇤
s

⌫ and l⇤
e

µ = µ. Now, since this is true for any µ 2 K,

it follows that

e 2 S0 = {s 2 S : l⇤
s

µ = µ, 8µ 2 K}.

Finally, we have

S0 =
\

µ2K

S
µ

,

and therefore e 2 S
µ

for any µ 2 K.

Theorem 4.3.5. Let S be a semi-topological semigroup for which there exists

a compact set K ✓ SCB(S) which is left invariant, that is l⇤
s

K = K for all

s 2 S. Let C be a nonempty compact convex subset of a Banach space E,

and let S = {T
s

: s 2 S} be a strongly continuous representation of S as

non-expansive mappings from C into C. If z 2 C, then the following are

equivalent:

1. T
s

z = z for all s 2 S,

2. T
µ

z = z for all µ 2 K.
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Proof.

(1) ) (2) Suppose T
s

z = z for all s 2 S, and let µ be any element in K.

Then we have

hT
µ

z, x⇤i = µ
s

hT
s

z, x⇤i = µ
s

hz, x⇤i = hz, x⇤i, 8x⇤ 2 E⇤.

Therefore, it follows that T
µ

z = z for all µ 2 K.

(2) ) (1) Suppose T
µ

z = z for all µ 2 K. Then we have

T
s

z = T
s

T
µ

z = T
l

⇤
sµ

= T
⌫

z = z, 8s 2 S,

where l⇤
s

µ = ⌫ 2 K.

Theorem 4.3.6. Let S be a SLA semi-topological semigroup, E be a Banach

space, C be a compact subset of E, and let S = {T
s

: s 2 S} be a jointly

continuous representation of S as non-expansive mappings on C. Then at

least one of the following is true:

1. There exists (a unique) z 2 C such that T
s

z = z for all s 2 S.

2. For each s 2 S, there exists x, y 2 C such that ||T
s

x� T
s

y|| = ||x� y||.

Proof. Since the action of S on C is jointly continuous, by theorem 4.2.1 there

exists a compact set K ✓ C such that T
s

K = K for all s 2 S. If |K| = 1, then

(1) is true. Otherwise, fix s 2 S. Since K is compact, there exists x0, y0 2 K

such that ||x0 � y0|| = diam(K). Now, since T
s

K = K, there is x, y 2 K such

that T
s

x = x0 and T
s

y = y0. By non-expensiveness, we then have:

||x0 � y0|| = ||T
s

x� T
s

y||  ||x� y||  ||x0 � y0|| = diam(C).

Therefore, ||T
s

x� T
s

y|| = ||x� y|| and (2) is satisfied.
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Chapter 5

Ultimately non-expansive

mapping

5.1 Introduction

In this chapter, we want to extend some results of Edelstein and Kiang to

right reversible semigroups. The original work was done for abelian group.

This chapter is not as much about strong left amenability as the previous

two chapters were, but we notice that one of the conditions necessary for our

theorem to work is always satisfied for strongly amenable semigroups.

In section 5.2 we define the concept of ultimately non-expansive mappings,

and provide the reader with some examples. Our main theorem is given in

section 5.4, but the proof being lengthy, we separate the proof in many lemmas

which are proven in section 5.3.

A similar version of this chapter has been accepted for publication in N. Bou↵ard,

Strongly amenable semigroups and nonlinear fixed point properties, Journal of Nonlinear

Analysis
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5.2 Ultimately non-expansive mappings

Let S be a (discrete) semigroup, we say that S is right reversible if for any

a, b 2 S we have that Sa \ Sb 6= ø, that is for each a, b 2 S there exists

c, d 2 S such that ca = db. Similarly, S is left reversible if aS \ bS 6= ø, for all

a, b 2 S. In this paper, any semigroup could be considered semi-topological, as

long as the semigroup is considered reversible in the discrete sense. Let S be

a semigroup which acts on a Banach space X where the action is continuous

in the second variable. We say that the action is ultimately non-expansive if

for all u, v 2 X and for all ↵ > 0, there is a left ideal I ✓ S such that:

||s · u� s · v||  (1 + ↵)||u� v||, 8s 2 I.

