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Abstract

The success of deep learning is partly due to the sheer size of modern mod-

els. However, such large models strain the capabilities of mobile or resource-

constrained devices. Ergo, reducing the resource demands of AI models is

essential before AI can be deployed on such devices. One promising solution

to this challenge is filter pruning, which aims to streamline models without

sacrificing performance. We propose a new approach to filter pruning that

extends feature-map ranking to consider the class-by-class rank of each map.

These feature vectors are clustered, and automated decision rules select the

filters to be pruned. This makes our work one of the few pruning methods that

is fully automated and does not require any human labor from end to end. Ex-

periments using VGG and ResNet networks on the CIFAR-10 and ImageNet

datasets show that our pruned models are more accurate than the well-known

HRank algorithm and perform similarly on the CIFAR-100 dataset. In ad-

dition, we see significant reductions in power usage of models post-pruning.

Finally, ethical pruning requires that an algorithm does not favor some group

of data over others. We have verified that our algorithm follows the ethical

pruning approach.
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To honour the ones

who walk on the edge of the light to follow their cause.

And to Gaia.
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“Not All Those Who Wander Are Lost.”

– J. R. R. Tolkien
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Chapter 1

Introduction

Recently, there has been an emerging interest in embedding visual AI models

within intelligent applications. Examples include augmented or virtual reality

[3], [113], the new collaboration between Meta and Ray Ban [45], [76], Google

Lens for cameras [24], or Apple’s similar Live Text and Visual Look Up [109].

However, training these deep networks, which may be hundreds of layers deep

with billions of parameters, demands enormous resources. A cloud server or a

large pool of high-end computers is often used to train a state-of-the-art Deep

Neural Network. Due to the differences between the hardware capabilities of

a cloud server and an edge or mobile device, deploying deep networks in low-

power devices is thus challenging [17], [59], [62], [75], [107]. It is not only the

training process that causes this challenge; performing inference with a CNN

model on an edge or mobile device also requires a considerable number (mil-

lions or billions) of floating-point computations. Mobile devices, however, have

limited battery capacity, and their computing hardware is power-optimized

with limited memory. To make a deep neural network perform well on such

devices, we need to substantially reduce the network’s size and the total num-

ber of Floating-Point Operations (FLOPs) it performs without losing much

accuracy. Another critical factor is ensuring the network responds quickly, as

the response time is an essential characteristic for users [98].

In response to the above, multiple approaches have been proposed to reduce

the number of network parameters and Floating-Point Operations. Network

pruning is among the most popular approaches to compressing a network [28].
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Network pruning can be divided into two categories: 1) Weight pruning [8],

[27], [28], [56], [111], where weights inside a network are pruned individually;

and 2) Filter pruning [35], [36], [59], [61]–[63], [66], [115], where candidate

filters are eliminated from the network entirely.

Weight pruning techniques produce a sparse network with a minimal drop

in prediction performance [27], [28]. However, the location of the remain-

ing weights in the networks is unknown a priori. This is challenging because

modern software/hardware stacks rely on non-sparsity in accelerating compu-

tations. Such sparse networks would thus be inefficient except on specialized

hardware or software [26], [81].

On the other hand, filter pruning approaches, also known as channel prun-

ing or coarse-grained pruning, remove entire filters, and thus the pruned net-

works remain non-sparse. Hence, they still run efficiently without specialized

software or hardware. In this thesis, our focus aligns with the field’s consen-

sus on improving filter pruning by having three steps [62], [107]: 1) Training a

deep network to convergence; 2) Ranking the filters in the network and pruning

selected filters; and 3) Fine-tuning the network after pruning.

Filter ranking is the most vital step in filter pruning. HRank [62] pro-

posed that filters with higher average numerical rank in the feature maps they

generate contribute more to the final accuracy of the network. Following this

proposal, filters are sorted by rank, and those below a chosen threshold are

pruned. The specific threshold varies; in many recent proposals, the thresholds

are set individually for each layer, based on manual trial-and-error exploration

[17], [59], [62], [107].

In contrast with [17], [59], [62], [107], our model employs an end-to-end ap-

proach without manual trial-and-error determination of a pruning threshold.

Instead, it uses clustering to identify groups of filters that offer the best combi-

nation of network pruning and retained accuracy. We show that filters within

a layer contribute differentially to accuracy in different classes for CIFAR-10,

CIFAR-100, and ImageNet [49], [89]. Expanding on the HRank[62] approach,

we propose that filters should be ranked by their aggregated performance on

individual classes in the dataset, with filters that perform well across all classes
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having a more significant impact than those that only perform well on some

classes. To evaluate our proposal, we test our pruning method on the VGGNet

[95] and ResNet56 [33] architectures applied to CIFAR-10 and CIFAR-100 [49],

and ResNet50 on ImageNet [89]. We use the same pre-trained model for each

experiment to compare our method against HRank [62]. We have specifically

selected HRank as the baseline to compare our method against since it remains

one of the best methods for convolutional neural network pruning [22], [34],

and most of the current pruning algorithms are also compared to HRank [18],

[79], [106].

HRank [62] is the most similar pruning method to our algorithm. The

main differences between them are filter selection and how we measure the im-

portance of filters across all classes. We use cluster validity metrics and prede-

termined criteria to select the filters to be removed. At the same time, HRank

determines a pruning rate for each layer and selects filters in order of rank to

meet that pruning rate. Thus, to fairly compare our algorithm against HRank,

we extract the layer-wise compression rates from our automatic method and

set HRank to compress each layer at the same rate. Our proposed algorithm

offers superior accuracy compared to the same-sized HRank-pruned network

after fine-tuning, indicating that we have selected a superior group of filters to

keep. Our results showed that we have a higher accuracy for CIFAR-10 with

87. 799% and 87. 67% on VGGNet and ResNet-50, respectively, compared

to HRank’s 87.527% and 86.878%. In CIFAR-100 experiments, the accuracies

for each algorithm were a statistical tie. For the ImageNet experiments, we

achieved 60. 13% 83. 51% in the top-1 and top-5 accuracies, respectively,

while HRank achieved 59.61% 83.18% (note that these are single runs due to

the size of ImageNet).

Combining class conditional methods [79][105] with a clustering algorithm

for filter pruning [16][117] is one aspect of the novelty of our method. It is worth

noting that we also contribute to a fully automated pruning pipeline. Manually

setting the compression rate for pruning is tedious and requires extensive trial-

and-error exploration. We have designed a fully automated pipeline where

there is no need to set a pruning rate and create an arbitrary number as

3



the threshold. However, one can argue that any form of pruning is trimming

”something” from the network and that ”something” can be interpreted as

a threshold. We will see that there is always an ’implicit’ threshold in the

examples below, even in methods that do not explicitly define one.

• Iterative Pruning: One can iteratively prune the least important parts

of a model [79] [99]. For example, we can repeatedly prune the smallest

magnitude weight in neural networks without a pre-defined threshold.

This is repeated until some criterion condition is met (like a drop in

validation accuracy). Here, one does not explicitly assign a pruning rate,

but one prunes some parts of the network based on the criterion.

• Random Pruning: This is less conventional, but one could theoretically

prune parts of a model randomly and observe the effects on performance

[60]. While not necessarily efficient, it’s a close example of pruning with-

out predetermined and explicit thresholds. However, one can argue that

after the random values are generated, we still have a threshold for which

the pruned network’s performance is acceptable.

• Explicit pruning: Similar to HRank, some models specifically select a

number (like 70% of filters or weights) and prune that much, or select a

specific volume of FLOPs they want to prune and prune that much specif-

ically. This is common in cases where one knows exactly the hardware

that the model will be implemented on, and prune can be specialized for

that hardware.

• Cluster Based Pruning: Another approach toward pruning is the use of

clustering algorithms to select a group of filters to prune, as in [16][117].

Our approach follows this strategy and automates the pruning pipeline

rather than requiring manual trial and error. The choice to include or

exclude a filter from this group implicitly defines a threshold.

As discussed, CRank falls into the last category, where the algorithm it-

self automatically sets an implicit threshold. Our method only requires trial

and error in determining an optimal number of clusters to divide the filters.

This process is also automated, as optimality is determined by maximizing
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the Silhouette score [87] on all clusterings, which is completed in minutes in

one batch. To the best of our knowledge, this is the only work that does fil-

ter pruning without manually assigning some form of threshold and is fully

automated.

The remainder of this thesis is organized as follows. Essential background

and related work is reviewed in Section II. In Section III, we discuss mathe-

matical preliminaries and formulate the pruning problem. Chapter IV presents

our proposed method. We present our experimental results, discuss our evalu-

ation methodology in Section V, and close with a summary and discussion of

future work in Section VI.
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Chapter 2

Background and Literature
Review

2.1 Artificial Neural Networks

2.1.1 Early Works

In 1943, McCulloch and Pitts [73] introduced a formal neuron model. The sci-

entific community considers This model a pioneering work in neural networks.

Their work laid the foundation for representing the activity of any neuron as a

logical statement and how physiological relations among neural activities cor-

respond to relations among propositions. This work paved the way for other

scientists interested in describing nets’ behavior in logical terms. Six years

later, in 1949, Donald Hebb proposed the Hebbian learning paradigm based

on observations of biological neural networks. [37]. In his work, he found that

information is stored in the weights of synapses, and learning occurs through

modifying these synapses. This learning rule is known as Hebbian learning or

Hebb’s rule. It explains synaptic plasticity, where neurons adapt during the

learning process. The theory is often summarized as ”Cells that fire together

wire together [92]” emphasizing the temporal precedence of firing.

The Rosenblatt perceptron [85] is a linear binary classifier proposed by

Frank Rosenblatt in 1958. The perceptron is a feed-forward neural network

that maps an input to an output using a weighted sum and an activation

function [19]. The perceptron weights are adjusted during training to minimize

the error between the output of the perceptron and the desired output. The

6
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Figure 2.1: Depiction of a simple Multi-Layer Perceptron

perceptron consists of one or more input nodes, a single output node, and a

set of weights. The input nodes receive input values, which are multiplied

by a weight. The weighted values are then summed and passed through an

activation function. The output of the activation function is the output of

the perceptron. The Rosenblatt perceptron has some limitations, such as its

inability to solve problems that are not linearly separable [94]. However, the

perceptron has paved the way for the development of more complex neural

networks, such as multi-layer perceptron and convolutional neural networks,

which can solve more complicated problems.

2.1.2 Multi-Layer Perceptron

To address the limitations of Rosenblatt’s perceptron, Multi-Layer Perceptron

was introduced. MLP also follows a feed-forward method that uses backpropa-

gation to reduce its error function. An MLP has at least three distinct layers,

namely the Input layer, one or more hidden layer(s), and the output layer.

Each layer can have an activation function. This is where a non-linear (or

piece-wise linear) function can be employed to make MLP capable of tackling

problems that need non-linearity. A simple MLP is shown in Figure 2.1:

The output of each layer is computed as a weighted sum of the inputs

7



from the previous layer, followed by an activation function. The output of the

MLP is the output of its last layer. To train an MLP, we need to define a loss

function that measures how well the MLP predicts the desired output for a

given input. A common choice is the mean squared error (MSE) loss, which

is defined as in Equation (2.1):

L(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (2.1)

Here, y represents the vector of actual outputs, ŷ denotes the vector of pre-

dicted outputs, and n stands for the number of samples.

The loss function is minimized using an optimization algorithm such as

gradient descent, which adjusts the MLP weights by updating them against the

gradient of the loss function concerning the weights. This gradient is computed

utilizing the calculus chain rule, enabling error propagation from the output

layer back to the input layer in a process known as backpropagation.

Forward Pass

To illustrate backpropagation, we first need to understand how the forward

pass works in an MLP. Consider a simple MLP with a single hidden layer and

an output layer. The hidden layer contains h neurons, and the output layer

contains o. The input layer comprises d features. The following Equations

represent the MLP:

z1 = W1x+ b1 (2.2)

a1 = f1(z1) (2.3)

z2 = W2a1 + b2 (2.4)

ŷ = f2(z2) (2.5)

8



Equation (2.2) is for the first (hidden) layer of the MLP. x is the input vector,

W1 is the weight matrix for the first layer, and b1 is the bias vector for the first

layer. The output of this operation, z1, is known as the pre-activation output.

Each neuron in the hidden layer computes a weighted sum of its inputs plus a

bias term.

After calculating the pre-activation output z1, an activation function f1(·)

such as sigmoid, tanh, ReLU is applied element-wise to z1, as is shown in

Equation (2.3). This yields the post-activation output a1, which is the final

output of the first layer. The activation function introduces non-linearity into

the model, which allows the MLP to model complex, non-linear relationships.

Equation (2.4) shows how the post-activation output from the first layer,

a1, serves as the input to the second (output) layer. Similar to the first layer,

each neuron in the second layer computes a weighted sum of its inputs plus a

bias term. Here, W2 is the weight matrix for the second layer, and b2 is the

bias vector for the second layer.

The final step in the forward pass is shown in Equation (2.5), which involves

applying an activation function f2(·) to the pre-activation output of the second

layer. This results in the predicted output ŷ. The activation function used in

the output layer depends on the specific task at hand. For binary classification,

a sigmoid activation function could be used to get a probability output; for

multi-class classification, a softmax function could be used to get a probability

distribution over the classes; for a regression task, no activation function (or

an identity function) could be used to get a real-valued output.

Computing the Gradient

To compute the gradient of the loss function with respect to each weight and

bias, we need to apply the chain rule repeatedly. For example, to compute

∂L
∂w2ij

, where w2ij is an element of W2, we have:

∂L

∂w2ij

=
∂L

∂ŷ

∂ŷ

∂z2

∂z2
∂w2ij

(2.6)

Where Equation (2.6) is the application of the chain rule. Here we are

9



finding the derivative of the loss function L with respect to a weight w2ij

in W2. This is done by computing the product of the derivative of the loss

function with respect to the predicted output ŷ, the derivative of the predicted

output with respect to its pre-activation output z2, and the derivative of the

pre-activation output with respect to the weight.

∂L

∂ŷ
= − 2

n
(y − ŷ) (2.7)

∂ŷ

∂z2
= ŷ(1− ŷ) (2.8)

∂z2
∂w2ij

= a1j (2.9)

∂L

∂w2ij

= − 2

n
(y − ŷ)ŷ(1− ŷ)a1j (2.10)

In the given Equations, eq (2.7) calculates the derivative of the Mean

Squared Error (MSE) loss function with respect to the predicted output.

Equation (2.8) is the derivative of the predicted output with respect to its pre-

activation value, and Equation (2.9) is the derivative of the pre-activation out-

put of the second layer with respect to a weight. This is just the post-activation

output of the first layer corresponding to that weight, since z2 = W2a1 + b2.

The derivative of the weighted sum with respect to a specific weight is just the

corresponding input. Lastly, Equation (2.10) is the final computed derivative

of the loss function with respect to a particular weight obtained by substituting

the previous expressions into the first Equation.

The gradient of the loss function with respect to the other weights and bi-

ases can be computed similarly using the chain rule. For instance, to calculate

∂L
∂w1ij

, where w1ij is an element of W1, we have:

∂L

∂w1ij

=
∂L

∂ŷ

∂ŷ

∂z2

∂z2
∂a1

∂a1

∂z1

∂z1
∂w1ij

(2.11)

∂z2
∂a1

= WT
2 (2.12)
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∂a1

∂z1
=

{
1 if z1i > 0

0 otherwise
(2.13)

∂z1
∂w1ij

= xj (2.14)

∂L

∂w1ij

= − 2

n
(y − ŷ)ŷ(1− ŷ)(WT

2 )f
′
1(z1)xj (2.15)

Once we have determined the gradients of the loss function with respect to

all weights and biases, we can update them using gradient descent as follows:

wkij = wkij − η
∂L

∂wkij

(2.16)

bki = bki − η
∂L

∂bki
(2.17)

In these update Equations, η is the learning rate, a hyperparameter that

determines how much we adjust the weights in the gradient direction for each

step.wkij and bki represent the elements of the weight matrices and bias vectors,

respectively.

