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Abstract

Fault detection in rotating machines from vibration data is a difficult task and is important

for maintenance planning and preventing equipment damage or failure. The aim of this

thesis is to improve upon existing vibration signal methods for detecting rotating machine

faults in gears, bearings, and rotors. Faults manifesting in impulse-like vibration signals

are focused on, which includes faults such as rotor-to-stator rubbing, bearing inner/outer

race failures, and gear tooth faults. Towards this goal, two novel techniques for detecting

these faults are proposed in this thesis and experimental data from gear tooth crack, gear

tooth chip, and suspected turbine rotor-to-stator rubbing is analysed.

An adaptive sum-of-sinusoids model is presented and compared to the widely accepted

autoregressive model approach. The results indicate that the proposed method performs

better on experimental gear tooth crack data, requires no data fitting, and is of similar

computational cost. This method is particularly suitable for equipment with changing ro-

tational speed.

A deconvolution-based approach is presented as a periodic extension upon the minimum

entropy deconvolution method. The proposed method aims to deconvolve periodic im-

pulses, which is the vibration signal nature of many rotating machine faults, as opposed

to the single impulse deconvolved by minimum entropy deconvolution. Performance of

the deconvolution technique are shown to be strong on simulated and experimental gear

tooth chip data, and an online implementation is proposed for the automated monitoring

of equipment.

Both proposed methods are applied to turbine proximity sensor data, and a sensor fault

plus two suspected rotor-to-stator rubbing faults are identified.
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1
Introduction

1.1 Problem Statement

Fault detection in rotating machinery has applications in fields such as wind turbines [1]

and helicopter transmissions [2]. Detecting and diagnosing faults is important to main-

tenance planning, preventing equipment damage, and preventing failure. In some ap-

plications, such as helicopter transmissions, a gear fault can potentially result in a life-

threatening situation [3]. Despite a large amount of research focus on this area, the detec-

tion of these faults can still be a very difficult problem.

For detecting gear and rolling bearing faults there has been a growing trend towards au-

toregressive (AR) model prediction residual fault detection [2, 4, 5, 6, 7], which has been

shown to be effective in detecting the impulse-like behaviour associated with gear faults.

Although this method is shown to be effective, the expected residual signal is the fault sig-

nal plus noise, and therefore requiring the fault amplitude to be significantly larger than

the noise level to be detectable by using the AR model alone. In addition, the AR method

requires a priori knowledge of the vibration under no-fault conditions for data-fitting.

1.2 Scope of Research

Detection of faults in rotating machines can be achieved through many different approaches

including vibration, current, voltage, ultrasound, lubrication oil analysis, and many more

approaches. The most popular approach is vibration due to the simplicity of measurement
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(typically mounted on the machine casing), effectiveness in diagnosis, and a relatively low

cost for the sensors. The scope of this thesis research is limited to vibration-based fault

detection methods and is limited to impact faults; which typically share the same detection

methodologies. These fault types include rotor rubbing, bearing inner/outer race faults,

and various gear tooth faults. A detailed review of methods for detecting these types of

faults is presented in Chapter 2.

1.3 Contribution

Two contributions to the field of rotating machine fault detection are presented in this

thesis.

Firstly, an adaptive predictive model is proposed for the detection of gear tooth fillet cracks

in a gearbox. The method is based upon a recently proposed N-component frequency es-

timator (FE) by M. Hou [8], and the method is adapted for the detection of rotating ma-

chine faults. Novel contributions include a new amplitude-invariant adaptive identifier,

the discrete-time derivation, computational cost analysis, and LSQ-based parameter selec-

tion methodology. The method performs well in detecting the gear crack when compared

to a commonly accepted alternative technique and includes some major advantages over

this traditional approach. A large part of this work was presented as a regular paper at the

American Controls Conference, June 28 to July 2nd 2011, San Francisco [9].

Secondly, a novel deconvolution technique called Maximum Correlated Kurtosis Decon-

volution (MCKD) is proposed for the extraction of periodic impulse-like components from

a one-dimensional signal. This proposed method is well-suited for the extraction of ro-

tating machine faults which manifest in periodic impulse-like disturbances in the vibra-

tion. When compared to the standard Minimum Entropy Deconvolution (MED) technique,

which aims to extract a single impulse from a signal, the proposed MCKD perform remark-

ably better on synthetic and experimental data. A large part of this work is currently under

review for the journal Mechanical Systems and Signal Processing [10].
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2
Literature Review

2.1 Rotating Machine Faults Overview

The focus of this literature review is on the detection of rotating machine faults from vibra-

tion data. Additionally, the main focus is on impact-faults such as rotor rubbing, rolling

element bearing inner and outer-race faults, and gear tooth faults. These faults manifest

in similar ways on the machine vibration data, and the detection methodologies typically

work for all of these classes of faults.

Examples of gear tooth faults include tooth chips, fillet cracks, pitting, spalling, and miss-

ing tooth. Examples of these fault categories are illustrated in Figure 2.1.

These types of rotating machine faults are known to periodically excite the machine dy-

namics of the system with time-localized disturbances. I. Howard et al. [15] used a dy-

namic 16-degree of freedom model with friction to show that a gear tooth fillet crack causes

a time localized disturbance at the meshing time, raises the overall whiteness of the spec-

trum, and the gear meshing and harmonics remain of similar amplitude. Vibration from

an experimental setup under tooth fillet crack and spall were both found to be impulse-like

excitations by H. Endo and R.B. Randall [5]. The experimental data from F. Combet and

L. Gelman indicates that a gear pitting causes an impulse-like time localized disturbance

[16]. Ball bearing faults manifest similarly as impulse-like disturbances in the vibration

[17, 7, 18, 19, 20].

Fault detection methods are broken into several sections and are listed in Figure 2.2 along

3



a) tooth chip b) tooth fillet crack, X. Fan 2005

c) tooth pitting, P. Dempsey 2000 d) missing tooth, I. Yesilyurt 2003 e) tooth spall, H. Endo 2009

Figure 2.1: Example gear faults under a) tooth chip, b) tooth fillet crack [11], c) tooth pitting
[12], d) missing tooth [13], and e) tooth spall [14] cases.

with references. Vibration processing approaches utilize either a single method or a com-

bination of the following:

1: Filtering methods. The goal of the filtering methods is to extract a time-domain sig-

nal where the fault is clearer than before processing. Fault indication is typically ap-

proached by threshold, artificial neural network (ANN), fuzzy logic, support vector

machines (SVM), or hidden markov model (HMM) based on metrics of this resulting

signal.

2: Spectral analysis methods. Spectral analysis methods aim to generate a spectral rep-

resentation of the signal and is typically represented as three-dimensional plots, con-

tour plots, or heat-map images. Fault detection based on these approaches are typi-

cally done by expert human analysis of the plots.

3: Model-based methods. Models are used for enhancing the contrast between the

fault signal and the vibration data. The output of these approaches are typically a

one-dimensional residual signal and faults are detected using signal metrics with a

threshold, ANN, fuzzy logic, SVM, or HMM alarm.

Each category of processing has its own disadvantages and advantages. These general

categories of vibration processing and fault indication techniques are reviewed in the fol-

lowing sections. A detailed background for the AR model and MED methods are provided

since Chapters 3 and 4 are related to these methods.

4
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Figure 2.2: General overview of gear and bearing fault detection.
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damaged gear

a) No-fault, W. Wang 1996 b) Fault, W. Wang 1996

Figure 2.3: W. J. Wang and P. D. McFadden [34] fault detection of a helicopter gearbox by
TSA and continuous wavelet transform: a) under no-fault, and b) under fault.

2.2 Spectral Analysis Methods

Spectral analysis methods have been used to analyse machine vibration data for decades

and this section focuses on recent trends and literature. Most of the spectral analysis meth-

ods can be categorized into wavelet transform, cyclostationary analysis, and cepstrum-

based methods. Presented in the following subsections is a brief review of some of these

approaches with application of rotating machinery fault detection. Applications of the

wavelet transform as a filtering method are included in Section 2.4.

2.2.1 Wavelet Transform

The wavelet transform spectrum has been used for fault detection of gears and bearings

in many papers dating back a few decades. The wavelet transform is the leading time-

frequency signal analysis method, and is commonly applied in the analysis of non-stationary

signals. It has been proven to be a very effective diagnostic tool and a brief summary of

some of the papers is provided. In 1996, W. J. Wang and P. D. McFadden [34] applied time-

synchronous averaging (TSA) and the continuous wavelet transform (CWT) to vibration

data from a helicopter gearbox with a fatigue crack. The authors proposed a computation

algorithm and demonstrated the first use incorporating a variable time-frequency resolu-

tion depending on the frequency for gear fault detection. Diagnosis was performed by

analysis of the resulting wavelet scalogram contour maps, Figure 2.3, by an expert human.

R. Rubini and U. Meneghetti [17] found that rolling bearing fatigue flaws resulted in in-

creased spectrum peaks at the characteristic frequency. The authors proposed averaging

the CWT sections across a frequency range, and taking the DFT of this averaged signal.
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Fault indication was performed by human comparison of a characteristic frequency mag-

nitude. Interestingly, after about 30 minutes of operation the fault was undetectable and

the authors attributed this to the flattening-out of the fault. The reassigned wavelet scalo-

gram application to vibration analysis was proposed by Z.K. Peng, F.L. Chu, and Y.He in

2002 [35]. The authors found that the discrete Fourier transform (DFT) spectrum failed to

indicate faults at early stages, and that the reassigned wavelet scalogram reduced interfer-

ence terms. Fault indication was performed through expert human analysis of these result-

ing wavelet scalograms. Another alternative scalogram representation was proposed by I.

Yesilyurt in 2003 [13]. TSA was performed as an initial filtering stage, and the wavelet-

based instantaneous power spectrum was applied and smoothed along the time axis to

reduce oscillations. Results were strong in detecting a missing gear tooth fault. Z.K. Peng,

P.W. Tse, and F.L. Chu in 2005 [37] proposed the application of an alternative to the wavelet

spectrogram called the Improved Hilbert-Huang Transform. This transform is a combi-

nation of narrow-band filtering, Empirical Mode Decomposition, and Hilbert Transform.

They compared the scalogram results on experimental data from bearing inner and outer-

race faults. Their results, an excerpt in Figure 2.4, indicated a strong time localization of

the signal. Fault identification was performed by expert human analysis of the scalograms.

X. Fan and M.J. Zuo in 2006 [38] presented a method combining the WPT with the Hilbert

Transform to detect faults in gear tooth chip vibration data. First the Hilbert Transform

was performed to extract the signal envelope, then WPT was applied to this envelope to

identify the modulating signals. Fault indication was performed by expert human analy-

sis of the resulting scalogram. In general many methods of using the wavelet transform

spectrum and variations upon the method have been investigated, and it is clearly still an

active area of research.

