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Abstract

In the field of polymer reactor engineering, accurately modeling the complex kinetics and mass

transfer mechanics of a supported-catalyst reaction is essential for designing efficient and scalable

polymerization processes. However, mesoscale modeling, which involves detailed single-particle

models, is often overlooked due to its mathematical complexity, where the dynamic numerical

solution of the partial differential equations that describe the intraparticle reaction-diffusion phe-

nomena are computationally demanding. The quasi-steady-state approximation (QSSA) presented

in this thesis provides an alternative computationally efficient approach to solving the polymer flow

model, which is an established numerical model for understanding the dynamics of polymer particle

growth. In both homopolymerization and copolymerization setups, the developed QSSA model is

compared with the corresponding dynamic solutions assuming both uniform and nonuniform radial

distribution of active sites in the growing particle. The simulations demonstrate that, after a very

short initial period, the QSSA provides a perfect match with the dynamic solution when active

sites are uniformly distributed within the particle. However, if the dynamic solution accounts for

the local dilution of catalyst fragments in the produced polymer, resulting in a non-uniform dis-

tribution of active sites decreasing with radial position, the QSSA shows promising performance

only at low to medium Thiele moduli. As the Thiele modulus increases, the QSSA solution starts

to deviate more from the dynamic solution due to the pronounced concentration gradient of active

sites. These high Thiele modulus values correspond to high levels of mass transfer limitations,

which are undesirable and often avoided in real processes.
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The work in this thesis has been submitted for publication in two parts. This thesis is an original

work by Mohammed Al-Khayyat, except for the homopolymerization dynamic model with uniform
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Alizadeh and has been presented in his Ph.D. Thesis.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Polyolefins synthesized by supported catalysts have become a dominant class of synthetic polymers

around us. They are commonly produced by polymerizing olefins like ethylene and propylene as

the main monomers, with α-olefins as comonomers. The polyolefin market is expected to grow

more than 2% during 2024-2026. This is attributed to the polyolefins’ excellent mechanical and

physical properties, coupled with their low production cost and versatility. Examples of polyolefins

products include food packaging, automotive parts, textiles, and household goods. Polyethylene

is commercially produced as copolymers of ethylene reacted with varying fractions of α-olefins.

The complexity of this process lies in the many layers of chemical and physical phenomena that

must be considered. From the macroscale of the reactor to the mesoscale of polymer particle and

the microscale of the catalyst site. While many models have been developed for the micro- and

macroscale, the mesoscale described by the single-particle models is often ignored due to its complex

numerical and demanding computational needs. This complexity drastically escalates when these

levels are combined and integrated with Monte Carlo simulations and computational fluid dynamic

models. This thesis aims to present a simple, computationally efficient, accurate alternative to

model the single polymer particles. By applying the quasi-steady-state approximation, we will

drive novel analytical and approximate solutions that solve the Polymer Flow Model problem in

both homopolymerization and copolymerization systems.

1.2 Thesis Outline

This thesis consists of 6 chapters. Chapter 1 presents a brief overview of the aim and objectives of

the thesis. Chapter 2 presents an overview on polyolefin types, common catalyst systems, reactor
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configurations and modelling. The most common single particle models are presented in this chapter

with an overview of their advantages and disadvantages. The chapter also discusses the complexity

of polyolefin reaction modelling and the multiple scales associated with it. Chapter 3 presents

the mathematical modeling of the polymer flow model for homo- and copolymerization reactions

explaining the basis of particle discretization and growth. The chapter also presents and explains

the differences between two common solutions for catalyst dilution phenomena in the particle. In

Chapter 4, the mathematical derivation and modeling of the quasi-steady-state approximation for

homo- and copolymerization reactions are presented. This chapter demonstrates the simplicity of

developing the quasi-steady-state approximation and clarifies the assumptions made to attain this

solution. Chapter 5 showcases the comparison criteria followed when evaluating the model. This

chapter discusses the results and their practical importance. Chapter 6 presents the conclusion and

recommendations for future work.
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Chapter 2

Literature Review

2.1 Polyethylene

Polyolefins are made of monomers connected in a chain. They are derived from a set of simple

olefins. While these monomers can essentially be any kind of olefin, the most popular polyolefins in

the market are polyethylene and polypropylene with the most produced plastic being polyethylene.

It is a polymer that is mostly utilized in packaging, such as bottles, plastic bags, and films. In

2017, the yearly production of polyethylene resins exceeded 100 million tonnes, making about 34

percent of the global plastics market.[1, 2]

A significant breakthrough in the commercial manufacture of polyethylene occurred with the

advent of catalysts that allowed polymerization to occur at low pressures and temperatures. First,

there were chromium trioxide catalysts, which were invented in 1951 at Phillips Petroleum by

Robert Banks and J. Paul Hogan. Karl Ziegler later created a catalytic system based on organoa-

luminium compounds and titanium halides in 1953 that functioned even more subtly than the

Phillips catalyst. Even though the Phillips catalyst is easier to use and more affordable, by the late

1950s, both approaches had become widely used in industry to produce high-density polyethylene

(HDPE). Figure 2.1 shows the Developments of polyolefins catalysts over the years.[3] Polyethy-

lene resins will be the focus of this thesis. Polyethylene (PE) resins are divided into three types:

low-density (LDPE), linear low-density (LLDPE), and high-density (HDPE). As the names imply,

polyethylene resins are classified according to their density range. Low-density polyethylene is

produced in autoclaves or tubular reactors in the presence of oxygen traces under high pressures,

where the presence of oxygen leads to the formation of free radicals.

LDPEs have long-chain branches (LCB) and short-chain branches (SCB) formulated on the

backbone of the polymer. The long chain branches are generated due to backbiting reactions

during chain growth. While the short-chain branches are a result of chain transfer reactions to the
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Figure 2.1: Developments of polyolefins catalysts over the century.[4]

polymer. High-density and linear low-density polyethylene, on the other hand, are formed using

coordination catalysts, which help in producing the polymers under low temperature and pressure

conditions with more control over the density and chain growth mechanism.[3, 4, 5]

Even though the “polyethylene” name suggests that it is only made of ethylene; However,

commercial polyethylene resins are usually produced by copolymerizing ethylene with α-olefins.

The density of the polyethylene is determined by the number of short branches formed on the

backbone (Figure 2.2), as they act like a defect in the polymer that makes it form less crystalline

regions. For example, HDPE’s density is attributed to the low fraction of α-olefins incorporated

into the backbone, and for this reason, HDPE is commonly used for products requiring increased

stiffness and low flexibility. LLDPE on the other hand has a higher comonomer incorporation,

making them ideal for flexible packaging applications. The heterogeneous Ziegler-Natta catalysts

on the other hand are insoluble in the reactor medium and they usually have more than one type

of active site, which results in broad, nonuniform molecular weight distribution.
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Figure 2.2: Comparison of LDPE, LLDPE, and HDPE.[6]

2.2 Polymerization Catalysis

The discovery of coordination catalysts by Karl Ziegler and Giuseppe Natta in the 1950s sparked

the growth of commercial polyethylene. There are three major groups of catalysis: Ziegler-Natta,

Phillips, and metallocene catalysts. Ziegler-Natta catalysts, which include titanium and vanadium

from groups IV-VIII, work with metal alkyls from groups I-III as co-catalysts. The active sites

for polymerization are generated through alkylation and reduction. These can be subdivided into

homogeneous and heterogeneous groups. The homogeneous is usually associated with vanadium-

based catalysts which are soluble in the reactor. With their single type of active site, they make

polyolefins with uniform microstructures.[4, 7] The heterogeneous Ziegler-Natta catalysts on the

other hand are insoluble in the reactor medium and they usually have more than one type of

active site, which results in broad, nonuniform molecular weight distribution. Phillips catalysts

are typically made of chromium oxide (CrO3) or vanadium oxide (VO2) on a silica base and are

activated by ethylene during polymerization, without needing a co-catalyst. Phillips catalysts have

generally low tendency for α-olefins incorporation, and for this reason, they are not suitable for

LLDPE resins. Metallocene catalysts are composed of transition metal atoms such as Zr, Ti, or Hf,

positioned between two cyclopentadienyl rings, which can be connected by various bridges. These

catalysts are activated by methylaluminoxane (MAO). The structure and type of ligands, including

their shape, geometry, and chemical nature, influence the catalyst’s behavior, such as activity and

selectivity. Metallocene catalysts can be customized by altering the chemical substituents and

bridging groups, making them versatile for different polymerization applications.[4, 8]
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2.3 Polymerization Processes

Polyethylene (and other polyolefins) can be produced in a wide range of processes using all the dif-

ferent types of catalysts. These processes are slurry, solution, and gas-phase polymerization. The

slurry-based (heterogeneous) polymerization process utilizes inert diluents to suspend the poly-

mer particles. These diluents are commonly hydrocarbons, and they are used to offer better heat

transfer capabilities. However, removing and recycling the diluent back to the polymerization re-

actors adds more operational costs to the reactor, and can sometimes add potential hazard risk

to the environment. Autoclaves and loop reactors are often used for slurry polymerization, oper-

ating under mild conditions.[9, 10, 11, 12, 13] The solution-based polymerization (homogeneous)

utilizes homogenous metallocenes, where all the components of the reaction are soluble in the reac-

tor medium. Solution polymerization operates at a very high temperature and pressure to ensure

that the polymer chains remain dissolved in the solvent. These conditions offer high polymerization

rates and shorter residence times. Autoclaves, tubular, and loop reactors are often used for solution

polymerization.[14, 15] Finally, the gas-phase polymerization reactions utilize heterogeneous catal-

ysis, where the catalyst particles are suspended by the upward flow of gases or mechanical agitation

(latter only used for polypropylene). The gas-phase polymerization (heterogeneous) method was

the latest to be created among the three main groups. They provide a cost-effective and energy-

efficient alternative to liquid-phase polymerization. The gas phase of the monomer allows for facile

separation of the polymer and unreacted monomer.[16, 17, 12] Typically, the gas-phase polymeriza-

tion reactors are used with heterogeneous Ziegler-Natta catalysts where the polymerization occurs

at the Ti active sites distributed throughout the porous support. In this thesis, we will only focus

on the heterogeneous polymerization of supported catalysts in the gas-phase.

