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ABSTRACT

A finite element approach to the analysis of reinforced con-
crete slabs, which includes the effects of cracking and time dependent
effects, is presented.

Constitutive relations for reinforced concrete are developed
which account for the reduced stiffness due to cracking. Time dependent
strains in concrete are accounted for by considering concrete to behave
as an ageing linear visco-elastic material which exhibits shrinkage.
Classical small deflection plate bending theory is modified for these
constitutive relations and a method of analysis is developed using a
rectangular plate bending element. Numerical results are obtained and
compared with available classical solutions and expefimenta] results.

A study of factors affecting slab deflections is carried out

and simplified procedures for computing slab deflections are examined.
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CHAPTER 1
INTRODUCTION

1.1 Introductory Remarks

The design of reinforced concrete structures requires the
satisfaction of two main criteria, namely strength and serviceability.
Strength refers to the ability of the structure to carry the loads for
which it is designed and is therefore the primary consideration.

Since reinforced concrete structures are generally designed to produce
a ductile failure requiring yielding of the reinforcement before
failure of the concrete; the strength of a member or structure may be
considered to be mainly a function of the steel reinforcement. The
properties of steel are generally well defined so that the strength
may be determined with reasonable accuracy.

Serviceability in reinforced concrete generally refers to
behaviour at working load levels with particular reference to cracking
and deflections. Both cracking and deflections are primarily depend-
ent on the behaviour of concrete and are consequently much more diffi-
cult to predict than strength since the properties of concrete are
highly variable and are dependent on a large number of factors.

When structures were designed on the basis of allowable
stresses and straight line theory, the relatively low stresses resulted
in stiff sections which rarely produced concern for deflections.
However, with the advent of ultimate strength design, higher concrete
stresses and higher steel yield stresses, shallower more highly rein-
forced sections could be used, and this in turn resulted in more con-

cern for serviceability requirements. This concern is reflected in



the development of deflection requirements in the A.C.I. Building Code.
Before A.C.I. 318-63(2) there were no specific requirements for control
of deflections of beams and one-way slabs, although 1limiting thicknesses
were specified for flat slabs and two-way construction. In A.C.I.
318-63, deflection requirements wére introduced to cover both one-way
and two-way construction, particularly with respect to ultimate strength
design.

These requirements have been expanded in A.C.I. 318-71(3) to
cover lightweight concrete, composite construction, pre-stressed con-
crete and varying yield strengths. Methods are indicated for computing
both short and long time deflections. These procedures, however, do
not take into account variations in creep and shrinkage properties which
may have a considerable effect on deflections. The need to consider
the effects of deflections of reinforced concrete structures, parti-
cularly floor slabs, is indicated by the results of a survey of damage
to concrete structures carried out in Germany by Mayer and Rusch(36).
By far the most common cause of damage was excessive slab deflection
leading to partition wall damage, and damage to plaster and finishes.
Among the causes cited for damage were use of the uncracked section
for deflection calculations and insufficient consideration of creep
and shrinkage deformations.

Several procedures have been developed for the analysis of
reinforced concrete floor slabs assuming the material to be linear
elastic. These include plate bending theory, plate analogue, finite
difference solutions, and grillage solutions, all of which are dis-
cussed in reference (18). It was not until the development of finite

element techniques that more realistic non-linear material properties



could be used for solutions of problems of reasonable complexity.

King(30)

applied the theory of linear viscoelasticity to the solution
of two dimensional stress problems using the finite element approach
whiie Se]na(46) developed a solution for planar reinforced concrete
structures which included cracking and time-dependent effects, also

(35) used a rate

using linear visco-elasticity. Manuel and McGregor
of creep approach in the study of the effects of sustained loads on

reinforced concrete columns in frames.

1.2 Object and Scope
The objectives of this investigation are
1. To develop constitutive relations for reinforced concrete which
account for the effects of cracking and time dependent behaviour.
2. To apply these non-linear constitutive relations to a finite element
analysis of reinforced concrete floor slabs.
3. To study the effects of several parameters on slab deflections

using the analysis procedure developed.

In addition, the results of the parameter study are used in
a preliminary assessment of available simplified procedures for evalua-

tion of slab deflections.

1.3 Outline of Contents

The plane stress constitutive relations used in this disserta-
tion are developed in Chapter 2. In the general case, the instantaneous
elastic relationships are developed for a layer of unit thickness con-

sisting of reinforcement placed at arbitrary angles to the coordinate



system and a set of orthogonal cracks in the concrete also oriented in
an arbitrary fashion. The relationships obtained are generally aniso-
tropic. Assumptions are then made concerning the behaviour of the
layer which allow the relationships to be specialized to the case of
orthotropy with respect to the global coordinate system. Time depend-
ent effects are introduced by treating the concrete as an ageing linear
visco-elastic material exhibiting shrinkage. A numerical integration
technique with respect to time, developed by Se]na(46) for the uniaxial
stress case is generalized for plane stress.

In Chapter 3, the general method of analysis is described.

An iterative procedure is developed to account for cracking and an
attempt is made to account for the tensile stiffening effect of concrete
between cracks. An incremental procedure with respect to time is used
to trace the time-dependent behaviour.

An attempt to verify the analytical model is made in Chapter
4. Elastic plate bending, cracking and time dependent solutions are
compared with available classical and experimental results.

Chapter 5 describes the results of a study in which the analy-
sis was applied to a number of flat plate floor slabs to determine the
effects of varying certain parameters.

A brief examination of available simplified procedures for
computing short and long time deflections is made in Chapter 6 using
the results of the study carried out in Chapter 5. A short summary and

recommendations for further studies are presented in Chapter 7.



CHAPTER 2
MATERIAL PROPERTIES AND CONSTITUTIVE RELATIONS

2.1 Introduction

This chapter deals with the constitutive relations to be used
in the analysis of reinforced concreté floor slabs. These relations
require knowledge of the properties of the constituent materials, steel
and concrete, and of the behaviour of the two combined as a composite
material. A precise point-wise evaluation of stress and strain in the
composite material is not attempted. Instead it is assumed that suf-
ficiently accurate information can be obtained from a structural
engineering point of view by considering stress and strain measured
over a relatively long gauge length.

The properties of reinforcing steel are generally well defined
and steel may be considered to behave as a linear elastic material.
(This study is concerned with the behaviour at working load levels and
it is therefore assumed that the steel stress remains in the elastic
range.)

The properties of concrete are known to depend on a large
number of factors including mix propoertions, environmental conditions,
load level, size and shape of member, age at loading and duration of
load. In addition the properties will generally vary throughout the
structure so that the assigned material properties can only be con-
sidered to represent the average conditions in the body.

The analysis of reinforced concrete slabs may be treated as
a problem of plate bending under transverse loading. The stress in

the direction of the normal to the surface of the plate may be neglected



so that any point in the plate may be considered to be in a state of
plane stress under 1oad(47). The constitutive relations in this chapter
are therefore developed for plane stress.

The constitutive relations are f{rst developed in general
terms for a layer of unit thickness containing reinforcement oriented
arbitrarily with respect to the global coordinates and a set of orth-
ogonal cracks also at an arbitrary angle. A simple cracking criterion
is then established which allows these relations to be specialized to
the case of orthotropy with respect to the global coordinate system.
This is accomplished by replacing the cracked concrete layer by a
material orthotropic with respect to the global system and which is
assumed to have a reduced tensile modulus of elasticity.

Time dependent constitutive relations for a layer of concrete
under plane stress are then developed and a numerical integration tech-
nique is described for the evaluation of the strain history for an
applied stress which varies with time. Finally, evaluation of creep

and shrinkage properties for different concretes is discussed.

2.2 Constitutive Relations for a Layer of Reinforced Concrete under
Plane Stress (Instantaneous - Elastic)

In order to formulate the.constitutive relations for a layer
of reinforced concrete which may have reinforcing steel at an arbitrary
angle to the global coordinate system and which may be uncracked or
cracked in an arbitrary direction the fo]]owihg assumptions are made.

1. Under an arbitrary infinitesimal strain field the
reinforcing bars carry uniaxial stress only.

2. Reinforcing steel is expressed in terms of the ratio of
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steel area to total area per unit of length measured perpendicular to
the direction of the reinforcement. The actual size and spacing of
reinforcing bars within a Tayer is considered to have no effect on the
analysis.

3. The stiffnesses for steel and concrete may be formulated
separéte]y and the results superimposed to obtain the stiffness for
the layer.

4. The volume of concrete displaced by the steel may be
ignored.

5. In the case of a cracked layer, the tensile stiffening
effect of concrete between cracks may be accounted for by replacing
the concrete with a continuous material having a reduced modulus in
tension perpendicular to the cracks and a reduced Poisson's ratio.

6. The shear modulus of a layer whether cracked or uncracked
is assumed to be that of an uncracked plane concrete layer. This
assumption is intended to account for the effects of dowel action and
aggregate interlock on the shear stiffness of a cracked layer. Small
percentages of reinforcing steel are assumed to have an insignificant
effect on the shear stiffness or twisting stiffness of the plate before
cracking.

7. Cracking at more than one orientation may be represented
by a system of orthogonal cracks.

8. Complete strain compatibility between steel and concrete
is maintained.

9. Linear elastic behaviour is assumed for steel and for

instantaneous response of the concrete.



2.2.1 Steel

Figure 2.1(a) shows an element taken from a layer of rein-
forced concrete of unit thickness containing one set of reinforcing
bars and one set of cracks each at an arbitrary angle to the global
X,y axes. The steel and cdncrete are shown separately in Figure 2.1(b)
and Figure 2.1(c) respectively.

The local coordinate system x',y' for the steel is orien-
tated at an angle g' to the global x-axis and the steel runs parallel
with the x'~axis. For an arbitrary strain field, the resulting stress

field is expressed as,

Igx* ‘ Py Eg : . €sx!
Usyl - Ssyl
Tsxlyl | stlyl

where Py is the area of steel per unit of length in the y' direction
and Eg is Young's modulus for steel.

Symbolically,

Hog't = [oiMeg" (2.1)

Stresses and strains are related to the global axes by the second order

tensor transformation,

{c_'}

s [T){og} (2.2)

{e. '}

] [Teg} (2.3)

where,



c2 52 2sc
[t] = 52 ¢ -2sc (2.4)
| -sc sc c2-s° .
and & = cos g' , s = sin B'

The constitutive relation referred to the global system becomes,
o} = [MITMLCITHe = [CJMe) (2.5)
For n sets of reinforcing steel in the same layer,

n
{og} = [.Z][Csi]]{es} (2.6)
i=

2.2.2 Concrete

Figure 2.1(c) shows the local coordinate system x",y" for the
layer of concrete with cracks running parallel with the y"-axis. The
layer is seen to be orthotropic with respect to the local system.
Orthotropy is maintained if an additional set of cracks is formed
parallel with the x" axis.

The plane stress constitutive relation referred to the local

system may be expressed as,

4 3 [~ 1 f b
. ECX" chn EC_Y" . .
CX (1‘VCX||\)Cy||) (]"\)CXu\)cyu) CX
5 _ v_C_Y"ECX" EQY" . .
1 C_y'" b (1‘\)cxu\’cyu) (]-chll\)cyll) 9 C,Y" '
(TIT] . . G u,n_J Y ny, 1
L XY ) - Xy L CXYy )

or {o "t = [C."1{e,"} (2.7)
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where
Ecx" s Veyn are Young's modulus and Poisson's ratio for the
x" direction
Ecy" > Veyt are Young's modulus and Poisson's ratio for the
y" direction
and Gx"y" is the shear modulus.

Referred to the global system the above expression becomes,
togd = [T17ICITHe ) = [C e (2.8)

where g" replaces g' in [T].

Before cracking takes place, the elastic constants take the
values for plane concrete and the material may be considered to be
isotropic. However, after cracking the overall stiffness is reduced
because of the inability of the concrete to transfer tensile stresses
across a crack. In this case the elastic constants must be reduced.
The definition of elastic constants in a cracked layer is postponed

until section 2.3.

2.2.3 Combined Steel and Concrete

For compatibility of strain between steel and concrete,

{e} = {es} = {ec} (2.9)

The total stress in the composite layer is expressed by,

{o} {oc} + {os}

n
(e + 1 [6 1)

[Ci{e} (2.10)

or, {c}



1

These constitutive relations have been developed for the
general case of arbitrary reinforcement layouts and a system of ortho-
gonal cracks oriented at an arbitrary angle to the global coordinate
system.

The present investigation will be restricted to slabs in
which reinforcement is placed in an orthogonal pattern coinciding with
the global coordinate system. In the next section a cracking criterion
will be established which allows the above relationships to be
specialized to the case of orthotropy in the global coordinate system

in which case the transformation matrix [T] is not required.

2.3 Cracking Criterion

In order to include the effect of cracking in the analysis a
cracking criterion must be established. The cracking criterion should
define

a) the conditions under which cracking occurs

and b) the general direction of crack propagation.
Consideration should also be given to the tensile stiffening effect of
concrete between cracks and to the effects of reinforcing steel dowel

action and aggregate interlock on the twisting stiffness after cracking.

2.3.1 Plain Concrete

Experimental work on the failure criteria for plain concrete
under biaxial stress(B]) indicates that the failure envelope in terms
of principal stresses is of the form shown in Figure 2.2. The shaded
area indicates the stress levels to be expected under working load
conditions. The direction of cracking is determined by the direction

of the maximum principal tensile stress. It can be seen that little
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error will be introduced by assuming that cracking occurs when either
of the principal tensile stresses exceeds the uniaxial tensile strength,
particularly in the working load range.

| Figure 2.3 shows a typical stress strain diagram for plain
concrete in tension. At approximately 80% of the ultimate stress,
micro-cracking begins to occur at the aggregate-paste inter-face, and
the stress strain diagram becomes non-]inear(zo). At the ultimate
tensile stress cracking propagates throughout the specimen and the

stress drops to zero.

2.3.2 Reinforced Concrete

Cracking in reinforced concrete is complicated by the pres-
ence of the reinforcing bars which act both as crack arrestors and
crack instigators(lg).

Figure 2.4(a) shows a reinforced concrete element under uni-
axial stress. When the concrete stress reaches the ultimate tensile
strength, primary cracks form at intervals along the ]ength(zz). The
total load is transferred across these cracks by the reinforcement
but the concrete between cracks is still capable of carrying stress
because of the bond between steel and concrete. As the load increases,
intermediate cracks form and the proportion of the load carried by the
concrete gradually diminishes. In terms of average stress over a
relatively long gauge length, the concrete average stress vs strain
diagram may be considered to have an unloading portion. In this analy-
sis it is assumed that the tensile response of concrete in a reinforced
concrete slab may be represented in terms of a series of discrete steps

as shown in Figure 2.4(b). The tensile stress is assumed to increase
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linearly until the ultimate tensile stress is reached at which point
the modulus of elasticity drops to the next lower step on the diagram.
The stress in the softened material is allowed to increase to the
limiting value corresponding to this branch of the diagram. This pro-
cess continues until the modulus for concrete drops to zero. By
gradually reducing the concrete modulus relative to the steel modulus,
the proportion of load carried by the steel gradually increases until
finally all of the load is assumed to be carried by the steel. This
process will under-estimate the maximum stress in the steel at all
stages between first cracking and no stress carried by the concrete
since at first cracking the total Toad will be carried by the steel
across the primary cracks, while the steel between cracks will be
stressed at a lower level.

The application of the above concept to the analysis of
reinforced concrete slabs is described in section 3.4 and the choice
of reduced moduli and corresponding limiting stresses is discussed in
section 4.3.

The direction of crack propagation in a two dimensional

(40), in tests

system is also affected by the reinforcement. Morley
carried out to investigate the behaviour of reinforcement placed at
an angle to the direction of maximum applied tensile stress, has
observed the tendency of cracks to propagate along the reinforcement
and perpendicular to it as shown in Figure 2.5(a).

In tests carried out to investigate the cracking behaviour
of concrete slabs reinforced with welded wire fabric, Nawy(41) has
observed that the direction of crack propagation may be determined by

the size .and spacing of the reinforcement rather than the direction of
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maximum principal tensile stress. For closely spaced wires (of the
order of 4" to 8" apart) placed orthogonally, the cracks tended to
propagate in an orthogonal pattern coinciding with the reinforcement
layout (see Figure 2.5(b)). In the case of more widely spaced wires,
- cracks tended to follow the general direction of the maximum princi-
pal tensile stress, thus tending towards plain concrete behaviour.

Cracking in reinforced concrete slabs therefore appears to
be influenced to a large extend by local stress concentrations, caused
in particular by the presence of reinforcing steel. In practical
situations, cracking at service load will occur in regions of high
moment where the reinforcement percentage is greatest and the spacing
will generally be such as to encourage the orthogonal cracking patterns
observed by Nawy. This would certainly be desirable from the point of
view of control of crack spacing and crack width.

In view of the above observations it is apparent that the
direction of crack propagation may not easily be predicted in all cases
and therefore a very simple cracking criterion has been established.

It is assumed that reinforcement is placed parallel with the sides of
the slab. The stress strain diagram for concrete in tension is assumed
to be in the form of a stepped function, as shown in Figure 2.4, and
after cracking a concrete layer is considered to consist of an ortho-
tropic material with a different modulus of elasticity in tension and
compression, the moduji being defined in the global coordinate system.
By defining orthotropic elastic constants in the global coordinate
system it is implicitly assumed that cracks propagate parallel and
perpendicular to the reinforcement. While this will not always be the

case, the approximation is considered to be a satisfactory means of
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determining the overall reduction in flexural stiffness due to crack-
~ing and in view of the variability of the material and the number of
factors which affect cracking in concrete, a more sophisticated
criterion would appear to be unwarranted at present. The evaluation
» v, and v, in the analysis is discussed in

_ Yy X Y
more detail in section 3.4.

of the constants Ex’ E

An orthotropic material under plane stress requires four
elastic constants to be defined in the principal directions(47). To

maintain symmetry of the constitutive matrix,

For the purpose of the analysis, if the elastic modulus is
reduced for tension, the corresponding Poisson's ratio is reduced in
the same proportion. It now remains to establish a value for the shear

(45) presents an expression for a bimodular

modulus of a layer. Sandhu
isotropic material in which the modulus in tension is different from
that in compression, but each modulus is invariant with orientation of

the coordinate system, The shear modulus may be expressed as

_ 1
E E E
c t c
where EC = modulus of elasticity in compression
Et = modulus of elasticity in tension
vEov.o® Poisson's ratio for compression
Egve
vg T FC Poisson's ratio for tension
o

For a generally orthotropic material, G cannot be related to
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the elastic constants EX, Ey, vy and vy and must be defined separately.
For an uncracked slab, the small percentages of reinforcement will
have a negligible effect on the twisting stiffness and the shear
modulus may be considered to be constant throughout the depth of the
slab and equal to the value for uncracked concrete. After cracking, |
the situation becomes more complex and although the shear stiffness

is undoubtedly reduced by cracking, the effects of dowel action in the
steel, and aggregate interlock tend to minimize the reduction. Rather
than attempt to develop a theoretical expression for shear stiffness
which takes these factors into account the uncracked shear modulus
value was used both before and after cracking for the model developed
in this work.

The constitutive relations represented by Equation 2.10 may

now be written for the orthotropic case,

6, ) [ T (e ]

X X
oy b= | g e iegd | ey | (2.12)
XY B A4 Yy
where
-
EX \)XE T
(1-vxvy5 ]-vxvy
v Ex E
[Cc] = i]-vxvyi i]-vxvys
G
| Xy

and
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[CS] = . p.E

E.,E, v., v. and GX are elastic constants for concrete in

x> Ty Xy Yy
the global coordinate system and are defined as follows

Ex = ox E¢ Vx T % V¢ ny = G
Ey=ayEc \)y=ayvc
and E. = Young's modulus for uncracked concrete
Ve T Poisson's ratio for uncracked concrete
Gc = Shear modulus for uncracked concrete
The "cracking coefficients" Gy and ey equal unity for the

uncracked state and are reduced for tensile stresses after cracking
takes place. The evaluation of these coefficients is discussed further

in section 3.4.

2.4 Time Dependent Constitutive Relations

The instantaneous elastic constitutive relations for rein-
forced concrete have been developed above. These are now eXtended to
include the time dependent effects of creep and shrinkage. Creep is
defined as the time dependent strain due to stress, and shrinkage is
defined as the time dependent strain in a stress free specimen, or the
volume change with time under zero applied stress. From a mathematical
standpoint it is convenient to consider the creep and shrinkage effects
as independent phenomena, although the physical mechanisms involved in

creep and shrinkage and their interdependence are as yet incompletely
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understood.
The literature on time dependent behaviour of concrete is
extensive. A review of analytical and experimental work is given

(46)

by Selna while Ali & Kes]er(]) have surveyed the work done on the

development of rheological models and related topics.

2.4.1 Uniaxial Stress

The stress-strain-time relation is developed for the uniaxial
case and then generalized to the two-dimensional stress state. The
following assumptions are made.

(37) of creep

1. The Boltzman principal of superposition
strains is valid.

2. Concrete is assumed to be an ageing linear visco-elastic
material.

3. The time dependent response is the same in tension and
compression for uncracked concrete.

4. Temperature effects are not included.

These assumptions have been discussed by several authors

(46) and on the basis of

including McHenry(37), Arutyunyan(7) and Selna
available experimental data are generally accepted to be satisfactory
for concrete up to approximately one half of the ultimate stress.
Although tensile stresses will exceed one half of the ultimate tensile
stress under working Joad conditions, it is assumed that the assumptions
are valid over the complete range of tensile stress.

