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Abstract

Companies can only progress if they understand what their customers feel about

their products and services. With companies having an online presence, and with

the availability of third-party online reviewing platforms like Yelp, it becomes critical

to scour through online reviews. Analysing millions of online reviews across various

platforms is not a trivial task. Aspect-based Sentiment Analysis (ABSA) is an NLP

task useful for automating such an analysis. ABSA solutions have historically used

discriminative models, but there have been recent advances in the field which use

generative transformer models (like T5 and BART). Generative ABSA models treat

the ABSA task as a text generation problem. We study the latest generative ABSA

models and discuss some of their limitations. We find that state-of-the-art generative

ABSA models perform well for the standard ABSA settings. However, they face

problems in certain real-life scenarios like handling cross-lingual settings and with

reviews containing coreference resolution. We propose solutions for these limitations,

justifying why they work.
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Chapter 1

Introduction

Understanding customers’ opinions towards products is one of the main priorities for

companies to improve on the products’ acceptance by people. Online reviews make it

easy for customers to share their feelings about products and services in a quick and

efficient way. But for business owners, this can mean a deluge of comments with a

variety of concerns. Companies with millions of customers receive massive amounts

of online reviews that can not be analyzed manually, thus needing automation. This

automation can be done using Aspect-based Sentiment Analysis (ABSA) which helps

to explain customers’ opinions towards products and services.

For example, a laptop manufacturer looking to analyze customers’ opinions to-

wards a newly released laptop can use ABSA on reviews existing on retail platforms

like Amazon and Walmart. With ABSA, the laptop manufacturer can know the cus-

tomer’s sentiment towards the laptop’s various features like its “display” and “bat-

tery”. Formally, the “display” and “battery” are called the aspect terms (or aspects)

for which sentiment is detected using ABSA.

ABSA typically involves detecting the different aspects that exist in the review, and

classifying their sentiment polarities. However, ABSA also has a subtask called Aspect

Level Sentiment Classification (ALSC) [1] to analyse a model’s sentiment classification

ability without evaluating its aspect extraction ability. ALSC allows detecting the

sentiment associated with a specific aspect in the review. So in the earlier example, the
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laptop manufacturer could use ALSC to analyze reviews specifically for the sentiment

of “display” aspect of the laptop.

With the advent of Transformer based models [2], ABSA solutions have achieved

better performance. ABSA solutions were earlier based on discriminative models,

but recently a few solutions based on generative models have been proposed. Dis-

criminative ABSA solutions commonly use a two-step process: 1) extraction - detect

aspects using methods like sequence labeling; 2) classification - classify sentiments for

the detected aspects. On the other hand, generative ABSA solutions generate aspects

and sentiment polarities together without separate extraction and classification steps.

Generative ABSA solutions are simpler and said to perform better than their discrim-

inative ABSA counterparts [1, 3]. However, these generative ABSA solutions were

not evaluated comprehensively in prior work, including in some specialized settings.

In our work, we study generative ABSA solutions in the following specialized set-

tings:

• ABSA that requires Coreference Resolution (CR) - the ability to identify words

referring to the same entity (Chapter 3). For example, CR is needed to predict

the sentiment for “food” in the sentence - “I had food, it was bad.” Here, “food”

has a negative sentiment only because it is referring to the same entity as “it”

which in turn is associated with a negative sentiment.

• Cross-domain (different domain used at train and test time), cross-lingual (dif-

ferent language used at train and test time), and cross-domain/lingual settings

(both domain and language different at train and test time) (Chapter 4).

In this thesis, we pose a two-part research question:

1. Are there settings where generative ABSA transformer models have poor per-

formance?

2. (If yes,) Are there any techniques to mitigate this poor performance?

2



1.1 Objectives

The contributions of our work are as follows:

• We find several specialized settings where generative ABSA solutions have poor

performance.

• For the setting where accurately predicting the sentiment associated with an

aspect requires CR:

1. We demonstrate and quantify the poor performance of generative ABSA

(or more specifically - ALSC) solutions when working with reviews requir-

ing CR ability.

2. We show that intermediate training with either intermediate task: Quora

Question Pairs [4] (a task to detect semantically equivalent questions) or

Commongen [5] (a generative commonsense task) improves performance

on reviews requiring CR ability.

3. We release a dataset1 to benchmark future ABSA methods on reviews

requiring CR ability.

4. We present a framework for evaluating and improving a transformer model’s

performance on CR cases, which can be used for NLP target tasks other

than ABSA as well.

• For the setting where train and test datasets have a different domain and/or

language:

1. We show that discriminative ABSA solutions work as well or better than

generative solutions in many cases.

1Accessible via the Dataverse link: (https://doi.org/10.5683/SP3/HSKJEY)
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2. We demonstrate that generative ABSA solutions make significant errors

on cross-lingual and cross-domain/lingual settings wherein they incorrectly

generate aspects not existing in the input sentence.

3. We propose a mitigation technique - a simple constrained decoding mech-

anism, called masking, which improves performance significantly (by up to

20%) in many cases.

Our work paints a picture of generative ABSA performance and provides a few

targeted ways to improve the performance.

1.2 Outline

In Chapter 2 of this thesis, we explain the fundamental concepts associated with our

work. We explain the ABSA task and its ALSC subtask, which we consider in our

research problem. Language modeling and transformer based language models are

discussed in detail. These transformer models form the backbone of modern ABSA

solutions, including that of the generative and discriminative ABSA solutions which

we consider in our research. Lastly, we describe the significance testing we perform

to ensure the conclusions of our research are not based on chance results.

Chapter 3 firstly motivates the problem faced by generative ABSA (or more specifi-

cally ALSC) solutions in handling reviews requiring CR ability. We describe the coref-

erence resolution (CR) concept, and the existing standard ABSA datasets available

to us. We explain how to use standard ABSA datasets to build a dataset suitable

for benchmarking performance on CR requiring reviews. We discuss our choice of

intermediate tasks used for the intermediate training in our experiments. We then

describe three experiments we performed, along with their results. In our first ex-

periment, we quantify the problem faced by generative ABSA solutions in handling

reviews requiring CR ability. In the second experiment, we explore intermediate

training using various intermediate tasks, to mitigate the drop in performance while
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handling CR requiring reviews. In the last experiment, we show the intermediate-task

trained model’s performance on a CR dataset to justify its improved performance on

CR requiring reviews. Finally, we provide the related work done for ABSA in the

context of CR, and discuss the conclusions of our study.

In Chapter 4, we begin by giving a background of the evaluation done on generative

ABSA solutions in prior work. We motivate the need to explore generative ABSA so-

lutions in non-standard settings like cross-domain and cross-lingual. We then explain

the datasets and the models used in our experiments. One of the considered models

relies on a constrained decoding mechanism called logit masking. This constrained

decoding based model is meant to mitigate some of the problems faced by generative

models in non-standard settings. The experiments and results for model evaluations

in different settings are then presented. We do an error analysis and discuss the rea-

sons behind the under-performance of certain models in different conditions. Finally,

we present the conclusions of our study.

Chapters 3 and 4 are based on independent short papers submitted to EACL 2023

(European Chapter of the Association for Computational Linguistics).

Finally, in Chapter 5, we present the conclusions of our thesis on the limitations

of generative ABSA solutions and discuss the directions for future work.
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Chapter 2

Background

In this chapter, we give a background of the research done as part of this thesis. We

first introduce the Aspect Based Sentiment Analysis (ABSA) problem and explain the

language modeling task. We then elaborate on Transformer based models which are

the present state-of-the-art models for language modeling, explaining the fine-tuning

approach used to impart knowledge into Transformers.

2.1 Aspect Based Sentiment Analysis

Sentiment analysis is about predicting a sentiment for a given text [6]. This task

can be lacking at times since one sentence can possess multiple sentiments. For

example, there is no single sentiment for the sentence - “The service was good at the

restaurant, but the food was not”. Thus, there are some fine-grained variations of

sentiment analysis like Aspect Based Sentiment Analysis (ABSA) [7].

ABSA allows for the prediction of aspects and their associated sentiment polarities

in a given sentence. An example of ABSA would be - “The service was good at the

restaurant, but the food was not” which has two aspect terms (“service” and “food”),

associated with sentiments “positive” and “negative”, respectively.

ABSA typically involves two sub-problems: 1) extracting aspects; 2) classifying the

aspects’ sentiments. Instead of focusing on both these sub-problems, one can choose

to analyze (or use) only the sentiment classification ability as well. This sentiment
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classification ability can be analysed using the Aspect Level Sentiment Classification

(ALSC) task. ALSC predicts the sentiment of a specific aspect term in the review.

For instance, using ALSC, a restaurant owner can analyze reviews for the sentiment

associated with “food.” In the earlier example review - “The service was good at the

restaurant, but the food was not”, ALSC would detect the sentiment for “food” as

“negative”. ALSC is a sub-type of the ABSA problem [1], such that it only predicts

the sentiment for the given aspect, without the need for extracting aspect terms.

State-of-the-art ABSA (and ALSC) solutions use large language models like trans-

former models in various settings [1, 3, 8–10]. Such models are further explained in

Section 2.3).