2.4 Fragmentation and Particle Growth

When the catalyst is injected into the reactor, the monomers, and other components that are

present in the reactor start diffusing from the reactor’s continuous phase into the boundary layer

around the catalyst and then into the catalyst pores. As soon as the monomers reach the active

sites, the polymerization reaction starts, and the generated polymer layers eventually accumulate

inside the pores of the catalysts. The accumulated polymer then builds up mechanical stress on the

pores and the support, and when the stress exceeds the threshold, the catalyst undergoes a process

referred to as “fragmentation”.[18, 19, 20, 21] Fragmentation is a process that happens in a short

period at the very start of the reaction, where the catalyst fragments very quickly into a series

of disconnected substructures that get held together by a polymer phase (Figure 2.3) generated

during the reaction. This very rapid process plays a significant role in how the reaction is carried

out during particle growth. As the monomer in the bulk phase must now diffuse through the pores
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Figure 2.3: Catalyst fragmentation and particle growth.[25]

of the particle and get sorbed into the polymer phase before reaching the active sites. As a result,

the new polymer generated on the active sites covers the old polymer layers, causing the particle

to expand in size. This process continues as the particles keep growing until it is removed from the

reactor.[22, 23, 20, 24] A critical aspect of polymerization is that both the concentration of active

sites and monomers influences the polymerization rate. Therefore, the fragmentation process is

a favorable phenomenon that maximizes the number of monomers diffusing to the active sites.

Finally, it is commonly assumed that the monomers can only diffuse through the amorphous phase

but not the crystalline phase of generated polymer.[3, 25]

2.5 Single Particle Modeling

Particle growth is a complex process involving various chemical and physical phenomena that occur

simultaneously. These processes do not only influence the particle morphology but also affect the

microstructure of the polymer. Several single-particle models have been used. The most commonly

employed models include the polymer flow model and the multigrain model, both of which are

known for their practicality and accuracy.[23, 26, 27, 22]
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Figure 2.4: Schematic of the multigrain model.[25]

2.5.1 Multigrain Model

The multigrain model is considered to be one of the first efforts to simulate particle growth and

its dynamics. The multigrain model divides the polymer particle into two levels: macrograin and

microparticles; it models the whole particle as a sphere containing numerous uniformly distributed

microparticles. Each of these spherical microparticles consists of the polymer phase that has devel-

oped around the catalyst fragments. As displayed in Figure 2.4, the multigrain model mimics the

behavior of monomers diffusing through the pores by the consideration of the macrograin. While

the micrograins represent the polymer phase the absorbed monomers have to diffuse into, so they

reach the active sites. While the multigrain model can be usefully adopted in many situations, its

major limitation is that it assumes the polymer particle structure to mimic the structure of the

catalyst particle. Which is not always the case for every supported polymerization reaction. Also,

the multigrain model frequently results in predictions that are close to simpler models that only

consider diffusion processes at the macroscale, like the polymer flow model.[28, 29, 30]
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2.5.2 Polymer Flow Model

The main assumption of the polymer flow model (PFM) is that resistances to heat and mass

transport at the level of the micrograins are insignificant. The polymer flow model considers

the expanding polymer particle, consisting of catalyst fragments, pores, and polymer chains, as a

pseudo-homogeneous spherical medium. It measures intraparticle mass transfer using an effective

diffusion coefficient that relies on the monomer diffusivity in the polymer phase and in the pores.

The polymer flow model is presently more common for olefin polymerization modeling research

because of its simplicity and faster computation than the multigrain model. Several variations

of the PFM were developed over the years, the most notable is the random pore model, which

incorporates the randomness and complexity of actual porous materials.[31]

2.6 Multi-Scale Reactor Modeling

Polymerization reactors contain multiscale processes starting from the catalyst site microscale, the

polymer particle mesoscale, and the polymerization reactor macroscale. In polyolefin reactors,

several chemical and physical processes that take place at these scales are implicated and each

affects the polymerization kinetics, polymer microstructure, and characteristics. The mesoscale,

described with different single-particle models as explained earlier, is often ignored due to its

mathematical complexity.[32] This is because the dynamic nature of the numerical solution for

partial differential equations is computationally demanding. The single particle model describes

the intraparticle reaction-diffusion problem with moving-boundary conditions, which is the particle

growing with time. The existing models such as the polymer flow model and multigrain model solve

the problem by discretizing the differential equations into grids. Because the numerical solution

is an approximation to the exact solution, the particle must be discretized to many grids such

that the approximate error is reduced. The high number of grids (along with other factors that

will be discussed later) causes the simulations to take a very long time. Single-particle modeling

becomes particularly challenging when we want to describe a large number of polymer particles.

For example, when modeling a significant sample of catalyst particles being fed to an industrial

reactor, each catalyst particle needs to be simulated individually, which significantly increases the

computation time. This mathematical complexity is further amplified when the reactor is used for

olefin copolymerization containing both reactive species of monomers as well as comonomers.
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Chapter 3

Mathematical Modeling of the

Polymer Flow Model for Homo- and

Copolymerization Reactions

The objective of this thesis is to develop and compare the analytical solutions of the PFM based

on the quasi-steady-state approximation with the numerical solutions. While there are several

references for the mathematical development of the PFM solution, most of the available models

would complicate the comparison process as they consider non-isothermal particle with modeling

variations on diffusion, porosity, number of sites, and other factors. For this reason, the models

developed in this thesis assume that the growing polymer particle is isothermal, with constant

porosity, and constant monomer and comonomer effective diffusivity. The presented Polymer Flow

Model in this thesis is adequate for ease of adjustment, with few modifications, it can consider

different active sites dilution behavior, with the ability to add multiple components and multiple site

types (by modeling superpositions of n single-site catalysts). The list of assumptions is summarized

as follows:

• The growing polymer particle is assumed to be isothermal.

• The porosity of the polymer particle is constant.

• The monomer and comonomer effective diffusivities are constant.

• The model assumes that the concentration at the boundary is at equilibrium, equal to the

surface concentration, thereby neglecting any convective transport effects.
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3.1 Model Development for Homopolymerization

3.1.1 Polymerization Kinetics

The molar balance for the living polymer chains, [Y0], is given by,

d[Y0]

dt
= −kd[Y0] (3.1)

subject to the following initial condition,

[Y0](∀r,t=0) = [C∗
0 ] (3.2)

where t is time, r is the radial position in the polymer particle, [C∗
0 ] is the concentration of active

sites at time zero, and kd is the deactivation rate constant.

Assuming that the catalyst activation is instantaneous, the concentration of living chains as a

function of time are given as a function of active sites concentration,

[Y0] = [C∗
0 ]e

−kdt (3.3)

this does not affect the conclusions derived from our comparison, since it only affects how fast the

polymerization rate reaches its maximum value.

Note that the concentration of active sites and living polymer chains are identical, as we are

assuming that each live polymer chain is coupled to an active site and that the rate of initiation of

an active site (following a chain transfer process) is extremely quick.

The rate of homopolymerization is given by,

Rp = kp[M1][Y0] = kp[M1][C
∗
0 ]e

−kdt (3.4)

where [M1] is the concentration of monomer and kp is the propagation rate constant.

3.1.2 Mass Balance

The mass balance equation for the reaction-diffusion problem at spherical coordinates describes the

temporal and radial gradient in monomer concentration in the growing particle by,

∂[M1]

∂t
=

1

r2
∂

∂r
(De,1r

2∂[M1]

∂r
)−Rv (3.5)
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the following boundary and initial conditions are true when assuming the boundary layer to be free

of external mass transfer resistances:

[M1](r=R,∀t) = [M1]s (3.6)

∂[M1]

∂r

⃓⃓⃓⃓
(r=0,∀r)

= 0 (3.7)

[M1](∀r,t=0) = 0 (3.8)

where [M1]s is the monomer concentration at the surface of the particle, Rv is the volumetric rate

of polymerization for the total particle volume ( mol
m3total.sec

), De,1 is the effective diffusion coefficient

for the monomer, and R is the time-dependent radius of the growing polymer particle.

In the coming section, we will look at the simplest solution for the polymer flow model, which we

will call the dynamic solution (DS). The dynamic solution assumes that the concentration of active

sites is a function of time rather than radial position, meaning that at a specific polymerization

time, the concentration of active sites is constant throughout the polymer particle. This method

is important for the study, because the proposed quasi-steady-state model also assumes that the

catalyst concentration is independent of the radial position in the particle. The other version of the

polymer flow model is referred to as the rigorous solution (RS). The partial differential equation is

solved rigorously by accounting for the catalyst concentration radial profile caused by the catalysts’

dispersion in the polymer that is produced. The catalyst fragments become more diluted in the

generated polyolefin from the center to the surface of the polymer particle as a result of an increase

in monomer concentration, which raises the local polymerization rate as one moves from the particle

center to the surface. As a result, the particle’s active site concentration is evolving both radially

and temporally, with the highest concentration at the center and the lowest at the surface. This

solution is more realistic than the dynamic solution and it is also more computationally demanding.

3.2 Numerical Method for The Rigorous and The Dynamic Solu-

tion - Homopolymerization

3.2.1 Particle Grid

A schematic representation of the polymer flow model is shown in Figure 3.1. The single particle

is discretized into concentric spherical shells. The monomer concentrations at the boundaries of

each shell are calculated using 3-point Lagrange interpolation polynomial. The average monomer
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Figure 3.1: Particle discretization of polymer flow model.

concentration is then used to calculate the growing polymer properties and parameters. The poly-

merization sites, on the other hand, are activated at time zero in all shells, and as the reaction

proceeds, these sites start to deactivate and dilute in the growing particle. The subscript i repre-

sents the radial location (the grid number), while superscript j indicates the time step. k represents

the component type, where k = 1 for the monomer and k = 2 for the comonomer. The number of

grids used in this thesis is 50. This value was determined by incrementally increasing the number

of grids until the concentration profile showed no significant change.

3.2.2 Numerical Discretization

First, the monomer radial profile is calculated using a 3-point Lagrange interpolating polynomial,

[M1](r) =
3∑︂

i=1

li (r)M1(ri) (3.9)
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li (r) =
p3(r)

(r − ri)p3(ri)
(3.10)

p3(r) = (r − ri−1)(r − ri)(r − ri+1) (3.11)

the first and second derivative of the monomer concentration are written as,

d[M1]

dr
(r) =

(r − ri) + (r − ri+1)

(ri−1 − ri)(ri−1 − ri+1)
[M1]i−1

+
(r − ri+1) + (r − ri−1)

(ri − ri−1)(ri − ri+1)
[M1]i

+
(r − ri−1) + (r − ri)

(ri+1 − ri−1)(ri+1 − ri)
[M1]i+1

(3.12)

d2[M1]

dr2
(r) =

2

(ri−1 − ri)(ri−1 − ri+1)
[M1]i−1

+
2

(ri − ri−1)(ri − ri+1)
[M1]i

+
2

(ri+1 − ri−1)(ri+1 − ri)
[M1]i+1

(3.13)

substituting equations (3.13) and (3.13) in equation (3.5) gives,

d[M1]

dt
(ri) = 2De,1 (Ai[M1]i−1 +Bi[M1]i + Ci[M1]i+1)−Rvi (3.14)

with,

Ai =
2ri − ri+1

ri(ri−1 − ri)(ri−1 − ri+1)
(3.15)

Bi =
3ri − ri+1 − ri−1

ri(ri − ri−1)(ri − ri+1)
(3.16)

Ci =
2ri − ri−1

ri(ri+1 − ri−1)(ri+1 − ri)
(3.17)

where i = 1, 2, 3, . . ., N − 2 . N is the total grid points (i.e., number of shells + 1).