Under a given stress history o(r), the principal of super-

position of creep strains allows the total stress-produced strain at

time t,e%(t) to be written in terms of a superposition integral
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Eq(t) = It C(t,‘[)g_q_at‘:—)— . dt (2.]3)
0

where C(t,t) is the specific compliance, defined as the total strain
at time t due to a unit sustained stress applied at time r.
The general form of the compliance function is shown in Figure

2.6 and may be written in the form

Clts1) = gy + flt-ma) (2.14)
where E(t) is the instantaneous elastic modulus at time t and f(t-t,t)
is the "apparent" creep as defined by McHenry(37). The "true" creep,
also defined by McHenry is obtained from

ecr(t) = Clt,) - E%EY (2.15)

Several functions have been proposed in the literature to

represent the compliance. A function developed by Se]na(46) and based

(37)

on forms suggested by McHenry and Arutyunyan(7) is used in this

investigation. This function is of the general form

1 m 'ki(t'T)
C(t,‘r) = ﬂ?)—'i' 1’.-}::] ai(r)(l-e )
which may be written as k. (t-1) ko (t-1)
a a a -k (t-t -k, (t-1
c(tx) = Bra) + (apfprggggllog (e 1 gl 2 )
T T T
-k3(t-r)
+a3(1-e )] (2.16a)

where a value of m = 3 is used.
Separating the variables t, t and collecting terms the com-

pliance function may be written in the general form,
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C(t,t) = Ai(r) Bi(t) + D(z) (summation convention)
where
Ki:t
Ay(x) = -ai(r)e1 (no sum)
—kit
Bi(t) = e
D(x) = Jag(x)+ E%’TT

The instantaneous compliance 1/E(t) decreases hyperbolically
with time, tending to a value q at infinite time. The terms ai(T) are
the functions which account for the reduced response with increasing
age at loading. For a unit stress applied at time t this form of com-
pliance function implies that the strain tends to a finite value at

infinite time. Alternative forms of the compliance function(zs)

sug-
gest that creep strains increase indefinitely. From a practical point
of view, creep strains beyond a few years are not generally required
and the difference between the two types of function may be made
negligibly small in this time range(3o).

The twelve constants, p, q, 815 2,5 A3, g5 075 0> 3o k]’
k2, and k3 may be obtained from standard creep test data using a least
squares curve fitting technique, the details of which are given in N

Appendix B.

2.4.2 Plane Stress
A generalization of the time dependent constitutive relation
to two dimensions requires a knowledge of Poisson's ratio for creep.

In this investigation it is assumed that Poisson's ratio applied to
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total stress produced strains is constant with time. Available experi-

(15,21) would suggest that this is not an unreasonable

mental data
assumption.
The creep shear compliance w(t,t) is related to the uniaxial

(7)

compliance by
wit,t) = 2(1 + vc) C(t,t) (2.17)

The two dimensional constitutive relation may therefore be

expressed as

;z(t). 1 vl . %X(T)\
<e;(t) o= | v ] I ¢o, (1) | (2.18)
ny(t) B : 2(14v )T | {7y ()

t
where I represents the operator J C(t,r)S%-. dt
0

Adding shrinkage strains{es(t)} to stress-produced strains,

the total strain at time t may be written in the form,

4 T N fO’ o e -
e, (t) e (t) e (t)
ey p = b Sy
ny(t) ny(t) | 0 |

or, (e (t)} = {(t)} + (S(t)) (2.19)
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2.4.3 Numerical Integration Procedure

In general, although the loading history for a structure may
be specified, the corresponding stress history will be unknown because
of the gradual transfer of stress from concrete to steel. To evaluate
the stress and strain histories under a given applied loading, a numeri-
cal integration technique developed by Se]na(46) for the uniaxial stress
condition has been extended to two dimensions for the plane stress case.

The derivation of the method is given in Appendix A where it
is shown that the total strain vector at time t + At may be written in

the form
{eT(t+At)} = {eE(t+At)} + {eI(t+At)} (2.20)

where eE(t+At) represents the instantaneous elastic strains and eI(t+At)
represents the inelastic strains which include creep and shrinkage
strains developed up to time t + At. The detailed expressions for
{61(t+At)} are given in Equations Al13, Al4 and Al5.

The main advantage of the numerical integration technique
used is that the vector eI(t+At) may be determined from quantities
stored from the two previous time steps t and t - At. This is possible
because the variables t and t may be separated in the compliance func-
tion. For a more general form of the compliance function it is neces-
sary to store the complete stress history from the first application
of load since the compliance function contains the upper limit of inte-
gration in the superposition integral. In terms of the uniaxial stress
condition and a series of stepwise stress increments the total stress-

produced strain at time tm may be evaluated from
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ty,) = I C(t»t;) ao; | (2.21)
]

It is apparent that for each time tm’ each stress increment
ch must be multiplied by the specific compliance corresponding to tm.
It is thus necessary to store Aoj for all j. A numerical scheme in
which it is necessary to store the complete stress history is presented

by Ghali, Dilger and Neville(19),

2.4.4 Shrinkage

Shrinkage strains are known to vary throughout the thickness
of a concrete member. A mathematical model of diffusion has been
developed by Bresler, Helmich and Ramakrishna(]z) to include the effect
of a non-uniform shrinkage distribution on the behaviour of reinforced
concrete columns.

In the present analysis where the slab is divided into a set
of layers it would be possible to arbitrarily specify the value of
shrinkage strain from layer to Tlayer. However, for simplicity,
shrinkage strains are assumed to be uniformly distributed throughout
the slab. Since shrinkage tends to occur more rapidly at the surface
of a concrete member this assumption neglects the restraining effect
of the interior concrete on the relative movement at the exterior
sﬁrface. However, this effect is less marked for thin members such
as slabs than for massive concrete structures and the assumption of
uniform shrinkage is considered to be a reasonable first approximation

to the actual distribution of shrinkage strains in a slab.

2.5 Evaluation of Creep and Shrinkage Properties

The standard procedure for obtaining creep data for a
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particular concrete is to measure the strain variation with time on an
axially loaded cylinder under constant stress. Shrinkage strains are
obtained from measurements in a companion cylinder with no applied
stress. The creep strains due to stress are obtained by subtracting
thesé shrinkage strains from'the total strain obtained in the creep
test.

Several experimental investigations (eg. Troxe]],g;_gl}48))
have been reported in the literature describing the effects of dif-
ferent parameters on creep and shrinkage of concrete.

In Europe, the Comité Europeen du Béton (C.E.B.) has pre-
sented expressions based on available experimental data for the evalua-

(43). These expressions have been

tion of creep and shrinkage strains
used to evaluate creep and shrinkage curves for use in the present

investigation and are discussed below.

2.5.1 Creep Coefficients

Creep strains are obtained from the following expression,

eC(t) = H%g)"' by (2.22)
where ¢t kc kd kb ke kt
E(28) = Modulus of elasticity at 28 days
and o = constant applied stress

The coefficients from which ot is obtained are presented
graphically in reference (43) and represent the effects of various
parameters on the creep characteristics. These parameters are

k

c
d = f(age at loading)

f(relative humidity)

k
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ky = f(water/cement ratio %)
ke = f(theoretical thickness)
kt = f(duration of load)

The modulus of elasticity at j days is expressed in terms of

the compressive strength by,

E(j) = 66,000 Vfé‘j; (2.23)

where E and fé are expressed in p.s.i.

The theoretical thickness is defined as the area of the cross
section divided by the semi-perimeter and for slabs may be taken equal
to the actual thickness. To obtain the total strain at time t, the
instantaneous strain on application of load is added to the creep strain
computed above.

It is thus possible to construct a series of creep curves for
a sustained load applied at different times. For the purpose of this
investigation creep curves for three different concretes were constructed
and designated C1, C2, and (3. The parameters kc, kb and ke applicable
to each of the curves are presented in Table 2.1. Cl1 and C2 were used
for the parameter study described in Chapter 5 where Cl is intended to
represent conditions under which creep strains will be considerably
greater than for average conditions which are considered to be repre-
sented by 2. Curve C3 was obtained for use in chapter 4 where the
analytical model is applied to examples of reinforced concrete beams
for which experimental results are available.

The first step in evaluating the constants in the compliance
function (Equation 2.16) is to evaluate the instantaneous elastic

modulus defined in Equation 2.16 by
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F(—T—y = %i’ q (2.24)

For each concrete E(t) was computed for two values of t and
inserted in Equation 2.24. The resulting equations were then solved
for p and q.

In the case of C1 and C2 the two values of E(t) were obtained
from Equation 2.23 in which fé was related to the w/c ratio as a func-
tion of time from curves given by McIntosh(38). For C3 the instant-
aneous modulus was obtained from the published experimental results
for two different times. Table 2.2 presents the two values used in
each case and the resulting values for p and q.

For each concrete, three loading times were used, 7 days, 28
days and 90 days. The instantaneous elastic strain per unit stress for

each loading time was computed from

E(r) = 1/E(x)

and the creep strains corresponding to each loading time were computed
from Equation 2.22. Adding the two strains together, three creep
curves were obtained for each concrete. Using the Teast squares curve
fitting technique described in Appendix B, the remaining 10 constants
in Equation 2.16 were obtained. Table 2.3 presents the 12 constants
required in the compliance function for each concrete and the compli-

ance curves are shown in Figures 2.7 and 2.8.

2.5.2 Shrinkage Coefficients

Shrinkage strains are obtained from the expression

es(t) = €. kb kc kp k¢ (2.25)
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where kb’ kc, k, are the same as for the creep expression

t

k f(longitudinal reinforcement) = 1.0 for plane concrete

P

€c

Shrinkage curves for the three concretes C1, C2 and C3 are given in

f(relative humidity)

Figure 2.9 as well as an experimental shrinkage curve given by

Troxe]1(48).

2.6 Summary

The constitutive relations for a layer of reinforced concrete
under plane stress have been developed to include the effects of crack-
ing and time dependent strains. To represent the behaviour after
cracking concrete is treated as a bimodular mwaterial for which the
modulus of elasticity in tension may be different from that in com-
pression. With respect to time dependent behaviour, concrete is con-
sidered to be an ageing linear visco-elastic material which exhibits
shrinkage. A numerical integration procedure is described which allows
the strain history to be evaluated for an applied stress history, and |
creep and shrinkage characteristics for three different concretes have

been evaluated for use in this investigation.



[Concrete R.H.% Ke w/c Kg Ke
C1 50 2.85 0.60 1.18 1.0
c2 70 2.30 0.45 0.8 1.0
C3 70 2.30 0.60 1.18 1.0

TABLE 2.1

PARAMETERS FOR EVALUATION OF CREEP STRAINS

28
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oncrete | Young's Modulus-P.s.1.x10° | Coeffs-Eq. 2.24-1/(p.5.1.x10°)
ECI4)" T E(28) E(oT) b q
Cl - 3.84 1.34 0.77 0.1843
c2 - 4.72 5.18 1.20 0.2172
c3 2.675 | 2.945 - 0.95972 0.30528

TABLE 2.2  VALUES OF INSTANTANEOUS MODULUS
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CHAPTER 3
METHOD OF ANALYSIS

3.1 Introduction

In order to perform a structural analysis it is necessary to
define a mathematical model which simulates as accurately as is
required, the actual behaviour of the structure. Such a model gener-
ally requires assumptions regarding the geometry of the structure,
boundary conditions, and load deformation response or constitutive
relations. Once the model has been defined the conditions of equil-

ibrium and compatibility of deformations must be satisfied.
4(18)

(47)

Reinforced concrete slabs have generally been analyze
on the basis of classical small deflection plate bending theory
assuming the material to be linear elastic, homogeneous and isotropic;
thereby neglecting the effects of cracking, reinforcement and time
dependent behaviour. The assumptions used in this thesis concerning
material properties have been described in Chapter 2. On the basis of
these constitutive relations, the general method of analysis is des-
cribed in this chapter. The analysis is based on the finite element
method applied to plate bending. A major advahtage of this approach
over other methods is that material properties may be varied from
element to element. The analysis is therefore able to take into account
variations in reinforcement in the slab as well as the effects of crack-
ing in the highly stressed regions. The initial strain method(6’26’34)

is used for time-dependent behaviour.

3.2 Plate Bending Theory Applied to Slabs

(47)

Classical small deflection plate bending theory assumes
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that the material is linear elastic.homogeneous and isotropic and that
the strain developed at the mid-surface may be neglected for trans-
verse loading so that the net force developed in the plane of the plate
is zero. The corresponding theory of anisotropic plates developed by
Lekhnitsk11(32) assumes that material properties are symmetrical with
respect to the mid-surface in which case the strains in the mid-surface
may be neglected and the net force in the plane of the plate is again
zero.

Reinforced concrete slabs do not in general have such a
"neutral" mid-surface due to the presence of cracking and unsymmetrical
reinforcement layouts. The assumptions used in formulating the probiem
must therefore be modified. The Kirchhoff assumption that normals to a
surface remain normal after deformation is retained and the constitu-
tive relations are considered to represent an orthotropic material but
may vary throughout the plate. Appendix E describes the general formu-
Tation for coupling between in-plane and out-of-plane behaviour for
small deflections. For the purposes of the analysis developed in this
work, it is assumed that the net in-plane force on any cross section is
zero. This assumption implies that restraint to shrinkage is supplied
only by the reinforcement and that in-plane restraints applied at the
boundary and by adjacent slab segments may be neglected.

Figure 3.1(a) shows the coordinate system defining the unde-
formed configuration of the plate. The x and y axes lie on the top
surface. Figure 3.1(b) shows the elevation of a small element of the
plate in the x,z plane before and after deformation where the points
A and B take up the positions A' and B'. From the Kirchoff assumption

the displacements of the line AB may be defined in terms of the
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displacement of any point on AB and the slope of the reference surface,

u = u(x,y,z) = ug(xay) + (4 (x.y)-2) 5%
v = v(x.y,z) = v (x.y) + (dny(x,y)-Z) %‘;i (3.1)
w = w(x,y,z) = w(x,y)

where dnX and dny represent the depths corresponding to Uo and Vo

respectively and are not necessarily the same. The strain displacement

relations may be written as,

u 2
Ju 0 3w 2w
e =M o0y (g z2W - e +(d_-z)2Y
X 93X 93X nx 3x2 oX ' nx axz
3V 2 2
v 0 3w 3%w
=S e T — - —— = + —
vy Ty oy (dny Z)ayZ €oy (dny Z)ayz
2
w2 Mo, (dnx+dnx i z).zazw . +(M - 7).3m
Yxy ~ 3y T 9x 3y | ax 2 axay  Yoxy 2 X3y

Although Uo and Vo represent displacements which may be at

different depths, dnx and dny respectively, the expression for Yy is

linear with respect to the depth and may therefore be re-written in

the form
_ .09 W
Yxy © Yoxy ¥ (dnxy ) 2axay
where Yoxy represents the shear strain at an arbitrary depth dnxy‘
These equations for strain may be written as a single matrix
equation

{e} = fe )+ [N] {x} (3.2)

where
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{e} = < €y ey, ny >T
{e,} = <€ s €., Y >
) ox> "oy’ 'oxy
{x} = < xo Kys  Kyy )
= <32w s 32w s 232w T
axz a),2 dXay
and
dnx-z
[N] = . dny'z
dnxy'z
Defining dnx’ dny and dnxy such that €ox - €y = Yoxy = 0, Equation
(3.2) becomes
e} = [N] {x} (3.3)

The plane stress constitutive relations for an orthotropic

material may be written as (Equation 2.12),

(o] [E/Uvo)  wE/Ove) T ey
{9y vyEX/(l-vxvy) Ey/(l-vxvy) . <&y
| Lo B2 B )
or in matrix form
{c} = [C] {e} = [C] [N] {x} (3.4)

The assumption that no in-plane forces are developed in the plane of

the plate requires that,
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fd d Ex ( ) d vXE ( )
o dz = J - d -z)c dz + J = d -z)c dz =0
0o X o ( Vx“y, nx X o 1 VxVy ny y
d d v E d E
o dz = J L X (d__-z)x dz + J 1__—¥_—T (d  -2)c . dz =0
Jo y o 1 VxVy nx X o ]'vay ny y
d d
[ rxydz = J ny ( nxy-z) 2ny dz = 0
0 ()
i.e.
d
[ reimaez 1 = o (3.5)
0

To allow for a variation in elastic constants with depth the
slab is considered as a series of layers. The constitutive matrix may
vary from layer to layer but is considered to be constant within the
layer. Figure 3.2 shows an element of a reinforced concrete slab
represented as a layered plate. Layers of concrete are numbered con-
secutively from top to bottom and the constitutive matrix for layer i

is represented by [C]i’

E,. . vos E .
X1 X1 _yi
T-vyivyi ]'invyi
[C]. = v iEXi E i . (3.6)
i (-v_.v ) (T-v v .) ’
xi yi xi yi
nyi

Making the simplifying assumption that ny is constant over
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the depth (see Section 2.3) it is apparent that Equation (3.5) requires

_d
that dnxy =3 .

For complete symmetry of elastic constants with respect to
the mid surface, d and dny are also defined by d = dny = d/2.
However, for the general case of unsymmetrical elastic constants, it can
be seen from Equation (3.5) that dnx and dny are coupled with the curva-
tures Ky and Ky This coupling is due to the Poisson's ratio terms. In
reinforced concrete slabs, the amount of reinforcement is usually small
so that for uncracked sections even if the reinforcement is placed
unsymetrically with respect to the mid surface, the Poisson's ratio
effect on dnx and dny will be small. For a cracked section Poisson's
ratio, which for uncracked concrete lies in the range 0.1 to 0.2 drops
to a value approaching zero over a large part of the depth. The coupling
terms therefore have a reduced effect. Since curvatures are unknown at
the beginning of the analysis, an iterative procedure would be required
to evaluate dnx and dny exactly. However, since the coupling due to the
Poisson's ratio effect will be weak, for the purposes of this analysis
dnx and dny are computed assuming Poisson's ratio equal to zero. In

this case dnX and dn simply define the centroid of transformed area on

Y
the x and y faces respectively and are computed as follows,

L Z2i41%4 Es Es
dox = (izlaxi(zi+1 -z * Ay E;'dtx * Rox E;'dbx)/Ax
(3.7)
n z, (tz.; E E
- - i+l T 3 _s
dy = (Leyi(Zin - 2000 + Ry g dyy Ay £ 0y VA

where AX and Ay represent transformed cross-sectional areas per unit

length in the x and y directions respectively and are obtained from,
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E
s
I 0‘x1'(z1'+1 - zi) + (Atx + Abx) EZ

=
i
e~

i

E
S

>
n
o~

M i

If dnx and dny are evaluated as above, Equation (3.5) is
approximately satisfied and in subsequent development it is assumed

that,

d
f [C] [N] dz = O (3.8)
0

Moments and twist per unit length may now be evaluated from,

d

M, = fo ox(dnx - z) dz
d

My = Jo cy(dny - z) dz

il

M - 2z) dz

d
Xy Io Txy(dnxy

which may be expressed in matrix form as

d T
f IN]TLCIINTdz («}

{M}y =
0
= [D] {«} (3.9)
where _ _
D7 Dy
[l = Dy Dy
D33
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The elements of [D] may be obtained by layer integration

from the following expressions,

Eyi (z; %2.)
- i+1 “i,2 2
Dy = 2 (- Vx1vy1; (dnx 2 )" (z Zis17% )+ ALE (dnx tx)
+ A E(d_-d )?
bx"s* nx "bx
D.. = Z Eyi (d ffiiliil)z( -z.) + A, E (d d, )2
22 2 2i417%4 tyEs (dny~dey
_ VxiVyi
+ E (d 2
Aby ny” by (3.10)
n z.) (zs,4%2;)
D - xi_yi - 2i41*%; e bt I
12 iZ] ]'vxivyi (dnx 2 )(dny 2 )(Z1+1 “z;)
Dy = Dy2
3
_ Gd
D33 12
Yxi T %xi Ve ’ Yvi T %i Ve
The governing equation for bending of an orthotropic plate is
given by(47)
( Lt ! o (3.11)
D + 2(D,,+2D = q 3.1
11 3 127733 szayz D2o ;;7[

For the case in which the elements of [D] vary with x and y,

a closed form solution of Equation (2.11) becomes difficult if not
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impossible. In addition cracked regions will not in general be known
at the beginning of the analysis so that an iterative solution is
required for the evaluation of [D].

The finite element approach is ideally suited to this type
of problem since material properties may be easily varied from element
to element and if required, within each element. An iterative proce-

dure for cracking may also be programmed for the computer.

3.3 Plate Bending Element-Elastic Response

In terms of the displacement method of analysis the finite
element method(53) may be considered as a means of expressing the
unknown continuous displacement function approximately in terms of a
linear combination of assumed shape functions. The multiplying
parameters are the displacement degrees of freedom at the nodes.

The problem may then be formulated in terms of a set of algebraic
equations rather than differential equations. The accuracy of the
solution compared with the "exact" solution generally depends on how
closely the assumed displacement function can represent the actual
function.

The finite element method has been applied extensively to the
problem of plate bending and much effort has been expended on the
development of plate bending elements and evaluation of convergence
criteria. A survey of work done in this field is given by Gallagher

(]7). The element used in this analysis is the sixteen degrees of

freedom rectangular element developed by Bogner, Fox and Schmit(]o).

This element was chosen because of its excellent convergence
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characteristics and because only slabs which are rectangular in plan
are considered. The general method of analysis however is independent
of the particular element used.

The transverse displacement function w(x,y) wifhin each .
element is represented by a combination of Hermitian interpolation
functions which express w(x,y) in terms of four nodal degrees of free-
dom at each corner of the element. Satisfaction of compatibility
requirements at each node ensures complete inter-element kinematic
compatibility along the edges of all elements. In addition, all con-
stant strain states (curvature and twist) are represented.

