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Abstract

With the growing demand for online applications such as high-resolution video stream-

ing and cloud gaming, there is an urgent need for high-throughput and low-latency

technologies. The Remote Direct Memory Access (RDMA) over Converged Ethernet

Version 2 (RoCEv2) network protocol is increasingly preferred in Data Center Net-

works (DCNs) as it reduces overhead from processor utilization, an issue with the

traditional TCP/IP protocol. Along with these technological advancements, effective

congestion control (CC) algorithms are vital. Without proper CC, DCNs could expe-

rience performance degradation, affecting the Quality-of-Service (QoS). Traditional

CCs are not optimized for DCNs as they were developed for Wide Area Networks

(WANs). Even though some CCs, such as TIMELY, were designed specifically for

DCNs, they struggle with inevitable packet queuing that causes extra latency. High

Precision Congestion Control (HPCC) uses in-flight byte estimation for proactive con-

trol and performs better than its peers. However, HPCC, like all other CCs, does not

employ a mathematical dynamic equation to evaluate network conditions for optimal

control actions. This research dives deep into the fundamental dynamics of DCNs and

develops a state-space model to explain network behaviors. Leveraging this model, we

present the Model Predictive Congestion Control (MPCC). This new method incor-

porates constrained mathematical optimization and model predictive control (MPC)

design principles. As a window-based CC, MPCC adjusts its window size dynamically

based on observed network conditions. In experiments ranging from bursty incast to

real-world traffic patterns, we show that MPCC significantly reduces switch queue

length and flow completion time while maintaining fairness and throughput.
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Chapter 1

Introduction

1.1 Motivation

Due to the increasing demand for online applications, such as video streaming and

real-time gaming, and the decreasing price of high-speed Data Center Networks

(DCNs) hardware, there has been an ever-growing deployment of data centers. Low

latency and high bandwidth become two crucial parameters to determine the Quality-

of-Service (QoS) that can keep customers satisfied. For this reason, different compa-

nies and researchers continue to increase the link speed even reaching 800 Gbps [1].

Besides the link speed, the traditional software-based network protocol stack, such as

TCP/IP stack, can no longer meet the requirement due to the long overhead [2]. To

reduce these additional latency resulting from the protocol overhead and processor uti-

lization, Remote Direct Memory Access (RDMA) over Converged Ethernet Version 2

(RoCEv2) is becoming more popular [2–4], but with a fundamental problem. Conges-

tion Control (CC) algorithms specially designed for RDMA-enabled DCNs are sparse.

Traditional Additive Increase and Multiplicative Decrease (AIMD) [5] CC algorithms,

such as loss-based TCP-CUBIC [6], and delayed-based Fast-TCP [7] are specifically

designed for Wide Area Networks (WANs). Their slow convergence speed is unaccept-

able for high-speed DCNs. Although some CCs are specifically designed for DCNs,

such as Data Center TCP (DCTCP) [8] and TIMELY [9], these CCs lack foresight

and only involve after-the-switch queue built-up, which will cause extra transmission
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latency. In addition, some of the CCs like DCTCP, need heavy parameter tuning.

This will increase the complexity for DCN operators and also the risk of incorrect

setting of parameters. High Precision Congestion Control (HPCC) [10] is one of the

latest CCs designed for RDMA-enabled DCNs. It measures the in-flight byte to gain

prediction and dynamically adjust the Congestion Window (CWND) size. Receiver-

driven Rapid Congestion Control (RCC) [11] involves a Proportional–Integral (PI)

controller to adjust CWND based on the delay as feedback. But RCC and all of its

predecessors do not have a rigorous mathematical formulation to show that the DCN

parameters like throughput and fairness will converge optimally.

1.2 Literature Review

1.2.1 Congestion Control Types and Related

Since the inception and progression of the Internet, a diverse array of CC algorithms

have been developed, ranging from simpler AIMD-based CCs like TCP-Tahoe [12], to

more intricate systems such as HPCC [10]. Predominantly, these CC algorithms are

implemented at the data sender’s end, utilizing various feedback mechanisms from the

communication network to determine network conditions. However, certain CCs are

implemented at different network nodes: switches, exemplified by Explicit Control

Protocol (XCP) [13] and Rate Control Protocol (RCP) [14], and receivers, as seen in

RCC [11]. Despite these variations, the underlying principles remain consistent. The

upcoming subsection will detail CCs that employ distinct feedback types. Based on

these feedback mechanisms, senders calibrate their data transmission amount to the

Internet. To mitigate congestion risks, CCs regulate the CWND size, thereby con-

trolling the volume of unacknowledged ’in-flight’ packets, or they adjust the sender’s

pacing rate.

Loss/Drop-Based Congestion Control. Loss-based CCs, such as Tahoe and

CUBIC [6, 12], operate by detecting specific signals to detect packet loss in trans-
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mission to the receiver. This signal often manifests as a missing Acknowledgement

(ACK) for a particular packet. Upon identifying a missed packet, the sender responds

by restricting the CWND size. A notable limitation of this approach is that Loss-

Based CCs initiate a reduction in sending capacity only after a packet loss occurs,

which means congestion has already occurred by the time of detection. Consequently,

loss-based CCs lack the foresight to anticipate packet loss.

Alterations have been introduced to loss-based CCs to enable activation prior to

packet loss occurrences. A notable method adopted is Active Queue Management

(AQM) [15], which requires modifications not to the CCs but to the switches. In

AQM, switches are required to proactively monitor and manage their queue lengths,

deliberately dropping packets to prevent queues from becoming fully saturated. This

transformation converts loss-based CCs into drop-based CCs, like [16]. With the

basic mechanism of AQM in place, there has been an integration of more sophis-

ticated control designs, including Proportional–Integral–Derivative (PID) [17] and

Model Predictive Control (MPC) controllers [18]. These advanced controllers are

utilized in AQM to make packet drop decisions, moving beyond the use of simple

threshold-based mechanisms.

Delay-Based Congestion Control. Delay serves as an alternative feedback pa-

rameter extensively utilized by CCs. In contrast to drop-based CCs, which require

AQM-enabled switches for implementation, CCs utilizing delay as a feedback param-

eter are capable of responding to congestion proactively, prior to packet loss, and

without requiring modifications to switches. Delay, as a measure of congestion, is

inherently conveyed with every ACK, reflecting its linear correlation with the queue

length in network switches, a concept that will be elaborated upon in the background

section. In essence, an increase in delay signals an increasing queue length, indicating

severer congestion within the switches. Examples of delay-based CCs, such as TCP-

Vegas [19] and FAST [7], demonstrate superior performance compared to loss-based

CCs like TCP-Tahoe and TCP-Reno, primarily due to their proactive nature.

3



However, the challenge in delay-based CCs lies in the accurate measurement of

delay for refined control. Even small noisy fluctuations in delay measurement can

lead to overreactions or underreactions by the CCs. Google suggests two solutions

to this issue [9]: (i) Deploying advanced Network Interface Controllers (NIC) for

precise delay measurement, and (ii) Integrating delay in hybrid schemes with other

network parameters, such as packet loss. This leads to the subsequent discussion on

hybrid-based CCs.

Hybrid-Based Congestion Control. With the evolution of CC algorithms,

reliance on a single feedback parameter, such as solely loss or delay-based mecha-

nisms, has shown inadequate for meeting the demands of high-speed and low-latency

networks, particularly in DCNs. Traditional CC approaches often result in under

utilization and long latency, failing to fully exploit the capabilities of DCNs. A key

strategy to overcome these limitations is the development of advanced CCs that lever-

age multiple parameters, providing a more accurate reflection of network conditions.

Implementing such comprehensive solutions is typically challenging in WANs due to

concerns related to privacy, security, and hardware compatibility. However, DCNs,

with their known network structures including line rate and number of hops, present

a unique opportunity.

In DCNs, the availability of detailed structural information and the potential for

hardware customization [20] enable the acquisition of a broader range of network

parameters. TIMELY [9] is an example of hybrid-based CCs that utilize known line

rate information that is intrinsic to the structure of DCNs, combined with precise

measurement of timestamps and delay facilitated by customizable NICs. Similarly,

HPCC [10] capitalizes on In-band Network Telemetry (INT) technology [21], also

made feasible through customizable hardware, to gather comprehensive data, such

as the count of switches that a packet traverses and queue lengths at different hops.

These innovations reflect a significant shift in CC design, tailored to optimize the

performance and potential of DCNs.
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Traffic Control Method. In addition to CC algorithms, alternative traffic con-

trol methods are deployed to ensure the smooth functioning of Internet networks,

particularly when CCs prove inadequate or ineffective in extreme network conditions

like incast or Distributed Denial of Service attacks. One such method is Priority-based

Flow Control (PFC) [22], which is designed to facilitate a lossless network environ-

ment, crucial for the efficient operation of RDMA-enabled DCNs. PFC operates by

monitoring switch queue lengths; when the usage exceeds a predefined threshold,

PFC sends a PAUSE signal back to the sender to stop transmission until congestion

is relieved.

However, PFC can introduce several side effects, such as Head-of-Line (HoL) block-

ing [3] and PFC storms [10], which can lead to network performance degradation. To

mitigate these issues, a variation known as Selective-PFC (S-PFC) [23] has been de-

veloped. S-PFC enhances the overall performance of DCNs by selectively allowing

certain network areas to experience lossy conditions.

