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Abstract 
 

 

Background: SARS-CoV-2 infection during pregnancy has emerged as a significant concern 

due to its potential implications for fetal health. Viral infections can induce inflammatory 

responses and immune activation in pregnant individuals, which may harm the developing fetus 

through epigenetic alterations, potentially influencing gene expression patterns and developmental 

trajectories even without vertical transmission. While much remains to be understood about the 

specific effects of SARS-CoV-2 on pregnancy, previous research on other viral infections, such as 

influenza, Zika virus, and cytomegalovirus, has highlighted the potential for adverse outcomes, 

including asthma, metabolic disease, and mental illness. 

Methods: We used a gene expression dataset accessed on the Gene Expression Omnibus 

database (GSE 165193), including 14,748 cells from cases, and 11,222 cells from controls. In this 

case-control study, droplet-based single-cell RNA-sequencing (SC-RNA Seq) and T-cell receptor 

sequencing were performed on Cord Blood Mononuclear Cells (CBMCs) involving three-term 

gestation infants (>37 weeks) born to mothers with mild COVID-19 symptoms (cases) and three 

infants born to uninfected mothers (controls). Initially the differential expression of the 

"Reactome_Epigenetic_Regulation_of_Gene_Expression" collection was evaluated employing 

the linear combination test (LCT) on 25,970 cells including 18 types to discern epigenetic 

modulation comparing cases vs. controls. Subsequently, differential expression of biological 

pathway collection of Kyoto Encyclopedia of Genes and Genomes (KEGG) in CBMCs of 

COVID-19-infected mothers exhibiting epigenetic modulation explored by performing Linear 

Combination Test (LCT). 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165193
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Results: Our analysis revealed differential expression of genes associated with epigenetic 

regulation in specific cell types of cord blood from infants born to COVID-19-infected mothers 

compared to controls. Subsequent analysis using KEGG collections on SARS-CoV-2 infected 

samples identified disturbed biological pathways related to amino acid and lipid biosynthesis and 

metabolism. These pathways have previously been implicated in metabolic diseases, particularly 

cardiovascular disease. 

Conclusions: Maternal COVID-19 infection during pregnancy is associated with epigenetic 

modulation compared to healthy pregnant mothers. The identification of disturbed biological 

pathways in COVID-19-infected mothers suggests a link between maternal infection, epigenetic 

modulation, and the development of metabolic diseases in offspring. These findings underscore 

the importance of prenatal care and highlight potential targets for preventive interventions to 

mitigate long-term metabolic disease risk, specifically cardiovascular diseases (CVD) in neonates 

born to COVID-19-infected-mothers. 
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Chapter 1: Coronavirus 
 
Discovered over half a century ago, coronaviruses, characterized by their distinctive crown-

shaped morphology and affiliation with the Coronaviridae family, exhibit the capacity to infect a 

diverse array of organisms, encompassing humans, and induce acute and chronic respiratory, 

enteric, and central nervous system (CNS) pathologies. Their classification into four distinct 

genera (α, β, γ, δ) stems from serological cross-reactivity  (Malik, 2020; Tyrrell & Bynoe, 1966; 

Weiss & Navas-Martin, 2005).  

 

1.1 Human Coronaviruses (HCoVs)  

Within the four designated coronavirus genera (α, β, γ, δ), human coronaviruses (HCoVs) are 

categorized within the α-CoV group (including HCoV-229E and NL63) and the β-CoV group 

(encompassing MERS-CoV, SARS-CoV, HCoV-OC43, and HCoV-HKU1). The low-pathogenic 

human species include 229E, OC43, NL63, and HKU1 which cause mild upper respiratory tract 

infections (URTIs) such as the common cold, whereas SARS-CoV, MERS-CoV, and SARS-CoV-

2 are highly pathogenic and cause severe illness (Malik, 2020). 

Following the identification of a novel human beta coronavirus in 2002–2003, along with civet 

cats serving as its intermediate host in Guangdong Province, China, a paradigm shift occurred 

regarding the association of coronaviruses with severe human illnesses. SARS infection was 

documented in 29 countries across North America, South America, Europe, and Asia. The Centers 

for Disease Control and Prevention (CDC) documented over 8,000 cases and near 800 fatalities 

during the SARS epidemic, further amplifying the significance of coronaviruses in public 

consciousness (Kahn & McIntosh, 2005; Malik, 2020; Knobler et al., 2004).  

Since the identification of SARS-CoV, five additional human coronaviruses associated with 

respiratory illness have been reported (Table 1.  1). HCoV-NL63 was first detected in a Dutch 

infant aged seven months who presented with bronchiolitis and conjunctivitis (van der Hoek et al., 

2004). A senior citizen suffering from pneumonia was the source of HKU1's isolation (Woo et al., 

2005). MERS-CoV originated from a severe pneumonia case in a 60-year-old Saudi Arabian man 

and later spread to approximately 1800 individuals, with a fatality rate of around 35% (Mackay & 
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Arden, 2015; Widagdo et al., 2017). The latest coronavirus, SARS-CoV-2, responsible for the 

COVID-19 pandemic, was first identified in Wuhan, China, in December 2019 (Malik, 2020). 

Table 1.  1 Human Coronaviruses, Location, Year of Discovery 

Virus Location Year 

SARS China 2003 

HCoV-NL63 Netherlands 2004 

HCoV-NH* New Haven, CT 2005 

HKU1 Hong Kong 2005 

MERS-CoV Saudi Arabia 2012 

SARS-CoV-2 China 2019 

 

* HCoV-NH is the name given to the variant of NL-63 that was independently isolated in New Haven, Connecticut.  

 

1.1.1 Coronavirus Disease 2019 (COVID-19): Insights into 

Epidemiology, Clinical Manifestations and Complications 
 
The emergence of the COVID-19 pandemic was officially reported to the WHO on December 31, 

2019, following the detection of numerous pneumonia cases in Wuhan City, located in Hubei 

Province, China, with an unknown cause. Analysis of genome sequencing performed on 

respiratory secretions from affected individuals revealed a virus closely resembling SARS-CoV, 

which belongs to the Sarbecovirus subgenus within the β-coronavirus family, as the causative 

agent of the outbreak. The World Health Organization (WHO) officially named the novel 

coronavirus-induced pneumonia "Coronavirus Disease 2019" (COVID-19) on February 11, 2020, 

marking a significant moment in a global health crisis. The situation escalated further when the 

WHO declared COVID-19 a global pandemic in March 2020, following a surge in confirmed 

cases surpassing 100,000 worldwide. The rapid surge in COVID-19 cases during the early stages 

of the pandemic was attributed, in part, to the highly contagious nature of the virus and the limited 

availability of diagnostic tools and knowledge about the novel coronavirus and preventative 

measures (Hui et al., 2020; Malik, 2020; World Health Organization, 2020; World Health 

Organization, 2; 2020; J. T. Wu et al., 2020). The case fatality rate of COVID-19 varies 
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significantly depending on the country, ranging from 0 to over 20%. This variability is often linked 

to the presence of comorbidities such as diabetes and cardiovascular diseases, which can 

exacerbate the severity of the illness and increase the risk of mortality (Rahman et al., 2021; Sorci 

et al., 2020).  Although SARS-CoV-2 demonstrates a lower fatality rate in comparison to SARS-

CoV or MERS-CoV, its high transmissibility sets it apart. By February 2024, the World Health 

Organization (WHO) had reported approximately 775 million confirmed cases of COVID-19 

worldwide, with over 6 million fatalities across 235 countries. (WHO, 2024). As of now, the Virus 

Evolution Working Group of the World Health Organization has pinpointed several variants of 

SARS-CoV-2, notably including Alpha (B.1.1.7 lineage), Beta (B.1.351 lineage), Gamma (P.1 

lineage), Delta (B.1.617.2 lineage), and Omicron (B.1.1.529 lineage) variants, all classified as 

variants of concern (VOC) (Chen et al., 2023; Wu et al., 2022). The World Health Organization 

officially declared the end of the pandemic on May 5, 2023; however, it acknowledges that 

COVID-19 remains an enduring and significant health challenge. Given the ongoing emergence 

of new variants of the SARS-CoV-2 virus, there is a critical imperative to expand research 

endeavors to comprehensively understand the distinct impacts of this virus (WHO, 2023). 

 

During the incubation period, individuals infected with COVID-19 may experience a gradual 

respiratory response triggered by the virus. This period, characterized by the presence of the virus 

in the throat or nose before symptom onset, typically lasts 1 to 14 days. However, the emergence 

of variants has led to slight variations in the average length of the incubation period, with estimates 

ranging from 5.00 to 3.42 days (Wu et al., 2022). Following the incubation period, individuals 

infected with COVID-19 typically exhibit a range of symptoms often resembling other respiratory 

illnesses, making diagnosis challenging, including fever, respiratory symptoms such as cough and 

shortness of breath, dry cough, dyspnea, viral pneumonia, fatigue, and loss of appetite. 

Additionally, gastrointestinal symptoms such as diarrhea and vomiting may occur less frequently. 

In severe cases, patients may experience complications such as severe acute respiratory syndrome, 

heart failure, renal failure, hypercoagulation, acute respiratory distress syndrome (ARDS), septic 

shock, and death (Guo et al., 2020; Habas et al., 2020; Jin et al., 2020).  
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1.1.2 SARS CoV-2: Molecular Features and Routes of Transmission 
 
SARS-CoV-2, a member of the Betacoronavirus genus, possesses distinctive characteristics, being 

an enveloped, positive-sense, single-stranded RNA virus. Its genomic sequences share 

approximately 80% identity with SARS-CoV and around 50% with MERS-CoV (Lu et al., 2020). 

ACE2 serves as a cell entry receptor for SARS-CoV-2, initially identified in 2003 as the receptor 

for SARS-CoV, highlighting its multifaceted role in normal physiology and viral pathogenesis. 

(Lan et al., 2020; Li et al., 2003; Shang, Ye, et al., 2020; Walls et al., 2020; Wang et al., 2020). It 

is essential to highlight that the catalytic function of ACE2 is distinct from its role as a cell entry 

receptor for viruses like SARS-CoV-2. Inhibitors aimed at the catalytic site of ACE2 do not affect 

the virus-binding process, underscoring the complex interplay between receptor function and viral 

entry mechanisms. (Li et al., 2005). The genome of SARS-CoV-2 consists of 14 open reading 

frames (ORFs), with about two-thirds of its sequence devoted to encoding 16 non-structural 

proteins (nsp1–16), crucial components of the replicase complex. The remaining one-third of the 

genome encodes nine accessory proteins (ORF) and four structural proteins: nucleocapsid (N), 

membrane (M), envelope (E), and spike (S) proteins (Perlman & Netland, 2009; Zhang & Holmes, 

2020). The entry of viral particles into host cells, involving attachment to the cell membrane and 

subsequent fusion, is facilitated by the class I viral fusion S glycoprotein. Assembled as a 

homotrimer, the S protein is integrated into the virion membrane in multiple copies, giving it a 

distinctive crown-like appearance. Within virus-producing cells, the S protein of SARS-CoV-2 

undergoes cleavage by proprotein convertases. This results in the mature virion's S protein 

consisting of two non-covalently associated subunits: the S1 subunit, responsible for ACE2 

binding, and the S2 subunit, which anchors the S protein to the membrane. The S1 subunit exhibits 

a structure comprising four domains: the amino-terminal domain (NTD), the receptor-binding 

domain (RBD), and two carboxy-terminal domains (CTD1 and CTD2). Mutations within the RBD 

of the Spike protein of SARS-CoV-2 have been identified as critical factors enabling additional 

interactions with ACE2. These mutations enhance the binding affinity between the virus and its 

host receptor, potentially leading to increased infectivity compared to SARS-CoV (Wrapp et al., 

2020). The three receptor-binding domains (RBDs) at the top of the S protein trimer oscillate 

between two distinct states: an 'up' position that facilitates receptor accessibility and a 'down' 

position that limits receptor interaction (Song et al., 2018; Zhou et al., 2020). Moreover, the S2 

subunit undergoes significant conformational changes to facilitate membrane fusion upon 
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infecting a new cell (Fehr & Perlman, 2015; Hoffmann et al., 2020; Shang, Wan, et al., 2020). 

When the virus engages ACE2, it exposes the internal S2' site of the S2 subunit. Cleavage of the 

S2' site—either by transmembrane protease, serine 2 (TMPRSS2) on the cell surface or by 

cathepsin L in the endosomal compartment following ACE2-mediated endocytosis—results in the 

release of the fusion peptide initiating the formation of a fusion pore (Glowacka et al., 2011; 

Huang et al., 2006; Jackson et al., 2022; Shulla et al., 2011; Simmons et al., 2005). The efficiency 

of viral entry relies heavily on TMPRSS2 expression, as SARS-CoV can still infiltrate cells even 

when ACE2 levels are low, provided TMPRSS2 is present (Shulla et al., 2011). Once inside the 

host cytosol, the viral genome is translated into viral replicase proteins through ORF1a and 

ORF1b. These proteins are subsequently cleaved into individual non-structural proteins (nsps) by 

both host and viral proteases. The replicase components remodel the endoplasmic reticulum (ER) 

to generate double-membrane vesicles (DMVs). These DMVs serve as sites for viral replication, 

where both genomic and subgenomic RNAs (sgRNA) undergo duplication. Post-replication, the 

sgRNAs are translated into accessory and viral structural proteins, vital for assembling new virus 

particles (Harrison et al., 2020; Snijder et al., 2006; Wu & Brian, 2010). 

 

Human coronaviruses are mainly transmitted through respiratory droplets, although alternative 

routes such as aerosols, direct contact with contaminated surfaces, and fecal-oral transmission 

were also observed during the SARS epidemic (Otter et al., 2016; Yu et al., 2004).  

 

Animal-to-Human Transmission 

Current research suggests that the transmission of COVID-19 likely began in bats but may have 

been transferred to humans through intermediate animals, possibly originating from the seafood 

market in Wuhan City, Hubei province, China. Studies conducted by Xiao et al. highlight the 

essential role of an intermediary host in the transmission of SARS-CoV-2 to humans, given that 

coronaviruses originating from bats seldom infect humans directly  (Xiao et al., 2020).  

 

 

 



 
 

 6 

Human-to-Human Transmission  

The principal transmission mechanism from person to person is currently known to involve 

respiratory droplets expelled by infected individuals. Thus, actions like coughing and sneezing 

have the potential to disseminate SARS-CoV-2, thereby posing a risk of infection to those who 

are not yet infected (Ather et al., 2020; Carlos et al., 2020). Additionally, there is now 

substantiated evidence supporting the transmission of SARS-CoV-2 by individuals who exhibit 

no symptoms (asymptomatic) or are in the pre-symptomatic stage, diverging from the 

transmission dynamics observed for SARS-CoV (Zou, et al., 2020).  