Figure 3.3 shows a rectangular element with sides of length
'a' in the x direction and 'b' in the y direction. The degrees of

freedom at each node ij are,

transverse displacement W,

J
slope in the x-direction (..
ax'1j
slope in the y-direction  (2Y)..
ay'ij
2
s 9 W
twist (axay)ij

In terms of the non-dimensionalized coordinates ¢ = g— and

n = %—the displacement function may be written as,

2 2
wen) = 3L i@ u e cwgg s D) Wl aw

i=1 §=1 X1

+ Hé})(g) Hg})(n)'b WL+ H%})(g) Hg}) abw 1 (3.12)

yid »XyiJ
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where (])(s)

It
N

H(])(s) -253 + 352

(3.13)

(])(s) $3 - 2545

H(1)(s) 53 - 52

The form of each function in Equation (3.13) 1is shown in
Figure 3.3.
Writing the set of nodal degrees of freedom as a column vector

{r} given by

T
IrE = <Wp W Yoyt Yoxy11 W12 Woxa2 Yoy12 W xyi2
Woo W x22 W,y22 W xy22 W21 W, x21 ¥, y21 W, xy21 ”

and the combinations of interpolation functions as a row vector <¢> ,

in which the components are functions of £ and n, results in,
w(g,n) = <¢> {r} (3.14)
By differentiation, curvatures and twist are obtained,
{«} = [B] {r} (3.15)

and the strain distribution through the thickness may be written from

Equation (3.3) as
{e} = [N] {«k} = [N]I[B] {r} (3.16)

The principle of minimum potential energy requires that the

total potential be a minimum for an equilibrium configuration. The
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total potential, n, is given by,
m = £+W (3.17)

where I represents the strain energy and W the potential of the applied

forces. The strain energy may be written as,

;= %.f (o} (e} dv (3.18)
v .

Substituting for {e} and {0} using Equations (3.4), (3.9) and (3.16),

[
n
N —

J (r}'[B]'[DI[BIdAL ) (3.19)
A
The potential of the external forces may be obtained from,

W= j a(g.n) - w(E.n) dA
A

Substituting from Equation (3.14),

W= -JAq(a,n){r}T‘w dA
_ T
= - {r} {R} (3.20)
where {R} = JA q(g.n){¢} dA (3.21)

and may be considered to represent the vector of work-equivalent
genera]izéd forces corresponding to the vector {r}.

To minimize 1,

= 0 (3.22)

which yields
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fA 81T [DI[B] dA - {r} = (R} (3.23)

or,

[k] {r} = {R} (3.24)

where [k] = J [B]T[D][B] dA represents the element stiffness
matrix. Explicit eﬁpressions for [k] are given in reference (10) for

a linear elastic, homogeneous and isotropic plate element and reference
(26) presents expressions for an anisotropic plate element (all ele-
ments of [D] non-zero in general). For the purposes of this investiga-
tion a subroutine was written to generate the elements of the stiffness
matrix for an orthotropic plate element. The input required for this
subroutine consists of the matrix [D], the lengths of the sides of the
element and the coefficients of the functions represented by the matrix
[B]. Details of the subroutine are presented in Appendix C along with
expressions for the load vector {R}.

(42)

The standard procedures of matrix structural analysis are
now followed in assembling the structure stiffness matrix and load
vector, for the complete structure treated as a free body, to form the

equations
[K'] {a'y = (P'} (3.25)

In order to obtain a solution, the equations must be modified

for the prescribed boundary conditions to form the equations,
[K] {a} = ({P} (3.26)

where {A} represents the set of unknown degrees of freedom. The equa-

tions are solved by a Gauss elimination procedure utilizing the banded
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symmetric form of [K].

3.4 Computation of Elastic Constants for a Layer

In Section 2.3.2, the use of a stepped stress-strain diagram
to account for the tensile stiffening effect of concrete between cracks
was discussed. The application of this concept to the iterative
analysis for cracking is now described.

For each layer it is necessary to record the current branch
of the stress strain diagram defining the tensile elastic constants in
the layer. This is accomplished by means of a "“memory function" ¢,
which is assigned a different value for each branch of the diagram. The
procedure for specifying the elastic constants in a layer for each cycle
of the iteration procedure is illustrated by the flow chart in Figure
3.4(b) which is written for a stress strain diagram with N branches.

A stress strain diagram with 4 branches is shown in Figure 3.4(a).

At the beginning of the analysis, all layers are assumed to
be uncracked, in which case, § = a, = oy =0y = 1. At a subsequent
stage in the iterative procedure therprincipa1 stresses o and g, are
computed for the layer using elastic constants associated with the s
established in the previous cycle. The principal stresses are compared
with the limiting tensile stress 914 corresponding to § = i. If the
limiting stress is exceeded by either gy or o, the tensile elastic con-
stants are modified to correspond to the next lower branch on the dia-
gram. The elastic constants for either the x or y direction are modi-
fied only if the corresponding normal stress is tensile.

The variable REPEAT which is set equal to zero at the begin-

ning of each cycle is set equal to 1 which signifies that another
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iteration cycle will be required for the new elastic constants. For
each iteration cycle, the elastic constants are examined in each layer
at each corner of each element. The correct cracked configuration is

attained when no further modification of elastic constants takes place.

3.5 Analysis for Cracking
Equation (3.10) presents the expressions for the evaluation

of the plate bending stiffness coefficients Di at a point x,y in the

J
plate. The evaluation of the elastic constants throughout the depth

is accomplished by the method described in Section 3.4. It now remainé
to evaluate [D] = [D(x,y)] for use in Equation (3.19) which is written
for an arbitrary variation of [D] over the area of the element.

Several methods might be envisaged for evaluating [D]. The
simplest means would be to evaluate the stress conditions at the centre
of the element, modify the elastic constants if necessary and compute
the resulting [D] matrix. The values thus obtained could be considered
to be constant over the area.

Alternatively, [D] could be evaluated at the corner of the
element from the stress conditions at these points. The choice then
remains as to how the variation is to be assumed over the area. By

the use of interpolation functions(16), a linear variation may be

assumed with each term in the matrix written in the form

r 1 h
o{)
(2)
D, :(x,y) ¢ JDij
c(Xay) = < >

iJ D Dg?)’

(4)
Di5 ]
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ptk)
1]
represents Dij evaluated at node k. An alternative, simpler procedure

where <¢p> represents a set of linear interpolation. functions and

and the one chosen for this analysis is to take the average of the

nodal values,

4
-] (k)
Dis = 7 k§1 D; (3.27)

and insert the resulting [D] matrix in Equation (3.22). Since the
assumed displacement function is cubic in x and y, the strain distribu-
tion over an element will be linear and the maximum stress values will
occur at the corners. It is therefore possible that cracking detected
at the corner of an element may not be detected for stress conditions
evaluated only at the centre.

The steps required in the iterative procedure for cracking
may be summarized as follows:

1. Divide the slab into a number of rectangular finite
elements. The location of the element is defined by the x and y
coordinates of the four corners (Figure 3.3).

2. At the corner of each element, divide the slab into a
number of layers (Figure 3.2). The number of layers may vary from
corner to corner but will usually be the same throughout the slab.

3. For each layer at the corner of each element, set the
cracking coefficients equal to unity (i.e. assume the slab to be
uncracked).

4. Compute dnx and dny at the corner of each element
(Equation 3.7).

5. Evaluate [D] at the corner of each element (Equation 3.10).

6. Evaluate the average [D] for each element (Equation 3.27).
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7. Evaluate the element stiffness matrix (Equation 3.24) for
each element and assemble the structure stiffness matrix.

8. Compute the contribution of each element to the applied
load vector (Equétion 3.21) and assemble the load vector for the
structure. |

9. Modify the assembled equations (Equation 3.25) for the
given boundary conditions and solve the resulting set (Equation 3.26)
for the unknown displacements.

10. At the corner of each element, compute curvatures and
twist (Equation 3.15) and the strain distribution throughout the depth
(Equation 3.16).

11. Check the stress conditions in each layer for further
cracking by the procedure described in Section 3.4.

12. If a, or oy require modification in any layer, repeat
steps 4-11 (inclusive) with the revised values of the cracking coeffi-
cients.

13. If no further modification is necessary, the correct
approximate solution has been obtéined for the load level considered.

The iterative procedure is shown schematically in Figure 3.5.
In Figure 3.5(a), a load P greater than the load P, required to produce
cracking is applied to the structure producing a deflection Gu assuming
no cracking. The iterative procedure gradually reduces the overall
stiffness to a value Ko at which no further cracking is detected. The
resu1ting'deflection is .. Figure 3.5(b) shows the procedure applied
to incremental loading to produce a load-deflection curve for increas-
ing load (unloading always takes place along a line through the origin).

The iterative procedure is carried out at each load level.
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3.6 Time-Dependent Strains

The major difference between the analysis for cracking des-
cribed above and the analysis for time-dependent effects is that for
the latter, the relationship between total stress and total strain is
a non-linear function of time. The time-dependent constitutive rela-
tions have been described in Sections 2.4.1 and 2.4.2 along with a
numerical integration technique (Section 2.4.4) which allows the total
strain at time t + At, eT(t+At), to be written as the sum of the
instantaneous elastic strain sE(t+At) and the inelastic strain sI(t+At)

consisting of creep and shrinkage strains up to time t + At.
T _ E I
{e'(t+at)} = {e (t+at)} + {e (t+at)} (3.28)

From Equation (A.18), stress is related to elastic strain by the

instantaneous elastic constitutive relation for time t + At,

[C(t+at)] {eE(t+at)}

{o(t+at)}

[C(t+at)] ((e' (t+at)} - (el (t+at)}} (3.29)

3.6.1 Initial Strain Method

Any material or structure for which the relationship between
stress and total strain is non-linear may be analyzed by the initial
strain method(34). Figure 3.6 shows three cases for which initial
stress may arise in the material. Figure 3.6(a) represents a linear
elastic material in which the initial strains are independent of stress;
eg. thermal, shrinkage or "lack-of'fit" strains. In Figure 3.6(b)

the initial strains are due to a non-linear stress strain diagram.
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Figure 3.5(c) represents initial strains due to creep, where a constant
stress is applied at time To The initial strains are obtained by pro-
jecting on to the strain axis using the elastic modulus at time g
which will be different from that at time o for an ageing material.

If the distribution of initial strains is known, a solution
may be obtained by:

(a) Determining restraining forces, to prevent all deforma-
tions which would arise from inelastic strains, using current values of
the linear elastic constitutive matrix.

(b) Determining the displacements of the structure by a
linear elastic analysis in which the applied loads are augmented by the
negative of the restraining forces in (a).

(c) Evaluating stresses by subtracting the initial strains
from total strains for use with the current linear elastic constitutive
matrix.

If the initial strains are not known at the beginning of the
analysis, either an iterative procedure or an incremental procedure is
required to evaluate the correct set of initial strains. In the present
case, an incremental procedure with respect to time is used since the
creep strains are a function of the total stress history of the material.
The formulation of the procedure may be carried out from potential
energy considerations.

Since the instantaneous modulus of elasticity for concrete is
assumed to be a function of time while the elastic modulus for steel is

assumed to be constant, the values of dnx and dn as computed by

Y
Equation (3.7) vary with time. In addition, because the total strain

consists of two components, elastic and inelastic, the total strains
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T T
€ox and eoy

zero if the constitutive relations are unsymmetrical with respect to

at depths dnx and dny respectively will not in general be

the mid-surface. The mid-surface shear strain in the coordinate
directions will however remain zero since the shear modulus is assumed
constant with depth. The total strains at depth z may therefore be

written as follows, for time t + At,

-

T

€y = €ox + (dnx - 2) Ky
T _ T _
ey = aoy + (dny z) Ky
T2 0+ (d/2 - 2) 2
Yxy Xy
or, in matrix form
el = {el} + [N] («} (3.30)

Instantaneous elastic strains may be expressed as,

Ei - EI - Ei = ng * (dnx - Z)Kx h E;
E T I T I
= - = + (d - -
E.Y E.Y ey € oy ( ny z ) K.Y E.Y
E _ T _ .1 - _ -1
Yy T ey T Vxy T OO0F (42 2) 2 -y

or, in matrix form,
By = tely I e - D (3.31)

The strain energy & may be written as,

™
"
N ot

f (o} (eFy av
\

- %.J 517 e tefy av (3.32)
v
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Substituting from Equation (3.29)

™
]
| —

J {{EI} + [N]}{«} -'{eI}}T[C]{{eZ} + [NJ{x} - {eI}}dV
v
Expanding this expression and substituting from Equation (3.15),

2= [ OepTIClel) + (D TICINIEBIE - (el3lChee)
v
+ 1 T8I INITLCIINIEBI s - (D TLCIINICBICr)

+ 2 (e117[CIeDIT av
The potential of the external forces is obtained from Equation (3.16) as,
W= -{r) (R}

Minimizfng the total potential, m1 = 1 + W, yields

{eZ}T[C][N][B] dv - J B1 NI [cTtel3av = (R}
A

| A[B]T[D][B] ah ) + |

v
(3.33)

From Equation (3.5), J [N]T[C] dz = 0 and Equation (3.33) may
d

therefore be written as,

J 817 [DI[B] 4V (r} = f 817 INITLCTCe ]y av + (R)
Vv v

or
[kl{r} = {Q} + {R} (3.34)

where [k] represents the element stiffness matrix evaluated at time
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t + At and {Q} represents a set of equivalent loads corresponding.to
the initial strains”{el} which exist at time t + at and which may be
evaluated by Equation A.18. The matrix [D] may be evaluated from the
expressions in Equation (3.10) using the cross-section and elastic
material properties corresponding to time t + At.

For each time t, the structure stiffness matrix and load
vector are assembled as in the elastic analysis except that in this
case, the load vector contains the set of equivalent loads correspond-
ing to the initial strain distribution. Solution of the resulting

equations,
[K(t+at)] {a(t+at)} = {P(t+aAt)} (3.35)
produces the total displacements at time t + At.

3.6.2 Evaluation of Total Strains

The total displacements {A} obtained from Equation (3.35) are
used to compute curvatures and twist by Equation (3.15). To evaluate
total strains the curvatures and twist are substituted in Equation (3.30).
However, since the location of zero normal strain on each cross-section

varies with time it is necessary to establish the values of the reference

T
oy
that no net force is developed on the cross-section. The quantities dnx

strdins el , e in Equation (3.30). This is accomplished by ensuring

X

and dny are computed at each time step from Equation (3.7) using the
current pseudo instantaneous elastic constants. For zero normal stress

resultants at time t + At,

d
J cx(t+At) dz = 0
0
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d
f o (t+at) dz = 0 (3.36)
o ¥

Substituting for concrete stresses from Equation (3.29) and using the

linear elastic relations for steel, Equation (3.36) becomes,

d
I
J z—:;—;-j {e + (d ‘Z)Kx - e dz +
d vXE T nx
+ - - + F
fo ITTGiG;T'{Eoy (dpy =20y Ey} dz 521
- (3.37)
Jd eT + (d-2)k, - eI} dz +
o 1-vxvy y ny y y
d v E ny
X T I =
IO (-v,v,]) leox + (dpy2dey = eyd dz 521 "sy T

where nx, ny represent the number of layers of steel in the x and y
directions respectively and FSX and Fsy represent the contributions

of steel layers to the net stress resultant on each face

- T -
Foo = Ay Eg Tegy + (dy,-d

sX SX S ) ®yd

SX X

_ T
Fsy - Asy Eg {eoy (d ny dsy) <y

T

T .
ox and Eoy the total strain

Solving Equation (3.37) for ¢
distribution at a point in the plane of the slab may be determined

T as well as the

from Equation (3.30). Knowing the total strains e
inelastic strains eI the elastic strains may be obtained by subtrac-

tion (Equation 3.28) and consequently concrete stresses may be
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computed from Equation'(3.29). Steel stresses are computed using the
total normal strain at the level of the steel.

Bending and twisting moments {M} are obtained from Equation
(3.9) by substituting the computed stresses for steel and concrete

in each layer and integrating over the depth.

3.6.3 Computation of Equivalent Load Vector
The computation of the vector {Q} of Equation (3.34) may be
carried out in several ways using either averaging or interpolation
procedures. The method chosen is similar to that used in computing
[D]. The distribution of initial strains {el} is computed at each
corner of an element and layer integration over the thickness used to

obtain the quantity
mly = Jd (N el 4z (3.38)

The components of {mI} are computed as follows

mI = 2 (d _ (Z'i+'| 1))( )
X 1_—_;:-;:7- nx 2 Zi+17%4 e
o (z;,4%2;)
xi_yi Zi417% I
+ 121 ]_vX'i\)Y'i (dnx = '—_“"—“_)(Z_H_.| 21) Ey'i
N viEg (z; ,1%2.)
I . iXi I ke ) I
"y izl ]'vxi yi (ny 7 (2449725) €y (3.39)
¥ (Z'i+] Z'l) I
“ih ﬁ:"yv(dny-—-z—mm D o
L. 3 (24942
Myy = 121 nyi (dnxy - 5 N(z447-24) ny1

where n equals the number of layers.
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The average of the four corner values,

v

I T
RN SR (3.40)

is used in Equation (3.34) to compute
- T (i
{Q = JA [B] (M"} dA (3.41)

which represents the contribution of the element to the equivalent load

vector for the structure. The elements of {Q} are given in Appendix C.

3.7 Anélysis Procedure for Cracking and Time-Dependent Effects

The analysis developed herein for cracking and time-dependent
effects in reinforced concrete slabs involves an iterative procedure at
a particular time and loading to determine cracking, and an incremental
procedure with respect to time for the evaluation of the stress and
strain history for a given load history. An algorithm for the itera-
tive procedure for cracking has already been given in Section 3.6 and
this will now be extended to include the steps required for the time
dependent analysis.

It is assumed that the analysis has been completed for time
t and that the analysis is now to be carried out for an increment in
time At to time t + At.

1. Compute pseudo instantaneous modulus for time t + At,
E(t+At) (Equation A.11).

2. Compute the inelastic strains at t + At for each corner
of each element (Equations A.13, A.14, A.15).

3. Compute {Q(t+at)} at each corner of each element (Equation

3.47),
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4. Using the elastic constants for time t + At compute [D]
for each element (Equations 3.10 and 3.27).

5. Evaluate element stiffness matrices [k] (Equation 3.24).

6. Evaluate the applied load vector {R} at time t + At for
each element.

7. Assemble the structure stiffness matrix [K(t+at)] and
load vector P(t+at) and solve the resulting equations for total dis-
placements at time t + At (Equation 3.35).

8. From the total displacements compute curvatures and twist
(Equation 3.15).

9. Evaluate total strains at reference surface to ensure
zero net in-plane force at each corner of each element (Equation 3.37).

10. Evaluate concrete stresses (Equation 3.29).

11. Check for further cracking and modify the cracking
coefficients oy and ay and memory function & if necessary.

12. If further cracking occurs repeat the procedure (steps
2 to 12); if not, go on to the next time step.

The analysis procedure is illustrated schematically in
Figures 3.7 and 3.8 in terms of a structure with a Joad parameter P
and deflection parameter A.

The applied loading history is shown in Figure 3.7(a). At
time T 2 load Po is applied and remains constant until time Ty at
which time an additional Joad P2a is applied. The total load remains
constant thereafter. Figures 3.7(b) and (c) show the resulting
deflection-time and load-deflection responses.

The uncracked structure at time has an overall stiffness

Ka (Figure 3.8). The load Py produces a corresponding deflection Aé
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and examination of the resulting stress distribution indicates crack-
ing. The iterative procedure described in Section 3.6 is carried out
producing a final stiffness K0 and corresponding deflection A,

The numerical integration procedure for time increment
to 3 produces a set of initial strains at time g which are converted
to a set of equivalent loads represented by Q] which are added to the
applied load P, (= Po)’ The overall stiffness K is computed using
the elastic constants evaluated for the current time step. The result-
ing displacements represented by Ay along with the known initial strains
are used to evaluate the stress distribution and a check is again made
for cracking. (In this example it will be assumed that no further
cracking occurs after ro).

The analysis procedure is then carried out for time increment
T to o yielding equivalent loads Q2 and total deflection Bo- At time
) the additional load P2a is applied to the structure and a second
analysis is required at time T, with the equivalent loads Q2a equal to
QZ‘ This may be considered as a time increment of zero length. The
resulting deflection Boa is obtained. Although Figure 3.8 shows the
same stiffness K2 for the two analyses carried out at time Tps the
stiffness will in fact be different. The stiffness K, for the time
increment T, to T, reflects the variation in material properties
in the increment. As can be seen from the evaluation of the pseudo

instantaneous compliance by Equation A.11,

_ 1
E(TZ)

The corresponding expression for time Toa is

= (C(Tst]) + C(TZ,TZ))/Z.O
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— C{t,_ T Clto_»tT 2.0
ey (Clrgqstp) + Clrggstaa))/

(C(Tstz) + C(TZ,TZ))/Z.O

1
E<T25

]

where E(rz) js the actual instantaneous modulus at time Toe

Figure 3.8 shows the analysis extended to 3 and Ty

3.8 Summary

The formulation described in this chapter is based on the
displacement method of analysis in which the primary variables are
displacement quantities. Classical small deflection plate theory
is modified for a non-homogeneous, orthotropic material and the finite
element method is used to obtain an approximate solution for the sole
primary variable, the transverse displacement. The effect of cracking
is included by considering the slab to consist of a set of layers
in which constitutive relations throughout the plate are defined.
The reduction in stiffness due to cracking is defined by the stress-
strain diagram for concrete in tension described in Chapter 2 and an
iterative procedure is employed to define the extent of cracking. The
initial strain method is used to evaluate the effects of time-dependent-

strains in the concrete.
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CHAPTER 4
VERIFICATION OF MODEL

4.1 Introduction

A common method of assessing the accuracy of a finite element
formulation is to compare the solution obtained with available closed
form or 'exact' solutions. In the case of elastic, isotropic and homo-
geneous material properties, closed form solutions are available for
most classes of problems. However, for non-linear material properties,
there may be no available closed form solution for the particular
problem under study and recourse must be made to comparison with
~results obtained from experimental studies.