The training process of a Multi-Layer Perceptron (MLP) consists of the

following steps:

1. Initialize the weights and biases with small random values.

2. For each training example, perform the following:

(a) Compute the output of the MLP.

(b) Compute the loss.

(c) Compute the gradient of the loss at each neuron with respect to the

weights and biases.

(d) Update the weights and biases for each neuron using its loss gradient.

3. Repeat step 2 until a stopping criterion is met. Some examples of this

stopping criterion can be a certain number of iterations or until the loss

falls below a certain threshold or does not improve significantly anymore.
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This whole process is typically repeated over multiple passes through the

training dataset, also known as epochs.

It should be noted that the specifics of this process, such as the activation

functions used in the hidden and output layers, the number of layers, the

number of neurons in each layer, the loss function, and the learning rate, are

hyperparameters that vary depending on the specific problem and the dataset

at hand.

Moreover, it’s also worth mentioning that while the basic principles behind

the training of MLPs have been known for several decades, the interest in them

has been revitalized in recent years thanks to the advent of deep learning. In

a deep learning context, MLPs (or, more generally, artificial neural networks)

can have many layers, and sophisticated techniques are used to train them, in-

cluding advanced optimization methods, regularization techniques to prevent

overfitting, and specialized initialization methods, among others. The next

section of this thesis will focus on analyzing Convolutional Network (CNN),

which has roots in the MLP but uses different linear algebra techniques com-

pared to MLP.

2.2 Convolutional Neural Networks

2.2.1 Brief History of CNNs

A Convolutional Neural Network (CNN) is a type of artificial neural network

designed to mimic the way the human brain processes visual data [52]. CNNs

are most commonly used in tasks such as image classification, object detection,

image recognition, and video analysis. For instance, they are widely employed

in facial recognition technologies, medical image analysis, self-driving cars, and

even in art and design for style transfer [50].

The early investigations into the mechanics of vision by neuroscientists

David Hubel and Torsten Wiesel [43] in the 1960s laid foundational insights

for computer vision. They conducted experiments on a cat’s visual cortex,

where the cat’s head was immobilized in a rig, and its visual cortex was ana-

lyzed using electrodes while various light patterns were displayed, as is shown
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Figure 2.2: Hubel and Wiesel stimulated a cat’s visual cortex and saw the
response of the brain to those stimulations - image from [10], original source
unknown

in Figure 2.2. Their research identified that specific neurons in the visual cor-

tex were responsive to particular light patterns, known as receptive fields, at

specific locations and sizes. They discovered that the visual cortex consists of

layered retinotopic maps sensitive to simple visual elements like spots, bars,

and edges, varying by position, size, and orientation. Further investigations

revealed that these receptive fields could be likened to local filters, processing

spatial frequency patterns across different bands and orientations. As they

probed deeper into the visual cortex, Hubel and Wiesel observed that these

basic patterns combined with each other to form more intricate patterns such

as corners and crosses, termed ”complex” receptive fields [10].

This discovery by Hubel and Wiesel brought them a Nobel prize and en-

couraged the researchers to expand and explore the idea further by mathemat-

ically modeling the receptive field and using convolution with Finite Impulse

Response digital filters on them, including Gaussian derivatives and Gabor

Functions [15], [86], [118].

The Neocognitron, introduced by Kunihiko Fukushima in 1980, is one of

the notable early works on CNNs [21]. It is a hierarchical, multilayered neural

network designed for pattern recognition, particularly for robust recognition

against variations in position, size, and orientation of patterns. The net-

work comprises multiple layers, including input, convolutional, and pooling

(subsampling) layers, leading to a hierarchical feature extraction mechanism.

Earlier layers detect simple features like edges in this structure, while deeper

13
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Figure 2.3: Neocognitron Architecture consisting of USl
and UCl

layers, along-
side a deep zoom on the convolution operation between layers - recreated image
from visualizations in [21].

layers identify more complex patterns. A critical aspect of the Neocognitron

is its use of trainable filters or kernels in the convolutional layers, which are

adjusted during the learning process to optimize pattern recognition. This

learning mechanism allows the network to automatically and adaptively learn

spatial hierarchies of features from input images. While the original paper

did not extensively use backpropagation as modern CNNs do, the principles

of gradient descent and learning feature representations form the basis of its

operation [21].

The Neocognitron’s architecture (shown in Figure 2.3) draws inspiration

from vertebrates’ visual systems, comprising alternating S-cell layers for ex-

tracting features and C-cells for handling positional variations. S-cells come

from simple cells or lower-order hypercomplex cells, and C-cells represent com-

plex cells or higher-order hypercomplex cells. This setup ensures that features

identified at initial levels progressively merge into more comprehensive repre-

sentations [21], [51]. The Equation below describes the output of an S-cell:

usl(n, k) = rl ·ϕ

(
σl +

∑Kcl−1

k=1

∑
v∈Al

al(v, k,K) · ucl−1(n+ v, k)

σl +
rl

1+rl
· b(k) · uvl(n)

− 1

)
(2.18)
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where

ϕ[x] =

{
x if x ≥ 0

0 if x < 0
(2.19)

In Equation 2.18, the notation usl(n, k) is the calculation of an exemplary

cell such as a S-cell in the lth stage. In the same Equation, n is a 2D indication

of the center of the receptive field of the cell’s position from the input layer.

Here, k being the serial number of the cell-plane is in the range of 1 ≦ k ≦ KSl

if it is for S-cell or 1 ≦ k ≦ KCl
if it is C-cell. The parameter σl is a non-

negative constant that shows the saturation level of the input-to-output in

the S-cell. al(v, k,K) shows the strength of the firing power of the connection

coming from ucl−1(n+ v, k) in the exact previous layer. Also, in 2.18, v shows

the spatial spread in the input connections from the previous cell to one S-

cell, and Al is the summation of the range of v. Another interesting note

about Neocognitron is the activation function. From Equation 2.19 we can

understand that this design is also using ReLu [1] which can be also written

as Equation 2.20:

ϕ(x) = max(0, x) (2.20)

It is the first instance where it was used in neural networks as an activa-

tion function [11], [96]. So the Neocognitron, which was initially developed for

recognizing handwritten Japanese characters, eventually laid the groundwork

for subsequent developments in convolutional neural networks (CNNs), influ-

encing models like LeNet-5 by Yann LeCun et al.[53], which further refined

and applied these concepts to practical applications such as handwritten digit

recognition.

2.2.2 CNN Architecture

Yann LeCun’s seminal work on Convolutional Neural Networks (CNNs), par-

ticularly the LeNet architecture (now considered LeNet-1) [55], revolutionized

the field of digital image processing. Year by year, he and his AT&T team im-

proved their model until three years later, in 1998, they proposed the LeNet-5
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Figure 2.4: Visualization of the MNIST Digits dataset. A sample from every
class of data is shown

Figure 2.5: Architecture of LeNet-5 showing feature maps and subsampling
and convolutional layers - image from [6], a recreation of [53]

[53] architecture that employs convolutional layers to extract hierarchical fea-

tures from images automatically, had pooling layers and dense layers and uti-

lized non-linear activation functions. The LeNet-5 laid the groundwork for all

modern CNN architectures. Similar to Fukushima’s work, LeNet was designed

explicitly for recognizing handwritten digits in images on a dataset introduced

in the same paper called Modified NIST or MNIST for short [53]. A sample

of digits in MNIST is shown in Figure 2.4. This dataset consists of 60000

training images and 10000 test images of handwritten digits of 0 to 9. Each

image in the dataset is a 28 by 28 pixel, 8-bit grayscale image 2.4).

The LeNet-5 [53] architecture included convolutional layers, subsampling

layers, which are now commonly referred to as pooling layers, and fully con-

nected layers, all using various activation functions. This combination of layers

has become a standard blueprint for many modern CNNs. Figure 2.5 from the

original paper shows the architecture design of LeNet-5.
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Next, we consider each of these types of layers.

Convolutional Layer

Convolutional layers use learnable kernels or filters to capture spatial hierar-

chies in image data by recognizing patterns and features (like edges, textures,

and more complex structures in deeper layers). This was a significant advance-

ment over previous neural networks that did not emphasize spatial hierarchies.

This task is achieved by employing a discrete convolution operation. The con-

volution layers in LeNet-5 used a discrete convolution operation [10]:

(f ∗ P )(x, y) =
N∑
v=1

N∑
u=1

f(u, v)P (x− u, y − v) (2.21)

This operation shows the 2D convolution of filter f(x, y), which is N ×N

across an image P (x, y) with horizontal axis x and vertical axis y. At each

position, it multiplies the filter’s weights, f(u, v), by the corresponding image

pixels, adds up these products, and places the sum at the position (x, y) in the

output image. Image positions outside the valid range are considered zero.

In LeNet-5, there are some adjustments specific to neural networks so that

the convolution operation becomes more suitable for image processing in neural

networks. Equation 2.21 is adjusted to the following:

a(i, j) = f

(
N∑
u,v

w(u, v)P (i− u, j − v) + b

)
(2.22)

Equation 2.22 shows how a convolutional network operates on a series of

2-D overlapping windows. p(i, j) represents a 2D input layer, w(u, v) is an

N × N receptive field that has been learned, b is a learned bias term, f(.)

refers to a nonlinear activation function, and a(i, j) denotes the output layer

that results from this process. Equation 2.22 shows the convolution operation

for a single neuron, but it can be scaled to benefit from multiple neurons in

parallel. This will produce a mapping of features with regard to each pixel,

where the number of features is defined by the depth of the feature maps.

For example, LeNet-1 had a depth of 4 [10]. The Equation 2.23 shows the

convolution operation for a network with D parallel receptive fields:
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ad(i, j) = f

(
N∑
u,v

wd(u, v)p(i− u, j − v) + bd

)
(2.23)

A convolutional network that uses this design benefits from the parallel

processing of each window using D receptive fields, producing a vector of

D feature values a⃗(i, j) for each position (i, j) in the image. Equation 2.23

extends the concept from Equation 2.22 by replacing a single learned receptive

field, w(i, j), with a vector of D learned receptive fields, wd(i, j), which results

in a vector of D output layers, ad(i, j). The output of this layer will be a series

of feature maps.

Subsampling Operation

Subsampling in CNNs, also known as pooling, reduces the emphasis on precise

feature positioning in convolutional layers. CNNs rely on fixed-size kernels or

filters to detect image features, but exact feature positioning isn’t necessary

for classification tasks. By using a pooling operation in a pooling layer, we

will force the network not to memorize feature positions so that CNNs become

more robust to small translations in the input image if they occur within the

receptive field’s window size. When pooling regions are contiguous and only

features from the same hidden units are pooled, the network achieves transla-

tion invariance. This means the same pooled feature remains active even if the

image undergoes minor translations.[102]. In addition, pooling reduces spa-

tial resolution by downsampling feature maps. This downsampling effectively

increases the diameter of the receptive field, allowing the network to consider

larger-scale features in later layers. In a subsampling layer, where each unit

has a fixed receptive field, operations are performed within these fields to gen-

erate new values for the output. This process helps reduce the dimensionality

of the feature maps while retaining important information. There are two

main types of pooling: Max pooling and Average Pooling [23].

Max pooling involves substituting a window of features measuring N ×

N with the highest value present within that window. Figure 2.6 shows the

max pooling operation applied to a 4 x 4 matrix. Look at the 2 × 2 green
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Figure 2.6: Max Pooling Operation

square situated in the top-left corner, which is replaced with the maximum

value among the four values contained within the square, which is 8.

In LeNet-5, however, the pooling used was Average Pooling. Average pool-

ing replaces the window of features with the average value rather than the

maximum. Max pooling is often preferred over average pooling in CNNs and

has shown slightly better performance [10]. Max pooling helps capture the

most distinctive features within a region, which can be crucial for effective

feature extraction. By retaining only the maximum values, max pooling fo-

cuses on preserving the most significant information, enhancing the model’s

ability to detect relevant patterns. You can see average pooling in action in

Figure 2.7.

Fully Connected Layer

Fully connected or dense layers usually come at the end of the network archi-

tecture. These layers are responsible for synthesizing the features extracted

by earlier convolutional and pooling layers together. By integrating these

features, fully connected layers facilitate decision-making processes such as

classification or regression. They achieve this by mapping the features onto an

output space, where each neuron can represent a class or a value. The inclusion

of non-linear activation functions within these layers also allows the network

to learn complex and non-linear relationships between the features. At the end
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Figure 2.7: Average Pooling Operation

of LeNet-5, we have two fully connected layers. These layers, equipped with a

softmax activation function, output the probabilities of the input belonging to

each class, highlighting the critical role of fully connected layers in transition-

ing from feature extraction to classification [23], [53]. In practice, this layer

is a normal feed-forward layer where all neurons of one layer are connected to

all neurons in the next and previous layers, and the output of each neuron is

calculated by Equations 2.2 to 2.5.

Activation Function

We have already introduced activation functions and have gone over why they

are fundamental components in deep learning, particularly in the architecture

of Convolutional Neural Networks. They help determine the output of neural

network nodes and introduce non-linear properties to the network, which are

crucial for learning complex patterns in data. Here, we go over some of the

most common activation functions. First, the Logistic activation [14] is given

by 2.24:

σ(x) =
1

1 + e−x
(2.24)

The ability of the logistic function to compress an infinite input range

into a bounded interval of [0, 1] was highly beneficial for early neural models,
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which often needed to predict probabilities or binary outcomes. The ease

of calculating the gradient of Logistic Sigmoid with respect to x is the main

reason that it was so desirable since it makes the backpropagation much easier.

Its derived form can be written as Equation 2.25:

σ′(x) = σ(x)(1− σ(x)) (2.25)

Next, we have the tanh() or Hyperbolic Tangent function, which was used

as an activation function in the convolutional layers of LeNet-5. Tanh is one

of the hyperbolic functions that have existed since the 1760s [7]. It was in-

troduced by Vincenzo Riccati and Johann Heinrich Lambert and it centers

outputs around zero, which can aid in convergence during neural network

training. The tanh() function is given by 2.26:

tanh(x) =
ex − e−x

ex + e−x
(2.26)

Softmax is one of the most common activation functions today, especially

for the output layer of a multi-class classification network. It helps to interpret

the outputs as probabilities for each class. The softmax function is given as:

Softmax(zi) =
ezi∑
j e

zj
(2.27)

Last but not least, we have the Rectified Linear Unit ”ReLU” [80], which

is one of the most popular activation functions today. ReLU was first intro-

duced in the Neocognitron but was largely ignored in favor of sigmoids like

the Logisitic or tanh() functions for many years. However, the sheer size of

deep neural networks made efficient operations vital, and the simple ReLU is

compiled directly to hardware operations, while sigmoids must be software-

simulated in most computer architectures. The ReLU activation is given by

Equations 2.19 or 2.20, or to keep it consistent with the other functions intro-

duced in this section as:

ReLU(x) = max(0, x) (2.28)
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ReLU is a linear function for positive values, but it introduces non-linearity

through its behavior at zero, where it suddenly transitions to outputting zero.