Using forward Euler method,

[M1]
j+1
i − [M1]

j
i

∆t
= 2De,1

(︂
Ai[M1]

j
i−1 +Bi[M1]

j
i + Ci[M1]

j
i+1

)︂
−Rj

vi (3.18)
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as equation (3.14) is undefined when r = 0 (i = 0). We need to apply L’Hospital rule to the

derivative term,
∂[M1]

∂t
= 3De,1

∂2[M1]

∂r2
−Rvi (3.19)

using Taylor series around the origin and substituting the boundary conditions,

∂2[M1]

∂r2
(r0) = 2

[M1]1 − [M1]2
(r1 − r0)2

(3.20)

the discretized monomer profile at the center of the particle is,

d[M1]

dt
(r0) =

−6De,1

(r1 − r0)2
([M1]0 − [M1]1)−Rv0 (3.21)

using the forward Euler method,

[M1]
j+1
0 − [M1]

j
0

∆t
=

−6De,1

(r1 − r0)2

(︂
[M1]

j
0 − [M1]

j
1

)︂
−Rj

v0 (3.22)

finally, the polymerization rate of reaction ( mol
m3total.sec

) at shell i is given by,

Rj
pi = kp[M1]

j
i [Y0]

j
i (3.23)

the concentration of monomer inside the shell is the average of two adjacent grids,

[M1]
j

i =
[M1]

j
i + [M1]

j
i+1

2
(3.24)

3.2.3 Particle Growth Calculation

The mass of polymer produced inside each shell is needed to find the volume of polymer generated,

the mass at shell i is given by,

mj+1
i = MW,1V

j
i ∆t kp[M1]

j

i [Y ]ji (3.25)

where V j
i is the volume of shell i, and MW,1 is the monomer molecular weight.

At the start of the simulation, the initial catalyst volume Vc is discretized into equal shell

volumes. This method is more stable numerically compared to the usual convention of discretizing

the particle into equally spaced shells (equal ∆r). The initial volume of each shell is equal to,

V 0
0,1,2,...,N =

Vc

N
(3.26)
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the initial radius positions can be found using:

r0i =

(︃
3

4π
V 0
i + (r0i−1)

3

)︃1/3

(3.27)

where r00 = rj0 = rj+1
0 = rj+2

0 = . . . = 0.

After calculating the mass generated in each shell using equation 3.25, the new volume of each

shell can be found with:

V j+1
i =

mj+1
i

(1− ϵ)ρp1000
+ V j

i (3.28)

where ρp is the density of the polymer, and ϵ is the porosity of the polymer particle. Finally, the

radius of each grid can be calculated for the new volume update:

rj+1
i =

(︃
3

4π
V j+1
i + (rj+1

i−1 )
3

)︃1/3

(3.29)

The total mass of polymer generated at time step j+1 can be calculated by adding the masses

generated inside all shells:

mj+1
tot =

N∑︂
i=1

mj+1
i (3.30)

The new radial locations and volumes are then used to calculate the monomer profiles again.

These steps are repeated until the end of the simulation.

3.2.4 Calculation of The Active Sites: The Dynamic Solution

The dynamic solution assumes that the active sites are not a function of the radial position, meaning

the active sites are deactivating and diluting at each time step uniformly. The simplification can

be written as,

[Y0] = [C∗
0 ]e

−kdt

(︃
1− ϵ

α3

)︃
(3.31)

upon discretization,

[Y0]
j+1 = [C∗

0 ] e
−kdt

(︃
1− ϵ

(αj)3

)︃
(3.32)

where α is the growth factor, calculated by dividing the radius of the particle over the initial radius

of the catalyst, R0,

αj =
Rj

R0
=

rjN
R0

(3.33)
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note that the active sites [Y0]
j+1 are not changing radially, combining with the rate of reaction

gives,

Rj
vi = Rj

pi

(︃
1− ϵ

(αj)3

)︃
= kp[M1]

j
i [C

∗
0 ] e

−kdt

(︃
1− ϵ

(αj)3

)︃
(3.34)

3.2.5 Calculation of The Active Sites: The Rigorous Solution

The active sites in the rigorous solution are a function of the radial position and time. They are

diluted radially while deactivating, which is more realistic to how the particle behaves. The active

sites concentration is calculated as the following,

[Y0]
j
i = [C∗

0 ] e
−kdt · V

0
i

V j
i

(3.35)

combining with the rate of reaction gives:

Rj
vi = Rj

pi (1− ϵ) = kp [M1]
j
i [Y0]

j
i (1− ϵ) = kp [M1]

j
i [C

∗
0 ] e

−kdt · V
0
i

V j
i

(1− ϵ) (3.36)

The calculation of active sites concentration is embedded in the particle growth steps. Depend-

ing on the approach (dynamic or rigorous), the active sites are updated after calculating the new

grid volumes. The resulting new active sites concentration is then substituted in equation (3.22).

Equation (3.34) and (3.36) show that the volumetric rate of reaction Rj
vi (

mol
m3total·sec) is calculated

by multiplying the polymerization rate Rj
pi (

mol
m3cat·sec) with the ratio between catalyst volume and

total particle volume.

3.3 Numerical Stability

Since the monomer concentration in the discretized solution of both the dynamic and rigorous

methods must remain positive, the maximum allowed time step, ∆t, must be determined before

every step to avoid numerical instabilities. The formula for calculating the maximum allowed time

step depends on how one discretizes the growing particle. Generally, the maximum allowed time

step for shell i, ∆ti, is directly proportional to the shell thickness and inversely proportional to the

effective diffusion coefficient, propagation rate constant, and active sites concentration. The time

step for shell i can be found by solving the discretized terms for positive ∆ti with the following

steps:

1. The rate of reaction, equation (3.34), is substituted into the discretized solution, equation
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(3.37),

[M1]
j+1
i − [M1]

j
i

∆t
= 2De,1

(︂
Ai [M1]

j
i−1 +Bi [M1]

j
i + Ci [M1]

j
i+1

)︂
− kp [M1]

j
i [Y0]

j
i (3.37)

2. separating variables,

[M1]
j+1
i = [M1]

j
i

(︂
2De,1Bi∆t− kp∆t [Y0]

j
i + 1

)︂
+ [M1]

j
i−1 (2De,1Ai∆t) + [M1]

j
i+1 (2De,1Ci∆t)

(3.38)

3. for [M1]
j+1
i to be positive, the following condition applies,(︂

2De,1Bi∆t− kp∆t [Y0]
j
i + 1

)︂
≥ 0 (3.39)

∆t ≤ 1

2De,1Bi − kp [Y0]
j
i

(3.40)

4. for the center of the particle, the rate of reaction, equation (3.34), is substituted into the

discretized solution, equation (3.22),

[M1]
j+1
0 − [M1]

j
0

∆t
=

−6De,1

(r1 − r0)
2

(︂
[M1]

j
0 − [M1]

j
1

)︂
− kp [M1]

j
0 [Y0]

j
0 (3.41)

5. separating variables,

[M1]
j+1
0 = [M1]

j
0

(︃
−6De,1

(r1 − r0)
2∆t− kp [Y0]

j
0∆t+ 1

)︃
+ [M1]

j
1

(︃
6De,1

(r1 − r0)
2∆t

)︃
(3.42)

6. for [M1]
j+1
0 to be positive, the following condition applies,(︃

−6De,1

(r1 − r0)
2∆t− kp∆t [Y0]

j
0 + 1

)︃
≥ 0 (3.43)

∆t ≤ 1
−6De,1

(r1−r0)
2 − kp [Y0]

j
0

(3.44)

equations (3.40) and (3.44) are used to set the value of ∆t at each time step during simulation.

Where ∆t is:

∆tjmax,i =
1

2De,1Bi − kp [Y0]
j
i

(3.45)
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∆tjmax,center =
1

−6De,1

(r1−r0)
2 − kp [Y0]

j
0

(3.46)

∆tji = min
(︂
∆tjmax,i,∆tjmax,center

)︂
(3.47)

3.4 Model Development for Copolymerization

The polymer flow model can be adjusted to account for copolymerization by defining a kinetic model

and calculating the diffusion of each component independently. The most commonly used kinetic

models are the Bernoullian and terminal model. The Bernoullian model has the simplest mechanism

which does not consider steric and electronic effects on the propagation step by the active site; it

has two kinetic propagation constants and assumes that the chain end does not affect the relative

polymerization rate of both monomers. The terminal model involves four possibilities of chain

propagation; it assumes that the propagating monomers at the end of the polymer chain influence

the polymerization rate. This model is more commonly used when modeling olefin copolymerization

as it provides accuracy over the simple Bernoullian model. The terminal model reaction mechanism

is summarized in table 3.1.

Model type Propagation step Rate constant

Terminal P 1
r +M1 → P 1

r+1 kp,11
P 1
r +M2 → P 2

r+1 kp,12
P 2
r +M1 → P 1

r+1 kp,21
P 2
r +M2 → P 2

r+1 kp,22

Table 3.1: Copolymerization mechanism for ethylene/α-olefin using the terminal model.

3.4.1 Polymerization Kinetics

The copolymerization rate is defined by,

Rp,1 = (kp,11∅1 + kp,21∅2) [M1][Y0] (3.48)
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Rp,2 = (kp,12∅1 + kp,22∅2) [M2][Y0] (3.49)

where [M2] is the concentration of comonomer, kp,11, kp,21, kp,12, and kp,22 are the propagation

constants for each respective mechanism.

The molar fraction of the living chain terminated by monomer 1, ∅1, is given by:

∅1 =
kp,21f1

kp,21f1 + kp,12f2
(3.50)

with,

∅2 = 1−∅1 (3.51)

the molar fraction of monomer and comonomer, f1 and f2, respectively, is given by,

f1 =
[M1]

[M1] + [M2]
(3.52)

f2 = 1− f1 (3.53)

finally, the total concentration is given by:

[MT ] = [M1] + [M2] (3.54)

3.4.2 Mass Balance

The monomer and comonomer concentrations are described by the mass balance equations for the

reaction-diffusion problem in spherical coordinates:

∂[M1]

∂t
=

1

r2
∂

∂r

(︃
De,1r

2∂[M1]

∂r

)︃
−Rv,1 (3.55)

∂[M2]

∂t
=

1

r2
∂

∂r

(︃
De,2r

2∂[M2]

∂r

)︃
−Rv,2 (3.56)

with the following boundary and initial conditions:

[M1](r=R,∀t) = [M1]s (3.57)
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[M2](r=R,∀t) = [M2]s (3.58)

∂ [M1]

∂r (r=0,∀t)
=

∂ [M2]

∂r (r=0,∀t)
= 0 (3.59)

[M1](∀r,t=0) = [M2](∀r,t=0) = 0 (3.60)

where [M2]s is the comonomer concentration at the surface of the particle, and De,1 and De,2 are

the effective diffusion coefficients of each component, respectively. Rv,1 and Rv,2 are the respective

volumetric rates of reactions considering the dilution of active sites in the generated semi-crystalline

polyolefin. The modeling of active sites [Y0] remains unchanged.