2.2.2 Cyclostationary Analysis

Cyclostationary analysis is another spectrum method applied to fault detection of gears

and bearings, and takes advantage of the stochastic process nature of the vibration sig-

nal. A signal is cyclostationary of degree N if its Nth moment is periodic about any period.

A.C. McCormick and A.K. Nandi applied cyclostationary analysis to machine vibrations in

1998 [45]. Their methodology analysed the DFT of the cyclostationary signal about a range

of periods, and also used the sum of cyclostationarity order of vibration data under ball

bearing faults around the expected fault period. Results for a second-order cyclostationary

spectrum for bearing faults are illustrated in Figure 2.5. C. Capdessus, M. Sidahem, and J.L.

Lacoume applied cyclostationary analysis towards gear faults in 2000 [46]. The presented

vibration signal was shown to be second-order cyclostationarity and this parameter was

7



Characteristic period

Figure 2.4: Z.K. Peng, P.W. Tse, and F.L. Chu [37] performed a fault detection comparison
between a wavelet-based scalogram and Improved Hilbert-Huang Transform-based scalo-
gram. The vibration data was from an inner-race ball bearing fault. In the caption of the
original figure the Hilbert-Huang spectrum is referred to as the Improved Hilbert-Huang
spectrum. The Scalogram is the wavelet scalogram from the WPT.
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no fault inner-race fault

outer-race fault rolling element failure

source: A. McCormick 1998

Faults manifest as

diagonals.

Figure 2.5: A.C. McCormick and A.K. Nandi [45] analysed bearing faults by second-order
cyclostationary analysis. The plot is of the the spectral correlation density function, which
is the DFT amplitude spectrum of the time-varying cyclic autocorrelation. The sample
autocorrelation is the second-order cyclostationary component.

used as a fault indicator. The authors stated that TSA is in fact first-order cyclostationarity,

and by performing TSA the randomness information in this second-order cyclostationarity

is lost. Spectra correlation density is used to study the evolution of faults. Cyclostationary

analysis has been applied more recently by E. Estupinan et al. in [42], 2007, with good suc-

cess. This technique continues to be an area of moderate interest in machine fault detection.

Application of this method typically results in either a one-dimensional fault indicator or

a three-dimensional plot for human diagnostics.

2.2.3 Cepstrum Analysis

Cepstrum analysis is a topic of a relatively small amount of research activity in the field

of machine fault detection. Cepstrum magnitude spectrum is the FT magnitude spectrum

of the log-magnitude FT of the signal. This method is used to to detect the side-bands

associated with time varying components or to quantify harmonics. Cepstrum was origi-
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nally proposed for application of gear and bearing faults by R. Randall in 1975 [47]. The

method has maintained moderate research interest over the years, and has recently been

investigated by M. Badaoui, F. Guillet, and J. Danire [48] in 2004. The authors proposed

using the cepstrum peaks at the critical frequencies as a fault indicator, and demonstrated

the effectiveness in application to gear faults. In conclusion, the cepstrum proves a promis-

ing technique in monitoring gearbox conditions and provides a way for automated health

monitoring, but does not indicate the type of problem with the machine. The lack of re-

search papers in this field indicates that the method is likely not robust and does not work

with many datasets.

2.3 Model-Based Methods

2.3.1 Autoregressive Model

Autoregressive (AR) models have been a growing trend in rotating machine vibration fault

detection and have been shown to be effective in extracting gear faults with little a priori

knowledge [2, 4, 5]. The AR system model with no input has structure

yn = −a1yn−1 − a2yn−2 − . . . − aNyn−N + en,

where ai are scalar model coefficients, N is the order of the AR model, en is white noise, and

yn is the signal being modelled. That is, the current sample is a linear combination of the N

previous samples plus additive white noise. To solve for the scalar model coefficients, ai,

there are several approaches. For this thesis the Burg’s lattice-based method [49] is applied

due to the robustness of estimation. This method selects the parameters by minimizing the

least-squares of both the forward and backward prediction errors.

Fault detection by AR model is approached through the following steps:

Step 1: Select AR model order N. This order is often selected by Akaike Information Cri-

terion.

Step 2: Fit the AR model to the no-fault data by calculating ais by Burg’s lattice-based

method.

Step 3: Perform 1-step ahead prediction on the potentially faulty vibration data and cal-

culate the prediction error, Fig. 2.6.

The prediction error consists of white noise, disturbances, and potentially some trended

data from system dynamics changes. The impulse-like faults associated with gear cracks

are expected to be more prominent in this residual. Several major drawbacks exist for this
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Figure 2.6: AR prediction residual method. y[n], ŷ[n], and r[n] are the input signal, pre-
dicted signal, and prediction residual respectively.

proposed method. First of all and most importantly, the expected residual is white noise

plus fault impulses; so the fault signal must be significantly larger in amplitude than the

noise en for detection. And secondly, it requires knowledge of the system under no-fault

conditions.

2.3.2 Observer Design

State observers, unknown input observers (or similarly disturbance observers) [50, 51],

and fault-sensitive observers [44] have application in rotating machine vibration fault de-

tection but no research has been applied to the investigation of these methods of rotating

machine faults. The fault signal is expected to be more visible in this estimated disturbance,

estimated input, or output residual signal. For the case of fault-sensitive observers, an ob-

server can be designed to be noise tolerant while being sensitive to faults. The resulting

prediction residual is expected to better emphasize the fault. Research should be dedicated

to investigating the application of these methods towards rotating machine fault detection.

2.4 Filtering-Based Methods

Filtering-based methods have proven to be a very powerful method of fault detection in

rotating machines. Presented here is a basic review of methods and literature regarding

methods aiming to reduce noise, reduce non-fault signals, or enhance the visibility of

the fault vibration. Several methods are presented in the following subsections includ-

ing time-synchronous averaging (often just referred to as synchronous averaging), wavelet

transform-based filtering, spectral Kurtosis-based filtering, and deconvolution.

2.4.1 Time-Synchronous Averaging

This technique is most commonly referred to as TSA in the gear and bearing fault detection

field, but is sometimes referred to as synchronous signal averaging technique, synchronous

averaging, or time domain averaging. As a denoising method, the TSA technique is very

commonly applied [2, 5, 7, 6, 21]. To filter out asynchronous vibration and noise, speed
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or tachometer information is combined with angular resampling to an integer number of

samples per revolution of the gear or bearing critical period using an interpolation method,

such as spline interpolation. This angular resampling is performed as a first step to deal

with slight variances in the machine rotational speed, and to deal with the samples not

being acquired at exactly the same angle positions. The method then averages the vibration

over many revolutions of the gear or bearing critical period. This reduces asynchronous

vibration components and zero-mean noise because the expected value of as the number

of averaged revolutions gets very large approaches zero. A major drawback of TSA is the

significant loss of information contained in the distribution or autocorrelation function,

which contains important information related to fault detection [46]. Despite this loss of

information, the method is widely applied as a preprocessing step and as a rough estimate

approximately 40% of gear and bearing fault detection papers implement this method.

2.4.2 Filter Selected by Wavelet Transform

The wavelet transform is commonly applied as a filter to emphasize the fault signal. W.J.

Staszewski and J.R. Tomlinson proposed the wavelet transform in detection of spur gear

faults in 1994 [22]. One fault indicator shown to be effective by the authors is calculated

as the Kurtosis of the envelope of the Morlet wavelet transform around a centre frequency

of the fault critical frequency. In 2002, N.G. Nikolaou and I.A. Antoniadis proposed the

application of the complex Morlet wavelet transform on fault detection of ball bearings

[19]. The complex shifted Morlet wavelet transform was applied and the filtered signal was

formed by selecting the maximum envelope of a frequency range at each time. The method

was shown to be effective at extracting the time domain impulse-like structures of a bearing

inner-race fault, Figure 2.7. X. Lou and K.A. Loparo proposed in 2004 [23] the application

of the discrete wavelet transform decomposition followed by features of these resulting

signals as input to an adaptive neural fuzzy inference system for fault identification. In Q.

Hu et al. [25] 2007, the wavelet packet transform was used to decompose a vibration signal

and generate features for bearing fault classification by support vector machine ensemble.

In 2007, S. Abbasian et al. [26] implemented the discrete wavelet transform with Meyer

wavelet and used a single decomposition signal as the output, hence just using the method

as a basic filter design tool. Features of this filtered signal were used in fault classification

of ball bearings with a support vector machine.

2.4.3 Filter Selected by Spectral Kurtosis

Spectral Kurtosis (SK) was proposed for fault detection on rotating machine vibration data

by J. Antoni and R.B. Randall [18] in 2006. SK is a method in which a bandpass filter is
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Original faulty vibration data

Vibration envelope

Vibration envelope from Morlet filter with centre frequency at fault critical frequency

Vibration envelope from max envelope across a frequency range of the shifted Morlet transform

source: N. Nikolaou 2002

Figure 2.7: N.G. Nikolaou and I.A. Antoniadis [19] analysed inner-race bearing faults by
shifted complex Morlet wavelet transform max-envelope technique. TBPFI is the critical
period of the bearing fault.
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selected to maximize the Kurtosis of the resulting filtered signal. N. Sawalhi, R.B. Randall,

and H. Endo [7] improved upon the method in 2007 by combining the method with MED.

Results were analysed on the detection of ball bearing inner race fault vibration. The re-

sults were shown to be better than SK alone, but no investigation was performed for the

implementation of the MED method alone. In 2008, F. Combet and L. Gelman presented a

methodology involving TSA, windowed SK, enveloping, and smoothing [16]. Comparison

of the performance on pitted and unpitted gear vibration was performed between the pro-

posed method and ARMED. The results seem to indicate that both methods perform well,

with the proposed method providing a slightly clearer distinction between the no-fault and

fault cases. In general the SK method is a very strong method which has rightfully been

receiving a lot of research attention within the last few years.

2.4.4 Minimum Entropy Deconvolution

MED was originally proposed for application on seismic recordings by R. Wiggins in 1978

[52] and recently applied to gear fault detection by H. Endo et. al. [5] in 2007. MED poses a

deconvolution problem where a FIR filter is selected to minimize the entropy of the filtered

signal.