This non-linearity allows complex functions to be modeled by neural networks

using ReLU. Also, ReLU helps to mitigate the vanishing gradient problem,

which is common with sigmoid or tanh functions. This problem occurs when

gradients are passed through many layers during backpropagation and get

progressively smaller, effectively halting the network from learning. Since the

gradient of ReLU for positive inputs is 1, it does not diminish the gradient dur-

ing backpropagation, allowing deeper networks to be trained more effectively.

However, the problem of vanishing gradient still remains for the negative val-

ues in ReLU [14], so another variation of this function was proposed. Leaky

Rectified Linear Unit [70] or ”LReLU” is an extension to ReLU, with the idea

to address the aforementioned vanishing gradient issue. It’s range is from

(−∞,∞) and its formula is:

Leaky ReLU(x) =

{
x if x > 0

αx if x ≤ 0
(2.29)

In Equation 2.29 α is a small constant, typically α = 0.01, and it’s there

so that the activation function can utilize the negative values, even though

it reduces their effect by that coefficient. Figure 2.8 shows the plot of these

activation functions.

Why Move Toward CNNs

Convolutional Neural Networks (CNNs) and regular Neural Networks (like

MLPs) share similarities: both consist of neurons with learnable weights and

biases, use a differentiable score function from input to output, and employ

a loss function on the last fully connected layer. However, as an example, an

image of size 256×256 pixels with RGB channels, when flattened into a vector,

results in an input layer with 196,608 neurons. If the next layer has a similar

number of neurons, the weight matrix becomes impractically large, leading to

intense computational demands and memory requirements.

Also, MLPs treat input data as a flattened vector of features, so the network

would lose the spatial hierarchy or local structuring of the data. In the context
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Figure 2.8: Plot of Five Popular Activation Functions

of images, this would mean that MLPs will fail to recognize local patterns such

as edges, textures, or shapes. These concepts are crucial for understanding

images, which adds to the limitations of MLPs. Compared to MLPs, CNNs

are specifically helpful when it comes to image inputs, which leads to their

superior performance and scalability compared to regular networks [23], [57].

On the other hand, CNNs have filters arranged in 3D volumes (width,

height, depth). Each filter consists of multiple smaller matrices called kernels,

which hold the network weights. Filters in a layer are only connected to a small

region of the previous layer, called the receptive field, reducing the number of

connections and parameters. The section below will help you understand these

concepts in greater detail.

2.2.3 Visualization of Filters Inside a CNN

A convolutional layer in a CNN takes in the input feature maps denoted

by Xi and produces the output feature maps Xi+1. The input feature map

Xi is a three-dimensional tensor with dimensions ni (number of input chan-

nels) ×hi (height of input feature maps) ×wi (width of input feature maps).

The transformed output feature maps Xi+1 also have three dimensions of
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Figure 2.9: Visualization of Convolution Operation and Explaining Filters,
Kernels and Feature Maps

ni+1 × hi+1 × wi+1, and are the input feature maps in the next layer. This

transformation is done by applying ni+1 filters Fi,j to the ni input channels.

Fi,j is a 3D filter consisting of ni number of 2D k × k kernels where k is the

kernel size. There is a 1 : 1 relation between filters and output feature maps;

each filter produces one feature map. Combining all filters together, we get

the kernel matrix Fi ∈ Rni× ni+1× k × k. Figure 2.9 visualizes the convolution

operation.

As shown in Figure 2.9, kernel matrix Fi is applied on Xi producing output

channel Xi+1. In this Figure, the second filter in Fi and its subsequent feature

map of Xi+1 are shown in gold. As you can tell from the title of this work, our

focus and most of this thesis is about removing filters from a network, which

is called filter pruning. In Figure 2.9 The process is repeated with the second

kernel matrix Fi+1. No filters from Fi+1 will be pruned, thus neither are any

feature maps in Xi+2. However, the pruning in Fi has an ongoing impact on

the total number of FLOPs as a channel was removed in Xi+1. The overall

FLOPs reduction can be calculated as per [59].

This reduction in parameters is due to the shared weights of a convolution

layer, which simplifies the calculations of the network during the convolution
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operation that we discussed before. In the convolution layers, the filters pass

over the input image, computing dot products at every position. This process

significantly reduces the number of free parameters and, at the same time, al-

lows the network to focus on training filters that activate when they see specific

types of features. Also, the same filter (weights) is used across the entire input

in a convolutional layer, further reducing the model complexity and memory

requirements. Finally, the subsampling helps to reduce the dimensionality of

each feature map while retaining the most important information. These dif-

ferences make CNNs more efficient and scalable for image-processing tasks.

The architecture of CNNs eventually reduces the entire image into a single

vector of class scores, making them highly effective for image classification

tasks [10], [23], [57].

The effectiveness of CNNs in image-related tasks was first demonstrated by

AlexNet, a CNN model that won the ImageNet Large-Scale Visual Recognition

Challenge in 2012 [50]. Since then, a variety of CNN models have significantly

improved the performance of image and video-related tasks. In the next sec-

tion, we are going to take a look at two mainstream CNN architectures that

we use extensively in this work, namely VGGNet [95] (with plain structure)

and ResNet [33].

2.2.4 Modern Architectures

VGGNet

VGGNet, developed by Karen Simonyan and Andrew Zisserman of the Uni-

versity of Oxford’s Visual Geometry Group in 2014, is a pivotal convolutional

neural network architecture that underscored the significance of network depth

for image recognition tasks. Its design is notable for its simplicity, employ-

ing 33 convolutional layers stacked in increasing depth, a significant departure

from the shallower networks of the time, such as AlexNet with eight layers.

VGGNet, particularly in its VGG-16 and VGG-19 variants, showcased that

deep networks could achieve remarkable improvements in accuracy for image

recognition. The architecture requires a fixed input size of 224 × 224 RGB
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Figure 2.10: VGG-16 Original Architecture - image from [6]

images. It incorporates several key features, including the use of 33 filters

with stride and pad of 1, max pooling over a 2× 2 pixel window with stride 2,

and three fully connected layers at the end, where the first two have a depth

of 4096 each. The third is a classification layer whose number of channels

depends on the dataset. The terms stride, padding, and depth are common

hyperparameters found in CNNS. The depth (or channel) refers to the number

ofD feature maps a layer produces or receives, as in Figure 2.9. For example, if

we have a colored image, it has three channels at layer 0 (the input image): one

for the red channel, one for green, and one for blue. Similarly, a grayscale image

only has one channel with values between 0 and 255. Stride refers to the step

size S between window positions during the convolution operation. The stride

is set to 1 by default, meaning the filter moves one pixel at a time. However, for

larger windows, it is possible to define larger step sizes, which results in a more

compressed output feature map. Zero-padding involves adding a border of

zeros around the feature map to preserve the input size, typically denoted as N .

This technique ensures that the spatial dimensions of the output feature map

remain consistent with the input size, preventing significant reduction after

convolution. Both padding and stride play pivotal roles in determining the

output dimensions and the receptive fields of neurons in convolutional layers,
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influencing the network’s performance and feature extraction capabilities [10].

The design of VGG-16 and VGG-19 are very similar. The primary distinc-

tion between VGG-16 and VGG-19 lies in the number of convolutional layers

within each of their blocks. Specifically, VGG-16 is constructed with two con-

volutional layers in each block, whereas VGG-19 includes three convolutional

layers per block. Figures 2.11 and 2.10 show the VGG-16 architecture in de-

tail, which mainly focuses on the size of filters, but Figure 2.10 provides more

detail about the size of the feature maps and input and output dimensions.

Using the Rectified Linear Unit (ReLU) activation function throughout the

network further contributed to its effectiveness [10].
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Figure 2.12: The plots on the top compare two models with 56 layers and 20
layers trained on CIFAR-10. The top left shows the training error, and the
top right shows the test error. Plots on the bottom show models trained using
ImageNet, with the bottom left one showing plain neural networks with 18
and 34 layers. The bottom right image shows ResNet models of the same size.
The thin lines show training errors and the bold ones show validation errors.
As can be seen, the ResNet model has a lower error. - Image from [33]

ResNet

ResNet, introduced by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun in their seminal 2015 paper ”Deep Residual Learning for Image Recogni-

tion [33]” represents a significant advancement in the architecture of convolu-

tional neural networks (CNNs). Since AlexNet, the deep learning community

has been moving toward deeper layers, as they have been providing better

results. However, [33] showed that a deeper model with 56 layers trained on

CIFAR-10 performs worse than a model with only 20 layers. A similar experi-

ment was observed with models trained on the ImageNet dataset, with 34 and

18 layers. Image 2.12 shows those comparisons.

The observed problem was not due to overfitting; the 56-layer model had

worse performance in both training and test error. In contrast, if it was per-

forming well on training and poor on the test set, it could have been considered

as overfitting. So, the conclusion was that adding more layers can degrade the

performance. Also, the problem was not caused by vanishing/exploding gradi-
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Figure 2.13: Skip Connection Inside ResNet - Image from [33]

ents since batch normalization and some other techniques were used to prevent

that. In order to solve the degrading issue, in [33], researchers proposed a skip

connection, which is a shortcut from input to output, as is shown in Figure

2.13. After a few weight layers, a skip/shortcut connection adds the input x

to the output.

These elements allow the network to learn identity functions when nec-

essary, ensuring that deeper layers can perform at least as well as shallower

ones. To achieve this, the later layer in a deep neural network is stimulated

to learn the identity function so the output of that layer is equal to its input,

preventing them from degradation. In this case, if a layer is not helpful to the

overall performance of the model, the regularizations set in place will skip that

layer. By doing so, we are sending the network toward learning the residual

mappings [33], [47], [101]. By that, we mean the network assuming the layer

output is 0 or, as in Figure 2.13, F (x) = 0. Here, the assumption is that the

output of the initial learned layer is x, and our desired underlying mapping is

H(x). So, the learning of residual mapping will become:

F (x) = H(x)− x (2.30)

Using this architecture, a layer’s output is made up of two connections,
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and if we want to get the gradient of one layer, we can traverse there using

two different pathways, one the normal way and the other the skip connection.

∂L

∂x
=

∂L

∂H
× ∂H

∂x
=

∂L

∂H
×
(
∂F

∂x
+ 1

)
=

∂L

∂H
× ∂F

∂x
+

∂L

∂H
(2.31)

Equation 2.31 shows the calculation of the gradient of the loss for H(x) =

F (x) + x with respect to the input x. As can be seen in Equation 2.31, if

the normal connection’s gradient vanishes to zero, we would still have another

connection (the shortcut), which will help propagate the error.

This architecture supports the training of networks with an unprecedented

depth, which allows stacking more layers on top of each other and benefitting

from the skip connections. In our work, we use two versions of ResNet: ResNet-

50 and a modified version called ResNet-56. The introduction of ResNet signif-

icantly impacted deep learning and computer vision; it was the state-of-the-art

in image classification tasks on major datasets such as ImageNet on its intro-

duction [50].

2.2.5 Different Approaches Toward Using CNNs

When deploying convolutional neural networks (CNNs) for tasks such as im-

age recognition or classification, there are four primary approaches, each with

its own set of benefits and considerations [58]. Training a CNN from scratch

involves building and training a new network using a large dataset and sig-

nificant computational resources. This method allows for customization to

specific tasks but requires extensive data and computational power to train a

good neural network.

Using a convolutional network as a fixed feature extractor involves taking

a pre-trained CNN, removing its final classification layer, and using the rest of

the network to process new images and extract features. Here, the pre-trained

model will often be a ResNet or VGGNet trained on the ImageNet dataset,

which has learned to identify essential features of an image. These features

are then fed into a new classifier trained for the task at hand. This approach

leverages the pre-trained network’s ability to detect generic features that are

applicable across different image recognition tasks, offering a balance between
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efficiency and customization without the need for extensive training data or

computation.

Fine-tuning the convolutional network slightly modifies the previous ap-

proach by not only replacing the final classification layer but also adjusting

the weights of the pre-trained network’s layers through additional training.

Our method as well as [62] use this method. In this approach, we are still

using a pre-trained model, but we allow our model to modify some of the

layers and weights in the network and will not use it purely as a feature ex-

tractor. This approach is a hybrid between training from scratch and using a

pre-trained model.

Lastly, utilizing pre-trained models involves directly applying a pre-trained

CNN to a new task with minimal or no modification. This approach is the most

straightforward and requires the least amount of effort and resources, making

it ideal for tasks closely related to the original training purpose of the model.

It allows users to benefit from the powerful feature extraction capabilities of

large, complex networks without the need to train them from scratch.

2.3 Model Compression Techniques

Model compression is a very active research area in machine learning that fo-

cuses on reducing the size and computational requirements of neural networks

without significantly compromising their performance. As the deployment of

deep learning models on resource-constrained devices such as mobile phones

and edge devices becomes increasingly common, efficient model compression

techniques are essential. There are various methods that achieve this goal, in-

cluding 1) parameter quantization, 2) knowledge distillation, and 3) network

pruning. Here in the background section will briefly go over the first two to

give an intuition about them, however they fall out of the scope of this thesis

since our work focuses on neural network pruning which we will discuss in

detail the next chapter.

First, we start with parameter quantization. It is a widely used technique

that involves reducing the precision of a network’s parameters. Traditionally,
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neural networks use 32-bit floating-point numbers for weights and biases, but

this precision can be excessive for many applications. By quantizing these

parameters to lower bit-width representations, such as 16-bit or 8-bit inte-

gers, significant reductions in memory usage and computational power can be

achieved. Quantization can be applied at various levels, such as Post-training

Quantization, which involves quantizing a pre-trained model without addi-

tional retraining. For instance, [65] is an example of this approach, which

introduced an efficient 8-bit quantization technique that achieves minimal ac-

curacy loss. Then, we have Quantization-Aware Training, where the model is

trained with quantization in mind, which usually leads to better performance

than post-training quantization. This approach accounts for the quantiza-

tion error during training; however, it requires more resources to fine-tune the

model [93].

Secondly, we have Knowledge distillation, which involves training a smaller

”student” model to mimic the behavior of a larger ”teacher” model. The

student model learns from the ground truth labels and the teacher model’s

output or the soft targets, which contain more information about the data

distribution. This technique was popularized by Geoffrey Hinton, who showed

that student models can achieve performance close to teacher models while

being significantly smaller [38].
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Chapter 3

Preliminary & Problem
Formulation

3.1 Pruning Preliminaries

Early research on neural network pruning indicated that networks with too

many weights would not generalize effectively, whereas those with too few

weights could not represent the data [5], [13], [52]. To maximize generalization,

a balance is needed between the training error and the complexity of the

network. Hence, researchers in the fields of statistical inference [4], [84], [104]

and neural networks [9], [29], [78], [88] proposed jointly optimizing training

error and network complexity. Among several complexity measures, Vapnik-

Chervonenkis dimensionality [103] and description length[84] were two notable

approaches. In Optimal Brain Damage [54], LeCun et al. used the number of

non-zero free parameters as the chosen measure of complexity. Today, [54] is

regarded as one of the pioneering approaches to weight pruning.

3.1.1 Weight Pruning

The basic idea behind pruning was that we can express total risk R(W ), with

W being the parameter vector, as:

R(W ) = ðav(W ) + λðc(W ) (3.1)

where the ðav(W ) is a performance metric responsible for measuring the per-

formance of the model, i.e., Mean Squared Error. The second variable ðc(W )
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is the complexity penalty and is measured as a function of the weight vector.

λ is a regularization parameter, allowing us to balance the contributions of

ðav(W ) and ðc(W ) for a given dataset. This means that if we have, e.g., a

very large λ, the model’s complexity will be a determining factor for the model

risk, while if λ is zero, we do not care about the complexity of the model[94].