3.5 Numerical Method for The Rigorous and The Dynamic Solu-

tion – Copolymerization

3.5.1 Numerical Discretization

The discretization applied to homopolymerization is also applied for the copolymerization mass

transfer equations and kinetics. Using the forward Euler method, the discretized equations are:

[M1]
j+1
i − [M1]

j
i

∆t
= 2De,1

[︂
Ai [M1]

j
i−1 +Bi [M1]

j
i + Ci [M1]

j
i+1

]︂
− (Rv,1)

j
i (3.61)

[M2]
j+1
i − [M2]

j
i

∆t
= 2De,2

[︂
Ai [M2]

j
i−1 +Bi [M2]

j
i + Ci [M2]

j
i+1

]︂
− (Rv,2)

j
i (3.62)

The discretized monomer profile at the center of the particle is:

[M1]
j+1
0 − [M1]

j
0

∆t
=

−6De,1

(r1 − r0)
2

[︂
[M1]

j
0 − [M1]

j
1

]︂
− (Rv,1)

j
0 (3.63)

[M2]
j+1
0 − [M2]

j
0

∆t
=

−6De,2

(r1 − r0)
2

[︂
[M2]

j
0 − [M2]

j
1

]︂
− (Rv,2)

j
0 (3.64)

The rate of polymerization is given by:
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(Rp,1)
j
i =

(︂
kp,11∅j

1,i + kp,21∅j
2,i

)︂
[M1]

j
i [Y0]

j
i (3.65)

(Rp,2)
j
i =

(︂
kp,12∅j

1,i + kp,22∅j
2,i

)︂
[M2]

j
i [Y0]

j
i (3.66)

As explained in the homopolymerization section, equation (3.34) for the dynamic solution or

equation (3.36) for the rigorous solution are used to convert the polymerization rate of reaction

Rp,1 and Rp,2 to the volumetric rate of reaction Rv,1 and Rv,2.

Finally, the average concentrations inside each shell are given by,

[M1]
j

i =
[M1]

j
i + [M1]

j
i+1

2
(3.67)

[M2]
j

i =
[M2]

j
i + [M2]

j
i+1

2
(3.68)

3.5.2 Particle Growth Calculation

The combined mass of polymer produced at shell i is given by,

mj+1
i = V j

i ∆t
(︂
MW,1(Rp,1)

j
i +MW,2(Rp,2)

j
i

)︂
(3.69)

where MW,2 is the molecular weight of comonomer.

The total mass of polymer generated at time step j can be calculated by adding the masses

generated inside all shells:

mj+1
tot =

N∑︂
i=1

mj+1
i (3.70)

The time step for shell i can be found by solving the discretized terms for positive ∆ti.

∆tjmax,i,1 =
1(︂

2De,1Bi − (kp,11∅j
1,i + kp,21∅j

2,i) [Y0]
j
i

)︂ (3.71)

∆tjmax,center,1 =
1

−6De,1

(r1−r0)
2 − (kp,11∅j

1,0 + kp,21∅j
2,0) [Y0]

j
0

(3.72)
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∆tjmax,i,2 =
1(︂

2De,2Bi − (kp,12∅j
1,i + kp,22∅j

2,i) [Y0]
j
i

)︂ (3.73)

∆tjmax,center,2 =
1

−6De,2

(r1−r0)
2 − (kp,12∅j

1,0 + kp,22∅j
2,0) [Y0]

j
0

(3.74)

Finally, ∆t each step is selected with:

∆tj = Minimum(∆tjmax,1,∆tjmax,2,∆tjmax,3,∆tjmax,4) (3.75)

The rigorous solution code is validated by comparing it with the following references [33, 17].
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Chapter 4

Mathematical Derivation and

Modeling of The Quasi-Steady-State

Approximation for Homo- and

Copolymerization Reactions

The quasi-steady-state approximation (QSSA) can effectively be applied when the system conditions

are changing slowly enough that the relations among the various parameters can be solved as if

the system were at the steady state, despite ongoing changes. In the reaction engineering realm,

the quasi-steady-state assumption is applied particularly to complex reaction networks involving

multiple chemical species and intermediate steps. The application of the quasi-steady-state assumes

that the concentrations of certain reactive intermediates in a reaction pathway change very rapidly

compared to the overall rate of the reaction. The analysis of complex reaction mechanisms can

be carried out by effectively ”freezing” the concentrations of these reactive intermediates at their

quasi-steady-state values. This allows for the derivation of simplified rate expressions and facilitates

the study of the overall reaction kinetics without having to explicitly track the dynamics of every

intermediate species. In our case, the quasi-steady-state is a simplification that is valid when the

timescale for both polymerization and diffusion rates is smaller than the timescale for particle

growth. In other words, the monomer concentration profile reaches steady state before the polymer

particle grows considerably. When the QSSA is applied to the particle growth problem, we are

assuming that each time step (before the volume is updated) is fast enough that it remains at the

steady state. The results obtained from the steady-state step is used to update the next particle

volume. The main advantage of QSSA is that it offers faster simulation of particle growth compared

to the numerical methods, as it is only an integration of a series of analytical solutions over time.
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4.1 Model Development - Homopolymerization

In the quasi-steady-state approximation, the monomer accumulation term is set to zero and the

partial differential equation is reduced to an ordinary differential equation:

0 =
1

r2
d

dr

(︃
r2De,1

d[M1]

dr

)︃
− kp[Y0] [M1] (4.1)

The analytical solution for the above equation can be obtained with the following steps:

1. Differentiate equation (4.1) using the product rule:

De,1

r2

(︃
r2

d2[M1]

dr2
+ 2r

d[M1]

dr

)︃
= kp[Y0][M1] (4.2)

2. Rearranging:
d2[M1]

dr2
+

2

r

d[M1]

dr
=

kp[Y0]

De,1
[M1] (4.3)

Equation (4.3) is a non-homogeneous 2nd order ordinary differential equation. Variable trans-

formation is applied to solve the ODE.

[M1] =
F1

r
(4.4)

d[M1]

dr
=

1

r

dF1

dr
− F1

r2
(4.5)

3. Substituting into equation (4.1):

0 =
1

r2
d

dr

(︃
r2De,1

(︃
1

r

dF1

dr
− F1

r2

)︃)︃
− kp[Y0]

F1

r
(4.6)

4. Differentiating and arranging:
d2F1

dr2
− kp

De,1
[Y0]F1 = 0 (4.7)

5. Equation (4.7) is a homogeneous linear 2nd order ODE. The general solution is given by:

F1 = C1e
r
√
β + C2e

−r
√
β (4.8)
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6. Since F = r[M1], then:

[M1] =
C1e

r
√
β

r
+

C2e
−r

√
β

r
(4.9)

7. Apply the boundary and initial conditions given in equations (3.6), (3.7), and (3.8) to find

C1 and C2 constants. The analytical solution is obtained as follows:

[M1] = [M1]s
R

r

sinh r
√
β

sinhR
√
β

(4.10)

with:

β =
kp[Y0]

De,1
=

kp[C
∗
0 ]e

−kdt
(︁
1−ϵ
α3

)︁
De,1

(4.11)

The mass of polymer produced can be calculated analytically by integrating the rate of reaction:

mtot =
Mw,1kp[Y0]

α3

(︃∫︂ R

0
[M1]dV

)︃
∆t (4.12)

The total mass of polymer is calculated using the volume of the pure polymer by excluding the

porosity term (1− ϵ).

Replacing [M1] with equation (4.10) and using the volume of a sphere:

mtot =
Mw,1kp[Y0]

α3

(︃∫︂ R

0
[M1]s

R

r

sinh r
√
β

sinhR
√
β
d

(︃
4

3
πr3
)︃)︃

∆t (4.13)

integrating,

mtot =
4πMw,1kp[Y0]

α3
[M1]s

R(R
√
β coth(R

√
β)− 1)

β
∆t (4.14)

and the volume of the particle is found with:

V t+∆t
tot = V t

tot +
mtot

(1− ϵ)ρp
(4.15)

Finally, the radius of the resulting particle is calculated,

R =

(︃
3

4π
V t+∆t
tot

)︃1/3

(4.16)
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4.2 Model Development – Copolymerization

4.2.1 Quasi-Steady-State, Variable Monomer Fraction Solution

When describing the copolymerization with the terminal model, the following ordinary differential

equations are obtained,

0 =
1

r2
∂

∂r

(︃
r2

∂

∂r
(De,1[M1])

)︃
− (kp,11∅1 + kp,21(1−∅1))[M1][Y0] (4.17)

0 =
1

r2
∂

∂r

(︃
r2

∂

∂r
(De,2[M2])

)︃
− (kp,12∅1 + kp,22(1−∅1))[M2][Y0] (4.18)

substituting ∅1 with equation (3.50) and (3.52) gives,

1

r2
∂

∂r

(︃
r2

∂

∂r
(De,1[M1])

)︃
=

(kp,11kp,21[M1] + kp,21kp,12[M2])

kp,21[M1] + kp,12[M2]
[M1][Y0] (4.19)

1

r2
∂

∂r

(︃
r2

∂

∂r
(De,2[M2])

)︃
=

(kp,12kp,21[M1] + kp,22kp,12[M2])

kp,21[M1] + kp,12[M2]
[M2][Y0] (4.20)

obtaining an analytical solution for this system is not possible; there are no solutions that satisfy

the system as long as it contains nonlinear terms. We can modify the above system to obtain a

linear combination that has an approximate solution,

1

r2
∂

∂r

(︃
r2

∂

∂r
(De,1[M1])

)︃
=

(
kp,11kp,21[M1]

kp,21[M1]
+

kp,21kp,12[M2]
kp,21[M1]

)

1 +
kp,12[M2]
kp,21[M1]

[M1][Y0] (4.21)

1

r2
∂

∂r

(︃
r2

∂

∂r
(De,2[M2])

)︃
=

kp,12(
kp,21[M1]
kp,21[M1]

+
kp,22[M2]
kp,21[M1]

)

1 +
kp,12[M2]
kp,21[M1]

[M2][Y0] (4.22)

when the active sites are low in reactivity towards α-olefin, kp,21 will be much higher than both

kp,12 and kp,22. In this situation, the above system can be reduced to:

1

r2
∂

∂r

(︃
r2

∂

∂r
(De,1[M1])

)︃
= (kp,11[M1] + kp,12[M2])[Y0] (4.23)

1

r2
∂

∂r

(︃
r2

∂

∂r
(De,2[M2])

)︃
= kp,12[M2][Y0] (4.24)

The following solution is obtained,
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[M1] =
[M1]s − [M2]s
De,1

De,2
− kp,11

kp,12

R

r

sinh r
√
β11

sinhR
√
β11

+
[M2]s

De,1

De,2
− kp,11

kp,12

R

r

sinh r
√
β12

sinhR
√
β12

(4.25)

[M2] = [M2]s
R

r

sinh r
√
β12

sinhR
√
β12

(4.26)

The steps for obtaining the analytical solution are provided in Appendix A. The applicability

of this solution can be evaluated by writing the insignificant terms that were removed during

simplification. Since the largest value [M1] can exhibit is [M1]s, the accuracy of the solution can

be determined with:

ℵ1 =
kp,12[M2]s
kp,21[M1]s

(4.27)

ℵ2 =
kp,22[M2]s
kp,21[M1]s

(4.28)

The parameters ℵ1 and ℵ2 serve as the indicators to assess the accuracy of equation (4.25)

and equation (4.26). Lower values of ℵ1 and ℵ2 correspond to less errors associated with the

simplification. The analytical solution derived by this approach specifically holds true when kp,21 is

higher than kp,12, kp,22, and the comonomer concentration is less than the monomer concentration at

the particle surface. The distinguishing feature of this solution is that it allows the molar fractions of

monomer and comonomer to vary radially. We will refer to this approach as the quasi-steady-state

solution with variable monomer fraction (QSSA-Vf).