 
Hospitals, like in the case of MERS-CoV, are recognized as significant sources of secondary 

transmission for SARS-CoV-2 due to the accumulation of infected individuals within their 

premises. Particularly concerning COVID-19, the presence of viral contamination in hospital 

wards where patients receive treatment has been identified as an additional route of transmission. 

A recent study by Santarpia et al. demonstrated the detection of SARS-CoV-2 in various everyday 

items within wards housing COVID-19-positive patients, as well as in air samples collected within 

hospital environments (Santarpia et al., 2020, Cai et al., 2020; Drosten et al., 2014; Sharma et al., 

2021) 

 

Maternal Transmission or Vertical Transmission 

Pregnancy is acknowledged as a critical period marked by notable immune and physiological 

adjustments to accommodate a genetically distinct fetus. Physiological adaptations encompass 

reduced lung capacity, heightened oxygen consumption, and adjustments in heart rate. Prior 

research has illustrated that changes in the immune system during pregnancy, favoring a 

dominance of the T-helper 2 (Th2) system, designed to protect the fetus, can render the mother 

more susceptible to viral infections. This is because viral infections are typically controlled more 

effectively by the Th1 system, highlighting a vulnerability in pregnant individuals (Dashraath et 

al., 2020). Pregnancy heightens the susceptibility to influenza infection, particularly among 

pregnant women with underlying health conditions and during the third trimester of gestation 

(Rasmussen et al., 2012). The severe acute respiratory syndrome coronavirus (SARS-CoV) and 

Middle East respiratory syndrome coronavirus (MERS-CoV) epidemics have been notably severe, 
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resulting in a high mortality rate among infected pregnant women, with approximately one-third 

of cases resulting in fatalities (Alfaraj et al., 2019; Wong et al., 2004). According to a systematic 

review including 435 studies, pregnant women infected with SARS-CoV-2 seem to face an 

increased risk of severe illness, as evidenced by higher rates of hospitalization and admission to 

intensive care units (ICUs) compared to the general population. Existing comorbidities, non-white 

ethnicity, chronic hypertension, pre-existing diabetes, advanced maternal age, and high body mass 

index are all identified as risk factors associated with severe COVID-19 outcomes during 

pregnancy. Pregnant individuals with COVID-19 are more prone to delivering prematurely and 

face a heightened risk of maternal mortality compared to those without the virus. Infants born to 

mothers with COVID-19 are at an increased likelihood of requiring admission to the neonatal 

intensive care unit (NICU) (Allotey et al., 2020).  

 

In a systematic review and meta-analysis encompassing 69 studies, which reported on over 54,413 

pregnancies affected by SARS-CoV-2 and resulted in the delivery of more than 30,840 newborns 

from infected mothers, analysis of tested samples showed that over 800 neonates tested positive 

for SARS-CoV-2. These findings suggest the potential for vertical transmission of SARS-CoV-2 

from mothers infected with COVID-19 (Musa et al., 2021). Vertical transmission (VT) or mother-

to-child transmission can transpire through diverse pathways, including the transplacental 

conveyance of microorganisms during gestation, exposure to blood and vaginal secretions during 

parturition, and via breastfeeding. Several determinants, such as maternal immunity, viral load in 

the placenta, and obstetric factors like preterm labor, low birth weight, fetal anomalies, and 

abortion, are strongly associated with an escalated likelihood of vertical transmission (VT). After 

delivery, exposure to infected caregivers emerges as the primary source of SARS-CoV-2 

contagion in neonates. Breastfeeding has not been linked to an augmented risk of delayed 

postnatal transmission, delineated as transmission occurring beyond 72 hours of life. 

Nevertheless, refraining from segregating neonates from infected mothers has been correlated 

with an elevated risk of delayed postnatal transmission. (Chambers et al., 2020; Groß et al., 2020; 

Kimberlin & Puopolo, 2021; Wu et al., 2020). The placental membrane serves as a barrier, 

segregating maternal and fetal blood circulation. Despite this protective function, certain viruses, 

and bacteria such as Zika, CMV, and rubella, possess the ability to breach this barrier, leading to 

direct adverse effects on the fetus. However, the precise mechanisms facilitating this traversal 
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remain unclear (Yazigi et al., 2017). While SARS-CoV-2 has been observed to transmit to the 

fetus through the placenta, like SARS, such transmission appears to be relatively rare (Chen et al., 

2020; Li et al., 2020, Murphy, 2020; Woodward, 2020; Barcelos et al., 2021; Jeganathan et al., 

2020; Musa et al., 2021). Various factors may account for the apparent low rate of intrauterine 

transmission. One possible explanation is a potential correlation between decreased expression 

levels of ACE2 and TMPRSS2, both necessary for SARS-CoV-2 entry into placental cells, and 

the observed low rate of vertical transmission (Dashraath et al., 2020; Levy et al., 2008; Prochaska 

et al., 2020). Nevertheless, owing to their size, IgM antibodies cannot traverse the placenta and 

typically emerge in circulation 3–7 days following infection. Consequently, detecting IgM in cord 

blood samples from newborns indicates a potential intrauterine infection. Dong et al. documented 

instances of newborns with heightened IgM levels despite negative SARS-CoV-2 tests, 

underscoring that while vertical transmission is infrequent, it does happen (Dong et al., 2020; Gee 

et al., 2021; Mirbeyk et al., 2021; Zeng et al., 2020). Although neonates may have a low likelihood 

of acquiring a SARS-CoV-2 infection, the maternal inflammatory response linked to it could pose 

a threat to their overall health in the long term (Kleeman et al., 2022). 

 

1.2 Infection During Pregnancy and Fetal Health 
 

Previous research has shown that maternal viral infections during pregnancy, even if they do not 

vertically transmit to the child, can lead to long-term effects on the infant. These effects may 

include aberrant development of the nervous or immune systems due to maternal immunological 

activation during pregnancy (Abu-Raya et al., 2016; Al-Haddad, Jacobsson, et al., 2019; Al-

Haddad, Oler, et al., 2019; Apostol et al., 2020; Matute et al., 2022). Severe infectious teratogens, 

such as those encompassed by the acronym TORCH (Toxoplasma gondii, rubella virus, 

cytomegalovirus, herpes simplex virus), can result in catastrophic structural anomalies in the fetal 

brain, including anencephaly, ventriculomegaly, deafness, and ocular injury (Al-Haddad, Oler, et 

al., 2019). A study by Benjamin et al. followed 179,152 children for 41 years and found that 

maternal hospitalization due to infectious disease increased the risk of autism and depression in 

offspring. Additionally, research has demonstrated a higher likelihood of schizophrenia 

hospitalization among individuals born to mothers who were pregnant during the peak of the 1957 

influenza epidemic compared to those born before the epidemic. Furthermore, a meta-analysis of 
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nearly 40,000 cases of autism spectrum disorder (ASD) revealed an elevated risk of ASD after 

prenatal exposure to infection, mainly when the mother required hospitalization due to the 

infection (Al-Haddad, Jacobsson, et al., 2019; Brown et al., 2001; Canetta et al., 2014; Jiang et 

al., 2016; Limperopoulos et al., 2008; Machón et al., 1997; Mednick et al., 1988). Maternal 

genitourinary infections increase inflammatory responses in maternal and fetal tissues. Infants 

born to mothers who experienced a urinary tract infection (UTI) during pregnancy appear to face 

a heightened likelihood of developing various lifelong health conditions, including neural and 

cognitive issues and asthma (Bavaresco et al., 2019; Leviton et al., 2016; Fichorova et al., 2015). 

Thus, the consequences of maternal infection on fetal development stand as a pivotal concern in 

the discourse on infections during pregnancy. Even in cases where direct fetal infection does not 

occur, maternal SARS-CoV-2 infection can still impact fetal development. 

 

1.3 Statement of Problem 
 

Despite recognizing pregnant women as a high-risk group for SARS-CoV-2 infection due to 

physiological changes, hormonal fluctuations, and compromised immunity, our understanding of 

the virus's precise impact on fetal development and long-term health outcomes remains limited. 

Current literature lacks comprehensive data on the short-term and long-term implications of 

maternal COVID-19 infection on newborns, particularly regarding epigenetic regulation of 

metabolic pathways. This knowledge gap hampers our ability to devise effective clinical 

management strategies to protect maternal and fetal health. Therefore, there is a need for further 

research to investigate the association between maternal COVID-19 infection and epigenetic 

regulation of metabolic pathways in newborn children. Addressing this gap will enhance our 

understanding of the interplay between viral infection and fetal development and inform evidence-

based interventions to mitigate adverse health outcomes in newborns. 

 

1.4 Insights into Epigenetics and Epigenetic Mechanisms 
 
The field of epigenetics, originating from the Greek prefix "epi-" meaning "beyond" along with 

"genetics" signifies its exploration of molecular mechanisms that control gene expression beyond 

the DNA sequence. The principal concept of "epigenetics" was initially introduced in 1942 by the 
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British biologist Conrad Waddington, who defined epigenetics as "the branch of biology which 

studies the causal interactions between genes and their products that result in the development of 

the phenotype" (Waddington, 2011). Epigenetics delineates a domain where gene expression 

undergoes heritable modulation without concomitant alterations in the underlying DNA sequence 

like mutations and translocations (Buenrostro et al., 2013; Harvey et al., 2018; Heard & 

Martienssen, 2014; Waddington, 2011, 2012; Zilbauer, 2014). The significance of epigenetic 

mechanisms is increasingly apparent as they navigate the interplay between the genetic code and 

environmental influences like diet, infections, and exposure to toxins like alcohol. Therefore, 

phenotypic variations, like disease onset, may be propelled by epigenetic mechanisms, 

notwithstanding the stability of cellular DNA sequences (Feil & Fraga, 2012). Commong 

conditions such as obesity and cardiovascular disease indicate that epigenetic mechanisms might 

be the elusive factor contributing to disease development through modifying gene expression 

patterns, potentially leading to adverse clinical consequences. This phenomenon is particularly 

pronounced during critical periods of human development, such as pregnancy and early infancy, 

when individuals are most vulnerable to epigenetic influences (Barua & Junaid, 2015; Zilbauer et 

al., 2016). Currently, three primary epigenetic mechanisms have been recognized that influence 

gene expression: DNA methylation, modifications to histones, and gene expression regulation of 

small, non-coding RNAs (e.g., micro RNAs). The DNA double helix coils around proteins known 

as histones, collectively forming a nucleosome. Nucleosomes serve as the fundamental units of 

chromatin, which ultimately constitute chromosomes. Chromatin can adopt either a condensed 

state called heterochromatin, housing mostly transcriptionally silent genes, or an open, active state 

known as euchromatin. For a gene to be activated, it must reside within euchromatin, where its 

DNA sequence is accessible to the cellular machinery responsible for initiating transcription. 

DNA methylation and histone modifications regulate the conformation of chromatin structure. In 

contrast, non-coding RNAs, such as microRNAs, regulate gene expression by binding to 

messenger RNAs, thereby preventing their translation into proteins (Bergman & Cedar, 2013; 

Doenecke, 2014; Fabian & Sonenberg, 2012; Vogel & Lassmann, 2014; Zentner & Henikoff, 

2013; Zilbauer, 2014).  
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DNA methylation  
 
DNA methylation is a valuable indicator for assessing specific epigenetic conditions and is 

catalyzed by the DNA methyltransferase (DNMT) family. In the human genome, there are five 

DNMT genes: DNMT1, DNMT2, DNMT3A, DNMT3B, and DNMT3L. DNMT1, DNMT3A, 

and DNMT3B possess functional methylation activities (Dong et al., 2001; Edwards et al., 2017; 

Lyko, 2018; Ren et al., 2018). In the methylation process, methyl groups are added from S-

adenosine methionine to the 5' position of cytosine (5C), forming of 5-methylcytosine (5mC). 

Cytosine methylation modulates gene transcription by directly or indirectly interfering with the 

transcriptional machinery (Lewsey et al., 2016). In the mammalian genome, DNA methylation 

predominantly occurs at cytosine residues followed by guanine residues, a pattern known as CpG 

dinucleotides. These methylation patterns serves crucial roles in diverse biological processes 

characterized by distinct molecular functions (Bird, 1986). For instance, DNMT1 is integral to 

genomic imprinting, heterochromatin formation, and gene silencing. In the context of X 

chromosome inactivation, DNA methylation plays a pivotal role in long-term gene silencing, 

thereby contributing to cellular memory (Park & Kuroda, 2001). Apart from its methylation 

activity, DNMT1 is recognized for its involvement in the DNA damage response. Evidence from 

studies on B cell differentiation and induced DNA damage indicates that DNMT1 can function as 

a genome protector and an early responder to DNA double-stranded breaks (DSBs) in both B cells 

and colon cancer cell lines, regardless of its catalytic activity (Eads et al., 2002; Ha et al., 2011; 

Shaknovich et al., 2011). Furthermore, DNMT3a and DNMT3b are primarily essential for 

embryonic development and are instrumental in initiating de novo methylation across the genome 

(Arora & Tollefsbol, 2021; Hoang & Rui, 2020; Veland et al., 2019).  

 

 

Post-translational modifications (PTM) of histone proteins  
 

PTM of histone proteins represent another crucial epigenetic mechanism involving histone 

proteins comprising a nucleosome core, N-terminus domain, and C-terminus domain. Post-

translational modifications such as acetylation, methylation, ubiquitylation, and phosphorylation 

occur on specific residues of the N-terminus tails, exerting significant influence over cellular 

processes, including transcription, repair, and replication (Corujo & Buschbeck, 2018; Izzo & 
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Schneider, 2016; Zhao & Garcia, 2015). These modifications alter the functionality of chromatin, 

resulting in either activation or repression depending on the specific residues undergoing 

modifications (Lawrence et al., 2016). For example, trimethylation of lysine four on histone H3 

(H3K4me3) is associated with transcriptionally active gene promoters, while trimethylation of 

H3K9 and H3K27 occurs on transcriptionally suppressed gene promoters (Kouzarides, 2007; 

Ricketts et al., 2019). These histone variations are dynamically regulated by enzymes that add or 

remove covalent changes to the histone proteins, such as Histone acetyltransferases (HATs) and 

histone methyltransferases (HMTs) that add acetyl or methyl groups, respectively, while histone 

deacetylases (HDACs) and histone demethylases (HDMs) remove either acetyl or methyl groups 

(DesJarlais & Tummino, 2016; Woo et al., 2017). Alterations in histone patterns can lead to either 

transcriptional activation or silencing, with specific modifications such as H3K4me2, H3K4me3, 

H3R17me, H3K36me3, and H4R3me associated with activation, and H3K9me3, H3K27me3, 

H4K20me1, and H4K20me3 linked to transcriptional silencing (Arora & Tollefsbol, 2021; Hu et 

al., 2019). 