We can show that the action of S on X is ultimately non-expansive if and only

if for every u, v 2 X and every ↵ > 0 there is a s 2 S such that for all t 2 S:

||ts · u� ts · v||  (1 + ↵)||u� v||.

Notice that this definition is slightly di↵erent from the one found in [17], but

in the case S is abelian, the two definitions are equivalent. If the inequality

still holds for ↵ = 0, then we call the action asymptotically non-expansive.

Example 5.2.1. Every non-expansive or asymptotically non-expansive map-

ping [27] is ultimately non-expansive.

Example 5.2.2. Let K be the closed unit disc in R2 with Euclidiean norm

and polar coordinates. We define the following map on K:

f(r, ✓) = (r/2, ✓),

g(r, ✓) = (r, 2✓ mod 2⇡),

then the semigroup of continuous mappings generated by f, g is asymptotically

non-expansive, and therefore ultimately non-expansive [27].

44



Example 5.2.3. Let X be a normed linear space. For x 2 X, define f : X !
X by:

f(x) =

8
>>><

>>>:

x

4 if ||x||  1⇣
(3/2)||x||�5/4

||x||

⌘
x if 1  ||x||  3/2

⇣
||x||�1/2

||x||

⌘
x If ||x|| � 3/2

Then f is an asymptotically non-expansive map on X, and hence the semi-

group generated by f is also asymptotically non-expansive [31].

A point x 2 X is said to be S-left-recurrent if for any " > 0 and any left

ideal I ✓ S there exists s 2 I such that ||s ·x�x|| < ". This is the case if and

only if for any ✏ > 0 and any s 2 S there is a t 2 S such that ||ts(x)� x|| < ✏.

We define right-recurrent by replacing left ideal by right ideal in the definition.

Once again, this definition is slightly di↵erent from the one given in [17].

Example 5.2.4. If G is a group acting on a Banach space X, then e · x is

left-recurrent for all x 2 X, where e is the identity of G. If the action is

a group action (and not just a semigroup action), then all points of X are

left-recurrent.

Example 5.2.5. If S is a strongly left amenable semigroup acting on a com-

pact subset X of a Banach space where the action is jointly continuous, then

there is in X a left recurrent point. To see that, we first need to extend the

action of S on X to an action of �(S) on X. For a fixed x 2 X, let f
x

: S !
X, f

x

(s) = s · x. Next we define f̃
x

: LUC(S,X) ! LUC(S) by f̃
x

(g)(s) =

g(f
x

(s)), and finally we define the map: ˜̃f
x

: �(S)! �(LUC(S,X)) = X by
˜̃f
x

(µ)(g) = µ(f̃
x

(g)). We define the action of a point µ 2 �(S) on x 2 X,

by µ · x = ˜̃f
x

(µ). Direct calculation shows that this map is continuous in the

first variable, and extends the action from S. Now, let x 2 X and e 2 K be

the identity of the left ideal group K in �(S). Define z = e · x. Then z is a

left-recurrent point in X since if s 2 S and µ = (se)�1 then ||µs(z)� z|| = 0.

Now since µ 2 �(S), there exists a net {s
↵

} in S such that s
↵

!w

⇤
µ and

therefore s
↵

s(z) ! µs(z) = z. This means that for every n 2 N there is a

s
n

2 S such that ||s
n

s(z)� z|| < 1
n

, which implies that z is left-recurrent.
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We say that x 2 X has the approximate identity property for the orbit if

for every net s
↵

in S such that s
↵

x ! x, then s
↵

y ! y for all y 2 Orb(x),

where Orb(x) = {s · x : s 2 S}. That is, if for every net s
↵

in S such that

s
↵

x ! x, then s
↵

tx ! tx for all t 2 S. This last definition is similar to

property (B) found in [27].

If X is a normed linear space, then X is locally uniformly convex [50] if

and only if given ✏ > 0 and an element x 2 X with ||x|| = 1, there exists

�(✏, x) > 0 such that

||x + y||
2

 1� �(✏, x) whenever ||x� y|| � ✏ and ||y|| = 1.