4.2.2 Quasi-Steady-State, Average Monomer Fraction Solution

Another possible approximation for the system can be achieved by modifying the nonlinear terms.

If we assume the monomer fraction to be constant radially, that is averaged over the radius, the

system can be solved. This is similar to how the actives sites are assumed to be homogenously

distributed along the particle.

First, the average molar fraction of monomer across the particle is calculated,

f1 =
[M1]̇

[M1]̇ + [M2]̇
(4.29)

where [M1]̇ and [M2]̇ are the average concentrations of monomer and comonomer inside the

entire particle at a given time, respectively. Subsequently, the average fraction of living chains is

obtained by,
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∅1 =
kp,21f1

kp,21f1 + kp,12(1− f1)
(4.30)

substituting in equations (4.17) and (4.18),

0 =
1

r2
∂

∂r

(︃
r2

∂

∂r
(De,1[M1])

)︃
− (kp,11∅1 + kp,21(1−∅1)) [M1][Y0] (4.31)

0 =
1

r2
∂

∂r

(︃
r2

∂

∂r
(De,2[M2])

)︃
− (kp,12∅1 + kp,22(1−∅1)) [M2][Y0] (4.32)

since the average fraction of living chains does not depend on the radial position, the following

analytical solution can be derived,

[M1] = [M1]s
R

r

sinh r
√
β1

sinhR
√
β1

(4.33)

[M2] = [M2]s
R

r

sinh r
√
β2

sinhR
√
β2

(4.34)

with,

β1 =
(kp,11∅1 + kp,21(1−∅1)) [Y0]

(︁
1−ϵ
α3

)︁
De,1

(4.35)

β2 =
(kp,12∅1 + kp,22(1−∅1)) [Y0]

(︁
1−ϵ
α3

)︁
De,2

(4.36)

this approach works by calculating the average monomer and comonomer concentrations from the

particle center to its surface. The average concentrations are then used to calculate the average

monomer fraction, equation (4.29), and average living chain fraction, equation (4.30). The monomer

and comonomer concentration profiles are subsequently calculated using equations (4.33) and (4.34).

The newly established profiles are used to find the average monomer fraction for the next time

step. This computational cycle is repeated until the reaction time is reached. We will refer to

this approach as the quasi-steady-state solution with averaged monomer fraction (QSSA-Af) in the

upcoming sections. The flowchart in Figure 4.1 summarizes each of the presented solutions.

Similar to homopolymerization, the mass of polymer produced can be calculated analytically.

For the QSSA-Vf, the rate of reaction is integrated considering both components:

mtot,1 =
Mw,1 [Y0]

α3

(︃∫︂ R

0
kp,11[M1]dV

)︃
∆t (4.37)
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mtot,2 =
Mw,2 [Y0]

α3

(︃∫︂ R

0
kp,12[M2]dV

)︃
∆t (4.38)

replacing [M1] and [M2] and using the volume of a sphere,

mtot,1 =
Mw,1 [Y0]

α3

(︃∫︂ R

0
kp,11

(︃
A
R

r

sinh r
√
β11

sinhR
√
β11

+B
R

r

sinh r
√
β12

sinhR
√
β12

)︃
d

(︃
4

3
πr3
)︃)︃

∆t (4.39)

mtot,2 =
Mw,2 [Y0]

α3

(︃∫︂ R

0
kp,12[M2]s

R

r

sinh r
√
β12

sinhR
√
β12

d

(︃
4

3
πr3
)︃)︃

∆t (4.40)

integrating,

mtot,1 =
4πMw,1kp,11 [Y0]

α3

(︄
A
R
(︁
R
√
β11 coth

(︁
R
√
β11
)︁
− 1
)︁

β11
+B

R
(︁
R
√
β12 coth

(︁
R
√
β12
)︁
− 1
)︁

β12

)︄
∆t

(4.41)

mtot,2 =
4πMw,2kp,12 [Y0]

α3
[M2]s

R
(︁
R
√
β12 coth

(︁
R
√
β12
)︁
− 1
)︁

β12
∆t (4.42)

where,

A =
[M1]s − [M2]s
De,1

De,2
− kp,11

kp,12

, B =
[M2]s

De,1

De,2
− kp,11

kp,12

(4.43)

For the QSSA-Af, the mass produced is calculated by:

mtot,1 =
Mw,1 [Y0]

α3

(︃∫︂ R

0
(kp,11∅1 + kp,21(1−∅1)) [M1]dV

)︃
∆t (4.44)

mtot,2 =
Mw,2 [Y0]

α3

(︃∫︂ R

0
(kp,12∅1 + kp,22(1−∅1)) [M2]dV

)︃
∆t (4.45)

Finally, the total mass is calculated,

mtot = mtot,1 +mtot,2 (4.46)

the new volume and radius of the particle is calculated using equation (4.15) and (4.16), respectively.
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Figure 4.1: Flowchart for the rigorous solution, the dynamic solution, the quasi-steady-state approx-
imation with variable monomer fraction, and the quasi-steady-state approximation with average
monomer fraction.
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Chapter 5

Results and Discussion

5.1 Comparison Criteria

The QSSA models are compared with the RS and DS methods using the following criteria: (i)

monomer and comonomer mass transfer efficiency, (ii) instantaneous rate of polymerization, (iii)

particle growth factor, (iv) polymer molecular weight distribution, and (v) short chain branching

distribution.

The efficiency factor is a measure of the resistance to monomer transport through the particle.

It is a convenient metric to quantify how steep the monomer radial profile is throughout the

polymerization. It is calculated by,

ηk =

∫︁
[Mk] dV

[Mk]sVtot
(5.1)

the mass transfer efficiency is calculated numerically for the RS and DS,

ηjk =

∑︁N
i [Mk]

j
iV

j
i

[Mk]sVtot
(5.2)

the analytical efficiency factor for the QSSA can be found by substituting the respective

monomer equation. For example, in case of homopolymerization, equation (4.10) is substituted

in equation (5.1),

ηk =

∫︁ R
0 [Mk]s

R
r

sinh r
√
βk

sinhR
√
βk
d
(︁
4
3πr

3
)︁

[Mk]sVtot
= 4πR

(R
√
βk coth

(︁
R
√
βk
)︁
− 1)

βkVtot
(5.3)

the rate of polymerization is a crucial metric for this study since the rigorous solution handles
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the active sites distribution differently from the dynamic solution and quasi-steady-state methods.

The instantaneous rate of polymerization is given by,

Rins
p =

mtot

∆tρcVc
(5.4)

while the instantaneous rate of polymerization gives insight on the instantaneous differences

between the models, the growth factor on the other hand is a measure of the average difference

between the compared models; it can be viewed as a cumulative error for the quasi-steady-state

solution. The growth factor is calculated using equation (3.33).

Comparing the polymer molecular weight distributions (MWDs) predicted with these different

models gives an additional metric to evaluate how close the simplified QSSA model approaches the

stricter RS simulations. In the RS model, the MWD of polymer made in each shell follows the

Flory’s MWD instantaneously, given by:

wi
logM,j = ln(10)M2

(︁
τ ij
)︁2

e−Mτ ij (5.5)

The parameter τ in the Flory’s most probable distribution is defined as,

τ ij =
ktM +

(︂
ktH,1∅j

1,i + ktH,2∅j
2,i

)︂
[H2]

kp̂

(︂
[M1]

j
i + [M2]

j
i

)︂ (5.6)

where ktM is the rate constant for transfer to monomer, ktH,1 and ktH,2 are the monomer and

comonomer transfer rates to hydrogen, and [H2] is the hydrogen concentration. kp̂ is the pseudo-

kinetic constant, given by:

kp̂ = kp,11∅1f1 + kp,12∅1(1− f1) + kp,21(1−∅1)f1 + kp,21(1−∅1)(1− f1) (5.7)

In the case of homopolymerization, equation (5.6) is reduced to:

τ =
ktM + ktH,1[H2]

kp [M1]
j
i

(5.8)

Since each shell experiences a different monomer concentration, the MWDs will vary from shell

to shell at a given polymerization time. These distributions across the shells must be averaged

radially to get the instantaneous MWD for the whole particle at a given time,
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wj
logM =

∑︁N
i=1m

j
iw

j
logM,i∑︁N

i=1m
j
i

(5.9)

finally, the instantaneous MWDs are integrated temporally, which yields the cumulative MWD,

wlogM =

∑︁time
j=0 Rj

vw
j
logM∆t∑︁time

j=0 Rj
v∆t

(5.10)

finally, we will be comparing the models based on the initial value of the Thiele modulus, since it

quantifies the relative importance of diffusion and reaction rates in porous catalysts. The general

form of Thiele modulus developed by Petersen[34] is,

Φi =
Vc

Ac

(−ri)int|Ci,s[︂
2De,i

∫︁ Ci,s

0 (−ri)intdCi

]︂1/2 (5.11)

where (−ri)int is the intrinsic rate of reaction for component i, and (−ri)int|Ci,s
is the rate of reaction

at the surface of the particle, Ci,s, Ac is the surface area of the catalyst particle. Substituting the

rate of reaction with equation (3.48) and (3.49) gives,

Φ1 =
Vc

Ac

√︄
(kp,11∅1 + kp,21(1−∅1)) [Y0]

(︁
1−ϵ
α3

)︁
De,1

=
R0

3

√︁
β1 (5.12)

Φ2 =
Vc

Ac

√︄
(kp,12∅1 + kp,22(1−∅1)) [Y0]

(︁
1−ϵ
α3

)︁
De,2

=
R0

3

√︁
β2 (5.13)

initially a numerical value is assigned to Φ1 and Φ2, and then we calculate De,1 and De,2 based on

other parameters of the polymer flow model as provided in Table 5.1.