 

Noncoding RNA (ncRNA)  
 

ncRNA is increasingly recognized for its significant role in coordinating gene expression and 

cellular processes (Holoch & Moazed, 2015). One of the most extensively studied noncoding 

RNAs (ncRNAs) is microRNAs (miRNAs), consisting of short RNA sequences. Typically, 

miRNAs inhibit the translation of messenger RNA (mRNA) into protein by binding to a short 

complementary region, resulting in miRNA-induced silencing complex (miRISC) (Zilbauer et al., 

2016). Research has indicated that epigenetic mechanisms, including DNA methylation, not only 

govern the transcription of protein-coding genes but also influence the expression of miRNAs. 

Conversely, miRNAs can modulate the expression of key epigenetic regulators, such as DNA 

methyltransferases and histone deacetylases. Thus, a dynamic regulatory network exists among 

various epigenetic pathways, collectively orchestrating gene expression profiles through 

transcriptional or post-transcriptional mechanisms (Moutinho & Esteller, 2017). 
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1.4.1 Pregnancy and Epigenetics 
 

During gestation, epigenetic mechanisms play a pivotal role in regulating the intricate interplay 

between the fetus and the mother, impacting fetal development. These mechanisms respond 

dynamically to internal and external environmental factors, contributing significantly to fetal 

survival and health. The dysregulation of epigenetic pathways during gestation has been 

associated with a spectrum of defects in both the fetus and adolescents, highlighting the critical 

importance of epigenetic regulation in prenatal development (Gluckman 

et al., 2009; Gluckman et al., 2010; Gluckman et al., 2007; Pradhan et al., 2023; Solomons, 2009). 

Extensive epidemiological studies have identified various factors such as diet, obesity, stress, 

infection, and gestational diabetes during pregnancy as influencing normal fetal development. 

Recent discoveries have shed light on the role of epigenetic mechanisms during gestation, which 

are believed to contribute to various complications such as congenital heart defects (Barua & 

Junaid, 2015; Kleeman et al., 2022). Barua & Junaid, 2015 comprehensively explored 

environmental factors during pregnancy on health outcomes and potential diseases that may 

manifest later in life. Some of them are discussed below.  

 
Maternal diet is raising concerns about the possibility of epigenetic modifications arising from 

excessive supplementation or inadequate nutrition during pregnancy, potentially causing 

substantial alterations in the epigenome of developing offspring. Throughout pregnancy, the 

presence of essential methyl donors such as folate, choline, serine, betaine, and methionine from 

dietary sources can impact the synthesis of S-adenosyl-methionine, thereby influencing DNA 

methylation and histone modifications within the fetal epigenome, ultimately leading to changes 

in gene expression. A study conducted in a mouse model demonstrated that supplementation with 

methyl donors before and during pregnancy induced epigenetic alterations, resulting in 

modifications to the phenotype towards a healthier and longer-lived direction; suggested research 

into optimal dietary supplements for the health and longevity of offspring should be thoroughly 

explored (Cooney et al., 2002; Waterland et al., 2007). Maternal obesity has been associated with 

increased adiposity, cardiovascular disease risk, and altered glucose metabolism in offspring that 

can potentially be inherited by future generations. Maternal high-fat diet exposure has been shown 

to induce changes in methylation patterns, resulting in reduced insulin sensitivity and increased 

weight gain in offspring mice across at least two generations (Dunn & Bale, 2009; Suter et al., 
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2011). Research conducted in animal models has demonstrated that exposure to a high-fat diet 

during pregnancy disrupts lipid metabolism and inflammatory processes through epigenetic 

alterations and histone modifications, leading to non-alcoholic fatty liver disease (NAFLD) in the 

offspring (Strakovsky et al., 2014). Another concern regarding the epigenetic landscape arises 

from prenatal undernutrition, which has been observed to induce substantial modifications in the 

epigenetic profiles of offspring during intrauterine development. Research into the aftermath of 

the Dutch famine offers a unique opportunity to explore the effects of prenatal malnutrition on 

human development, revealing distinct methylation patterns that persist even six decades later 

(Heijmans et al., 2008; Tobi et al., 2009). Individuals who experienced Dutch Hunger Winter in 

1944-45 during late or mid-gestation displayed reduced glucose tolerance, while those exposed 

earlier in gestation exhibited a lipid profile conducive to atherosclerosis, along with elevated 

fibrinogen levels and reduced plasma concentrations of factor VII. Furthermore, this group 

showed a higher body mass index (BMI) and appeared to have an increased risk of coronary heart 

disease (CHD) (Barua & Junaid, 2015; Roseboom et al., 2001). 

 
Maternal obesity, including conditions such as gestational diabetes mellitus (GDM), can have 

detrimental effects on fetal programming during pregnancy, leading to long-lasting impacts on 

the phenotype and health of offspring like large-for-gestational-age infants, type 2 diabetes, and 

adiposity through specific DNA methylation patterns (Cedergren, 2006; del Rosario et al., 2014; 

Frederick et al., 2006; Godfrey et al., 2011; Sumathipala et al., 2012). Metabolic investigations 

on offspring exposed to a diabetic intrauterine environment have revealed impaired insulin 

secretory function in Pima Indians. This suggests that a deficiency in insulin secretion may 

underlie the heightened risk for type 2 diabetes (Gautier et al., 2001). GDM increases the risk of 

metabolic disorders, particularly those related to glucose-related disorders and cardiovascular 

disease, through alterations in epigenetic patterns in genes primarily implicated in metabolic 

pathways (Barua & Junaid, 2015; Clausen et al., 2009; Ruchat et al., 2013; West et al., 2013).  

 
Maternal stress, such as maternal major depressive disorder (MDD) during pregnancy, may 

result in alterations in the developing brain that may endure into adulthood, posing a sustained 

risk for adult-onset chronic diseases and exerting profound effects on behavioral and cognitive-

emotional functions (Salisbury et al., 2011; Sandman et al., 2011). Research indicates that infants 

whose mothers experienced depression during both pregnancy and infancy exhibit elevated 
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baseline cortisol levels compared to children not exposed to maternal depression or exposed only 

during infancy (Essex et al., 2002). This suggests that the prenatal environment significantly 

influences these adverse behavioral outcomes by affecting the development of the infant’s brain, 

including the neuroendocrine system (Gudsnuk & Champagne, 2012; Lester et al., 2013). An 

epidemiological investigation has highlighted a significant correlation between maternal stressors 

and newborn birth weight. It has been suggested that fetal exposure to maternal corticosterone 

induced by stress may be one of the primary factors contributing to this association as indicated 

that third trimester depressed maternal mood has been linked to increased methylation levels of 

the human hippocampal glucocorticoid receptor gene NR3C1 in cord blood (Barua & Junaid, 

2015; Hompes et al., 2013; Mulligan et al., 2012; Oberlander et al., 2008). 

 
Maternal infection has been shown to induce alterations in the epigenome of offspring. 

Increasingly, prenatal exposure to infection is acknowledged to contribute significantly to the 

etiology of various brain disorders, including schizophrenia and bipolar disorder (Atladóttir et al., 

2012; Brown & Derkits, 2010; Harvey & Boksa, 2012; Parboosing et al., 2013). Considering the 

significant role of epigenetic remodeling during early development, recent hypotheses suggest 

that epigenetic modifications may serve as a crucial molecular mechanism through which prenatal 

immune activation can influence changes in brain development and functions (Bohacek & 

Mansuy, 2015; Szyf, 2015). Research indicates that Maternal Immune Activation (MIA) can 

disturb cytokine and oxidative stress levels in the fetal brain, leading to epigenetic changes that 

impact long-term behavioral outcomes. For example, alterations in DNA methylation and histone 

modification, which affect genes like DISC1 associated with schizophrenia risk, have been 

observed in offspring exposed to MIA (Kleeman et al., 2022). Human enterovirus infection during 

pregnancy has been identified as a significant risk factor for developing Type-1 Diabetes (T1D) 

during childhood and adolescence by altering their epigenome (Allen et al., 2018; Dahlquist et 

al., 1995). Studies suggest that enterovirus alters the suppression of proinflammatory factors 

within pancreatic beta cells through miRNA regulation, thereby contributing to the increased 

likelihood of T1D in offspring later in life (Barchetta et al., 2021). Chorioamnionitis refers to the 

infection and inflammation of the chorion, amnion, and placenta. This condition has been linked 

to changes in neonatal immune responses and an increased risk of asthma during childhood. 

Elevated levels of maternal cytokines in the first trimester are associated with reduced methylation 
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of the MEG3 locus in neonatal mononuclear cells. MEG3 is a long non-coding RNA that plays a 

role in facilitating the transition from epithelial to mesenchymal cells and functions as a tumor 

suppressor, and it is plausible that could contribute to maternal inflammation-induced lung 

dysfunction (Bermick & Schaller, 2022; Fong et al., 2020; McCullough et al., 2017). Perinatal 

acquisition of human immunodeficiency virus (HIV) has lasting impacts on long-term health 

outcomes, such as cognitive impairments and metabolic syndrome. Blood samples from children 

who acquired HIV perinatally display distinct DNA methylation patterns compared to uninfected 

counterparts, including genes involved in pathways crucial for adaptive immunity, potentially 

playing a role in the enduring health effects observed in children with perinatally acquired HIV 

(Bermick & Schaller, 2022; Shiau et al., 2019). Congenital Zika virus infection is linked to severe 

microcephaly and adverse neurocognitive outcomes. Toddlers affected by congenital Zika virus 

infection and microcephaly exhibit distinct whole-blood DNA methylation patterns compared to 

unexposed children with typical head sizes. Specifically, there is hypomethylation observed in 

genes such as RABGAP1L, MX1, and ISG15. RABGAP1L is implicated in brain development, 

while MX1 and ISG15 are involved in host immunity against viruses and function to impede Zika 

virus replication. (Anderson et al., 2021; Bermick & Schaller, 2022; J. Chen et al., 2017). Folic 

acid, serving as a major dietary supplier of methyl groups, is poised to exert a direct impact on 

epigenetic mechanisms during typical prenatal development. Notably, recent research has 

unveiled a notable association between maternal folic acid intake and the methylation status of 

various genes in offspring, some of which are implicated in neurological functions and embryonic 

development. In the context of maternal infection, reduced folic acid availability may impinge on 

methylation-related epigenetic processes in the fetus, potentially contributing to infection-induced 

epigenetic programming (Joubert et al., 2016; Niculescu & Zeisel, 2002). The microbial 

composition of developing offspring may exhibit sensitivity to environmental shifts even during 

prenatal stages. A recent study in mice revealed that prenatal immune activation resembling viral 

infection can alter the offspring's gut microbiota composition. Remarkably, among the main 

metabolic byproducts of the gut microbiota are short-chain fatty acids, notably sodium butyrate. 

This compound possesses the ability to traverse the blood-brain barrier and influence the 

expression of various genes in brain, particularly those involved in neuronal activity regulation. 

Additionally, sodium butyrate can engage with the epigenetic machinery by inhibiting histone 

deacetylases (HDACs), thus serving as an effective epigenetic regulator (Davie, 2003; Hsiao et 
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al., 2013; Kratsman et al., 2016; Weber-Stadlbauer, 2017). Inflammatory cytokines also exert 

effects on the epigenetic machinery. It has been reported that increased expression of IL-17a in 

the fetus modulates histone deacetylase activity, while TNF-α causes histone acetylation activity 

(Zijlstra et al., 2012). Another study demonstrated that IL-6 induces increased biological activity 

of DNMT1, and the interplay between IL-6 and DNMT1 promotes cell migration, a crucial 

process for neurodevelopment in offspring (Basil et al., 2014; Hodge et al., 2007; Labouesse et 

al., 2015).  

 

1.4.1.1 COVID-19 Impact on Pregnancy: Insights into Epigenetic 

Modulation 

 
Studies have demonstrated that maternal infection with SARS-CoV-2 can impact the neonatal 

immune system despite the absence of vertical transmission of the virus. This impact is 

characterized by changes in the levels of inflammatory cytokines such as IL-6 in neonates and 

alterations in the responsiveness of neonatal immune cells. An elevation in the expression of IL-

6 has been linked to cognitive deficits in offspring exposed to maternal immune activation (MIA) 

(Choi et al., 2016; Gee et al., 2021; Kleeman et al., 2022; Rudolph et al., 2018). MIA and systemic 

inflammation during maternal COVID-19 can alter epigenetic mechanisms. Furthermore, the 

escalated psychological strain experienced by mothers due to SARS-CoV-2 infection could also 

play a role in negatively influencing fetal reprogramming. Previous studies have shown that 

COVID-19 infection during pregnancy, like histological chorioamnionitis (HCA), correlates with 

distinct DNA methylation patterns corresponding to genes related to stress response (Fong et al., 

2020; Hill et al., 2023; Kotsakis Ruehlmann et al., 2023). In umbilical cord blood cells of COVID-

19-infected-mothers, 119 differentially methylated genes and canonical pathways related to the 

stress response, hepatotoxicity, nephrotoxicity, and cardiotoxicity were identified. This alteration 

could potentially impact child development (Urday et al., 2023). In contrast, Kocher et al. found 

no discernible epigenetic variances linked to maternal COVID-19 infection during pregnancy. 

They suggested that alterations in the neonatal epigenome are probably attributable to the broader 

environment shaped by the COVID-19 pandemic rather than specifically to the mother's COVID-

19 infection status during pregnancy (Kleeman et al., 2022; Kocher et al., 2023). 
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1.5 Study Hypotheses and Research Objectives: A Closer Look 
 
According to the literature review provided above, epigenetic mechanisms play a crucial role in 

regulating cell-specific functions and disease processes, and their disruption has been associated 

with various health conditions. Recent research suggests that infections during pregnancy can lead 

to changes in the epigenetic profiles of offspring, potentially affecting their long-term health. 

Moreover, the immune response elicited by SARS-CoV-2 in expectant mothers might have far-

reaching effects across generations, exacerbating the impact of the pandemic on future 

populations. Thus, we hypothesize that COVID-19 during pregnancy can predispose the fetus to 

long-lasting health problems even in the absence of vertical transmission through epigenetic 

modulation. Our study aims to investigate how maternal infection with SARS-CoV-2 influences 

epigenetic modifications in offspring, mainly focusing on the risk of developing metabolic 

syndrome.  

 

1.6 REACTOME 
 
Reactome, an open-source pathway database, is a testament to the meticulous process of manual 

curation, peer review, and authorship by expert biologists. The pathway annotations, a result of 

collaborative efforts with Reactome editorial staff, are not just crafted but meticulously crafted. 

These annotations are then cross-referenced with numerous bioinformatics databases, ensuring 

the highest level of accuracy. The "Reactome_Epigenetic_Regulation_of_Gene_Expression" is a 

collection of 187 genes responsible for epigenetic regulation of gene expression, a product of such 

meticulousness, gathered by Bruce May and G Gopinathrao and reviewed by Lisa Matthews 

(MSigDB; REACTOME).  