Starting from a general linear time-invariant machine acceleration signal model:

xn = (−a1xn−1 − a2xn−2 − . . . − aKxn−K) + (b1un−1 + b2un−2 + . . . + bLun−L)

+ (c1dn−1 + c2dn−2 + . . . + cMdn−M) + en

where xn is the sampled acceleration signal, un is an unknown input sequence, dn is the

repeating impulse-like gear fault input sequence, and en is noise. ak, bk, and ck are scalars

representing the dependence of xn on previous x, u, and d respectively. By taking the z-

transform and solving for the system acceleration, we have:

X =
B
(

z−1
)

A (z−1)
U +

C
(

z−1
)

A (z−1)
D +

1

A (z−1)
E

A
(

z−1
)

= 1 + a1z−1 + . . . + aKz−K

B
(

z−1
)

= b1z−1 + b2z−2 + . . . + bLz−L

C
(

z−1
)

= c1z−1 + c2z−2 + . . . + cMz−M

where X, U, and E are the z-transform of x, u, and e respectively.

Any stable transfer function P(z−1)/Q(z−1) can be approximated as a FIR filter. Since

these transfer functions are clearly stable or marginally stable in this case (otherwise the
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machine would explode with infinitely growing acceleration), the resulting time domain

approximation form in terms of convolution is

~x =~hu ∗ ~u +~hd ∗ ~d +~he ∗~e,

~x =











x1

x2
...

xN











, ~u =











u1

u2
...

uN











, ~d =











d1

d2
...

dN











,

where ~h’s are the FIR filter approximations to their respective transfer functions under

stable assumption, and N is the number of measured samples of vibration signal xn. The

deconvolution problem aims to reconstruct the fault signal ~d by applying FIR filter ~f with

L samples to measured machine acceleration ~x:

~y = ~f ∗~x = ~f ∗
(

~hu ∗ ~u
)

+ ~f ∗
(

~hd ∗ ~d
)

+ ~f ∗
(

~he ∗~e
)

,

~f = [ f1 f2 . . . fL]
T

It is desired that the resulting filtered signal ~y approximates fault signal ~d and this is ap-

proached by selecting filter ~f to minimizes the noise effect ~f ∗
(

~he ∗~e
)

→ ~0, while closely

cancelling the system ~f ∗
(

~hu ∗ ~u
)

→ ~0, and extracting the fault signal ~f ∗
(

~hd ∗ ~d
)

≈ ~d.

Selection of the filter ~f given only acceleration ~x measurements may seem to be a diffi-

cult problem, but the fault signal ~d is expected to be impulse-like (a signal of very high

Kurtosis) while competing signals ~u and~e are expected to be of much lower Kurtosis. As

a result of this signal Kurtosis difference between the signals, the filter can be selected to

reach a maximum in Kurtosis. To achieve this, R. Wiggins [52] proposed maximizing of

a norm function called the Varimax Norm, which in the case of one-dimensional MED is

equivalent to maximizing Kurtosis with assumed zero-mean:

Kurtosis =
1
n ∑

N
n=1

(

yn − µy

)4

(

1
n ∑

N
n=1

(

yn − µy

)2
)2

− 3

max
~f

Kurtosis = max
~f

∑
N
n=1

(

yn − µy

)4

(

∑
N
n=1

(

yn − µy

)2
)2

Describing the deconvolution method in terms of Kurtosis is chosen because it is com-

monly used to quantify the impulse-like fault level of a vibration signal [2, 5, 18]. Assuming

yn is zero-mean, µy = 0:

max
~f

Kurtosis = max
~f

∑
N
n=1 y4

n
(

∑
N
n=1 y2

n

)2
(2.1)
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By taking the derivatives of Eq. 2.1 with respect to filter coefficients ~f and solving it equal

to zero, an iteratively converging local-maximum solution can be derived as:

~f =
∑

N
n=1 y2

n

∑
N
n=1 y4

n

(

X0XT
0

)−1
X0

[

y3
1 y3

2 . . . y3
N

]T
(2.2)

X0 =















x1 x2 x3 . . . xN

0 x1 x2 . . . xN−1

0 0 x1 . . . xN−2
...

...
...

. . .
...

0 0 0 . . . xN−L+1















L by N

where ~f is iteratively selected. The iterative procedure is implemented with MATLAB

and available in the External Resources Section, Appendix A. The general procedure is as

follows:

Step 1: Assume initial filter as a centred impulse, ~f = [0 0 . . . 1 . . . 0 0]T .

Step 2: Calculate X0 and
(

X0XT
0

)−1
from input signal ~x.

Step 3: Calculate ~y as ~y = XT
0
~f .

Step 4: Determine new filter coefficients by solving for ~f in Eq. 2.2.

Step 5: Repeat from Step 3 for a specified number of iterations or until the change in Kur-

tosis between iterations is below a specified small value.

Step 6: The final deconvolved signal is calculated as ~y = XT
0
~f .

H. Endo et. al. [5] proposed the fault detection method ARMED, which applied the AR

fault detection method followed by MED on the resulting prediction residual. The ex-

pected results for MED is approximately the low entropy fault signal ~d, unlike the AR

method which expects the fault signal plus white noise. As a result, the ARMED resulted

in improved performance over the traditional AR method. However, the author did not

indicate a reason for inclusion of the AR method as a preprocessing stage and it should not

be a required step; therefore both direct MED and ARMED techniques are applied for com-

parison purposes. Also important to note is that in the case of direct MED fault extraction,

no a priori knowledge of no-fault machine vibrations is required for fault deconvolution.

2.5 Fault Indication

The goal of fault indication is to detect faults in the vibration data and depending on the

method, indicate the type of fault as well. In general, most fault indication methods can be

grouped into:
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• Artificial neural network/fuzzy logic [27, 28, 23, 29, 30, 31], support vector machine

[28, 25, 26, 32], or hidden markov model [33]. These approaches typically indicate

the fault type and fault level but require extensive data knowledge of the machine

under fault conditions and typically requires detailed training for each individual

machine. Performance can be unreliable if a fault manifests in a different manner

than expected, resulting in potentially missing faults. In general these approaches

are typically not very applicable to industry machine condition monitoring or fault

diagnosis.

• Human factor [17, 35, 13]. When authors provide no clear fault indication variable

it is expected that fault detection and diagnosis is performed by human anlaysis of

the results (eg. human analysis of a wavelet scalogram). This indication method is

impractical in machine condition monitoring and only applicable towards diagnosis

of faults.

• Threshold [22, 18, 5, 10]. Methods which perform fault indication by comparison

of an indicator (typically Kurtosis or RMS of a filtered signal) are assumed to be

implemented online by a threshold alarm. These approaches are very practical for

industrial condition-monitoring applications, as the alarm threshold can be easily

adjusted by on-site engineers. These approaches often do not indicate the type of

fault, just that a fault is present.

These various fault indication methods have various pros and cons, and as a result have

different applications.
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3
Frequency Estimator-Based Fault

Detection1

Recently in vibration-based fault detection there has been a trend in the field towards de-

tecting gear and bearing faults through vibration measurements using autoregressive (AR)

matched model prediction error signals [2, 4, 5, 6, 7]. AR models are linear models matched

to the vibration signal under no-fault conditions, and the model is applied to predict the

next vibration sample and compared to the actually measured sample. This error in pre-

diction, the residual, is well-suited to extract the impulse-like features associated with gear

crack vibration. Major drawbacks of the AR-based approach is the non-linear nature of

vibration data. Figure 3.1 illustrates a time-frequency plot of the vibration data by complex

Morlet continuous wavelet packet transform. From this figure it is clear that the AR as-

sumption of time-invariance is clearly incorrect, and it appears that the vibration consists

of multiple time-variant sinusoids combined with noise and disturbance. Additionally, vi-

bration is known to include non-linear and chaotic characteristics, and slight changes in

motor speed change the model.

The nature of vibration is sinusoidal and robustness can be improved through prediction

based on a sinusoid restriction [53]. Recently, adaptive system theory has been applied

towards real-time estimation of multiple sinusoidal components of signals [8]. This fre-

quency estimator (FE) is in the form of an adaptive state-space model and forms a non-

linear system. This model is not only able to predict future samples based on a sum of

1A version of this chapter has been published. G. L. McDonald and Q. Zhao, ”Model-based adaptive frequency
estimator for gear crack fault detection,” in American Control Conference 2011, San Francisco, June 2011.
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Figure 3.1: Continuous wavelet packet transform of vibration under gear chip using the
complex Morlet mother wavelet.

sinusoids model, but also adapts the sinusoidal model during operation. This results in

the ability to predict samples on-line even with time-variant sinusoid components and no

a priori knowledge requirements such as the data fitting required in the AR approach. De-

spite the relatively complex operation of the FE method, this chapter demonstrates that

it is of comparable calculations-per-sample to a low order AR algorithm. Clearly the FE

model is well-suited to the nature of vibration signals and poses application in improving

the field of gear-crack fault detection and other fields.

This section investigates the application of the adaptive system concept of FE for the de-

tection of gear-crack faults in rotating machinery. Firstly, a discrete-time (DT) version of

the continuous-time N-component FE proposed by M. Hou [8] is derived. Next a novel

amplitude-invariant adaptive identifier is proposed. Finally, general model parameters

are selected for a 2 and 3 component FE using a non-linear least-squares (LSQ) approach.

For performance evaluation, the standard AR predictive model is compared to the FE pre-

dictive model in complexity, simulation performance, and experimental performance on a

controlled gear-crack.

3.1 N-Component Frequency Estimator (FE)

Based on the N-component FE model by M. Hou [8] for continuous-time, a low complexity

discrete-time sample predictor is first derived. The derivation starts from the zero-order
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Figure 3.2: N-component DT system model

hold discretized model of the sum of sinusoid system for N-components, Figure 3.2.

Forming the transfer function for each sinusoidal component,

Yi(z) =
N(z)

Di(z)
U(z) =

(z + 1)2

z2 − 2 cos (Tωi)z + 1
U(z),

the complete transfer function follows as

Y(z) = U(z)
N

∑
i=1

Yi(z) =
P(z)

Q(z)
U(z),

where P(z) and Q(z) refer to the numerator and denominator polynomial of the complete

transfer function,

Q(z) =
N

∏
i=1

(z2 − 2 cos (Tωi)z + 1)

= z2N + θN−1z2N−1 + θN−2z2N−2 + · · ·

+ θ0zN + · · ·+ θN−2z2 + θN−1z + 1, (3.1)

and θi’s refer to the resulting expanded polynomial coefficients. By introducing a Hurwitz

polynomial,

α(z) = z2N + α2N−1z2N−1 + · · ·+ α1z + α0

we rewrite the transfer function as

Y(z) =
P(z)

α(z) + (Q(z)− α(z))
U(z).

Rearranging we have,

Y(z) =
α(z)− Q(z)

α(z)
Y(z) +

P(z)

α(z)
U(z)

and taking U(z) = 0 we have

Y(z) =
α(z)− Q(z)

α(z)
Y(z)
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with estimator state-space realization of

x[n + 1] = Ax[n] + By[n]

ŷ[n] = Ĉ[n]x[n]

A =















−α2N−1 −α2N−2 · · · −α1 −α0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















B =











1
0
...
0











, Ĉ[n] = αT − θ̂[n]TV

α =















α2N−1

α2N−2
...