One measure of ðc(W ) in the equation 3.1 was proposed in [39], where the

complexity penalty term was defined as the squared norm of W or the weight

vector:

ðc(w) = ||w||2 =
∑

i∈ðtotal

w2
i (3.2)

In equation 3.2 ðtotal represents all the synaptic weights of the network. The

weights of the network are grouped into two categories. The first is the weights

with significant influence on the network’s performance, and the second is the

weights that have little or no impact on performance (called excess weights)

[94]. If there were no complexity regularization, these excess weights would

lead to poor generalization, so the complexity regularization sets the values of

the excess weights to zero to improve generalization [44].

In contrast, in [54], the authors show that the importance of a weight is

not only due to its magnitude; the ”saliency” of a weight also depends on its

location in the network. Thus, their objective was to prune weights that had

the lowest saliency while also adjusting the surviving weights to compensate

for the removed one (as saliency is usually not zero). For this, the network’s

loss function is modeled as the first two terms of a Taylor series approximation

[31]:

∆ðav = ð(w+∆w)− ð(w) =
1

2
∆wTH∆w (3.3)

The Optimal Brain Surgeon (OBS) algorithm eliminates one of the synap-

tic weights to reduce the incremental increase in the cost function ∆ðav as

described in Equation . Let wi(n) represent this specific synaptic weight. The

removal of this weight can be represented by the condition:
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1T
i ∆w + wi = 0 (3.4)

Where 1i is a unit vector with all elements set to zero, except for the i-th

element, which is set to one. The goal of OBS is to minimize the quadratic

form 1
2
∆wTH∆w with respect to the incremental change in the weight vector,

∆w, subject to the constraint that 1T
i ∆w + wi = 0, and then minimize the

result with respect to the index i [94]. To solve this constrained optimization

problem, we form the Lagrangian.

S =
1

2
∆wTH∆w − λ(1T

i ∆w + wi) (3.5)

where λ represents the Lagrange multiplier, H is the Hessian matrix and ∆w is

the change in weight vector . By differentiating the Lagrangian S with respect

to ∆w, and utilizing matrix inversion, the optimal change in the weight vector

w is determined as:

∆w = − wi

[H−1]i,i
H−11i (3.6)

Equation 3.6 shows how to adjust the weights in the network to minimize

the cost function while eliminating the specific weight wi. The optimal value

of the Lagrangian S for the element wi which is also the saliency of the given

weight can then be expressed as:

Si =
w2

i

2[H−1]i,i
(3.7)

We thus select the network weight with the lowest value of Si for pruning.

More recently, [72] identifies a subset of diverse neurons in a network and

blends the remaining neurons into the selected ones. [28] applies the ℓ1-norm

to prune weights, followed by fine-tuning the network. [2] prunes a network

layer-wise via convex optimization. All these methods suffer from the same

sparsity problem discussed in the introduction: the sparse weight matrices are

unsuitable for the acceleration techniques in modern hardware and software

[26].
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3.1.2 Filter Pruning

In filter pruning, the saliency of entire filters instead of individual weights is

determined, and entire low-saliency filters are deleted. This leaves the network

in a suitable state for modern acceleration techniques. Similar to what [28] had

done in weight pruning, Li et al. [59] also use ℓ1-norm and sort filters based on

this criterion. Then, they prune low-saliency filters and their corresponding

feature maps and the kernels in the next layer associated with those feature

maps (see Figure 2.9 in the previous chapter).

HRank

In HRank [62], Lin et al. use a different measure of saliency and again prune

both filters and the subsequent kernels. In 2020, Lin et al. [62] empirically

showed that a single filter usually generates feature maps with the same av-

erage rank, regardless of how many image batches the CNN has received. In

addition, they showed that feature maps with lower average rank contain less

information about the dataset and, therefore, are less impactful to the final

accuracy of the network.

However, in our investigations, we found substantial redundancy among the

filters that HRank preserves, and there was no similarity metric to differentiate

between the filters based on the feature maps. Also, in HRank, the number

of filters to be pruned in each layer is determined by manual trial-and-error,

which is contrary to our goal[62]. Since HRank’s approach toward pruning

is closest to what we have done, we will explore it in more detail during our

problem formulation in Section 3.2.

3.1.3 Class-Conditional Pruning

Class conditional pruning is a technique in neural networks that tailors the

process of pruning to specific classes in a classification task [79][105]. This tech-

nique enhances model efficiency and accuracy for targeted categories. In [79],

researchers proposed a solution for the problem of formalizing and quantifying

the discriminative capability of filters using the total variation (TV) distance
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between the class-conditional distributions of the filter outputs. Given that

the samples (X, u) are drawn from a distribution D, where X represents the

data point and u is the associated class label, they denote the class-conditional

distribution for class α as Dα. Here, X belongs to RN , indicating that the in-

put data point has N dimensions. Additionally, u is an integer class label that

lies within the set [Nclasses] ⊆ N. Based on that and the assumption that Q1

and Q2 are two probability measures supported on a d-dimensional real space

Rd, [79] calculates the TV distance as:

TV(Q1, Q2) = sup
A⊆Rd

|Q1(A)−Q2(A)| (3.8)

Given the lack of a closed-form solution for the Total Variation distance

in equation 3.8, when Q1 and Q2 are Gaussian distributions, [79] tries the

Hellinger distance as an alternative. This assumption is similar to before with

Q1 and Q2 as two probability distributions over Rd. However, q1 and q2 are de-

fined as their respective density functions. They defined the squared Hellinger

distance as [79]:

HELLD2(Q1, Q2) =
1

2

∫
Rd

(√
q1(x)−

√
q2(x)

)2
dx (3.9)

and the bounded TV Distance is given by [79]:

HELLD2(Q1, Q2) ≤ TV(Q1, Q2) ≤
√

2 · HELLD(Q1, Q2) (3.10)

and if Q1 and Q2 follow Gaussian distributions, such that Q1 ∼ N (µ1, σ
2
1I)

and Q2 ∼ N (µ2, σ
2
2I), then the squared Hellinger distance can be calculated

as [79]:

HELLD2(Q1, Q2) = 1−
(

2σ1σ2

σ2
1 + σ2

2

)d/2

e−∆ (3.11)

where

∆ =
∥µ1 − µ2∥2

σ2
1 + σ2

2

(3.12)
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3.1.4 Fair Pruning

While pruning reduces the size of the network with minimal reduction in ac-

curacy, it is prone to amplifying the existing model biases toward underrep-

resented groups [40]. Such biases exist where there are class imbalances such

as classifying chest X-rays [91] or reviewing resumes [12] where the intelligent

systems were shown to be biased against women (due to under-representation

in the training data). Pruning may damage the model’s performance by not

prioritizing parameters that preferentially impact the minority groups [77].

Fairness is a measure of how well a model treats different groups of samples,

such as different genders, races, or ages. This ”fairness” is measured via differ-

ent approaches in the literature [77], [100], [110], [114], but a general consensus

is a form of measuring class accuracies before and after pruning. [100] focuses

on datasets D composed of n data points (xi, ai, yi), with i ∈ [n], sampled

independently from an unknown distribution Π. Here, xi ∈ X represents a

feature vector, ai ∈ A with A = [m] (where m is a finite number) denotes

a demographic group attribute, and yi ∈ Y signifies a class label. For exam-

ple, in a face recognition task, xi might describe an individual’s headshot, ai

could indicate the person’s gender or ethnicity, and yi represents the individ-

ual’s identity. The objective is to learn a function fθ : X → Y , where θ is a

k-dimensional real-valued parameter vector that minimizes the empirical risk:

θ̂ = argmin
θ

J(θ;D) =
1

n

n∑
i=1

ℓ(fθ(xi), yi) (3.13)

Essentially, [100] tries to identify the parameter vector θ that optimizes the

predictor fθ for the given dataset, minimizing the average loss across all data

points. The measurement of fairness then comes from a term called ”excessive

loss”, which is basically the difference between the risk function of two models

- the pruned and unpruned risk function over a group a ∈ A:

R(a) = J(θ̄;Da)− J(θ̂;Da) (3.14)

Here, the samples (xi, ai, yi) are a subset of D, denoted by Da whose group

membership ai = a. So, the excessive loss in [100] is a change in predictive
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accuracy after pruning with differential impacts on different groups in the

training dataset. In a perfectly fair pruning system, the maximum excessive

loss for a model should be zero, or ξ(D) = 0 in equation 3.15.

ξ(D) = max
a,a′∈A

|R(a)−R(a′)| (3.15)

In [110], researchers propose the FairPrune method, which tries to achieve

model fairness through pruning. The idea in this paper is not only to reduce

the model size but also to remove the existing model biases after pruning. In

their works, they were using two public dermatology datasets, Fitzpatrick 17k

[25] and ISIC 2019 [48].

The Fitzpatrick 17k dataset is a dermatology dataset containing 16,577

clinical images, characterized by its diverse representation of skin types ac-

cording to the Fitzpatrick skin type classification ranging from Type I, pale

white skin, to Type VI, dark brown or black skin. Each image is annotated

with both a skin type and a specific diagnosis, covering a broad spectrum of

skin conditions from common ailments like acne, eczema, and psoriasis to more

rare disorders. ISIC 2019 is also a dermatology dataset consisting of 25,331

dermoscopic images of skin lesions, annotated with one of by eight different

categories. Each image is accompanied by clinical metadata such as patient

age, sex, and lesion location. An important feature of these datasets was that

the images represent a broad spectrum of skin types. Researchers used them

to address a critical gap in medical image datasets that predominantly feature

lighter skin tones, aiming to improve the performance and fairness of machine

learning models in dermatology. [110] followed the idea that different param-

eters inside a machine learning model have different importance for various

groups’ accuracy. Therefore they evaluate the significance of each parameter

by analyzing the second derivative of the parameters of a pre-trained model,

assessing their impact on model accuracy for different groups.

[77] also uses Fitzpatrick 17k and CelebA [67] datasets. The CelebA (Celeb-

Faces Attributes) dataset is a large-scale face attributes dataset with more

than 200,000 celebrity images, each annotated with 40 attribute labels. The
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images in CelebA cover large pose variations and background clutter, making

it suitable for a variety of tasks such as face recognition, face attribute recog-

nition, and generative modeling. While CelebA is mainly used in advancing

facial analysis technologies, in [77] looked at it as a binary problem with a

face being blond and non-blond blond, where 14.05% of the data were blond

people. In all these examples, the main focus of the research was to design a

fairness-first pruning method, meaning that the model’s fairness was a mea-

sure of how much to prune and how to prune. While we are following a similar

approach by comparing the accuracy of each class before and after pruning,

we only do this as a final test. Unlike the mentioned works, we did not aim

to remove the existing model biases. We checked the model’s final status to

ensure that after pruning, we have not made existing biases worse.

3.1.5 Using Clustering Methods in Pruning Algorithm

Clustering algorithms are also being used in pruning techniques [16][117]. [16]

introduces Cluster Pruning (CUP), which prunes similar filters by clustering

them based on features derived from both incoming and outgoing weight con-

nections. This is a three-step process where new features are created based on

weights and biases in the first step and are concatenated to a single value.

F̃
(l)
i,: = concat( W̃

(l)
i,: B̄

(l)
i , W̃

(l+1)
i,: ) (3.16)

In equation 3.16 we have dense layers l and l+1, W̃
(l)
i,: B̄

(l)
i are the incoming

features and W̃
(l+1)
i,: represents the outgoing features. This equation repre-

sents parameterization of the lth dense layer such that W̃ (l) ∈ Rm×n are the

weights and B̄(l) ∈ Rm are the bias, assuming that the neural network layer

has n;m and p filters respectively. However, t[16] formed the feature set for

the convolutional layers as:

F̃
(l)
i,: = concat(g(W̃

(l)
:,i,:,:), b

(l)
i , W̃

(l+1)
i,:,:,: ) (3.17)

where g(X̃:,:,:) = [∥X1,:,:∥F , . . . , ∥XC,:,:∥F ] (3.18)
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where W̃ (l) ∈ Rn×m×kh×kw shows the weight parameterization of the lth convo-

lutional layer and the bias vector is represented by B̄(l) ∈ Rm. In this notation,

n is the number of input channels, m is the number of filters in layer l, and

kh, kw represent the filter’s height and width, respectively. In equation 3.18,

the g : Rc×Rd×Re×Rc is the channel-wise calculation of the Frobenius norm

of X̃, any arbitary 3D tensor.

In the second step, using agglomerative clustering [108] and the feature

vector F̃
(l)
i,: , a dendrogram is created. A dendrogram is a type of tree dia-

gram that represents the arrangement of the clusters produced by hierarchical

clustering [32]. It illustrates the process of cluster formation by successively

merging or splitting clusters, with each node representing a cluster and each

edge representing the dissimilarity or distance between clusters. The height of

each node corresponds to the distance at which clusters are merged, providing

a visual summary of the clustering process and the relative distances between

clusters. Then, using a hyperparameter t, they select the threshold height

for selecting clusters from the dendrogram. The lower this t is set, the more

clusters will be selected. Finally, CUP selects a representative filter for each

cluster and removes the other filters.

3.2 Problem Formulation

3.2.1 Measuring Filter Importance

Let C i be the i-th convolutional layer of a pre-trained CNN. Feature maps are

the output of the kernel matrix Oi = { oi1, oi2, . . . , oini
} ∈ Rni × g × hi × wi ,

where the j-th feature map oij ∈ Rg × hi × wi is generated by Fi,j. Here, g,

hi, and wi are the size of input images, height, and width of the feature map,

respectively. We divide the filters in FCi in two groups: 1) a subset of filters

to be kept, denoted as ICi = { F i
Ii1
, F i

Ii2
, . . . , F i

Iini1

}; and 2) the remaining

filters that will be pruned, denoted as UCi = { F i
U i
1
, F i

U i
2
, . . . , F i

U i
ni2

}. Their

union (all filters in C i) will be denoted as WCi . I ij is the j-th filter in ICi , and

U i
j is the j-th filter in UCi , in the i-th convolutional layer. Also, ni1 and ni2

are the number of filters in ICi and UCi , respectively. Plainly, the following
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statements are true: ICi ∩ UCi = ∅, ICi ∪ UCi = WCi and ni1 + ni2 = ni

3.2.2 Filter Categorization

We consider all filters to initially be in ICi ; we seek to remove the less important

filters from it. We treat this as an optimization problem:

min
δij

K∑
i=1

ni∑
j=1

δijL
(
wji
)
, s.t.

ni∑
j=1

δij = ni2, (3.19)

In the above equation δij indicates which set Fi,j belongs to; if Fi,j is grouped

in UCi then δij = 1, and δij = 0 if it is assigned to ICi . L (·) is a measurement

used to define if a filter is important to the CNN or not, so by minimizing

Eq. 3.19 the goal of removing the ni2 least important filters from C i will be

met. Next, consider that per [116], every feature map has a different role in

the network. Instead of directly applying L (·) on the filters, we apply it on

the feature maps since they reflect both filter properties and the input images.

Thus, we reformulate Eq. 3.19 to:

min
δij

K∑
i=1

ni∑
j=1

δijEI∼P (I)

[
L̂
(
oij (I)

)]
,s.t.

ni∑
j=1

δij = ni2, , (3.20)

In Eq. 3.20, I is a sample input image from the distribution P (I), oij (I) is

the generated feature maps from the filter Fi,j and L̂ (·) is an estimate of the

information content of oij (I). Since L̂ (·) is proportional to L (·) in Eq. 3.19,

we interpret lower information content to mean the corresponding filter is also

less important.