In this Chapter, the method of analysis described in Chapter
3 is applied to several problems for which either closed form solutions
or experimental results are available in an attempt fo assess the ability
of the mathematical mode] to simulate the behaviour of actual structural
systems. Firstly the elastic plate bending element is applied to pro-
blems where the classical solution contains singularities, to determine
the effect of such singularities on the accuracy of the finite element
solution. The method used to simulate the effect of cracking or the
load deflection behaviour is then applied to a slab for which experi-
mental results are available, and the creep model is applied to a set
of beams tested under sustained load. Finally a brief study is made of
the effect of mesh layout and time step variation on the results obtained

for a slab subjected to cracking and time-dependent deformation.

4.2 Elastic Plate Bending Solutions

The plate bending element described in Section 3.3 was applied
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by Bogner, Fox and Schmit(]o) to the problem of bending of a square
clamped plate under uniform load to illustrate the element's conver-
gence characteristics. A more severe test of the element, however,

is the case of a uniformly loaded continuous plate supported either by
point supports or rectangular columns. In each case the classical
elastic solution involves singularities in the form of infinite moments

(47)

per unit length at the point supports and at the corners of the

rectangular co]umns(sz).
The application of a triangular plate bending element to these

(14) and similar

problems is discussed by Cheung, King and Zienciewicz
results obtained using the rectangular element are presented here as

a check on the formulation and to illustrate the trends to be expected
in the application of the method to problems involving non-linear

material properties.

4.2.17 Continuous Plate on Point Supports

Figure 4.1 shows the geometric configuration of a portion of
a continuous plate on point supports and the mesh layout considered in
the study. Only one quadrant of a panel is required for the analysis
because of symmetry.

The moment Mx and the deflection w evaluated at mid-panel (c)
are given in Table 4.1 for each mesh. The rapid convergence of the
computed deflection towards the correct value is clearly seen where the
coarse mesh #1 produces an error of 2.36% compared with .21% for the
more refined mesh #5. Although refinement of the mesh size in the
region of high stress gradient produces a significant effect on the

deflection at mid-panel the effect on the moment computation at
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mid-panel is less marked. The computation of moments appears to be
more directly related to the mesh layout in the immediate vicinity

of the point considered. This may be attributed to the fact that the
moment is computed as a linear function of the degrees of freedom of
the element concerned and is therefore less sensitive to variations in
the mesh size at some distance from the element than the deflection
which depends on an accumulation of curvature effects. The closer the
actual moment variation in the element is to a linear function, the
more accurate will be the moment computation. This point is further
illustrated in Figure 4.2 and Figure 4.3. The moments Mx and My along
the column line AD are plotted for mesh #1 and #5 and compared with
the classical solution obtained using forty terms in the series solu-

(47). The actual varia-

tion given by Timoshenko and Woinowsky Krieger
tion in each element is plotted rather than average nodal values which
accounts for the discontinuities in the finite element solutions. Where
only one point is plotted, the moments in adjacent elements are
essentially the same. The largest discontinuities occur for each mesh
at the node adjacent to the point support, due to the fact that in the

element adjacent to the point support a theoretically infinite stress

(moment) gradient is being approximated by a linear function.

4.2.2 Continuous Plate on Square Columns

This case is more closely related to the practical situation.
However, as pointed out by Woinowsky - Krieger the elastic solution
(obtained by the method of complex variables and assuming rigid
columns) produces theoretically infinite moments at the corners of the
square (or rectangular) columns. An alternative solution by Timoshenko

and Woinowsky - Krieger assumes the reaction to be uniformly distributed
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over the area of the column and produces finite moment values at the
column. The true behaviour in the practical situation lies somewhere
between the two assumptions. The former assumption of rigid columns

is considered to be more applicable and is used in the present context.

Figure 4.4 shows a quadrant of an infinite plate supported by
square columns. The variation of My along the column line AB is shown
for ¢/L = 0.2 and ¢/L = 0.1. The classical solution due to Woinowsky -
Krieger is also given for c¢/L = 0.2. Of particular interest is the
fact that the maximum hogging moment occurs a small distance from the
face of the column and this is reflected in the finite element solution.
It should be noted however that the finite element solution will not
reflect this behaviour unless there is a nodal point in the vicinity
of the actual maximum moment, due to the assumed linear moment varia-
tion.

The manner in which the finite element solution attempts to
approximate the theoretically infinite moments at the corner of the
column is shown in Figure 4.5, the behaviour being similar to that for
point supports. Some care however is required in interpreting the
moments computed at point E where three elements are represented at
the nodal point, each with its moment value computed at E(E],E2 and E3).
The values plotted at E are E] and the average of E2 and E3 (E23).

The difference between E23 and E] represents a discontinuity in the
moment My at E.

The values of Mx along AB and DF are compared in Figure 4.6
again indicating the high moment concentration at the corner of the
column compared with the moment at the mid-point of the column face.

The above examples indicate that, for elastic material
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properties, the finite element formulation used herein produces excel-
lent deflection evaluations even in cases where singularities arise,
and that the computed moments while being somewhat less accurate than
deflections are certainly acceptable for most engineering applications.
For the cases of non-linear material response where the non-linearity
is a function of stress level, it will be important to obtain reason-
ably accurate values for moments and stresses. The application of

the model to non-linear response due to cracking and creep is discussed

below.

4.3 Reinforced Concrete Slab Subject to Cracking

In this section, the mathematical model developed in Chapter
3 is applied to a reinforced concrete slab for which the experimental
load-deflection response and an alternative finite element solution are
available. A square slab supported at the corners was tested by
McNeice(3g) and analyzed by Jofriet and McNeice(27) using a finite
element formulation rather different from the present analysis. They
used a tangent stiffness approach based on empirical bi-linear moment-
curvature relationships, one of which was proposed by Beeby(g) and the
other of which was based on an expression by Branson(]]) for the
effective moment of inertia of a cracked cross-section. In addition
they attempted to include the effects of crack orientatfon by
assuming that cracks form perpendicular to the direction of maximum
principal tensile stress. The cracking directions obtained in this
manner were considered to represent principal directions of orthotropy.
Where the cracks formed at an angle to the reinforcement, the rein-

forcing bars were replaced by a fictitious set of bars running parallel
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and perpendicular to the crack directions. The areas of steel required

for the fictitious reinforcing bars were obtained from expressions
(33)

presented by Lenschow and Sozen The orthotropic plate bending
stiffness matrix [P] was then transformed to the global coordinate
system. No attempt was made to evaluate the stress distribution over
the thickness so that an extension of this approach to the creep problem

might be rather difficult.

4.3.1 One-Dimensional Moment Curvature Relationships

Figure 4.7 shows a set of moment curvature relationships for
a doubly reinforced cross-section based on stepped stress-strain curves
for concrete in tension as discussed in Section 3.4.

Three stress-strain diagrams for average tensile stress in
the concrete are shown in Figure 4.7. The first diagram shows the case
where the concrete carries no tension after cracking. In the second
curve the concrete is assumed to crack at a stress of 525 p.s.i. at
which point the tensile modulus of elasticity reduces to 10% of its
initial value and remains at this level for all stress levels there-
after, implying that the tensile stress may exceed the original Timit-
ing value. The third curve shbwé three successively lTower limiting
values of 525 p.s.i., 315 p.s.i. and 205 p.s.i.

The empirical expression for the effective moment of inertia

of a section after cracking, giVen by Branson(]]), is
M M
- (.C\4 _(c,\4
Lege = G} Ig* (- G Ly
where Mc = cracking moment
M = applied moment
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moment of inertia of gross concrete section

I
g9

ICY‘

This type of expression simply represents a transition from

moment of inertia of cracked transformed section

Ig to Icr which will be necesséry for stiffness computations involving
sections with low reinforcement ratios.

The moment curvature relationship based on the above expres-
sion for the doubly reinforced section considered is shown in Figure
4.7 along with the curves corresponding to the stress strain diagrams
described above. The latter curves were obtained by an iterative pro-
cedure similar to that used in the proposed analysis procedure for
deflection computations involving cracking. Details of the procedure
for evaluation of the moment curvature relationship are presented in
Appendix F.

The jagged nature of the curves is due to the fact that the
slab is divided into layers. The difference between the initial linear
portion of the Branson curve and the computed curves is due to the fact
that the Branson curve does not include the steel area in the gross
moment of inertia. Examination of Figure 4.7 indicates that curve #3
most closely resembles the Branson curve. It is apparent that by a

suitable choice of tensile stress-strain curve the Branson curve could

be approximated to any required degree.

4.3.2 Application to the Two-Dimensional Case (Plane Stress)
In applying the concept of the stepped stress-strain diagram
to the two dimensional case, the plane stress constitutive relation

may be written as follows,
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oy Ex/(1-vxvy) vXEy/(1-vxvy) . €y
R vyEx/(l-vay) Ey/(1-vxvy) . <ey ’
TXyJ . . ny Lny,
and EX = ay EC’ Ey = ay EC’ Ve T 0y Vs vy = ay v, where ay and o:.y are

factors representing the current branch of the stress strain diagram
for stresses in the x and y directions respectively. The constitutive

matrix thus remains symmetric at all times.

4.3.3 Comparison with Experimental Results

Details of the slab tested by McNeice are presented in Figure
4.8 along with the mesh layout used for the present analysis. The com-
puted Toad-deflection relationships for various constitutive assumptions
are compared with the experimental results and the results of Jofriet's
analysis in Figure 4.9.

Initially the assumption was made that a concrete layer takes

no tension after cracking, i.e. a_ = ay = 0 (Figure 4.7(b) - #1). 1In

X
order to obtain an initial cracking load equal to that indicated by
Jofriet's analysis, a modulus of rupture of 770 p.s.i. was used. It
can be seen that neglecting the tension stiffening effect of the con-
crete between cracks in this case greatly overestimates deflections
after cracking. Curves of the form of Figure 4.7(b) - #2 were then
applied in an attempt to simulate tension stiffening using reduced

moduli after cracking of 5%, 10% and 20% of the initial value. Of

these, a value of 10% closely follows the experimental curve in the
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early stages of loading, but grgdué]]y stiffens relative to the experi-
mental curve. Finally a stepped stress strain curve of the form of
Figure 4.7(b) - #3 was applied. This curve shows reasonable correla-
tion with the experimental curve over the total loading range given.

The effect of cracking on the distribution of moments in the
slab can be seen in Figure 4.10 which shows the variation of Mx/P along
AC for various load levels. The maximum error in the computed total
moment was 4.7%.

In the uncracked state (P = 800#) a high peak in moment occurs
at the centre due to the point Toad. Initial cracking takes place in
this high moment region which reduces the stiffness significantly in
relation to the surrounding portions of the slab so that at P = 1600#
the moment at the centre drops significantly and the total moment is
more evenly distributed over the width of the slab.

As the loading is increased, cracking extends into regions
away from the centre tending to equalize the stiffness distribution
over the slab and thereby attracting a higher proportion of the moment

back into the centre.

4.4 Simply Supported Beams Under Sustained Load

The creep representation described in Chapter 2 is based on
the formulation by Selna who compared his technique with results
obtained by Ross(44) for an axially loaded prism under various forms
of block type stress histories. Although satisfactory agreement was
obtained, no attempt was made to verify the application of the model
to reinforced concrete flexural elements with or without cracking.

To the author's knowledge no experimental data is available
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on creep deflections of reinforced concrete slabs under two-way action.
Hdwever, a series of tests was carried out by Washa and F]uck(S]) to
study the behaviour of reinforced concrete beams under sustained load.
In fhis section, the present method of analysis is compared with the
results of series C of the Washa and Fluck tests, this series consist-
ing of beams 5 inches deep by 12 inches wide with varying amounts of
compression reinforcement. Details of the beams are given in Figure
4.11 and Table 4.2.

The creep function used in the analysis was based on the
C.E.B. creep parameters, as discussed in Section 2.5. The shrinkage
curve was based on an experimental curve obtained by Troxell, Raphael
and Davis(48) under conditions similar to those of the beam tests and

is shown in Figure 2.9. The modulus of rupture was taken as 500 p.s.i.

4.4.1 Deflections
The analysis was carried out for the sustained load acting
for 240 days after which time the experimental results indicate that
the increase in deflection occurred at a very much reduced rate.
| Each beam was analyzed for two conditions,
a) No tension in a layer after cracking,
b) Stepped stress strain diagram in tension.
The stepped stress strain diagram was of the form shown in
Figure 4.7 (#3) with the initial modulus of rupture at 500 p.s.i. and
the two Tower values reduced proportionately. Displacement-time curves
are presented in Figure 4.72.
The no-tension assumption produces an initial elastic deflec-

tion greater than the actual deflection as would be expected while the
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stepped stress-strain diagram produces an instantaneous deflection
slightly Tower than the actual value. However, the rate of increase
of creep deflections for the initial portion of the loading history
is greater for the stepped stress strain diagram which may be
explained by the fact that the tensile concrete is assumed to be
exhibiting creep, thereby gradually transferring stress to the steel
whereas in the no-tension case, all the tensile stress in the cracked
layer is immediately transferred to the steel. The final computed
defléction after 240 days is in each case very close to the actual
deflection and the rates of increase of deflection are also similar

at this stage.

4.4.2 Cracking Envelopes

Figure 4.13 shows the cracking envelopes obtained for each
of ‘the beams analyzed. Although Washa and Fluck did not present crack-
ing patterns in their results, they did observe that cracking occurred
in all beams shortly after application of the load. The cracking
envelopes are seen to extend to a greater depth in the case of the no-

tension assumption compared with the stepped stress-strain diagram.

4.4.3 Steel Stresses

The computed steel stresses using the no-tension assumption
for the beams containing compression steel are shown in Figure 4.14.
In the period immediately after loading there is a rapid transfer of
stress to the compression steel, the rate of increase gradually
decreasing with time. It is evident that for very small percentages
of compression steel, yielding is 1ikely to occur. The tensile steel

stress on the other hand after a small initial rise remains more or
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less constant at a value a little over 20,000 p.s.i.

4.5 Effects of Mesh Layout and Timestep on Creep Deflections
4.5.1 Mesh Layout

The effect of mesh size on elastic plate solutions was dis-
cussed in Section 4.2. To determine the effects of mesh Tayout on
deflections where cracking and creep occur, a brief study was carried
out on the interior panel of a flat plate supported on square columns.
The dimensions and reinforcement of the slab analyzed were as follows,

8 1inches

Depth

]

Span 20 ft (centre to centre of columns)

Column. Width 2 ft

Reinforcement 0.036 sq. in. per in. top and bottom in each
direction

The mesh layouts used in the study are shown in Figure 4.15.
The creep and shrinkage curves used were those designated as C.E.B.
curves Cl1 in Section 2.5 and no tension was assumed in a layer after
cracking. The loading history consisted of a total uniform load of
144 p.s.f. applied at 14 days and held constant thereafter.

A measure of the plate stiffness immediately after cracking
on first application of the load is also given in Figure 4.15 where
relative values of DH are presented for elements in which cracking
has occurred. Cracking is seen to occur only in the region surround-
ing the column, and the more refined mesh layouts in this region pre-
dict the higher degree of cracking. This trend is reflected in the

instantaneous values obtained in each case in Figure 4.16. Mesh #]

and #2 which have the same mesh layout around the column produce the
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same stiffness reduction due to cracking and the same instantaneous
deflection at mid-panel. Mesh #3 produces a deflection 10% higher
than #1 and #2 and for mesh #4 the difference is 15.5%.

The same trend indicated by the instantaneous deflection
is reflected in the longtime deflections where the maximum difference

for the mesh layouts used is of the order of 10%.

4.5.2 Time Step Variation

To determine the influence of the numerical integration
technique on the solution, two very different time step variations
designated TA and TB were applied to the slab example described above,
using mesh #1 with the initial load applied at 30 days. Table 4.3
gives the time step variations used with the corresponding mid-panel
displacements and maximum concrete compressive stresses. The results
are presented graphically in Figures 4.17 and 4.18.

Variation TA was chosen to produce approximately equal deflec-
tion increments in each time interval while TB is based on equal time
increments. The former variation produces a much smoother change in
both deflections and stresses with time. However, the discrepancy
tends to be minimal after the initial rapid change has taken place. The
rapid drop in compressive stress may be attributed to the presence of
reinforcing steel in the compressive zone.

The choice of time step variation therefore does not appear
to be critical in terms of computation of longtime deflections although

a variation of the type TA is to be preferred.

4.6 Effect of Mesh Layout on Computed Moments

In Section 4.2 it was pointed out that the present finite
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element formulation based on a displacement model, when applied to
elastic plate bending problems produces good deflection values but
somewhat less accurate stress quantities. To investigate the com-
puted moments in the time dependent analysis, a typical interior

panel was analyzed for three mesh layouts. The dimensions and rein-
forcement for the slab are the same as for slab S10 in Table 5.1.

The three mesh Tayouts numbered 5, 6 and 7 consisting of 15, 24 and

35 elements respectively are shown in Figure 4.19. The slab was
analyzed for the loading history L2 in Figure 5.7 using the compliance
and shrinkage curves representing concrete Cl (Section 2.5).

Figure 4.20 shows the negative moment Mi') on the line of
the column face and the positive moment M§+) on the centre line of the
panel. The sum of these two quantities is equal to one half of the
total static moment for the panel on the clear span between the column
faces. The moment variation along these two lines for each mesh is
shown in Figure 4.21, 4.22 and 4.23 for 9 days, 300 days and 800 days
(with the exception of mesh #7 for which no values are given at 800
days). Moments were computed ét the corner of each element and the
average for the node was used in computing the total moment. The total
moment was computed by numerical integration assuming a linear varia-
tion in moment along the side of each element. Figure 4.24 shows the
variation in the computed total negative moment and total positive
momeht with time for each mesh. For each case the error in the total
static moment is shown in Figure 4.25 as a function of time. The
values plotted show a rather wide variation from mesh to mesh. However,
from Figure 4.25 is is apparent that the accuracy of the moment computa-

tion is improved by increasing the number of elements. There appears
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to be little redistribution of moments with time although the total
negative moment shows a tendency to increase slightly with a corres-
pohding decrease in positive moment.

The deflection vé. time curves shown in Figure 4.26 indicate
that although the computed moments vary widely from mesh to mesh the
computed deflections are remarkably similar. Therefore, in the study
of slab deflections a relatively course mesh may be used whereas for

accurate moment values, the number of elements must be increased.

4.7 Summary

In this Chapter the analytical model developed in Chapter 3
was applied to cases involving elastic plate bending, cracking of a
square reinforced concrete slab supported at the corners and creep
deflections of simply supported reinforced concrete beams. In addition
a brief assessment was made of the effects of mesh layout and time step
variation on the solution. On the basis of the results obtained, the
following conclusions may be stated.

1. The plate bending element used adequately predicts deflec-
tions and stresses in an elastic plate even if singularities are pre-
sent. The accuracy depends primarily on the mesh layout used in the
region adjacent to such singularities.

2. Neglecting the tension stiffening effect of concrete
between cracks grossly over-estimates deflections, particularly for
sections with low reinforcement ratios.

3. The concept of a stepped stress strain diagram for con-
crete in tension is an approximate method of including tension stiff-

ening which produces satisfactory results.
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4. The creep formulation using functions based on the C.E.B.
creep parameters produces good correlation with one-dimensional flexural
behaviour whfch provides some confjdence in applying the method to the
two-dimensional slab problem.

5. The computation of slab deflections subject to cracking
and time-dependent strains is fairly sensitive to the mesh layout used,
and a relatively fine mesh should be used in areas.of high stress
gradients.

6. The choice of time step to be used is less critical. A
series of time increments producing approximately equal deflection

increments is recommended.
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lMESH# Nr.°F Mx(in.1b) Error {w(in) Error |Exact(Ref. 47, p 249)
1 36 | 1522.7 13.7% | .90768 | 2.36% M, = 1339.1
2 64 | 1525.6 13.9% | .92256 | .76% W= .9296
3 100 | 1382.5 3.32% | .92296 | .71%
4 144 | 1382.45 3.32% | .92671 | .31%
5 196 | 1382.41 3.32% | .92765 | .21%

TABLE 4.1

MOMENT AND DEFLECTION AT MID-PANEL




93

TABLE 4.2

Tota] Tension Compression| Total Uniform
Beam No | Width | Depth | Span | L/D | Steel Area | Steel Area | Load (1b/ft)
(in) | (in) | (ft) (sq in) (sq in)
C1,C4 12 5 20.8 1 50 0.80 0.80 82
iC2,C5 12 5 20.8| 50 0.80 0.40 82
C3,Co 12 5 20.81 50 0.80 0.0 82
BEAM DETAILS (WASHA & FLUCK)
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TA TB
TIME(days) a(in) cmax(p.s.i.) TIME(days) a(in) omax(p.s.i.)
30 .0796 145 30 .0796 145
31 .0973 141 60 .2098 109
32 L1105 139 90 2159 112
34 .1315 133 120 .2226 108
38 .1570 125 150 .2276 108
46 .1801 119 180 .2322 106
62 .1990 114 210 .2364 105
94 | .2159 110 240 .2405 104
158 .2313 106 270 .2443 102
286 .2516 101 300 .2478 101
542 .2780 93
800 .2897 9]
TABLE 4.3 MID-PANEL DEFLECTIONS AND STRESSES FOR DIFFERENT

TIME STEP VARIATIONS
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CHAPTER 5
PARAMETER STUDY OF FACTORS AFFECTING SLAB DEFLECTIONS

5.1 Introduction

The difficulty associated with the computation of deflections
of reinforced concrete slabs is due to the large number of factors
involved, many of which cannot be specified accurately. Among the
parameters which must be considered are the material properties, load-
ing, boundary conditions, the size and shape of panels and the effects
of stiffening elements such as beams. The purpose of the parameter
study described in this Chapter is to illustrate the application of the
present method of analysis in a systematic study of some of these para-
meters, particularly the effects of geometry, cracking, time-dependent
behaviour and non-uniform reinforcement layouts, on slab deflections.