α1

α0 − 1















, θ̂ =











θ̂N−1

θ̂N−2
...

θ̂0











V =











1 0 · · · 0 · · · 0 1 0
0 1 · · · 0 · · · 1 0 0
...

...
. . .

...
...

...
...

...
0 · · · 0 1 0 · · · 0 0











where the system output, ŷ[n], is the signal estimation and θ̂ corresponds to the estimated

frequency components ω̂ by Equation 3.1. The parameter α is tunable and controls the

convergence behaviour of the system, and the selection of these parameters are discussed

in Section 3.3. The θ̂ estimates are adapted according to the residual as described in the

following section.

3.2 Adaptive Identifiers

Updating the frequency estimates, ω̂, is achieved through updating the related Hurwitz

parameters, θ̂. The θ̂ parameter is updated according to the prediction residual, r[n] =

y[n] − ŷ[n], such that the system converges θ̂ → θ. A simple adaptive identifier can be

formed by simply adjusting θ̂ such that the residual decreases:

θ̂[n] = θ̂[n − 1]− γVx[n − 1]r[n − 1]

where γ is a tunable scalar parameter controlling the rate at which θ̂ is adapted. A smaller

value will result in a longer convergence time but is more robust to noise, while a larger
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value improves the convergence time but reduces noise tolerance. One drawback of this

possible adaptive identifier is the amplitude sensitivity. By multiplying the input signal by

a scalar, y[n] = ks[n], we have

x[n + 1] = Ax[n] + Bks[n]

x[n + 1]

k
=

Ax[n]

k
+ Bs[n]

kŝ[n] = Ĉx[n]

then redefining x̄[n] = x[n]/k, we have the system

x̄[n + 1] = Ax̄[n] + Bs[n]

ŝ[n] = (αT − θ̂TV)x̄[n]

θ̂[n] = θ̂[n − 1]− γVkx̄[n − 1](ks[n]− kŝ[n])

clearly resulting in a k2 factor increase in the changes to θ̂[n] each iteration and in turn

resulting in significantly larger changes to the estimated frequencies ω̂. Ideally, the change

to θ̂[n] should be independent of the signal amplitude such that the parameter γ does not

need to be tuned for each input signal. By introducing a state-normalization factor to the

adaptive identifier, the amplitude sensitivity issue can be addressed,

θ̂[n] = θ̂[n − 1]−
γVx[n − 1](y[n − 1]− ŷ[n − 1])

‖x[n − 1]‖2

and following a similar procedure as above with input signal y[n] = ks[n],

θ̂[n] = θ̂[n − 1]−
γVkx̄[n − 1](ks[n − 1]− kŝ[n − 1])

‖kx̄[n − 1]‖2

= θ̂[n − 1]−
γVx̄[n − 1](s[n − 1]− ŝ[n − 1])

‖x̄[n − 1]‖2

where the change to θ̂[n] is now independent of the input signal amplitude. This proposed

change introduces a singularity at |x[n]| = 0, and the adaptive identifier is slightly adjusted

such that

θ̂[n] = θ̂[n − 1]− ∆θ̂[n − 1]

∆θ̂[n] =

{

γVx[n](y[n]−ŷ[n])
‖x[n]‖2 if‖x[n]‖2 > ǫ

0 otherwise

where ǫ is a small positive scalar. Although this simplifies the model by being amplitude

invariant, the selection of α and γ is still a difficult process due to the non-linear charac-

teristics of the system. For the rest of the chapter only this FE State-Normalized adaptive

identifier is studied, as the results generalize to any input amplitude. The next section

presents a least-squares minimization approach to selecting these parameters.
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3.3 Least-Squares (LSQ) Parameter Selection

Parameter selection in a non-linear system is a difficult process. This problem is approached

as a minimization problem where the input parameters, γ and α, are adjusted to minimize

the error in the estimated θ̂[n]. Minimizing the estimated frequency error, ω̂[n], is not con-

sidered due to the complexity involved with calculating ω̂[n] from θ̂[n]. LSQ minimization

is performed as

min
γ,α

‖ fθ‖
2
2

where fθ is defined as the error in θ estimates in K-sample trajectories for L randomly

generated input signals. Each input signal includes additive white Gaussian noise and

N frequency components with uniformly-distributed frequency and initial phase. The L

input signals are known and their corresponding correct θ is calculated by Equation 3.1.

This forms the cost matrix,

fθ =
[

eθ [0] eθ [1] · · · eθ [K − 1]
]

eθ [n] =











θy0 − θ̂y0 [n]
θy1

− θ̂y1
[n]

...

θyL−1
− θ̂yL−1

[n]











used for the LSQ minimization. Minimizing this least-squares non-linear minimization

problem is approached using the Levenberg-Marquardt with line-searching algorithm [54,

55]. LSQ initial parameters of α =
[

0 0 · · · 0 −1
]T

and γ = 0 are used for the

adaption, and simulation initial conditions of x[0] = 0, and θ̂[0] = 0 are used. Table 3.1

indicates the final FE parameter values after 10 iterations with K = 2000, M = 500, and

additive Gaussian white noise of zero mean and 0.1 standard deviation. These values for K

and M were chosen experimentally through trying quite a few values and comparing the

resulting FE models on additional simulation and vibration data.

Table 3.1: Final values for FE parameters γ and α by LSQ minimization
N γ α

2 0.522
[

−0.163 0.255 −0.0840 −0.911
]T

3 1.06
[

0.227 0.834 0.135

0.357 −0.0607 −1.09
]T

The convergence versus LSQ iteration is plotted in Figure 3.3 for the two and three-component

FE models. Figure 3.4 plots the convergence behaviour of θ̂ for the first four input signals

of the three-component FE after iterative parameter selection, while Figure 3.5 plots the

convergence of the frequency estimates of the two-component FE. It can be seen that the

estimates typically converge correctly in a relatively short number of samples.
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3.4 Computational Requirements

The computational requirements of both the M-order AR model and the N-component FE

is important for implementation. For the FE, the back-calculation of the ω̂ from θ̂[n] is not

included because this information is not required in the context of the proposed fault detec-

tion. Table 3.2 below indicates the computational requirements of the M-order AR model

and N-component FE using both adaptive identifiers. All models were implemented in

controllable canonical form and computations per sample were calculated.

Table 3.2: Floating point calculations required for each sample of predicted output as a
function of model order, M, or number of frequency components, N.

Method Additions per sample Multiplications per
sample

AR 2M − 1 2M
FE Classical 5N − 1 3N + 2
FE State-Normalized 6N − 2 5N + 3

For performance comparison purposes, an AR model of order M = 9 is included in the

comparison as it is of similar complexity to the 3-component FE model.

3.5 Simulation Results

For validation, a simulated gear-crack vibration signal is generated with varied levels of

fault. The vibration signal is formed as harmonics of the motor vibration of 60 Hz plus fault

modelled as time-localized decaying exponential enveloped sinusoid vibrations repeating

at the gear rotational period. The motor harmonics of 60 Hz, 120 Hz, ..., 360 Hz have am-

plitudes of 0.5, 0.2, 0.1, 0.02, 0.03, and 0.01 respectively and initial phase of 1.04, 1.82, 6.60,

2.83, 4.08, and 0.00 rad respectively. Additive white Gaussian noise with zero mean and

0.001 standard deviation is included. The disturbance gear crack vibration signal is added

to the signal at a period of 83 milliseconds (12 Hz) and is composed of a decaying expo-

nential envelope with time constant 2e-3 and carrier frequency of 360 Hz. Figure 3.6 plots

the simulated vibration signal for a gear-crack peak disturbance of 0.362 and sampling rate

of 10 kHz.

Figure 3.7 presents the residual results when model-matching the AR models to the no-

fault vibration data, and applying the FE and resulting AR models to the fault vibration

signal in Figure 3.6.

Kurtosis is defined as the fourth standardized moment,

k =
E(x − µ)4

σ4
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Figure 3.6: Simulated gear crack vibration signal and spectrum.

where E() denotes the statistical expectation, x the signal, µ the signal mean, and σ the

signal standard deviation. Kurtosis is a measure of how outlier-prone a signal is, and is

commonly used as a fault indicator in gear-related faults due to the impulse-like vibration

manifestation. The kurtosis values are analyzed to evaluate the FE and AR methods’ abil-

ity to detect the gear crack fault. Comparing the fault peak disturbance versus the kurtosis,

Figure 3.8, the 2-component FE performs the best for higher fault amplitudes while the 9th

order AR model performs the best at small amplitudes. However, these results vary dras-

tically according to the composition of the vibration signal and should not be interpreted

as a general performance trend.

3.6 Experimental Design and Results

For validation and comparison, vibration data collected from a controlled gear tooth crack

experiment under varying degrees of crack severity is analyzed. The machine configura-

tion, Figure 3.9, is composed of a motor, gearbox, and brake.

A tooth crack is introduced in Gear 3 at varying levels using a cutting knife of width 0.4

mm controlling the depth and length of the cut. The gears for fault levels of 25%, 50%, 75%,

and 100% can be seen in Figure 3.10.

The experiment consists of recording of the vibration along the axis of the impact force for

three separate measurements during three separate machine start-ups under each operat-

ing condition. The motor operating conditions are varied between full-load, half-load, and

no-load, with speeds ranging from 800 to 3000 rpm at 200 rpm intervals. In total, this re-

sults in 540 vibration measurements with approximately 8000 samples each. The sampling

frequency is dependent on the rotation speed of the motor. Figure 3.11 illustrates the aver-
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Figure 3.9: Experimental machine configuration.

Figure 3.10: Experimental gears with tooth cracks at levels of a) 25%, b) 50%, c) 75%, and
d) 100% [56].
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Figure 3.11: RMS of measured acceleration according to fault level.

aged rms vibration of the machine versus fault level. It can be seen that the vibration trend

does not increase proportionally to the fault level; this is likely as a result of properties

of the five different gears used or slight changes to the machine as the gear swapping is

performed.

For the 540 datasets, the general data processing procedure is as follows:

1. Subtract the signal mean from each dataset.

2. Fit the AIC selected order and 9th order AR models to a dataset at no-fault condition

at each rpm and load condition.

3. For each dataset, both AR models are used to predict the samples using the dataset’s

corresponding no-fault fit model. For example, a dataset measured at 3000 rpm, full-

load, 25% fault level would use the AR models fit to the datasets at 3000 rpm, full-

load, 0% fault level.