3.2.3 Information Richness of Feature Maps

HRank adopts the rank of feature maps as the value of L̂ (·). The information

measurement is defined as:

L̂
(
oij (I)

)
= Rank

(
oij (I)

)
, (3.21)

In Eq. 3.21, Rank (·) is the rank of a feature map, given I as the input image.

Then, on the oij (I), a Singular Value Decomposition (SVD) is conducted:

oij (I) =
r∑

i = 1

σi uiv
T
i =

r′∑
i=1

σiuiv
T
i +

r∑
i=r′+1

σiuiv
T
i (3.22)
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Where r is equal to Rank(oij(I, :, :)), r
′ is less than r, and σi , ui and vi are the

top-i singular values, left singular vector and right singular vector of oij(I, :, :),

respectively. From the equation, it is clear that a feature map with rank r is

decomposable into: 1) a lower rank feature map with rank r′ 2) some extra

information not present in r′.
∑r′

i=1 σiuiv
T
i is a representation of the lower

rank feature map and
∑r

i=r′+1 σiuiv
T
i is the additional information. Thus,

higher-ranked feature maps contain more information than lower-ranked ones.

Therefore, the rank of a filter is determined from the rank of its feature map.
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Chapter 4

Methodology of CRank

4.1 Class Conditional Ranking System

Pruning models based on the feature maps was explored in [41], [62]. One of

the main experiments performed in HRank [62] compares the average gener-

ated ranking of a filter, calculated as the average ranking generated by SVD

applied on the corresponding feature maps. They found the ranking doesn’t

change when the size of input batches is increased from 1 to 50, and they math-

ematically prove that filters with lower ranks contain less information. In this

paper, we utilize both of these findings. We choose a very small batch size for

ranking generation, and we measure the information content of each filter as

in 3.21 and 3.22. However, we also show that the average generated rank does

not fully describe the information content of filters. Our experiments show

that, within a CNN layer, many filters perform well for some image classes

but not others, implying different impacts on network accuracy even when

average generated rankings are similar.

To measure these impacts, we calculate the rank of the feature maps by

selecting a random set of input images from each class, building a Class-based

Ranking (CRank), which is a feature matrix, to represent the information con-

tent of a filter. This process is depicted in 4.1. We first start by feeding batches

of images of the same class to the network. Consider a single convolutional

layer L as is shown in figure 4.1. In that layer, there are J filters that, upon

receiving images, would produce a feature map. We calculate the average rank

of feature maps produced by each filter per each image class, which will form
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Figure 4.1: CRank Framework

a vector from R1
1 to RC

1 for filter 1 and R1
J to RC

J for the last filter. This

results in a matrix of values that can be visualized, such as figure 4.2, where

we can see the performance of each filter with regard to the image classes it

received. Finally, a min-max normalization is applied to the CRank features

of each layer.

The example image in figure 4.2 shows the heatmap of the CRank matrix

for all filters in the first convolutional layer of VGGNet trained on CIFAR-10.

Each row is one filter, and each column shows the average generated rank of

filters as per Eq. 3.21 for various classes.

Then, we take those values’ average and standard deviation for all the

image batches. These new features are stored in the CRank Matrix for layer

L. Upon repeating this process for all the layers, we will have the CRank

tensor for all the filters in our pre-trained networks, which can later be used

to select filters. This process is done for all filters, so at the end of this feature

engineering phase, each filter in our neural network will have a number of

ranks (our new features). Note that the number of features is equal to the

number of classes of the dataset. In order to show the difference between our

method and HRank, we have visualized two CRank feature matrices of filters

18 and 27 on top of the heatmap. As shown in this figure, our class conditional
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Algorithm 1 Rank Generation

Require: I(c)← Per class batch of images
model ← A pre-trained model

Ensure: CRank ← Class Conditional Ranks of Filters

for each I(c) do
for conv. layer l do

for filter j do
CRankl

j ←Calculate the Filter’s Rank
CRankl

j ←Calculate Average and Standard Deviation of Each Fil-
ter for all classes

end for
end for

end for

ranking system yields a more precise definition of the information carried by

each filter compared to HRank, which only assigns a single value to the filter.

Our class conditional ranking system is summarized in algorithm 1 where

we select a fixed batch size of sample images from one class called I(c), where

I represents the image and (c) denotes the class. Then, for each convolutional

layer in our model, we calculate the numerical matrix rank produced by each

filter for all the input images. CRankl
j shows the rank of all batches of image

classes I(c) for filter j in layer l of the convolution layers. Then, we aggregate

those values in CRank. A sample of CRank can be seen in figure 4.2. Next, we

will apply a k-means clustering algorithm to the filters of each convolutional

layer using newly created CRank features for AVG and STD.

4.1.1 K-Means Clustering

Clustering is one of the fundamental approaches to pattern recognition. The

aim is to partition a finite set of data into K clusters (subgroups) such that

data points in the same cluster are very similar to each other and also highly

different from the data points in other clusters. There are many clustering

algorithms in the literature; one of the simplest and most popular is K-means

clustering [19], [71]. In K-means, K is a predetermined value representing the

number of distinct, non-overlapping clusters, and each data point can only

belong to one group. The algorithm optimizes a cost function given by:
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Figure 4.2: Heatmap of filter’s ranking based on different classes for the first
conv. layer of VGGNet for CIFAR-10.

J =
n∑

i=1

K∑
k=1

rik∥xi − µk∥2 (4.1)

where n is the number of data points, K is the number of clusters, xi is the

i-th data point, µk is the centroid of the k-th cluster, rik is a binary indicator

showing whether xi is assigned to cluster k, and ∥xi − µk∥2 represents the

squared Euclidean distance. The algorithm minimizes this function through

an iterative process that alternates between assigning each data point to the

nearest centroid and updating the centroids to the mean of the points assigned

to them. It continues until the centroids stabilize or a stopping criterion is

met. Algorithm 2 summarizes the above.

One important question remains: how to select the value of K, i.e., the

number of clusters. We will look at how to answer this question next.
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Algorithm 2 K-means Clustering

Require: Number of clusters K, dataset X containing n data points
Ensure: Clusters that minimize the within-cluster sum of squares
Initialize K centroids µ1, µ2, . . . , µK randomly from the dataset X
repeat
Assignment Step:
for each data point xi in dataset X do
ci ← argmink ∥xi − µk∥2

end for
Update Step:
for k = 1 to K do
µk ← 1

|{i:ci=k}|
∑

{i:ci=k} xi

end for
until centroids µk do not change significantly or a stopping criterion is met

4.1.2 Validating The Number of Clusters Via Silhouette
Score

There are various metrics available to determine the optimal value for K.

One such metric is the Silhouette score, which assesses how similar an object

is to its own cluster compared to other clusters [87]. The Silhouette score

provides insight into how well each object fits within its cluster compared to

other clusters, effectively measuring the quality of the clustering clusters[87].

Specifically, for a dataset divided intoK clusters, where Ci represents a specific

cluster and an element i belongs to Ci, the average intra-cluster distance, a(i),

can be calculated as follows:

a(i) =
1

|Ci| − 1

∑
j∈Ci
i̸=j

d(i, j) (4.2)

Here, |Ci| denotes the number of points in cluster i, and d(i, j) represents the

distance between points i and j in cluster Ci. Essentially, a(i) measures how

well i fits into its cluster, with lower values indicating better cohesion. Another

critical aspect is separation, which evaluates how dissimilar point i is from the

nearest cluster Ck that it does not belong to. This is quantified by b(i), the

minimum average distance from i to all points in a different cluster:
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b(i) = min
k ̸=i

(
1

|Ck|
∑
j∈Ck

d(i, j)

)
(4.3)

So b(i) is the minimum distance from i to all the data points in a cluster that i

is not a member of. The cluster with this min value is the next best-fit cluster

for i and is called the neighboring cluster of i. We can now computer the

Silhouette score of datapoint i as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, if |Ci| > 1 (4.4)

where s(i) = 0 if |Ci| = 1. The score s(i) ranges from −1 to +1, where a score

closer to 1 indicates a strong affiliation of the object to its cluster, delineated

by both tight intra-cluster cohesion and clear inter-cluster separation. A score

near 0 suggests the object is positioned on the boundary between two clusters,

and a negative score indicates potential misclassification of the object into its

current cluster, highlighting closer proximity to another cluster [46]. Through

analysis of silhouette scores for various K values (3 < K ≤ n, where n is

the total number of data points, the optimal K can be automatically selected

based on the highest s(i) value.

4.2 The Four CRank Regions

The core idea of our pruning algorithm is to use clustering to group filters

together, using the features in CRank. We can then examine the clusters

and select which ones will be included in ICi and which are relegated to UCi .

The ideal cluster in ICi would be a group of filters with the maximum possible

numerical matrix rank in all classes that would result in AV G = Max&STD =

0. While such a cluster is unlikely to exist, our selection criteria will essentially

be how closely a cluster approximates that ideal. Notice that this approach

also follows the fair pruning model; by seeking clusters that perform well on

all classes rather than just total performance, we minimize differential impacts

from pruning on different groups in our data.

We perform a cluster analysis of the CRank matrix, using the K-means

50



Dividing Point

Medoid

Cluster 1

Cluster 2

Cluster 3

Cluster 4 Preserved

Cluster 4 Pruned

Cluster 5 Preserved

Cluster 5 Pruned

Region 1 Region 2

Region 3Region 4

Avg

STD

0

1

1

Figure 4.3: Visualization of filters clustering based on overall AVG and STD
rankings.

algorithm, with the selection of k guided by the Silhouette score [87] discussed

above. We use the Scikit-learn [83] implementation of K-Means, which offers

several different distance functions (see Table 3.1). After some experimenta-

tion, we found that the other distance metrics made no discernable difference

in our results, so we proceeded with the primary Eudcliean distance in our

clustering.

identifier class name args distance function

”euclidean” EuclideanDistance •
√∑

((x− y)2)
”manhattan” ManhattanDistance •

∑
(|x− y|)

”chebyshev” ChebyshevDistance • max(|x− y|)
”minkowski” MinkowskiDistance p

∑
(|x− y|p)1/p

”wminkowski” WMinkowskiDistance p, w
∑

(|w ∗ (x− y)|p)1/p
”seuclidean” SEuclideanDistance V

√∑
((x− y)2/V )

”mahalanobis” MahalanobisDistance V or VI
√
((x− y)′V −1(x− y))

Table 4.1: Metrics intended for real-valued vector spaces

Figure 4.3 shows an example of CRank clusters, sorted by AVG and STD,

which we divide into four regions. Clusters with High Average and Low Stan-

dard Deviation (Region 2) are those that perform well for all classes; these are

the filters that we keep in the first round of pruning.
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Algorithm 3 Finding Unimportant Filters

Require: CRankl
j ←Calculated the Filter’s Rank

Ensure: UCi ← A selection of filters to be pruned

for conv. layer l do
Dividing point ← mean(CRankslavg, CRankslstd)
Nl ← number of filters in layer l
for K from 4 to Nl do
Perform K-means on CRankl

Calculate silhouette score of S(K)
end for
select best K using argmax S(K)
for each medoid of K-means do

If medoid is not in Region 2 then
Insert cluster’s filters to the unimportant filter set

else
for each remaining cluster Cl do

for each filter j in the cluster do
silCLj

← Calculate silhouette sample
end for
avgsilCl

← average silhouette of Cl
if silCLj

> avgsilCl
then

Add filter to Unimportant filter set
end if

end for
end else

end for
end for
Add remaining filters into the Important filter set

4.3 Automatic Compression

CRank is designed to determine optimal pruning without manual trial-and-

error, unlike [36], [42], [62], [64], [68]. [90] applies automatic compression, but

still requires manual trial-and-error exploration of a hyperparameter control-

ling the compression. As above, we cluster the filters based on their CRank

feature vectors and eliminate the clusters outside of the high-AVG, low-STD re-

gion. However, some redundancy likely persists in the remaining filters. Thus,

we next remove the filters whose individual silhouette score [87] is greater than

the average for the cluster. The idea behind this approach is that a high sil-
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Algorithm 4 Fine-Tuning

/* Fine-Tuning */
for epoch from 1 to 30 do

Pruning unimportant filters and model fine-tuning
endfor

houette score means these filters are densely packed in the cluster and highly

similar to each other and the cluster medoid. After this step, the remaining fil-

ters are all high-performing and should have little remaining redundancy. For

example, in figure 4.3, cluster 5 is generally the highest-quality cluster. How-

ever, the light blue filters are pruned due to their similarity to the medoid.

Our experiments show that removing these filters increases the pruning rate

without losing significant accuracy. Our full proposed technique is presented

in Algorithm 3.

Fine Tuning and Pruning

The final step of our method involves removing the filters in UC . This is done

during the fine-tuning step, during which we will update the model weights. If

the filter is in UC , we set the weights and biases of all neurons in the filter to 0,

as in algorithm 4 shows this procedure. The fine-tuning and pruning happens

at the same time in this step
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Chapter 5

Experiments and Results

5.1 Evaluation

In this section, we describe our experimental methodology and results. We

compare our CRank method against HRank using the same compression rates

in each layer in order to fairly evaluate the quality of filters being retained

by each method. We also compare the accuracy, number of parameters, and

total FLOPs of our reduced networks with the same-compression HRank, the

published results on HRank, and published results for other pruning methods.

To put the fairness of our method to the test, we calculate the class-based

accuracy of models before and after pruning. We compute the Pearson and

Spearman correlation coefficients [20] [112] to see if the pruned model’s class-

based accuracies are following a different pattern than the original pre-trained

model. We also tested the energy efficiency of CRank by comparing the power

consumption of pruned and unpruned models.

5.1.1 Experimental Setup

Datasets

In order to evaluate the performance of our method, we have chosen three

well-known benchmark datasets. The CIFAR-10 dataset [49] contains 60,000

32 × 32 pixel color images in 10 classes, with 6,000 images per class. The

images are split into 50,000 training images and 10,000 testing images. The

CIFAR-100 dataset [49] is similar to CIFAR-10 with the exception that it con-

sists ofs 100 classes with 600 images in each class divided into 500 training
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samples and 100 test samples. The ILSVRC subset of the ImageNet dataset

[89] contains over 1.2 million high-resolution images belonging to 1,000 classes.

The images in ImageNet are much more varied and complex than those in CI-

FAR datasets, making it a more challenging and computationally demanding

image classification problem.

Our empirical tests showed that input batch size does not affect the average

generated rank for feature maps, which confirms the observations in [62]. Thus,

we chose 50 randomly selected images per class for the CIFAR datasets and

ten randomly selected samples per class for the ImageNet dataset in order to

produce the average rankings.

Baseline Architectures

As we explained in the introduction, due to the similarity of our technique to

HRank and since it is one of the leading pruning methods, we selected HRank

as our baseline comparison point. We tested CRank and HRank pruning on

two mainstream state-of-the-art CNN architectures: VGGNet [95] (with plain

structure) and ResNet [33]. These two models are commonly used in evaluating

pruning techniques [36], [42], [62], [64], [68]. Our experiments on CIFAR-

10 covered both architectures, while on CIFAR-100, we only used VGGNet,

and for the ImageNet dataset, we only used ResNet architecture due to the

computational demands of the experiments. In addition to our comparison

with Hrank, we also compare CRank with other pruning techniques in the

literature.