Loss Recovery. Integrating CC algorithms with traffic control methods can sub-

stantially reduce network losses, bringing networks closer to a lossless state. Despite

these advancements, a completely lossless guarantee is unattainable due to inherent

factors like the transmission loss rate in optical fiber cables and the possibility of hard-

ware failures. Therefore, implementing a loss recovery mechanism remains essential,

even in RDMA-enabled DCNs.

A widely utilized loss recovery approach in many CCs is the fast retransmit algo-

rithm [12]. It activates when the sender receives three duplicate ACKs, interpreting

it as a signal of packet loss and prompting the retransmission of the packet while

concurrently reducing the CWND size. However, this method is not ideally suited for

DCNs, where losses often result from factors that are unrelated to the CC algorithm

or buffer overflow, leading to under utilization of the DCNs’ capabilities.

Given these specificities, the development of loss recovery mechanisms tailored for

DCNs is crucial. An example of such an innovation is the Fast Multi-Path Loss
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Recovery (FUSO) algorithm [24], which is designed to address the unique challenges

of DCNs. FUSO immediately redirects recovery packets via an alternate path upon

detecting a loss in a flow path, without awaiting the typical timeout duration inherent

in traditional fast retransmit algorithms. This approach enhances the efficiency of loss

recovery in DCNs, ensuring more effective and timely remediation of packet losses,

thereby contributing to the overall performance and reliability of DCNs.

1.2.2 Model Predictive Control in Real-World

In this thesis, MPC is implemented as the CC controller for DCNs. It is also known

as receding horizon optimal control, whose versatility and effectiveness not only in

control and optimization theory but also in practical applications have been demon-

strated. An advantage is that the MPC controller solves the future input optimally

given the system dynamics and cost function. Another benefit of implementing MPC

is that it can incorporate system delays and constraints into the controller while

maintaining mathematical optimality.

Initially, MPC was considered computationally intensive compared to traditional

PID controllers due to the necessity of solving an optimization problem for each

control input over a predictive horizon. However, with the evolution of high-speed

custom processors [25, 26] and advanced optimization techniques [27–29], MPC has

increasingly transitioned from being a simulation-only tool to being deployed in actual

plant applications [30]. One example is the MPC deployment in AQM mentioned

above [18]. The result shows that MPC-based AQM achieves superior performance

compared to PID-based AQM.

In autonomous driving, this work [31] presents an MPC control design using kine-

matic and dynamic vehicle models. The study analyzes the discretization errors of

these models, finding that a 200 ms sampling interval performs comparably well to a

100 ms interval while requiring less computing power for the MPC controller. This is

validated through experiments using real vehicles as the system plant and processors
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as the controller.

MPC has also enhanced performance in power converter applications by leveraging

high-speed digital signal processors to apply Finite Control Set Model Predictive

Control (FCS-MPC) to power converters [32]. The findings show that FCS-MPC-

based converters surpass traditional methods like pulse-width modulation in terms

of simplicity, eliminating the need for additional modulation techniques for different

control variables. This simplicity and flexibility make FCS-MPC-based converters a

more practical choice for power conversion systems.

Furthermore, MPC has extended its reach into health sciences. The Bergman

model [33] is used to describe the human glucose-insulin system. A constrained MPC

controller is then applied on experiment plants to adjust insulin infusion rates based

on feedback from blood glucose levels [34]. The results indicate that the controller ef-

fectively maintains blood glucose levels within an acceptable range, even with external

disturbances such as meal intake.

1.3 Our Contributions

In this study, we introduce the Model Predictive Congestion Control (MPCC) algo-

rithm, specifically designed for RDMA-enabled DCNs. MPCC’s distinctive feature

is its utilization of an MPC controller to achieve predictive insights based on a well-

constructed mathematical state-space model. This allows it to effectively maintain

the queue of switches in DCNs at nearly zero, even under challenging traffic condi-

tions such as incast, burstiness, and real applications traffic patterns while ensuring

fairness, throughput, etc., across different flows. Our primary contributions are as

follows:

• Derivation of a discrete state-space realization model from the first-principle

equation to describe the dynamics between the queue length of the congested

switch and the senders’ window size.
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• Our research delves deep into the DCNs’ behaviors. From this, we obtain a

dynamic equation that is crucial for accurately computing the delay associated

with ACK feedback. By incorporating this delay into our queue length dynam-

ics, more precise DCN behaviors can be captured.

• Formulation of a cost function for MPC controller, along with the identification

of constraints for both queue length and the CWND’s maximum and minimum

limits.

• Building upon the refined DCNs model, which now includes the system delay,

we complete the design of the MPC controller. This involves transforming the

constrained MPC optimization challenge into a Quadratic Programming (QP)

framework. The QP solver, qpOASES [35], is selected for solving the constrained

optimization problem in finite horizon.

Experiments were conducted using the NS-3 simulator [36] to validate the accuracy

of our discrete state-space model, which describes the dynamics between the queue

length and CWND. Our testing suite encompassed diverse traffic patterns in DCNs,

from typical scenarios like incast and long-short flows to real-world traffic patterns,

specifically web search and Facebook flows, under the dumbbell topology and the

three-level fattree topology. The results demonstrate MPCC’s superior performance

compared to existing CC algorithms, including DCQCN, DCTCP, TIMELY, and

HPCC. Notably, MPCC excels in queue length, and flow completion time. Addition-

ally, it remains comparable performance against these established algorithms when

assessed on convergence speed metrics.

1.4 Thesis Outline

This thesis is meticulously structured across six chapters to provide an in-depth ex-

ploration of our research as follows:
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• Chapter 1 introduces the primary challenges and motivations for improving the

performance of CCs in high-speed DCNs. Followed by literature reviews that

cover the basic ideas of some existing CC algorithms and MPC controller imple-

mentations in different research areas. End with a summary of our significant

contributions.

• In Chapter 2, essential background knowledge in DCNs, such as delay calcula-

tion and INT technology, is introduced.

• Chapter 3 delves into the details of our modelling approach, backed by rigorous

verification processes. The modelling of ACK delay is also discussed.

• The design intricacies of the MPC controller are elaborated in Chapter. 4, This

includes cost function construction, constraints identification and QP program-

ming formulation.

• In Chapter 5, experimental design and result are shown and discussed for both

dumbbell topology and three-level fattree topology under various real-world

application traffic loads. The performance of MPCC is also compared with

other CCs in different metrics.

• Chapter 6 concludes our thesis, drawing final insights, and highlighting potential

directions for future research endeavors.
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Chapter 2

Background

2.1 Network as Control Systems

In the context of network systems, senders receive accurate feedback, such as INT

information carried by ACK packets. Based on received feedback, including metrics

like Round-Trip Time (RTT) and queue length, the sender will adjust either CWND

or pacing rate as input for networks to guarantee the networks are in smooth and

uncongested condition. The network’s response to these inputs is followed by its

intrinsic mechanisms and dynamics.

Thus, senders are considered to have the capability to observe specific states and

conditions within the network through the feedback. The entire network can be

classified as a closed-loop system. In this scenario, as shown in Fig. 2.1, the network

operates as the System Plant. Each sender acts as a Controller. The ACK signal acts

as the Feedback Element.

2.2 Data Transmission in Modern Communication

Networks

In modern packet-switching communication networks, data are predominantly trans-

mitted in the form of packets. A packet is a unit of data containing two main com-

ponents: a header and a payload. The header contains control information, such as

the Source IP (SIP) address, Source Port (SPORT), Destination IP (DIP) address,

10



Controller System Plant
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Input

Error Actuating

Output

Feedback Signal

+
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Error Detector
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Figure 2.1: A Block Diagram of General Closed-loop Control System

Destination Port (DPORT), and other details like protocol version and the total

length of the packet. The payload, on the other hand, carries the actual data being

transmitted.

When a packet is dispatched from a sender, it travels through various intermediate

switches before reaching its intended destination. Upon reaching a switch, the packet

is first received by the ingress queue associated with the incoming link. Based on the

routing protocol policy of the switch and the header information of the packet, the

switch then determines the specific egress port where the packet is forwarded.

Eventually, the packet arrives at its destination receiver. The receiver, upon suc-

cessfully accepting the packet, sends an ACK packet back to the corresponding sender.

This ACK packet serves to confirm the successful reception of the packet and to re-

quest the transmission of the future packet.

Throughout this process, each device in the network, including senders, receivers,

and switches, is interconnected via physical links. These links can comprise various

transmission mediums, such as optical fiber or coaxial copper wire.
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2.3 Undesired Conditions During Packet Trans-

mitting

2.3.1 Physical Linkage and Hardware Failure

Physical linkage and hardware failure are some of the undesired conditions in packet

transmission. Various factors, such as signal attenuation and interference, can lead to

these failures [37–40]. The primary consequence is the distortion of packet data. Error

correction mechanisms like the inclusion of a checksum field in the packet header [41]

exist to detect and correct such issues. However, they may not always be effective in

extreme cases like multiple-bit errors. In such instances, the network relies on its loss

recovery algorithms. Advanced optical fiber technologies and algorithms [42, 43] have

reduced physical linkage failures, but the complete elimination of packet loss due to

hardware failure remains unattainable.

2.3.2 Improper Network Protocol Setting

Besides hardware issues, software and improper parameter settings can also lead

to undesired conditions in network operation. In WANs, due to the limitation in

parameter availability, the AIMD-based CUBIC algorithm remains the default CC

algorithm in both Linux [44] and Microsoft Windows [45]. CUBIC, as a loss-based

CC algorithm, periodically leads to packet drops and reductions in the CWND size.