4. For each dataset, both FE models are simulated and the prediction residual calcu-

lated.

5. Calculate the kurtosis of each prediction residual signal while ignoring the first 200

samples to allow for the AR and FE models to converge.

From this procedure, it is clear that one big advantage of the FE-based method is the fact

that it is a general model requiring no training to different datasets, different machines, dif-

ferent motor speeds, or even different applications. As a result the FE model will perform

better under varied machine conditions. Figure 3.12 and 3.13 presents the prediction error

for all four methods with the machine at 3000 rpm, full load, and 100% fault level.
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Figure 3.12: Prediction error by method for the experimental setup at 3000 rpm, full load,
and 100% fault level.
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Figure 3.14 and 3.15 illustrates the estimated θ and estimated frequency ω for the two and

three-component FE respectively on the fault data. The frequency estimates for the three-

component FE is not shown due to the complexity in calculated ω’s from θ’s. From the

two-component frequency estimates, it can be seen that the FE method is modelling the

system as a frequency-varying low frequency component plus high frequency component.

Figure 3.16 presents the kurtosis and Figure 3.17 presents the no-fault normalized kurtosis

results for the four predictive models under full-load, half-load, and no-load. It can be seen

that the 2 and 3 component FE provide a better correlation between increasing fault level

and higher kurtosis values. It is clear that the FE results in a better gear fault indicator over

both AR models.
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3.7 Conclusion

In conclusion, the FE-based method not only detects gear crack faults better than the AR

model based approach, but it requires no data fitting and is of similar computational re-

quirements to a low order AR model. The experimental data indicates that the FE-based

method outperforms the AR-based method in gear crack detection, while the simulation

data suggests that the FE model only performs better at a higher fault level. Neither of these

results are conclusive, but the FE model results proves a promising no a priori knowledge

alternative to the AR model. Further work should investigate the FE-based method on

additional experimental setups, and additional simulation models. Better parameter selec-

tion, convergence analysis, and higher order frequency estimators can be investigated for

the FE model approach.
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4
Maximum Correlated Kurtosis

Deconvolution Fault Detection1

Minimum Entropy Deconvolution (MED), originally proposed by R. Wiggins for applica-

tion on seismic recordings in 1978 [52], iteratively selects a finite impulse response (FIR)

filter to maximize the Kurtosis of the filtered signal and has had widespread applications

across many fields. Unlike the AR method, the MED technique aims to extract the fault

impulses while minimizing the noise and therefore results in clear detection results even

under high noise. H. Endo and R. Randall [5] in 2007 proposed applying the AR method

followed by MED, forming the method called ARMED and demonstrated the method to be

very effective in detecting gear spalls and tooth cracks. N. Sawalhi et al. [7] demonstrated

the effectiveness of the ARMED process in detecting faults in ball bearing elements. A lim-

itation of the ARMED method is the preference of the MED algorithm to deconvolve only

a single impulse or a selection of impulses, as opposed to the desired periodic impulses

repeating at the period of the fault.

Inspired by the MED deconvolution technique, this chapter proposes an improved novel

deconvolution norm, Correlated Kurtosis (CK), which takes advantage of the periodicity

of the faults and requires no AR model stage prior to deconvolution. The deconvolution

technique, Maximum Correlated Kurtosis Deconvolution (MCKD), is proposed to select a

FIR filter to maximize the CK of the resulting signal which emphasizes high kurtosis while

encouraging periodicity about a known period. An iteratively convergent solution to the

1A version of this chapter has been submitted for publication to the journal Mechanical Systems and Signal
Processing.
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deconvolution is derived for first and M-shift MCKD, and the results are compared using

simulation and experimental data from a controlled gear tooth chip experiment. Despite

the faulty gear vibration data showing no visible indication of fault in the original or AR

residual data, the deconvolution methods are able to successfully extract the fault clearly,

with the proposed MCKD method performing the best. An online threshold alarm imple-

mentation of the MCKD method is presented, shown to be computationally achievable,

and effective on looped experimental data.

The novel deconvolution norm CK is presented in Section 4.1, along with the CK values for

some sample input signals. Next, an iteratively converging solution to the MCKD problem

is derived for first and M-shift in Section 4.2. Simulated deconvolution results on an im-

pulse train plus noise signal are presented for the standard MED and the proposed MCKD

method in Section 4.3, from which the advantage of the MCKD method is clearly demon-

strated. Next, Section 4.4 presents simulation results for repeating concurrent faults with

different transmission paths. Here the MCKD method is shown to be able to extract the

concurrent faults separately and indicate the faults clearly. Experimental validation, Sec-

tion 4.5, is then performed on a controlled gear chip gearbox test, and results are compared

among the AR, ARMED, MED and MCDK methods. The proposed MCKD method most

clearly identifies the repeating fault in the time domain, and is able to indicate a fault sig-

nificantly better when comparing fault indicators between fault and no-fault data. Finally

a computationally simple online concurrent fault detection implementation of the MCKD

fault detection method is presented in Section 4.6. Validation of the online implementation

is performed on looped experimental data, and is shown to have strong fault detection

results while being computationally achievable for online application.

4.1 Correlated Kurtosis

To improve upon the MED deconvolution technique, the periodicity of the fault can be

taken advantage of through the definition of a new deconvolution norm. This proposed

norm,

Correlated Kurtosis of First-Shift = CK1(T) =
∑

N
n=1 (ynyn−T)

2

(∑N
n=1 y2

n)
2

,

Correlated Kurtosis of M-Shift = CKM(T) =
∑

N
n=1

(

∏
M
m=0 yn−mT

)2

(∑N
n=1 y2

n)
M+1

, (4.1)

yn =
L

∑
k=1

fkxn−k+1, xn = 0 and yn = 0 for n 6= 1, 2, . . . , N ,

encourages filter output periodicity about a period T and high-kurtosis, hence the name

Correlated Kurtosis. N is the number of samples in the input signal~x, L is the length of FIR
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Kurtosis = 3.17

CK1(T) = 8.10e-4

Kurtosis = 1.50

CK1(T) = 1.35e-3

Kurtosis = 998

CK1(T) = 0

Kurtosis = 331

CK1(T) = 0.222

Peak in Kurtosis

Peak in CK1(T)
T

Figure 4.1: Kurtosis and CK values for several signals. The kurtosis reaches a maximum
with a single impulse, the CK1 reaches a maximum with 3 impulses. The first signal is
white noise.
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Figure 4.2: CK1 spectrum for an impulse train of fives impulses with spacing of T and
strong additive Gaussian white noise corruption.

filter ~f , and T is the period of interest. It should be noted that if T = 0 and M = 1, then CK

is the Kurtosis norm used by MED in Eq. 2.1. Figure 4.1 illustrates the CK1 versus Kurtosis

for several simple signals. It can be seen that the proposed CK1 approaches a maximum

for a periodic impulse about the specified period as opposed to the Kurtosis which tends

to a maximum with a single impulse. Higher shift CK emphasizes larger sequences of

impulses in a row. Figure 4.2 illustrates the CK value versus period T. It can be seen that

CK(r) reaches a peak when r = T, 2T, ....

To illustrate the usage of CK towards extracting fault signals, we compare the first-shift

CK values for a simple simulated vibration example where we have a sinusoidal vibration

with an impact once per rotation:

Signal 1: yn = sin(2πn/100) + 0.5sin(4πn/100) + noise

Signal 2: yn = 0.3 ∑
∞
k=0 δn−k100 + 1 [sin(2πn/100) + 0.5 ∗ sin(4πn/100) + noise]

Signal 3: yn = 0.3 ∑
∞
k=0 δn−k100 + 0.5 [(sin(2πn/100) + 0.5sin(4πn/100)) + noise]

Signal 4: yn = 0.3 ∑
∞
k=0 δn−k100 + 0.2 [(sin(2πn/100) + 0.5sin(4πn/100)) + noise]
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T

CK (T) = 0.001771

Signal 1

CK (T) = 0.001771

Signal 2

CK (T) = 0.001761

Signal 3

CK (T) = 0.002731

Signal 4

CK (T) = 0.09001

Signal 5

Figure 4.3: CK1 values for a simple simulated repetitive fault with various amplitudes of
the base harmonic vibration. All signals are normalized by their peak value for better
illustration.

Signal 5: yn = 0.3 ∑
∞
k=0 δn−k100

where δk = 1 for k = 0 and δk = 0 otherwise, and n = 1, 2, . . . , 2000. The noise is zero-

mean white noise with variance of 0.22. Fig. 4.3 illustrates CK1(100) for these signals and

it is clear that the maximum of these signals is the fault signal by itself, Signal 5. The goal

is to extract the fault impulses through maximizing CK, and this problem is approached

through a deconvolution method presented in the following section. Special consideration

is taken in the next section by initial conditions to prevent the local maximum solution

achieved by Signal 1.

4.2 Maximum Correlated Kurtosis Deconvolution

4.2.1 First-Shift Maximum Correlated Kurtosis Deconvolution

The MCKD technique aims to maximize CK for input signal, ~x, about the period, T, by

selecting a FIR filter ~f . First we only consider the first-shift MCKD algorithm, and then

expand the method to M-shift in the next section. Starting from the maximization problem:

MCKD1(T) = max
~f

CK1(T) = max
~f

∑
N
n=1 (ynyn−T)

2

(

∑
N
n=1 y2

n

)2
(4.2)

~f = [ f1 f2 . . . fL]
T

Towards solving for the filter coefficients corresponding to the maximum, we solve:

d

d fk
CK1(T) = 0, k = 1, 2, . . . , L (4.3)
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First, the derivatives of the numerator and denominator portions are solved separately.

Starting with the numerator,

d

d fk
CK1 Numerator =

d

d fk

N

∑
n=1

(ynyn−T)
2 =

N

∑
n=1

2ynyn−T
d

d fk
ynyn−T

=

(

N

∑
n=1

2yny2
n−T

d

d fk
yn

)

+

(

N

∑
n=1

2y2
nyn−T

d

d fk
yn−T

)

and since,
d

d fk
yn = xn−k+1

we have,

d

d fk
CK1 Numerator =

N

∑
n=1

2xn−k+1yny2
n−T +

N

∑
n=1

2xn−T−k+1yn−Ty2
n. (4.4)

Similarly for the denominator,

d

d fk
CK1 Denominator =

d

d fk

(

N

∑
n=1

y2
n

)2

= 2

(

N

∑
n=1

y2
n

)

d

d fk

N

∑
n=1

y2
n

= 4

(

N

∑
n=1

y2
n

)

N

∑
n=1

ynxn−k+1. (4.5)

From Eq. 4.3, Eq. 4.4, and Eq. 4.5 it follows:

d

d fk
CK1(T) = 2‖~y‖−4

(

N

∑
n=1

xn−k+1yny2
n−T +

N

∑
n=1

xn−T−k+1yn−Ty2
n

)

−4‖~y‖−6
N

∑
n=1

(ynyn−T)
2

N

∑
n=1

ynxn−k+1

And rewriting in matrix form:

d

d~f
CK1(T) =~0 = 2‖~y‖−4 (X0~α0 + XT~α1)− 4‖~y‖−6‖~β‖2X0~y, (4.6)

Xr =















x1−r x2−r x3−r . . . xN−r

0 x1−r x2−r . . . xN−1−r

0 0 x1−r . . . xN−2−r
...