 

During cellular differentiation, cells specialize into specific types where gene expression patterns 

are established by polycomb complexes, namely PRC1 and PRC2. PRC2 methylates histones and 

DNA, creating initial repressive marks such as H3K27me3 and 5-methylcytosine in DNA. EZH2, 

a component of PRC2, specifically trimethylates lysine-27 of histone H3, resulting in H3K27me3, 

which serves as a binding site for the Polycomb subunit of PRC1. PRC1 then ubiquitinates histone 

H2A, maintaining repression. Epigenetic systems, including PRC2, also modulate gene 

expression through DNA methylation. DNA methyltransferases (DNMTs), namely DNMT1, 
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DNMT3A, and DNMT3B, facilitate the transfer of a methyl group from S-adenosylmethionine to 

the 5-position of cytosine in DNA. In contrast, TET1, TET2, TET3, and TDG oxidize the methyl 

group of 5-methylcytosine through TET enzymes, resulting in demethylation of DNA. 

Subsequently, TDG removes the oxidized product, which can take the form of either 5-

formylcytosine or 5-carboxylcytosine. Ribosomal RNA (rRNA) genes are activated and 

deactivated in accordance with cellular metabolic needs. Positive regulation of rRNA expression 

involves chromatin modifications induced by activators such as ERCC6 (CSB), the B-WICH 

complex, and histone acetylases like KAT2B (PCAF). Negative regulation of rRNA expression 

entails chromatin modifications mediated by repressors such as the eNoSC complex, SIRT1, and 

the NoRC complex. WDR5 is a constituent of six histone methyltransferases and three histone 

acetyltransferases involved in the epigenetic control of gene expression. (more detailed 

information regarding this collection can be found at https://reactome.org) (Figure 1.  1) 

(Guarnaccia & Tansey, 2018; Jaenisch & Bird, 2003; REACTOME). 

 

 

 

Figure 1.  1 Epigenetic Mechanisms Involved in Gene Expression Regulation 

According to Reactome Database (https://reactome.org) 

https://reactome.org/
https://reactome.org/content/detail/R-HSA-212165#:~:text=Epigenetic%20processes%20regulate%20gene%20expression,change%20in%20the%20DNA%20sequence.
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1.7 How can Epigenetic Changes Impact the Health of the Fetus? 
 
Metabolic syndrome is a complex condition characterized by a cluster of health issues, including 

obesity, insulin resistance, impaired glucose tolerance or diabetes, disturbances in lipid 

metabolism, and cardiovascular diseases (CVDs). This syndrome significantly contributes to 

morbidity and mortality globally. Recent studies propose that adverse conditions within the uterus, 

like maternal under and overnutrition, glucocorticoid exposure, and infection, can trigger fetal 

metabolic programming by negatively influencing the development of different cell types, tissues, 

and organ systems, culminating in obesity, insulin resistance, and metabolic syndrome in adult 

offspring. This phenomenon is primarily driven by fetal epigenetic programming, a pivotal 

mechanism in fetal metabolic programming which was first proposed by Barker and Hales in 1998 

(Barker, 1998; Barrès & Zierath, 2016; Bošković & Rando, 2018; Grundy, 2005; Huypens et al., 

2016; Sun et al., 2018; Tamashiro & Moran, 2010; Tang et al., 2016; Zhu & Cao, 2019).    

 

An overview of the critical role of epigenetic programming in fetal metabolic programming of 

obesity and insulin resistence is provided by (Zhu et al., 2019) which is summarized here.  

 

Epigenetic Programming of Obesity 
 
There have been reports of global genome-wide epigenetic alterations in offspring associated with 

obesity or exposure to an adverse intrauterine environment. Specifically, gestational diabetes has 

been linked to widespread methylation changes in neonatal cord blood, adipose tissue, placenta, 

and peripheral blood leukocytes of offspring and adults (P. Chen et al., 2017; del Rosario et al., 

2014; Haertle et al., 2017; Hjort et al., 2018; Kang et al., 2017; Reichetzeder et al., 2016; Weng 

et al., 2018). Additionally, DNA methylation alterations in the placenta or the cord blood have 

been associated with abnormal birth weight or BMI in childhood and adulthood (Hjort et al., 2018; 

Michels et al., 2011; Sharp et al., 2017; Simpkin et al., 2015; Van Dijk et al., 2018). Moreover, it 
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has been noted that circulating extracellular RNA, specifically ex-miR-122, correlates with 

regional adiposity in adults (Shah et al., 2017).  

 

Epigenetic Programming of Insulin Resistance 
 
Global genome-wide epigenetic changes have been documented to be linked with insulin 

resistance. Levels of DNA methylation collected from newborns have been associated with insulin 

sensitivity and BMI during childhood, such as methylation of retinoid X receptor-a (RXRA), 

TACSTD2 gene, and non-coding RNA nc886 (VTRNA2-1) (Godfrey et al., 2011; Relton et al., 

2012; Van Dijk et al., 2018). A prospective cohort study conducted at Ewha Woman’s University, 

MokDong Hospital (Seoul, Korea), spanning from 2003 to 2005, demonstrated that elevated 

methylation levels of pro-opiomelanocortin (POMC) in cord blood have been correlated with 

lower birthweight, higher triglycerides, and hyperinsulinemia  in childhood (Yoo et al., 2014). 

Additionally, increased expression of insulin resistance-associated microRNA-15a and 

microRNA-15b has been observed in adult offspring of mothers with diabetes during pregnancy 

(Houshmand-Oeregaard et al., 2018). Furthermore, another study found an association between 

circulating extracellular RNA, particularly ex-miR-122, and insulin resistance in children and 

adults (Shah et al., 2017). 

 

Epigenetic Programming of Cardiovascular Disease (CVD) 
 
The risk factors for cardiovascular disease (CVD), such as lifestyle, genetic background, and 

suboptimal fetal development, are widely recognized. In response to adverse intrauterine 

conditions, the fetus adapts to ensure survival, resulting in immediate consequences such as low 

birth weight (LBW) and long-term effects, including an elevated susceptibility to CVD 

development in adulthood. This phenomenon, referred to as Developmental Origins of Health and 

Disease (DOHaD) or fetal programming of CVD, underscores the critical role of early-life 

conditions in shaping long-term health outcomes (Rodríguez-Rodríguez et al., 2018). Prenatal 

inflammation exposure (PIE) has garnered attention for over a decade. This inflammation can 

stem from three primarily sources, including the classic inflammatory pathway, often called "hot" 

inflammation, which is triggered by pathogens like viral infections (Calay & Hotamisligil, 2013). 

Prenatal inflammation exposure (PIE) can lead to CVDs in offspring named "PIE-programmed 



 
 

 22 

CVDs". A noteworthy observation stems from a series of studies involving individuals born 

during the influenza pandemic of 1918; this demographic cohort exhibits a notably heightened 

prevalence of cardiovascular diseases (CVDs) (Cocoros et al., 2014; Mazumder et al., 2010; 

Myrskylä et al., 2013). Various fetal stress factors lead to hypertension and heart disease through 

common mechanisms, including deficient kidney development, blood vessel alterations, and heart 

abnormalities. These include reduced nephron count, vascular remodeling, and cardiac 

dysfunction (Rodríguez-Rodríguez et al., 2018). Deng et al. conducted initial investigations into 

the global DNA methylation levels of the renal cortex, revealing a significant increase in offspring 

exposed to prenatal inflammation (PIE). Furthermore, they observed elevated levels of DNA 

methyltransferase (DNMT) 1 and DNMT3B, enzymes responsible for DNA methylation, in renal 

tissue. Additionally, heightened levels of histone H3 acetylation at the ACE promoter were 

detected in the renal cortex of PIE-exposed offspring. This preliminary evidence underscores the 

pivotal role of epigenetic alterations in the development of cardiovascular diseases programmed 

by prenatal inflammation (Deng et al., 2018; Lyko, 2018; Wang et al., 2017; Wang et al., 2016; 

Weber-Stadlbauer, 2017). 

 

1.8 Research Question 
 

Does the expression of genes involved in epigenetic regulation show variation in umbilical cord 

blood cells from mothers infected with COVID-19 compared to controls? If so, which biological 

pathways are impacted in cell types showing changes in epigenetic regulation? To investigate 

these questions, we initially analyzed the differential expression of a Reactome set consisting of 

187 genes associated with epigenetic mechanisms using the Linear Combination Test (LCT). 

Following this, to identify the biological pathways affected in cells displaying alterations in 

epigenetic patterns, we examined the differential expression of a Kyoto Encyclopedia of Genes 

and Genomes (KEGG) collection. Our aim is to pinpoint potential metabolic disorders stemming 

from Maternal Immune Activation induced by SARS-CoV-2. 

 

1.9 Molecular Signatures Database (MSigDB) 
 
The Human Molecular Signatures Database (MSigDB) contains 34,550 gene sets categorized into 

nine main collections, each with several subcollections (H; hallmark gene sets, C1; positional 
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gene sets, C2; curated gene sets, C3; regulatory target gene sets, C4; computational gene sets, C5; 

ontology gene sets, C6; oncogenic signature gene sets, C7; immunologic signature gene sets, C8; 

cell type signature gene sets) (www.gsea-msigdb.org). 

 
The gene sets within this collection are sourced from diverse outlets such as online pathway 

databases, biomedical literature, and contributions by individual experts in the respective 

domains. Each gene set page specifies its origin. Specifically, the C2 collection is subdivided into 

two main categories: Chemical and genetic perturbations (CGP) and Canonical pathways (CP). 

The pathway gene sets are curated from a variety of online databases, including BioCarta, KEGG 

MEDICUS, Pathway Interaction Database, Reactome, SigmaAldrich, Signaling Gateway, 

SuperArray SABiosciences, WikiPathways, and KEGG Legacy Sets. The Canonical Pathways 

gene sets are derived from the KEGG pathway database and include 186 gene sets attributed to 

seven collections of KEGG pathway.  

 

1.10   KEGG: Kyoto Encyclopedia of Genes and Genomes 
 

KEGG serves as a valuable database resource for comprehending biological systems broad 

functions ranging from cellular processes to entire ecosystems. It accomplishes this by integrating 

molecular-level data, particularly large-scale datasets generated through genome sequencing and 

high-throughput experimental technologies. The KEGG model comprises sixteen integrated 

databases, categorized into systems information, genomic information, chemical information, and 

health information. The KEGG pathway is within the systems information category 

(https://www.genome.jp/kegg/).  

 

KEGG PATHWAY is a collection of manually drawn pathway maps, separated into seven 

clusters, representing our knowledge of the molecular interaction, reaction, and relation networks 

for various biological processes, cellular functions, and organismal systems.  

1. Metabolism 

Global/overview maps 

Carbohydrate metabolism  

Energy metabolism  

Lipid metabolism 

Nucleotide metabolism 

http://www.gsea-msigdb.org/
https://www.genome.jp/kegg/
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Amino acid metabolism 

Other amino acid metabolism 

Glycan biosynthesis and metabolism  

Metabolism of Cofactor/vitamin    

Metabolism of Terpenoid/ polyketides (PK) 

Biosynthesis of another secondary metabolite    

Xenobiotics biodegradation and metabolism 

Chemical structure transformation maps 

 

2. Genetic Information processing  

 

3. Environmental Information Processing  

 

4. Cellular Processes 

 

5. Organismal Systems 

 

6. Human Disease 

 

7. Drug Development  
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Chapter 2: Dataset and Methodology 
 

 

To demonstrate epigenetic and metabolic pathways alteration in the neonates born to mothers 

infected with COVID-19 without vertical transmission, we used a gene expression dataset accessed 

on the Gene Expression Omnibus database (GSE 165193). Droplet-based single-cell RNA-

sequencing (SC-RNA Seq) and T-cell receptor sequencing were performed on cord blood 

mononuclear cells (CBMCs) from three-term gestation infants (>37 weeks) of infected mothers 

with SARS-CoV-2 having mild symptoms (cases) according to NIH, 2020 guideline, and non-

exposed three infants during the same epoch (controls). In this study, none of the three infants born 

to mothers with SARS-CoV-2 tested positive for the virus postnatally as exhibited by detectable 

SARS-CoV-2 messenger RNA (mRNA) in the placenta or experienced any neonatal morbidity. All 

mothers with COVID-19 in the third trimester were classified as having mild disease and did not 

require respiratory support. Maternal comorbidities, including well-controlled thyroid 

dysfunction, obesity, or gestational diabetes, were matched between cases and controls to the 

extent possible (Table 2.  1). The dataset includes 25,970 cells with high-quality single-cell 

transcriptomes, 14,748 cells from cases, and 11,222 cells from controls (Table 2.  2). The 

visualization of the cell population composition was achieved by the utilization of uniform 

manifold approximation and projection (UMAP). Additionally, the identification of cell types was 

determined by analyzing cluster-specific canonical marker genes. CD14+ monocytes were 

stratified into five clusters, while CD16+ monocytes were grouped into one cluster. Additionally, 

two distinct clusters of CB NK cells were identified. One NK cell population (cluster 1) exhibited 

elevated expression of GZMB, indicative of CD56dim phenotype, whereas the second NK cell 

population (cluster 2) expressed IL7R and XCL1, suggesting a CD56bright phenotype. B cells 

were classified into three clusters, and three clusters of T cells were also delineated. Cluster 1 of T 

cells corresponded to cytotoxic (CD8+) T cells, while Clusters 2 and 3 represented helper T cells. 

Increased expression of CCR7 in T cell Cluster 2 suggests the presence of either naive T cells or 

central memory T cells. In contrast, elevated expression of CTSW and KLRB1 in Cluster 3 

indicates the inclusion of effector and memory T cells. No significant variations in cell cluster 

composition were reported by the authors between cases and controls (Table 2.  3) (Figure 2.  1) 

(Matute et al., 2022). 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165193
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In this study, to investigate transcriptional signatures in fetal immune cells linked to maternal 

SARS-CoV-2 infection, Matute et al. conducted differential gene expression (DGE) analysis 

within 18 cell types, comparing cases and controls. Genes with a false discovery rate (FDR) < 5% 

were deemed statistically significant. Their study revealed alterations in the expression of 

hundreds of genes across nearly all cell types. Subsequently, they employed gene ontology (GO) 

analysis to categorize genes significantly affected by maternal SARS-CoV-2 infection based on 

DGE. However, single-gene analysis encounters several limitations, which we address below. 
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Table 2.  1 Clinical Characteristics of Cases and Controls (Matute et al., 2022) 

 

GA gestational age, VD vaginal delivery, CS caesarean section, ND not done, NA not applicable, 

I: infected or detected. 