2.2 Language Modeling

Language Modeling is a critical problem in NLP, involving generating the probability

distribution of the next word given a context. The probability of the next word wi

is given by Equation 2.1 where wi−1, wi−2, ..., w0 are the preceding words, i.e. the

context of wi.

P (wi|wi−1, wi−2, ..., w0) (2.1)

For example, a language model (LM) might have an input “I couldn’t sleep because

the neighbour’s dog was ”. An LM would learn a probability distribution for the

word which would fit in the blank. This could realistically have the highest probability

for “barking”. Figure 2.1 shows how the LM would model a probability distribution

for the next word.

With sufficient training, LMs can be used for various NLP tasks like ABSA, ques-

tion answering and natural language inference [3, 11]. An ALSC task (sub-type of

ABSA) can be posed to the LM as a language modeling problem, in the form of the

input: “Get sentiment: [sentence]. [aspect]”. The LM can be trained to predict the

7



I couldn't sleep because the
neighbour's dog was ____

Language
Model

barking

howling

sleeping

dancing

probability = 0.4

probability = 0.35

probability = 0.02

probability = 0.01

Figure 2.1: Example of Language Modeling. A probability distribution is generated
over the words in the vocabulary

sentiment of the aspect as the next word - “positive”, “negative” or “neutral”. For

example, the LM would be trained to predict the next word as “positive” when it

encounters the input: “Get sentiment: The service was good, but the food was not.

service”. In a similar way, a language model can be used to perform various NLP

tasks.

Language modeling can be done using various approaches such as Recurrent Neural

Networks and Transformer models. Transformer based models are the current state-

of-the-art for language modeling [2, 11].

2.3 Transformers

Large language models known as Transformers [2] were released in 2017, and have

ever since been part of state-of-the-art solutions in artificial intelligence fields like

natural language processing and computer vision [12]. Transformers are forms of

deep neural network models and effectively model long-range dependencies [2, 12].

The original transformer model proposed by Vaswani et al. [2] is an encoder-decoder

architecture where the encoder generates a representation (encoding) for the input

8



sentence, whereas the decoder generates the next token in the sequence by using the

encoding and the already generated sequence.

This original transformer model is also known as the vanilla transformer model.

Various architectural variations of this vanilla model have since been proposed [12]:

• Encoder only: These are typically used for generating a representation of the

input sentence and then doing classification or sequence labeling tasks. Popular

encoder only models include BERT [11] and RoBERTa [13].

• Decoder only: Such models are usually used for auto-regressive sequence gener-

ation tasks like language modeling. GPT-3 [14] is one such decoder only model

which has shown exemplary results on NLP tasks.

• Both encoder and decoder: These models are popularly used for sequence-to-

sequence generation tasks like neural machine translation where the generated

tokens depend on both the original input as well as the already generated tokens.

T5 [15] and BART [16] are some popular encoder-decoder transformers.

Transformer models are pre-trained with very large datasets (of the order of billion

examples) on objectives such as language modeling [11, 15].

2.3.1 Transformer Model Types

There are discriminative and generative paradigms for transformer based models [17].

Discriminative Transformer Models

Discriminative transformer models are pre-trained with discriminative tasks such as

Next Sentence Prediction (NSP) and Masked Language Modeling [11]. Some popular

discriminative models are BERT [11] and RoBERTa [13].

BERT is an encoder-only transformer architecture which provides an encoding

(representation) of the input text. The encoding is then used as input to a classifier

to do predictions at the sentence or at the token level. The classifier can be as simple

9



as a single linear layer with softmax head [11]. RoBERTa is a variant of BERT which is

pre-trained without the NSP pre-training objective of BERT. Moreover, RoBERTa is

trained with larger datasets and obtains a performance better than BERT on various

NLP tasks.

Generative Transformer Models

Generative transformer models are pre-trained with generative tasks like language

modeling. Some popular generative models are GPT, T5 and BART. We use T5 and

BART in this thesis.

• T5 [15] (Text-To-Text Transfer Transformer) is a sequence-to-sequence pre-

trained transformer based model. It has an architecture similar to the original

vanilla transformer model [2]. T5 has been pre-trained on several pre-training

objectives, on a massive dataset with hundreds of gigabytes of data. The authors

of T5 have conducted extensive experiments on various training datasets and

strategies and have found a model which gives state-of-the-art performance

on several NLP benchmarks. In our experiments explained later, we use a

Huggingface implementation of T51.

• BART [16] is also a modern sequence-to-sequence pre-trained transformer based

model. It is trained as a de-noising autoencoder - learning to reconstruct the

original text which was corrupted by adding noise. BART’s architecture com-

prises several encoder and decoder layers [1]. BART’s encoder layer is said to be

a generalization of the BERT architecture which solely consists of an encoder

component. On the other hand, the decoder layer being an auto-regressive

decoder, is seen as a generalization of the GPT architecture, which only con-

sists of a decoder component. BART can be used in several downstream tasks

like a) classification tasks by using the decoder representation of final token;

1https://huggingface.co/t5-large
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b) sequence generation tasks like machine translation by using tokens output

from the auto-regressive decoder. In our experiments explained later, we use a

Huggingface implementation of BART2.

2.3.2 Transformer Fine-Tuning

For using transformers in various tasks, instead of training from scratch every time,

a popular approach is to use pre-trained transformers and then fine-tune on the

appropriate downstream dataset. This approach leads to state-of-the-art performance

on several tasks [11].

Devlin et al. [11] show how BERT can be used for NLP tasks like the GLUE

benchmark comprising of nine sub-tasks. Devlin et al. [11] demonstrate how a pre-

trained BERT model can be used along with a simple classification layer. The model

is fine tuned end-to-end on the required GLUE sub-task. Fine tuning updates BERT’s

internal weights as well as weights of the newly added classification layer. This simple

yet effective fine tuning methodology gives state-of-the-art results on the GLUE sub-

task. In a similar way, other transformer based models can be fine tuned for various

NLP tasks. By fine-tuning on a downstream task, we impart the model an ability to

perform that task.

It is also possible for a model to have an ability to perform multiple tasks at once.

As seen in Figure 2.2 from Raffel et al. [15], the T5 model has been trained to perform

on a mixture of NLP tasks simultaneously. A model can be trained to perform several

tasks at once by using input prefixes, called “input prompts” [15, 18]. For instance,

for a translation task, we can have an input prompt: “translate English to German”.

This prompt can let the model know that we want it to translate the subsequent

English input text to German language. Input prompts can be used to extract task

specific knowledge from the pre-trained language model [19].

Apart from simply fine-tuning a model on a target task, it can be useful to do

2https://huggingface.co/facebook/bart-base
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intermediate training, which can improve the model’s performance and stability on

the target task [20, 21]. Intermediate training involves fine-tuning on an intermediate

task prior to fine-tuning on the target task. This can be visually seen in Figure 2.3.

In Chapter 3, while using an intermediate training approach, we use different

prompts for the intermediate and target tasks. This allows the model to differentiate

between the intermediate task objective and the target task objective. For example,

when using intermediate training with the CosmosQA task for the final ALSC target

task, we would first train the model using the CosmosQA dataset with an input

prompt for CosmosQA, and then train the model on the ALSC dataset using an input

prompt for ALSC. Note that we do not use such input prompts in the experiments

in Chapter 4 because only a single task is involved.

Figure 2.2: T5 is trained to perform well on various NLP tasks simultaneously. Figure
from Raffel et al. [15]

Figure 2.3: The intermediate training process applied to a large language model
(LLM). Step 1 involves fine-tuning the LLM on an intermediate (Int.) task, followed
by Step 2 which involves fine-tuning on the target task.
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2.3.3 Transformers in Aspect Based Sentiment Analysis

Several state-of-the-art ABSA (and ALSC) solutions use transformer models as part

of their solutions [1, 3, 8–10, 22]. These solutions can be divided into discriminative

and generative as per their methodologies.

Discriminative Transformer Models for ABSA

Discriminative models have been well studied, with several variations being released

for the same [8, 9, 22]. Discriminative models, which use decision boundaries to make

predictions, commonly use sequence labeling techniques to detect aspects in a given

review (extraction) and then use another step to classify those aspects (classification).

A few discriminative models also perform extraction and classification at once [8,

9]. For example, for the sentence “The service was good, but the food was not”, the

discriminative model in the first step would extract the aspects “service” and “food”.

In the second step, the model would classify the polarities of “service” and “food” in

the given context (sentence) as being positive and negative.

One prominent discriminative approach is SPAN-BERT [8]. Other ABSA ap-

proaches treated ABSA as a sequence labeling task, marking every word as a be-

ginning word, ending word, or being inside a target phrase [9, 23, 24]. SPAN-BERT

on the hand proposes a span-based extract-then-classify framework. Thus reducing

the search space and possibility of sentiment inconsistency. It obtains one of the

highest accuracy among discriminative models.