...
...

. . .
...

0 0 0 . . . xN−L−r+1















L by N

,

~α0 =
[

y1y2
1−T y2y2

2−T . . . yNy2
N−T

]T
, ~α1 =

[

y1−Ty2
1 y2−Ty2

2 . . . yN−Ty2
N

]T
,

~β =
[

y1y1−T y2y2−T . . . yNyN−T

]T

Rearranging Eq. 4.6,

2‖~β‖2X0~y = ‖~y‖2 (X0~α0 + XT~α1)
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and substituting the relation,

~y = XT
0
~f (4.7)

results in:

X0XT
0
~f =

‖~y‖2

2‖~β‖2
(X0~α0 + XT~α1)

The matrix X0XT
0 is the Toeplitz autocorrelation matrix of ~x and the inverse

(

X0XT
0

)−1
is

assumed to exist:

~f =
‖~y‖2

2‖~β‖2

(

X0XT
0

)−1
(X0~α0 + XT~α1) (4.8)

This resulting equation is nonlinear, but a local maximum solution for ~f can by solved for

iteratively. All datasets processed so far have been found to be monotonically convergent

to a local maximum solution. The procedure for solving for ~f iteratively is as follows, and

a link to the MATLAB implementation can be found in the External Resources Section,

Appendix A:

Step 1: Select period of interest, T.

Step 2: Calculate XT , XT
0 , and (X0XT

0 )
−1 from your input signal ~x.

Step 3: Select filter size, L, and assume an initial filter of

~f =
[

0 0 . . . 1 −1 . . . 0 0
]T

. This is selected as a differ-

ence filter to prevent the algorithm from converging to the local so-

lution of Signal 1 in Fig. 4.3 and the difference is in the centre be-

cause performance can be improved through not assuming a mini-

mum phase filter.

Step 4: Calculate the filtered output, ~y, from Eq. 4.7.

Step 5: Calculate~α0,~α1, and ~β from ~y.

Step 6: Calculate the new filter coefficient, ~f , from Eq. 4.8.

Step 7: Is ∆CK1(T) > ǫ? Loop from Step 4 while true. ǫ is a small positive

number controlling when the algorithm terminates and ∆CK1 denotes

the change for the iteration.

Step 8: The final first-shift MCKD-filtered signal about period T is calculated

from Eq. 4.7.

4.2.2 M-Shift Maximum Correlated Kurtosis Deconvolution

Results generally improve significantly on experimental data by using a higher shift MCKD

method because increasing the shift increases the number of sequential impulses the algo-
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rithm is looking to deconvolve. However, higher order shifts requires better estimates of

the fault period T and increases the complexity of the calculation.

Similarly to the first-shift derivation, we start from the maximization problem

MCKDM(T) = max
~f

CKM(T) = max
~f

∑
N
n=1

(

∏
M
m=0 yn−mT

)2

(∑N
n=1 y2

n)
M+1

(4.9)

and by solving the derivative of the numerator and denominator of CKM(T) with respect

to filter coefficients fk:

d

d fk
CKM Numerator = 2

N

∑
n=1





(

M

∏
m=0

yn−mT

)2( M

∑
m=0

xn−mT−k+1

yn−mT

)



 (4.10)

d

d fk
CKM Denominator = 2(M + 1)‖~y‖2M

N

∑
n=1

ynxn−k+1 (4.11)

Combining Eq. 4.10 and Eq. 4.11 results in,

d

d fk
CKM(T) =0 = 2‖~y‖−2M−2

N

∑
n=1





(

M

∏
m=0

yn−mT

)2( M

∑
m=0

xn−mT−k+1

yn−mT

)





− 2(M + 1)‖~y‖−2M−4
N

∑
n=1





(

M

∏
m=0

yn−mT

)2




N

∑
n=1

ynxn−k+1,

and converting to matrix form with k = 1, 2, . . . , L and rearranging results in the iterative

solution:

~f =
‖~y‖2

2‖~β‖2

(

X0XT
0

)−1 M

∑
m=0

XmT~αm (4.12)

~αm =













y−1
1−mT

(

y2
1y2

1−T . . . y2
1−MT

)

y−1
2−mT

(

y2
2y2

2−T . . . y2
2−MT

)

...

y−1
N−mT

(

y2
Ny2

N−T . . . y2
N−MT

)













, ~β =











y1y1−T . . . y1−MT

y2y2−T . . . y2−MT
...

yNyN−T . . . yN−MT











Eq. 4.12 can be solved iteratively by following a similar procedure as to the first-shift

MCKD presented above. Unlike the first-shift MCDM, the solution does not necessarily

converge monotonically, and as a result the filter ~f is chosen as the filter which results in

the maximum in CKM during the iterative process. For large M, from experience around 10

or more, the iterative method can result in loss of numerical precision because of exceeding

the range of the floating point exponent.

Because the higher-shift MCKD requires better estimates of the fault period T and in ap-

plication the period is a fractional number (eg. 170.21 samples per gear revolution), an
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additional resampling stage is introduced as a preprocessing step. This additional step

resamples the input signal ~x at a ratio of:

⌊20T + 0.5⌋ : ⌊20⌈T⌉+ 0.5⌋

where ⌊.⌋ and ⌈.⌉ denotes the floor and ceiling operations respectively and the factor of

20 is chosen as a good balance between computation time and precision. This resamples

the data so that the samples per revolution is approximately the nearest larger integer; for

example 170.21 samples per gear revolution resamples at a ratio of 3404 : 3600, resulting

in 180.01 samples per gear revolution. The resampling is performed by polyphase filter

implementation.

The implementation of this method in MATLAB is available in the External Resources Sec-

tion, Appendix A.

4.3 Simulation Results

To compare the MED and MCKD algorithms’ ability to extract periodic repeating impulses,

a simple deconvolution of impulses from white noise is analysed. The signal is formed as

xn = en + f

(

∞

∑
k=0

δn−k100

)

, n = 0, 1, 3, . . . , 999

where en is zero-mean Gaussian white noise of 1 standard deviation and the fault ampli-

tude, f , is varied between 0 and 5 at a step of 0.01. Fig. 4.4a illustrates the fault detection

versus f for i.i.d. en for each f , while Fig. 4.4b illustrates the resulting doconvolved sig-

nals when f = 3. A deconvolution filter size of 200 and iteration count of 100 is used for

each method. From these results it is clear that the MCKD method greatly outperforms the

MED method when deconvolving periodic impulses of known period from white noise.

This clearly illustrates the problem with the standard MED algorithm, which prefers to de-

convolve a single impulse as the result. But not only that, the MED method fails to indicate

any correlation at all between kurtosis and fault level.

4.4 Basic Concurrent Gear Fault Simulation

Consider the simple vibration model:

xn = sin(2πn/30) + 0.7sin(3πn/30) + fn + en

where fn denotes the periodic fault signal caused by the faulty gear, en is zero-mean ad-

ditive white Gaussian noise with a standard deviation of 0.1, and n = 0, 2, . . . , 2999. Then
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Figure 4.4: Deconvolution of a noisy periodic impulse train of period 100 with a) illus-
trating the fault detection versus impulse train amplitude, and b) normalized plot of the
resulting deconvolved signals with impulse train amplitude of f = 3, some signals are po-
larity inverted for illustration purposes. A different white noise seed is used for each value
of f.
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consider two faulty elements in the system on with fault periods of 30 and 100 samples.

These faulty elements result in impulse-like vibration signals convolved with two separate

transmission paths:

f a
n = ha

n ∗

(

∞

∑
k=0

δn−k30

)

f b
n = hb

n ∗

(

∞

∑
k=0

δn−k100

)

Impulse responses ha
n and hb

n refer to two different the vibration transmission paths from

the faulty gears to vibration sensor, combined with slightly different fault characteristics.

We select these two transmission paths as:

~ha =
[

0.9 −0.3 0.1 −0.05
]T

~hb =
[

0.1 0.8 −0.7 −0.6 0.4 −0.2 0.1 −0.05
]T

and form four cases:

F1: No Fault: fn = 0

F2: Fault on Period 30: fn = 0.4 f a
n

F3: Fault on Period 100: fn = 0.4 f b
n

F4: Concurrent Faults on Periods 30 and 100: fn = 0.4 f a
n + 0.4 f b

n

The desired output signals include only the impulse fault signals before the transmission

path. The resulting fault indicators, CKM(T) for MCKD and the Kurtosis for MED-based

methods, are tabulated in Table 4.1. All algorithms were with filter size of 200, and the

MED and MCKD algorithms were iterated exactly 100 times each. Shift-five MCKD was

chosen as a good balance between a higher shift method and lower computation time. AR

model orders of 20 were chosen because it is a fairly high model order while being smaller

than the smallest fault period. Higher numbers indicate a larger detected fault. From the

table, it is clear to see that only the MCKD algorithm detects the faults successfully. The

MED technique performs so poorly as a result of incorrectly deconvolving a single impulse

from the no-fault case. The MCKD method is not only able to strongly detect the faults,

but is also able to indicate exactly which fault periods are present.

Figure 4.5 illustrates the resulting signals for the MCKD approach under concurrent fault

condition, F4. It is clear that the faults with a period of 30 and 100 are successfully isolated

separately during the deconvolution process.
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Figure 4.5: Simulated resulting signals for concurrent fault detection after processing with
indicated method. All signals are normalized and some signals are polarity flipped for
better illustration.
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Table 4.1: Fault indicator values by MCKD, MED, and ARMED. The fault indicators are
final CK values for MCKD and the final Kurtosis values for MED and ARMED. All values
are no-fault normalized.

Method F1, No Fault F2, Fault on
Period 30

F3, Fault on
Period 100

F4, Concurrent
Faults on Periods
30 and 100

MCKD5(30) 1 9.75 0.929 8.55
MCKD5(100) 1 2.62 79.8 77.4
MED 1 0.139 0.111 0.137
ARMED 1 1.01 1.09 0.995

Gear 1, N = 16

Gear 2, N = 48

Gear 3, N = 24

Gear 4, N = 40

4.2 : 1

Tooth chip

on gear 1

Motor

Gearbox

Brake

Shaft 1

Figure 4.6: Gearbox and experimental equipment layout.