Evaluation Protocols

To evaluate CRank and HRank pruning, we have followed a commonly ac-

cepted protocol: we calculate the number of remaining parameters and require

Floating-Point Operations per second (FLOPs) after pruning. In addition, af-

ter fine-tuning, the top-1 accuracy of the pruned model is calculated to give

a sense of the task-specific abilities of the pruned model. When reporting the

results for ImageNet, the top-5 accuracy is also presented (as this is frequently

done in the literature). The Pruning Rate (PR) for FLOPs and Parameters are
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indicated to show the models’ compression capabilities. In our experiments,

we also care about how similar our approach is to [62]. Therefore, we compare

the remaining filters in the ICi list between the two methods. The results on

the class-conditional accuracies and power consumption of each model are then

brought into their respective subsections after going through the accuracy and

flops.

Configurations

Our CRank and HRank pruning are performed in Pytorch [82]. For fine-tuning,

we have used Stochastic Gradient Descent (SGD) [97] with an initial learning

rate of 10−2 as our optimizer. Momentum is set to 0.9, and weight decay is

set to 5 × 10−4. Our CIFAR-10 and CIFAR-100 experiments were run on an

NVIDIA TITAN Xp GPU, whereas the ImageNet experiments were run on a

dual NVIDIA Tesla A100 system. The batch size for CIFAR datasets is set to

12,8, and for ImageNe,t, it is set to 750. Our fine-tuning runs for 30 epochs.

During this process, we reduce the learning rate by an annealing schedule.

This is highly similar to the fine-tuning procedures in [62]. As CRank pruning

is designed to automatically find the”best” pruning rate, while HRank accepts

the pruning rate as an input parameter, a head-to-head comparison can only

be accomplished by running CRank first and then setting the HRank pruning

rates of each layer to match those selected by the CRank algorithm.

5.1.2 Experiments Analysis

In this section, we will present and compare our accuracy and Pruning Rate

(PR) with other state-of-the-art methods. We compare our filter pruning

approach with various methods such as adaptive importance methods of GAL

[64], Zhao et al. [115], SSS [42], and a more head-to-head (apple-to-apple)

comparison with the state of the art pruning method of HRank [62]. We focus

on comparison with HRank as CRank shares a similar conceptual framework

to HRank, and there are fewer confounding factors when we attempt to judge

the quality of the pruning process itself.
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Table 5.1: CRank v HRank for 10 experiments on CIFAR-10

Arch. Method Mean STD

VGGNet
CRank 87.799 0.2110

HRank 87.527 0.1966

ResNet50
CRank 87.67 0.1192

HRank 86.878 0.2306

Similarity of Filters Within Layers

A key aspect of our study involves comparing our approach with HRank, par-

ticularly in terms of accuracy, compression rate, and the selection of filters

retained by each methodology. The pre-trained models used in the experi-

ments are identical in each set of experiments (HRank v.. CRank), so the

filters had identical features. This similarity of input features prompted our

investigation into the distinctiveness of our method in comparison to HRank.

A straightforward approach to understanding this difference was to examine

the specific filters each method preserves. For instance, in the VGG16 ar-

chitecture’s first convolutional layer, there are 64 filters. Based on CRank’s

automatic methodology tested on CIFAR-10, our objective is to prune 89%

of this layer, leaving only seven filters intact. A pertinent question arises:

when assigning an 89% pruning rate to VGG16’s first layer using the HRank

methodology, how many of the remaining filters would be similar to those re-

tained by our CRank method? Given the fact that pruning is done on the same

pre-trained model, thefilters” weights are identical at the rank generation and

filter selection steps. So we can actually answer this question when analyzing

the results for each dataset in their respective subsections in this work.

5.1.3 Results of CIFAR-10 Experiments

We first examine the head-to-head comparison with HRank in VGGNet and

ResNet trained on the CIFAR-10 dataset. Our experiments were repeated ten

times. Table 5.1 shows the mean and STD of the result of 10 runs of CRank

and HRank on CIFAR-10 on both VGGNet and ResNet architectures.

On the VGGNet experiments, the maximum accuracy of CRank was 88.08%
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Table 5.2: Similarity of Filters Preserved in VGG16 Architecture between
CRank and HRank using CIFAR10 Dataset

Compress Rate Total Filters Preserved Difference Similar

Conv 1 0.890625 64 7 7 0

Conv 2 0.8125 64 12 12 0

Conv 3 0.796875 128 26 25 1

Conv 4 0.835937 128 21 18 3

Conv 5 0.828125 256 44 37 7

Conv 6 0.851562 256 38 30 8

Conv 7 0.867187 256 34 31 3

Conv 8 0.882812 512 60 49 11

Conv 9 0.783203 512 111 68 43

Conv 10 0.771484 512 117 63 54

Conv 11 0.80468 512 100 52 48

Conv 12 0.845703 512 79 75 4

Conv 13 0.845703 512 79 75 4

and the minimum was 87.54%, whereasHRank’ss maximum was 87.78% and

its minimum was 87.20%. On the ResNet architectureCRank’ss maximum ac-

curacy was 87.87% and the minimum was 87.51%, whereasHRank’ss maximum

and minimum accuracy were 87.32% and 86.39% respectively.

We examine the statistical significance of our results using a two-tailed

t-test and the usual significance of α = 0.05. For VGGNet, the two-tailed p

value is equal to 0.0080, indicating that the difference between CRank and

HRank is statistically significant. For the ResNet experiments, the two-tailed

p value is less than 0.0001, indicating that the difference between CRank and

HRank is again statistically significant.

To show the difference between our filter selection procedure compared to

HRank, we analyzed the retained and pruned filters in both methods, as can

be seen in Table 5.2, with about 82.76% overall compression rate among all the

4224 filters in this network, only 186 of them were similar which means only
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Table 5.3: Comparing CRank with literature on CIFAR-10

Model FLOPs (PR) Parameters (PR) Acc %

VGG16 Architecture

VGGNet (Base) 313.73M (0.0%) 14.98M(0.0%) 93.96

L1 [59] 206.00M(34.3%) 5.40M(64.0%) 93.4

SSS [42] 183.13M(41.6%) 3.93M(73.8%) 93.02

Zhao et al [115] 190.00M(39.1%) 3.92M(73.3%) 93.18

Gal - 1 [64] 171.89M(45.2%) 2.67M(82.2%) 90.73

HRank [62] 63.18M(79.86) 4.90M(67.28%) 87.52

CRank (Ours) 63.18M(79.86) 4.90M(67.28%) 87.79

ResNet56 Architecture

ResNet56 (Base) 125.49M (0.0%) 0.85M(0.0%) 93.26

L1 [59] 90.90M(27.6%) 0.73M(14.1%) 93.06

NISP [74] 81.00M(35.5%) 0.49M(42.4%) 93.01

FilterSketch [61] 32.47M(74.4%) 0.24M(71.8%) 91.2

He et al. [36] 62.00M(50.6%) - 90.8

HRank [62] 32.52(74.1%) 0.27M(68.1%) 90.72

Gal - 0.8 [64] 49.99(60.2%) 0.29M(42.4%) 90.36

HRank [62] 23.87M(80.97%) 0.14M(83.53%) 86.87

CRank (Ours) 23.87M(80.97%) 0.14M(83.53%) 87.67

about 4% similarity between the two methods. A similar table for the ResNet

model could be constructed as well, but due to the large column size, the table

is not shown here. Nevertheless, for ResNet-56 on the CIFAR-10 dataset,t we

again found a similarity of about 4%. This low similarity shows that while

both in HRank and CRank, the rank of output feature maps are used as a

metric to rank the filter values, our class conditional method combined with

clustering techniques makes the method very different than HRank. Next, we

will compare the accuracies of our method with HRank and the literature to

see, aside from being different, how effective our method is.

Table 5.3 compares CRank with other notable filter pruning results. On

VGGNet, CRank pruning reduces the computational burden of the network

in FLOPs by 79.86%, which is considerably more than any other method.

The CRank also reduces the number of parameters in the network by 67.28%
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Table 5.4: CRank vs. HRank on ImageNet (ResNet56)

Arch. Method
Top-1
Acc %

Top-5
Acc %

FLOPs
PR

Param
PR

Freezing
Last Block

CRank 60.13% 83.51%
78.72% 63.13%

HRank 59.61% 83.18%

Pruning
All Layers

CRank 47.88% 74.57%
83.37% 78.39%

HRank 47.53% 73.95%

reduction. In the Resnet56 Architecture, CRank achieves the highest pruning

rate compared to all other methods, with 80.97% and 83.53% pruning rates

for FLOPs and Parameters, respectively. Note that we include the published

result for HRank pruning on ResNet56 in [62]; this is the entry for HRank in

the 4-th row from the bottom.

5.1.4 Results of ImageNet Experiments

Due to the computationally demanding nature of pruning tasks, we were not

able to have ten repetitions of our experiments on ImageNet, so we instead used

a single-split method to test the model. Table 5.4 compares CRank and HRank

in a head-to-head comparison. There are two sets of results, as we found that,

for the 1,000-class Imagenet problem, CRank’s automatic pruning removes

too many filters in the last layer of the CNN. Rather than create special

pruning rules for this dataset, we examine simply not pruning ”freezing””)

this layer, and compare that against allowing the automatic pruning to proceed

unchanged. In both cases, the top-1 and top-5 accuracy after CRank pruning

are greater than that of HRank pruning. Analysis of the retained filters shows

that CRank and HRank only retain 2.5% of filters in common. Thus, we again

see that the difference in accuracy between these approaches comes down to a

more effective selection of filters to retain.

A comparison between CRank and other filter pruning methods for the

ImageNet architecture is presented in Table 5.5. CRank reduces the required

FLOPs more than any other current method, even when freezing pruning

in the last layer. The trade-off is that other methods have superior top-1
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Table 5.5: Comparing CRank with literature on ImageNet

Model FLOPs (PR) Parameters (PR)
Top-1
Acc %

Top-5
Acc %

ResNet50 [68] 4.09B(0.0%) 25.50M(0.0%) 76.15 92.87

SSS [42] 2.82B(31.1%) 18.60M(27.1%) 74.18 91.91

He et al [36] 2.73B(33.3%) - 72.3 90.8

HRank [62] 0.98B(76.0%) 8.27(67.6%) 68.1 89.58

FilterSketch [61] 0.93B(77.3%) 7.18M(71.8%) 69.43 89.23

Gal-1 [64] 1.11B(72.9%) 10.21M(59.9%) 69.31 89.12

ThiNet-50 [68] 1.10B(73.1%) 8.66M(66.03) 68.42 88.3

CRank (Ours) 0.87B(78.72%) 9.4M(63.13%) 60.13 83.51

HRank [62] 0.87B(78.72%) 9.4M(63.13%) 59.61 83.18

CRank (Ours) 0.68B(83.37%) 5.51M(78.39%) 47.88 74.57

HRank [62] 0.68B(83.37%) 5.51M(78.39%) 47.53 73.95

and top-5 accuracy when they permit more computational effort. SSS, for

instance, achieves a top-5 accuracy of 91.91%, but the network requires 2.82

GFLOPs of compute.CRank’ss top-5 accuracy is 83.51% but requires only 0.87

GFLOPs of computing. This raises the question of how CRank would perform

under different choices of our automatic pruning criteria (e.g., removing fewer

high-performing but redundant filters in the second pruning step above). We

discuss this point in our Future Work section below. As for the similarity of

CRank and HRank, due to the number of layers in ResNet50, we again did not

duplicate the presentation of table 5.2. However, we found only about 2.5%

similarity between CRank and HRank pruning for this network.

5.1.5 Results of CIFAR-100 Experiments

We compare HRank and CRank pruning of a VGGNet that we trained to

achieve an accuracy of 69.57% Table 5.6 shows the mean and STD of the result

of 10 runs of CRank and HRank on CIFAR-100 on the VGG-16 architecture.

On the CIFAR-100 experiments, the maximum accuracy of CRank was

59.44%, and the minimum was 58.48%, whereas HRank’s maximum was 59.65%

and its minimum was 58.83%. We examine the statistical significance of our
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Table 5.6: CRank vs. HRank for 10 experiments on CIFAR-100

Arch. Method Mean STD

VGGNet
CRank 59.04 0.3050

HRank 59.30 0.2902

Table 5.7: Similarity of Filters Preserved in VGG16 Architecture between
CRank and HRank using CIFAR100 Dataset

Compress Rate Total Filters Preserved Difference Similar

Conv 1 0.828125 64 11 9 2

Conv 2 0.78125 64 14 10 4

Conv 3 0.8359375 128 21 18 3

Conv 4 0.765625 128 30 29 1

Conv 5 0.84765625 256 39 27 12

Conv 6 0.88671875 256 29 23 6

Conv 7 0.80078125 256 51 40 11

Conv 8 0.953125 512 24 20 4

Conv 9 0.90625 512 48 37 11

Conv 10 0.775390625 512 115 102 13

Conv 11 0.921875 512 40 39 1

Conv 12 0.943359375 512 29 28 1

Conv 13 0.943359375 512 29 28 1

results using a two-tailed t-test and the usual importance of α = 0.05. We

found that the two-tailed p value equals 0.967, indicating that the difference

between CRank and HRank is not statistically significant. This means that

in CIFAR-100 experiments, the comparison between our CRank method and

HRank ended up in a draw.

Table 5.7 is similar to table 5.2, where a head-to-head similarity comparison

between HRank and CRank is made. This table analyzes how similar the

filters retained by HRank and CRank are. In this example, the similarities

were even less than the CIFAR-10 tests with the same architecture, with only

about 1.72% similarity between the two models.
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Figure 5.1: VGG16 on CIFAR-10

Power Consumption

As discussed in the introduction, a primary motive behind our work is to ex-

tend the ability of edge devices that have limited resources. When it comes to

edge and portable devices, one of the most important resources is the battery.

So as another set of experiments, we next compare the power consumption of

our method to see if there is any reduction of power usage between the pruned

and unpruned models. To run these tests, we are using the NVIDIA-SMI in-

terface and log the power consumption of the device the models are running

on 5 seconds before and after an inference. The maximum capacity of the

NVIDIA TITAN Xp GPU, the hardware that we experimented with, was 250

Watts, with the ability to overclock.

As you can see from the figures, in all cases, the pruned model had a lower

power consumption. Especially in ImageNet, the unpruned model had many

jumps to nearly 300 Watts, overclocking our GPU. Meanwhile, the pruned

model was more stable and rarely exceeded 250 Watts. Also, in the VGG

experiments, both on CIFAR-10 and CIFAR-100, the pruned model had a

noticeably lower average power consumption than the unpruned model. This

average difference was less noticeable in ResNet on CIFAR-10, but we still

see an overall higher wattage for the unpruned model. This confirms the

effectiveness of pruning in reducing the model’s power consumption. It is worth
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Figure 5.2: VGG16 on CIFAR-100

Figure 5.3: ResNet-56 on CIFAR-10

mentioning that to run these tests; we used desktop-based hardware connected

to 120V AC power; the results for power-constrained hardware running on a

battery are important questions for future work.

Fair Pruning

1) Pearson and Spearman Correlation Tests: To test the fairness of our

method, we compare the accuracy of the VGG16 models on each class before
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Figure 5.4: ResNet-50 on ImageNet

and after pruning on CIFAR-10. In the conducted analysis, we computed

the Pearson and Spearman correlation coefficients to assess the relationship

between the accuracies of UnPruned and Pruned models [20], [112] when the

order of classes is constant. The Pearson correlation coefficient was found to

be 0.6602 with a p-value of 0.0378, indicating a moderate positive correlation

and statistical significance. Concurrently, the Spearman correlation coefficient

was higher at 0.7439, with a p-value of 0.0136, suggesting a stronger positive

correlation and also statistically significant. These results imply a significant,

positive association between the accuracies of the two models, where classes

that perform well or poorly in one model tend to exhibit similar performance

in the other.