An example of CWND size reduction is shown in Fig. 2.2, which illustrates a packet

drop scenario in Windows OS, resulting in throughput fluctuations and a decrease

due to CWND reduction. This observation was made during the monitoring of a

static download flow. One reason is the increasing number of new joined flows, which

can lead to congestion and subsequent packet drops.

In DCNs, more advanced CC algorithms are deployed, making packet drops less

frequent. However, even in DCNs, issues can arise if network operators incorrectly

set the parameters of these advanced CC algorithms. An example is the DCTCP
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Figure 2.2: A Capture of CWND Reduction in Windows OS

algorithm [8], which involves tuning over 15 parameters. Incorrect configuration of

these parameters can adversely affect network performance.

2.3.3 Unexpected Long Delay

Delay is an inherent aspect of packet transmission in communication networks. How-

ever, unexpected and prolonged delays can lead to under utilization of the network

and a degradation in overall performance. Such delays can severely impact customer

experience, evident in scenarios where download speeds fall short of expectations or

when significant lag occurs during video chats. In extreme cases, if the delay is exces-

sive, the sender might interpret the packet as lost, thereby initiating the loss recovery

mechanism. This reaction leads to the transmission of additional recovery packets,

increasing the network’s load further. The next section will provide a more detailed

discussion on the topic of delays in communication networks.

2.4 Delay in Communication Networks

The delay in communication networks can usually be referred to as RTT. RTT rep-

resents the total time from when a sender dispatches a data packet to the moment

the sender receives the corresponding ACK signal from the receiver. RTT consists of

three main components: link delay, processing delay, and queuing delay.
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• Link delay: This is the inherent delay associated with the nature of the trans-

mission linkage medium. For example, in optical fibers, the link delay might

be approximately 500 microseconds per 100 kilometers [46]. Link delay is un-

avoidable and can only be mitigated by using advanced material technologies,

not by CC algorithms or protocols.

• Processing delay: This delay refers to the time taken by network devices, such as

routers or switches, to process and forward a packet. It is influenced by factors

like I/O speed and the complexity of CC algorithms, etc. [47]. Time consumed

for header analysis, routing decisions and error checking are also parts of pro-

cessing delay but usually short. While faster error checking and routing decision

protocols can reduce processing delay, the most significant improvements typ-

ically come from faster hardware. In this thesis, an estimation of processing

delay for each packet is given by the formula:

processingDelay = packetSize/linkRate (2.1)

• Queue delay: This is the time that a packet spends waiting in a switch queue

(buffer) before its transmission. The queue will build up when many pack-

ets arrive at the switch simultaneously and the switch cannot process them

immediately. Thus the extra packets will be temporarily stored in the queue

waiting for forwarding. As the queue size in a switch stacks, the queue de-

lay will be linearly increased. Ideally, the queue delay can be calculated by:

queueDelay = queueLength/linkRate In an extreme condition, when the queue

is full and cannot accommodate any more packets, switches may drop further

incoming packets (drop-tail queue). In this scenario, CCs fail and the networks

need to rely on other mechanisms to regulate themselves, such as PFC and loss

recovery algorithm. While some switches with AQM may drop packets deliber-

ately before the queue is full to optimize AIMD-based CCs [15], such techniques
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are less common in DCNs where advanced CCs have evolved beyond AIMD and

AQM.

Therefore, the total RTT can be estimated as:

RTT = 2 ∗
N∑︂
i=1

linkDelay +
N∑︂
i=1

queueDelay +
N∑︂
i=1

processingDelay (2.2)

Note that, the ’N’ represents the total number of switches a packet traverses. The

processing delay for ACK packets is often negligible due to their smaller size compared

to data packets. The queue delay for ACK paths is assumed to be zero as the queue

length is assumed to be zero.

2.5 Remote Direct Memory Access Technology

RDMA is a technology that enables direct memory access from one computer’s mem-

ory to others’ without involving the processors or operating systems of either com-

puter. Unlike the traditional generalized TCP/IP network protocol stack, which in-

volves significant overhead like copying data between user and kernel spaces, RDMA-

enabled networks provide low latency and high throughput. However, deploying

RDMA technology in WANs is impractical, as it requires RDMA-capable NICs at

both senders and receivers. Conversely, in DCNs, the controlled environment of

LANs makes adopting RDMA feasible. As a result, an increasing number of compa-

nies are implementing RDMA to enhance their DCN performance [48, 49]. There are

primarily two RDMA-enabled protocols:

• RDMA over Converged Ethernet (RoCE) [50]: This protocol enables RDMA

over Ethernet networks. RoCEv2, with specific protocol modifications and spe-

cialized NICs, brings the benefits of RDMA to Ethernet-based DCNs, combining

RDMA’s advantages with the widespread use of Ethernet.

• InfiniBand [51]: A high-performance networking technology, InfiniBand is specif-

ically designed for high-performance computing clusters and DCNs, supporting
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RDMA natively. Due to its departure from the Ethernet protocol and elimi-

nation of Ethernet overhead, InfiniBand networks often outperform those en-

abled by RoCEv2. However, it requires more specialized hardware and is not

compatible with commonly deployed Ethernet protocols. InfiniBand is more

often chosen for high-performance computing clusters rather than for typical

Ethernet-based DCNs.

2.6 Network Parameter Acquisition

In network CC algorithms, the observation of specific parameters is crucial for effective

controlling. Traditional loss-based CC algorithms, such as TCP-CUBIC [6], rely on

packet loss as an indicator to trigger CC adjustments, typically modifying the CWND

size. In this context, an UNACK signal is sent from receiver to sender after a defined

timeout period without receiving an ACK, which signals potential network congestion.

Meanwhile, delay-based CCs, such as FAST-TCP [7], use the RTT as a parameter for

indicating network congestion. RTT is measured by calculating the time difference

between the instance of sending a packet and receiving its corresponding ACK, based

on system timestamps.

With the evolution of programmable switches, INT technology [21] is adopted to

collect detailed hop-by-hop network status information. These data are pushed to

packet headers, enabling senders to receive the network condition information upon

the arrival of an ACK. INT technology allows for the acquisition of more precise and

fine-grained network parameters, such as the queue lengths at individual switches and

timestamps marking a packet’s departure from a switch. HPCC [10], for instance,

leverages the detailed data provided by INT to surpass other methods in various

performance measures, including fast convergence.

DCNs offer additional parameter acquisition opportunities due to their known

structures and typologies. These parameters, such as link rate, link delay, and the

number of switches that a packet traversed, provide valuable insights. For example,

16



the link rate can be used to accurately estimate the processing delay of switches.

When combined with the known link delay and queue length data from INT technol-

ogy, RTT can be actively modeled rather than merely measured passively.

2.7 Maximum Bandwidth-Delay Product and Con-

gestion Window Size

The Bandwidth-Delay Product (BDP) is a key metric in network communications,

representing the maximum amount of UNACKed packet data, also referred to as in-

flight bytes that can exist in the network during transmission between a sender and a

receiver. This is similar to the water in a pipe during transmission. Mathematically,

BDP is expressed as:

BDP = RTT ∗Ratesender, (2.3)

where Ratesender denotes the sender’s data transmission rate. The maximum BDP

(maxBDP) is determined under conditions where the sender operates at its peak

transmission rate and there is only one active flow in the network. MaxBDP can be

estimated by the additional parameters provided by the DCN’s structure where the

sender’s rate is known and RTT can be estimated by the eq. (2.2).

In modern RDMA-enabled DCNs, CC algorithms such as HPCC and RCC com-

monly utilize maxBDP to set both the initial and maximum sizes of the CWND. This

approach has significant advantages. It enables the sender to immediately operate at

its maximum sending rate at the start of each flow. Even in situations where this new

joined flow is competing with existing ones, the CWND size, calculated based on the

estimated maxBDP, effectively limits the number of in-flight bytes. This precaution

helps prevent the overfilling of switch buffers’ egress queues.

This strategy of leveraging maxBDP for CWND sizing is a key factor in the en-

hanced performance of DCNs compared to WANs. By bypassing the traditional ’Slow
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Start’ phase found in conventional CC algorithms like TCP-Tahoe [12], DCNs can

more rapidly adjust to optimal operating conditions, thereby increasing overall net-

work efficiency and throughput.
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Chapter 3

Network Dynamics Modelling

In this chapter, we construct and validate a dynamic model to describe network

behavior. Different parameters can indicate network status, such as switch queue

length, RTT, throughput, etc. However, switch queue length is a fundamental indi-

cator of the network condition. If the egress queue length at a switch exceeds zero, it

implies that the network load surpasses the switch’s processing capacity, leading to

temporary data storage in the switch’s buffer. Conversely, an egress queue length of

zero indicates that the switch is coping with the current network load. Importantly,

the queue length is a parameter that can be directly transmitted and included in

the INT information in a packet header, enabling senders to accurately measure the

queue length without observation errors. This enhances the accuracy of mathematical

models in network dynamics by utilizing queue length as a key parameter.

3.1 Basic Model

The first principle of continuity, fundamental in any fluid-like system, dictates that

the change in content within a system is equal to the difference between the inflow

and outflow rates. This principle is exemplified by a system comprising two water

pipes connected to a tank: one pipe for inflow and the other for outflow. The change

in water content within the tank is the difference between the inflow and outflow

rates.
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The same concept is similarly applicable to the heating system [52]. Assume Ratein

is the rate of heat given to the room and Rateout is the rate of heat loss. Their

difference is the rate of heat accumulation in a room. This principle extends to

various systems, including traffic signal control and electrical capacitors, and can be

generalized in a dynamic equation:

∆content =
∑︂

Ratein −
∑︂

Rateout (3.1)

In DCNs, this principle is observed in the flow of data packets. Similar to fluid

systems, data flows in DCNs have rates controlled by senders, and switches buffer

queues in the network act as water tanks. The rate of change in the egress queue

length at any switch port is determined by the difference between the total data inflow

rate and the outflow rate from that port. If the total inflow rate exceeds the outflow

rate, the egress queue length increases, and vice versa.