4.5 Experimental Results

For validation, vibration data is collected and compared from a gearbox with and without

a gear chip. The machine configuration, Fig. 4.6, is composed of a motor, gearbox, and

brake. Two gears are used for the Gear 1 position; one in healthy condition and one with

a gear crack, Fig. 4.7. The machine is operated at 10% load and the rotational frequency

of Shaft 1 is varied between 10, 15, 20, 25, 30, 35, and 40 Hz [57]. The accelerometer is of

model PCB 352C67 and the data is aquired through a DSP Siglab 20-42 Signal Analyzer

to a laptop [11]. The vibration accelerometer sampling frequency is varied according to

the rotational speed between 1280 Hz and 5120 Hz, and 8192 samples are aquired for each

measurement. At each frequency, two non-fault vibration measurements and a single fault

vibration measurement is aquired and processed.

In the ARMED method proposed by H. Endo and R. Randall, the authors suggest that

the MED stage should just be performed for only a few iterations to prevent erroneously

extracting impulses [5]. Fig. 4.8 illustrates the results of MCKD, MED, and ARMED versus

the iteration in the deconvolution stage for the experimental gear chip data. It can be seen

that for both the MED and ARMED approach, the deconvolved signals indicate the fault

clearest with a high iteration count, although the methods fail to extract a fault impulse for

each revolution of the faulty gear. Reducing the iteration count does not appear to resolve
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Gear 1 with chipped tooth

Figure 4.7: Faulty gear 1 with seeded tooth chip.

this problem in either case. As a result, for the duration of this thesis the MED algorithm is

executed to convergence instead of being limited to just a few iterations. Fig. 4.9 illustrates

the deconvolution results for the same fault vibration signal versus filter size. By close

inspection, it is clear that for the MCKD method a higher filter size results in improved

results. With the MED approach the repeating fault is roughly extracted at around a 50

filter size, and larger filter sizes cleans the signal up but at a cost of missing many of the

fault impulses.

The general procedure for the data processing is as follows:

Step 1: Shaft 1 speeds for each data measurement are assumed to be constant

and close to the indicated frequency. To calculate the speed, the Dis-

crete Fourier Transform is applied and peak detection is performed

within the vicinity of the expected shaft speed. The period of Shaft 1

in number of samples is referred to as T, and can be a fractional num-

ber of samples (such as 172.32 samples per gear revolution). Direct

speed measurement would likely result in better performance of the

MCDK method.

Step 2: Generate AR models at each operational frequency from the second

no-fault data measurement of order ⌊0.4T + 0.5⌋, i.e. 40% the num-

ber of data samples corresponding to a single Shaft 1 revolution and

rounded to the nearest integer. The Aikaike Information Criterion is

not used to select the AR model orders because it erroneously overfits

the data by suggesting model orders almost equal to the dataset sizes

of around 8000 samples.

Step 3: Calculate AR model residuals for the first no-fault data and the fault

data measurements by 1-step ahead prediction.

Step 4: Deconvolution filter sizes for both MED and MCKD are selected as
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Figure 4.8: Deconvolved signals versus deconvolution iteration for a) first-shift MCKD,
b) MED, and c) ARMED for an AR model order of 100 and filter sizes of 200 samples.
The vibration data is from the gearbox under gear chip fault at 40Hz shaft speed and 10%
load and resulting signals are normalized by peak values with some signals being polarity
swapped for better illustration.
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clearer illustration.
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⌊0.8T + 0.5⌋, i.e. 80% the number of data samples in a single Shaft 1

revolution and rounded to the nearest integer.

Step 5: MED is performed on each AR residual, each first no-fault dataset,

and each fault dataset; resulting in the signals for MED and ARMED

methods. The kurtosis of each resulting output signal is calculated as

a fault indicator.

Step 6: First, third, and fifth-shift MCKD is applied about period T for each

first no-fault dataset, and each fault dataset. CKM(T) is calculated

from the resulting deconvolved signals as a fault indicator where M

corresponds to the shift of the MCKD algorithm (eg. CK3(T) is used

as the fault indicator for third-shift MCKD).

Time synchronous averaging is not considered as a preprocessing step due the lack of

tachometer or detailed speedometer information. The deconvolution filter sizes and AR

model orders for the fault datasets and first no-fault datasets are tabulated in Table 4.2.

These high-length deconvolution filters are selected because the time-domain plots more

clearly illustrates the faults.

Table 4.2: Estimated shaft 1 period and corresponding deconvolution filter sizes for no-
fault and fault cases.

No-Fault Dataset Fault Dataset
Shaft 1 Deconv. Filter Size AR Model Deconv. Filter Size AR Model

Frequency L (# Samples) Order L (# Samples) Order
10 Hz 208 104 222 111
15 Hz 139 69 142 71
20 Hz 207 104 211 105
25 Hz 166 83 168 84
30 Hz 138 69 139 70
35 Hz 118 59 119 60
40 Hz 103 52 104 52

The resulting processed signals for no-fault and fault conditions at 35 Hz are compared

in Fig. 4.10. All processed signals under gear chip fault are plotted in Fig. 4.11 for all

frequencies and all methods. From these results it is clear that the MCKD method extracts

the expected single impulse per gear revolution, while the MED-based methods tend to

miss most of the fault impulses. The detected fault impulses by different methods do not

necessarily line up as a result of the different phase lags of the resulting filters. The exact

placement of the faults in the time domain can be recovered by simply plotting the filter

responses and typically the lag is clear in this response.
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Figure 4.10: Experimental acceleration data with fault detection processing with a) gear
chip and shaft 1 speed of 35 Hz, and b) normal gear and shaft 1 speed of 35 Hz. All
signals are normalized by peak values and some signals are reversed in polarity for better
illustration.
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a) Faulty gear MCKD1 method b) Faulty gear MCKD3  method

c) Faulty gear MED method d) Faulty gear ARMED method
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All signals are normalized by peak values and some signals are polarity flipped for better
illustration.
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Fault detection based on deconvolution filter sizes of 2 through 150 samples are analysed

and compared, Fig. 4.12. From the plots it is clear that MCKD method significantly out-

performs the MED method, often performing over 10 times better. The performance gain

by increasing the shift from first to third and fifth shift is very significant. Also important

to note is that the MED approach performs similarly to the ARMED approach, indicating

that the AR stage is likely not required.
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Figure 4.13: Online implementation of MCKD-based fault detection for a two-shaft gearbox
with a single accelerometer. Threshold and FIR filter plots are creative illustrations, not
data.
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4.6 Online Condition Monitoring Implementation

In industry application, fault detection during machine operation is critical in preventing

equipment damage or failure. Presented here is a modification of the MCKD technique to

monitor the health of a machine online and generate fault alarms.

Two operations for buffering and downsampling are defined as:

Data buffering by factor R and no overlap, BR :

[

x1 x2 x3 . . .
] BR(...)
−−−→











x1 xR+1 x2R+1 . . .
x2 xR+2 x2R+2 . . .
...

...
...

. . .

xR x2R x3R . . .











Downsample by factor D, D ↓:














x0,0 x0,1 x0,2 . . .
x1,0 x1,1 x1,2 . . .
x2,0 x2,1 x2,2 . . .

...
...

...
. . .

xI,0 xI,1 xI,2 . . .















D↓
−→















x0,0 x0,D x0,2D . . .
x1,0 x1,D x1,2D . . .
x2,0 x2,D x2,2D . . .

...
...

...
. . .

xI,0 xI,D xI,2D . . .















Fig. 4.13 illustrates the online implementation schematic. The presented implementation is

for a single accelerometer near both Shaft 1 and Shaft 2, but performance can be improved

by placing two different accelerometers close to each shaft. A speed measurement of one of

the shafts is recommended, but if the system is expected to be operating at only a single op-

erating speed then Discrete Fourier Transform peak detection on the acceleration signal can

estimate the exact machine speed. To reduce complexity, the MCKD blocks performs only

a single deconvolution filter update iteration for each column of input data and the filter

update downsampling factor D controls how often a filter update iteration is performed.

The buffer factor F controls the window size of MCKD iteration and a value resulting in

at least 10 times the period of the shaft is recommended. The buffer factor W controls the

window size for CK fault indicator generation, a larger factor will result in a more slowly

changing fault indicator and slower time response to a fault while a smaller factor results

in a more sporadic fault indicator but quicker time response to a fault. Constant gain val-

ues of k1 and k2 convert the measured speed to the periods of Shaft 1 and 2 respectively.

The alarm thresholds should be selected based on indicator values under no-fault. fshaft 1

and fshaft 2 refer to the FIR deconvolution filters.

For testing the online implementation, basic input sequences are formed for each operating

frequency by looping the experimental no-fault data ten times followed by looping fault

data ten times. The data is looped by direct concatenation of the datasets reduced to the

number of samples corresponding to the largest number of complete shaft revolutions in
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the dataset. A deconvolution filter size of L = 200, no decimation factor D = 1, and filter

update and fault indicator buffer sizes of 5000 is used W = F = 5000.

Table 4.3: Computation times for online MCKD gear chip fault detection on looped experi-
mental data.

Shaft1
Fre-
quency

Number of
Samples

Duration of
Data Acqui-
sition

MCKD1 Data Pro-
cessing Time

MCKD5 Data Pro-
cessing Time

(kSamples) (Seconds) (Seconds) (Seconds)
15 Hz 326 128 26 44
20 Hz 324 63 27 45
25 Hz 325 64 24 45
30 Hz 325 64 34 53
35 Hz 324 63 25 45
40 Hz 326 64 35 54

Table 4.3 illustrates the number of samples per dataset after looping, the time taken to

measure the data, and the processing time for the proposed online fault detection imple-

mentation. The processing times are measured on Intel Core 2 Duo CPUs at 2.00GHz with

implementation in MATLAB without parallel processing. From the processing times, it

is clear that the proposed method is easily achievable in an online application. Fig. 4.14

illustrates the online fault detection results for first-shift MCKD. It is clear that the fault

detection performance is good in online application, and the proposed threshold alarm on

this signal is feasible. The trough in the fault indicator as the fault is introduced is as a

result of both the dataset looping not being phase aligned during dataset concatenation

between the no-fault and fault data, and the slight machine speed difference between the

two datasets. Fig. 4.15 presents the fifth-shift MCKD results. Clearly the MCKD method

is very strong at detecting the faults, with the fifth-shift MCKD method providing clearer

results than the first-shift implementation but at a higher computational cost.