 

 

 
 
 

       Subjects 

Onset of 

Symptoms 

(GA) 

Delivery 

(GA)/ 

Mode 

Dyas 

between 

the onset 

of 

symptoms 

and birth 

SARS-

CoV-2 

PCR 

(GA) 

Maternal 

symptoms 

at test 

Sex 

at 

birth 

Maternal 

comorbidities 

Placental 

Viral load 

by RT-

PCR 

24h 

nasopharyngeal 

viral load by RT-

PCR 

Control 1 
 

NA 

 

40 /  

VD 

 

 

NA 

 

39.9 

 

NA 

 

M 
 

 

1 

 

NA 

Control 2 
 

NA 

 

39w 4d / 

CS 

 

NA 

 

38.9 

 

NA 

 

F 

 

BMI > 30, 

Thyroid 

Disease 

 

 

1 

 

NA 

Control 3 
 

NA 

 

38w 6d / 

CS 

 

 

NA 

 

38.4 

 

NA 

 

F 

 

BMI > 30 

 

ND 

 

NA 

Case 1 

 

 

 

30w 3d 

 

 

 

39w 7d / 

VD 

 

 

 

66 

 

 

 

30w 7d 

       

Fever/Chills, 

Nasal 

Congestion, 

Loss of 

Taste/ 

Smell, Sore 

Throat, 

Night sweats 

 

 

 

 

M 

 

 

 

Thyroid 

Disease 

 

 

 

1 

 

 

 

Negative 

Case 2 
 

 

34w 4d 

 

 

40w 1d / 

CS 

 

 

40 

 

 

35w 4d 

 

Cough, 

Fever/Chills, 

Myalgias, 

Headache, 

Chest 

Discomfort 

 

 

 

M 

 

Diabetes/ 

GDM,  

BMI > 30,  

Thyroid 

Disease 

 

 

1 

 

 

Negative 

Case 3 
 

39w 0d 

 

40w / VD 

 

7 

 

39w 4d 

 

Cough, 

Fever/Chills 

 

 

F 

 

BMI > 30 

 

1 

 

Negative 
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Table 2.  2 Dataset Overview 

 

Dataset Summary Counts 

Number of Cases 3 

Number of Controls 3 

Total Samples of Cases 14,748 

Total Samples of Controls 11,222 

Total Samples 25,970 

Number of genes  36,601 
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Table 2.  3 Umbilical Cord Blood Cell Type Distribution  

 

 

 

 

 

 

 

Cell Type 
Total Cases Controls 

Frequency Percentage (%) Frequency Percentage (%) Frequency Percentage (%) 

B Cells 1 2,588 9.97 1,226  8.31 1,362  12.14 

B Cells 2 1,821 7.01 909  6.16 912  8.13 

B Cells 3 922 3.55 463  3.14 459  4.09 

B Cells (Total) 5,331 20.53 2,598 17.61 2,733 24.36 

CD14Monocytes1 2,749 10.59 1,608  10.9 1,141  10.17 

CD14 Monocytes 2 2,124 8.18 1,093 7.41 1,031  9.19 

CD14 Monocytes 3 1,821 7.01 958 6.5 863  7.69 

CD14 Monocytes 4 1,493 5.75 783 5.31 710  6.33 

CD14 Monocytes 5 980 3.77 569 3.86 411  3.66 

CD14 Monocytes (Total) 9,167 35.3 5,011 33.98 4,156 37.04 

CD16 Monocytes 480 1.85 325  2.2 155  1.38 

T Cells 1 1,478 5.69 1,017  6.9 461  4.11 

T Cells 2 3,881 14.94 2,500 16.95 1,381  12.31 

T Cells 3 720 2.77 484 3.28 236  2.1 

T Cells (Total) 6,079 23.4 4,001 27.13 2,170 18.52 

Conventional DCs 397 1.53 220 1.49 177  1.58 

HSPCs 151 0.58 83  0.56 68  0.61 

Megakaryocytes 771 2.97 520  3.53 251  2.24 

NK Cells 1 3,110 11.98 1,744 11.83 1,366  12.17 

NK Cells 2 302 1.16 156 1.06 146  1.3 

NK Cells (Total) 3,412 13.14 1,900 12.89 1,512 13.47 

Plasmacytoid DCs 182 0.7 90  0.61 92  0.82 
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Figure 2.  1 Visualization of Cell Composition of CBMCs Obtained by single-cell 

RNA sequencing (scRNAseq). Uniform Manifold Approximation and Projection 

(UMAP) of all Cases and Control CBMCs, with Cell Populations Labeled by 

Color. N = 3 Samples Per Group (Matute et al., 2022).    
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2.1 Why Gene Set Level Analysis?  
 
The initial method for analyzing gene expression data involved single-gene analysis, wherein the 

expression levels of individual genes in case and control samples were compared by fold change 

or t-test. A primary method consists of assessing the fold change between the control and 

experimental groups. Generally, a difference is deemed significant if it reaches at least two- to 

three-fold. Fold change is not considered a statistical test and doesn't provide a quantifiable 

measure of confidence in categorizing genes as differentially expressed. This method is 

susceptible to bias since genes with low intensity (meaning they are expressed at low levels) may 

appear differentially expressed more frequently than genes with high intensity. This happens 

because the fold-change values (the degree of change in expression between two conditions) for 

low-intensity genes tend to have a more significant variation than those for high-intensity genes. 

As a result, these low-intensity genes may show more significant fluctuations in expression levels, 

leading to the incorrect identification of differential expression. T-test is also used to compare the 

means of gene expression between two groups, and the hypothesis being tested states that there is 

no variation in expression levels between the conditions. This test essentially functions as a fold-

change assessment because the global t-test ranks genes similarly to fold change, without 

adjusting for individual gene variability. Consequently, it may encounter the same biases as a fold-

change test if the error variance does not remain constant across all genes. To address the challenge 

of erroneous positive findings stemming from numerous comparisons, corrective measures can be 

implemented, including the application of familywise error rate (FWER) controls such as 

Bonferroni correction and false discovery rate control (Cui & Churchill, 2003; Draghici, 2002; 

Maleki et al., 2020; Matute et al., 2022; Quackenbush, 2001). In their investigation, Matute et al. 

(2022) employed fold change as a metric to evaluate variances in gene expression between 

COVID-19 infected mothers and control groups. Genes exhibiting adjusted p-values below a 

predetermined threshold (0.05) were recognized as differentially expressed. Subsequently, these 

genes were subjected to biological interpretation. 

 

Traditional strategies of single-gene analysis, while valuable, often overlook biological 

phenomena like metabolic pathways, transcriptional programs, and stress responses, which are 

distributed among numerous genes and may be subtle at the level of individual gene expression 

(Subramanian et al., 2005). Multi-functional genes, which are genes involved in multiple 
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biological processes, are frequently observed across diverse organisms; thus, a study based on 

individual genes may result in erroneous or unequivocal findings. High-throughput gene 

expression studies like single-cell RNA seq (scRNAsq) necessitate adjustments for multiple 

comparisons due to the large number of genes and cells analyzed. However, such adjustments may 

result in numerous false negatives, as they may detect very few or even no genes as differentially 

expressed. Also, the primary challenges inherent in the Individual Gene Analysis (IGA) process 

originate from using a predefined threshold value. The ultimate biological conclusions of IGA are 

significantly influenced by the selected threshold, typically established arbitrarily. Pan et al. 

suggest employing a variety of threshold conditions as it allows for evaluating the sensitivity of 

biological conclusions to threshold selection and assessing the overall robustness of conclusions 

(Pan et al., 2005). In addition, one notable concern regarding IGA is the erroneous assumption of 

independent sampling of genes, leading to an elevated occurrence of false positive predictions 

(Nam & Kim, 2008). Cellular processes frequently exhibit alterations in the expression patterns 

of gene clusters that possess shared biological activities. An overall alteration in a cluster of these 

genes possesses more biological reliability and interpretability compared to an alteration in an 

individual gene. The single-gene strategy needs to consider this information. Publicly available 

online databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) offer valuable 

insights into some of these gene sets made publicly available by the MSigDB team (Kanehisa et 

al., 2016). Despite the advancements in high-throughput technology that enable the simultaneous 

monitoring of gene expression for thousands of genes in a single experiment, researchers are faced 

with the issue of managing large dimensional data. Utilizing groupings of biologically related 

genes is a highly intuitive and biologically pertinent strategy for reducing dimensionality, 

computational challenges, and noise in high-throughput gene expression research (Berrar et al., 

2003; Friedman, 1997). When the measured values for a single gene vary only slightly across 

multiple treatments, it becomes challenging to distinguish the actual difference in gene expression 

from the variation caused by biological differences in the samples. In contrast, gene set analysis 

has the potential to identify minor yet consistent alterations in the expression patterns of genes 

belonging to a specific gene set (Subramanian et al., 2005). The utilization of a single-gene 

technique has the potential to identify a substantial number of genes. Interpreting a lengthy 

inventory of genes that exhibit differential expression is a laborious undertaking that is susceptible 

to investigator bias toward a specific hypothesis of interest (Maleki et al., 2020). 
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2.1.1    Gene Set Analysis Methods 
 
Gene set analysis, or enrichment analysis, aims to address these limitations and extract meaningful 

insights from gene expression data. Its primary objective is to identify whether there is enrichment 

or depletion in the expression levels of a specific set of genes, known as a gene set. Various Gene 

Set Analysis (GSA) methods have been developed to identify gene sets associated with specific 

phenotypes, each with distinct methodological assumptions and exhibiting diverse requirements, 

strengths, and weaknesses (Huang et al., 2009; Mitrea et al., 2013). These methods can be broadly 

categorized as "self-contained" or "competitive" (Goeman & Bühlmann, 2007). Competitive 

methods compare gene associations within a set to those outside the set to determine if genes 

within a specific set are more associated with a phenotype. Examples of competitive GSA methods 

used in gene expression studies include Gene Set Enrichment Analysis (GSEA), Significance 

Analysis of Function and Expression (SAFE), random set methods, and GSA. In contrast, self-

contained methods assess the relationship between a phenotype and the gene set of interest without 

considering other genes outside that set. Examples of self-contained GSA methods include the 

Global test, ANCOVA, SAM-GS, and LCT (Figure 2.  2) (Wang et al., 2011; Tian et al., 2005).  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 34 

 
 

 

Figure 2.  2 Outline of Self-Contained and Self-Competitive Gene Set Analysis 

Methodologies (Tian et al., 2005). Firstly, the expression level of genes across all 

samples is assessed by gene expression analysis tools like single-cell RNAseq 

(scRNAseq). Secondly different testing methodologies are applied to discern gene 

sets or pathways of statistical significance. 
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2.2  Methodology: Linear Combination Test (LCT)  
 
To identify differentially expressed gene sets stratified by cell type, considering case vs. control 

status in the context of maternal COVID-19, we performed LCT.  

 

We chose LCT to effectively address the high dimensionality problem and the correlation of 

expression measurements often present across sets of genes and/or biological pathways via a 

shrinkage covariance matrix estimation approach. It is superior in terms of power and 

computational efficiency when compared to other gene-set analysis methods in both simulations 

and real data analysis (Wang et al., 2011). 

 

To grasp the functionality of LCT, consider a gene expression dataset that involves a total of n 

individuals. Within this group, n1 individuals are categorized as cases, while n2 are categorized as 

controls. We are interested in identifying differentially expressed gene sets considering cases and 

controls. The null hypothesis posits no distinction in the expression of a predefined group of genes, 

denoted as (X1, …, XK), between two distinct phenotypic clusters. One way to rephrase this 

hypothesis from a multivariate angle to a univariate standpoint is by stating H0: There is no 

association between the phenotype and any linear combination of (X1, …, XK). 

 

Now, consider the function Z(β), which can be represented as a linear combination of (X1, …, XK), 

Z(β) = β1X1 + … + βKXK. The link between the Z(β) and the phenotype can be assessed using a 

vector β of coefficients through the subsequent univariate model. The equation Zij(β)=µi+eij is 

utilized, where µ1 and µ2 denote the average gene expressions for cases and controls 

correspondingly. Additionally, eij follows a normal distribution with an average of 0 and a variance 

of σ2, eij~N(0,σ2). Here, j pertains to individuals 1, …, ni within groups i = 1, 2. When scrutinizing 

the null hypothesis (H0), the customary approach involves assessing the most impactful linear 

combination derived from the variable set (X1, …, XK). This specific linear combination is 

determined by its exceptional statistical significance compared to all other potential linear 

combinations. The coefficients of the most significant linear combination are represented by:  

β*=argmaxT 2 (β)  

 

As the square root of the two-sample t-test, we have: 
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𝑇2(𝛽) =
�̅�1 − �̅�2

𝑆𝑍1𝑍2

2 (
1
𝑛1

+
1

𝑛2
)
 

 

Where: 

�̅�1 = 𝛽𝑇�̅�1                        �̅�2 = 𝛽𝑇�̅�2                          𝑆𝑍1𝑍2

2 =𝛽𝑇̂   

 

�̅�1: K sample average of gene expressions within cases 

�̅�2: K sample average of gene expressions within controls 

̂ : pooled covariance matrix over the two groups of the phenotypes 

 

 

Therefore, the test statistic becomes: 

𝑇2(𝛽) =
𝛽𝑇(�̅�1 − �̅�2)(�̅�1 − �̅�2)𝑇𝛽

𝛽𝑇(
1
𝑛1

+
1

𝑛2
) ̂ 

 

 

The solution to this optimization problem can be expressed as: 

𝛽∗ = argmax𝛽

𝛽𝑇𝐴 𝛽

𝛽𝑇𝐵 𝛽
 

 

A and B are the corresponding matrices in the numerator and denominator of the test statistic. The 

solution to this optimization problem can be calculated as the maximal eigenvector of AB-1 and 

𝑇2(𝛽∗) is the corresponding eigenvalue. To tackle problems with small sample size and large gene 

sets, LCT uses a shrinkage covariance matrix. The computational cost is significantly reduced by 

the orthogonal transformation of the original gene expression measurement, obtained using 

eigenvalue decomposition of the shrinkage covariance matrix.  

 

 ∗ = 𝑈𝐷𝑈𝑇 

 

𝑇2(𝛾) =
𝛾𝑇(�̅�1 − �̅�2)(�̅�1 − �̅�2)𝑇𝛾

𝛾𝑇𝛾
 

where: 

𝛾 = 𝐷1/2𝑈𝑇𝛽                

�̅�1: K sample averages within cases 



 
 

 37 

�̅�2: K sample averages within controls 

The coefficients of the most-significant combination are given by the mean vector difference 

between the two groups: 

𝛾∗ ∝ ( �̅�1 − �̅�2) 

This LC test statistic is, therefore, proportional to the L2-norm of the mean-vector difference 

between the two groups, after the orthogonal transformation:  

𝑇2(𝛾∗) = 𝑐 ∥  �̅�2 − �̅�2  ∥ 

The constant c can be ignored in the permutation test.  

A simulation study conducted by Wang et al. demonstrated that the LCT testing approach exhibits 

greater computational efficiency compared to the top two GSA methods, including modified 

Hotelling’s T2 (Tsai & Chen, 2009) and SAM-GS (Dinu et al., 2007), while approximating its 

superior testing power. The core computational feature of LCT lies in its reliance on orthogonally-

transformed features, necessitating the computation of the eigenvalue decomposition of the 

shrinkage pooled covariance matrix only once rather than for each permutation (Wang et al., 

2011). 