The study was restricted to a square interior panel of a flat
plate floor system and the effects of the following parameters were
considered,

a) concrete properties

b) Tloading history

c) span to depth (L/d) ratio

d) column width to span c/L ratio

e) reinforcement layouts

5.2 Slab Design

A typical interior panel may be defined as a panel in an
infinite array of identical panels under uniform load as shown in Figure
5.1. From symmetry, only one quadrant of a panel need be considered in

the analysis and the boundary conditions are as shown in Figure 5.2.
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A constant slab thickness, d = 8 inches, was used throughout
the study to determine reinforcing steel requirements, the direct
design method of the 1971 A.C.I. Building Code(3) was used, in which

the total panel moment M0 is obtained from

2
qLLC

M0 = -3 (5.1)

where q represents the uniform load on the panel, L is the length of
the panel in the transverse direction and LC is the clear span between
column faces in the longitudinal direction. The total moment is dis-
tributed between column and middle strip and then between positive and
negative moment regions as shown in Figure 5.3. From the computed
moments, the required reinforcement may be obtained. The reinforcement
layout used in this study is shown schematically in Figure 5.4. The

area of steel per unit of length in each location is 1abe11ed as

follows,

Second letter: = column strip

= middle strip
Third letter: top steel
= bottom steel

Fourth letter: = x~-direction

~ >< @ -~ = O
1}

y~direction

For example, AMTY represents the area of top steel in the middle strip
running in the y-direction. The bottom steel in the negative moment
region of the column strip is taken as one half of the steel in the
positive moment region. The units are sq. in. per in. All top steel

is assumed to be located one inch from the top surface and all bottom
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steel seven inches from the top surface.

A total of nine slabs with varying column widths and spans
were designed for fiexure using a steel yield stress of 40 k.s.i.
No attempt was made to fit actual bar sizes and spacing to the computed
steel requirements. Instead, the computed area of steel per inch of
length was used as input for the computer analysis. From the nine
basic slabs designed, nineteen analyses were carried out to study the
parameters discussed in Section 5.1. The dimensions and reinforcement
details for the nineteen analyses are given in Table 5.7. A summary
of the variables considered in the parameter study is presented in
Table 5.2.

The design live load on a floor system depends on the type
of use, such as apartment, office or warehouse. For the present study
a live load of 50 p.s.f. was used. The dead load was the same for all

slabs since the thickness was considered to be constant

Live Load = 50 p.s.f.
Dead Toad = 100 p.s.f.
Total lToad = 150 p.s.f.

5.3 Parameters Considered in Study

The parameter study is treated in terms of the five factors
listed in Section 5.1 and each factor will be discussed in turn. Two
mesh layouts were used in the study. These layouts had the general
configuration of mesh #5 and #6 in Figure 4.19 with the dimensions
adjusted to suit span and column sizes in each case. Table 5.3
specifies the layout for each slab by giving the number of elements

used, either 15 for mesh #5 or 24 for mesh #6. In addition, the amount
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of machine time required, the number of time increments and the number

of cracking iterations for each case are given.

5.3.1 Concrete Properties
The concrete properties which are important in terms of slab
deflections are,

a) instantaneous modulus of elasticity and creep charac-
teristics as represented by the creep compliance function for the
material

b) variation of shrinkage strains with time

c) modulus of rupture

The material properties used in this study are based on the
C.E.B. creep and shrinkage parameters from which creep and shrinkage
curves have been obtained. The details of these curves are given in
Section 2.5. Two different concretes designated C1 and C2 are used,
where C1 represents a concrete exhibiting high creep and shrinkage and
C2 represents average or normal creep and shrinkage strains.

The modulus of rupture is a highly variable quantity(so).

For the present study a value of 500 p.s.i. was used throughout.

Based on the 1971 A.C.I. Building Code expression,
fr = 7.5 VF{ (5.2)

This corresponds to a compressive strength of 4450 p.s.i.

An important factor to be considered is the effect of ten-
sile stiffening of the concrete between cracks. This factor was dis-
cussed in Chapter 4 in terms of the point supported square slab and
has been included in the parameter study analyses of the interior

panel. Figure 5.5 shows the stepped stress strain diagram used to
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account for tensile stiffening between cracks.
The slabs considered in this section, designhated as S1, S2,
S3 and S4, have the following properties and assumptions concerning

tensile concrete in cracked regions.

S1 - concrete C1 and no tension after cracking
S2 - concrete C2 and no tension after cracking
S3 - concrete C1 and stepped stress strain diagram (tension)
S4 - concrete C2 and stepped stress strain diagram (tension)

The loading history L1 (Figure 5.7) was used in each case. A complete
description of this loading history is given in the following section.

Figure 5.6 shows the variation of the mid-panel deflection
with time for each case. On first application of load at t = 7 days,
cracking occurred in the vicinity of the column. Deflections then
increased steadily until 21 days at which time an additional load was
temporarily applied causing further cracking around the column. The
additional load was then removed (also at 21 days) and the slabs con-
tinued to deflect with time with no further increase in cracking.

The instantaneous deflection at 7 days is seen to depend on
both the compliance curve used and the assumption concerning tensile
stiffness in the cracked regions. For each concrete the assumption
of no tension after cracking predicted a greater deflection than the
stepped stress strain diagram as would be expected. The difference
between the deflections for the two different concretes is also evi-
dent, concrete Cl1 producing a greater instantaneous deflection than
C2, assuming the same tensile behaviour for the two concretes.

The instantaneous deflections for S2 and S3 are almost

equal indicating that the difference in tensile properties for the two
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cases is offset by the difference in instantaneous elastic modulus.
Between 7 days and 21 days the difference in the response of the two
concretes becomes more evident. For each concrete,'the difference

in deflection at any time between the no tension assumption and

stepped stress strain diagram remains more or less constant. The
increase in deflection for concrete C1, however, is considerably
greater than that for C2. At 21 days the additional deflection due

to the increased 1oad is shown. The no tension assumption produces

a greater increase in deflection than the stepped stress strain diagram
for each concrete.

The deflection values at 21 days just before and just after
the instantaneous increase in load indicate a significant difference
in the behaviour exhibited by the tensile assumptions. The load after
21 days is less than the load up to 21 days. However, the stiffness
after 21 days is also less than the stiffness before 21 days due to
the increased cracking. For the no tension case the reduction in
stiffness has a greater effect than the reduction in load and a net
increase in deflection occurs at 21 days. On the other hand, the
reduction in stiffness is less significant for the stepped stress strain
diagram and a net decrease in deflection results. After 21 days,
deflections continued to increase with time at a greater rate for con-
crete C1 than for C2. Comparing deflections at 800 days, it is appar-
ent that, as expected, the compliance characteristics of the concrete
have a significant effect on long time deflection. The deflection at
800 days for §1 was 2.722 inches compared with 1.510 inches for S4
and 1.698 inches for S2.

Considerable cracking occurred in these four slabs in the
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vicinity of the column with much less severe cracking in the positive

moment region.

5.3.2 Loading History

The evaluation of long time deflections requires a knowledge
of the loading history. While the dead load may be assumed to remain
constant with time, the variation of the actual live load with time

will not in general be known.

A survey(28) carried out in Sweden indicated the following

loads due to persons and furniture in apartment buildings.

Mean Toad due to persons = 30 kg/m2 (6.144 p.s.f.)
Greatest load due to persons = 128 kb/m2 (26.214 p.s.f.)
Mean load due to furniture = 25 kg/m2 (5.120 p.s.f.)
Greatest load due to furniture = 105 kg/m2 (21.504 p.s.f.)

The greatest loads due to persons and furniture did not occur
simultaneously. These loads are seen to be considerably smaller than
the design live load of 50 p.s.f. and it does not appear reasonable to
consider the full live load as sustainéd load for the purpose or com-
puting long time deflections. In this study a sustained load of 20%
of the design live load has been assumed.

In the case of reinforced concrete floor slabs in multi-
storey construction where a freshly placed floor slab is supported on
previously cast floors, the construction loads on the slabs often
exceed the loads under service conditions. Grundy and Kabaila(ZB)

indicate that the total load carried by a slab at the construction

stage may exceed twice the dead load of the slab. It is therefore
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important to include such construction loads in the analysis for
deflections since most of the cracking will take place at the con-
struction stage and this will determine the subsequent overall stiff-
ness of fhe slab.

Two Toading histories, designated L1 and L2 are shown in
Figure 5.7. Loading history L1 consisted of a load of 1.5 x D.L.
applied at 7 days and held constant to 21 days at which time an addi-
tional 0.5 x D.L. was applied instantaneously. The Toad was then
reduced to a value of 1 x D.L. + 0.2 x L.L. and remained constant
thereafter. In the case of L2, the maximum load of 2 x D.L. was
applied at 7 days and immediately reduced to a sustained load of
1 xD.L.. + 0.2 x L.L. Behaviour under the two loading histories is re-
presented by slabs S3 and S14 (Table 5.2) which have identical material
properties and dimensions and were analyzed by loading histories L1 and
L2 respectively. The stepped stress strain diagram in tension was used.

The variation of mid-panel deflection with time is shown in
Figure 5.8 for S3 and S14. The larger instantaneous load applied to Sl4
at 7 days caused cracking around the columns to a greater extent than
experienced by $3, thereby reducing the flexural stiffness of S14
relative to S3. The deflection just after 7 days is approximately the
same for each case although the load on S3 is greater than that on S514.
The effect of the higher load on S3 however, is to produce a larger
increase in creep deflections between 7 and 21 days. At 21 days the
load on S3 is increased temporarily and then reduced to the same value
as that on S14. At this stage, the deflections for the two cases were
almost equal. After 21 days when the loads on the two slabs were

equal, the deflections increased with time at approximately the same
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rate, with the final deflection of S3 slightly less than that of S14.

These results suggest that the long time deflection under
sustained load is not greatly affected by variations in loading history
at early age, as long as the maximum load is the same and produces

approximately the same degree of cracking.

5.3.3 Span to Depth (L/d) Ratio
From isotropic elastic plate theory(z), the deflection A at

a point in a plate is given by an expression of the form,
A _ L3 -
r ° KQ(H') (5.3)

where K is a constant depending on boundary conditions. The influence
of the L/d ratio is explicitly evident in this equation, and minimum
thicknesses for control of deflections in slabs have traditionally
been based primarily on this quantity.

The extent of cracking in a slab also depends on the L/d
ratio. As the span increases the maximum moments increase while as
the depth decreases the cracking moment also decreases. In other words
for a given loading, the overall flexural stiffness decreases as the
L/d ratio increases.

In the study of L/d ratios, the c/L ratio was held constant
at 0.1 and loading history L1 was used in each case. Slabs S5, S6,
S7, S8 and S1, using concrete C1, were considered with L/d ratios of
15, 22.5, 30, 37.5 and 45 respectively. Concrete was assumed to take
no tension after cracking. To illustrate the behaviour using concrete
€2, one slab, S2, with a L/d ratio of 45 was considered.

Figure 5.9 shows the variation of mid-panel deflection with
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time for each of the slabs analyzed (except $2). Slabs S7, S8 and S1
exhibited cracking at 7 days and further cracking at 21 days when the
load was increased. Slabs S5 and S6 produced no cracking at any time.
The rapid increase in deflection, both long and short time with in-
crease in the L/d ratio is apparent.

Engineering practice usually considers the deflection to span
ratio to be of more significance than the absolute magnitude of the
deflettion. The relationships between A/L and (L/d)3 are therefore
plotted in Figure 5.10 where A represents the mid-panel deflection.
Values are plotted for t = 7 days assuming the concrete to be uncracked,
for t = 7 days taking cracking into account and finally for t = 800
days. For each case, the values plotted for concrete C1 are indicated
by solid lines. Since only one slab was considered for concrete C2,
estimated values for other L/d ratios are shown by the dashed lines.
In the following discussion, the values obtained for concrete Cl are
considered first.

For the initial application of load at 7 days, the relation-
ship is linear, assuming the slab to be uncracked. The slab thus
behaves as an isotropic homogeneous elastic plate and the reinforce-
ment has practically no effect on the behaviour. Allowing for crack-
ing in the slab, it can be seen that cracking has a more pronounced
effect as the L/d ratio increases. For the two smallest L/d ratios,
no cracking was detected at the load levels considered. However, as
the L/d ratio increases, the A/L ratio is seen to depart from the
uncracked case as the extent of cracking increases.

The relationship shown for t = 800 days illustrates the

significant effect which creep and shrinkage have on deflection
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behaviour. The increase in deflection due to creep and shrinkage is
significantly greater than that due to cracking. A similar trend is
indicated for the average creep and shrinkage propertiés represented
by concrete C2, although in this case creep and shrinkage deflections
are not as severe as for the high creep concrete. The relationships
plotted in Figure 5.10 are based on the assumption of no tension in

a concrete layer after cracking, and the deflections obtained are
therefore more severe than would be the case where tensile stiffen-

ing is accounted for in the cracked regions.

5.3.4 Column Width to Span (c/L) Ratio

The column width affects deflections in two ways. In the
first place, a reduction in column width increases the clear span to
depth ratio. Secondly, as the column size decreases high concentra-
tions of moment are induced at the columns resulting in increased
cracking and a reduction in flexural stiffness.

Slabs S9, S10, S11, S12 and S13 were analyzed with c/L
ratios of 0.033, 0.067, 0.1, 0.15 and 0.20 respectively. Loading
history L2 and L/d ratio equal to 30 were used in each case. The
stepped stress strain diagram in tension was applied to this series.

Figure 5.11 shows the variation of mid-panel deflection
with time for each slab. The deflection on application of 2 x D.L.
at 7 days is shown in each case, followed by the gradual increase
in deflection with time due to the sustained load. The deflection
at 800 days for c¢/L = 0.2 was 0.295 inches compared with 0.65 inches
for c/L = 0.033. The results indicate that the c¢/L ratio has a

significant effect on both short and lTong time deflections.
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In Figure 5.12 the relationship between L/a and c/L has been
plotted at t = 800 days and at t = 7 days (for the deflection due to
the reduced 1qad). In each case a curve has been drawn through the
points plotted. For the casé of t = 800 days the curve fits the points
reasonably well whereas at t = 7 days more scatter is evident. This
may be due to the fact that a discrepancy in the smaller deflection at
t = 7 days will be magnified in_the quantity L/A. In Section 4.5.1 it
was observed that the choice of mesh layout affects the instantaneous
deflection to some degree and the long time deflection to a propor-
‘tionately lesser degree.

Cracking around the columns occurred in all the slabs con-

sidered in this series.

5.3.5 Reinforcement Layouts

Reinforcement is required by the 1971 A.C.I. Building Code to
resist the design moments allocated to column and middle strips. The
amount of reinforcement provided must exceed a specified minimum amount
for temperature and shrinkage effects. The slabs of the parameter
study described above were based on designs satisfying the A.C.I. code
'requirements in this regard. The effects of two other layouts were
studied. Compression reinforcement equal in amount to the required
tension reinforcement was provided in one case and in the other, the
negative moment steel was concentrated in the column strip.

It is generally well known that compression reinforcement
reduces creep deflectiohs. This was illustrated in Chapter 4 in terms
of the Washa and Fluck beam results. An analysis was therefore carried
out to determine the effect of providing compression reinforcement in

amounts equal to the tension reinforcement for two way construction.
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Reinforced concrete floor slabs are generally under-stressed
so that large portions of the slab remain uncracked under service
conditions. In the uncracked state, the concrete carries most of the
tensile stress and relatively little is carried by the steel. Cardenas
and Kaar(13) have reported results of a field test of a flat plate
floor system in which all negative moment steel was placed in the
column strip and none in the middle strip. This layout is more
economical than the conventional layout in terms of placing costs but
violates the 1970 A.C.I. code reguirements. The test indicated that
the load carrying capacity was satisfactory and that serviceability
requirements (crack widths and deflections) were also satisfactory.
This layout of steel was considered in the present study.

To consider the effects of reinforcement layout, slabs S14,
S15, S16, S17, S18 and S19,having the same dimensions and loading
history L2, were analyzed with the following concrete properties
and reinforcement layouts.

S14 - concrete C1, standard reinforcement layout

s15 - concrete C1, standard layout for tension steel and

A = AS
516 - concrete C1, all negative moment steel in column strip
517 - concrete C1, all negative moment steel in column strip

and A; = AS

S18 - concrete €2, standard reinforcement layout
s19 - concrete C2, standard layout for tension steel and
L =
As As
The stepped stress-strain diagram was used for concrete in tension.

Deflections at 7 days and 800 days are presented in Table 5.4
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and the mid-panel deflection versus time relationship is plotted in
Figure 5.13 for each of the slabs analyzed. Comparing the extreme
cases of s14 and S19, it can be seen that concrete properties and
feinforcement layout have a significant effect on long time deflec-
tions and a much smaller effect on short time deflections. Placing
all the negative moment reinforcement in the column strip appears

to have little effect on the deflection behaviour of the slab. The
deflections for S14 and S16 are approximately equal over the complete
loading range with the deflection of S§16 at all times slightly less
than that of S14. There is however a difference in the behaviour
when compression steel equal to the tension steel is added as indi-
cated by comparing S15 and S17. In SI7 all of the compression steel
in the negative moment region is concentrated in the column strip as
is the tension steel. This layout appears to be less effective in
restraining creep deflections than the case where the compression
steel is distributed between column and middle strips.

The provision of compression reinforcement equal in amount
to the tension reinforcement significantly reduces long-time deflec-
tions for both layouts. For the standard layout of reinforcement,
additional long time deflections due to creep and shrinkage were
reduced by 47% for concrete C1 and 32% for concrete C2. For the
alternative layout of steel the additional deflections were reduced
by 32% for concrete Cl.

Cracking occurred in all cases around the columns and to a
lesser extent in the positive moment regions of the slab. As an
example, the cracked regions produced in slab SI9 are shown in Figure

5.14. No attempt is made to show crack spacing or direction.
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Extensive cracking is seen to occur in fhe negative moment region
where cracking extended to a distance of more than a quarter of the
span for the column. Cracking in the positive moment region occurred
to a much 1essér extent as illustrated by the comparison between
distributions of normal stress at the corner of the column and at the
centre of the panel shown in Figure 5.15.

The validity of the Tinear stress-strain assumption might
be questioned for the stress distribution at the column where high
compressive stresses are produced. However, this stress distribution
corresponds to the high short time load equal to twice the dead load
and the load immediately reduces by almost one half to the Tower sus-
tained load. In addition the high stresses are localized in the

immediate vicinity of the column.

5.4 Summary

This chapter describes a parameter study of several factors
which affect deflections of flat plate floor systems. The study was
restricted to a square interior panel under a time variable uniformly
distributed load. Span and column dimensions were varied to produce
L/d and c/L ratios in the range 15 to 45 and 0.033-0.20 respectively.
In addition concrete properties, loading history and reinforcement
layout were varied. A comparison of some of these results with

empirical formulae currently in use is contained in Chapter 6.
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Parameter Slab Variables Constants
Study
Conc. | Tension L/d = 45
aterial S1 C1 NT
Properties S2 C2 NT c/L = 0.1
(5.3.1) S3 C1 ST
S4 c2 ST Load = L1
Load L/d = 45 Conc=Cl
Loading S3 L1
History S14 L2 c/L = 0.1
(5.3.2) ST
L/d
L/d S5 15 c¢/L = 0.1
S6 22.5 Conc = Cl1(except
(5.3.3) S7 30 for slab S2 which
S8 37.5 was C2)
S1 45 Load = L2
S2 45 NT
c/L
S9 0.033 L/d = 30
c/L S10 0.067 Conc = C1
S11 0.10 Load = L2
(5.3.4) S12 0.15 ST
S13 0.20
'
As As
Reinforcing S14 Std. - L/d = 45
S15 Std. Ag
(5.3.5) S16 Col. - ¢/L =01
S17 Col. As Conc = Ci(except
Si8 Std. - that S18 and S19
S19 Std. As were C2
Load = L2
ST
NOTE: NT - no tension in layer after cracking
ST - stepped stress strain diagram
Std. - standard reinforcement Jayout
Col. - negative moment reinforcement all in column strip

TABLE

5.2

SUMMARY OF SLABS IN EACH PARAMETER STUDY
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S1ab Nr Nr of Elements | C.P.U. Time | Nr of Cracking | Nr of Time
(secs) Iterations Steps
Si 15 704 23 13
S2 15 711 24 13
S3 15 545 14 13
S4 15 622 19 13
S5 15 312 0 13
S6 15 392 4 13
s7 15 502 12 13
S8 15 559 14 13
S9 24 659 8 11
S10 15 364 6 1
S11 15 328 4 11
Si2 15 327 4 11
S13 15 326 4 11
S14 24 617 7 11
S15 24 616 7 11
S16° 24 604 7 11
S17 24 630 7 11
S18 24 704 7 11
S19 24 798 12 11

TABLE 5.3

C.P.U. = Central Processing Unit

NUMBER OF ELEMENTS AND MACHINE TIME FOR EACH ANALYSIS
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TOTAL STATIC MOMENT
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0.75x0.65 M0 0.25x0.65 M0 0.60x0.35 M0 0.40x0.35 M0
0.4875 M, + 0.1625 M0 + 0.210 M0 + 0.140 Mo =M

FIGURE 5.3 DISTRIBUTION OF TOTAL STATIC MOMENT IN PANEL
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CHAPTER 6
SIMPLIFIED PROCEDURES FOR COMPUTING SLAB DEFLECTIONS

6.1 Introduction
The purpose of this chapter is to examine available simplified

procedures for computing deflections of flat plate floor slabs in the
light of the results of the brief parameter study described in Chaptér
5. The approximate computation of deflections will be considered in
three stages,

a) short time deflection of an uncracked slab

b) short time deflection including the effect of cracking

c) long time deflection

6.2 Short Time Deflection of an Uncracked Slab

The deflection of a rectangular, elastic plate under uniform

transverse load q may be expressed in the form(47)
kqL*
A= R (6.1)
Ed>
where D = ——z———§; represents the plate flexural rigidity and K is a
12(1-v

factor which depends on boundary conditions and, in the case of a
rectangular plate, on the ratio of Tong to short span. Poisson's ratio
v, can be seen to have a minor effect on the computation of deflections,
since by Equation (6.1) the difference in A produced by reducing v from
0.15 (the value used in the computer analysis), to a value of zero is

2.25%. The plate flexural rigidity D may therefore be replaced, with

a small decrease in accuracy by the beam rigidity EI where I = 1/12 bd3

and b equals unity. Equation (6.1) may then be written as,
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4
_ kel
A £ (6.2)

However, in a reinforced concrete slab the value of I is a function
of position since the amount of reinforcement varies throughout the
slab. ’ _

Elastic plate solutions for a typical interior panel, based
on the finite difference approach have been obtained at the University
of I11inois and were reported by‘Vanderbi1t, Sozen and Siess(4g).