In the case of homopolymerization, Φ1 is reduced to:

Φ1 =
Vc

Ac

√︄
kp [Y0]

(︁
1−ϵ
α3

)︁
De,1

=
R

3

√︁
β (5.14)

Equations (5.12), (5.13) and (5.14) shows that for a first order rate of reaction, Thiele modulus

is independent of surface concentration. For a simple non-growing particle, the Thiele modulus

simplifies the analysis of reaction and diffusion by providing a dimensionless number that does

not change with concentration. It allows comparison between systems or conditions with different

concentrations but similar relative reaction and diffusion characteristics. Since we are concerned

with a growing particle problem, the surface concentration plays a significate role in determining
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the amount of polymer generated, particle growth and how fast can particle reach the steady state.

We will show the effect of surface concentration on the quasi steady state approximation accuracy

independently of Thiele modulus, which is concerned with the catalyst part of the reaction, not the

entire process conditions.

Parameter Value Unit

kp11 500 m3 mol s-1

kp21 500 m3 mol s-1

r1 8 -

r2 0.3 -

kd 1 × 10-4 s-1

ktH,1 0.01 s-1

ktH,2 0.01 s-1

ktM 0.60 s-1

R0 2.5 × 10-5 m

ϵ 0.05 -

[C∗
0 ] 5 mol m-3

[M1]s 170 mol m-3

[M2]s 50 mol m-3

[H2] 50 mol m-3

Simulation time 15000 s

Table 5.1: Simulation parameters.

Before starting the comparison of the models, it is important to realize that they will always

differ at the beginning of the simulations. Figure 5.1 compares the monomer concentration profiles

for three different times and Thiele modulus of Φ1 = 0.5. The QSSA solution predicts a monomer

concentration profile even at t = 0, which is the profile that the monomer would reach at steady

state if the radius of the catalyst particle did not change (no particle growth). This is certainly

not the case for olefin polymerizations with heterogeneous coordination catalysts, but we will see

below that this difference becomes less relevant for longer polymerization times. In contrast, both

the DS and RS methods, which apply the initial condition [M ]|∀r,t=0 = 0, predict that no monomer

is present inside the catalyst particle at t = 0. After 3 seconds, the DS and RS predictions

approach each other, and after only 100 seconds, the DS catches up to the QSSA solution, since

both methods assume that the concentration of active sites in the particle is uniform. The monomer

profiles predicted by the RS method eventually catch up to the QSSA and DS predictions at 300s.
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5.2 Comparison Between the Quasi-Steady-State Approximation

and Dynamic Solution Methods, Homopolymerization

Figure 5.2 shows that the polymerization rate, mass transfer efficiency, and growth factor predicted

with the QSSA and DS methods match for all cases over a wide range of Thiele moduli. These

results are enlightening because both the QSSA and the DS methods assume that the concentration

of active sites in the polymer particle does not depend on the radial position, but the QSSA also

assumes that the monomer concentration profile reaches steady state during a short time interval

dt. The latter simplification is valid only when the timescale for polymerization/diffusion rates is

much smaller than the timescale for particle growth. In other words, the monomer concentration

profile reaches steady state before the polymer particle can grow considerably.

Figure 5.3 shows the concentration change over time in each shell. The numerical derivative

of the profiles affirms the validity of the steady-state assumption made, as it reveals that as time

progresses, the accumulation of unreacted monomers approaches zero, as depicted in Figure 5.4.

In the previous section, it was proved that the simulation results obtained with the QSSA and DS

methods matched for all case studies. In this section, will compare the RS method predictions with

those from the QSSA method, which is equivalent to comparing the DS with the RS predictions.

Since the RS considers that the concentration of active sites in the particle varies as a function of

radial position, the overall polymerization kinetics for the whole particle will reflect how fast the

QSSA and RS methods converge to the same solution. Figure 5.5 shows that the polymerization

kinetic curves predicted by the QSSA and RS methods match faster when the active sites deactivate.

If the active sites do not deactivate, the polymerization rate will reach a plateau, but the QSSA

simulations (and consequently the DS simulations) will get there faster because it assumes a uniform

concentration of active sites in the particle.

Figure 5.6 shows that the QSSA model is accurate for Φ1 < 3 but diverges from the RS model

predictions for higher Thiele moduli. Even though the monomer concentration profiles predicted by

the RS and QSSA method differ at the beginning of the polymerizations, they quickly converge after

short polymerization times, as illustrated in Figure 5.7.a and Figure 5.7.b when Φ1 < 3. Figure 5.7.c

and Figure 5.7.d show that the concentration of active sites predicted by the QSSA model is the

average of those predicted by the RS model, considering that the volumes of the outer shells are

larger than those of the inner shells. Figure 5.8 shows how decreasing the monomer concentration

at the surface, starting from the same Φ1 of 3, slighly increases the differences between the QSSA

and RS predictions. This is because the monomer concentration at the surface effect how much

polymer is getting generated and the extent of polymer swelling. This is an external property of

the system that does not have a huge impact on the as the surface concentration itself doesn't play
a significant role in the diffusion-reaction problem alone and it is canceled out when the particle
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Figure 5.1: Comparison between the monomer radial profiles predicted by the quasi-steady-state
approximation, dynamic solution, and rigorous solution, from t = 0 to t =300 s, at Φ1=0.5
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Figure 5.2: Comparison between the quasi-steady-state approximation and dynamic solution for
three different Thiele moduli Φ1=0.5, 3, and 10 for: a) mass transfer efficiency, b) rate of polymer-
ization, and c) particle growth.
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Figure 5.3: Monomer concentration evolution with time at three shell locations, starting from the
particle center (N0) to the surface (N).

doesn't grow. But because our particle is growing, changing the concentration at the surface affects

the time at which the particle reaches steady state and how much it grows.

Figure 5.9.a shows how the MWD develops for polymer made with Thiele modulus of 3, using

the polymerization kinetics parameters given in Table 2. The MWD predicted by the RS method

after 1000 seconds of polymerization is a little broader since the steeper monomer concentration

profile (Figure 5.7.b) leads to the production of polymer populations with lower molecular weight

averages that are not predicted by the QSSA model. As the polymerization goes on, the monomer

concentration profile predicted by the QSSA model approaches the predictions of the RS model

which, in turn, make the MWDs predicted by both models look increasingly more alike. Figure 5.9.b

compares the predicted polydispersity index for both models. Even though the RS and QSSA

model predictions converge for higher polymerization times, the QSSA always predicts a slightly

more narrow MWD than the RS model.

5.3 Comparison Between Quasi-Steady-State and Dynamic Solu-

tions, Copolymerization

Figure 5.10 shows that the predicted monomer efficiency and comonomer efficiency for mass transfer

at Φ2 = 3 match for all Φ1 values. The quasi-steady-state method in its core is a simplification to
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Figure 5.4: Monomer concentration accumulation at three shell locations, starting from the particle
center (N0) to the surface (N).

the dynamic solution, where it assumes that the monomer profile is increasing at a steady rate. This

is similar to the results obtained for the homopolymerization case. The addition of a comonomer

adds further complexity to the equations, as the kinetics of the reaction depends on the monomer

fraction, which is a variable that changes within the particle radius. Figure 5.11 shows a contour

plot comparing the quasi-steady-state solution assuming constant monomer fraction and variable

monomer fraction with the dynamic solution. The figure shows that when the quasi-steady-state

method assumes an averaged monomer fraction through the particle, the model matches with the

dynamic solution with a very slight difference at the start that eventually disappears as the reaction

proceeds. This indicates that averaging the monomer fraction is not an inappropriate approximation

for the quasi-steady-state solution. When the particle exhibits a high Thiele moduli value regardless

of the component, the respective monomer profile at a specific time is very steep along the radius,

which makes the averaged monomer fraction deviate from the actual case. As the reaction proceeds,

the Thiele modulus of each component reduces, and the monomer profile inside the particle flattens

out which reduces the error induced by averaging. Although the difference in significance is very

minor, this finding will be helpful in analyzing the rigorous solution comparison as we will see

later. On the other hand, the variable monomer fraction model does perform slightly better as it

is an analytical solution of the particle under conditions that are met. In later sections, we will

demonstrate how this model can perform very poorly when it is taken out of the required conditions.

Additional plots are included in Appendix B, showcasing the comparison between the models

predicting: monomer mass transfer efficiency, comonomer mass transfer efficiency, polymerization
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Figure 5.5: Comparison between the quasi-steady-state approximation and rigorous solution with
and without active sites deactivation at Φ1= 3.

rate, and particle growth factor.

In this section, we will compare the analytical quasi-steady-state and approximate quasi-steady-

state methods with the rigorous solution, equivalent to comparing the dynamic solution with the

rigorous solution. The rigorous solution considers that the concentration of active sites varies as a

function of radial position. This is a significant consideration that we investigated in the homopoly-

merization section, as the differences between the quasi-steady-state and rigorous solutions become

larger with higher Thiele values. In Figure 5.12, the predicted monomer mass transfer efficiency by

the rigorous solution matches with the quasi-steady-state solution with variable monomer fraction

at the monomer Thiele value lower than 3. As for the comonomer mass transfer efficiency, the

difference is higher, as the comonomer Thiele value is kept at high at 3. Figure 5.13 shows a clear

perspective on how varying the comonomer Thiele value at a constant monomer Thiele modulus

affects the differences between the models. These results indicate that the monomer has a greater

effect on the polymerization rate and particle properties than the comonomer. Since the accuracy

of the quasi-steady-state approximation depends on the particle state (i.e., with less diffusion limi-

tation resulting in higher accuracy), an increase in the monomer Thiele value has a more significant

impact on the quasi-steady-state predictions than the comonomer. The major difference between

the two quasi-steady-state models and the rigorous solution is the active sites profile; in the steady-

state models the active sites are homogenously diluted, and they are not a function of particle

radius. In the rigorous solution, the active sites are radially diluted, and they are a function of

particle radius. When the particle is at a low Thiele moduli region, the particle grows uniformly
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Figure 5.6: Comparison between the quasi-steady-state approximation and rigorous solution at
three different Thiele moduli, Φ1= 0.5, 3 , and 10: a) mass transfer efficiency, b) rate of polymer-
ization, and c) particle growth factor.
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Figure 5.7: Comparison between the development of the quasi-steady-state approximation and
rigorous solution from t = 0 to t = 3000 s: for monomer concentration, a)Φ1= 0.5 and b) Φ1= 3,
and for active sites concentration, c) Φ1= 0.5 and d) Φ1= 3.
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Figure 5.8: Comparison between the quasi-steady-state approximation and rigorous solution at
three different monomer surface concentration, [M1]s = 100, 200 and 400 a) mass transfer efficiency,
b) rate of polymerization, and c) particle growth factor.
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Figure 5.9: Comparison between the quasi-steady-state approximation and rigorous solution for:
a) MWD as a function of time, b) polydispersity index as a function of time.

equally inside-out as there is enough supply of monomer and a high rate of reaction.