 

2.3  Analysis 
 

2.3.1  Step 1 
 
LCT was performed to demonstrate differential expression of 

"Reactome_epigenetic_regulation_of_gene_expression" in umbilical cord blood cells of neonates 

born to mothers infected with COVID-19 in the absence of vertical transmission compared to 

controls stratified by cell types. Cell types with p_value <= 0.01 are considered significant. 

Hematopoietic stem and progenitor cells (HSPCs), lacking distinct clusters, are excluded from 

subsequent analyses (Figure 2.  3). 
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Figure 2.  3 Outline of Step 1 of Analysis. Expression level of genes according to 

the cell type is assessed by single-cell RNA sequencing (scRNAseq). LCT considers 

column permutation to answer this question; Does the Reactome Epigenetic 

Regulation of Gene Expression collection correlate with the phenotype (COVID-19) 
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considering cell type? Or does this collection differentially expressed given cases 

and controls stratified by cell type? This gene expression figure is extracted from the 

dataset GSE: 165193 and phenotype and gene set labels are depicted just for 

explanation purposes, Case: newborns of mothers infected with Covid-19. Control: 

newborns of healthy mothers (Matute et al., 2022).  

 

2.3.2  Step 2 
 
Next, to further assess which KEGG_LEGACY pathways are differentially expressed due to 

maternal COVID-19, we performed pairwise comparisons based on 

"Reactome_epigenetic_regulation_of_gene_expression" collection results only in infected 

samples. In detail, considering the KEGG collection, we performed LCT comparing B cell 2 with 

B cell 1 and 3 in maternal COVID-19 samples, thus finding which KEGG gene sets are 

differentially expressed in B cell 1 and 3 in cases (which had epigenetic signatures) compared to 

B cell 2 (which did not have any epigenetic alteration, as control for those cell types). Similarly, 

LCT was done regarding CD14 monocyte 4 as a control for other CD14 monocyte clusters, T cell 

1 as a control for T cell 2 and 3, and NK cell 2 as a control for NK cell 1, in maternal COVID-19 

samples. As such, we had 9 comparisons in total: B cell 2 vs B cell 1, B cell 2 vs B cell 3, CD14 

monocyte 4 vs. CD14 monocyte 1, CD14 monocyte 4 vs. CD14 monocyte 2, CD14 monocyte 4 

vs. CD14 monocyte 3, CD14 monocyte 4 vs. CD14 monocyte 5, NK cells 1 vs. NK cells 2, T cells 

1 vs. T cells 2, T cells 1 vs. T cells 3 (Table 2.  4).  
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Table 2.  4 Representation of Step 2 Comparative Analysis of KEGG Collection 

Across Nine Comparisons. Each row represents a KEGG gene set. Each column represents 

a pairwise comparison stratified by cell type. [p1 … p9] indicate the p-values obtained from LCT, 

assessing the differential expression of gene sets between the specified groups. C p_value, 

combined p-value, is calculated by Fisher’s method.  

 

 

 

 

KEGG 

 
 

 

 

 

 

Gene set     

number 

Comparisons Stratified by Cell Type  

Comparison Number  

1 2 3 4 5 6 7 8 9  

 

B cells 

 

CD 14 Monocyte 

NK 

Cells 

     

T Cells 

 

*C P_value 

1 vs 2 3 vs 2 1 vs 4 2 vs 4 3 vs 4 5 vs 4 2 vs 1 2 vs 1 3 vs 1 

1 p1 p2 p3 p4 p5 p6 p7 p8 p9 C p_value1 

2 p1 p2 p3 p4 p5 p6 p7 p8 p9 C p_value2 

… p1 p2 p3 p4 p5 p6 p7 p8 p9 C p_value… 

186 p1 p2 p3 p4 p5 p6 p7 p8 p9 C p_value186 

 

 

2.3.3  Step 3 
 
Fisher's method, or Fisher’s combined probability test combined the results of nine independent 

comparisons (nine p_values for each KEGG gene sets) into a single overall p-value (Fisher et al., 

1928). This combined p-value indicates the strength of evidence against the null hypothesis when 

considering all nine LCT results for each KEGG gene set together.  
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As a reminder, the null hypothesis is stated as follows: H0 = none of the given p values (p1…, p9) 

are associated with phenotype. Put simply, when considering each KEGG gene set, none of the 

comparisons revealed any significant differences.  

At first, the formula below combines these p_values into a test statistic: 

𝑇 =  −2 ∑ log(𝑝𝑖)~𝑥2(2𝑛)

𝑛

𝑖=1

 

T is the test statistic following a chi-squared distribution. 

𝑝𝑖 is the p-value obtained from the i-th independent test. 

n = 9 

Then, the combined p-value is calculated as the right-tail probability 𝑝𝑥2(2𝑛)  (T > t), where t is the 

observed T value. 

Finally, we created a jitter plot of (X[g], Y[g]) with color grouping: 

X[g] = Number of Comparisons where Significant (p_value <0.01) 

Y[g]= Combined Significance over all Comparisons 

 
 
 

2.4  Software and Packages  
 

Before conducting the analysis, it was necessary to address the zero inflation in the gene 

expression data. To handle this issue, the 'jitter' function from the base R package was employed 

for 14,000 genes with zero expression values (Team, 2009). This function transforms zero 

expressions into small values that are in proximity to zero. Essentially, 'jitter' adds a slight, random 

deviation to the zero values, making the data more suitable for analysis. This preprocessing step 

helps mitigate the impact of excessive zero values, enabling more accurate and meaningful results 
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in subsequent analyses (Chambers, 1983; Chambers, 1992).  

All statistical computations were conducted utilizing R software (version 4.3.2). The analysis 

made use of the following R packages: 

The data.table package facilitated rapid aggregation of extensive datasets. 

The corpcor package enabled efficient estimation of covariance and (partial) correlation. 

The qvalue package was utilized for estimating Q-values. 
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Chapter 3: Results 
 

3.1  Step 1  
 
Our findings revealed that in specific cell types of umbilical cord blood samples from mothers 

infected with COVID-19, compared to controls, there was differential expression of the 

"Reactome_Epigenetic_Regulation_of_Gene_Expression".  This suggests that genes involved in 

epigenetic mechanisms show differential expression in specific cell types of umbilical cord blood 

from COVID-19-infected-mothers, indicating their susceptibility to epigenetic modulation. This 

susceptibility may contribute to the complex outcomes associated with alterations in epigenetic 

mechanisms like neurodevelopmental disease and metabolic syndrome as discussed previously. 

Another intriguing finding was the presence of heterogeneity within cell types, such as B cells. 

Specifically distinct results were observed within a particular cluster of B cells, referred to as B 

cell 2, compared to B cell 1 and B cell 3. This variability was also evident within other cell types, 

including CD14 monocytes, NK cells, and T cells (Table 3.  1).   
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Table 3.  1 LCT results of Reactome Collection Comparing Cases vs Controls 

Stratified by Cell Type 

 

Cell Types p_value q_value 

B Cells 1 0 0 

B Cells 2 0.31 0.41 

B Cells 3 0 0 

CD14 Monocytes 1 0 0 

CD14 Monocytes 2 0.002 0.003 

CD14 Monocytes 3 0.01 0.02 

CD14 Monocytes 4 0.41 0.45 

CD14 Monocytes 5 0 0 

NK Cells 1 0 0 

NK Cells 2 0.49 0.49 

zT Cells 1 0.36 0.43 

T Cells 2 0 0 

T Cells 3 0 0 

HSPCs 0.005 0.009 

CD16 Monocytes 0.02 0.04 

Megakaryocytes 0.64 0.83 

Conventional DCs 0.74 0.83 

Plasmacytoid DCs 0.86 0.86 
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3.2  Step 2 and 3 

 
For each gene set in the KEGG collection, we obtained nine p-values from nine pairwise 

comparisons (Table 3.  2). To consolidate p-values into a single summary statistic, we used 

Fisher’s method function to obtain combined p_values and created a jitter plot (Figure 3.  1). The 

dots represent the 186 gene sets, Y[g] is an indicator of combined p values, and X[g] is the number 

of comparisons with p_value < 0.01. We designated the color of dots as the comparison number 

(1 to 9) for which the LCT p-value is minimum. Gene sets depicted on the left side of the figure 

exhibit differential expression in specific clusters regarding pairwise comparison. Conversely, 

gene sets on the right side of the figure demonstrate differential expression across almost all 

comparisons. This classification enables prioritization of further investigation and interpretation 

of the results into unique and biologically relevant gene sets while deprioritizing those with 

consistent differential expression. Limiting results to at most three comparisons, we have ten 

differential expressed gene sets, which are summarized in Table 3.  3. 
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Table 3.  2 LCT Results of Nine Comparisons regarding KEGG Gene Sets with 

Minimum Combined p_values. 

 
 

 

KEGG 

Comparisons Stratified by Cell Type 

 

 

 

T 

Statistic 

 

 

 

*C 

p_value 

Comparison Number 

1 2 3 4 5 6 7 8 9 

 

Gene Sets 

B cells CD 14 Monocyte Cells NK T cells 

1 vs 2 3 vs 2 1 vs 4 2 vs 4 3 vs 4 5 vs 4 2 vs 1 2 vs 1 3 vs 1 

Taurine_and_Hypotaurine_Metabolism 0.03 0.42 0.33 0.09 0.24 0 0.03 0.02 0.06 56.52 7.27E-06 

Non_Homologous_End_Joining 0.04 0 0.30 0.02 0.13 0.02 0.15 0.04 0.004 66.41 1.81E-07 

Glycosphingolipid_Biosynthesis_Globo_Series 0.61 0.42 0.09 0 0.005 0.03 0.05 0.16 0.11 57.01 6.15E-06 

Sulfur_Metabolism 0.02 0.53 0.07 0.019 0.25 0 0.04 0.02 0 75.59 5.00E-09 

Aminoacyl_tRNA_Biosynthesis 0.13 0.16 0.12 0 0.66 0 0.013 0.001 0.02 79.60 1.01E-09 

Glycosphingolipid_Biosynthesis_Ganglio_Series 0.28 0.011 0.21 0 0.24 0 0.03 0.03 0.006 78.07 1.85E-09 

Limonene_and_Pinene_Degradation 0.005 0.62 0.03 0 0.45 0 0.07 0.011 0.02 78.41 1.62E-09 

Pantothenate_and_Coa_Biosynthesis 0.26 0.94 0.08 0 0.02 0.005 0.26 0.02 0.001 68.28 8.78E-08 

Citrate_Cycle_TCA_Cycle 0.03 0.17 0.05 0.014 0.72 0 0.016 0 0 88.59 2.58E-11 

Valine_Leucine_and_Isoleucine_Biosynthesis 0.26 0.97 0.12 0.02 0.27 0 0.089 0 0 76.55 3.41E-09 

 

*C p_value: Combined P value 

T: test statistic following a chi-squared distribution 
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Figure 3.  1  Jitter Plot of Step 3 Analysis; combined significance over all 

comparisons vs. total number of comparisons with p_value < 0.01.  Black dots 

represent 186 gene set of KEGG.  X[g] = Number of Comparisons 

where Significant (p_value <0.01). Y[g]= - log combined p_value. Color indicates 

the comparison with the smallest p_value.  

 
 
 

Table 3.  3  Differentially Expressed KEGG Pathways in Covid-19-Infected 

Samples Considering Comparisons with Minimum Combined p_values. X[g] = 

Number of Comparisons where Significant (p_value < 0.01), and Y[g]= Combined 

Significance over all Comparisons. 
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Gene set name X[G] Y[G] Group 

Taurine_and_Hypotaurine_Metabolism 1 5.13 CD14monocyt5_4 

Non_Homologous_End_Joining 
 

2 

 

6.74 

B cell3_2 

T cell3_1 

  Glycosphingolipid_Biosynthesis_Globo_Series 
 

2 

 

5.21 

CD14monocyt2_4 

CD14monocyt3_4 

 

Sulfur_Metabolism 

 

2 

 

8.3009 

CD14monocyt5_4 

Tcell3_1 

Aminoacyl_tRNA_Biosynthesis 3 8.99 

Tcell2_1 

CD14monocyt2_4 

CD14monocyt5_4 

 

Glycosphingolipid_Biosynthesis_Ganglio_Series 

 

 

3 8.73 

Tcell3_1 

CD14monocyt2_4 

CD14monocyt5_4 

Limonene_and_Pinene_Degradation 3 8.78 

B cell1_2 

CD14monocyt2_4 

CD14monocyt5_4 

Pantothenate_and_CoA_Biosynthesis 3 7.05 

Tcell3_1 

CD14monocyt2_4 
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According to Table 3.  3, several gene sets related to amino acid and lipid biosynthesis and 

metabolism are differentially expressed within specific pairwise comparisons.  

 

In CD14 monocytes and T cells, epigenetic signatures showed differential expression of KEGG 

pathways associated with sulfur metabolism, aminoacyl tRna_biosynthesis, glycosphingolipid 

biosynthesis; pantothenate and coAbiosynthesis, and citrate/TCA_cycle, indicating widespread 

alteration in amino acid and lipid biosynthesis and metabolism. In B and T cells, KEGG clusters 

with epigenetic signatures included non-homologous end joining, – important for repairing DNA 

double-stranded break (DSBs). 

 

 

 

 

CD14monocyt5_4 

Citrate_Cycle_TCA_Cycle 3 10.58 

Tcell2_1 

Tcell3_1 

CD14monocyt5_4 

Valine_Leucine_and_Isoleucine_Biosynthesis 3 8.46 

Tcell2_1 

Tcell3_1 

CD14monocyt5_4 
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Chapter 4: Discussion, Limitations, and Conclusion 
 

 
Our results suggest that Maternal COVID-19 may alter several amino acid biosynthesis and 

metabolism pathways in umbilical cord blood cells, potentially predisposing the fetus to metabolic 

syndrome conditions such as cardiovascular disease.  

Previous studies demonstrated amino acid biosynthesis alteration during infection with COVID-

19. Dysregulation of one-carbon metabolism is implicated in various biological processes and is 

linked to several diseases, including cardiovascular disease. Emerging evidence suggests that one-

carbon metabolism plays a significant role in COVID-19. Numerous amino acids and their 

derivatives are integral to one-carbon metabolism. Following infection with the SARS-CoV-2 

isolate (in African Green Monkey Vero E6 cells), intracellular levels of methionine (Met), 

cystathionine, pyridoxine, betaine, serine, glycine (Gly), 5-oxoproline (pyroglutamate), and 

cysteine-glutathione disulfide were reduced. In contrast, levels of reduced glutathione were 

elevated. However, intracellular levels of S-adenosylmethionine (SAM), S-

adenosylhomocysteine (SAH), cysteine (Cys), and oxidized glutathione (GSSG) remained 

unaffected in the SARS-CoV-2-infected cells. So, the SARS-CoV-2 virus hijacks many aspects of 

host sulfur amino acid metabolism, particularly glutathione metabolism involved in antioxidant 

defenses (Perła-Kaján & Jakubowski, 2022; Zhang et al., 2021). Metabolomic analysis of urine 

samples from COVID-19 and non-COVID-19 patients unveiled five pathways significantly up-

regulated in COVID-19 patients. Among these pathways were taurine and hypotaurine 

metabolism as well as  sulfur metabolism (Liu et al., 2021). Another comprehensive study aimed 

to delineate the independent and overlapping metabolic characteristics of samples from acutely ill 

patients, comprising 831 individuals who tested positive (n = 543) or negative (n = 288) for 

COVID-19. Remarkable alterations in amino acid metabolism emerged as highly pertinent 
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indicators of disease severity, progression, and prognosis concerning biological and clinical 

variables in these patients. Spearman correlation analyses revealed clinical and metabolic 

associations with coagulation parameters, notably highlighting sulfur metabolism,  particularly 

cystine (D’Alessandro et al., 2021). Similarly, our findings suggest that several amino acid 

biosynthesis and metabolism genes are altered due to maternal COVID-19 infection. 