Building upon this experiment, we also tested the ResNet-56 architecture

on CIFAR-10. The Pearson correlation coefficient was found to be 0.9763, with

a p-value of approximately 2.75 × 10−7. Similarly, the Spearman correlation

coefficient was 0.9658, accompanied by a p-value of approximately 1.40×10−6.

There is thus little difference between the relative performances of the pruned

vs. unpruned models.

Further correlation tests were conducted after extending this analysis to

the CIFAR100 dataset using the VGG16 architecture. Here, both the Pearson

and Spearman correlation coefficients indicated very strong positive correla-
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tions between the accuracies of UnPruned and Pruned models. Specifically,

the Pearson coefficient was 0.9185 with a p-value of approximately 2.84×10−41,

and the Spearman coefficient was 0.9239 with a p-value of approximately

1.11 × 10−42. These results underscore a stronger consistency in model per-

formance across the CIFAR100 dataset compared to the CIFAR10 dataset.

The high correlation coefficients and the extremely low p-values reflect a ro-

bust, statistically significant relationship, suggesting that the pruning process

retains the relative performance across different classes very effectively. This

consistency in model behavior for CIFAR100, evident from both linear and

rank-order correlations, highlights the effectiveness of the pruning method in

maintaining class-wise accuracy while reducing model complexity.

As the final test of class-conditional accuracies, we are going to look at

the Pearson and Spearman tests for ResNet-50 on ImageNet in two different

scenarios: 1) Unpruned model Vs. Fully Pruned Model and 2) Unpruned

model Vs. The model is pruned while freezing the last layer, as discussed in

section IV. The results of our analysis demonstrated significant correlations in

both scenarios.

For the Unpruned versus Pruned model comparison, the Pearson Corre-

lation Coefficient was 0.7715 with a p-value of approximately 1.98 × 10−198,

indicating a strong positive correlation. Similarly, the Spearman Correlation

Coefficient was slightly higher at 0.7959, with a p-value of 5.99 × 10−220. In

the Unpruned versus Frozen Data comparison, the correlation coefficients were

notably higher, reinforcing the effectiveness of our approach. The Pearson

Correlation Coefficient reached 0.8897, while the Spearman Correlation Coef-

ficient was 0.8978; in both cases, we had an extremely low p-value, which was

truncated by Python to simply 0.

2) Equalized Opportunity and Equalized Odds Tests: In addition

to Pearson and Spearman Correlation tests, we employ multi-class equalized

opportunity (Eopp) and equalized odds (Eodd) [30] to evaluate the fairness

of our model. These metrics help in assessing the model’s fairness by exam-

ining the differences in prediction rates between the two groups. Eopp0 and

Eopp1 focus on the fairness of negative and positive predictions, respectively,
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Figure 5.5: VGG16 on CIFAR-10

Figure 5.6: VGG16 on CIFAR-100

while Eodd provides a comprehensive measure of fairness by considering both

positive and negative predictions across different groups.

Equalized Opportunity (Eopp) consists of two components: Eopp0 and

Eopp1. Eopp0 measures the difference in True Negative Rate (TNR) between

the two groups, while Eopp1 measures the difference in True Positive Rate

(TPR) between the two groups. The True Positive Rate (TPRc
k) and True

Negative Rate (TNRc
k) for class k and group c are calculated as follows:

TPRc
k =

TP c
k

TP c
k + FN c

k

(5.1)
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Figure 5.7: ResNet on CIFAR-10

TNRc
k =

TN c
k

TN c
k + FP c

k

(5.2)

Where TP c
k , FN c

k , TN
c
k , and FP c

k represent the true positive, false negative,

true negative, and false positive counts for class k and group c. Eopp0 and

Eopp1 are then computed using the following equations:

EOpp0 =
K∑
k=1

|TNR1
k − TNR0

k| (5.3)

EOpp1 =
K∑
k=1

|TPR1
k − TPR0

k| (5.4)

Equalized Odds (Eodd) evaluates the combined differences between the two

groups’ True Positive Rate and False Positive Rate (FPR). The False Positive

Rate (FPRc
k) for class k and group c is calculated as follows:

FPRc
k =

FP c
k

TN c
k + FP c

k

(5.5)

The Eodd metric is computed by summing the absolute differences of TPR

and FPR between the groups for each class:

EOdd =
K∑
k=1

|TPR1
k − TPR0

k + FPR1
k − FPR0

k| (5.6)
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Table 5.8: Comparison of TPR, TNR and FPR - CIFAR10 on VGG16
Class TPR UnPruned TNR UnPruned FPR UnPruned TPR Pruned TNR Pruned FPR Pruned

airplane 0.952 0.992222 0.007778 0.890 0.984556 0.015444
automobile 0.964 0.997000 0.003000 0.933 0.993111 0.006889

bird 0.910 0.991778 0.008222 0.826 0.982667 0.017333
cat 0.871 0.986222 0.013778 0.733 0.975556 0.024444
deer 0.942 0.993667 0.006333 0.873 0.986222 0.013778
dog 0.908 0.988666 0.011333 0.814 0.979666 0.02033
frog 0.956 0.99522 0.004777 0.922 0.987889 0.01211
horse 0.963 0.99688 0.00311 0.922 0.99033 0.009666
ship 0.963 0.9958 0.004111 0.9388 0.99055 0.009444
truck 0.967 0.995333 0.004666 0.903 0.9911 0.009

So, to test the fairness of our method, we need to calculate the EOpp0,

EOpp1, and EOdd. First, let’s look at the True Positive Rate, True Negative

Rate, and False Positive Rates for the VGG16 architecture on CIFAR10 with

ten classes. The details of these values for both pruned and unpruned models

can be seen in table 5.8.

So based on equations 5.3, 5.4, 5.6 and the values from table 5.8, the

EOpp0, EOpp1 and EOdd for the VGG16 model on CIFAR-10 dataset will

be 0.0713, 0.6401, 0.7101. The small value of EOpp0 = 0.071 indicates that

the True Negative Rates between the pruned and unpruned models are very

close, suggesting minimal disparity in negative predictions. The EOpp1 =

0.6401 is higher than EOpp0, suggesting some disparity in positive predictions.

However, given the range that EOpp0 and EOpp1 could have, which is between

0 and 2k, with k being the number of classes, we can confirm that the pruning

is still fair toward all classes. The same goes for EOdd, with EOdd = 0.7101

and the range of [0, 4k] for 0 when both the TPR and FPR for the pruned

and unpruned models are identical for all classes. The maximum value of 4k

occurs when the TPR and FPR for one group are 0 and for the other group are

1 for each class, resulting in an absolute difference of 2 for each class. So, in

the case of pruning the VGG16 model trained on the CIFAR-10 dataset, these

values suggest that our pruning process is fair, with some minor disparity in

the True Positive Rates.

The same calculations can be done for our other experiments. For example,

in the CIFAR-100 dataset on a VGG16 backbone, we formed a similar table

to 5.8 but did not present it here due to a large number of rows. The results of
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Table 5.9: Comparison of TPR, TNR and FPR - CIFAR10 on ResNet56
Class TPR UnPruned TNR UnPruned FPR UnPruned TPR Pruned TNR Pruned FPR Pruned

airplane 0.945 0.991111 0.008889 0.875 0.987222 0.012778
automobile 0.971 0.996111 0.003889 0.946 0.992556 0.007444

bird 0.901 0.993000 0.007000 0.819 0.979222 0.020778
cat 0.848 0.986000 0.014000 0.730 0.977889 0.022111
deer 0.944 0.991556 0.008444 0.881 0.983000 0.017000
dog 0.908 0.988666 0.011333 0.814 0.979666 0.02033
frog 0.956 0.99522 0.004777 0.922 0.987889 0.01211
horse 0.963 0.99688 0.00311 0.922 0.99033 0.009666
ship 0.963 0.9958 0.004111 0.9388 0.99055 0.009444
truck 0.967 0.995333 0.004666 0.903 0.9911 0.009

the calculations are as follows: EOpp0 = 0.11191, EOpp1 = 10.3398, EOdd =

10.4519. The threshold of fairness differs case by case, but based on the

calculations in [30] as well the trade-off between fairness, the Fair Threshold

for EOPP is EOpp < 20 which is equal to 10% of the range, anywhere from

20 < EOpp < 50 or 25% of the range is Moderate Fairness, and anything above

50 < EOpp or above 50% of the range is unfair. The range percentage for

EOdd remains the same: EOdd :< 40 is fair (10%of the range), EOdd :< 40 is

moderately fair (10%of the range), and EOdd ¿ 100 is unfair. Based on these,

we see that our pruning method for VGG16 on CIFAR-100 is also within the

fair threshold.

Next, we move to the ResNet architecture and test the Equalized Op-

portunity and Equalized Odds for CIFAR-10 using ResNet-56. Table 5.10

shows the details of TPR, TNR, and FPR for each class. Based on equations

5.3, 5.4, 5.6 we obtain EOpp0Asweexplainedearlier,= 0.06698, EOpp1 =

0.60298, EOdd = 0.6699, which all stay within the Fair Threshold.

Finally, the same fairness evaluation is applied to the ImageNet dataset

with 1000 classes. For this dataset, the calculated values are as follows:

EOpp0 = 0.1773, EOpp1 = 161.46, and EOdd = 161.6373. Given the possible

ranges for these metrics (EOpp0 : 0−2000, EOpp1 : 0−2000, EOdd : 0−4000),

the pruning process for the ImageNet dataset with 1000 classes is again within

the Fair range. The low values for EOpp0, EOpp1, and EOdd indicate that

the pruning does not introduce significant unfairness, maintaining acceptable

levels of disparity in the model’s performance across different groups. Table

5.10 shows the summary of these experiments. In these experiments, all values
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Table 5.10: Table of All EOpp and EOdd Values
Model Dataset Number of Classes EOpp0 EOpp1 EOdd Is Fair
VGG16 CIFAR-10 10 0.0713 0.6401 0.7101 Yes
VGG16 CIFAR-100 100 0.11191 0.3398 10.4519 Yes
ResNet56 CIFAR-10 10 0.06698 0.60298 0.6699 Yes
ResNet50 ImageNet 1000 0.1773 161.46 161.6373 Yes

were within 10% of the possible range, which indicates our pruning method

was fair toward all classes.
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Chapter 6

Conclusion & Future Works

6.1 Thesis Summary

In summary, we have developed a method to rank the importance of filters

within a convolutional layer. CRank expands the concept of ranking feature

maps by considering the class-by-class performance of each filter. CRank also

automatically finds the pruning rate in each layer rather than requiring the

pruning rates to be input parameters, which results in a fully automated prun-

ing pipeline. In a head-to-head comparison with the state-of-the-art methods,

such as the HRank pruning algorithm, our CRank techniques retain filters

that perform significantly better than HRank in three cases and are tied in a

fourth. Our method is empirically fair as it does not discriminate against any

specific classes and is shown to be more efficient in power consumption than

the unpruned model.

6.2 Future Works

This work aimed to have a measuring system to identify the most critical filters

within a convolutional network. This idea can be further expanded beyond

CNN models and classification tasks. Nowadays, transformer architectures are

replacing many RNNs, and CNN techniques and pruning in transformers is an

active research topic [69]. We want to expand this work toward transformer

models and see how what we have learned here can be modified to prune

attention layers. Also, identifying critical filters has obvious uses in explainable
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AI, which we intend to explore.
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Appendix A

Code Sections

A.1 Code Snippets

A.1.1 Controlling the data

The code snippet below is the basic building block to load the data and shows

how we control the data so that later in the calculations, we can access a

certain class of data. In particular, it is the first step from algorithm 1, which

is denoted by

Require:I(c)← Per class batch of images (A.1)

This snippet is for CIFAR-10 and shows how we control the images of only

one class to be fed to the network during the ranking generation phase and

then move to another class, which will give us the class conditional approach

that we want.

1 de f get same index ( target , l a b e l ) :
2 l a b e l i n d i c e s = [ ]
3

4 f o r i in range ( l en ( t a r g e t ) ) :
5 i f t a r g e t [ i ] == l a b e l :
6 l a b e l i n d i c e s . append ( i )
7

8 re turn l a b e l i n d i c e s
9

10 f o r run in range (0 , 10) :
11

12 # Set params
13 pr in t ( ”run i s ” , run )
14 l a b e l c l a s s = run # runs f o r 1000 c l a s s e s
15

16 pr in t ( ’==> Prepar ing data . . ’ )
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17

18 pin memory = True
19

20 t r an s f o rm t ra i n = trans forms . Compose ( [
21 t rans forms . RandomCrop(32 , padding=4) ,
22 t rans forms . RandomHorizontalFlip ( ) ,
23 t rans forms . ToTensor ( ) ,
24 t rans forms . Normalize ( ( 0 . 4 914 , 0 .4822 , 0 . 4465) ,
25 // (0 . 2023 , 0 .1994 , 0 . 2010) ) ,
26 ] )
27 t r an s f o rm t e s t = trans forms . Compose ( [
28 t rans forms . ToTensor ( ) ,
29 t rans forms . Normalize ( ( 0 . 4 914 , 0 .4822 , 0 . 4465) ,
30 //(0 .2023 , 0 .1994 , 0 . 2010) ) ,
31 ] )
32

33 t r a i n s e t = CIFAR10( root=args . data d i r , t r a i n=True ,
34 // download=True , trans form=t ran s f o rm t ra i n )
35

36 t r a i n i n d i c e s = get same index ( t r a i n s e t . t a rge t s , l a b e l c l a s s )
37

38 t r a i n l o ad e r = DataLoader (
39 t r a i n s e t ,
40 ba t ch s i z e =128 ,
41 num workers=2,
42 pin memory=pin memory ,
43 sampler=torch . u t i l s . data . sampler .
44 //SubsetRandomSampler ( t r a i n i n d i c e s )
45 )
46

47 t e s t s e t = CIFAR10( root=args . data d i r ,
48 // t r a i n=False , download=True , trans form=t ran s f o rm t e s t )
49 t e s t l o a d e r = DataLoader (
50 t e s t s e t ,
51 ba t ch s i z e =128 ,
52 s h u f f l e=False ,
53 num workers=2,
54 pin memory=True ,
55 )
56

57 net = eva l ( args . arch ) ( compres s ra te=compres s ra te )
58 net = net . to ( dev i c e )

Code Snippet A.1: Controlling the data

A.1.2 Calculating The Rank

The code below focuses on only a part of the code that focuses on calculating

the rank of feature maps. Its mathematical expression was introduced in

section 3.2.3 with equation 3.20. This code is shown in algorithm 1. When

the data is fed to the model through a forward hook, we capture the feature
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maps of the desired convolutional layer. Then, we start our calculations and

get the matrix rank for each feature map. Finally, we take an average of those

feature maps and assign it to the filter.