When increasing the Thiele moduli of the models, the steady-state models will always over-

predict the particle growth and concentration profiles due to its relatively high kinetics caused by

non-radial active sites dilution. The active sites profile becomes significantly more important as the

particle gets more diffusion-limited, where the inner shells grow much slower than the outer shells.

This causes the active sites profile to be steep, inducing the difference between the steady-state

and rigorous solutions.

Finally, Figure 5.14 shows that the predicted results by both the quasi-steady-state models are

close to the rigorous solution prediction at the low Thiele modulus regions, with a relative difference

less than %1. Similar to the findings of the previous section, the steady-state solution considering

variable monomer fraction is slightly better than its counterpart. The figure also shows how the

monomer Thiele moduli have a higher effect on the differences than the comonomer Thiele moduli.

This is because the comonomer contribute less to the reaction as it exhibits lower propagation

kinetics than the monomer. This is generally true in polyolefins engineering, as the amount of the

comonomer in the polymer generated is significantly lower than the main monomer which makes up

the backbone of the polymer. Just as in homopolymerization, the concentration of monomer and

comonomer did not have a noticable effect. The accuracy of the QSSA simulation for most polyolfien

processes will be hindered by the monomer thiele modulus because the monomer contributes more
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Figure 5.10: Comparison between the quasi-steady-state variable monomer fraction (QSSA-Vf) and
dynamic solution (DS) at three different monomer Thiele moduli, Φ1= 0.5, 3, and 5, at a constant
comonomer Thiele moduli, Φ2=3, for: a) rate of polymerization, b) particle growth factor, c)
monomer mass transfer efficiency, and d) comonomer mass transfer efficiency.
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Figure 5.11: Comparison between the quasi-steady-state variable monomer fraction, the quasi-
steady-state average monomer fraction, and the dynamic solution.
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Figure 5.12: Comparison between the quasi-steady-state variable monomer fraction and rigorous
solutions at three different monomer Thiele moduli, Φ1= 0.5, 3, and 5, at constant comonomer
Thiele moduli, Φ2=3, a) rate of polymerization, b) particle growth factor, c) monomer mass transfer
efficiency, and d) comonomer mass transfer efficiency.
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Figure 5.13: Comparison between the quasi-steady-state variable monomer fraction and rigorous
solutions at three different comonomer Thiele moduli, Φ2= 0.5, 3 and 5, at constant monomer
Thiele moduli, Φ1= 3, for: a) rate of polymerization, b) particle growth factor, c) monomer mass
transfer efficiency, and d) comonomer mass transfer efficiency.
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Figure 5.14: Comparison between the quasi-steady-state variable monomer fraction, the quasi-
steady-state average monomer fraction, and rigorous solutions.

to the kinetics of the reaction than the comonomer.

Figure 5.16 shows the number and weight average chain lengths predicted by the rigorous solu-

tion, steady-state model considering variable monomer fraction, and steady-state model considering

constant monomer fraction. Generally, both steady-state models predict Nn and Nw well at the

low monomer Thiele moduli where the comonomer Thiele moduli has a slight effect on the relative

differences. Furthermore, the steady-state models fail to predict the number average molecular

weight at the high Thiele modulus region, as it neglects the lower end of the molecular weight

distribution when the particle is starved.

Figure 5.17 illustrates the short chain branches (SCB) predicted by the rigorous solution and

the steady-state models. At the low Thiele region, the SCB predicted by the steady-state models

almost matches the rigorous solution with a flat distribution across the molecular weights as a result

of low Thiele moduli and high mass transfer efficiencies for monomer and comonomer. When the

monomer Thiele moduli is increased, the monomer to comonomer ratio increases along the particle

radius which causes a decrease in the likelihood of short branches insertion in the backbone of the

polymer chain.
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Figure 5.15: Radial concentration profiles for monomer, comonomer, and their ratios at three
different times. Φ1= 5, Φ2= 5
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Figure 5.16: Comparison of the weight average chain lengths predicted by the rigorous solution and
the steady-state models.

52



Figure 5.17: Comparison of the short chain branching distribution of the quasi-steady-state vari-
able monomer fraction and average monomer fraction solutions with the rigorous solution, for: a)
Φ1=0.5, Φ2=0.5, b) Φ1=3, Φ2= 0.5

Because there are many possible combinations of Φ1 and Φ2, each yielding different results for

the QSSA accuracy, some which are not relevant to common industrial practices, going through all

the possibilities will be endless. While the contour plots provide a general guidance on the QSSA

performance, additional plots for the rigorous solution are provided in the appendix.

5.4 Monte Carlo Simulation

Both the quasi-steady-state models and the rigorous solution programs are written in C++ lan-

guage, as it offers high-speed computation through compiled execution. In a prior publication from

our team, we created a framework to analyze the performance of polyolefin reactors utilizing Monte

Carlo simulation. The main challenge with the Monte Carlo simulation was the extensive compu-

tation time.[35] To assess the computational speed of quasi-steady-state models, a simple Monte

Carlo simulation framework was integrated with the QSSA. Table 5.2 shows that both steady-state

models are significantly faster than the rigorous solution, especially when modeling a high number

of particles. This is because the rigorous solution is significantly more demanding on computational

power and because the distribution of particles and residence time is random; the rigorous solution

speed is highly dependent on the model properties. On the other hand, the steady-state simulation

is not affected by the state of the particle. The steady-state solution assuming average monomer
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Figure 5.18: Comparison of the particle growth between the quasi steady-state variable monomer
fraction (QSSA-Vf), average monomer fraction (QSSA-Af), and rigorous solution (RS), a) Φ1=0.5,

Φ1=0.5, Φ2=0.5, kp21 = (100 m3

mol·s)

fraction does take slightly more time as it has to calculate the average of the concentration profiles

during the simulation.

Number of particles 1 50 100 200

Rigorous solution, computational speed (seconds) 62 7123 14400 28300

QSSA-Vf, computational speed (seconds) 0.197 3.06 12.14 24.69

QSSA-Af, computational speed (seconds) 0.211 4.10 13.59 29.21

Table 5.2: Computation time of simulations.

Even though the steady-state model assuming variable monomer fraction is slightly better and

faster than the one assuming constant monomer fraction, it can drastically fail when it is taken

out of its conditions. For example, when we decrease the value of kp21 from 500 to 100 m3 mol s-1,

the value of ℵ1 and ℵ2 becomes 0.175 and 0.028 which is high enough that model overpredicts the

particle growth, as seen in Figure 5.18. While the steady-state model assuming variable monomer

fraction can be employed if precision is essential, one should be careful to only utilize it when the

prerequisites are satisfied.
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Chapter 6

Conclusions and Recommendations

The mass transfer phenomenon in growing polymer particles has a major influence on the process of

polymerization and the characteristics of polymers generated in polyolefin reactors. Several single

particle models have been previously developed to solve the reaction-diffusion problem with moving

boundary condition. However, the computing cost of the polymer flow models, even in their most

basic versions, make it challenging to scale them up for modeling industrial reactors with a high

number of particles.

In the current thesis, the quasi-steady-state approximation is applied as a computationally ef-

ficient method, to solve the polymer flow model. The QSSA results are compared to the dynamic

solutions, assuming both uniform and nonuniform radial distribution of active sites. For the ho-

mopolymerization case, we have proposed a solution assuming uniform distribution of active sites.

For the copolymerization case, we have proposed two viable alternatives: the first method assumes

a constant monomer fraction throughout the particle, and the second one is an analytical solution

applicable under certain conditions which is slightly faster and more accurate compared to the first

method.

The performance of the developed models is evaluated based on various factors, including the

calculated particle growth factor, monomer mass transfer efficiency, comonomer mass transfer ef-

ficiency, molecular weight distribution, weight-average chain length, number-average chain length,

and short chain branches distribution. The catalyst Thiele modulus is used as the benchmark for

this evaluation. Our simulations show that, after a brief initial period, the steady-state models

achieve a precise alignment with the dynamic solution when the active sites are evenly distributed

throughout the particle. If the dynamic solution takes into account the local dilution of catalyst

fragments in the produced polymer, the distribution of active sites will be nonuniform in the grow-

ing particle, i.e., decreasing with the radial position. In this scenario, the steady-state models

demonstrate favorable performance only throughout the range of low to medium monomer Thiele
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moduli, which reflect the regions that are realistically significant. The comonomer Thiele moduli

has less influence on the findings as it contributes less to the polymer that is formed. As the Thiele

modulus increases, the steady-state models start to deviate from the dynamic solution since the

concentration gradient of active sites becomes more and more pronounced. These high Thiele mod-

ulus values equate to very high levels of mass transfer limitations that are unwanted and typically

avoided in practical operations. Finally, the steady-state models are merged into the Monte Carlo

framework with a high number of random particles, greatly increasing the computational speed and

confirming this method as a scalable approach for single particle modeling of polyolefin reactors.

For future work, it is possible to expand on the QSSA model to account for multiple active

site types, variable diffusion and porosity calculations. It is also possible to develop QSSA model

with nonuniform distribution of active sites but the model will probably require fitting constants

to get the correct active sites dilution effect. Finally, the QSSA improves our ability to simulate

fill reactor modelling for commercial processes. We recommend using the QSSA in future reactor

modeling studies, Monte Carlo simulations, and fluidized bed dynamics.
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Appendix A

The Method of Undetermined Coefficients is a technique used to solve non-homogeneous linear

ordinary differential equations (ODEs). It involves guessing a particular solution based on the form

of the non-homogeneous term, then determining the coefficients of this guess by substituting it into

the ODE. The general steps are:

• Guess the Form: Based on the non-homogeneous term (e.g., polynomial, exponential, sine,

cosine), propose a particular solution with undetermined coefficients.

• Substitute and Solve: Plug this guess into the original ODE and solve for the coefficients.

• Combine Solutions: Add the particular solution to the general solution of the corresponding

homogeneous ODE to get the complete solution.

The following steps are followed to solve the copolymerization QSSA model with variable

monomer fraction.