Each egress queue in a DCN is connected to multiple ingress queues but only to

one egress link. Therefore, in the context of DCNs, the dynamics of the egress queue

can be represented as:

∆Q =
N∑︂
i=1

Rin −Rout, (3.2)

where:

• Q is the queue length at this egress queue.

• N is the number of flows that pass this egress queue.

• Rin is the data rate of one flow from a sender.

• Rout is the data rate flow out of the egress queue, where the rate depends on

conditions that are summarized in Tab. 3.1.

When the queue length is greater than zero, Rout corresponds to the link rate,

which is the maximum rate of the link connected to the egress port. This occurs
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∑︁N
i=1 Rin ≥ Rlink Q > 0 Rout

True True Rlink

True False Rlink

False True Rlink

False False
∑︁N

i=1 Rin

Table 3.1: Rout Determination Conditions

even if the sum of the inflow rates,
∑︁N

i=1Rin < Rout. This is similar to a water tank

with fluid in it, where the maximum outflow rate is determined by the maximum rate

capacity of the extraction pipe, regardless of the inflow rate.

If the egress queue length is zero, Rout will be the link rate and the queue length

starts to build when the
∑︁N

i=1 Rin ≥ Rlink. If the queue length is zero while the∑︁N
i=1Rin < Rlink, then the Rout will be

∑︁N
i=1 Rin. This situation is similar to a water

tank without fluid, where the outflow rate matches the inflow rate if the inflow is

less than the maximum capacity of the extraction pipe. In such cases, the content in

the tank remains non-negative. By applying this analogy to DCNs, it implies that

when the queue length is zero, the egress link transmits only the data received from

the ingress ports, potentially operating below its maximum link rate and leading to

under utilization.

To validate the continuity model by eq. (3.2), an experimental setup using a

dumbbell topology, as illustrated in Fig. 3.1, is proposed. In this topology, four

senders transmit data packets at a consistent link rate of 1 Gbps with 1 µs link delay.

Based on the eq. (3.2), the expected queue stacking rate at the egress queue of the

bottleneck, switch 1, in this topology is calculated to be 3 Gbps.

To prove this theoretical prediction, a simulation is conducted using NS-3 simu-

lator. The results of this simulation are shown in Fig. 3.2. This figure shows the

increasing of the queue length over time at the bottleneck switch 1’s egress queue.

The simulation results agree with a queue stacking slope of 3 Gbps.
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Figure 3.1: An Simplified 4-to-1 Dumbbell Topology

To further evaluate the accuracy and robustness of the model, a series of tests

involving step inputs of varying frequencies were conducted. Define a step input with

0 Gbps as the minimum value and 1 Gbps as the maximum value. As illustrated in

Fig. 3.3, all four senders transmitted data following the step input function, with

frequencies ranging from 100 Hz to 1000 Hz. The observed results showed that both

the increasing and decreasing slopes of the queue length were -1 Gbps and 3 Gbps,

respectively. This observation is in line with the predictions of the model as expressed

in eq. (3.3).

As the frequency of the step input increased, the frequency of the changes in

queue length corresponded accurately with the input frequency. This outcome pro-

vides substantial validation of the model’s correctness and its capability to handle

high-frequency inputs effectively. The nature of the network as a discrete model is

inherently validated by the fact that input adjustments to the CWND size by the

sender occur only upon the receipt of an ACK, rendering considerations of sampling

frequency unnecessary.

An additional observation from the experiments was the presence of a flat region

at the peak of the queue length. This phenomenon can be attributed to limitations
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Figure 3.2: An Increasing of Switch Queue Length in 4-to-1 Dumbbell Topology

in the CWND size, which will be discussed in the following section.

3.2 Model Formulation and Discretization

Although the eq. (3.2) can describe the queue length dynamics, it presents limitations

for direct control application due to three primary reasons: (i) The model’s continuous

nature is not suited for the discrete control actions triggered by the reception of ACK.

(ii) The Ratein is not an ideal control parameter when compared to the CWND size,

as it cannot prevent switch egress queue overfilling if the CC fails in extreme network

conditions. (iii) The queue length is the direct interest rather than Ratein, as other

parameters, such as RTT, throughput and packet loss possibilities, are directly related

to the queue length.

As shown in Fig. 3.4, assume the same topology in Fig. 3.1, the queue length can
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(a) Step Input at 100 Hz
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(b) Step Input at 200 Hz
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(c) Step Input at 500 Hz
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(d) Step Input at 1000 Hz

Figure 3.3: System Response under Step Input with Various Frequency
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Figure 3.4: The Increasing of Switch Queue Length with CWND vs Without CWND

be effectively bounded by the size of CWND. As discussion in Section 2.7, set BDP,

calculable via eq. (2.3), as the CWND size. Set the sender rate, Rin, linearly relates

with the CWND size as Rin =
Rin,max

PBD,max
∗ W (k) ∗ ∆t, thereby eliminating one extra

variable, Rin. Under the assumption that all flows have an identical CWND size or

rate, a discretized version of eq. (3.2) can be formulated as:

Q(k + 1)−Q(k) = (
N

PBD,max

∗Rin,max ∗W (k)−Rout) ∗
∆t ∗ 1byte

8bit
, (3.3)

• PBD,max is the maximum BDP for this current flow path.

• Rin,max is the maximum input rate of each flow.

• ∆t is the discrete interval.

• W is the CWND of one sender.
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• N is the flow number at the bottleneck egress port.

The flow number (N) can be measured by the switch. This specific flow number

measuring method and discrete interval estimation are detailed in Appendix A. After

measuring the flow number, the switch incorporates this data into the packet’s INT

header, which is then conveyed back to the sender via ACK. This mechanism also

highlights the challenges in constructing a similar model for WANs due to the absence

of INT technology and customizable switches in such environments.

For the purposes of subsequent discussion and control mechanisms to be explored

in the following chapter, it is necessary to reformulate eq. (3.3) into a conventional

discrete state-space realization form, denoted as x(k + 1) = Ax(k) + Bu(k). This

leads to a modified version of the equation:

Q(k + 1) = Q(k) +
∆t ∗N ∗Rin,max

8 ∗ PBD,max

∗ (W (k)− Rout ∗ PBD,max

Rin,max ∗N
) (3.4)

3.3 Delayed Model

An additional consideration in the dynamics of DCNs as described by eq. (3.4) is

the impact of delay. Fig. 3.2 suggests a minimal influence of delay on the dynamic

model, because the queue length increases as soon as the simulation begins. However,

an increasing in link delay, such as to 1 ms, significantly shifts this plot to the right.

In the scenario depicted in Fig. 3.5, with a topology and flow setting similar to

Fig. 3.1 but with an increased link delay of 1 ms, three distinct plots are presented.

The green plot represents the theoretical queue length derived from the delay-free

version of eq. (3.4), while the orange plot shows the queue length result captured at

switch 1. The blue plot indicates the queue length information carried by the INT

header and received by the sender. This figure highlights two types of delays: the

input delay, which is the time taken for the CWND input to affect the node, and

the feedback delay, which is the time taken for the state information, carried by the

ACK’s INT header, to reach the sender.
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Figure 3.5: The Queue Length of Simulation vs Theoretical Delay-Free Model

Initially, the senders transmit at their link rates. Without delay, an immediate

increase in queue length is expected. However, the presence of a 1ms link delay

between the senders and switch 1 results in a 1ms delayed increase in egress queue

length at switch 1, as shown by the orange plot shifting. Furthermore, the feedback

delay, encompassing five additional link traversals for the ACK to reach the sender,

causes the sender to recognize the queue length at switch 1 with a delay of 6ms. Here,

the processing delay is considered negligible compared to the enlarged link delay. The

queue delay will be added to the input delay and feedback delay based on the queue

length and the location of switches.

To incorporate the input delay and feedback delay into the model represented by

eq. (3.4), discrete delay steps τ1 and τ2 are introduced. τ1 is the discrete input delay

steps that calculated by τ1 =
inputDelay

∆t
and τ2 is the discrete feedback delay steps that
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calculated by τ2 = feedbackDelay
∆t

. Considering DCNs as Linear Time-Invariant (LTI)

systems, the discrete state-space realization will be modified to:

Q(k + 1) = Q(k) +
∆t ∗N ∗Rin,max

8 ∗ PBD,max

∗ (W (k − τ1 − τ2)−
Rout ∗ PBD,max

Rin,max ∗N
) (3.5)

Then let:

• A = I

• B =
∆t∗N∗Rin,max

8∗PBD,max

• W (k) = (W (k)− Rout∗PBD,max

Rin,max∗N )

For practical control application, this state-space model with delay represented by

eq. (3.5) needs further manipulations. By defining:

Q ≜ Q(k + τ1 + τ2)

Then the state-space model in eq. (3.5) is written as,

Q(k + 1) = AQ(k) +BW (k) (3.6)

where:

Q(k) = Q(k + τ1 + τ2) = Aτ1+τ2Q(k) +

τ1+τ2−1∑︂
i=0

AiBW (k − 1− i) (3.7)

Then, the delayed model is shifted to a delayed-free model by leveraging LTI system

characteristics. It requires the system to memorize the past τ1+ τ2 time step input to

predict the state and queue length, at the instance where the current input impacts

the future.