 

The altered amino acid and lipid biosynthesis and metabolism pathways in umbilical cord blood 

may increase the risk of metabolic disease, including cardiovascular disease, in fetuses born from 

mothers infected with COVID-19. Atherosclerosis (AS) represents a progressive multifactorial 

immunomodulatory metabolic disease and serves as a precursor to various cardiovascular 

conditions, encompassing myocardial infarction, stroke, and angina pectoris (Bhattacharya et al., 

2022). Endothelial cells, leukocytes, and smooth muscle cells within the intima play pivotal roles 

in the progression of this condition. During the initial stages of atherogenesis, an early cellular 

response involves the targeted recruitment of circulating monocytes, and a lesser involvement of 

T lymphocytes. Within the intima, monocytes undergo differentiation into macrophages and 

uptake atherogenic lipoproteins. The formation of lipid-laden macrophages, characterized by a 

significant accumulation of cholesteryl esters (foam cells), is a distinguishing feature of early and 

advanced atherosclerotic lesions. Sustained exposure to atherogenic lipoproteins leads to 

continuous ingestion by macrophages until their demise. The death of macrophages through 

apoptosis and necrosis creates a soft and destabilizing lipid-rich core within the plaque. Plaque 

rupture represents the primary cause of coronary thrombosis, as about 76% of fatal coronary 

thrombi occur due to the rupture of plaques. The characteristics of ruptured plaques include a 

substantial lipid-rich core, a thin fibrous cap with sparse smooth muscle cells and numerous 

macrophages, angiogenesis, inflammation in the adventitia, and outward remodeling (Falk, 2006; 
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Glass & Witztum, 2001; Hansson, 2005; Houtkamp et al., 2001; Libby, 2002; Spagnoli et al., 

2007). In one study, uncovering potential metabolic signatures indicative of atherosclerosis (AS) 

in patients, a comprehensive analysis was conducted on 200 serum samples obtained from 

individuals diagnosed with AS and those with normal serum profiles. A distinct group of 

metabolites related to bile acids, amino acids, steroid hormones, and purine metabolism were 

identified. Furthermore, the targeted metabolomics approach corroborated these findings, 

revealing significant upregulation of six metabolites, including isoleucine, and significant 

downregulation of the concentrations of leucine and valine in the AS-risk sera. It was observed 

that pathways associated with amino acid biosynthesis played a crucial role in distinguishing 

between normal and AS sera, further underlining the significance of altered amino acid 

metabolism in the context of AS (Sardar et al., 2023). In another study, an integrated genomic 

analysis of two public datasets ( GSE28829 comprises 16 carotid artery segment samples from 

patients with atherosclerosis and 13 normal control samples, and GSE43292 comprises 32 

atherosclerosis samples and 32 control samples) was conducted to explore potentially important 

genes, key modules, infiltrating immune cells, and pathways involved in the pathogenesis of 

atherosclerosis. Regarding KEGG pathways, the disease group showed significantly higher 

expression of genes associated with limonene and pinene degradation and the valine leucine and 

isoleucine biosynthetic pathways while exhibiting lower expression of the glycosphingolipid 

biosynthesis globo series genes (Ji et al., 2023). Atherosclerotic lesions within the coronary 

arteries lead to narrowing or complete blockage of the vessel lumen. This constriction results in 

inadequate blood supply to the heart muscle, leading to myocardial ischemia, hypoxia, or necrosis 

(Malakar et al., 2019). Past investigations have firmly established that disruptions in metabolic 

pathways, such as elevated blood lipid levels and diabetes, constitute prominent risk factors 

contributing to the development of coronary artery disease (CAD). The study analyzed the 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28829
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43292
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canonical correlation between CAD and gene expressions associated with metabolic pathways. 

The findings revealed that specific KEGG pathways, such as the tricarboxylic acid (TCA) cycle 

andglycosphingolipid biosynthesis ganglio series genes“ exhibited the most significant 

correlations with CAD genes (Lu et al., 2018). The glycosphingolipids synthesized via this 

pathway have been shown to accumulate in the artery wall, a recognized hallmark of 

atherosclerosis (Hara & Taketomi et al., 1991). Metabolomics offers a means to uncover novel 

intermediate metabolites, aiding in comprehending the underlying mechanisms contributing to the 

risk of atherosclerotic cardiovascular disease (ASCVD). A survey conducted on Surveillance of 

Risk Factors of Non-Communicable Diseases in Iran selected a random sample of 1,102 

individuals aged between 40 and 79 years with LDL levels below 190 mg/dl and without pre-

existing coronary artery disease or myocardial infarction. Utilizing the 10-year ASCVD risk score, 

participants were categorized into four groups based on their ASCVD risk level: low, borderline, 

intermediate, and high. Fasting plasma samples from these individuals were analyzed for thirty 

acylcarnitines and twenty amino acids. The identified differential metabolites between the low 

ASCVD risk group and the borderline/intermediate/high ASCVD risk groups were predominantly 

associated with various biological processes, including aminoacyl tRNA biosynthesis and the 

biosynthesis of valine leucine and isoleucine. Notably, the valine, leucine, and isoleucine 

biosynthesis pathway exhibited the highest enrichment ratio, elucidating the differences in 

metabolic profiles among the ASCVD risk groups. Previous studies have highlighted the 

involvement of these mechanisms in cardiovascular event development. For example, aminoacyl 

tRNA biosynthesis has been implicated in regulating the function of regulatory proteins across 

different cellular processes. Their impact on coronary arteries, aorta, cardiomyocytes, fibroblasts, 

and their association with angiogenesis and cardiomyopathy underscores the potential of this 

pathway as therapeutic or diagnostic targets for ASCVDs. Additionally, disruptions in the 
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mechanisms involving valine, leucine, isoleucine, and their α-keto acids have been observed in 

animals experiencing cardiac events (Dehghanbanadaki et al., 2023). Our results also indicate 

differential expression of these pathways in specific immune cells of the umbilical cord blood of 

COVID-19-infected-mothers, suggesting a potential future risk of atherosclerosis for the fetus.  

 

Another microarray dataset, GSE20129, comprising 118 samples from the peripheral blood of 

female patients (47 atherosclerotic and 71 non-atherosclerotic patients), was utilized to identify 

differentially expressed genes (DEGs) associated with atherosclerosis. Employing the Recursive 

Feature Elimination (RFE) algorithm, 11 biomarkers, including CSAD, were identified. Cysteine 

sulfinic acid decarboxylase (CSAD) is an enzyme that catalyzes the conversion of cysteine sulfinic 

acid to hypotaurine, potentially limiting taurine production. Taurine, 2-aminoethanesulfonic acid, 

has been demonstrated to possess protective effects against cardiovascular diseases and can 

effectively impede the progression of atherosclerotic diseases (Wójcik et al., 2010). Therefore, it 

is hypothesized that CSAD may play a role in the advancement of atherosclerosis by modulating 

the generation of taurine (Chang et al., 2004; Liu et al., 2016). Reduction of cellular 

senescence, protection against telomerase deficiency, inhibition of mitochondrial dysfunction, 

reduction of DNA damage, mitigation of inflammation, and modulation of stress are among 

taurine’s advantageous biological effects (Ito et al., 2014; Preising et al., 2019; Ripps & Shen, 

2012; Singh et al., 2023; Warskulat et al., 2007). Taurine, essential for blood cell composition, is 

critical in maintaining hematologic function. Taurine plays a role in the synthesis, growth, 

differentiation, maturation, stabilization, optimal functioning, and programmed cell death of blood 

cells. In neutrophils and monocytes, taurine exhibits antioxidative properties by interacting with 

hypochlorous acid, forming taurine chloramine (TauCL). Taurine chloramine, being a milder 

oxidant, enhances phagocytosis and retards cellular apoptosis. TauCl is released from activated 
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phagocytes upon their apoptosis and inhibit the production of inflammatory mediators. These 

include superoxide anion, nitric oxide, tumor necrosis factor-α, interleukins, and prostaglandins 

in inflammatory cells within inflamed tissues. Thus, a key function of TauCl is initiating 

inflammation resolution. Moreover, it acts as a protective mechanism, safeguarding macrophages 

and surrounding tissues from damage caused by cytotoxic reactive oxygen metabolites that are 

excessively produced during inflammation (Kim & Cha, 2014). Increasing evidence indicates a 

potential causal relationship between immunosenescence and age-related chronic diseases, 

including susceptibility to atherosclerotic cardiovascular disease (ASCVD) (Del Pinto & Ferri, 

2018; Laderoute, 2015; Laderoute, 2020; Müller et al., 2019; Oishi & Manabe, 2016). 

Immunosenescence, which refers to the aging-related decline in immune function, impacts innate 

and adaptive immunity. Monocytes and macrophages (M/M) play central roles in orchestrating 

immune responses, making them key targets and mediators of immunosenescence. This condition, 

influenced by age, stress, and persistent infections, results in immunosuppressed semi-activated 

macrophages that are unable to differentiate appropriately. Concurrently, these cells release pro-

inflammatory cytokines in an unregulated manner. Consequently, these dysfunctional cells 

accumulate in tissues, originating from their earlier role as monocytes, and contribute disease 

development. A recent meta-analysis of randomized controlled trials (RCTs) indicates that taurine 

supplementation may yield favorable effects on specific cardiometabolic indicators in individuals 

with underlying comorbidities such as diabetes. The analysis reveals that taurine supplementation 

led to reductions in systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol 

(TC), and triglycerides (TG) levels (Guan & Miao, 2020). Exposure to taurine during the perinatal 

period can have more enduring effects on adult function and susceptibility to diseases such as 

cardiovascular disease, compared to exposure during adulthood (Roysommuti & Wyss, 2014). 

Intrauterine growth restriction resulting in low birth weight is widely recognized as a leading 
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cause of adverse neonatal outcomes associated with taurine deficiency (Norberg et al., 1998), 

predisposes newborns to conditions such as diabetes mellitus, obesity, and hypertension in 

adulthood (Roysommuti & Wyss, 2014). Moreover, numerous researchers have found that 

supplementing adult offspring deprived of taurine prenatally and/or early postnatally can prevent 

several disorders. Taurine or taurine-rich diet may prevent or alleviate hypertension in both animal 

and human models. In adult spontaneously hypertensive rats, taurine supplementation, for 

example, has been demonstrated to reduce hypertension. Furthermore, taurine therapy appears to 

shield against hypertension brought on by a diet high in sugar. According to epidemiological 

research, people who consume much taurine in their diet also typically have lower rates of 

hypertension and other cardiovascular illnesses. (Roysommuti & Wyss, 2014; Yamori et al., 

2010). Targeted metabolomics analyses conducted on sera from forty-nine subjects, comprising 

33 COVID-19–positive individuals and 16 COVID-19–negative subjects, revealed significant 

associations between COVID-19 status and interleukin-6 (IL-6) levels with amino acid 

metabolism. Notably, sulfur-containing amino acids such as cysteine and taurine tended to 

decrease, particularly in the moderate-high IL-6 group. Conversely, oxidized forms of sulfur-

containing amino acids like methionine sulfoxide, cystine, and arginine, exhibited increases. 

Although no significant alterations were observed in methionine levels, elevations in acetyl-

methionine and hydroxyproline were noted, especially in COVID-19 patients with the highest IL-

6 levels (Thomas et al., 2020). Recent progress in understanding monocyte diversity has 

underscored the importance of different monocyte subsets in hypercholesterolemic mice. These 

subsets exhibit specific recruitment to early lesions, adipose tissue, or infarcted myocardium 

(Swirski et al., 2007). However, the exact role of each monocyte subset in atherogenesis remains 

to be fully elucidated. Similarly, our results demonstrated differential expression of KEGG gene 

sets involved in the pathophysiology of atherosclerosis in specific subsets of CD 14 Monocytes. 
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Similarly, our findings revealed that taurine and hypotaurine metabolism pathway is only 

differentially expressed in a specific cluster of CD 14 monocytes, showing epigenetic regulation. 

This suggests that through epigenetic modulation, metabolism of taurine and hypotaurine in CD14 

monocytes can be disturbed, which may affect its proper differentiation and increase the risk of 

immunosenescence disease like ASCVD in fetuses born from COVID-19-infected-mothers.  

 

According to a study conducted by Verschuren et al., the non-homologous end-joining (NHEJ) 

pathway was found to be associated with the occurrence of MI in both the GENDER study (P = 

0.0083) and the PROSPER study (P = 0.014) (Verschuren et al., 2013) (The GENetic 

DEterminants of Restenosis (GENDER) study, 3,104 consecutive unrelated symptomatic patients 

who were successfully treated with percutaneous coronary intervention (PCI) for angina were 

included. The study conducted a follow-up period of 9 months to analyze the combination of 

prevalent and incident myocardial infarction (MI) or stroke. PROSPER is a prospective 

multicenter randomized placebo-controlled trial designed to evaluate whether treatment with 

pravastatin reduces the risk of major vascular events in elderly individuals aged 70–82 years in 

Scotland (Glasgow), Ireland (Cork), and The Netherlands (Leiden) between December 1997 and 

May 1999). Atherosclerotic plaques, triggers of myocardial infarction and stroke, are 

characterized by the accumulation of vascular smooth muscle cells (VSMCs) and inflammatory 

cells, along with lipid and extracellular matrix proteins (Dutta et al., 2012). Despite the chronic 

inflammatory nature of plaque development, growing evidence indicates that DNA damage to 

cells within the lesion plays a significant role in both atherogenesis and the behavior of established 

lesions (Mahmoudi et al., 2006). Our results suggest that in addition to differential expression of 

other pathways involved in atherosclerosis, non-homologous end joining (NHEJ) is differentially 

expressed in specific subsets of T and B cells, which means maternal SARS-CoV-2 infection may 
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lead to DNA damage in these cell types which can promote atherogenesis. A possible explanation 

could be oxidative DNA damage. Reactive oxygen species (ROS) continuously generated within 

cells during pathological processes, such as inflammation (Williams & Jeffrey, 2000). Infections 

with RNA viruses, such as SARS-CoV-2, have been associated with elevated production of free 

radicals and increased consumption of antioxidants, leading to dysregulation of Oxidative Stress 

(OxS) in both the mother and placenta (Moreno-Fernandez et al., 2022; Rolfo et al., 2022; 

Tepebaşı et al., 2022) 

 

Maternal Covid-19 may predispose fetuses to other cardiovascular disease such as dilated 

cardiomyopathy and atrial fibrillation. Dilated cardiomyopathy (DCM) is a primary 

cardiomyopathy with an unknown cause, commonly affecting both children and older adults. 