1. First, we solve the comonomer mass balance equation by applying variable transformation to

equation (4.24),

[M2] =
F2

r
(A.1)

d [M2]

dr
=

1

r

dF2

dr
− F2

r2
(A.2)

2. Equation (4.24) is then solved using the same steps given for the homopolymerization solution.

The analytical solution for equation (4.24) is:

[M2] =
C1e

r
√
β12

r
+

C2e
−r

√
β12

r
(A.3)

where,
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β12 =
kp,12[C

∗
0 ]e

−kdt
(︁
1−ϵ
α3

)︁
De,2

(A.4)

3. The solution of the comonomer, equation (A.3), is substituted into the monomer mass balance,

equation (4.23),

1

r2
∂

∂r

(︃
r2

∂

∂r
(De,1 [M1])

)︃
=

(︄
kp,11[M1] + kp,12

(︄
C1e

r
√
β12

r
+

C2e
−r

√
β12

r

)︄)︄
[Y0] (A.5)

4. Using variable transformation given in equation (4.4) for the monomer and rearranging gives,

d2F1

dr2
− [Y0]

De,1

(︂
kp,11F1 + kp,12

(︂
C1e

r
√
β12 + C2e

−r
√
β12

)︂)︂
= 0 (A.6)

5. Equation (A.6) is a non-homogeneous ordinary differential equation; thus, variable transfor-

mation alone is not sufficient to solve the above equation. We can solve the above equation

using the method of undetermined coefficients. First, we solve for the complementary solution,

Fc(r), by removing the non-homogeneous term from equation (A.6).

d2F1

dr2
− [Y0]

De,1
(kp,11F1) = 0 (A.7)

6. The solution of equation (A.7) is the complementary solution,

Fc(r) = C3e
r
√
β11 + C4e

−r
√
β11 (A.8)

β11 =
kp,11[C

∗
0 ]e

−kdt
(︁
1−ϵ
α3

)︁
De,1

(A.9)

7. As for finding the particular solution, we first guess a solution by looking at the non-

homogeneous term that was removed from equation (A.6). The guess for the particular

solution is,

Fp(r) = a1e
r
√
β12 + a2e

−r
√
β12 (A.10)

d2Fp(r)

dr2
= β12

(︂
a1e

r
√
β12 + a2e

−r
√
β12

)︂
(A.11)
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8. where a1 and a2 are the undetermined coefficients. We then substitute the guess into equation

(A.6),

β12

(︂
a1e

r
√
β12 + a2e

−r
√
β12

)︂
= β11

(︂
a1e

r
√
β12 + a2e

−r
√
β12

)︂
+

[Y0]

De,1
kp,12

(︂
C1e

r
√
β12 + C2e

−r
√
β12

)︂
(A.12)

9. Equalizing the terms,

β12a1 = β11a1 +
[Y0]

De,1
kp,12C1 (A.13)

β12a2 = β11a2 +
[Y0]

De,1
kp,12C2 (A.14)

10. Solving for a1 and a2 gives,

a1 =

[Y0]
De,1

kp,12C1

β12 − β11
(A.15)

a2 =

[Y0]
De,1

kp,12C2

β12 − β11
(A.16)

11. Substituting into equation (A.10),

Fp(r) =

[Y0]
De,1

kp,12C1

β12 − β11
er

√
β12 +

[Y0]
De,1

kp,12C2

β12 − β11
e−r

√
β12 (A.17)

12. The analytical solution for the equation (4.23) is the sum of the complementary and particular

solutions:

f (r) = Fc (r) + Fp (r) (A.18)

13. Substituting the complementary and particular solutions:

f (r) = C3e
r
√
β11 + C4e

−r
√
β11 +

[Y0]
De,1

kp,12

β12 − β11
C1e

r
√
β12 +

[Y0]
De,1

kp,12

β12 − β11
C2e

−r
√
β12 (A.19)

14. Rearranging the coefficients:
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[Y0]
De,1

kp,12

β12 − β11
=

kp,12De,2

kp,12De,1 −De,2kp,11
=

(︃
De,1

De,2
− kp,11

kp,12
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(A.20)

Finally, the general solution is:

f (r) = C3e
r
√
β11 + C4e

−r
√
β11 +

C1

De,1

De,2
− kp,11

kp,12

er
√
β12 +
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De,1

De,2
− kp,11

kp,12

e−r
√
β12 (A.21)
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Figure B.1: Comparison between the quasi steady-state averaged monomer fraction (QSSA-Af) and
dynamic solution (DS) at three different monomer Thiele moduli, Φ1, at a constant comonomer
Thiele moduli, Φ2=0.5, a) rate of polymerization, b) particle growth, c) monomer mass transfer
efficiency, and d) comonomer mass transfer efficiency.
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Figure B.2: Comparison between the quasi steady-state variable monomer fraction (QSSA-Vf) and
dynamic solution (DS) at three different monomer Thiele moduli, Φ1, at a constant comonomer
Thiele moduli, Φ2=0.5, a) rate of polymerization, b) particle growth, c) monomer mass transfer
efficiency, and d) comonomer mass transfer efficiency.
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Figure B.3: Comparison between the quasi steady-state averaged monomer fraction (QSSA-Af) and
dynamic solution (DS) at three different monomer Thiele moduli, Φ1, at a constant comonomer
Thiele moduli, Φ2=3, a) rate of polymerization, b) particle growth, c) monomer mass transfer
efficiency, and d) comonomer mass transfer efficiency.
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Figure B.4: Comparison between the quasi steady-state variable monomer fraction (QSSA-Vf)
and dynamic solution (DS) at three different monomer Thiele moduli, Φ1=0.5, 3, 5, at a constant
comonomer Thiele moduli, Φ2=3, a) rate of polymerization, b) particle growth, c) monomer mass
transfer efficiency, and d) comonomer mass transfer efficiency.
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Figure B.5: Comparison between the quasi steady-state averaged monomer fraction (QSSA-Af)
and dynamic solution (DS) at three different monomer Thiele moduli, Φ1=0.5, 3, 5, at a constant
comonomer Thiele moduli, Φ2=5, a) rate of polymerization, b) particle growth, c) monomer mass
transfer efficiency, and d) comonomer mass transfer efficiency.
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Figure B.6: Comparison between the quasi steady-state variable monomer fraction (QSSA-Vf)
and dynamic solution (DS) at three different monomer Thiele moduli, Φ1=0.5, 3, 5, at a constant
comonomer Thiele moduli, Φ2=5, a) rate of polymerization, b) particle growth, c) monomer mass
transfer efficiency, and d) comonomer mass transfer efficiency.
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Figure B.7: Comparison between the quasi steady-state averaged monomer fraction (QSSA-Af)
and rigorous solution (RS) at three different monomer Thiele moduli, Φ1, at a constant comonomer
Thiele moduli, Φ2=0.5, a) rate of polymerization, b) particle growth, c) monomer mass transfer
efficiency, and d) comonomer mass transfer efficiency.
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Figure B.8: Comparison between the quasi steady-state variable monomer fraction (QSSA-Vf) and
rigorous solution (RS) at three different monomer Thiele moduli, Φ1, at a constant comonomer
Thiele moduli, Φ2=0.5, a) rate of polymerization, b) particle growth, c) monomer mass transfer
efficiency, and d) comonomer mass transfer efficiency.

73



Figure B.9: Comparison between the quasi steady-state averaged monomer fraction (QSSA-Af)
and rigorous solution (RS) at three different monomer Thiele moduli, Φ1, at a constant comonomer
Thiele moduli, Φ2=3, a) rate of polymerization, b) particle growth, c) monomer mass transfer
efficiency, and d) comonomer mass transfer efficiency.
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Figure B.10: Comparison between the quasi steady-state variable monomer fraction (QSSA-Vf)
and rigorous solution (RS) at three different monomer Thiele moduli, Φ1, at a constant comonomer
Thiele moduli, Φ2=3, a) rate of polymerization, b) particle growth, c) monomer mass transfer
efficiency, and d) comonomer mass transfer efficiency.
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Figure B.11: Comparison between the quasi steady-state averaged monomer fraction (QSSA-Af)
and rigorous solution (RS) at three different monomer Thiele moduli, Φ1, at a constant comonomer
Thiele moduli, Φ2=5, a) rate of polymerization, b) particle growth, c) monomer mass transfer
efficiency, and d) comonomer mass transfer efficiency.
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Figure B.12: Comparison between the quasi steady-state variable monomer fraction (QSSA-Vf)
and rigorous solution (RS) at three different monomer Thiele moduli, Φ1, at a constant comonomer
Thiele moduli, Φ2=5, a) rate of polymerization, b) particle growth, c) monomer mass transfer
efficiency, and d) comonomer mass transfer efficiency.
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Figure B.13: Radial concentration profiles for monomer, comonomer and their ratios at three
different times. Φ1=0.5, Φ2=0.5.
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Figure B.14: Radial concentration profiles for monomer, comonomer and their ratios at three
different times. Φ1=3, Φ2=0.5.

79



Figure B.15: Radial concentration profiles for monomer, comonomer and their ratios at three
different times. Φ1=5, Φ2=0.5.
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Figure B.16: Radial concentration profiles for monomer, comonomer and their ratios at three
different times. Φ1=0.5, Φ2=3.
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Figure B.17: Radial concentration profiles for monomer, comonomer and their ratios at three
different times. Φ1=3, Φ2=3.}
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Figure B.18: Radial concentration profiles for monomer, comonomer and their ratios at three
different times. Φ1=5, Φ2=3.
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Figure B.19: Radial concentration profiles for monomer, comonomer and their ratios at three
different times. Φ1=0.5, Φ2=5.
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Figure B.20: Radial concentration profiles for monomer, comonomer and their ratios at three
different times. Φ1=3, Φ2=5.
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Figure B.21: Radial concentration profiles for monomer, comonomer and their ratios at three
different times. Φ1=5, Φ2=5.
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Figure B.22: Comparison of the short chain branching distribution between the quasi steady-state
variable monomer fraction (QSSA-Vf) and rigorous solution (RS). Φ1=0.5, Φ2=0.5.
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Figure B.23: Comparison of the short chain branching distribution between the quasi steady-state
variable monomer fraction (QSSA-Vf) and rigorous solution (RS). Φ1=3, Φ2=0.5.
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Figure B.24: Comparison of the short chain branching distribution between the quasi steady-state
variable monomer fraction (QSSA-Vf) and rigorous solution (RS). Φ1=5, Φ2=0.5.
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Figure B.25: Comparison of the short chain branching distribution between the quasi steady-state
variable monomer fraction (QSSA-Vf) and rigorous solution (RS). Φ1=0.5, Φ2=3.
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Figure B.26: Comparison of the short chain branching distribution between the quasi steady-state
variable monomer fraction (QSSA-Vf) and rigorous solution (RS). Φ1=3, Φ2=3.
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Figure B.27: Comparison of the short chain branching distribution between the quasi steady-state
variable monomer fraction (QSSA-Vf) and rigorous solution (RS). Φ1=5, Φ2=3.
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Figure B.28: Comparison of the short chain branching distribution between the quasi steady-state
variable monomer fraction (QSSA-Vf) and rigorous solution (RS). Φ1=0.5, Φ2=5.
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Figure B.29: Comparison of the short chain branching distribution between the quasi steady-state
variable monomer fraction (QSSA-Vf) and rigorous solution (RS). Φ1=3, Φ2=5.
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Figure B.30: Comparison of the short chain branching distribution between the quasi steady-state
variable monomer fraction (QSSA-Vf) and rigorous solution (RS). Φ1=5, Φ2=5.
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