3.4 State Switch Selection

In the previously discussed section, the focus was on modelling the queue length

dynamics of a single switch in DCNs. However, in a network with multiple switches,
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attention is primarily directed towards the bottleneck switch, which is key for effective

CC. When ACKs received by senders include INT information detailing the queue

lengths across all switches, only those switches with queue lengths greater than zero

are considered bottlenecks. This is because a non-zero queue length indicates that the

rate of incoming data exceeds the switch’s forwarding capacity, signifying congestion.

Consequently, in the state-space model described in eq. (3.5), the queue length of the

bottleneck switch is used as the state variable to facilitate MPCC.

If the queue lengths in all the switches traversed by a packet are zero, this suggests

an absence of congestion in the current network conditions. In such cases, the MPCC

will maintain the existing size of the CWND. In the context of the 4-to-1 dumbbell

topology, as illustrated in Fig. 3.1, it is understood that congestion is most likely to

occur at the specific switch, n4. Therefore, the modelling and control strategies focus

on monitoring and managing the queue dynamics at this critical bottleneck point to

maintain efficient network operation and prevent congestion.

Incast is a phenomenon commonly observed in DCNs, typically caused when mul-

tiple data flows arrive simultaneously at the same egress port of a switch. This

phenomenon is the most common congestion caused in data center [53], which will

result in one-hop congestion. In such scenarios, modelling the network dynamics

based on the bottleneck queue effectively captures the essence of one-hop congestion

induced by incast.

However, multi-bottleneck congestion can also occur in DCNs. In Fig. 3.6, a

situation is illustrated where just three data flows can cause both switch 1 and switch

3 to become bottlenecks. This results in the INT information indicating two queues

with lengths greater than zero. While one might consider expanding the state matrix

dimension in the state-space equation to accommodate multiple bottlenecks, this

approach may not be advantageous given the characteristics of the network.

When the CWND size is reduced to manage congestion, this limits the number of

in-flight bytes in the network. Data flows in a network have a temporal characteristic;
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Figure 3.6: Topology and Flows that Cause Multi-hop Congestion

a reduced CWND size will sequentially decrease the queue length at each switch,

starting from the one closest to the sender. Expanding the state dimension, while

keeping the CWND input dimension as one (since only one CWND can be adjusted

per flow), could lead to an excessive reduction in CWND. This would potentially

cause under utilization at the first bottleneck switch while leaving the queue length

at subsequent switches unchanged.

Therefore, in cases of multi-hop congestion, the most appropriate strategy is to

select the most congested queue length as the state for the model. This approach

involves adjusting the CWND size over multiple ACK steps to gradually reduce the

queue length back to zero, ensuring effective congestion management across multiple

bottleneck points in the network while preventing the under utilization of network

resources.

The state selection algorithm, outlined in Algorithm 1. All the egress queue length

and flow numbers of each individual switch that the current packet transmitted are

memorized and carried back by INT header information in the corresponding ACK.

When a sender receives an ACK, it uses this algorithm to determine the most
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congested switch, which will then be used as the reference state in the state-space

model for congestion control, as defined in eq. (3.6). The algorithm performs a

linear comparison among the egress queue lengths (Q, index) of different switches

that the packet has traversed. The switch with the maximum egress queue length

is selected as the state switch for the model. This chosen queue length, along with

its associated flow numbers, becomes the state and parameters for the state-space

realization represented by eq. (3.4).

This process not only identifies the most congested switch but also helps in deter-

mining network parameters such as the link rate, Rlink, and the maximum Bandwidth-

Delay Product, PBD,max, by combining topology structure and number of past switches

(nhop).

Algorithm 1 State Selection between Switches Egress Queues

1: if Receive an ACK then
2: Q = 0
3: N = 1
4: State switch index = 0
5: for hop,index ≤ nhop do
6: if Qindex > Q then
7: Q = Qindex
8: N = Nindex
9: State switch index = hop,index

10: end if
11: end for
12: end if
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Chapter 4

Control Strategy

4.1 Controller Selection

Many CC algorithms, including TCP-CUBIC and HPCC, rely on heuristic methods

to adjust the CWND size. These approaches aim to optimize bandwidth utilization

by increasing CWND size when the network is underutilized, and decreasing it when

congestion is detected. However, such heuristic methods do not guarantee mathemat-

ical optimality and often require many parameters tuning by DCN operators.

RCC embraces a PID controller, a classical control approach. However, PID con-

trollers lack foresight, as they cannot process the intrinsic delay in networks. This lim-

itation can lead to overreactions or underreactions to network conditions. Although

RCC attempts to mitigate this effect with a hyperbolic tangent (tanh) function to

prevent dramatic CWND adjustments, the choice of this function is not grounded in

rigorous mathematical rationale.

The constructed model from the previous chapter paves the way for a model-

based approach to congestion control. MPC controller stands out as a suitable choice

for CC in DCNs. MPC leverages the concept of receding horizon optimization to

manage model inaccuracies and noise effectively. Furthermore, our delayed discrete

state-space model, which incorporates various network delays, addresses the issues of

overreaction and underreaction typically encountered in PID controllers. Addition-

ally, MPC is capable of managing constraints, such as network bandwidth limitations.
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4.2 Observability and Controllability Analysis

The delayed model, as defined by eq. (3.5), is characterized by a constant, 1, for A

matrix, and a constant,
∆t∗N∗Rin,max

8∗PBD,max
, for B matrix. The state in this model is the

queue length, which is the primary measurement obtained from the INT header in

ACKs. Since the state (queue length) is the direct measurement of interest, there

is no explicit need for an output equation of the form y(k) = Cx(k) + Du(k). In

this context, the C matrix can be considered as a constant, 1, and the D matrix as a

constant, 0.

Therefore, for system observability and controllability analysis, this scalar state-

space equation has a full-rank controllability matrix and a full-rank observability

matrix, showing that the system model by eq. (3.5) is controllable and observable.

4.3 Constraints Formulation

Another advantage of MPC is that it can embed different constraints. Here two most

important constraints are state (queue length) constraints and control input (CWND)

constraints.

4.3.1 Control Input Constraints

Lower Bound of CWND : The CWND size must be greater or equal to zero. A CWND

size of zero indicates the absence of in-flight bytes and UNACK packets in the net-

work, resulting in zero throughput. In modern communication networks, throughput

cannot be negative as data transmission is unidirectional. The sender cannot reduce

throughput below zero to request data packets from the receiver. Instead, if the

sender requires data from the receiver, it must send a request, prompting the receiver

to initiate a new data flow. In this new flow, the roles are reversed: the sender be-

comes the receiver and vice versa. Thus, zero is established as the minimum boundary

for CWND, serving as the lower constraint for control input. Mathematically, this is
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represented as Wmin ≥ 0.

Upper Bound of CWND : Theoretically, the CWND size can be set to infinity.

However, allowing infinite numbers of UNACKed packets is infeasible and ridiculous.

This setting will make the CWND size meaningless because the link rate of the first

link, where the sender connects, becomes the limitation and bound. The CWND size

then becomes redundant. In practice, setting the CWND size to infinite could lead

to long integer overflow. Thus, the maximum CWND size is limited by the data type

used to store its value. Nevertheless, this CWND size is still large enough to become

insignificant and still bound by the first encountered link rate.

A conventional method, introduced in the background section, links CWND size

with the maxBDP, which is determined by the sending rate and network delays. This

approach ensures that the network is always bounded by the CWND, maintaining

a linear relationship between these two variables. It also ensures efficient through-

put performance while preventing queue buildup severely. Consequently, the upper

bound of CWND is determined to be the maxBDP of the network, mathematically

represented as Wmax ≤ PBD,max.

Notice that the input in eq. (3.5) is (W (k − τ1 − τ2) − Rout∗PBD,max

Rin,max∗N ). So we can

apply linear shifting to the input and make

W (k − τ1 − τ2) = (W (k − τ1 − τ2)−
Rout ∗ PBD,max

Rin,max ∗N
) (4.1)

for calculation simplification. Therefore, the lower bound constraints for shifted input

is Wmin = −Rout∗PBD,max

Rin,max∗N . The upper bound constraints for shifted input is Wmax =

PBD,max − Rout∗PBD,max

Rin,max∗N . In summary, the input constraint is:

−Rout ∗ PBD,max

Rin,max ∗N
≤ W ≤ PBD,max −

Rout ∗ PBD,max

Rin,max ∗N
(4.2)

4.3.2 State Variable Constraints

Lower Bound of queue length: The lower bound of state (queue length) constraint

refers to the minimum allowed number of unprocessed bytes of data temporarily
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stored in the switch’s egress queue. Similar to the lower bound of the control input

(CWND), the queue length is always equal to or greater than zero. A queue length

of zero at a specific switch node indicates that the system’s state dynamics are in

equilibrium, with no congestion detected for this switch. Conversely, a queue length

greater than zero signifies congestion at this switch node. The egress queue length

cannot be negative, as it represents a scalar unit of data storage, which operates non-

directional. Thus, the lower bound of the state variable, egress queue length, is defined

as being equal to or greater than zero, mathematically represented as QLen <= 0.