Generative Transformer Models for ABSA

Compared to discriminative models, generative models are new, with few studies

having been done on them [1, 3]. Generative ABSA models learn probability dis-

tributions of the next word, and generate aspects and sentiment polarities together

without separate extraction and classification steps. The literature shows that these

models perform better than discriminative models, at least in the mono-lingual in-
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domain English setting. A possible reason for the performance gain is that generative

models have the advantage that they understand the semantics of the label, unlike

discriminative models [3]. For example, for the sentence “The service was good, but

the food was not”, the generative model would autoregressively output “service posi-

tive <sep> food negative.” Here, “<sep>” is used to demarcate a separation between

multiple aspect-polarity pairs.

Prominent prior work for generative ABSA models, rely on T5 and BART models

[1, 3]. The transformer models are fed reviews as input, and the corresponding aspect-

polarity pairs are output from the model autoregressively. This surprisingly simple

generative technique yields state-of-the-art results.

2.4 Statistical Significance

Statistical tests are used to test the significance of experimental results [25]. These

are important to see if the results we observe can be attributed to randomness. Our

experiments involve comparing two algorithms together and hence we rely on the

Yuen-Welch test [26] for statistical significance.

2.4.1 Yuen-Welch Test

The Yuen-Welch test is also known as the trimmed t-test. It tests for the null hypoth-

esis that 2 independent sets of samples have identical expected values. It is used to

check if any difference observed between two distributions is statistically significant.

It is similar to the t-test, however the Yuen-Welch’s test does not assume normality

or equal variance of the distributions being compared [27].

The Yuen-Welch test is suitable for experiments in Chapter 3 as distributions being

compared do not have equal variance and are not normally distributed. The Yuen-

Welch test is recommended if the data is contaminated with outliers [26]. During our

experiments in Chapter 4, we find there to be outliers due to degenerate runs [28],

and hence find the Yuen-Welch test to be suitable for those experiments. We use the
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recommended symmetric trimming factor of 20% [29].

In our experiments, we use the Yuen-Welch test implementation available on Python’s

SciPy library3.

2.4.2 Bonferroni Correction

Bonferroni correction is used to account for the multiple comparisons when several

dependent or independent statistical tests are being run on the data simultaneously

[30, 31]. The critical p-value used for rejecting the null hypothesis is reduced to

prevent false positives results (Type 1 errors).

2.5 Conclusions

In this chapter, we have explained the basics of ABSA, Language modeling and

Transformer models. In the next chapter, we will show how generative language

models face a problem while working with text requiring a coreference resolution

ability.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest ind.html
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Chapter 3

Coreference Resolution in ABSA

3.1 Overview

Customer feedback is invaluable to companies as they refine their products. Monitor-

ing customer feedback can be automated with Aspect Level Sentiment Classification

(ALSC) which allows us to analyze specific aspects of the products in reviews. Large

Language Models (LLMs) are the heart of many state-of-the-art ALSC solutions, but

they perform poorly in some scenarios requiring Coreference Resolution (CR). In this

work, we propose a framework to improve an LLM’s performance on CR-containing

reviews by fine tuning on highly inferential intermediate tasks. We show that the

performance improvement is likely attributed to the improved model CR ability. We

also release a new dataset1 that focuses on CR in ALSC.

3.2 Introduction

Large Language Models (LLMs) are part of state-of-the-art ALSC solutions [3, 32].

However, reviews often use pronouns, which can make coreference resolution (CR) in

LLMs necessary to infer the sentiment associated with the aspect. Hence, LLMs used

for ALSC need strong CR ability, and can fail otherwise. For instance, the sentence

- “He ate food at the restaurant, it was deserted.” requires the LLM to understand

that the definite pronoun “it” refers to the “restaurant” (antecedent), because of the

1Accessible via the Dataverse link: (https://doi.org/10.5683/SP3/HSKJEY)
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Table 3.1: Cases where the T5 ALSC model fails due to its poor coreference resolution
ability.

Sentence Aspect Sentiment Polarity

Predicted Gold

He ate food at the restau-
rant, it was deserted

restaurant neutral negative

food negative neutral

He ate food at the restau-
rant, it was dark

restaurant neutral negative

food negative neutral

context (“deserted”). Table 3.1 shows four examples where the state-of-the-art T5

ALSC model [3] fails due to its poor CR ability. We find that nearly 15% of this T5

model’s errors are on cases requiring CR ability.

LLMs are also known to have performance and stability issues [21]. To remedy

these, instead of directly training on the task of interest (target task), it can be

beneficial to do intermediate training [20]. Intermediate training can be done by

first training the model on an intermediate task before training it on the target

task. Certain intermediate tasks can contribute to both improved performance and

stability of the target task [21]. In our experiments, we explore various intermediate

tasks mentioned in Section 3.5. Using intermediate training, our work shows a way

to improve an LLM’s performance on English ALSC reviews requiring CR.

In our work, we: a) show that an LLM trained for ALSC makes more errors when

evaluated only on reviews requiring CR ability, compared to when handling typical

ALSC reviews (8.7% mean F1); b) demonstrate that our framework for handling CR-

containing reviews can improve ALSC model’s CR ability (16% mean F1); c) show

that this improved CR ability can improve ALSC performance for reviews requiring

CR ability (5% mean F1). d) release annotated variants of existing datasets which

can be used to benchmark a model’s ALSC performance on CR cases.

A limitation of our work is that we only consider reviews containing labeled ground

truth aspect terms. This follows prior work on ABSA [33, 34]. We also limit our
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analysis to CR-containing reviews which have a definite pronoun2 as the anaphor.

There are other cases3 of Coreference Resolution where anaphors may not be used,

but these cases are less frequent in the considered datasets and hence we ignore them

in our research problem. This restriction is hence applied for simplicity of model

training (preventing imbalance in dataset).

3.3 Coreference Resolution

Coreference Resolution (CR) is the problem of resolving multiple references of the

same entity [35]. For instance, the sentence - “He ate food at the restaurant, it was

deserted.” has the words “it” and “restaurant” referring to the same entity. Here,

“it” is an anaphor, referring to the “restaurant” which is the antecedent.

3.4 Data

3.4.1 Original ALSC Datasets

We consider English ALSC datasets: SemEval Restaurant 2016 (Rest16) [36] and

MAMS [32], both of which contain reviews from a similar restaurant domain. Inspired

by Yan et al. [1], ALSC reviews are processed into an input format suitable for

our LLM - “[sentence]. aspect: [aspect]”. The ground truth output is “positive”,

“negative” or “neutral”. For example, “$20 for good sushi cannot be beaten. aspect:

sushi” has the ground truth as “positive”.

Following existing work [33, 34] we disregard reviews that do not contain a labeled

ground truth aspect term. We also remove the reviews with aspects labeled as having

“conflict” sentiment polarity to prevent a class imbalance problem due to the low

count of the “conflict” class (label). The “conflict” label for sentiment polarity is

used in ABSA datasets to mark a conflicting sentiment for an aspect term.

2Definite pronouns refer to specific entities. Example: “he”, “she”, “it”, “who”, etc. https:
//en.wikipedia.org/wiki/English pronouns

3https://en.wikipedia.org/wiki/Coreference
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3.4.2 CR Cases

We identify reviews in the Rest16 and MAMS datasets that contain definite pronouns,

and henceforth call these sentences Pronoun cases.

Limiting ourselves to the ALSC task described above, we say that a review is a CR

case if detecting the aspect’s sentiment requires finding the sentiment associated with

a definite pronoun referring to the same entity as the aspect. Specifically, the aspect

should be an antecedent of a definite pronoun which is associated with a sentiment

polarity. For example, “He ate food at the restaurant, it was deserted.” with aspect:

“restaurant” is a CR case. Here, “restaurant” is the antecedent of “it” which is

associated with “deserted” and has negative connotations. On the other hand, “He

ate food at the restaurant, it was too spicy.” with aspect: “restaurant” is a Non-CR

case because the aspect is not an antecedent of the pronoun (“it”).

CR cases require coreference resolution ability to detect the sentiment associated

with the aspect because the aspect is not directly associated with a sentiment. Rather,

coreference resolution must first be applied to detect the definite pronoun which is

associated with the aspect. The sentiment associated with the aspect would be the

sentiment associated with the identified definite pronoun (as they are referring to

same entity).

Identifying CR Cases: We first identify Pronoun cases from the Rest16 and

MAMS datasets by performing a regular expression search for definite pronouns. We

then manually go through each of the Pronoun cases to identify the required CR

cases.

3.4.3 ALSC-CR Dataset

Our dataset is composed of the original ALSC datasets (Rest16 and MAMS). The

testing, however, is done only using CR cases, and we use a combination of Pronoun

and Non-Pronoun cases for validation and train sets. Table 3.2 presents the dataset

composition. Since the ALSC-CR test set only consists of CR cases, a better perfor-
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Table 3.2: ALSC-CR composition. Note that CR cases are types of Pronoun cases.

PartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartition SizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSizeSize DatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDatasetDataset Data TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData TypeData Type

Pronoun Cases Non-Pronoun Cases

MAMS Rest16 CR Cases Non-CR Pronoun Cases

Train 12,434 ✓ ✓ ✓ ✓ ✓

Validation 889 ✓ ✓ ✓ ✓ ✓

Test 346 ✓ ✓ ✓ ✗ ✗

mance on the test set will indicate a superior ability to handle CR cases in ALSC.