The parameters considered were the c/L ratio, beam to slab stiffness
ratio and aspect ratio (short span/long span). The values of K, in
Equation (6.1) presented by Vanderbilt for the flat plate (beam stiff-
ness equal to zero), for three c/L ratios, 0.0, 0.1 and 0.2, and four
aspect ratios (s/L) 0.4, 0.6, 0.8 and 1.0 are shown in Figure 6.1. An

expression for K which fits the plotted points reasonably well is given

by Equation (6.3)

K= [0.00774(S/L)2 - 0.00588(s/L) + 0.00395][1-2.5EJ (6.3)
which for a square slab (s/L = 1.0) reduces to,
K = 0.00581(1-2.5¢c/L) (6.4)

Equation (6.3) is plotted in Figure 6.1 as a set of dashed lines. It
should be noted that Equation (6.3) and Equation (6.4) are applicable
only for the range of c/L and s/L shown.

In order to illustrate the effect of reinforcement on the
deflection of the uncracked slab, values of K were computed by sub-

stituting in Equation (6.2),



157

a) deflections obtained by the present analysis (including
reinforcement) on first application of load,

b) the modulus of elasticity used in the analysis in each
case, and

c) the gross moment of inertia, Ig = 1/12~1‘d3, neglecting
steel.

These values of K are tabulated in column 6 of Table 6.1 and
are plotted in Figure 6.1. ATI values are seen to 1ie below the
corresponding line for homogeneous elastic plate deflections indicating
the effect of the increased stiffness due to steel. Several slabs were
analyzed for a c/L ratio of 0.1 with varying L/d ratios and consequently,
varying percentages of reinfbrcing. The reduction in K obtained, ranged
from 7.5% to 22.5% for these slabs. For an 8 inch slab containing 1%
tension steel, the increase in moment of inertia due to steel is
approximately 15%. If an equal amount of compression steel is included,
the increase is approximately 34%.

An effective moment of inertia for each slab, to include the
effect of steel was computed by substituting Equation (6.3) for K into
Equation (6.2) and using the deflection of the uncracked slab obtained by
the present analysis. These values are shown in Table 6.1 as IST‘

The average value of IST computed in this way was 15% greater than the
gross moment of inertia Ig = 42.67 in3/in.

While the presence of steel increases the effective moment of
inertia of the slab, consideration must be given to cracking which

reduces the effective moment of inertia.

6.3 Short-time Deflection Including Cracking
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Considerable effort has been directed towards the problem of
computing short time deflections of cracked reinforced concrete beams.
The problem has generally been considered in two parts,

a) Computation of the stiffness (EI) in a cracked fegion
and b) Effect of variation of stiffness throughout the member.

Several procedures proposed in the literature have been
reviewed in Ref. (4). Of these, a method proposed by Branson has been
adopted for use in the 1970 A.C.I. Building Code. Branson's empirical
expression for the effective moment of inertia Ieff in a cracked region
has been discussed in Section 4.3.1. The expression for Ieff is given

as,
M M
- (.C\4 _ (4
IEff = (M ) Ig + U (M ) ) ICY‘ (6-5)

To obtain the average value of Ieff in a span, Branson
recommends that the power 4 be reduced to 3 and M be replaced by Mmax’

the maximum moment in the region. Equation (6.5) is then written as

M M
- c 3 _ c 3

max
which is the expression used in the A.C.I. code.

In Ref. (5) it is suggested that Equation (6.6) also be used
in computing deflections for interior panels of slabs using average
values of Ieff computed in the following manner,

a) flat plates - use the average of the values of Ieff
computed for the positive and negative moment regions in the long
direction column strip,

b) two way slabs - use the average of the values of Ieff
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computed for the positive and negative moment regions in the short
direction middle strip.

Values of Ieff computed in this manner for the flat plates
considered in the parameter study are shown in Table 6.1. In each
case Ieff>was computed using the design moment from the Direct Design
Method of the 1970 A.C.I. code as M .. . The ratio ASZ)/AEZ) from the
present computer analysis is also shown in Table 6.1 for each slab,
where ASZ) represents the deflection at 7 days assuming no cracking and
Aéz) represents the deflection at 7 days allowing for cracking, both

deflections obtained at the same load. (7)
A

I

Figure 6.2 shows the values of —%%T-and —Eif-plotted for
A
cr

Ig

various ¢/L ratios. In this series of slabs (S9-S13), cracking occurred
only in the vicinity of the columns and it can be seen that computing
the average Ieff on the basis of the column strip only, underestimates
the stiffness of the slab as a whole. Better agreement is obtained
with the computer results by using the average Ieff computed on the
basis of both column and middle strips. As cracking extends into the
positive moment region, particularly in the middie strip, the value of
Ieff computed for the column strip only, tends towards the average
value for the slab. This is the case for slabs S14-S19 where the agree-
ment between ASZ)/Aéz) and Ieff/Ig (where Ieff is computed using average
values in the column strip only) is better than for the slabs discussed
previously.

The correlation between ASZ)/Agz) and Ieff/Ig is shown in
Figure 6.3 for all the slabs analyzed. In the cases where no tension

is assumed in a cracked layer, the computer analysis yields a higher

cracked slab deflection than that indicated using Branson's expression
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which takes into account the stiffening effect of concrete between
cracks. Computing Ieff on the basis of both column and middle strips
would have the effect ofvincreasing the discrepancy.

The remaining slabs were analyzed on the basis of the stepped
stress strain diagram in tension. In cases where no cracking occurred
in the positive moment region, the computer analysis produced a
smaller deflection than that indicated by Ieff based on the column
strip only, whereas for those cases in which cracking did occur in
the positive moment region, neither procedure consistently produced a
higher deflection than the other.

Although the discussion in this section has been based on
the gross moment of inertia neglecting steel, the same trend would be
shown if Ig were to be replaced by a value of I which included the

effect of reinforcing steel, as long as this value was used to compute

Logs:

6.4 Long-time Deflection

Simplified procedures have been presented in the literature
for the computation of long time deflection of beams. A review of
proposed methods is given in Ref. (4). In general these simplified
methods involve multiplying the computed short time deflection by a
factor to obtain the additional long time deflection. Such an approach
has been presented recently in Ref. (5), where the additional long-time
deflection Ay due to creep and shrinkage effécts is given by the

following expressions

A (6.7)

|
[

At
(6.8)

H
—
[ad
[

Bty
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where Ct = creep strain/initial strain = creep coefficient and Ty is an
empirical factor Tumping creep and shrinkage effects together. Equation
(6.7) is intended for use when creep and shrinkage effects are con-
sidered separately. This expression gives the correct value of creep
deflection only when the stress condition in the member remains constant

with time, since C, is defined for constant stress. Due to the inter-

t
action between concrete and steel, concrete stresses tend to decrease

with time. To account for this, a factor kr is introduced,

x~
[

Q.85 - 0.45(A;/AS) 2 0.40 (6.9)

or k

P 1.0 - 0.6(A;/AS) 2 0.40 (6.10)

Equation (6.9) applies to the creep only case while Equation (6.10)
applies to the case of creep and shrinkage. Equation (6.7) and Equation

(6.8) are then re-written as follows,

(6.11)

A (6.12)

The 1970 A.C.I. code recommends Equation (6.12) for computation of Tong-
time deflections with an ultimate value of Tt = 2.0, thereby taking no
account of variations in material properties.

Ref. (5) recommends that the same method be used for comput-
ing long time deflections in two way construction as is used for beams.
A limited evaluation of the simplified procedure was made in relation
to the results of the computer study.

The creep coefficients (ultimate values) for concretes C1 and

C2 used in the parameter study were 3.94 and 2.10 respectively. The
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factor kr was computed from Equation (6.9) for each slab. The quantity
eru (Cu = ultimate value of Ct) is shown in Table 6.1 for each slab.
Each of the analyses carried out for the parameter study involved both
creep and shrinkage effects. No attempt however has been made to
evaluate the additional deflection due to shrinkage curvature by simpli-

,(800)_,(7)
fied procedures. From the computer results the quantity ru ) N
i

A
(800) represents the deflection at 800 days

has been computed where A
(taken as ultimate deflection here) and A(7) represents the deflection
at 7 days (including the effect of any cracking which takes place).

In the case of loading history L2 the deflection considered at 7 days
is that due to a load of 1 D.L. + 0.2 L.L.

A

The correlation between eru and K%-is shown in Figure 6.4.
i

The slabs analyzed by loading history L1 are represented by circles in
Figure 6.4. For these cases the comparison between computer results
and simplified procedure is not strictly valid since the simplified
procedure is intended to be used with a constant sustained load whereas
the load varies with time for loading history L1. However, these
results are included since it was shown in Chapter 5 that the variation
in loading between L1 and L2 had a relatively small effect on the
deflections. Since shrinkage curvature was not included in the computa-
tion by the simplified approach it would be expected that the computer
results would yield a greater long time deflection. It can be seen
from Figure 6.4 that this is not always the case and no consistent
trend appears to be evident. Of the eleven analyses carried out using
a constant sustained load, the simplified computation agreed with the
computer result within 20% in seven cases, within 25% in ten cases and

for the remaining case the discrepancy was slightly over 25%.
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For a complete assessment of the simplified approach, further
studies are required. However, if the present analysis is considered
reliable, it is apparent that further improvements are required to the
simplified approach before it may be considered reliable. In particu-
lar, the factor kr should be considered carefully. The primary purpose
of kr is to account for the effect of cbmpression reinforcement in
reducing creep deflections and to a lesser extent for the movement of
the neutral axis with time at a cracked cross-section. If no cracking
occurs ét a section, the tension reinforcement has exactly the same
effect as compressive reinforcement in restraining creep deflections
(assuming tensile and compressive response to be the same for concrete).
Stress is gradually transferred from concrete to steel with time whereas
when a crack occurs, the stress is immediately transferred to the steel.
It would appear therefore that in the computation of long time deflec-
tion in terms of initial deflection, some factor should be introduced

to account for the degree of cracking.

6.5 Summary

In this chapter the results of the computer analysis have
been compared with available simplified procedures for computing slab
deflections where cracking, creep and shrinkage take place. In addi-
tion, the effect of reinforcing steel on the overall stiffness of the
uncracked slab has been examined. Although the evaluation of the
simplified procedures was somewhat 1imited in nature, certain
inadequacies of the current state of the art were brought to light.
Suggestions are made in the next chapter for further studies directed

at a more complete evaluation of the simplified procedures. It should
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be noted however that for many practical situations, the agreement
obtained between the computer results and simplified procedures would

be considered adequate.
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CHAPTER 7
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

A finite element approach to the analysis of reinforced con-
crete floor slabs has been presented which includes the effects of
cracking and time-dependent strains.

The analysis for cracking involves an iterative procedure
in which the slab is initially considered to be in an uncracked state.
The slab is treated as a layered plate and principal stresses are
computed for each layer throughout the slab. Principal tensile stresses
are compared with a specified limiting tensile stress and if the limit-
ing stress is exceeded, the constitutive relations for the layer are
modified to reflect the reduced stiffness due to cracking. The analysis
is repeated until a stage is reached when no further cracking is
detected.

In under-reinforced sections,.concrete between cracks may have
an important effect on the stiffness of the member. To account for this,
the concept of a stepped stress-strain diagram for tensile stresses was
introduced, in which the modulus of elasticity for concrete in tension
is reduced in a step-wise fashion as cracking proceeds. In effect,
the tensile stress strain diagram for concrete is assumed to have an
unloading portion instead of the brittle type of failure normally
attributed to concrete in tension. The moment curvature diagram for a
section obtained on this basis was compared with an empirical expres-
sion based on experimental data.

An incremental procedure with respect to time is used to
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trace the stress and strain history for a given applied load history.
Concrete is treated as an ageing linear visco-elastic material and
steel as a linear elastic material. At each increment in time a com-
plete analysis is carried out using the initial strain method in which
a set of equivalent loads accounts for the effects of inelastic strains.

A limited verification of the mathematical model was obtained
in applications to problems for which classical or experimental results
were available. The mode] was then applied in a parameter study of a
number of factors which affect deflections of flat plate floor slabs.

A brief comparison with available simplified procedures for
the computation of short and long time deflections was carried out,

based on the results of the parameter study.

7.2 Conclusions

The mathematical model developed in this dissertation is
capable of providing useful information related to the problem of time-
dependent deformations of reinforced concrete floor slabs. Although
a large number of simplifying assumptions have been introduced, the
mode1 has produced reasonable correlation with available experimental
data. - |

From the results of the parameter study on flat plate floor
slabs, the following points are worth noting.

1. The primary consideration in terms of short time deflec-
tions is the slenderness (L/d) ratio. Not only do deflections increase
rapidly with this factor in the uncracked state, but for a given load-
ing, concrete stresses also increase rapidly leading to increased

cracking and reduced stiffness (see Figure 5.10).
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2. The column width to span (c/L) ratio is also important.
An increase in this factor from 0.0 to 0.2 results in a reduction in
deflection of approximately 50% for the uncracked slab (Figure 6.1).
In addition, as the column width decreases, the clear span increases,
leading to increased cracking, particularly around the columns.

3. The results of the parameter study underline the need to
consider the creep and shrinkage characteristics of the concrete when
evaluating long time deflections.

4. The effect of reinforcement in restraining creep and
shrinkage deformation has been evaluated. It is generally well known
that compression reinforcement has a beneficial effect in reducing
long time deflections. In an uncracked section, the tensile reinforce-
ment has the same effect (assuming creep behaviour to be the same in
both tension and compression) leading to a gradual transferral of
stress from concrete to steel. The restraint to creep deformation
depends on the amount of steel present, in that, for small reinforce-
ment ratios there is less restraint available. This will generally
lead to larger creep deflections ré]ative to instantaneous deflections
for 1ightly reinforced sections.

The 1imited comparison of results obtained by the computer
analysis with those from simplified cé]cu]ation procedures indicates
that reasonable results may be obtained using the simplified proce-
dures but that the procedures are not sufficiently developed to
reliably predict long term deflections of slabs. Further studies are

required for a complete assessment of such procedures.

7.3 Recommendations for Future Studies
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In terms of the analytical model it may be desirable to
examine the following areas in more detail.

a) The constitutive relations have been specialized for
the case of orthotropy in the global coordinate system. The effect
of considering cracks oriented perpendicular to the principal tensile
stress directions could be studied as well as arbitrary steel Tayouts.

b) By introducing additional in-plane degrees of freedom
in the analysis the effect of restraint to shrinkage deformations at
the boundaries, as well as T-beam action could be studied. This will
however increase the number of degrees of freedom by fifty percent.
The analysis may be extended to include the interaction of beam and
column elements which would be useful for further parameter studies.
These studies could be carried out with a view to producing design
charts suitable for use in engineering practice.

Further parameter studies should also be aimed at assessing
the effects of,

a) misplacement of reinforcement.

b) designs based on various ratios of 1ive to dead load.

c) separation of creep and shrinkage effects.

d) development of simplified procedures.

e) deflections in edge and corner spans.

Item (d) is an important consideration since the type of
analysis developed in this work requires a 1argé amount of computer
time. Particular attention should be paid to the computation of long-
time deflection as a multiple of short-time deflection by the pro-
cedures discussed in Chapter 6. The present method of analysis may be

used to evaluate creep and shrinkage effects separately or together
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for this purpose.

The factor kr of Equation (6.11) and (6.12) may be examined
for variations in creep and shrinkage characteristics, tension and
compression reinforcement and degree of cracking. Such studies should

first be made for beams before considering two-way construction.
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APPENDIX A
FORMULATION OF NUMERICAL INTEGRATION PROCEDURE

A.1 Derivation of Numerical Integration Formulae

The numerical integration technique used to obtain time-
dependent strains is based on the formulation by Se]na(46) for uni-
axial stress conditions. This technique is generalized to the two
dimensional case of plane stress. The total strain at time t,
including shrinkage, may be expressed in terms of specific compliance,

stress history and Poisson's ratio which is assumed to be constant

with time.
t a1 t o (1
el(t) = J et 1) ’a‘f D g - vJ C(t,r)a—-aLE—)- dr + e (t) (A1)
t t
(v] 0
t o, t o (1
eT(t) = —vf C(t,r)i—égZl - dt + J C(t,r)E—XE—z-- dr + ¢_(t) (A.2)
Yy t 9T t 3t S
0 (o]
t T T
YT (t) = 2(1+v) C(t,T)E—éxg—l « dt (A.3)
Xy t T
0

These are Equations (2.18) of Section 2.4.2.
In addition, the assumed form of the creep function results in

the expression
C(t,r) = Ai(T) Bi(t) + D(1) (A.4)

which is Equation (2.16b).
Considering only the component Ey the strain at time t + At

may be written as,
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t+at 3o, (1) t+at 3o, (1)
e,T((t+At) = J C(t+at,1)—— dr - vJ C(t+at,r)—L— de

t t

0 0

+ es(t+At) (A.5)

Subtracting Equation (A.1) from Equation (A.5), and substituting from

Equation (A.4), results in

t do_(1) t+at
T(teat)-el(t) = [t [B, (t+at) -8, (£)IA, ()2~ + [ By (ot
0
3o, (1) t+tat 30, (1) t
A ()= ot jt D(r) %" e - v[}to[Bi(t+At)
3o, (1) t+at 3o, (1)
By (I (It [ B (eetIa () - o
t+At T
+ [ A D(T)Ef%é—l-dT:|+ es(t+At) - es(t) (A.6)
t
Writing,
V.. (t) = jt A.(T)acx(T) . dr (A.7a)
X1 t 1 9T
0
t 3a,. (1)
Vy(t) = Ito A (x) == - e (A.7b)
t STX ()
Vi (8) = Jto A ) B g (A.7¢)

and assuming a linear stress variation and average values for Ai(T) in
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the time step t - At' to t(*) we obtain,

Vi (£) = Voo (t-at') + ofA (t-at' )+ (t)1[o, (8) - o (t-at')]  (A.8a)
Vyi(E) = Vi (e-at') + 20A; (t-at')oA (E)I00, (8) = o (t-at')]  (A.8b)

Vi (6 = Vg (bat') + ZIA (-0t 1A (611, (o) m (E-at)]  (A.8c)

Equation (A.6) may now be written as,

T T t+at BOX(T)
x(Bt)-el(t) = [B;(t4at)-B (£)IV,(£) + jt B, (trat)A, (r)—2— do

t+at 3o (1)
+ I X

D(r) dr - v{[Bi(t+At)-Bi(t)]Vyi(t)

£ 9T

t+at 3a.. () t+at 3o, (1)
+ ft Bi(t+At)Ai(T)——§;——-dT + jt D(r)——%;—— df}
+ e (trat) - e (t) | (A.9)

If it is now assumed that for the time step t ~ t + At the
stress variation is again Tinear, and using average values for Ai(T)

and D(t) in the interval, we obtain,

eI(t+At)-el(t) = [B,(tat) - B,(t)IV,;(t)

[A; (t+at)+A,(t)]
+ [ox(t+At)-cx(t)] Bi(t+At) 5
[D(t+at)+D(t)]
+ > } - V{%Bi(t+At) - Bi(t)]vyi(t)

(* The time intervals at' and At need not be equal)



A

‘ . [Ai(t+At)+Ai(t)]
+[cry(t+AtI—cry(t)] ; (trat) 5
[D(t+At)+D(t)jI
+ 5 J + es(t+At)-es(t) (A.10)
Writing,
1 [A; (tat)+A, (t)]  [D(t+at)+D(t)]
Ftoat) = Bi(t+At) 5 + — (A.11)

where E(t+at) is referred to by Seina as the pseudo-instantaneous mod-

ulus of elasticity at time t + At, Equation (A.10) becomes

eI(t+At) =

E(t+at) E(t+at) X E(t+at) ) E(t+at)

cx(t+At) _ voy(t+At) LT ) - [:cx(t) vgy(t) :]
- es(t) + [Bi(t+At)-Bi(t)][in(t)-nyi(t)]+es(t+At) (A.12)
Equation (A.12) may be written as,

el(t+At) - s§(t+At) + eg(t+At) + e (t+at) (A.13)

where

cx(t+At) ) vgy(t+At)

ei(t+At) = = ~
E(t+at) E(t+at)

is the instantaneous elastic strain at time t + at,

(t) va, (t)
eg(t+At) = el(t) [ ey } g (t)

E(t+at) E(t+at)

+ [B'i (t+At)_Bi (t)][VXi (t)'\)vy.i (t)]

is the creep strain at time t + aAt,
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and
es(t+At) is the shrinkage strain at time t + At.