Upper Bound of queue length: Theoretically, the upper limit of an individual egress

queue’s length is determined by the switch’s hardware memory capacity. For example,

the Cisco Catalyst 9300 Series switches [54] support up to 64 MB of buffer size for

queue length. In scenarios where the queue is full, any additional unprocessed packets

will be dropped, leading to buffer overflow. To mitigate this, setting an upper bound

constraint less than the hardware capacity on the queue length can increase the

system’s tolerance and prevent overflow. Delving further into the analysis, especially

within the context of DCNs topology, consider a scenario with four flows originating

from each sender, as depicted in Fig. 3.1. For this topology, congestion is likely at

switch 1. The initial CWND size, as per the RoCEv2 protocol, is set to the maxBDP

of the path of the current flow. This initial CWND ensures that the sender’s initial

rate is at the line rate, keeping the queue length at the egress port empty if only

the current flow is active. Assuming the CC algorithm is disabled and all senders

maintain a constant CWND size equal to maxBDP, only one maxBDP size of in-

flight bytes can be accommodated by the network. Therefore, the excess in-flight

bytes will accumulate in the queue at switch 1. If all four senders transmit at a line

rate with a CWND size equal to maxBDP, the resultant queue length at switch 1 will

be (4− 1) ∗ PBD,max.
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In summary, the state constraint is:

0 ≤ Q(k) ≤ (N − 1) ∗ PBD,max (4.3)

4.4 Cost Function Construction

A cost function represents the objective that MPC controllers aim to optimize. To

construct this cost function, we use the following general form:

Min
u

J =
P−1∑︂
k=0

(︁
x(k)− rx)

TWQ(x(k)− rx) + (u(k)− ru)
TWR(u(k)− ru)

)︁
+ (x(N)− rx)

TPt(x(N)− rx) (4.4)

where:

• x(k) is the state at time step k.

• u(k) is the control input at time step k.

• WQ and WR are positive definite weighting matrices for the state and control

input, respectively.

• P is the prediction horizon.

• Pt is the terminal cost weighting matrix.

• rx and ru are the trajectory reference for state and input, respectively.

The first step involves identifying the desired state reference trajectory, which guides

the controller toward the target state. In our case, the objective is to minimize

the egress queue length at the congested switch towards zero while maintaining the

CWND at the fair share size. This approach ensures fairness among flows passing

through a node in congestion. Consequently, we set the state trajectory reference, rx,

in eq. (4.4) to zero. At equilibrium, the CWND size is
Rout∗PBD,max

Rin,max∗N , representing the
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maximum CWND size that maintains a constant queue length. This fair share CWND

not only fully utilizes the network bandwidth but also serves as the input reference for

the controller. Hence, the input trajectory, ru, should be
Rout∗PBD,max

Rin,max∗N . Furthermore,

as discussed in the previous section, we used W (k) = (W (k) − Rout∗PBD,max

Rin,max∗N ), as

the shifted input for computational convenience, leading to (u(k) − ru) = W (k).

Therefore, by naming x(k) as Q(k), we reformulate the cost function as:

Min
W

J =
P−1∑︂
k=0

(︂
Q(k)TWQQ(k) +W (k)

T
WRW (k)

)︂
(4.5)

Note that the terminal cost is not a crucial consideration in the context of the MPC

controller’s implementation within the MPCC framework. This is attributed to the

receding horizon nature of the controller’s operation. Consequently, the terminal cost

term is omitted to conserve computational resources and to simplify the process of

tuning the weight matrices.

4.5 Quadratic Programming for MPC Solving

4.5.1 Cost Function Quadratic Programming Formulation

Having established the discrete state-space model and the corresponding cost func-

tion, we can now implement the MPC controller to compute the controlled input,

specifically the CWND size. Our system dynamics are modeled as an LTI discrete

state-space model, and we employ a linear cost function alongside linear constraints.

Consequently, the task of determining the optimal control input for the MPC con-

troller can be formulated as a QP problem. For solving this QP problem, we utilize an

open-source library, qpOASES [35] as the QP solver in this context. According to the

qpOASES user manual, a QP problem is required to be structured in the following
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form:

min
1

2
xT
qpHxqp + xT

qpg(w0) (4.6)

s.t. lbAqp(w0) ≤ Aqpxqp ≤ ubAqp(w0), (4.7)

lb(w0) ≤ xqp ≤ ub(w0), (4.8)

where:

• xqp is the the optimization variable vector.

• H is the Hessian matrix is symmetric and positive (semi-)definite.

• g is the gradient vector.

• w0 is the manipulated parameter for the dynamics of constraints.

• Aqp This is a matrix that defines the linear transformation of the optimization

variable vector for this set of constraints.

• lbAqp and ubAqp are the lower and upper bounds of the linear matrix inequality

constraints respectively.

• lb and ub are the lower and upper bounds on the optimization variable vector

xqp respectively

Given that the constraints for queue length and CWND size are constants, the w0

can be omitted.

Next, as an example, we formulate the delay-free state-space model given by eq.

(3.4) and integrate the cost function given by eq. (4.5) along with constraints given

by eq. (4.2) and eq. (4.3) into the QP problem form that is required by the qpOASES

library. The procedure is the same for the delayed state-space model given by eq.

(3.5), except the delayed equation needs to be shifted to eq. (3.6), first. At time

step k, the control input sequence for P step horizon can be represented as an input
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vector with a dimension of P by 1 due to its a single input system, where P denotes

the length of the prediction horizon:

Uk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W (k|k)

W (k + 1|k)

W (k + 2|k)

...

W (k + P − 1|k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
At time step k, for a single state system, the sequence of states over a P-step pre-

diction horizon can be encapsulated in a state vector. This vector has dimensions of

P by 1, where P represents the length of the prediction horizon:

Xk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q(k + 1|k)

Q(k + 2|k)

Q(k + 3|k)

...

Q(k + P |k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;x(k) = Q(k)

And for each element in Uk and Xk, the relationship can be expressed explicitly as:

Q(k + 1|k) = A ∗Q(k) +B ∗W (k|k)

Q(k + 2|k) = A2 ∗Q(k) + AB ∗W (k|k) +B ∗W (k + 1|k)

Q(k + 3|k) = A3 ∗Q(k) + A2B ∗W (k|k) + AB ∗W (k + 1|k) +B ∗W (k + 2|k)
...

Q(k + p|k) = Ap ∗Q(k) +

p−1∑︂
i=0

Ap−1−iB ∗W (k + i|k)

Therefore, the state vector, Xk, and input vector, Uk, can be written as:
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Xk = Ā ∗ x(k) + B̄ ∗Uk, where : Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A

A2

A3

...

Ap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B 0 0 · · · 0

AB B 0 · · · 0

A2B AB B · · ·
...

...
...

. . .
...

Ap−1B Ap−2B Ap−3B · · · B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.9)

Then, the cost function is given by eq. (4.5), can be written as:

J(Uk) = XT
k WQ

¯ Xk + UT
k WR

¯ Uk, (4.10)

where:

WQ
¯ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WQ 0 0 · · · 0

0 WQ 0 · · · 0

0 0 WQ · · ·
...

...
...

. . .
...

0 0 0 · · · WQ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
WR
¯ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WR 0 0 · · · 0

0 WR 0 · · · 0

0 0 WR · · ·
...

...
...

. . .
...

0 0 0 · · · WR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.11)

By substituting eq. (4.9) into eq. (4.10), can get:

J(Uk) = (Āx(k) + B̄Uk)
TWQ

¯ (Āx(k) + B̄Uk) + UT
k WR

¯ Uk

J(Uk) = UT
k (B̄

T
WQ
¯ B̄ +WR

¯ )Uk + (2(Āx(k))T )WQ
¯ B̄Uk + (Āx(k))TWQ

¯ Āx(k)

Now the cost function is given by eq. (4.5), is formulated in eq. (4.10) that agrees to

the standard QP form given by eq. (4.6), where:

H = 2(B̄
T
WQ
¯ B̄ +WR

¯ ) (4.12)

g = 2(Āx(k)T )WQ
¯ B̄)T (4.13)

xqp = Uk (4.14)
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The term, (Ā ∗ x(k))TWQ
¯ Ā ∗ x(k), can be ignored when minimizing for Uk because it

only depends on the initial condition, x(k), at step k with constant Ā and WQ
¯ .

4.5.2 Constrains Quadratic Programming Formulation

The term xqp is the the optimization variable vector that contains every control input,

CWND, for the number of prediction horizons in the future, because the QP problem

minimizes eq. (4.6), by finding optimal control input series in the finite horizon. For

each element in the input vector, xqp, shall obey the constraints in eq. (4.2). There-

fore,

lb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Rout∗PBD,max

Rin,max∗N
−Rout∗PBD,max

Rin,max∗N
−Rout∗PBD,max

Rin,max∗N
...

−Rout∗PBD,max

Rin,max∗N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;ub =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PBD,max − Rout∗PBD,max

Rin,max∗N

PBD,max − Rout∗PBD,max

Rin,max∗N

PBD,max − Rout∗PBD,max

Rin,max∗N
...

PBD,max − Rout∗PBD,max

Rin,max∗N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.15)

In eq. (4.9), Xk = Ā ∗ x(k) + B̄ ∗ Uk can be rewrite to Xk − Ā ∗ x(k) = B̄ ∗ Uk.By

letting Aqp = B̄, then lbAqp and ubAqp will be:

lbAqp ≤ Xk − Ā ∗ x(k) ≤ ubAqp (4.16)

Xk is the state vector in which each element inside shall follow the constraint in eq.

(4.3). Therefore,
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lbAqp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ax(k)

−A2x(k)

−A3x(k)
...

−Apx(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;ubAqp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(N − 1) ∗ PBD,occupied − Ax(k)

(N − 1) ∗ PBD,occupied − A2x(k)

(N − 1) ∗ PBD,occupied − A3x(k)
...