This is the model ability we wish to quantitatively evaluate in our experiments. We do

not have Non-CR cases in the test set because Non-CR cases do not test for model’s

CR ability, and we are only interested in measuring the model’s CR ability in our

research problem.

The train, validation and test sets are of similar, but not identical, distributions.

Due to the limited number of CR cases, it is not possible to have train and validation

sets composed entirely of CR cases. The aspect polarity distribution in the ALSC-CR

dataset can be seen in Table 3.3. Note that it is possible to have multiple pronouns

in each of the CR cases. The sentiment distribution of ALSC-CR test set is shown in

Table 3.4.

For constructing ALSC-CR, we used standard ALSC datasets (MAMS and Rest16).

MAMS’s original train set along with data from Rest16 train set is used for train-

ing. For validation, we used the original validation sets from MAMS and Rest16,

in addition to Pronoun cases from MAMS test and Rest16. The composition of the

validation dataset is such that we use minimal Pronoun cases for validation while

having sufficient CR cases for testing. Details of the composition of ALSC-CR are

shown in Table 3.5.
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Table 3.3: Sentiment polarity distribution in ALSC-CR dataset. Percentage shown
corresponds to the percentage of that sentiment polarity of the total size, in the given
partition.

Partition Polarity Total Size

Positive Negative Neutral

Train 4,279 (34.41%) 3,065 (24.65%) 5,090 (40.93%) 12434

Validation 337 (37.90%) 222 (24.97%) 330 (37.12%) 889

Test 178 (51.44%) 122 (35.26%) 46 (13.29%) 346

Table 3.4: Pronoun distribution in ALSC-CR test set, which has only CR cases

Pronoun Count

it 132

which 59

they 54

he 24

who 19

she 17

their 14

them 12

its 10

his 10

there 10

him 5

her 5

hers 0

3.5 Intermediate Tasks

Since fine-tuning with intermediate tasks can contribute to both improved perfor-

mance and stability of the target task, we experimented with an intermediate train-

ing approach for improving an LLM’s performance on cases requiring CR ability [21].

These experiments are explained in Section 3.6.2. We specifically use highly infer-

21



Table 3.5: Detailed ALSC-CR dataset composition.

Partition Size Composition

Train 12,434
MAMS Train (#count = 11,186) + Rest16 Train (Non Pronoun)
(#count = 1,248)

Val 889
15% of (MAMS Test (Pronoun) + Rest16 Train/Val/Test (Pronoun)) +
50% of (MAMS Val + Rest Val (Non Pronoun)) [Here, MAMS #count
= 746, Rest16 #count = 143]

Test 346
MAMS Test (CR) (#count = 124) + Rest16 Train/Val/Test (CR cases)
(#count = 222)

ential tasks for intermediate training in the experiments as they generally provide

higher improvements for various NLP target tasks [20].

We select two commonsense tasks - Commongen [5] and CosmosQA [37], as com-

monsense reasoning helps with CR [38]. SQuAD [39] is selected because it is a

non-commonsense question answering (QA) task. Its performance is contrasted with

CosmosQA, checking if it is the QA or the commonsense ability which improves CR.

Quora Question Pairs [4] (QQP) is selected as it benefits performance on the Stanford

Sentiment Treebank (SST) task which is similar to ALSC [40]. Even if intermediate

tasks are not designed for CR, they can impart CR ability to the model. For the QA

example - “Context: Alice can’t come. She is old”; “Question: Who is old?”, answer

is “Alice”. Answering this requires CR and teaches the model CR ability.

Commongen is a generative commonsense task involving the generation of a

plausible sentence given a list of concepts (train size = 67,389). It tests: 1) relational

reasoning which is the ability to construct grammatical sentences adhering to com-

monsense; 2) compositional generalisation which is reasoning with unseen concept

combinations. For example, we can have: input - “concepts = [dog, frisbee, catch,

throw]”; output - “A dog leaps to catch a thrown frisbee.”

CosmosQA is a QA task where answering questions requires commonsense (train

size = 25,262). For each question, there are four options, and the model should output

the correct option number.

SQuAD is an extractive QA task where the correct answer to the question is
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present exactly in the passage (train size = 87,599).

QQP task involves checking if two Quora questions are semantically equivalent.

We cap the train size at 50,000 to match the other datasets.

For our experiments, we only use one intermediate task for each intermediate train-

ing step. However, we note that another possible approach is to use a mixture of

intermediate tasks for the intermediate training step. Such an approach could be

promising because different intermediate tasks could help with different problems

faced by the model. However, we do not explore such a mixture-based approach due

to the complexities involved in selecting the appropriate intermediate tasks in the

right proportions [15].

3.6 Experiments and Results

We ran experiments for three purposes: a) to quantify a drop in ALSC performance

for reviews requiring CR ability; b) to demonstrate that we can alleviate this perfor-

mance drop by intermediate-task fine-tuning; c) to provide additional evidence that

change in performance on CR cases is due to improved CR ability.

Inspired by state-of-the-art performance in Zhang et al. [3], we used the T54 LLM

[15]. Our baseline model is a T5 trained on ALSC-CR, but not fine-tuned on inter-

mediate tasks. All experiments were run with at least 10 random seeds. Yuen-Welch

test was used for testing statistical significance, along with Bonferroni correction to

account for multiple comparisons.

The T5 model was trained in various settings using training prompts / input pre-

fixes shown in Table 3.6. The wording of prompts has limited impact on the outcome

so we did not experiment with the wording [15]. Rather, we relied on prior work for

task prompts [5, 15, 41]. For ALSC and Definite Pronoun Resolution (DPR) [42] (in

Section 3.6.3), we created prompts as we did not find examples in the literature.

4T5-large from https://huggingface.co/t5-large
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Table 3.6: Details of T5 training prompts used for intermediate and target tasks.

Task Training Prompt

ALSC-CR get sentiment: [sentence, aspect]

ALSC-Regular get sentiment: [sentence, aspect]

DPR Get antecedent: [sentence]

Commongen generate a sentence with: [concepts]

CosmosQA
question: [question] answer 0: [ans 0] answer 1: [ans 1] answer 2:
[ans 2] answer 3: [ans 3] context: [context]

SQuAD question: [question] context: [context]

QQP qqp question1: [question 1] question2: [question 2]

3.6.1 Model Performance on ALSC Without Intermediate
Training

To check LLM performance on CR cases, we evaluated the T5 model on regular ALSC

data (ALSC-Regular), which does not consist solely of CR cases. ALSC-Regular and

ALSC-CR are equal sized and have an identical proportion of Rest16 and MAMS.

We also evaluated the T5 model on ALSC-CR, to get the model’s performance solely

on CR cases.

ALSC-Regular and ALSC-CR are created from the same standard ALSC datasets

(Rest16 and MAMS). Both datasets have the same distribution apart from the pres-

ence of CR in all examples of ALSC-CR’s test set. So the only difference between

between the datasets is the necessary presence of CR in all ALSC-CR samples, but

only an optional presence of CR in ALSC-Regular samples.

By comparing T5 model’s performance on the two ALSC datasets, we show that

unspecialized LLMs face a significant performance problem while handling reviews

requiring CR ability. Results are shown in Table 3.7, where evaluation on ALSC-

CR shows a drop in performance of 8.7% mean F1, as well as an increase of 0.6 F1

standard deviation indicating a poorer model convergence.
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Table 3.7: T5 model evaluated on ALSC datasets. Best score bolded. Performances
on the datasets are statistically significantly different (p-value=9.03e− 05).

Dataset Mean F1 (± Std. Dev)

ALSC-Regular 79.71 (± 1.99)

ALSC-CR 71.07 (± 2.60)

3.6.2 Fine Tuning With Intermediate Tasks

As a solution to poor performance on ALSC-CR (Section 3.6.1), we experimented

with various intermediate tasks mentioned in Section 3.5.

We trained T5 model on the intermediate task first to incorporate intermediate

task knowledge (Step 1). This model is then trained and evaluated on ALSC-CR, our

target task (Step 2). Both these steps are shown in Figure 3.1. We experimented with

different intermediate-task dataset sizes (fraction) as the size has little correlation with

the target task performance [40]. We used the dataset fractions - 0.1, 0.2, 0.5 and

1.0, for simplicity (roughly doubling the fraction from 0.1 to 1.0). However, a more

comprehensive experiment would involve evaluations using other dataset fractions as

well, which could be randomly sampled from 0 to 1.0.

Figure 3.1: Fine tuning a T5-large model with intermediate (Int.) tasks prior to
training and evaluation on the target ALSC-CR task.

The model’s performance on ALSC-CR with different intermediate tasks is com-

pared to baseline model’s ALSC-CR performance to see if intermediate tasks were

beneficial. The results are shown in Table 3.8. We find that the lower ALSC-CR

performance (compared to ALSC-Regular) can be alleviated by intermediate training
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Table 3.8: Mean F1 (± Std. Dev) performance on ALSC-CR on different fractions of
intermediate-task dataset. * denotes statistically significant difference from baseline.
Table’s best scores bolded, 2nd best underlined.