Similar expressions may be derived for ey(t+At) and ny(t+At) to give,

o (t+at) vcx(t+At) T

T, _ %
e (t+at) = - t
y{E#at] E(t+at)  E(t+at) *ey(t)

CLINETCN I

E(t+at) E(t+at)
+ [Bi(t+At)'Bi(t)][Vyi(t)-vvxi(t)] + es(t+At) (A.14)
(t+ t) (t)
YT (that) = 2(14v)—2 4 Y MOR 2(1+0) X~
Xy E(t+at) E(t+at)
+ 2(]+v)[B (t+at)-B, (t)]ny1( ) (A.15) e

The total strain at time t + At may thus be expressed as the

sum of instantaneous elastic, creep and shrinkage strains.

r 3 T r N - N r R

'el(t+At) 17E(t+at) -v/E(t+at) . o, (t+at) eg(t+At) e (t+at)
T ] = = C

<ey(t+At) y = | -u/E(t+at) 1/E(t+at) . oy(t+At) + <ey(t+At) >+<es(t+At);
T 2(14+v

vo. (t+at) = T, (t+at) y (t+at) 0
Xy B E(t+at) || Y I i J

(A.16)

Equation (A.16) applies to isotropic materials. For this work,
it is extended to the orthotropic case by modifying the pseudo-

instantaneous compliance matrix to obtain,



F;I(t+At)

1e;(t+At)

I
ny(t+At]

r}/EX(uAt) v/, (t+at)

-vx/Ex(t+At) 1/Ey(t+At)

A6

- N r

o, (t+at) eg(t+At)

(

2(1+v)/E(t+at) (L) ng(t+At)
-G J L s U
(A.17)

From Equation (A.17), stresses at time t + At may be

expressed as,

E(t+at
2(1+v

r T . )
E (t+at) v E (t+at)
o, (tHat) (¥_ ] ?1{ ]
\)X\)‘y \)X\)y
v E_(t+at) E (t+At)
<°y(t+At) (= {1§v v, ) ({-v v,,)
X'y X'y
Txy(t+At)
~ J —
or {o(t+at)} = [C(t+at)] (eE(t+at)}

Tfr

el(t+At) - si(t+At)‘
T I
+ - +
Jey(t At) ky(t at)

T I
Yyy (EHAE) = vy (t+at)

- -
es(t+At)

C
<oy(t+At)+Jey(t+At) e  (t+at)

~/

-4 L /

(A.18)

where [C(t+at)] represents the pseudo-instantaneous constitutive matrix

at time t + At.

An examination of Equations (A.8) and (A.13) indicate that

the quantity eI(t+At) may be computed using information obtained from

the two previous times, t and t=at'. This numerical integration tech-

nique is based on two main approximations,

Vv
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a) The stress variation in any time increment is linear,
and

b) The values Ai(T) and D(t) are assumed to be constant
in the time interval and equal to the average of the values at the
beginning and end of the time interval.

Equation (A.11) may be rewritten as

1 _ C(t+at,t+at) + C(t+at,t) (A.19)
E(t+at) 2

Figure A.1 shows the relationship between ]/E(t+At) and the
length of the time step at. It is apparent that E(t+At) decreases for
increasing At. This effect is more marked for earlier time t in an
ageing material such as concrete and it can be seen that the accuracy

of the procedure may be improved by decreasing the time step size.
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necessary a better estimate may be made and the computations repeated.
No attempt has been made to implement this procedure

numerically.




Bl

APPENDIX B
EVALUATION OF CONSTANTS IN COMPLIANCE FUNCTION
BY LEAST SQUARES CURVE FITTING

The compliance function is given in Equation (2.16) by,

- -k, (t-1)
C(t,r) = f(%)—+ (a1+a2/r°'1+a3/r°"2+a4/r°'3) oq (1-e AR
-kz(t-r) -k3(t-1)’
+ az(l-e ) + a3(1—e ) (B.1)
where
T - 2t (8.2)

This function can be fit to any set of standard creep test
data by the method of least squares.
Let Ej(t,r) be the observed value of compliance at t for loading at t
and Cj(t,r)'be the calculated value from Equation (2.16).
)2

Then e = (Cj(t,r) - Cj(t,r) is the square of the difference.

Summing over N observed values,

m
fl
e~z
1
1l
L e P

2 2
(Cj(toT) - Cj(t'T)) (B~3)

The object now is to minimize E and this is accomplished by
differentiating E with respect to each of the constants in the compli-
ance function and setting each of the resulting expressions equal to
zero.

The first step is to evaluate p and q. This may be done by

evaluating the instantaneous modulus for loading at various ages and
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APPENDIX B
EVALUATION OF CONSTANTS IN COMPLIANCE FUNCTION
BY LEAST SQUARES CURVE FITTING

The compliance function is given in Equation (2.16) by,

- -k, (t-1)
Cltyr) = gray + (ayrag/ed vagi® Beay /<23 [og (1e
-kz(t-'r) -k3(t-'r) R
+ az(l-e ) + a3(1—e ) (B.1)
where
T:‘](?T = g (8.2)

This function can be fit to any set of standard creep test
data by the method of least squares.
Let Ej(t,r) be the observed value of compliance at t for loading at =
and Cj(t,r)'be the calculated value from Equation (2.16).
Then e; = (Cj(t,r) - Cj(t,r))2 is the square of the difference.

Summing over N observed values,

= 2
(Cj(tsT) = Cj(t:T)) (B-3)

m
n
He1=2
(1]
i
-1z

The object now is to minimize E and this is accomplished by
differentiating E with respect to each of the constants in the compli-
ance function and setting each of the resulting expressions equal to
zero.

The first step is to evaluate p and q. This may be done by

evaluating the instantaneous modulus for loading at various ages and
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obtaining p and q by least squares. However, it was found to be satis-
factory to evaluate E(t) for two loading times, substitute in Equation
(B.2), and solve the resulting simultaneous equations for p and q.
Thisvleaves 10 constants still to be evaluated. _

Examination of Equation (B.1) indicates that differentiation
with respect to each of the constants ki will result in non-linear
equations in ki which cemplicates the solution of the equations.

Hamming(24)

suggests that the least squares procedure be carried out for
several chosen sets of ki and the set which results in a minimum value
for E be adopted. This procedure was followed and for each concrete
considered, 10 sets of ki were used. The remaining 7 constants are
obtained by least squares in two stages.

In the first stage the relative values of a; are obtained by
least squares over a set of data for one loading time Ty

For loading time Tys the compliance function may be written
. in the form,

Ky (t=7.) “ko(t-1;) -k (t-1;)
C(tary) = 1/E(r;) + Kay(1-e LR Kay(1-e I Ka5(1-e 31
C k(b)) L eko(tety) | -kg(tety)

= VE(y) +5y00e T g (e 2 Tg(-e BT

= 1/E(x;) + &] Xy + &2 Xy + &3 X3
where K = (a1 + az/rio'] + a3/rio‘2 + a4/T10'3)

-k (t-1)

and Xj = (1-e 9 1 )

Forming E and differentiating with respect to each‘&k,
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3 TOG2), + dp TOKp) + 33 TOgNg), = D04 p(CLtprey) = V()
3 T0GK ) + ap T(X2), + 83 TUGXg)y = T0kp) p(Cltputy) = 1/E(T)) (B.4)

&] Z(X3x])£+ &2 Z(X3X2)I_ + &3 2(X32)£ = Z(X3)£(E(tzﬂj) = 1/E(Tj))
M
where J = )
£=1

and M is the number of observation times for loading time Ty
Solving Equation (B.4) for &], &2, and &3, relative values of oy May now

be computed from

ag = 1.0
o) = /ey

The second stage involves an application of the least squares
procedure over the complete range of data for several loading times.

Equation (B.1) is now expressed in the form,

c(t,t) = (a1 P1 * 3y Py * 33 Py *+a, p4) Y(t,t) + 1/E(x) (B.6)
where Py = 1.0
. 1701
Py = ]/10.2
oy = 1/:0°3
3 -k](t-r)
and Y(t,t) = .Z o;(1-e
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Computing E for M.points and differentiating with respect to

each constant 315 85, 33 and a, results in the 4 simultaneous equations,

(D] {a} = ({B} (B.7)
- L4
M 2
where Dij = 221 Py Py YL (t,r)
Mo
and B, = zz] [Cz(t.t) - 1/E£(T)] Py Yl(t,r)

Equation (B.7) is solved for {a} which completes the solu-
tion for the 12 constants in the compliance function.

Ten sets of ki were considered for the compliance function
used in this work and the set which produced a minimum value for the
quantity E (Equation B.3) was used in each case. A comparison of the
compliance functions obtained by least squares with the data used may
be seen in Figures 2.7 and 2.8.

Tables B.1 and B.2 show the results of the least squares
analysis for two sets of ki which were considered for concrete C1.

For each known point on the compliance curve, the time of loading

and time of observation are noted, followed by the given value of
specific compliance and the value computed by the least squares analysis.
The difference between the two values is shown as a percentage. On the
bottom line the computed values of the constants are given as well as

the quantity E defined above. These two sets of data represent the
maximum and minimum values of E obtained for the range of ki considered

and it can be seen that the correlation is good in each case.
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APPENDIX C |
DETAILS OF ELEMENT STIFFNESS MATRIX AND LOAD VECTOR

C.1 Generation of Element Stiffness Matrix

- The element stiffness matrix is given by Equation (3.24),

a (b T '
kel = | | [e1"[018] ex oy (c.1)
0’0
Expressed in non dimensionalized coordinates, & = % s N = %—
1 T -
kgl = | | CB1'IOICBD ab dg on (c.2)
o‘o :

The matrix [§]T is given in Table C.1.

Writing
— T = [ - - , -
[B1'[DIB] = [byq bpy b3y |P17 D2 Dy3| P11 Pyz -+ Py -+ Pi,i6
by by b3y |pq Dpp Dpz| P2y P2z P2y Pai6
Dyy Dgp D33| P33 P32 b3z P36
byi baj P34 (.3)
by 1by 1cb
P1,16%2,16"3,16

where bmn is a polynomial of the form
byn = Co(m,n){c](m.n)+Cz(m.n)a+C3(m,n)52+C4(m,n)€3}{p1(m,n)+p2(m,n)n

+p3(msn)n2+p4(man)ﬂ3} (c.4)
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The general term kij becomes, by matrix multiplication

11
kij = fo [0 b14P13011024P1 302103401 3031y 4P23012%025025077

or,

ki T A (a0 4Ry (130051 #Ag) (1250033 ¥A15 (1,300 5Ap5 (1,300,
+Ag5(1,3)D55+A; 3(1,3)D 3+As5(1,3)D,5+A4(1,3)D45 (c.6)

where the general term Amn(i,j) is derived as follows

bniPnj = co(m,i)co(n,j){c](m.i)+c2(m.i)£+c3(m,i)£2+c4(m,i)s3}

{c](n.j)+c2(n,j)a+c3(n,j)£2+c4(n,j)s3}{p1(m.i)+p2(m,i)n
.2 .y 3 . ) 2
+p3(my i )n"4p, (s 1)n"Hpq (nsd)+py(ns3dntpg(n,ddn

+p4(n,j)n3} (c.7)
or,

b_:b

~ . 2,0 3.0 A 5 6 2
m-i nj = Comn(1 9J){Q~|+02£+Q35 +Q4€ +Q5€ +QGE +Q7£ }{R]+R2n+R3n

'+R4n3+R5n4+R6n5+R7n6} (c.8)

where Q], Q2 ... are given by,
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Q] = C](m,i) C](n’j)

o
N
1]

cy(myi) cy(n,j) + c,(m,1) ¢y (n,j)
Q3 = ¢q(m1) c3(nid) + cz(mi) cq(n,3) + cp(myi) cy(n,g)

Q = c](m,i) cq(nsd) + cy(myi) cq(n,j) + co(myi) c5(n,j) + cq(m,i) ¢y(n,J)
Qg = Cplmsi) cu(nad) + cu(m,1) cy(nsd) + cylmi) cyln,j)

Qg = c3(mi) c4ln,3) + cy(m,i) cq(n,d)

Q; = c4(m,i) c,(n,3)

Expressions for R], R2 cen R7 are obtained by replacing Q by R and c by

p in these expressions.
Integrating,

Aun(13) = €5 (1,3)00)405/2+Qy/ 340,/ 4+05/5+Q5/6+Q; /T3

+'{R1+R2/2+R3/3+R4/4+R5/5+R6/6+R7/7}-afb (C.9)

Subroutine ELEM was written to generate the terms in the
element stiffness matrix for an orthotropic plate in which case the
terms D]3,'Dz3, D3], D32 are zero. The multiplying coefficients for
these terms were therefore not included in the program. However, it
is apparent that only a slight modification to the subroutine would
be required to deal with a full matrix [D] representing a generally

anistropic material.

C.2 Applied Load Vector
The applied load vector {R} for an arbitrary transverse load

q (£,n) is given by Equation (3.21) in the form,



ca

{R} = IA q(g,n) {¢} dA (C.10)

For a uniformly distributed load, q(£,n) = g, on an element,

the load vector is given by
(R} = <q ab/4, q a®b/24, q ab%/24, q a?b?/144,
q ab/4, q a?b/24, ;q ab%/24, -q a%b%/144,
q ab/4, -q alb/24, -q ab®/24, q aSbZ/144,
q ab/4, -q a’b/24, a qb%/24, -q alb/144> | (c.11)

This expression and expressions for other loading cases are

presented in Ref. (10).

C.3 Equivalent Load Vector

The expression for the equivalent load vector {Q} evaluated

for an element is given by Equation (3.28) in the form

Q= fA 81" M3 da (€.12)

As discussed in Section 3.6.3, the vector'{MI} is assumed to
be a constant for the element. Performing the matrix multiplication
and integrating each term in the resulting vector, the following

expression is obtained for the equivalent load vector
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I I 1,2 1.2
bM aM M b M “a
T _ I - X - Y - (X Y
{Q} =< ZM‘xys 7 2 ( 12 + 12 ) ’
I.2 12
1 1 M b M "a
bM aM. X N
-zmiy, -, S s Vi v
I I 1.2 1.2
bM aM M *b M "a
I X y o (X Y
2Mxy’ 2 2 ’ ( 12 * 12 )
I I I.2 1.2
bM aM M M “a
My, —5. -, Gt (C.13)
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APPENDIX D
COMPUTER PROGRAMMING

D.1 Descripfion of Subroutine
The program developed in this investigation was written in

FORTRAN IV and computations were carried out on the IBM 360/67 computer

‘of the University of Alberta Computing Centre. The flow chart of

Figure D.1 outlines the sequence of computations required for the
solution for time-dependent strains and cracking in reinforced con-

crete floor slabs.

The program consists of a set of subroutines in which the
computations in each step of the program are carried out, and a main
programme which controls the order in which the subroutine are called.
A flow chart by subroutine is given in Figure D.2. In the following,

a brief description of each subroutine is given.

.COEFF reads in a set of coefficients required for the element

stiffness matrix.

INPUT reads and writes input data required for the analysis. Full
details of input preparation are given below.

LOAD computes the contribution of each element to the applied load
vector (for a uniformly applied load over the slab) and to the equiva-
lent load vector corresponding to the distribution of initial strains.
The total load vector is assembled for the structure.

STIFCS computes dnx and dny (Equation 3.7) and the stiffness
coefficient matrix [D] at the corner of each element, from which the
'average value of [D] for each element is computed.

ELEM generates the terms in the element stiffness matrix as des-

cribed in Appendix C.
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‘STIFF computes the band width of the structure stiffness matrix

and assembIés the components of the element stiffness matrix for each
e]ement,vin the structure stiffness matrix.

DISPL  modifies the assem51ed structure stiffness matrix for the
prescribed boundary conditions and calls the equation solver BANSOL
which solves for the unknown displacement vector. From the displace-
ments, curvatures and twist are computed at the corner of each element.
MODIFY is called by DISPL and participates in the modification of
equations for the boundary conditions.

BANSOL solves the simultaneous equations by a Gauss elimination
procedure which utilizes the banded symmetric form of the equations.
This subroutine is based on a subroutine developed at the University
of California (Berkeley) by Felippa. |
STRESS defines the distribution of strains over the depth at the
corner of each element from the computed curvatures by imposing
equilibrium of normal stress resultants. Stresses are computed in
each layer and checked for cracking. The memory function and cracking
coefficients are modified if further cracking is detected. Bending
and twisting moments are computed at the corner of each element.

CMOD computes the pseudo instantaneous elastic modulus and shear
modulus for each time step.

CREEP | computes the new set of initial strains (creep and shrinkage)

at every step.

*
Dr. C.A. Felippa, formerly graduate student at University of
California -



EACH ELEMENT

'READ DATA

INITIALISE MEMORY FUNCTION AND CRACKING COEFFICIENT MATRIX

COMPUTE INSTANTANEOUS ELASTIC CONSTANTS FOR FIRST TIME STEP

COMPUTE APPLIED LOAD VECTOR

COMPUTE EQUIVALENT LOAD VECTOR

COMPUTE PLATE BENDING STIFFNESS COEFFICIENT MATRIX

COMPUTE ELEMENT STIFFNESS COEFFICIENT MATRIX

ASSEMBLE STRUCTURE STIFFNESS MATRIX AND LOAD VECTOR

MODIFY EQUATIONS FOR BOUNDARY CONDITIONS AND
SOLVE FOR UNKNOWN DEGREES OF FREEDOM

COMPUTE STRESSES AND CHECK FOR CRACKING

| YEs | MODIFY MEMORY FUNCTION AND
NEW CRACK ? CRACKING COEFFICIENT MATRIX
NO
LAST TIME STEP ? 3 sTOP
NO

NEXT TIME STEP

COMPUTE INSTANTANEOUS ELASTIC CONSTANTS

COMPUTE NEW SET OF INITIAL STRAINS

FIGURE D.1  PROGRAM OUTLINE



COEFF |
l (_ NT. GT. NTS. ?)—T-
INPUT ¥F |
} PARAM
PARAM ‘
l CMOD
CMOD | ;
: CREEP
REPEAT =0
(101 @
LOAD
STIFCS
STIFF [ o] ELEM

!

» MODIFY
DISPL [*
{ BANSOL

STRESS

.Y
——( REPEAT=1? )

F

J FIGURE D.2  FLOW CHART BY SUBROUTINE
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D.2 Program Limitations
The program in its present form is capable of dealing with
maximums of
50 Elements
65 Nodal points
10 Layers
25 Time steps
Band width = 40.
The solution of problems exceeding these limits will require
an increase in dimension statements and possibly the use of out-of-

core storage.

D.3 Preparation of Input Data
The preparation of input data required for use of the com-
puter program is described below.
1. Heading, 20A4, 1 card
2. Control card, 5I5, 1 card

Column 1 - 5 Nr. of nodal points (NJ)
6 - 10 Nr. of elements (NE)
11 - 15 Nr. of layers (NL)
16 - 20 Nr. of time steps (NTS)

3. Information concerning the stepped stress strain diagram, 2 cards.
a) 4F10.5
Column 1 - 10 Cracking coefficient "o" for second branch
of curve (GAM1)
11 - 20 Cracking coefficient "o" for third branch

of curve (GAM2)



21

31

b) 4F10.5

Column 1

n

21

3

4, Creep function
a) 6F10.7

CoTumn 1

11

21

31

41

51
b) 4E15.6

Column 1

16

31

46

- 30

40

10

20

- 30

40

D6

Cracking coefficient "a" for fourth branch
of curve (GAM3)
Cracking coefficient "a" for fifth branch

of curve (GAM4)

Limiting tensile stress for first branch of
curve (SCT1)

Limiting tensile stress for second branch of
curve (SCT2)

Limiting tensile stress for third branch of
curve (SCT3)

Limiting tensile stress for fourth branch of

curve (SCT4)

constants (Equation 2.16), 3 cards.

- 30
- 40

K (K1)
k2 (k2)
k3 (K3)
oy (ALPH1)
%y (ALPH2)
aq (ALPH3)
a (A1)
a, (A2)
ay (A3)

(A4)
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c) 2E15.6
Column 1 - 15 p (AAC)
16 - 30 gq (BBC)
5) Element Data: Nodal point numbers at corners of each element, and
print code, 9I5, 1 card per element.

5 Element number (M)

Column 1
6 - 10 Nodal point number for corner 1 (NODG(M))
1
16
21 - 25 Nodal point number for corner 4 (NODT(M))

15  Nodal point number for corner 2 (NODH(M))

20 Nodal point number for corner 3 (NODI(M))

26 - 30 Print code for corner 1 (IPRINT(M,1))
31 - 35 Print code for corner 2 (IPRINT(M,2))
36 - 40 Print code for corner 3 (IPRINT(M,3))

41 - 45 Print code for corner 4 (IPRINT(M,4))
The parameter IPRINT determines whether output (stresses,

strains, moments) is to be printed at each time step.

If IPRINT = 1, output will be printed.
If IPRINT = 0, output will not be printed.
NODG(M) ] 1

NODH(M)
NODI (M)
NODJ(M)A

| is nodal point number at corner j of element M

Sow N

.

The element nodal point numbers must be ordered in the sequence

shown in Figure D.3.



D8

NODG(M)

NODH(M)

NODI (M)

FIGURE D.3  ELEMENT NODAL POINT NUMBERING SYSTEM

6) Nodal point information: Boundary condition code and x,y coordi-
nates defining the location of the nodal point, 215, 2F10.3, 1
card per nodal point.