If � depends only of ✏, then X is uniformly convex [8]. Also, X is called

strictly convex, if the unit sphere of X does not contain any line segment (i.e.

each point of the unit sphere of X is an extreme point of the unit ball of X).

It is known that every uniformly convex space is locally uniformly convex, and

every locally uniformly convex space is strictly convex [50].

If X is a locally uniformly convex space and (x
n

) is a sequence in X such

that ||x
n

||  1 for all n 2 N, which converges weakly to some x 2 X such that

||x|| = 1 then ||x
n

�x||! 0 (The proof is similar to the one found in [14, page

32 theorem 4(iii)]). Also, if X, Y are normed spaces, and Y is strictly convex,

then every isometry ⇡ : X ! Y is a�ne. The idea of the proof is given in [62].

For more information on strict convexity, local uniform convexity and uni-

form convexity, we refer the reader to the books of Diestel [14], Carothers [7]

and Day [13].

5.3 Some lemmas

We will write the proof of the main result using 5 lemmas. These lemmas are

inspired by those found in [17]

Lemma 5.3.1. Let S be an ultimately non-expansive right reversible semigroup

of continuous mappings of a Banach space X into itself. Let u1, u2, ..., un

2 X
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and s 2 S. Then to any positive integer k there is a s
k

in S with the property

that, for any t 2 S and each i, j 2 {1, 2, ..., n}, i 6= j,

(5.1) ||ts
k

s(u
i

)� ts
k

s(u
j

)||  (1 + 1/k)||u
i

� u
j

||,

(5.2) ||ts
k

s(u
i

)� ts
k

s(u
j

)||  (1 + 1/k)||s(u
i

)� s(u
j

)||.

Proof. For every i, j 2 {1, 2, ...n}, there exists si,j

k

2 S such that

||tsi,j

k

(u
i

)� tsi,j

k

(u
j

)|| 
⇣
1 +

1

k

⌘
||u

i

� u
j

||.

Now let {t1, t2, ..., tm} be all permutation of the product
Q

i,j

si,j

k

. Now, by right

reversibility, there exists c1, c2, ...cm

2 S such that c1t1 = c2t2 = ... = c
m

t
m

.

Then we define s
k

= c1t1. Therefore we have

||ts
k

(u
i

)� ts
k

(u
j

)|| 
⇣
1 +

1

k

⌘
||u

i

� u
j

||, 8t 2 S and i, j 2 {1, 2, ..., n}.

Now, let s 2 S. Then by right reversibility, there exists sequences c
k

and c0
k

such that c
k

s
k

s = c0
k

ss
k

for all k. Then we have

||tc
k

s
k

s(u
i

)� tc
k

s
k

s(u
j

)|| = ||tc0
k

ss
k

(u
i

)� tc0
k

ss
k

(u
j

)|| 
⇣
1 +

1

k

⌘
||u

i

� u
j

||.

Now, if we let s0
k

= c
k

s
k

, then we have

||ts0
k

s(u
i

)� ts0
k

s(u
j

)|| 
⇣
1 +

1

k

⌘
||u

i

� u
j

||.

Now, by replacing all u
i

by s(u
i

), we can construct a sequence s00
k

such that

||ts00
k

s(u
i

)� ts00
k

s(u
j

)|| 
⇣
1 +

1

k

⌘
||s(u

i

)� s(u
j

)||.

Now, using right reversibility once again, we can define d
k

, d0
k

such that d
k

s0
k

s00
k

=

d0
k

s00
k

s0
k

, and we define s
k

= d
k

s0
k

s00
k

. Therefore

||ts
k

s(u
i

)� ts
k

s(u
j

)|| 
⇣
1 +

1

k

⌘
||u

i

� u
j

||,

and

||ts
k

s(u
i

)� ts
k

s(u
j

)|| 
⇣
1 +

1

k

⌘
||s(u

i

)� s(u
j

)||,

for all t 2 S.
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Lemma 5.3.2. Let S be an ultimately non-expansive right reversible semigroup

of continuous mappings of a Banach space X into itself. Let z1, z2 2 X, s 2 S.