Intermediate Task Intermediate-Task Dataset Fraction

0.1 0.2 0.5 1.0

Commongen 75.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.7275.72 (± 1.14) * 72.46 (± 2.21) 71.04 (± 3.50) 71.45 (± 1.91)

CosmosQA 71.79 (± 1.55) 71.45 (± 3.02) 72.60 (± 1.85) 73.12 (± 2.15)

SQuAD 72.02 (± 1.88) 72.60 (± 2.07) 71.47 (± 3.24) 72.08 (± 2.25)

QQP 72.49 (± 2.79) 71.85 (± 2.98) 76.10 (± 1.26) * 71.30 (± 2.19)

N/A (Baseline) 71.07 (± 2.60)
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Figure 3.2: Performance of ALSC models with intermediate (Int.) training on ALSC-
CR dataset.

with Commongen and QQP, which lead to statistically significant improvements of

5% mean F1. Intermediate training with CosmosQA and SQuAD does not lead to

statistically significant improvement in any case.

Prior work [20] showed a general improvement in a model’s target task performance

when fine-tuned with highly inferential tasks. Apart from being highly inferential,

because Commongen is a generative commonsense task, it is ideal for imparting com-

monsense knowledge to a generative LLM like T5. On the other hand, CosmosQA

being a discriminative task is unlikely to impart as much commonsense knowledge
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into a generative system [5]. As being highly inferential is helpful for target tasks,

the SQuAD extractive QA task, would not result in as significant an improvement.

When used for intermediate training, QQP shows a high improvement in the SST tar-

get task [40] which involves similar sentiment analysis, explaining QQP’s improved

performance on ALSC-CR.

Though intermediate training using DPR task might seem promising, it is a much

smaller dataset (train size = 1500) than other tasks. For completeness we did train

using DPR but found that the mean F1 = 72.77 was not statistically significantly

different from the baseline.

Similar to Wang et al. [40], we do not find a correlation between intermediate-task

dataset fraction and target performance. This can be seen in Figure 3.2 where the

target performance does not follow an increasing or decreasing trend with respect to

the intermediate-task dataset fraction. This lack of correlation can be attributed to

small dataset size might not teach the task sufficiently [15]. On the other hand, large

intermediate-task datasets can cause catastrophic forgetting of the LLM’s original

objective [40]. This original objective is generally beneficial for target tasks. There

is hence a need to strike a balance between the amount of intermediate-task ability

we wish to impart and the amount of original objective catastrophic forgetting that

can be endured. Despite the lack of correlation between intermediate-task dataset

fraction and target performance, we have demonstrated a framework for improving

any target task’s performance on CR cases.

We further provide a pronoun error analysis in Section 3.7 to better understand

the improvements seen due to fine-tuning with intermediate tasks.

3.6.3 Evaluating Coreference Ability

Performing well on ALSC-CR requires strong CR ability, as CR associates the aspect

with its sentiment. To verify that the improvement in Section 3.6.2 is attributable

to the ALSC model’s improved CR ability, we estimate the CR ability by evaluating
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on DPR. For every intermediate task, we evaluate the model corresponding to the

dataset fraction with the best mean F1 (in Section 3.6.2 experiments). For example,

we evaluate the 0.1 fraction for Commongen and the 1.0 fraction for CosmosQA. Since

we have an ALSC model for each random seed used for training (Section 3.6.2), we

run DPR evaluation on the ALSC random seed model with the highest ALSC-CR val

set performance. The steps for evaluating on DPR after training on an intermediate

task are shown in Figure 3.3. Step 1 and Step 2 lead to the intermediate-task trained

model from Section 3.6.2. Step 3 performs the required DPR evaluation.

Figure 3.3: Evaluating a T5-large model with the DPR task to check for Coreference
Resolution ability. Step 1 involves fine-tuning the T5 model on an intermediate (Int.)
task. Then, in Step 2, the model is trained on the required ALSC-CR task. Here, we
have obtained the model from Sec 3.6.2. Now, in Step 3, the model is trained and
evaluated on the DPR task, to test for CR ability.

The DPR task involves predicting the antecedent of the given pronoun. This is

precisely the ability required for good performance on ALSC-CR (which contains only

definite pronoun cases), making DPR ideal to measure the CR ability of our models.

Other CR datasets like OntoNotes [43] are not as suitable as DPR because DPR

only focuses on definite pronouns, which is the ability we are interested in. Similarly,

DPR is also the only CR dataset suitable for intermediate training, but the small size

makes this infeasible as discussed in Section 3.6.2.

We use a DPR variant for generative models where input is of the form: “Humans

were afraid of robots as *they* were strong.”, and the objective is to predict what

the highlighted pronoun (*they*) is referring to [15].

Evaluating ALSC models on DPR (Table 3.9) confirms that the ALSC-CR per-
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Table 3.9: CR ability of top performing models (Sec 3.6.2) measured using DPR.
Statistically significant improvement(*) and deterioration(†) from baseline marked.
Best bolded, 2nd best underlined.

Intermediate Task Intermediate-Task Dataset Fraction Mean F1 (± Std. Dev)

N/A (Baseline) 0 59.28 (± 8.82)

Commongen 0.1 75.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.7775.77 (± 1.68)*

CosmosQA 1.0 54.55 (± 7.19)†

SQuAD 0.2 62.91 (± 6.77)

QQP 0.5 76.36 (± 2.16)*

formance gains may be attributable to the improved CR ability of the model due

to intermediate training. Experiments show that Commongen and QQP fine-tuned

models show a drastically improved (and statistically significant) CR ability of up to

16%. This explains their improved ALSC-CR performance. Using CosmosQA, we

see a statistically significant 5% deterioration in CR ability which does not lead to

statistically significant changes in ALSC-CR performance.

3.7 Error Analysis by Pronoun

We analyzed the errors and improvements seen for individual pronouns (in reviews)

when ALSC-CR is evaluated with different ALSC models. Since a few pronouns have

very low counts as per Table 3.4, we only analyzed pronouns with a count greater

than 15. For all pronouns analyzed, we found improvements in prediction accuracy

for the models fine-tuned with intermediate tasks, compared to the baseline model

which has no intermediate training. Results are shown in Table 3.10.

3.8 Related Work

The importance of CR has been noted in prior ABSA work. Ding and Liu [44] use

aspect sentiments for performing CR, demonstrating a correlation between CR and

sentiment classification. De Clercq and Hoste [45] use CR to detect aspects from re-
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Table 3.10: Error Analysis of ALSC models by pronoun distribution. Model Accu-
racy% presented by Pronoun. Highest scores bolded. 2nd highest underlined. Pro-
nouns with count less than 15 (as per Table 3.4) are not analyzed.

Pronoun Baseline Commongen 0.1 QQP 0.5

it 65.91 68.18 71.21

which 74.58 83.05 77.97

they 72.22 79.63 77.78

he 70.83 75.0 70.83

who 84.21 94.74 94.74

she 88.24 94.12 88.24

lated reviews, for the reviews lacking explicit aspects. Instead, we consider an LLM’s

intra-sentence CR ability, considering only reviews with explicit aspects as having

an aspect is critical to ALSC. Mai and Zhang [46] use CR in aspect extraction, but

only for identifying duplicate references among proposed aspects.Varghese and Jayas-

ree [47] use CR to solve their dependency parser component’s inability to correctly

associate opinion words with pronouns. In our work, we consider the CR problem

in end-to-end state-of-the-art ALSC LLM models. Chen et al. [48] improve BERT

LLM’s CR ability for opinion-mining, using a method relying on external knowledge

bases.

3.9 Conclusions

Real world reviews vary widely and can frequently contain pronouns. While build-

ing an ALSC model to handle all kinds of reviews, it is crucial to know how its

performance is on reviews requiring CR ability. In case of inadequate performance,

mitigation steps can be taken. Since our research problem only involves model per-

formance on CR-requiring reviews (CR cases), we do not evaluate the effect of the

mitigation step on the performance on Non-CR cases. However, since CR cases are

tougher to perform on, it is reasonable to expect that improving performance on CR

30



cases will not lead to a deterioration on the simpler Non-CR cases.

Although LLMs generally perform well on ALSC, our experiments provide evi-

dence that LLMs can have poor performance on ALSC reviews requiring CR ability.

We show that this problem can be alleviated by fine-tuning with certain intermedi-

ate tasks before fine-tuning on the target tasks. Our framework for evaluating and

improving an LLM’s performance on CR cases can be applied for other target tasks

as well. We note that the intermediate tasks and the associated intermediate-task

dataset fractions identified for the ALSC-CR target task may not be suitable for other

target tasks. This may happen if the target task objectives or dataset distributions

are different from that of ALSC-CR. Due to factors such as catastrophic forgetting

of the original objective, it is non-trivial to hypothesize about the intermediate task

and dataset fraction which would lead to performance improvements for target tasks

other than ALSC-CR. However, our framework details a sound empirical approach

to identifying intermediate tasks and dataset fractions, for any target task to handle

CR cases. Such a framework is critical for developing any model deployed in the real

world. In the future, we will explore if intermediate training can reduce the target

task training that is needed for CR cases.
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3.10 Chapter Appendix

3.10.1 Hyperparameters

Learning rates for both intermediate-task training and ALSC training steps are picked

from {5e− 4, 1e− 4, 5e− 5} and {1e− 3, 5e− 4, 1e− 4} respectively, after running for

three random seeds and selecting the rates giving max F1 score for their respective

validation dataset. For intermediate-task training, the learning rates for all inter-

mediate tasks were found to be 1e − 4, except for SQuAD with Intermediate-Task

Dataset Fraction as 1.0 for which we found learning rate as 5e− 5. For ALSC target

task training, the learning rate was found to be 5e− 4 in all cases except when using

Commongen task for fine tuning with Intermediate-Task Dataset Fraction as 0.1 for

which we found learning rate as 1e− 4.