Despite its prevalence, the lack of noticeable symptoms and identifiable biomarkers presents 

challenges in the early detection and management of DCM. two datasets were utilized to identify 

potential diagnostic markers for DCM: GSE120895, consisting of 47 DCM patients and 8 

controls, and GSE9800, comprising 12 DCM patients and 6 controls. To investigate the functional 

differences between DCM and control samples, Gene Set Variation Analysis (GSVA) was 

employed to assess the relative expression variances of pathways in the two groups. The GSVA 

analysis revealed significant enrichment of various differentially expressed pathways. Notably, in 

comparison to the control groups, there was a marked decrease in the expression of pathways 

associated with valine leucine and isoleucine biosynthesis pathway in the DCM group (Zhou et 

al., 2021).  Atrial fibrillation (AF) represents one of the most prevalent types of arrhythmias, often 

associated with significant clinical complications. To gain deeper insights into the metabolomic 

profile of AF and identify potential biomarkers for AF diagnosis or prediction, a study was 

conducted utilizing atrial appendage samples from sixty individuals (30 with AF and 30 without 
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AF), and plasma samples from 49 AF patients and 116 non-AF patients. Among the 24 metabolites 

analyzed in the atrial appendage samples, eight metabolites, including L-valine and taurine, 

exhibited a substantial difference, mainly showing increased levels in the AF group compared to 

the non-AF group. In the analysis of plasma samples, 24 metabolites were examined. Among 

these, nine metabolites, including L-valine, demonstrated a notable increase in levels in the AF 

group compared to the non-AF group. Conversely, seven metabolites, including L-leucine, 

exhibited significantly decreased concentrations in the AF group compared to those in the non-

AF group. L-valine consistently displayed elevated levels across all samples in both the atrial 

appendage and the plasma samples. The KEGG analysis of the differential metabolites in the atrial 

appendage samples revealed seven significantly altered pathways, which included aminoacyl 

tRNA biosynthesis and taurine and hypotaurine metabolism and the analysis of plasma samples 

identified six significantly altered pathways, with valine leucine and isoleucine biosynthesis being 

one of them (Lai et al., 2018). 

 
 

4.1  Other Possible Fetal Complications 
 
Extracellular vesicles (Evs) are increasingly recognized as vital components in the communication 

between the embryo and maternal tissues under physiological and pathological conditions. These 

Evs act as carriers, facilitating the transfer of nucleic acid, proteins, and lipids between cells, 

thereby enabling intercellular communication without direct cell-to-cell contact. 

Glycosphingolipids (GSLs) in Evs have emerged as promising mediators of cross-boundary cell-

to-cell communication (Lo et al., 2023; Tannetta et al., 2014). Whether differential expression of 

glycosphingolipid biosynthesis in umbilical cord blood mononuclear cells of COVID-1- infected-
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mothers can disturb intercellular communication between the mother and the fetus through Evs 

needs further investigation.  

 

Effective DNA repair is essential for the survival of an organism, given that DNA is constantly 

exposed to diverse exogenous factors such as chemicals, radiation, and internally generated 

triggers like reactive oxygen species (ROS) and DNA replication errors, all of which can cause 

DNA damage. Human cells have multiple intrinsic DNA repair mechanisms to safeguard against 

the detrimental effects of DNA damage (Ozturk & Demir, 2011). To repair double-strand breaks 

(DSBs) that are considered to carry the highest risk of triggering deleterious events such as 

chromosomal translocations, cancer, and cell death, repair mechanisms such as non-homologous 

end-joining (NHEJ) are involved (Waters et al., 2009). NHEJ operates very quickly, with half-

times typically ranging from 10 to 30 minutes and is essentially error prone. It functions by 

directly joining the ends of DNA strands without the ability to restore the original sequence in the 

vicinity of the double-strand break (DSB). It lacks built-in mechanisms to ensure the restoration 

of the original DNA molecule. In principle, it can join any DNA ends regardless of their molecular 

origin, which can manifest chromosomal translocations (Dueva & Iliakis, 2013). Several studies 

suggest that DSBs and their repair by NHEJ play a role in the formation of critical chromosomal 

translocations observed in both childhood and adult acute myeloid and lymphoid leukemias 

(Rassool, 2003) (Elliott & Jasin, 2002) (Preston et al., 1994) (Pierce et al., 1996; Wiemels et al., 

2000). Whether and how differential expression of NHEJ in B and T cells of umbilical cord blood 

cells of COVID-19-infected-mothers may increase the likelihood of developing lymphoid 

leukemias in fetuses is of significant concern, and further investigations are warranted.  
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Gene expression analysis has evolved significantly and remains essential for understanding 

biological systems. Measuring RNA and protein levels offers unique insights into cell functions. 

Advanced technologies like high-throughput next-generation sequencing (NGS) have made gene 

expression analysis more efficient and popular in modern research. Different techniques have 

distinct advantages and limitations depending on research goals, available resources, and 

sensitivity requirements. Bulk NGS provides a comprehensive view of cell clusters but may 

overlook cellular diversity. Single-cell RNA sequencing (scRNAseq) addresses this limitation by 

examining individual cells, allowing for the study of cellular diversity and developmental 

relationships in various disease conditions. We used the available gene expression data set (Gene 

Expression Omnibus database (GSE 165193). Matute et al. employed droplet-based single cell 

RNA sequencing (scRNAsq) in this study, a cutting-edge method in high-throughput next-

generation sequencing. 

 

In this study we focused on gene set level analysis instead of the individual gene analysis 

conducted by authors. Gene set level analysis offers several advantages over gene level analysis 

in interpreting high-dimensional gene expression data. By concentrating on predefined sets of 

functionally related genes rather than individual genes, gene set analysis allows for a more 

biologically meaningful interpretation of complex datasets. This approach provides a broader 

perspective by considering the coordinated activity of genes within biological pathways or 

functional modules, which can uncover subtle but coordinated changes in gene expression that 

may be missed by examining individual genes in isolation. Additionally, gene set analysis 

enhances statistical power by aggregating information across multiple genes, thereby reducing the 

impact of noise and variability inherent in high-dimensional data. Gene set level analysis plays a 

crucial role in uncovering potential therapeutic targets and preventive methods for various 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165193
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diseases. Gene set analysis can identify key pathways that are dysregulated in disease states by 

examining the collective behavior of functionally related genes within biological pathways or 

processes. Dysregulated pathways represent potential targets for therapeutic intervention, as 

modulating their activity could restore normal cellular function and mitigate disease progression. 

Additionally, gene set analysis can reveal pathways associated with disease risk, such as the 

KEGG pathways we suggest in this study, providing insights into potential preventative strategies. 

By understanding the underlying molecular mechanisms involved in disease development, 

researchers can develop targeted therapies to restore normal pathway activity or prevent the onset 

of disease by modulating relevant biological processes. Furthermore, gene set analysis enables the 

identification of biomarkers associated with disease risk or treatment response, which can inform 

personalized treatment strategies and facilitate the development of precision medicine approaches. 

Overall, gene set level analysis serves as a valuable tool in drug discovery and development, 

offering insights into disease mechanisms and guiding the development of novel therapies and 

preventive measures. 

 

One particularly effective method for gene set analysis is the Linear Combination Test (LCT). 

This method, with its ability to efficiently capture the intrinsic geometric structure of the data and 

identify gene sets that exhibit coordinated expression patterns, is a reliable and robust tool. It is 

particularly suited for analyzing high-dimensional gene expression data, providing a solid 

framework for identifying biologically relevant pathways or processes associated with the 

observed phenotypes. In summary, gene set level analysis, particularly when coupled with robust 

methods like LCT offers a comprehensive and interpretable approach for uncovering meaningful 

insights from complex gene expression datasets. 
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Matute et al., 2022 have identified several limitations that warrant discussion. Notably, the small 

sample size restricts the extent to which conclusions can be generalized. Additionally, it's crucial 

to recognize that all cases included in the study involved mothers with mild SARS-CoV-2 

infection; more severe cases could potentially yield different or more pronounced fetal immune 

genomic signatures, particularly considering evidence suggesting an increased likelihood of 

intensive care unit admission with more severe maternal infection during pregnancy and increased 

risk of NICU admission for neonates. Moreover, the interval between maternal infection and 

delivery, as well as cord blood collection, may influence the observed immune phenotype in cord 

blood. Given the variation in timing between infection and collection within our cohort (ranging 

from 7 to 66 days), more consistent timing could potentially yield more significant findings. 

Lastly, it's important to acknowledge that all mothers affected by SARS-CoV-2 had comorbidities 

such as well-controlled thyroid dysfunction, obesity, or gestational diabetes. While efforts were 

made to include mothers with similar comorbidities in the control population (apart from 

gestational diabetes), and all comorbidities were managed medically, it's plausible that our results 

may be influenced by maternal comorbidities. However, it's worth noting that thyroid disease, 

obesity, or gestational diabetes in the mother have not been reported to elicit the transcriptional 

response patterns observed in cases compared to controls.  

 

While our study addresses certain limitations of the original published paper, it is imperative to 

approach the results with caution. Although gene expression data offer valuable insights into 

transcriptional activity, they may not comprehensively capture epigenetic modifications that 

contribute to the development of metabolic syndrome in neonates. Supplementing our analysis 

with additional methodologies, such as DNA methylation profiling using Bisulfite Sequencing or 

investigating histone modifications via Chromatin Immunoprecipitation (ChIP), could yield a 
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more thorough understanding of epigenetic programming in this context. Furthermore, during 

pregnancy, a multitude of factors can influence epigenetic modifications, thereby impacting fetal 

development and long-term health outcomes. These factors include maternal diet, psychological, 

environmental, or socio-economic stress, lifestyle, health conditions, advanced age, and variations 

in the gut microbiome. It is not feasible to match cases and controls neither in this study nor other 

studies regarding all the factors contributing to epigenetic modulation thus we need to interpret 

the results with careful attention. In addition, the growth and development of the fetus rely heavily 

on the mother. The placenta serves as the crucial link between the mother and the fetus, facilitating 

fetal development and providing early life immunity through the transfer of growth factors, 

nutrients, oxygen, and pathogen-specific antibodies, and maternal microchimeric immune cells 

(MMc) (Stelzer et al., 2021). In this study authors did not employ a strategy to exclude maternal 

side of the umbilical cord blood mononuclear cells which may affect the results.  

 

In this study, we used the KEGG collection, a comprehensive and widely used collection of 

biological pathways, to assess altered canonical biological pathways due to maternal COVID-19 

in CBMCs. The KEGG database, is however, not the only database providing biological pathways, 

and there is no consensus on the best database. Other examples are Reactome, BioCarta, 

WikiPathways, Panther (Protein ANalysis THrough Evolutionary Relationships) Pathways, and 

MPDB (Small Molecule Pathway Database). By exploring and integrating data from these 

additional pathway collections into our research, we can broaden the scope of our analysis and 

gain deeper insights into the biological processes relevant to our research interest. Additionally, 

considering multiple pathway databases allows for cross-validation of findings and enhances the 

robustness of the research conclusions. It is important to consider that probably none of these 
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databases perfectly represent the actual biological mechanism, simply because our current 

knowledge has yet to be far evolved. 

 

Utilizing 'omics technologies across diverse platforms (genome, transcriptome, proteome, 

metabolome, microbiome, lipidome), along with extensive high-dimensional population 

databases and distinct cohorts, can offer comprehensive insights into the precise impact of 

maternal COVID-19 on the long-term health outcomes of neonates. Conducting studies on 

metabolomics and gene expression simultaneously can help to better understand health outcomes 

by providing complementary information about biological processes and pathways. By examining 

the expression patterns of sets of genes, we can understand how these pathways are regulated and 

dysregulated in terms of health and disease. This information can help identify key molecular 

mechanisms underlying health conditions and predict disease progression or treatment response. 

Metabolomics focuses on comprehensively analysing small molecules (metabolites) in biological 

samples. Metabolites are the end products of cellular processes and reflect the biochemical activity 

within cells and tissues. By profiling metabolites, metabolomics provides a snapshot of the 

metabolic state of an organism, offering insights into its physiological status, metabolic pathways, 

and interactions with environmental factors. Changes in metabolite levels can serve as biomarkers 

for disease diagnosis, prognosis, and monitoring treatment response. Integrating gene set level 

data and metabolomics allows a more comprehensive understanding of health outcomes. By 

correlating changes in gene expression with alterations in metabolite profiles, we can unravel 

intricate molecular networks and pathways associated with health and disease. This integrated 

approach enables the identification of biomarkers with improved diagnostic and prognostic 

accuracy and facilitates the development of targeted therapeutic interventions tailored to 

individual patients' metabolic and genetic profiles. Prospective cohorts allow for tracking 



 
 

 66 

offspring health outcomes over time involving large sample sizes and extended follow-up periods, 

providing sufficient statistical power to detect meaningful associations between maternal COVID-

19 infection and offspring cardiovascular outcomes later in life. This enhances the reliability and 

generalizability of study findings. Also, prospective cohorts enable the comprehensive assessment 

of potential confounding and cardiovascular disease risk factors. This includes detailed 

information on lifestyle factors, medical history, socioeconomic status, and genetic 

predispositions, which can help identify and adjust for potential confounders.  

 

Evaluating cardiovascular complications arising from maternal COVID-19 can be further 

validated through both in vitro and in vivo investigations. Utilizing animal models like transgenic 

mice or non-human primates serves to corroborate the in vivo significance of identified pathways. 

This involves inducing maternal COVID-19 infection in pregnant animals and assessing its impact 

on offspring cardiovascular health through physiological, histological, and molecular analyses, 

such as assessing immune infiltration in carotid segments. Additionally, conducting 

pharmacological interventions targeting specific pathway components identified in our study 

provides further validation. Administering these drugs to animal models of maternal COVID-19 

allows for evaluating their effects on offspring cardiovascular outcomes. Furthermore, genetic 

manipulations such as knockout or knockdown experiments targeting genes within identified 

pathways in animal models enable assessment of the consequences of pathway perturbations on 

offspring cardiovascular phenotypes and disease susceptibility. 

 

In conclusion, comprehending the intricate interplay between maternal factors and epigenetic 

processes throughout pregnancy is pivotal for identifying modifiable risk factors and devising 

interventions to promote optimal fetal development and lifelong health. The integration of multi-



 
 

 67 

omics approaches, and longitudinal studies can aid in unraveling the mechanisms underlying 

maternal programming of epigenetic changes and their implications for the health and 

susceptibility of offspring to diseases. 
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