Suppose there are sequences t
k

, t0
k

in S such that

lim
k!1

t0
k

s
k

s(z
i

) = s(z
i

) and lim
k!1

t
k

s
k

s(z
i

) = z
i

, i 2 {1, 2},

where s
k

is the sequence constructed in lemma 5.3.1 with n = 2 and u1 =

z1, u2 = z2. then ||s(z1)� s(z2)|| = ||z1 � z2||.

Proof. By lemma 5.3.1, there exists a sequence s
k

such that:

(5.3) ||ss
k

t(z1)� ss
k

t(z2)||  (1 + 1/k)||z1 � z2||,

(5.4) ||ss
k

t(z1)� ss
k

t(z2)||  (1 + 1/k)||t(z1)� t(z2)||,

for all s 2 S. By substituting t0
k

and t
k

for s in equation (5.3) and (5.4)

respectively, we obtain

||s(z1)� s(z2)|| = lim
k!1

||t0
k

s
k

t(z1)� t0
k

s
k

t(z2)||  (1 +
1

k
)||z1 � z2||,

and

||z1 � z2|| = lim
k!1

||t
k

s
k

t(z1)� t
k

s
k

t(z2)||  (1 +
1

k
)||s(z1)� s(z2)||.

Therefore it follows that ||s(z1)� s(z2)|| = ||z1 � z2||.

Lemma 5.3.3. Let X be a reflexive locally uniformly convex Banach space,

and let S be an ultimately non-expansive right reversible semigroup of contin-

uous mappings of X into itself. Suppose that p, q, z 2 X and {s
k

} in S are

such that z = �p + (1� �)q for some �, 0 < � < 1 and

||ss
k

(p)� ss
k

(z)||  (1 + 1/k)||p� z||,

||ss
k

(q)� ss
k

(z)||  (1 + 1/k)||q � z||,

for all s 2 S. Suppose further that a sequence {t
k

} in S exists such that

{t
k

s
k

(p)} and {t
k

s
k

(q)} converge and lim
k!1 t

k

s
k

(p) = p, lim
k!1 t

k

s
k

(q) = q.

Then {t
k

s
k

(z)} converges and

lim
k!1

t
k

s
k

(z) = z.
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Proof. Replacing s by t
k

in both inequalities shows that t
k

s
k

(z) is bounded

since both t
k

s
k

(p) and t
k

s
k

(q) are bounded. Therefore, by reflexivity, we can

apply the Eberlein-Smulian theorem [9], which gives us that there exists a

subsequence t
kjskj(z) which is weakly convergent to some w 2 X. Now, since

norm closure is equivalent to weak closure for convex sets, it follows that

||p� w||  ||p� z|| and ||q � w||  ||q � z||, and therefore

||p� q|| = ||p� z|| + ||q � z|| � ||p� w|| + ||q � w|| � ||p� q||.

It follows that ||p�w|| = ||p� z|| and ||q�w|| = ||q� z||, and therefore using

the strict convexity of X, z = w. Now, since this is true for any convergent

subsequence, it follows that t
k

s
k

(z) converges weakly to z. Now consider the

following sequence
t
k

s
k

(p)� t
k

s
k

(z)

(1 + 1/k)||p� z|| .

All those points are in the unit ball of X, and this sequence converges weakly

to.
p� z

||p� z|| .

Since X is locally uniformly convex, it follows that this sequence also converges

in norm. Therefore:

lim
k!1

t
k

s
k

(p)� t
k

s
k

(z)) = p� z and lim
k!1

t
k

s
k

(z) = z.

Lemma 5.3.4. Let X be a reflexive locally uniformly convex Banach space

and S an ultimately non-expansive right reversible semigroup of continuous

mappings of X into itself. Suppose x 2 X is left-recurrent under S and x has

the approximate identity property for the orbit. Let u1, u2 2 Orb(x). Then

the restriction of each member s 2 S to the line segment [u1, u2] is an a�ne

isometry.