Batch size for training is taken as 16 to maximize GPU utilization. We train for

30 epochs to allow for convergence, while using an early stopping mechanism.

3.10.2 Training Details

For fine tuning the T5-large model, we use 1 NVIDIA V100 GPU, 6 CPU cores with

4 GB memory per core. We run training jobs with a 71 hour time limit.
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Chapter 4

Cross Lingual and Cross Domain
Experiments in ABSA

4.1 Overview

Aspect-based Sentiment Analysis (ABSA) helps to explain customers’ opinions to-

wards products and services. In the past, ABSA models were discriminative, but

recently generative models have been used to generate aspects and polarities directly

from reviews. Previous results showed that generative models outperform discrimi-

native models on several English ABSA datasets. Here, we evaluate and contrast two

state-of-the-art discriminative and generative models in several settings involving dif-

ferent language and/or domain for training and testing. This is done to understand

generalizability in settings other than English mono-lingual in-domain (English lan-

guage and the same domain used for both training and testing). Our evaluation shows

that discriminative models can still outperform generative models in a few settings.

Further, we present a problem faced by generative models in cross-lingual settings,

and demonstrate a mitigation strategy that combines the best of discriminative and

generative models.

4.2 Introduction

A few natural languages receive more research effort compared to other languages

(e.g. English vs. Swahili). Although the community has remarkably accelerated the
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improvement of English NLP techniques, techniques for other languages lag behind.

Working on a lower resource language is a challenging task, where few datasets,

lexicons, and models exist. Thus, utilizing cross-lingual approaches is important to

migrate model ability across languages.

ABSA involves predicting aspect terms and their associated sentiment polarities

[7]. Training such an ABSA model requires a suitable amount of data. Hence, in low

resource settings, it can be difficult to use ABSA to analyze reviews. A solution is to

use models which were trained in some other setting [49]. For example, to perform

ABSA in Swahili, use a model trained on ABSA in English. For such settings, we

conduct a comparative study of discriminative and generative ABSA models.

Prior work shows that generative models achieve better performance than dis-

criminative models in the English in-domain setting (English language and the same

domain used for both training and testing) [1, 3]. However, none have explored per-

formance in the cross-lingual setting (train language different from test language) or

the cross-domain setting (train domain different from test domain). These settings

are important to cases involving a low resource domain or language. For example,

the cross-lingual setting can be relevant for evaluating an ABSA model on reviews in

Swahili (low resource language). For such an evaluation, we can use the cross-lingual

setting of training in a different language (like English) prior to the evaluation in

Swahili.

In our work: a) We evaluate the performance of the two model types in various

settings by comparing state-of-the-art representatives, and demonstrate that discrim-

inative models can still perform better than generative models in a few cases; b)

We find that generative models face problems with aspect extraction in cross-lingual

settings. As a mitigation, we propose a masking approach that gives large improve-

ments (up to 20%), by combining a generative model’s semantic understanding of

labels, along with a discriminative model’s constraint of only generating words from

the input sentence.
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A limitation of our work is that we only consider reviews containing labeled ground

truth aspect terms. This follows prior work on ABSA [33, 34].

4.3 Data

In our experiments, we considered various languages and domains for evaluating mod-

els. For languages, we used SemEval datasets - Restaurant (Rest16) [36] in English,

Spanish and Russian. For domains, we used Rest16 and Laptop (Lap14) from Se-

mEval [50]. Additionally, we used the MAMS dataset [32] of the restaurant domain.

In MAMS, each sentence contains at least two aspects with different polarities, mak-

ing the dataset more challenging than the SemEval datasets.

For SemEval datasets, since the validation sets are not given, we sampled 10% of the

training dataset to use for validation. The datasets we considered vary in terms of the

type of content and the training set size. Table 4.1 presents the datasets’ statistics

after cleaning and sampling. For reference, we also provide Table 4.2 which has

the datasets’ statistics before cleaning and sampling. Note that originally, SemEval

datasets only contain testing and training datasets (no validation dataset).

Following existing work [33, 34] we disregard reviews that do not contain a labeled

ground truth aspect term. We also remove the reviews with aspects labeled as having

“conflict” sentiment polarity to prevent a class imbalance problem due to the low

count of the “conflict” class (label). The “conflict” label for sentiment polarity is

used in ABSA datasets to mark a conflicting sentiment for an aspect term.

4.4 Models

We perform experiments on two generative and one discriminative ABSA model. We

contrast the generative and discriminative ABSA paradigms (explained in Chapter

2.3.3), by considering a representative model for each, which shows state-of-the-art

performance. We also consider a generative model constrained to generate aspects
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Table 4.1: Filtered (cleaned) datasets’ statistics - Count of aspects with sentiment
polarities for the cleaned datasets. Multiple aspects can exist in single record

Datasets Data Split #Pos #Neg #Neu

Rest16En

Train 1028 380 54

Val 130 32 6

Test 427 119 28

Rest16Es

Train 972 338 72

Val 101 46 5

Test 420 142 29

Rest16Ru

Train 2044 411 188

Val 223 56 23

Test 608 193 85

Lap14En

Train 895 799 414

Val 99 71 50

Test 341 128 169

MAMSEn

Train 3382 2769 5042

Val 403 325 605

Test 400 330 607

from the input sentence.

1) SPAN-MBERT Discriminative model: we considered the SPAN-BERT

model [8] which is a state-of-the-art ABSA model that uses a BERT transformer. It

has a good performance on mono-lingual in-domain datasets, and has been used as

a baseline for generative models [1, 3]. The model extracts continuous spans of text

for multiple target aspect terms and classifies their polarities using contextualized

span representations. To use this methodology in cross-lingual settings, we replace

SPAN-BERT model’s encoder with a multilingual BERT model1. We call this ABSA

methodology - “SPAN-MBERT”.

1https://github.com/google-research/bert/blob/master/multilingual.md
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Table 4.2: Unfiltered datasets’ statistics - Count of aspects with sentiment polarities
for the unfiltered datasets. Multiple aspects can exist in single record. A single aspect
can have multiple sentiment polarities associated.

Datasets Data Split #Pos #Neg #Neu

Rest16En

Train 1657 749 101

Test 611 204 44

Rest16Es

Train 1925 674 120

Test 750 274 48

Rest16Ru

Train 3103 709 276

Test 870 321 103

Lap14En

Train 1637 1084 188

Test 481 274 46

MAMSEn

Train 3380 2764 5042

Val 403 325 604

Test 400 329 607

2) mBART Non-Masked Generative model: we used an encoder-decoder

BART-based approach [1]. This model takes a review as input and generates aspects

and their polarities. The aspect-polarity terms have the format: “service positive

<sep> food negative”, indicating presence of two aspect terms (“service” and “food”),

with associated polarities (“positive” and “negative”). A separator token “<sep>” is

used to demarcate a separation between the multiple aspect-polarity pairs in a review.

To use this approach in cross-lingual settings, we use a multilingual BART model2.

We call this methodology - “mBART Non-Masked” (“Non-Masked” term explained

in Section 4.5).

3) mBART Masked Generative model: this model is a modification of the

mBART Non-Masked model. It uses masking to constrain the model to generate

aspects from the input sentence itself (details in Section 4.5).

2huggingface implementation https://huggingface.co/facebook/mbart-large-cc25
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The SPAN-MBERT model and both mBART models use a similar mBERT-like

encoder, implying that performance differences between them is only due to their

discriminative and generative components and not because of the input sentence’s

encoding.

4.5 Logit Masking and the mBARTMasked Model

The ABSA task involves finding aspect terms which are phrases within the input

sentence. Discriminative models generally label each word in the input sentence as

an aspect or non-aspect [9, 23]. An example of the discriminative model’s working can

be seen in Figure 4.1. Generative models, however, are not restricted to generating

words from the input sentence. They can generate words from the entire vocabulary

and are hence at risk of generating out-of-sentence words (“hallucinating”) [51]. An

example of this problem can be seen in Figure 4.2a where the generative model, models

the probability distribution for the aspect, however, it assigns non-zero probabilities

to words not existing in the input sentence.

This hallucination problem for the generative mBART Non-Masked model is con-

firmed in the error analysis (Section 4.8). A solution to this problem is to constrain

the generative model’s decoding step so that the model can only generate from a fixed

set of tokens that exist in the input sentence [52, 53].