4.7 Conclusion

This chapter introduces a new deconvolution process, MCKD, which aims to deconvolve

periodic impulse faults from a machine vibration signal. Simulation data and experimen-

tal gear chip vibration data were compared between MCKD and the established methods

of AR residual, MED, and ARMED. The experimental results indicate that the AR resid-

ual method is inadequate, which is as a result of the fault impulses being of comparable

amplitude to the system noise and the AR model residual method extracting noise plus

disturbance. Additionally, the experimental results indicate that the ARMED method per-

forms similarly to direct MED application; indicating that the AR stage of ARMED is un-

necessary. Finally, the simulation and experimental results indicate the MCKD method is
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the most successful in deconvolving the periodic faults and in has significantly better gear

chip fault detection results, often on the order of 10 or more times better at fault detection.

There is a significant performance advantage gain from increasing the shift-order from first

to third, but fifth-shift MCKD did not significantly outperform third-shift. As a result the

third-shift MCKD method is recommended in application. Clearly the MCKD method is a

notable improvement upon the existing state-of-the-art methods and may include applica-

tions beyond rotating machine fault detection.

Online application of the MCKD method is shown to be computationally implementable

on a personal computer, and results from fault detection on looped experimental data in-

dicates it is a strong method in online application and that a simple threshold alarm is

feasible.

Further work should investigate the application of MCKD towards detecting other types

of gear faults and towards detecting bearing faults. Analysis of the proposed online im-

plementation of the MCKD method should be performed through an accelerated gear or

bearing degradation experimental setup.
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5
Steam Power Turbine Analysis

Vibration data acquired from two 50MW back pressure steam turbine generators is col-

lected by two proximity sensors on bearing 4, Figure 5.1. A data measurement of approx-

imately 1200 samples is collected every two hours from 2003 to 2006 at a sampling rate of

9.7 kSamples/Second. Under normal operation, the turbines are rotating at approximately

60Hz, resulting in approximately 161 samples per revolution and over 7 rotor revolutions

per dataset. Data is not consistently measured every 2 hours, but includes large gaps as

a result of machine downtimes and includes more frequently measured data when, for

example, the turbine health is being analysed by the on-site engineers.

The RMS of the vibration for both turbines, denoted Turbine 1 and 2, are presented in

Figure 5.2. Faults often do not affect the vibration level and as a result it is not a good

indication of the presence of faults. However, it is still important to keep this vibration

level low to prevent faults such as rubbing, which are caused by the vibration exceeding

available clearances.

Figure 5.1: The layout of the back pressure steam turbine generator. Source: [58]
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Figure 5.2: RMS of turbine vibration for the X and Y axis on a) Turbine 1, and b) Turbine 2.
Each dot represents the RMS of the dataset of approximately 1200 samples collected at the
indicated time.

The health of these two turbines, denoted Turbine 1 and Turbine 2, is analysed by the

previously presented methods:

• AR prediction residual method, Section 2.3.1.

• Two and three-component frequency estimator prediction residual method, Chapter

3.

• MED filtering method, Section 2.4.4.

• MCKD filtering method, Chapter 4.

Because of a lack of knowledge regarding the bearing specifications, and consequently the

inner and outer-race characteristic frequencies, the main focus of this investigation is on

rotor faults such as rubbing.

5.1 Turbine 1 Health Analysis

Two problems have been identified in the Turbine 1 data; a sensor fault and a suspected

rotor rubbing fault.
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Figure 5.3: Sensor fault on the Y-Axis of Turbine 1. a) The long-term RMS vibration, b)
vibration signal just before a sensor fault, c) vibration signal during a sensor fault, and d)
vibration just after a sensor fault.

5.1.1 Sensor Fault

A clear sensor or data measurement fault is visible in the y-axis vibration sensor of Tur-

bine 1. Figure 5.3a illustrates the RMS of the vibration with indicated sensor faults, and

an expanded view of one sensor faults. Figure 5.3b through 5.3d indicate the recorded vi-

bration data before, during, and after the indicated sensor fault respectively. It is clear that

the sensor fault data, Figure 5.3c, is measuring the vibration incorrectly despite the x-axis

vibration indicating a regular vibration signal. This fault is clearly present over the entire

duration of the data, from May 1st 2003 through August 28 2006. The cause of the fault

could be a loose wiring connection, internal proximity failure, or something like a data

conversion failure. In general, the fault seems to be a occasional but can result in missing

poor vibration behaviour of the machine.
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5.1.2 Rotor-Stator Rubbing

Analysis of the vibration data by the fault detection methods, Figure 5.4, indicates a time

region of particularly high fault level. All methods except MED indicate faulty behaviour

in this region. The MED algorithm performance, Figure 5.5, does agree there is a rotor-

rubbing fault in the region and the disagreement of the fault indicator is caused by the

method spuriously deconvolving a single impulse.

The fault region starts after a month-long machine downtime on August 10 2005, and lasts

until it is fixed on a short downtime on January 15th 2006. Figure 5.6 indicates the specific

downtimes associated with the introduction and fix of the suspected rotor rubbing fault.

Within the fault region, the processed signals by the various methods are shown in Figure

5.7. All methods indicate a repeating fault once per shaft revolution, which is consistent

with a rotor-to-stator rubbing fault. Figure 5.8 indicates the location of the faults with

respect to the rotor orbit. It is not necessary that the fault correspond to a maximum in dis-

placement and the rubbing damage will likely not match the angle indicated in the figure

because this displacement measurement is not at the source of the impact; it is probable

that the rotor tip is located at a different displacement position and angle at this time due

to bending dynamics.
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5.2 Turbine 2 Health Analysis

Vibration data from January 13th 2003 to August 31 2006 is analysed and it is suspected that

there exists a rotor-stator rubbing event from before January 13th 2003 through April 8th,

2004. Figure 5.9 illustrates the fault indicators by method for the duration of the data. It is

clear that the machine condition is poorer during the suspected rotor-stator rubbing region.

When comparing the RMS vibration of this region, Figure 5.9a, it is clear that the orbit is

imbalanced towards the y-axis. The orbit map, Figure 5.10, indicates the deconvolved fault

indicator positions marked on the rotor orbit. The faults are indicated at the minimum

and maximum of the x-direction displacement, but the actual rotor displacement position

at further down the shaft at the rotor-stator position may differ because of the bending

dynamics of the rotor.

5.3 Conclusion

Analysis of vibration data from Turbine 1 and 2 revealed important fault information.

Turbine 1 has an occasional sensor fault on the y-axis. This could be caused by a loose

connection of the sensor, a problem with the sensor, a problem with the data acquisition,

or a problem with the signal processing.

Both Turbine 1 and 2 underwent a long region of suspected rotor-stator rubbing. Rotor-

stator rubbing causes damage to both the rotor and stator, which can be extremely costly.

Verification of this fault could be performed through periodic visual inspection of rubbing

damage, proximity sensor measurement at the stator, or performing temperature measure-

ments. Better monitoring of vibration data is recommended to prevent such a long-running

rubbing event from occurring in the future. Implementing monthly or weekly data inspec-

tions using the proposed methods addresses this problem and could be implemented in an

automated fashion.
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6
Conclusion and Future Work

6.1 Conclusion

Firstly, in Chapter 3, an adaptive sum-of-sinusoids prediction residual fault detection method

is presented. A novel discrete time derivation of the FE model is presented along with

a new amplitude invariant adaptive identifier. General parameters for a two and three-

component FE model are selected by a LSQ technique. Unlike the AR approach, the FE

technique requires no data fitting and works with changing machine speed. The FE method

is shown to have similar computational cost as a low order AR model. Based on simulation

data, the two-component FE model outperforms the AR model approach in fault detection

at higher fault amplitudes. Based on vibration data from a controlled gear tooth fillet crack

experiment, it is shown that the proposed method outperforms the AR method. When ap-

plied to industrial turbine proximity sensor data, Chapter 5, the FE method agrees with the

other techniques as to the location of the suspected rubbing faults. Clearly the proposed FE

model is well-suited towards the application of gear faults and has significant advantages

over the more accepted AR method.

Secondly, a novel deconvolution technique, MCKD, is proposed in Chapter 4 which ex-

pands upon the MED technique by taking advantage of the periodic nature of rotating

machine faults. Unlike the MED technique which aims to deconvolve a single impulse

from a signal, the proposed MCKD technique aims to deconvolve impulses periodic about

a known period. An iterative approach is proposed to the proposed maximization de-

convolution problem, and the method is shown to be more effective than MED on both
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simulated and experimental data. Because the MCKD method takes in a known period in-

put, concurrent fault detection of different periods is shown to be possible. As a result, this

allows for separate fault indicators for different machine components (eg. bearing health,

rotor health, and gear health) from a single vibration measurement. This allows for more

detailed condition monitoring and identifies the cause of the fault. In Chapter 5, MCKD

is shown to be effective in detecting a suspected rotor rubbing fault in turbine proximity

sensor data, and indicating the position in the rotor orbit of the rubbing. MCKD is a logi-

cal improvement upon MED, which takes advantage of the periodic nature of the faults to

provide better results.

On turbine proximity sensor data, two suspected long-running rotor-to-stator rubbing

faults are identified. All of the investigated traditional and proposed novel methods agree

with each other on these rubbing events. The rubbing location on the rotor orbit is in-

dicated as well as the exact dates for the start and end of the time regions. Improved

monitoring of this data is recommended to reduce rotor and stator damage in the future.

6.2 Future Work

For the proposed FE technique, several directions of further research are possible. Firstly,

investigating a convergence proof for the model would be of great benefit. Alternative

adaptive identifiers could be investigated to achieve better performance. Parameter se-

lection could be investigated through more of an analytic approach, minimum prediction

error, or minimum frequency estimation error. Finally, investigation and validation of the

method’s performance on addition datasets and fault types is important.

Future work on the MCKD method could include iterative convergence investigation,

application on bearing inner/outer race fault detection, and fault detection of different

datasets. To improve upon the iterative deconvolution technique, a non-linear local mini-

mum solver can be applied to guarantee a local minimum solution at the cost of a longer

computation time. The loss of numerical precision when applying higher-order shifts could

be resolved through introducing a scaling operation.

Verification of the Turbine 1 and 2 rotor-rubbing should be performed through regular

damage inspections if indicated by the fault indicators, and following confirmation the

rotor should be rebalanced to reduce the vibration and consequently the rubbing. An

automated indication of the rubbing should be developed to notify the engineers of the

presence of a fault.
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A
External Resources

Minimum Entropy Deconvolution MATLAB implementation:

http://www.mathworks.com/matlabcentral/fileexchange/29151-minimum-entropy-deconvolution-

med-1d-and-2d

M-Shift Maximum Correlated Kurtosis Deconvolution MATLAB implementation:

http://www.mathworks.com/matlabcentral/fileexchange/31326
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