Proof. Let z1, z2 be points on the line segment [u1, u2]. Since all isometries in

a strictly convex Banach space are a�ne, we only need to prove that ||s · z1�
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s · z2|| = ||z1 � z2||. By lemma 5.3.1 there exists a sequence s
k

in S such that

||ts
k

s(u)� ts
k

s(v)|| 
⇣
1 +

1

k

⌘
||u� v||,

||ts
k

s(u)� ts
k

s(v)|| 
⇣
1 +

1

k

⌘
||s(u)� s(v)||,

for all u, v in the set {u1, u2, z1, z2, s(u1), s(u2), s(z1), s(z2)}. Now, since x is

left-recurrent, we can construct a sequence t
k

such that lim
k!1 t

k

s
k

s(x) =

x. Now, since u
i

2 Orb(x), we have, using the approximate identity prop-

erty for the orbit, lim
k!1 t

k

s
k

s(u
i

) = u
i

. Using lemma 5.3.3, it follows

lim
k!1 t

k

s
k

s(z
i

) = z
i

. Now, let t0
k

= st
k

, then we have

lim
k!1

t0
k

s
k

s(z
i

) = lim
k!1

st
k

s
k

s(z
i

) = s lim
k!1

t
k

s
k

s(z
i

) = s(z
i

),

and therefore by lemma 5.3.2, it follows that ||sz1�sz2|| = ||z1�z2||. Therefore

s is a�ne on the line segment [u1, u2].

Lemma 5.3.5. Let X be a reflexive locally uniformly convex Banach space

and S an ultimately non-expansive right reversible semigroup of continuous

mappings of X into itself. If x 2 X is left-recurrent under S, and x has the

approximate identity property for the orbit, then the restriction of each s 2 S

to co(Orb(x)) is an a�ne isometry.

Proof. We do the proof by induction. Consider the set C = co(u1, u2, ..., un

),

where each u
i

2 Orb(x). We want to show that the action of S on C is a�ne. If

n = 2, then this is true by lemma 5.3.4. Suppose it is true for any m < n. Let

z1, z2 be any two elements of C, and let p1, p2 be the extreme point of the line

segment defined by the intersection of the line passing by z1, z2, and the set C.

Notice that p1 and p2 are on a facet of the polytope co(u1, u2, ...., un

), therefore

p1, p2 are a�ne combinations of at most n� 1 elements of {u1, u2, ..., un

}.
Now, let s

k

be a sequence such that

||ts
k

s(u)� ts
k

s(v)||  (1 + 1/k)||u� v||,

||ts
k

s(u)� ts
k

s(v)||  (1 + 1/k)||s(u)� s(v)||,
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for all u, v 2 {p1, p2, z1, z2} and all t 2 S. Now since x is left-recurrent, for

each k there exists t
k

such that

d(t
k

s
k

s(x), x) <
1

k
.

Therefore lim
k!1 t

k

s
k

s(x) = x. Now since x has the approximate identity

property for the orbit, and each u
i

are in Orb(x) it follows that

lim
k!1

t
k

s
k

s(u
i

) = u
i

.

Since p
i

is the convex hull of n � 1 of the u
i

, say, p
i

=
P

n�1
i=1 �i

u
i

, with
P

n�1
i=1 �i

= 1, then we have

lim
k!1

t
k

s
k

s(p
i

) = lim
k!1

t
k

s
k

s
⇣ n�1X

i=1

�
i

u
i

⌘
=

n�1X

i=1

�
i

lim
k!1

(t
k

s
k

su
i

) =
n�1X

i=1

�
i

u
i

= p
i

.

Using similar construction, we can find a sequence t0
k

such that

lim
k!1

t0
k

s
k

s(p
i

) = s(p
i

)

and therefore applying lemma 5.3.3 we get that lim
k!1 t0

k

s
k

s(z
i

) = s(z
i

), which

finally gives us, by lemma 5.3.2, that ||s(z1) � s(z2)|| = ||z1 � z2||. Since

the same holds for any z1, z2 2 co(u1, u2, ..., un

), it follows that S acts on

co(Orb(x)) isometrically, and since all isometry in a strictly convex Banach

space are a�ne, the action of S on co(Orb(x)) is a�ne. Finally, by continuity

we get the result.