We implemented this solution for mBART by “masking” tokens not in the input

sentence. Masking changes a token’s softmax inputs to -Infinity before calculating

softmax probabilities. This ensures that the generative model can only select a token

that appears in the input sentence. We call this the “mBART Masked” model. This

model combines the best of other models - a generative model’s semantic understand-

ing of labels [3], and a discriminative model’s constraint of only generating words

from the input sentence. An example of this masking solution can be seen in Figure

4.2b where the generative model models the probability distribution for the aspect

while assigning a zero probability to words not existing in the input sentence.
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Figure 4.1: A discriminative ABSA model identifying aspects from within the example
sentence - “The service was good”. A checkmark indicates that the word is an aspect,
and a cross indicates that the word is not an aspect.

(a) Probability distribution without masking.

(b) Probability distribution with masking.

Figure 4.2: Example probability distribution of the aspect term when a generative
ABSA model is generating the aspect in the sentence - “The service was good”.

4.6 Text Normalization Process

Prior to evaluation, the model outputs and the gold data are normalized. We remove

punctuation marks such as “,”, “.”, “”” from the sentences, lower-case and lemmatise

the words, and remove common stop words. This is because the generative model

often generates a different variant of a term, e.g. plural or singular. This idea of

normalizing the generated output is similar to Zhang et al. [3], where Levenshtein

distance is used to align the generated aspect words with the closest words existing

in the original sentence. Compared to this, our normalization process followed by an
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exact matching is stricter. Levenshtein distance may align the model’s predictions

with unrelated words in the original sentence. For example, if a generated word -

“salmon”, has the least distance with the word “not” out of all the words in the

original sentence, then “salmon” can get aligned to “not”, as is mentioned by Zhang

et al. [3], which is a loose matching.

4.7 Experiments and Results

For the three models mentioned in Section 4.4, we ran experiments under different

settings. We compare 1) the mBART Non-Masked model against the SPAN-MBERT

model to check if generative models indeed outperform discriminative models in vari-

ous settings; 2) the mBART Non-Masked model against the mBART Masked model

to see if constrained decoding is beneficial.

We ran all experiments with 10 random seeds for robustness. Yuen-Welch test was

used for testing statistical significance, along with Bonferroni correction to account for

multiple comparisons. We find that the standard deviation in results is high because

of degenerate runs. Transformer-based models are known to produce degenerate runs

when fine-tuned on small datasets [28].

Once model outputs and gold data are normalized as per Section 4.6, the predicted

aspect-polarity terms and the corresponding gold aspect-polarity terms are compared

using an exact match. We consider a hit only if both aspect term and the polarity

term match. We use the standard evaluation metrics for calculating ABSA scores,

which are Micro- Precision, Recall and F1. We use the evaluation code released by

Li et al. [23]3.

4.7.1 Monolingual and In-Domain

In the mono-lingual in-domain setting, we evaluated models with train and test data

from the same domain and language. As shown in Table 4.3, the mBART Non-

3http://github.com/lixin4ever/E2E-TBSA
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DomainLang SPAN-MBERT mBART Non-Masked mBART Masked

Rest16En 60.96 (± 2.15)* 74.17 (± 2.13) 74.02 (± 2.17)

Rest16Es 64.72 (± 1.19)* 69.83 (± 1.28) 69.50 (± 1.34)

Lap14En 57.20 (± 1.51)* 66.35 (± 2.70) 66.65 (± 2.21)

MAMSEn 66.00 (± 0.42)* 61.14 (± 1.20) 60.97 (± 1.18)

Rest16Ru 54.60 (± 2.27)* 68.55 (± 1.28) 68.38 (± 1.13)

Table 4.3: Mono-lingual and in-domain F1 scores. * SPAN-MBERT statistically
significantly different from mBART Non-Masked. † mBART Masked statistically
significantly different from mBART Non-Masked. For every setting, the highest model
score is bolded and the 2nd highest model score is underlined.

Masked model performs better than the SPAN-MBERT model in all cases except the

MAMS case. The mBART Non-Masked model and the mBART Masked models have

no statistically significant difference in performance.

4.7.2 Cross-Lingual

In the cross-lingual setting, we considered datasets from the same domain but differ-

ent languages. The models were trained on a dataset from one language and were

evaluated on a dataset from another language. For example, the model could be

trained on Rest16En (English) and tested on Rest16Es (Spanish).

Table 4.4 presents the cross-lingual results. Except in a case involving testing in

Spanish, the generative model (mBART Non-Masked) has a better performance than

the discriminative model. Moreover, when testing in Spanish, the mBART Masked

model provides a significant improvement (up to 16%) in performance over the Non-

Masked model.

4.7.3 Cross-Domain

In the cross-domain setting, we considered datasets from the same language but from

different domains. The models were trained on a dataset from one domain and were

evaluated on a dataset from another domain, but in the same language. For example,
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Train → Test SPAN-MBERT mBART Non-Masked mBART Masked

Es → En 48.87 (± 2.22)* 55.88 (± 14.96) 61.90 (± 12.72)

Ru → En 32.89 (± 6.16) * 64.77 (± 3.62) 67.75 (± 3.91)

En → Ru 39.86 (± 1.89) * 50.66 (± 8.12) 54.02 (± 10.84)

Es → Ru 37.44 (± 1.76) * 50.76 (± 10.19) 52.41 (± 8.66)

En → Es 54.42 (± 2.44)* 42.79 (± 4.43) 58.41 (± 2.84) †

Ru → Es 28.20 (± 4.87) * 55.03 (± 5.68) 63.13 (± 1.89) †

Table 4.4: Cross-lingual F1 scores using Rest16 in several languages. * SPAN-MBERT
statistically significantly different from mBART Non-Masked. † mBART Masked
statistically significantly different from mBART Non-Masked. For every setting, the
highest model score is bolded and the 2nd highest model score is underlined.

Train → Test SPAN-MBERT mBART Non-Masked mBART Masked

Rest16En → Lap14En 31.32 (± 1.74)* 41.04 (± 3.61) 41.58 (± 3.62)

MAMSEn → Lap14En 31.57 (± 2.71) 31.23 (± 3.03) 31.97 (± 2.95)

Lap14En → Rest16En 42.06 (± 2.71)* 55.28 (± 5.01) 57.49 (± 3.07)

MAMSEn → Rest16En 56.04 (± 1.30)* 50.06 (± 2.12) 49.52 (± 1.98)

Rest16En → MAMSEn 32.32 (± 2.00)* 36.10 (± 0.93) 35.96 (± 0.89)

Lap14En → MAMSEn 23.57 (± 2.19) 29.07 (± 3.30) 30.26 (± 2.13)

Table 4.5: Cross-domain F1 scores. Bolded results are the best per model and test
language. * SPAN-MBERT statistically significantly different from mBART Non-
Masked. † mBART Masked statistically significantly different from mBART Non-
Masked. For every setting, the highest model score is bolded and the 2nd highest
model score is underlined.

the model could be trained on Rest16En and tested on Lap14En.

Table 4.5 presents the cross-domain results. The generative mBART Non-Masked

model performs better than the SPAN-MBERT model, except in cases involving

MAMSEn in either the test or train domain. In those cases, three times out of

four, the SPAN-MBERT model does equal to better than the mBART Non-Masked

model. In none of the settings does the mBART Masked model provide a statistically

significant improvement over the mBART Non-Masked model.
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Train → Test SPAN-MBERT mBART Non-Masked mBART Masked

Rest16Es → Lap14En 28.52 (± 2.72)* 33.84 (± 10.89) 35.91 (± 9.73)

Rest16Ru → Lap14En 16.80 (± 1.84)* 39.56 (± 2.31) 40.32 (± 2.71)

Lap14En → Rest16Es 42.26 (± 4.22) 36.06 (± 9.09) 47.42 (± 5.14)

MAMSEn → Rest16Es 47.33 (± 1.26)* 20.01 (± 2.54) 39.20 (± 3.32) †

Lap14En → Rest16Ru 31.58 (± 7.76)* 42.27 (± 8.02) 42.57 (± 11.01)

MAMSEn → Rest16Ru 30.75 (± 3.57) 34.16 (± 3.72) 39.42 (± 2.41)

Rest16Es → MAMSEn 28.78 (± 1.39) 25.37 (± 7.25) 29.05 (± 6.77) †

Rest16Ru → MAMSEn 14.81 (± 3.23)* 31.50 (± 1.51) 32.35 (± 1.33)

Table 4.6: Cross-domain and cross-lingual F1 scores. * SPAN-MBERT statistically
significantly different from mBART Non-Masked. † mBART Masked statistically
significantly different from mBART Non-Masked. For every setting, the highest model
score is bolded and the 2nd highest model score is underlined.

4.7.4 Cross-Lingual and Cross-Domain

In the cross-lingual and cross-domain experiments, we evaluated models in an extreme

setting which combines the previous cross-lingual and cross-domain settings. The

models were trained on a dataset from a domain in a language and were then evaluated

on a dataset from another domain and another language. For example, the model

could be trained on Rest16Es and tested on Lap14En.

Table 4.6 shows the evaluation results. In 50% of the cases, the mBART Non-

Masked model does better than the SPAN-MBERT model. In the rest, the SPAN-

MBERT performs better or equal to the mBART Non-Masked model. Only in the

cases involving both MAMSEn and Rest16Es for training/testing or testing/training,

does the mBART Masked model have a statistically significant improvement over the

Non-Masked model (of up to 20%).