1 de f g e t f e a tu r e hook ( s e l f , input , output ) :
2 g l oba l f e a t u r e r e s u l t
3 g l oba l entropy
4 g l oba l t o t a l
5 a = output . shape [ 0 ]
6 b = output . shape [ 1 ]
7 c = torch . t en so r ( [ torch . matr ix rank ( output [ i , j , : , : ] ) . item ( )
8 // f o r i in range ( a ) f o r j in range (b) ] )
9

10 c = c . view (a , −1) . f l o a t ( )
11 c = c . sum(0)
12 f e a t u r e r e s u l t = f e a t u r e r e s u l t ∗ t o t a l + c
13 t o t a l = t o t a l + a
14 f e a t u r e r e s u l t = f e a t u r e r e s u l t / t o t a l
15

16 de f t e s t ( ) :
17 g l oba l b e s t a c c
18 net . eva l ( )
19 t e s t l o s s = 0
20 c o r r e c t = 0
21 t o t a l = 0
22 l im i t = 5
23

24 with torch . no grad ( ) :
25 f o r batch idx , ( inputs , t a r g e t s ) in enumerate ( t r a i n l o ad e r )

:
26 # use the f i r s t 6 batches to es t imate the rank .
27 i f batch idx >= l im i t :
28 break
29 inputs , t a r g e t s = inputs . to ( dev i c e ) , t a r g e t s . to ( dev i c e

)
30 outputs = net ( inputs )
31 l o s s = c r i t e r i o n ( outputs , t a r g e t s )
32

33 t e s t l o s s += l o s s . item ( )
34 , p r ed i c t ed = outputs .max(1 )
35 t o t a l += ta r g e t s . s i z e (0 )
36 c o r r e c t += pred i c t ed . eq ( t a r g e t s ) . sum( ) . item ( )
37

38 prog r e s s ba r ( batch idx , l im i t , ’ Loss : %.3 f |
39 //Acc : %.3 f%% (%d/%d) ’
40 % ( t e s t l o s s / ( batch idx + 1) ,
41 //100 . ∗ c o r r e c t / to ta l , co r r e c t , t o t a l )

)
42

43 i f a rgs . arch == ’ vgg 16 bn ’ :
44 i f l en ( args . gpu ) > 1 :
45 r e l u c f g = net . module . r e l u c f g
46 e l s e :
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47 r e l u c f g = net . r e l u c f g
48

49 f o r i , c ov id in enumerate ( r e l u c f g ) :
50 c ov l ay e r = net . f e a t u r e s [ cov id ]
51 handler = cov l ay e r . r e g i s t e r f o rwa rd hook ( g e t f e a tu r e hook

)
52 t e s t ( )
53 handler . remove ( )
54

55 i f not os . path . i s d i r ( ’ . / rank conv / ’ + args . arch ) :
56 os . mkdir ( ’ . / rank conv / ’ + args . arch )
57 np . save ( ’ . / rank conv / ’ + args . arch + ’ / rank conv%d ’
58 // % ( i + 1) + ’ C l a s s ’ + s t r ( l a b e l c l a s s ) + ’ . npy ’ ,
59 f e a t u r e r e s u l t . numpy( ) )
60

61 f e a t u r e r e s u l t = torch . t en so r ( 0 . )
62 t o t a l = torch . t en so r ( 0 . )

Code Snippet A.2: Python Snippet For Calculating The Rank

A.1.3 Finding Unimportant Filters

Both of the code snippets below are Python implementations of algorithm 3,

which gives us the CRank matrix. The first divides the data points into 4

different regions based on their ranks’ average and standard. The reasoning

on why we do this has been explained extensively in section 4.2 The 4 CRank

Regions. The implementation is easy, and each point is compared with the

average STD and average AVG to see which region it belongs to.

1 de f reg ion maker ( pd datapoints 2d , x d iv ide r , y d i v i d e r ) :
2 r e g i on s = [ [ ] f o r x in range ( i n t (4 ) ) ]
3

4 f i l t e r n um i n r e g i o n = [ [ ] f o r x in range ( i n t (4 ) ) ]
5 f o r i , po in t s in enumerate ( pd datapo ints 2d . va lue s ) :
6

7 i f po in t s [ 0 ] <= x d i v i d e r and po in t s [ 1 ] <= y d i v i d e r :
8 r e g i on s [ 0 ] . append ( po in t s )
9 f i l t e r n um i n r e g i o n [ 0 ] . append ( i )

10

11 e l i f po in t s [ 0 ] > x d i v i d e r and po in t s [ 1 ] < y d i v i d e r :
12 r e g i on s [ 1 ] . append ( po in t s )
13 f i l t e r n um i n r e g i o n [ 1 ] . append ( i )
14

15 e l i f po in t s [ 0 ] > x d i v i d e r and po in t s [ 1 ] > y d i v i d e r :
16 r e g i on s [ 2 ] . append ( po in t s )
17 f i l t e r n um i n r e g i o n [ 2 ] . append ( i )
18

19 e l i f po in t s [ 0 ] < x d i v i d e r and po in t s [ 1 ] > y d i v i d e r :
20 r e g i on s [ 3 ] . append ( po in t s )
21 f i l t e r n um i n r e g i o n [ 3 ] . append ( i )
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22 re turn reg ions , f i l t e r n um i n r e g i o n

Code Snippet A.3: Region Maker Function

This second part of the code snippet focuses on the automatic compression

setting, where in order to avoid setting the compression rates manually, we

use clustering metrics and select a number of filters to be preserved. More

specifically, in algorithm 3, the portion that this code covers is from

for conv. layer l do (A.2)

until the end. Famous libraries such as Pandas and SciKit-Learn have been

utilized to do this task. The details of the rationale behind this snippet can

be found in section 4.2 and 4.3.

1 f o r LAYERNUMBER in range (1 , 56) :
2 # Dict o f ranks g i v e s me the avg rank o f each f i l t e r .
3 d i c t o f r a n k s = So r d i c t i ona ry ( )
4 f o r i in range ( num class ) :
5 d i c t o f r a n k s . add ( i , np . load ( path to ranks + p r e f i x +
6 // s t r (LAYERNUMBER) +’ C l a s s ’+s t r ( i )+ ’ . npy ’ ) )
7

8 d i c t o f n f e a t u r e s = n f e a t u r e p e r f i l t e r ( )
9

10

11 # Making Dict o f n f e a t u r e s to DataFrame (n == 10 or n ==
1000)

12 # Then turn i t i n to pandas dataframe
13 l i s t o f f e a t u r e s = np . z e ro s ( ( l en ( d i c t o f n f e a t u r e s ) ,

num class ) )
14 f o r i in range ( l en ( d i c t o f n f e a t u r e s ) ) :
15 f o r x in range ( num class ) :
16 l i s t o f f e a t u r e s [ i ] [ x ] = d i c t o f n f e a t u r e s [ i ] [ x ]
17 l i s t o f f e a t u r e s = np . array ( l i s t o f f e a t u r e s )
18 pd datapo ints nd = pd . DataFrame ( l i s t o f f e a t u r e s )
19 # (n == 10 or n == 1000)
20

21 # Normal iz ing Data ‘Column wise ‘
22 # Using Sklearn MinMaxSacaler method
23 s c a l e r = pr ep ro c e s s i ng . MinMaxScaler ( )
24 f o r i in range ( l en ( pd datapo ints nd . columns ) ) :
25 pd datapo ints nd [ i ] =
26 // s c a l e r . f i t t r a n s f o rm ( pd datapo ints nd [ i ]
27 // . va lue s . reshape (−1 ,1) )
28

29 # Use P i ck l e f i l e f o r bes t K.
30 # I t was made in goog l e c o l l a b . Set the Random State o f KMeans

to
31 // 6 so the r e s u l t s do not vary a l o t .
32 # The Fol lowing Decides the number o f K’ s and I am
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33 // read ing them from a Pi ck l e f i l e
34 with open ( c omp l e t e p i c k l e f i l e p a t h , ’ rb ’ ) as handle :
35 Bes t K in l ay e r s = p i c k l e . load ( handle )
36

37 # N−D Kmeans with 6 as random state , as i t should be
38 Km = KMeans( n c l u s t e r s = Be s t K in l ay e r s [LAYERNUMBER] ,
39 // random state=6, max i ter =10000) . f i t ( pd datapo ints nd )
40 df master = pd . DataFrame ( pd datapo ints nd . copy ( ) )
41 df master [ ’ data index ’ ] = pd datapo ints nd . index . va lue s
42 df master [ ’ c l u s t e r ’ ] = Km. l a b e l s
43

44

45 # Making Distance Matrix to f i nd n−D Medoids
46 # ( idea : CAN be rep laced by max s i l s c o r e in each c l u s t e r )
47 l i s t o f m ed o i d s = [ ]
48 f o r i in range ( Be s t K in l ay e r s [LAYERNUMBER] ) :
49 temp df = pd . DataFrame ( d f master [ d f master . c l u s t e r == i ] )
50 d f d i s t an c e mat r i x =
51 // pd . DataFrame ( d i s t ance mat r i x ( temp df . va lue s [ : , :

num class ] ,
52 // temp df . va lue s [ : , : num class ] ) ,
53 // index = temp df . index , columns = temp df . index )
54 // l i s t o f m ed o i d s . append (np . array
55 // ( d f d i s t an c e mat r i x . index )
56 // [ np . argmin ( d f d i s t an c e mat r i x . sum( ax i s=0) ) ] )
57

58

59 # a f l a g to i d e n t i f y the medoids
60 df master [ ’medoid ’ ] = 0
61 df master . l o c [ l i s t o f medo i d s , ’medoid ’ ] = 1
62

63 # Switching to 2−D Space to f i nd Star−Point and V i s ua l i z e
64 pd datapo ints 2d = pd . DataFrame ( columns=[ ’ avgs ’ , ’ s td s ’ ] )
65 f o r i in range ( l en ( pd datapo ints nd . index ) ) :
66 pd datapo ints 2d . l o c [ i ] = pd datapo ints nd . l o c [ i ] . mean ( ) ,
67 // pd datapo ints nd . l o c [ i ] . s td ( )
68

69 # Normalize the 2D Space
70 pd datapo ints 2d [ ’ avgs ’ ] =
71 // s c a l e r . f i t t r a n s f o rm ( pd datapo ints 2d [ ’ avgs ’ ] .
72 // va lue s . reshape (−1 ,1) ) . reshape ( pd datapo ints 2d . shape [ 0 ] , )
73

74 pd datapo ints 2d [ ’ s td s ’ ] =
75 // s c a l e r . f i t t r a n s f o rm ( pd datapo ints 2d [ ’ s td s ’ ] .
76 // va lue s . reshape (−1 ,1) ) . reshape ( pd datapo ints 2d . shape [ 0 ] , )
77

78 # adding more i n f o to d f master
79 df master [ ’ avgs ’ ] = pd datapo ints 2d [ ’ avgs ’ ]
80 df master [ ’ s td s ’ ] = pd datapo ints 2d [ ’ s td s ’ ]
81

82 new x d iv ide r = df master [ ’ avgs ’ ] . mean ( )
83 new y d iv ide r = df master [ ’ s td s ’ ] . mean ( )
84

85 # making a l i s t o f f i l t e r s with below AVG s i l h o u e t t e sample
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86 # values and adding those va l s as data to master df
87 s i l h ou e t t e s amp l e v a l u e s =
88 // s i l h ou e t t e s amp l e s ( d f master . i l o c [ : , : num class ] ,
89 // df master . c l u s t e r )
90 df master [ ’ s i l s amp ’ ] = s i l h ou e t t e s amp l e v a l u e s
91

92 # adding the mean s i l h o u e t t e o f each c l u s t e r
93 // as an i n f o to each f i l t e r
94 # des i gn ing c l u s t e r based ” c l u s t e r mean s i l ”
95 df master [ ’ c l u s t e r me an s i l ’ ] = None
96

97

98 # Cr i t i c a l part o f the code , a s s i gn r e g i on s to each f i l t e r
99 r eg ions , f i l t e r n o i n e a c h r e g i o n =

100 // reg ion maker ( pd datapoints 2d ,
101 // new x div ider , new y d iv ide r )
102

103 # Cr i t i c a l
104 df master [ ’ r eg i on ’ ] = None
105 f o r i in range (4 ) :
106 df master . i l o c [ f i l t e r n o i n e a c h r e g i o n [ i ] , [ − 1 ] ] = i
107

108 # To f i nd medoids in r eg i on 1
109 medo id s i n r eg i on 1 = np . array ( d f master . query ( ”medoid == 1 &
110 // reg i on == 1” ) [ ’ c l u s t e r ’ ] )
111

112

113 # Getting the c l u s t e r a s s o s s i a t e d with medoids in r eg i on one .
114 # In the new temporary tab le , we w i l l get the
115 // mean on a l l s i l samps ,
116 # Then w i l l a s s i gn them to t h e i r r e s p e c t i v e
117 // datapo int s in the master
118 f o r c l u s in medo id s i n r eg i on 1 :
119 temp df = df master . query ( ’ c l u s t e r == @clus &
120 // reg i on == 1 ’ )
121

122 temp mean = temp df [ ’ s i l s amp ’ ] . mean ( )
123

124 df master . l o c [ temp df . index . values ,
125 // [ ’ c l u s t e r me an s i l ’ ] ] = temp mean
126

127

128

129 # Comparing each datapoint s i l samp to t h e i r c l u s t e r s mean s i l
130 # I f a datapo int has None as i t s c l u s t e r mean ,
131 // i t means that datapo int i s not in r eg i on 1 ,
132 // which we w i l l not keep i t
133 # TypeError i s f o r comparinf None to f l o a t ,
134 // which i s not important
135 df master [ ’ below avg ’ ] = None
136 f o r i in d f master [ ’ data index ’ ] :
137 t ry :
138 df master . l o c [ i , ’ below avg ’ ] =
139 // df master . l o c [ i , ’ s i l s amp ’ ] <=
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140 // df master . l o c [ i , ’ c l u s t e r me an s i l ’ ]
141 except TypeError :
142 pass
143

144 f i n a l s t a y i n g f i l t e r s = [ ]
145

146 s t ay i ng da tapo in t s =
147 // df master . query ( ’ below avg == 1 ’ ) [ ’ data index ’ ] . t o l i s t ( )
148 s tay ing medo ids = medo id s i n r eg i on 1 . t o l i s t ( )
149 f o r elm in s t ay i ng da tapo in t s :
150 f i n a l s t a y i n g f i l t e r s . append ( elm )
151

152 f o r elm in stay ing medo ids :
153 f i n a l s t a y i n g f i l t e r s . append ( elm )
154

155 f i n a l s t a y i n g f i l t e r s . s o r t ( )
156

157 f i n a l s t a y i n g f i l t e r s = np . unique ( f i n a l s t a y i n g f i l t e r s )
158 d i c t o f f i l t e r s t o k e e p . add ( LAYERNUMBER,

f i n a l s t a y i n g f i l t e r s )
159

Code Snippet A.4: Automatic Filter Selection

A.1.4 Fine Tuning and Pruning

The code snippet below shows a portion of the fine-tuning step. The fine-

tuning step is very similar to training, with the difference that we will set

some of the weights to 0 and not allow them to update during fine-tuning. In

the code, the dict of masks holds the number of filters that we will keep, and

the rest will be pruned. This code is the implementation of 4 from the section

4.3.

1 f o r index , item in enumerate ( params ) :
2

3 i f index == cov id ∗ param per cov :
4 break
5

6 i f index == ( cov id −1) ∗ param per cov :
7 f , c , w, h = item . s i z e ( )
8

9 z e r o s = torch . z e r o s ( f , 1 , 1 , 1) . to ( s e l f . dev i c e )
10

11 f o r i in range ( i n t ( f ) ) :
12 i f i in d i c t o f mask s [ cov id ] :
13 z e r o s [ i , 0 , 0 , 0 ] = 1 .
14

15 e l s e :
16 pass
17
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18 s e l f . mask [ index ] = ze ro s # covo l u t i ona l weight
19 item . data = item . data ∗ s e l f . mask [ index ]

Code Snippet A.5: Fine Tuning and Pruning
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