5.4 Main theorem

In order to complete the proof of our main theorem, we need to apply the

Ryll-Nardzewski fixed point theorem which states that

If X is a locally convex space, K is a weakly compact convex subset of

K, and S is a noncontracting semigroup of weakly continuous a�ne maps of

K into K, then there is a fixed point x0 in K such that s(x0) = x0 for every

s 2 S. Here noncontracting means that for any pair of distinct point x, y 2 K:

0 62 {s(x)� s(y) : s 2 S}.
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Theorem 5.4.1. Let X be a reflexive locally uniformly convex Banach space

and S an ultimately nonexpansive right reversible semigroup of continuous self-

maps of X. If an x 2 X exists such that S(x) is bounded, x is a left-recurrent

point under S and x has the approximate identity property for the orbit, then

co(Orb(x)) contains a point ⇠ such that S(⇠) = {⇠}.

Proof. We know that the action of each s 2 S on co(Orb(x)) is an a�ne

isometry by lemma 5.3.5. So first we need to show that the action is non-

contracting. Let s
↵

be a net in S, then for any x, y 2 X, we have that

||s
↵

(x)� s
↵

(y)|| = ||x� y||, and therefore s
↵

(x)� s
↵

(y) can not converge to 0,

which means it is noncontracting. Next, we need to show that Orb(x) is weakly

compact. Since Orb(x) is bounded, co(Orb(x)) is also bounded; therefore it

is contained in a closed ball, which is w⇤-compact by Alaoglu’s theorem. It

follows that co(Orb(x)) is w⇤-compact. Now since X is reflexive, the weak and

weak⇤ topologies coincides, which means that co(Orb(x)) is weakly compact.

We can therefore apply the Ryll-Nardzewski fixed point theorem to give us a

⇠ 2 co(Orb(x)) such that s(⇠) = ⇠ for all s 2 S.

Corollary 5.4.2. Let X be a compact subset of a reflexive locally uniformly

convex Banach space and S an ultimately non-expansive right reversible strongly

left amenable semigroup of continuous self-maps of X. If whenever s
↵

x ! x

implies that s
↵

tx ! tx for all t 2 S, there is a point ⇠ 2 X such that

S(⇠) = {⇠}.

Proof. This is a direct consequence of theorem 5.4.1 and example 5.2.5.

For the last result of this section, we want to make use of the fact that the

action of S on co(Orb(x)), as defined in the previous theorem, is an isometry

to prove that it is actually a bijective map on Orb(x). This is based on a

similar result by Kiang (See [33]). But in order to prove our result, we will

need a few more assumptions on S.

Theorem 5.4.3. Let X be a reflexive locally uniformly convex Banach space

and S an ultimately non-expansive left and right reversible semigroup of con-

tinuous self-maps of X. If an x 2 X exists such that Orb(x) is bounded, x
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is a left and right-recurrent point under S and x has the approximate identity

property for the orbit, then the action of S on Orb(x) is a bijective isometry.

Proof. By lemma 5.3.5, we know the action of S is isometric. To see that

it is injective, let y, z 2 Orb(x) and s 2 S be such that s(y) = s(z). Then

||y � z|| = ||s(y)� s(z)|| = 0, and therefore y = z. Finally, to show that it is

surjective, let s 2 S and y 2 Orb(x). We want to find z 2 Orb(x) such that

s(z) = y. Since y 2 Orb(x), there exists a sequence s
n

in S such that

||s
n

x� y|| <
1

n
, 8n 2 N.

Now, by left reversibility there are sequences {a
n

} and {b
n

} in S such that

ss
n

a
n

= s
n

sb
n

for all n 2 N. Also, by right-recurrence, we have a sequence

{t
n

} in S such that

||sb
n

t
n

x� x||  1

n
8n 2 N.

It follows that

||ss
n

a
n

t
n

x� y||  ||ss
n

a
n

t
n

x� s
n

x|| + ||s
n

x� y||

= ||s
n

sb
n

t
n

x� s
n

x|| + ||s
n

x� y||

= ||sb
n

t
n

x� x|| + ||s
n

x� y||  1

n
+

1

n
=

2

n
.