4.8 Error Analysis

We conducted an error analysis on the outputs of the models to better understand

the cases where they fail.
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For the discriminative model (SPAN-MBERT), we found that in a large number of

the error cases, the model did not predict any aspect term at all. This implies that

the SPAN-MBERT model was not able to confidently identify any possible aspect

term spans, as it uses thresholds (representing confidence) for prediction scores. For

example, in the following sentence the model fails to predict an aspect term: “Not

the biggest portions but adequate.”. We also found several cases where the model

correctly identifies the aspect term but misclassifies the sentiment, such as for the

sentence “i am never disappointed with there [sic] food.”; it gives “food” a negative

sentiment instead of a positive. Here, the underlying language model (mBERT)

did not understand the word “never”, and instead understood the sentiment from

“disappointed” which has negative connotations. It has been shown that language

models like BERT misunderstand some negations [54]. A significant number of errors

are because the predicted and gold aspect spans only have a partial overlap. This can

be seen in cases such as “La atención del personal impecable.” (“The attention of the

impeccable staff.”) where the predicted aspect term is “personal” (“staff”) instead of

“atención del personal” (“attention of the staff”).

As in the discriminative model, in both generative models (mBART Non-Masked

and mBART Masked) we saw several cases where the predicted aspect span is only

partially correct. For instance, in the sentence “Great draft and bottle selection and

the pizza rocks.”, the predicted entities can include “bottle selection” instead of “draft

and bottle selection”. We note that such predictions would not have been considered

errors if we had used partial matching explained earlier in Section 4.6.

In the mBART Non-Masked model, other notable cases included those where an

aspect similar to the true aspect is predicted. For example, for the sentence - “The

best calamari in Seattle!”, the mBART Non-Masked model generated “salmon” as an

aspect term instead of “calamari”. This shows that the language model understood

the similarity between calamari and salmon, however it did not understand that for

the task it was supposed to predict a word from the input sentence itself, and not
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make such inferences. Similarly, in cross lingual experiments, we found that the model

would predict the aspect term in the training language, instead of the test language.

For example, when training on Rest16En and testing on Rest16Es, the model tends to

predict “restaurant” instead of “restaurante”, “meal” instead of “comida”, “service”

instead of “servicio”, “place” instead of “sitio”, “precio” instead of “price”. These

are all English translations of the required Spanish aspect terms. This again implies

that the model is unable to understand that it is supposed to predict a word from

the input sentence itself.

4.9 Discussion

In our experiments, we find that in most cases, the mBART Non-Masked generative

model performs better or equal to the SPAN-MBERT discriminative model. But, in

36% cases, SPAN-MBERT does better or equal to the mBART Non-Masked model.

In several cases involving MAMSEn, SPAN-MBERT performs better than the

mBART Non-Masked model. This includes the monolingual in-domain setting for

MAMSEn, on which generative models were not evaluated in prior work. MAMSEn

is a more difficult task, and a generative model might need more data to perform

well. This can be attributed to the fact that generative models have a challenging

task: learning a joint probability over all words. This is in contrast to discriminative

models which need only learn a small number of decision boundaries. This intuition

is supported by existing literature [55].

Based on the results and qualitative error analysis, we find that the mBART Non-

Masked generative model is unable to understand that it needs to extract words from

the input sentence. This leads to errors in cross-lingual and cross-lingual/domain

cases. When trained with a language X, and tested with a language Y, the model

generates the aspect in language X, instead of language Y.

This problem for cross-lingual and cross-lingual/domain settings especially exists

for cases involving English for training/testing and Spanish for testing/training. How-
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ever, the problem is less pronounced with cases involving Russian. Since the trans-

former model breaks words into sub-words before tokenization, English and Spanish

words can be encoded the same way due to their common sub-words. Russian, on the

other hand, has fewer common sub-words, making it easier for the model to distinguish

between Russian and English words. This problem always exists in cases involving

MAMS and Rest16 datasets together (in English and Spanish cross-lingual/domain

tests). Since both these datasets also belong to the restaurant domain, it is tougher

for the model to distinguish between the words from training and testing datasets. On

the other hand, this is less of a problem when using Lap14 dataset along with either

MAMS or Rest16 (in English and Spanish cross-lingual/domain tests) because the

model is able to distinguish between the words from laptop domain and the restau-

rant domain. Generating out-of-sentence words is not a problem for discriminative

models because they are restricted to only the words from the input sentence.

In cross-lingual and cross-domain/lingual cases, the mBART Masked model pro-

vides dramatic performance improvements over the mBART Non-Masked model (up

to 20%). This is attributable to the masked model not facing the out-of-sentence

aspect generation problem discussed earlier. mBART Masked model always does ei-

ther better or equal to the Non-Masked model, with it being better than mBART

Non-Masked in 16% cases.

4.10 Conclusions

In this work, we compared two ABSA model types (discriminative and generative)

in terms of performance differences by considering a state-of-the-art model for each

model type as a representative. We reasoned about these differences in a manner

generalizable to discriminative and generative ABSA model types, and not specific to

their representative models. Previous studies showed that generative models achieve

higher results than the discriminative ones across almost all English ABSA datasets.

However, the results in our study demonstrated that generative models can perform
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worse than the discriminative ones in many of the proposed scenarios, namely, cross-

lingual, cross-domain, and cross-lingual and domain. These results argue against

adopting generative models as the defacto standard for all ABSA tasks as discrimi-

native models are more accurate in some settings.

We propose a simple modification to the generative model wherein we constrain the

decoding strategy. This constrained methodology often leads to significant improve-

ments (of up to 20%) in the performance of the generative model in cases involving

different train and test languages.

In the future, we plan to study the models in other scenarios like when aspects are

associated with conflicting sentiment polarities / “conflict” labeled sentiment polar-

ities. This is the condition where aspects have both positive and negative sentiment

polarities.
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4.11 Chapter Appendix

4.11.1 Hyperparameters

For mBART based models, the learning rates for all datasets are selected from {1e−

3, 5e− 4, 1e− 4, 5e− 5, 1e− 5} after running for three random seeds and selecting the

rates giving highest Mean F1 score for their respective validation dataset.

For the SPAN-MBERT model, the logit thresholds (parameter representing confi-

dence threshold for prediction) for all datasets are selected from {15, 14, 13, ..., 3, 2, 1}

after running for three random seeds and selecting the threshold value giving highest

Mean F1 score for their respective validation dataset.

Batch size for training is taken as 16 to maximize GPU utilization. We train for

30 epochs to allow for convergence, while using an early stopping mechanism.

4.11.2 Training Details

For fine tuning the models, we use 1 NVIDIA V100 GPU, 6 CPU cores with 4 GB

memory per core. We run training jobs with a 71 hour time limit.
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Chapter 5

Conclusions & Future Work

Aspect Based Sentiment Analysis (ABSA) is a problem of interest to industry. ABSA

can be used to detect the sentiments associated with products and services in an

automated manner, thus saving on the human effort of manually scouring through

potentially millions of reviews across platforms.

Even though some claim generative ABSA models are the new state-of-the-art,

we find that they suffer from various limitations. We have studied generative ABSA

models in various settings to find that there are cases where they frequently make

errors.

Through empirical experiments, we show that generative ABSA models have a

problem handling text requiring Coreference Resolution (CR) ability. We demon-

strate that by fine-tuning the model on certain intermediate tasks, the model CR

ability can be improved. This improved CR ability leads to a better performance

on CR-containing reviews. This framework for evaluating and improving an LLM’s

performance on CR cases can be used for other NLP tasks apart from ABSA, as well.

By analyzing generative ABSA models in various settings like cross-domain, cross-

lingual and cross-domain/lingual, we showed that even though generative ABSA mod-

els usually have a good performance, there are many cases where they are outper-

formed by discriminative ABSA models. Thus, contrary to prior work, discriminative

ABSA models continue to be relevant for the ABSA task. We also find that generative
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ABSA models frequently generate aspects which do not exist in the input sentence.

To solve this, we propose a constrained decoding approach which gives a significant

performance boost.

In this work, we explored a few limitations of generative ABSA models. However,

since generative ABSA models were developed recently, there are several directions

for future research.

For our cross-domain and cross-domain/lingual experiments, we would like to con-

duct experiments on other domains (apart from restaurant and laptop) and languages

(apart from English, Spanish and Russian). This is because a few of our discussions

were based on the similarity of certain data types (Rest and MAMS; English and

Spanish). With more diverse data, we would be able to make stronger claims.

Like Coreference Resolution (CR), there can be other core NLP tasks that are

also problems for generative ABSA models. These might include - sarcasm detection,

named entity recognition, and part-of-speech tagging. These core NLP tasks could

have an effect on the ABSA performance of generative ABSA models.

In our framework for improving a model’s handling of CR-containing reviews, we

propose experimenting with various intermediate-task dataset fractions for every in-

termediate task. However, it would be interesting if a suitable intermediate-task

dataset fraction could be determined theoretically. This would save users on compu-

tation costs. Moreover, it should be investigated if using a mixture of intermediate

tasks can lead to better performance compared to a single intermediate task.

It is important to comprehensively assess the limitations of generative ABSA mod-

els before deploying them in the real world.
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