(N − 1) ∗ PBD,occupied − Apx(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.17)

, where x(k) is the initial state condition at the time step QP solver is initialized.

The manipulations outlined above effectively transform our MPC controller prob-

lem, seeking the optimal control input over a finite horizon with constraints, into a

QP problem. By employing qpOASES as the QP solver, an input series with length

as prediction horizon, N, is computed by the solver as the optimal result for current

system conditions. Given the receding control strategy inherent to MPC, only the

first element of this solved input series is adopted for CWND. To determine the

actual CWND size, a linear shift is applied by adding the constant
Rout∗PBD,max

Rin,max∗N , to

CWND. When a new ACK is received by the sender, it signifies the next time step,

k+1. Consequently, the QP problem must be reformulated and resolved, again with

the first element of the new control series being adopted as the input.
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Chapter 5

Experiment Results and Discussion

5.1 Experiment Environment and Setting

5.1.1 Experiment Setup

In this thesis, all experiments are simulated using NS-3 [36], an open-source network

simulator written in C++. For solving the QP problems formulated by the MPC con-

troller, we utilize qpOASES [35], a C++ based open-source QP solver. Additionally,

for ease of program development, we employ Eigen [55], an open-source template

library for linear algebra in C++. All these libraries and modules are seamlessly

integrated into the NS-3 simulator environment and its build system, Waf [56].

The implementation of the MPCC requires INT technology to store information at

packets’ header such as the number of flows and egress queue length for each switch a

packet traverses. In Fig. 5.1, the INT overhead format of MPCC-enabled packets is

shown, where Q represents the queue length at the egress port of a particular hop, N

denotes the number of flows passing through this hop and nhop indicates the number

of switch hops traversed by this packet. Each hop’s queue length, Q, is stored using

32 bits, while each hop’s flow number, N, uses 16 bits. The number of total past

switches, nhop, is stored using 16 bits. Consequently, 6 bytes are required to store

data for each hop. Assuming the maximum number of switch hops a packet can

traverse is five, and with an additional 2 bytes allocated for nhop, the maximum INT

overhead for each packet totals 32 bytes.
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nHop (16 bits)UDP Header
1st Hop (48 bits)

Q N
2nd Hop (48 bits) ......

INT Overhead (32 bytes for 5 hops)

Figure 5.1: INT Overhead Format of MPCC

5.1.2 Baselines, Benchmarks and Test Metrics

For the upcoming experiments, we have selected four widely recognized and deployed

CC algorithms as baselines: DCQCN, HPCC, TIMELY, and DCTCP. These experi-

ments are conducted in either dumbbell or fattree topology. In assessing performance,

we commonly adopt the following metrics for evaluation:

• FCT slow down: Flow completion time (FCT) slow down is a dimensionless

factor. It is calculated as the ratio of the actual FCT of this flow runs with

other flows by the FCT of this flow when it runs alone in the network. A smaller

FCT slow down is preferable.

• Queue length: Queue length represents the buffer occupancy at the congested

switch. A smaller value is preferable.

• Throughput: Throughput refers to the rate of successful data packets that

are delivered from the sender to its designated receiver. Higher values indicate

better performance.

5.2 Experiment 1: Controller Verification

We established a 4-to-1 dumbbell topology as shown in Fig. 3.1, where four senders

attempt to transmit packets to the single receiver. Each link has a link rate of 1.0

Gbps and a 1000 ns link delay. Based on the eq. (2.3), the maxBDP = 30000bytes.

Rout can be determined by the conditions outlined in the Tab. 3.1. Rin will be the

link rate that is 1.0 Gbps.
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(b) Normalized Throughput Response

Figure 5.2: System Response for MPCC-Enabled 4-to-1 Flow Setting

Initially, as the flows start transmitting packets at the link rate, the queue length

at switch 1 begins to accumulate. Upon receiving the first ACK, which includes INT

information, the senders detect congestion at switch 1, indicated by a non-zero queue

length and the number of active flows passing through it. Subsequently, the MPCC

controller adjusts the CWND size to reduce the queue length, thereby eliminating

congestion. This response is illustrated in Fig. 5.2a, which shows the rapid conver-

gence of the queue length at n4 to zero. Meanwhile, throughput and fairness among

flows are maintained, as demonstrated in Fig. 5.2b. Here, the normalized throughput

is a dimensionless factor that represents the bandwidth occupation proportion of each

flow. The normalized throughput is measured in a sampling period of 2 ms.

5.2.1 Controller Weight Selection

In eq. (4.5), there are two weighting factor, WQ and WR, that requires for tuning.

WQ represents the quadratic cost for queue length, while WR denotes the quadratic

cost for CWND. Intuitively, a larger WQ and a smaller WR make the controller more

sensitive to queue length, leading to more dynamic adjustments in CWND to reduce

congestion. However, this can cause throughput fluctuations during the transient

response. Conversely, a larger WR and a smaller WQ make the controller prioritize

maintaining the fairshare CWND size, paying less attention to queue length. This
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approach yields smoother throughput during transient responses but may increase

queue occupancy and packet delay.

Various WQ-to-WR weight ratios were tested, revealing a direct correlation between

the ratio and the time taken for the queue length at switch 1 to converge to zero.

Specifically, convergence times of 140,334 ns, 149,133 ns, and 175,530 ns were observed

forWQ-to-WR ratios of 1:1, 1:10, and 1:100, respectively. However, ratios smaller than

1:100 or larger than 1:1 did not further alter the convergence time. For a large ratio,

the sender will adjust CWND to zero to reduce the cost. Since the CWND size is

bounded by the constraint, it cannot become less than zero, so further increasing the

ratio will not reduce the convergence time. If the ratio is too small, the controller will

not decrease the CWND size even when the queue length is greater than zero. But the

CWND cost term is upper bounded by the in-flight byte. Thus, the queue length will

not increase to infinite. Interestingly, the normalized throughput of 0.2464 per flow

remains constant across all WQ-to-WR ratios, as the transient response is too rapid

to be captured within a 2ms throughput sampling period. Decreasing the sampling

period is also ineffective, as it introduces additional noise.

While an excessively large WQ-to-WR ratio does not significantly improve through-

put or convergence time, a larger ratio is still theoretically preferred for optimal

controller performance.

5.2.2 Prediction Horizon Selection

The prediction horizon is another critical factor in the performance of the MPC

controller. A longer prediction horizon enables the controller to better anticipate

future events or disturbances, potentially leading to more informed decision-making.

However, an excessively long prediction horizon could introduce unnecessary compu-

tational complexity without significantly enhancing performance. Because NS-3 is

a discrete network simulator, it will not count the CC algorithm running time con-

sumption. But computing complexity is a crucial factor in real network setup as the
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CC is a real-time algorithm.

To assess the impact of different prediction horizons, we conducted tests with a

fixed WQ-to-WR ratio (1:10). The results show that the average time required to solve

a single set of QP programming increases with the length of the prediction horizon.

Specifically, the times were 255,952 ns, 343,525 ns, 469,736 ns, and 916,831 ns for pre-

diction horizons of 3, 5, 10, and 20, respectively. However, we observed that the time

taken for queue length convergence remained consistent across different prediction

horizons. Thus, increasing the prediction horizon length did not expedite conver-

gence time but only added to the computational consumption. This phenomenon can

be attributed to the fast response of the transient state.

5.3 Experiment 2: Fairness and Convergence

In Section 5.2, we validated the effectiveness of the MPCC controller using a scenario

where each of the four senders transmitted one flow simultaneously to a single re-

ceiver. The results demonstrated MPCC’s ability to effectively manage queue length

convergence and maintain throughput fairness among synchronized flows. However,

the performance of non-synchronized flows remains to be thoroughly examined.

This second experiment maintains the same topology and link settings as in Section

5.2. The only variation is in the flow settings. Specifically, the data lengths for the

four flows are set to 4.9 GB, 2.4 GB, 1.4 GB, and 0.3 GB, respectively. Additionally,

the start times for these non-synchronized flows are 0.00 sec, 0.01 sec, 0.02 sec, and

0.03 sec, respectively.

The result in Fig. 5.3 illustrates that both MPCC and HPCC successfully converge

the throughput to stable and at fairshare rate after a new flow joins the network.

Furthermore, when a flow completes, the remaining flows rapidly utilize the newly

available bandwidth. However, in Fig. 5.4b, the queue length of switch 1 is always

long and occupied. The queue length after the joining of each flow agrees with

the upper bound limitation in eq. (4.3), where equals to (N − 1) ∗ Ratelink ∗ (2 ∗
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Figure 5.3: Normalized Throughput Response
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Figure 5.4: Queue Length Response of Switch 1

Delayprocessing +2 ∗Delaylink) = (N − 1) ∗ 4344bytes. This observation suggests that

the HPCC controller does not adequately respond to changes in flow dynamics. The

rapid throughput convergence observed in Fig. 5.3b appears to be a result of passive

bandwidth sharing, without active control input or CWND adjustments.

In contrast, MPCC demonstrates an active fast response to the initiation and termi-

nation of flows. Fig. 5.4a shows that MPCC effectively manages to reduce the queue

length, particularly after the introduction of new flows. The peak queue length oc-

curs shortly after each new flow joins and is quickly reduced through MPCC’s CWND

adjustments. By utilizing MPCC, the queue length is controlled to converge to zero
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while maintaining the fairness and fast convergence of throughput. The observed

oscillations in queue length are attributable to the flow counting timeout interval.