It follows that {ss
n

a
n

t
n

x} converges to y. We want to show that {s
n

a
n

t
n

x} is

also convergent.

||s
n

a
n

t
n

x� s
m

a
m

t
m

x|| = ||ss
n

a
n

t
n

x� ss
m

a
m

t
m

x||

 ||ss
n

a
n

t
n

x� y|| + ||y � ss
m

a
m

t
m

x||!
m,n!1 0.

Therefore, {s
n

a
n

t
n

(x)} is a Cauchy sequence. Since X is complete, {s
n

a
n

t
n

x}
converges to some z 2 Orb(x). Now, since {s

n

a
n

t
n

x}! z and {ss
n

a
n

t
n

x}!
y, we conclude that s(z) = y, which proves the surjectivity.
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Chapter 6

Conclusion

6.1 Summary

In this section, we give a short overview of the work that has been accomplished

in this thesis, and we provide the reader with a diagram showing some of the

main implications and equivalences that were either already known, or proven

in the text.

In the third chapter, we showed that all extremely amenable or n-extremely

amenable semigroups are strongly amenable, and all strongly amenable semi-

groups are amenable. We also showed that strong amenability in the case of

compact semigroups is the same as amenability, and in the case of discrete

semigroups is the same as n-extreme amenability. We also characterize strong

amenability for other algebras than LUC(S). In particular, for WAP (S) and

AP (S), we showed that strong amenability is the same as amenability. In this

chapter, we also showed how to construct strong amenable semigroups using

products and homomorphisms, and provided the reader with many examples

of topological groups which are strongly amenable.

In the fourth chapter, we investigated fixed point properties related to

strong amenability. In particular, we characterized strongly amenable semi-

groups in terms of the existence of a fixed compact set when the semigroup acts

on a compact set. We also obtained some fixed point properties related to non-
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expansive mappings when CB(S) has a property similar to strong amenability.

Finally, in chapter 5, we extended a result of Kiang and Edelstein related

to ultimately non-expansive mappings, and showed that one of the conditions

is always satisfied when the semigroup is indeed strongly amenable.

To conclude this section, we summarize many of the important properties

related to strong amenability in the diagram found on the following page. In

the diagram, S denotes a semi-topological semigroup, and the arrows indicate

an implication. Also, this is a list the abbreviations used in the diagram:

Abreviation Full name

AP almost periodic

ELA extremely left amenable

LA left amenable

LR left reversible

LUC left uniformly continuous

n-ELA n-extremely left amenable

SLA strongly left amenable

WAP weakly almost periodic
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Figure 6.1: Diagram showing some of the main implications related to strongly

amenable semigroups
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6.2 Future work

To complete this thesis, we provide the reader with a few problems that remain

open at this point. Those are problems that we either could not solve or did

not have time to investigate enough. The two main questions that remain to

be solved related to the work in this thesis are the following:

Question 1. Many examples of strongly left amenable groups are known, but

all of them are of the form of the product of an extremely amenable group by

a compact group. Would it be possible to find other examples of such groups?

Question 2. We proved that a semi-topological semigroup is strongly amenable

if and only if whenever S acts on a compact Hausdor↵ space X, where the

action is jointly continuous, there exists a compact set K ✓ X such that

µ ·K 0 = K 0 for all µ 2 �(S), where µ ·K 0 denotes the extension of the action

to an (right continuous) action of �(S) on X. Would it possible to find a

characterization of strong amenability in terms of a fixed compact set without

relying on the extension of the action ? Or even better, in terms of an actual

fixed point, and not just a fixed compact set ?

There are also many other questions that remain open, and all of them

would be interesting to investigate. Here are a few examples:

Question 3. Are the theorems in section 4.3 still valid if CB(S) is replaced

by LUC(S)?

Question 4. Can we define the Fourier or the Fourier-Stiejes algebra for a

strongly left amenable semigroup ? This was done by Lau and Loy (See [40])

in the case S is a compact right-topological group.
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