A shorter interval can increase these oscillations, while a longer interval might slow

down the throughput convergence process.

5.4 Experiment 3: Real-World Mixed Traffic

In this experiment, we aim to evaluate the effectiveness of deploying the MPCC in a

fattree topology using traffic flows generated from real-world mixed traffic patterns.

The traffic flow starting intervals are given by Poisson distribution with λ, where λ

represents the average new flow arriving interval and given by:

λ = ArrivalIntervalavg =
1

BW × workload%
8×flow sizeavg

× 109,

where BW is the bandwidth of the link that is connected to the host. Workload

percentage is used to control the new flow arrival interval. Web Search [8] and FB -

Hadoop [57] are two real traffic flow size distributions are used to generate our flows.

Additionally, an 8-to-1 incast traffic that consists of eight flows with 300KB size each

will be added to the generated flows to further test the MPCC’s robustness.

As shown in Fig. 5.5, the experiment employs a three-level fattree topology consist-

ing of two core switches, four aggregate switches, and four top-of-rack (ToR) switches.

Each ToR switch is connected to four hosts, which can function as either receivers or

senders. The link connects the core switches to aggregate switches and has a rate of

400 Gbps. The link connects the aggregate switches to ToR switches and has a rate

of 400 Gbps. The link rate is 100 Gbps for ToR switches to servers connections. The

link delay for all connections is 1000 ns.

In fattree topology, the number of connections to a switch, the link rate and the

delay of each connection at each level are the same symmetrically. This means any

potential paths chosen by the routing protocol are equivalent in the sense of rate or

delay for a packet, provided the number of switch hops (nhop) it traverses is the same.
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Figure 5.5: A Three-Level Fattree Topology

Any flows transmitted through the same hop experienced the same network condi-

tions except for different queue lengths, which are the same as dumbbell topology.

Thus, the state-space equation constructed in Chapter 3 can be extensively applied

to fattree topology. Therefore, an additional algorithm is required to perform before

determining the Rateout value as shown in Tab. 3.1. This algorithms determines

Ratelink as detailed in Algorithm 2:

In Fig. 5.7, the FCT slow down across different flow sizes for traffic generated by the

Web Search traffic are summarized. In Fig. 5.9, the FCT slow down across different

flow sizes for traffic generated by the FB Hadoop traffic is summarized. Lower FCT

slow down values are preferable in network performance. Our findings indicate that

MPCC always achieves less FCT slow down than TIMELY and DCQCN for both

Web Search and FB Hadoop traffic distributions with and without incast.

When comparing MPCC with DCTCP and HPCC, MPCC is capable of keeping

the FCT slow down lower for relatively smaller flow sizes than other CCs while main-

taining comparable FCT slow down to larger flow sizes for both Web Search and

FB Hadoop traffic distributions. This outcome shows that MPCC is more beneficial
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Algorithm 2 RlinkDetermination

1: if nhop = 1 then
2: Rlink = 100 Gbps

3: else if nhop = 3 then
4: if Maximum Qlen is at hop 0 or 1 then
5: Rlink = 400 Gbps

6: else if Maximum Qlen is at hop 2 then
7: Rlink = 100 Gbps

8: end if
9: else if nhop = 5 then
10: if Maximum Qlen is at hop 0 or 1 or 2 or 3 then
11: Rlink = 400 Gbps

12: else if Maximum Qlen is at hop 4 then
13: Rlink = 100 Gbps

14: end if
15: end if

to smaller flows than larger flows, which is attributed to the fast convergence capabil-

ities of MPCC. In scenarios with long-lived large-sized flows existing in the networks,

MPCC will fast share their bandwidth with the newly joined flows. Therefore, shorter

flows can be completed in less time than other CCs by implementing MPCC. The

trade-off is the FCT slow down improvement for larger flow size is limited. Nonethe-

less, MPCC guarantees the FCT fairness for the larger flows among other CCs while

reducing the FCT for smaller flows.

The enhanced FCT performance is achieved by overall lowered queue lengths at

switches. In Fig. 5.6 and Fig. 5.8, the running time queue length cumulative dis-

tribution function for all switches are shown for both Web Search and FB Hadoop

traffic distributions with and without incast. These results demonstrate that MPCC

consistently maintains the minimum queue length among the compared CCs. This

takes the advantage that using the most congestion switch as the network state for

MPC controlling. Then, the less queue length will reduce the RTT for each packet

and reduce the FCT. The queue length is proved to be the key parameter to FCT.

Furthermore, the less queue length occupation implies less possibility for a packet

drop at switches. As more queue lengths in the switch are available, the network will
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be more resilient against unideal conditions, such as micro bursts, and guarantee the

network’s smooth operation.
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Figure 5.6: Queue Length CDF with Web Search under Various Load
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Figure 5.7: FCT Slow Down vs. Flow Size with Web Search under Various Load
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Figure 5.8: Queue Length CDF with FB Hadoop under Various Load
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Figure 5.9: FCT Slow Down vs. Flow Size with FB Hadoop under Various Load
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we focus on developing an enhanced CC algorithm tailored for RDMA-

enabled DCNs. Our analysis identifies the egress queue length of intermediate switches

as a critical factor influencing packet delay and the likelihood of packet drops. Utiliz-

ing INT technology alongside detailed DCN topology information, we have derived a

delayed mathematical discrete state-space model by the first principle. This model,

based on the continuity equation, describes the dynamic relationship between the

queue length and the size of the CWND.

Building on this discrete state-space equation, we have developed the MPCC al-

gorithm. It stands out by addressing shortcomings observed in other CC algorithms,

such as the lack of mathematical proof and slow convergence. MPCC is a linearly con-

strained MPC controller that embraces the state-space equation for optimal control,

integrating network condition constraints directly into the model.

Experimental results demonstrate that the MPCC-enabled networks can effectively

regulate queue lengths, reducing them to nearly zero, while ensuring throughput and

fairness among different flows. MPCC exhibits proficiency in bandwidth sharing and

achieving rapid convergence for newly joined flows. It also demonstrates superior

performance in real-world mixed traffic scenarios. For instance, FCT slow down for

smaller-sized flows is significantly reduced under MPCC, while it maintains compa-
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rable performance for larger-sized flows relative to other CC algorithms.

6.2 Future Work

Implementing the MPCC algorithm in real DCN environments poses unique chal-

lenges, particularly due to computational time constraints. Unlike in NS-3 simula-

tions, where simulation time does not increase until the CC algorithm code execution

is complete, the computation time for QP in real DCNs is critical, as it can potentially

degrade network performance. To address this, two potential solutions are proposed:

1) Select Proper Prediction Horizon: As detailed in Subsection 5.2.2, extending the

prediction horizon length does not necessarily enhance the convergence rate, given

the rapid control reactions of the system. Therefore, opting for a shorter prediction

horizon can effectively reduce the computation time required for QP programming.

This consideration leads to our second solution.

2) Optimize MPCC Algorithm: Since the prediction horizon length is not directly

correlated to the convergence rate due to its rapid nature of control actions, reducing

the frequency of control actions could be beneficial. For instance, instead of modifying

the CWND size in response to every ACK, adjusting the CWND less frequently (e.g.,

after receiving several ACKs) might be more effective. This approach may allow

the prediction horizon to regain its significance. Moreover, the idle time while the

sender awaits multiple ACKs can be utilized for computing the QP programming,

thus mitigating additional computational delays.

These strategies aim to enhance the practical applicability of MPCC in real-world

DCNs by optimizing computational efficiency without compromising the algorithm’s

performance.
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Appendix A: First Appendix

A.1 Flow counting for Egress Port

This part of the appendix outlines the method for counting active flow numbers in a

specific egress queue of network switches. For each egress port, the switch initializes

a set of timers and a flow counter, which are instrumental in tracking active flows.

• Packet Arrival: When a packet enters a designated egress queue, the switch ex-

tracts four key pieces of information from the packet header: SIP, DIP, SPORT,

and DPORT. Each flow is distinguishable by at least one unique attribute in

these four parameters. Even for flows that have the same SIP and DIP, their

DPORT will still be different.

• Unique Flow Identification: A hash function is applied to these four parameters,

generating a unique key for each individual flow. The switch then initiates a

timer for each unique key within a specific egress queue.

• Flow Counter and Timer Management: Upon receiving a packet with a new

(unseen) flow hash key, the switch increments its flow counter and sets up a

new timer for that flow. Each egress queue, therefore, maintains a set of timers

and a corresponding flow counter. If a packet arrives with a previously seen

hash key within a certain time interval, the associated timer is reset, and the

value of the flow counter remains. In contrast, if no packet for an existing flow

is received within the designated interval, the corresponding timer is deleted,

and the flow counter is decremented.
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• Header Information Update: As a packet leaves the egress queue, the current

flow number, along with the egress queue length at that instant, is pushed to the

packet’s INT header. This process is replicated across every switch the packet

traverses.

A.2 Discrete Interval Estimation

The discrete interval in network communications is defined as the time gap between

two successive ACK signals. This interval is a crucial parameter for discretizing the

eq. (3.3). RTT for a given flow path can be estimated using the eq. (2.2). Utilizing

this RTT and the size of the CWND (in-flight bytes), we can estimate the average

interval for the current batch of in-flight bytes using the following formula:

∆t =
1080 ∗D

W
, (A.1)

where:

• 1080 is the number of bytes of one packet (1000 bytes for payload, 48 bytes for

protocol header, 32 bytes for INT information).

• D is the RTT of the current flow path.

• W is current CWND in byte.
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