Column 1 - 5 Nodal point number (M)
6 - 10 Boundary condition code (KODE(M))
11 - 20 x-coordinate of nodal point (X(M))
21 - 30 y-coordinate of nodal point (Y(M))
The boundary condition code is as follows,

Column 6 Blank

7 1 = displacement boundary condition for w
0 = force boundary condition for w

8 1 = displacement boundary condition for Wy
0 = force boundary condition for Wy
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9) Details of loading history and shrinkage strains, 2F10.5, E15.6,

1 card per time step

Column 1 - 10 Time (days) T(1)
11 - 20 Uniformly distributed load at time

T(1) UUDL(I)

21 - 35 Shrinkage strain at time T(I) ESH(I)

10) Depths of layer boundaries from top surface, F10.5, 1 card per
layer boundary (total number = number of layers + 1)

Column 1 - 10  Distance of layer boundary from top surface

D.4 Description of Output
The following is a brief description of the output obtained
from the computer program. The subroutines from which the appropriate
output FORMAT statements may be obtained are given in each case.
a) A1l input data is printed for record and checking
(see COEFF and INPUT).

b b) The time (T days) for which each analysis is carried
out is printed followed by the pseudo instantaneous elastic and shear
moduli (see PARAM and CMOD) .

c) For each cracking iteration, the coefficients in the
plate bending stiffness matrix [D] are printed (see STIFCS).

d) If cracking is detected, the message "CRACKING
DETECTED THIS ITERATION® is printed and no further output is printed
for the iteration (see STRESS).

e) Concrete stresses (Gx,cy,Txy), total strains (el,e;,yly)
and inelastic strains (ei’ei’Yiy) are printed for each layer J at each

corner 1 of each e]ement M if the parameter IPRINT(M,I) equals unity
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(see STRESS).
f) Steel stresses are printed at each corner I of each
element M if IPRINT(M,I) equals unity (see STRESS).
| g) Moments M, and M, are printed at each corner I of
each element M (see STRESS).
h) 'The displacement vector for each time T days is
printed (see STRESS).

J) For each time step the cracking coefficient matrix

is printed (see STRESS).
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D.5 PROGRAM LISTING

The author and the University of Alberta disclaim responsibility
for the misuse of the following program, nor will they be responsible for

errors in the listing.




Ches
r
Caxs

100

101

200
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e ool o ok ok ool o o ofe o ok ok e ok o o ok o ook o o o ok ol ok ok ok
MAIN PROGRANME

ok ok ok b okokokoleok ok ok ok ok ook ok ook ok R ok kR ok

COMMON A(260,40),S(16+16)sB(260)¢V113+50+¢4410421),

1 V2023:.5044+10+21),

2 FIXU50,4480)4FIY(50,4,10)FIXY(50+4+10)45CX(5944+10),

3 SCY(50,4410)+5CXY(5044410), DNX{50,441),

4 DNY(50e4)e FIXI5044)FIY(50,4)sFIXY(5044)¢ECX(5044)4EQYI5044),
SCAL3¢3)4CBI303)eXI65)eY(65)HIE5)WXIE5),HY{65)WXYI65),HED(20]),
n(eS).DX(65l.DV(65’-DXY(65)oABX(SO)eABY(SO)oATX(SO)vA‘Y(SO)o
DTX(S50)+NTY(50)4CRAXI5N),LRY(SO)NPTH(50),T125),UUDLIS50),2(11),
AIXIUI0)JAIYI10) 4 AMX(10) o AMY(10),DC11(10),DC22(10)+NDCL2(10)+CNL2),

DELTA(5044410)KODEL65)NODGI50),

NODHES0) e NCDTISN) JNORI(SO ) o LM{4) o NEJNJoNLoNEQ,MBANDINT,
RFPEATNTS

DCURLF PRFCISION A,S.8B

INTECER PEPEAT

INTFGFR DEL TA

CALL COFFF

CALL INPUT

CAlLL FARAM

CALL CMmaD

CONTINUF

RFPEAT=0

CCNTINUF

CALL LCAD

CAlL STIFCS

CALL STIFF

CatL DISPL

CAl L STRESS

1F (RFPEATL.EQ.1) GO TO 10C

TF (NTLGT.NTSIGO TO 200

CALLL PARAM

CALL CMOD

CALL CRFFP

GC T 100

CONTINUF

STOP

FAD

W N =D~
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SUBRCUTINF COFFF
ok e v o o ok o o ool e o ol o o ok ol ok ot ok ool ol vk e ok b ok ek ko
C INPHTS COFFFICIENTS FOR ELFEMENT STIFFNESS MATRIX
C ool oot ok ok o o o ofe s ode ol ok o o o o o ol ok o ot ok e ol e o ol ok ke
COMMCN ZLYNZCIL3016)40C203616)¢C3(3416)14C4103416)1,P1(3,16),P2(3,16),
1P3(2,14),PL(3,16)
DCURLE PRECISICA CleC24C34C4sP1eP2,P3,P4

nn 20 J=1.,16
nec 20 1=1,3
20 READ(IS5C0) TodoClUTed)eC2lTed)oC3(T4U)eCalled)oPlllod) P2(1,4J},
1PI(Ted)ePalT,U)
WRITF (64,450)
NC 21 J=1.16
ne 21 1=1,3
21 WRITE (6.600) loJ.Cl(l.J)'C?(I.J).CB(l.Jl.Cé(l'J).Pl(l'J).PZ(I.J’.
1P T4J)ePOLT )
[
450 FORMAT (¢ ' 0 1 J c1 c? c3 Ca Pl P2 P13 P4
SO0 FNRMAT ( 2154F€aCs7F5.0)
600 FCRMAY ( 2T15.F6.04TF540)
C
RFTURN
END
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SURRTCUTINF TIANPUT
€ Bl ok bk b kot o Bk o ok b okl o oK vl e o o b ok e e e ok ok o

« RFANS AND WRITES INPUT DATA
CAREAL # e S phddh e dhd hh gt Rk il kR d kkohh ko k&
«

COMNEN A{260,4D)4S(106416)e8L260YsVIL3:¢50¢44¢1Ce2)y
1 V203.504441N42),
72 FIXUS0 4410 FIY(50,4410)FTIXYI50444+10),SCX(50,4,10),
3 SCY(5044410)SCXY5Ds4410), DNX{50+,4),
4G DNY(SCoA)FIX{5044) 4FIYIS50,4)+FIXY{(S50+,4)+ECX{50+44)EQY(5D,441),
SCAL232)eCBU343) o X{65) Y (65 WIE5)eWX(ES)sWYLES)WXY{6S5),HED(20),
6 DEES)DXIE5)4DYLES) s DXYLES)ABXI(S50)+ARY(50),ATX(50)ATY(50),
T DTX(EN)«DTY(SD)4OCRXY(S0) +CBY(S50)},DPTHIS0)T(25),UUNL(50),2(11),
B AIX(IC)AIY(10)AMX(10) ,AMY(10),DC11C10)4DC22(10)sNCL2(10)+CD(2),
1 DELTA(SO+44+410),KODFE(65),NODG(50),
2 ACDHISOY«NODTLS0)NONJ(S0) o LME4) JNEJNJoNL 4 NEC,MBAND,NT,
3 RFPFAT,LNTS
CCMNMCN/TRACK/NTTY
COMPONZPARMS/ KloK2,K3,ALPH] ALPH2,ALPH3,A1,A2,A3,A4,AAC,BBC
COMNCANZCHFK/QOX 1504644101 ,0CY(5004+10)
COCMMCN/CRAKY/ SCT1,SCT2,SCT2,SCT4.GAM]L+GAM2,GANM3,GAMS
CCMMCN/CONC /MUC o ESoFCoSCT,LGC
COCMNMOCN/SHRINK/ESHI25)
CCMMCN/PLSTC/ DI1(50).D22150)+D12(5C) «D23(50)
CCMNCN/PRNT/IPRINT(S044)
DCURLF PRFCISION D11,012,C22.D33
NDCYRLF PRFCISICN A,S.R
INTEGFR REPFAT
INTEGFR DELTA
RFAL NUC
RFAL Kl,K2+K3

C .
RFACIS:1000) HEDWNJJNFoNLWNTS
WRTITF(6£42000) HEDWNJJNEJNL oNTS
C a
RFAD(S5.,4001) GAM1+GAM?2.GANM3I,GAM4
WRITF{A.5N01)1GAM] .GAM2,GAM2,GAMS
(.
RFAN(S5,4C01) SCT1+SCT2+4SCT3,SCT4
WRITFI6.5002) SCT1.,SCT2,SCT13,SCT4
C
READIS.AC20) Kl oK2+eK3¢ALPH] 4 ALPH2,ALPK3
RFACIS,4030) Al,A2,A3,A4
RFANE5,4040) AAC,PBC
WRITE(H¢4075) K1eK2¢eK2,ALPH1 ,ALPH2,ALPH3,A1,A2,A3,A4,AAC,BBC
C

WRITF (6.2003)
NC 200 M=1,NF
RFAT {5,10n2) M NODGIM) JNODH(M) 4NODI(M)4yNODI(M) 4 IPRINT{M,1),
1 IPRINT(M,2) o IPRINTIM,3),IPRINT(Me4)
WRTITF (6420C4) M NODGIM) 4NODE(M) NODI (M) oNODJI(M) o IPRINT(My1),
1 IPRINT(Me?2 ), IPRIATIM,3}IPRINT(M,4)

200 CONTINUF

(.

WRITF (6,2001)
DC 100 M=1.NJ
READ (5+1001) N KODELM) 4 X (M), Y (M)

101 WRITF (642002) N KODEIM) o X(M),Y (M)

100 CONTINUF ’
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(#
RFEAD(5.1020) MUCJES
WRITEL(6,2020)MUCLES
.
WRITF(£,2026)

NC 15C M=1.NF
REAC(5.,1025) ATX({M)JABX(M) ATY (M) ABYIM),DTX{M),DBXIMIDTYIM),
1DRY (V) DPTHIM)
WREITE (62025 ATX (M) ARXIM) JATYIM) LABY (M) oDTX{M),DBX{M} 4DTY (M),
IDRY (M) DPTH(M) )

150 CONTINUE

C

WRITE(6,3000)
N0 78 I=14NTS
RFAC(543001) THD)LUUDLETYLESHLD)
WRITE(6.3002) TI{1),UUDLIT)ESH{I)

78 CONTINGF

ML =NL+1

WRITF(64,3005)

DC 29 Jy=1.NNL

RFAC(5.3003) Z(J)

WRITE(6,3004) J,720J)
39 CCNTINUE

seakxs INITIALISE #¥kdkkgkioins

D05

DC 17 M=1,NF
PO 17 K=1,4
NC 17 L=1.NL
OCXINKelL)I=1
OCV‘NOK'L‘=1O
NDFLTAIM.Kel =1

FIX‘NQK'L’=0.0

EIY{M,K.L)=0.0

EIXY{NMKoLI=0.0
17 CONTINUE

C
CAll.1)=0.0
CAL2.,1)=0.0
CA(3,))=0.0
NTT=1
NT=1

c

1000 FCRNMAT (20A4/415)
1001 FORMAT (21542F1063)
1N02 FORMAY (915)

1020 FCRMATIFS5.34E15.6)
1025 FORNMAT( 9F845)

2000 FORNMAT {91%,20A4/7 NUMAER (F JNINTS~==='14/
1 ¢ NUMRER OF ELEMENTS-='14 / % NUMBER OF LAYFRS---=' 14 /
2 * NUMRER OF TIMESTEPS=' 14 )
200) FCRNMAT('O', ! JCINT CNDE X Y')
20072 FORMAT (2110.2F10,.5)
2003 FORMAT('Q', ! FLEMENT G H I J

1 PRINT CODF *)

2004 FORMAT (' 7,511C0,15.312)

20720 FCRMAT(I(CY, ' PCISSCONS RATIC (CONCRETE)=*4FS5424/
1 * YOUNGS MCDULUS (STEFL) =t ,F15.6 )



2025 FORMAT (' PQFg,5)

2026 FORMAT('(C*y* ATX ABX ATY
1 DRY NEPTH * )

3N00 FNRMAT{1]¢,? TIME--(CAYS)

3001 FCRMATIPF10.5¢E15.6)

2002 FORMATI(® ',2F20.5+F15.6)

3003 FORMAT(F10.5)

3INN4L FORMAT(Y 1,0

3005 FORMAT(®]1, ¢

4001 FORNMAT(4F10.5)

4020 FORMAT(AF10L.1)

Cold,?
LAYFR RDUNDARY NR
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ABY DTX DA X

UsDeloelPeSala} SHRINKAGE®)

' FBes)
DISTANCE FROM REF SURFACE')

4025 FORMAT(*0's* CRFEP FUNCTION PARAMETERS?,/' Ki=',F10s54/"' K2=1,
1 F10e5¢/% K3=94F1045¢/" ALPHLI="4F10s7,/' ALPH2=" 4F10s7+/

2 U ALPH3=',F1047¢/* Al=t4E15,64/"

A25% 4Fl5e69/' A3="4E15.6,/

3 0 A4z, F1546¢/" AAC=',F15.€4/" BRC=?*,F15.6)

4030 FCRIMATL4FLIS,.6)
4040 FORPAT(2F15.6)
5001 FORMAT{®(*,*

1 ' GAM4=t (F10.5)

GAM1=*4F10.5+' GAMZ2=*,F10.5+"' GAM3=1',F10.5,

5002 FORNMATI('0%'¢? SCT1='¢F10a4e® SCT2=%4F1044+'SCT2=,F10.4,

1 ¢ SCT4=',F10.4)
RFTURN

FND
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SLRRCUTINF LCAD
€ eote ok o ok Aok o ok b o e alkolok ok ol o ke ade o ok ok ook ok o ok o ok ok ool o %
C COMPUTES APPLIED AND EQUIVALENT LOAD VECTORS
D Y ITI LT,
COMNMON A(260+40)08(16416)14BI260)1sV113+450444+1042),
1 V2134504401042,
2 FIXUS50,441N)0ETY(50,4¢10) ¢EIXY(5044410)+SCX{50e4410),
3 SCY(5N4s10)4SCXY{5044410) DNX{5044),
4 TNY(SCel) o FIXIB004 sFIYUIO0,4)eFIXY(50,4)4FOX(50+4)+EQY(50441,
CCAL3e¢3) eCRIBe2) o XUES) o YIO6E5) 4WILES5) HXIE5),HY (65)4WXY{65),HEN(20),
DOESYeDXIES) DY ES5)DXYIES) JABX{S0) s ABY{SO)+ATX(50)+ATY{(501},
PTXESO)oDTY(50)LRX{IS50)«CRY(SO)4DPTHISD) T{25),UUDLIS50),2(11),
AIXCIN) AJYLL0) o AMXTTD) s AMY(10),DC11{10),DC22(10),NCL12(10)CDIL2),
NDELTA(SD+4¢10) 4KCDE{65) 4NODG(50),
NOGE(S0) o NCDTI{50) NODJI(SG) o L&) ¢y NEyNIoNLyNEQ,MBAND¢NT,
RFPFAT NTS
COMMCN/CHFK/ZQCX (50644101 ,CCY{(50444+10)
COMNCA/CONC/MULCWESWECSCT o GC
DIMENSTION WH(46) W2{4)sW3L4) s Wal46),011(4),Q02(41,03(4),04(4)
DIMFASTON MXT(5044) e MYT (50461 MXYIL5044)
DOUPRLF PRFCISICN A,S,.R
INTECFR PFPFAT
INTECGFR G
INTEGFR DFLTA
RFEAL MUC
RFAL MXI MYT4MXYI]

2NN = DN

f ASSUMING ALL PRESCRIBED DISPLACEMENTS ARE ZFRO

N 147 1=1NJ

W{I=C.0

WX{IV=0W0

WY(T)=r,.C

WXY (T)=0.0
147 COCNTINUF

NN 70C M=1.NFE
G=NCNC (M)
I=NCCTIM)
AX=x{T1)=X{G)
BY=Y{1)-Y(G)

ULL =UUPLINT)

UNL%*AX*BY /4,
UDL*AX*BY /4,
DL *AX*BY /4o
UGL*XAXXBY /4,

x

—

-

N
- - -
woowou

W2(1)= UDL *AX**D%RY /24,
W2{2)= UDL*AX*X2%RY /24,
W2(2)==UNLXAX*%2%XRY /24,
W2{a)==UDPL XAXX2XRY /24,

W2(1)= UDL*AXARY®%D /24,
W2 )==UDL*AX#RYX%2 /24,
W3 ) ==UDLEAXIRY R (24,
W2l 4)= UDL*AXSRY*%2 /24,
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Wall)= UNDL*AXAR2XPYR%2/]144,
Wal2)==UDL*AXSK2%RY%¥%2/144,
Wal2)= UDLXAX®%2%PY%%2/144,
Wal4a)=~UDLXAXAR2RRYR%2 /144,

352 CCNTINUF

¢
c

132
.

100

PP, INELASTIC LCADS (CREEP) sAfkhRrkhskhkhhbhbg kg

CONTINUE

Ne 100 K=l,.4

MXT(NJK)=040

MYI(MK)=0e0

MXYTI{N.K)=C.0

DNXY=TCPTH{(M) /2,

DO 100 L=1.ANL

H=74L41)=-21{L)

CECLI=FC/(1-MUCH**2 ) *kHEQCX(MoKo LI ¥ETIX{MeK,oL}

MUXTANGK)=MXT (MoK )+ {ONX{MKI=(Z(L+124Z(L))/2,)*CEC]
CFC2=NUCHEC*H/ (L oa=MUCH*2 1R QCX{M KoL) *QCY(MeKeLIXETY(MoK,sL)
MXT AN K)=MXT (MoK 4+ (DNXIM KI-(Z(L#1)+Z(L)}/24)2CEC2
CFCA=NUCKEC/{1o=MUCH*2 ) 2HXQCY MoKy L) *QCX (Mo KoL )I*ETIX(M,K,oL)
MYTUNGK)=MYTINMeK)4+ (DNY (Mg KI={ZEL#1I+Z{L))/2.)%CECD
CFC4=FC/{1-MUC**¥2)%QCY (M Kol ) XHEEIY{MoK,L)
MYTINMoK)=MYTINKIH(DONY(MoK)~-(ZIL4+1)+ZIL})/2.)%CECYH
CFCS=h*GCREIXY(M,K,L) :

MXYT(N,K)=MXYI{MsK)+(DNXY ~{ZIL+1)+2(L))/72.)%CECS
CCNTINUF

MXTENMo1)=(MXT (Mo L) 4MXT (Me2) ¢MXT (M3 )4+MXT (M4} /4,
MXT{N2)=MXT{(N,1)
MXT(Me3)=MXTI(N,1)
MXT(Mes4)=MXT(NMs1)

MYT (M1 )=(MYT (N 1) +MYT(M2)+NYTIM,3)4MYI(Mya)) /4,
MYT (M, 2)=MYT(NM,.1)
MYT (VM3 )1=MYT (VM. 1)
MYT{N.4)=MYT(NM.1)

MXY T{NMe1)=(MXYTI(Mel)#MXYTI(Me2)+MXYI(Mo3)eMXYE(Me4)) /4,
MXYTI(NG2)=MXYI(M,1)
MXY TIN,3)=MXYT{M,]1)
MXY T (M4 )=MXYI({M.1)

OHLT)I=MXYTI(M,1)/{AXXBY ) %2,
QU{2)=-MXYT (M2 )/ (AX*BY) %2,

01€2)=MXYTI(N,3)/LAXKBY) *2,

QY (4)==NXYT{M,4)/LAXEBY ) %2,

Q20 1)==MXI(Ns1)/(2.%AX])

02(2)==MXT(Ms2)/(2%AX)

0203)=MXT(NM,3)/(2,%AX)

02(4)=NXI(M4)/(24%AX)

Q3(1)==MYI{Me1)/12.%BY)

Q3(2)1=MYT(M,2)/(2.%8Y)

03(2)=NYT(Ms3)/12.%BY)

03(4)==MNYI(M.4)/(2.%BY)

Q4l1)=~ (MXTIMG1)*BY/(12e*AX)+MYT (M, 1) %AX/{124%BY))
04l 2)= (MXTIMG2)%BY/ (12 %AX)+MYT( M, 2} %AX/(12.%8BY]))
Q4{2)=- (MXTINGA)RRY/(12.%AX) +MYT({M,3)*AX/(12.%BY})
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SURRCUTINF STIFCS
COCMNMEN A(260,40)¢S(1641€)4R(260),V1I(3,504441C42),
1 V2(2.504441042),
2 FIXUST 34410V oeFIVY(5094410)FIXY(5044+10),SCX(5044,10),
3 SCY( (SN 44,10),SCXY{5044,1C)» DNX{50,4),
4 DNYCESCA4)eFIX(5004)sFIVI5064)eFIXY(5C+4)FCX(50+4).EQY(50,4),
GCAC2,2)43CBIIe2) o X{E65)oY(ES5) yNIES) HX(ES)¢WY{65) s WXY(65)HED(20),
CUESYIDXLAS) o DY{ES) o DXYIES) 4ARX{50), ABYIS0), ATX(50),ATY(50),
CTX{S0)eNTY(S50)eCRX(S0)TRY(S5NV4NPTHISC),T(25),UUDL(50),2(111},
BIX(I0I L AIYLLI0 ) AMXETINYAMYLL0),NCLLELN),DC22(1C),DC12(10),CI2),
NDELTA(S50+4410)KODE(65),NODG(50),
NCDEAS0)NCDTIISO) JNONJI(S50) o LML) ¢yNEJNIoNLoNEC,MBAND,NT,
REPFATNTS
COMNMCN/PLSTC/Z D11(50)4D22(5C)eD12(50)14+D23(5C)
CCMMON/CHEKZ70CX(50e4+10)140CY{50,4,10)
COMNMOAN/CONC/MUCLESH EC4SCT,GC
DIMENSION ACX{4),2CY(4)  AMAX(4) AMAY(4),DD11(4),DD2214),0D12(4)
NCURLFE PRFCISION A,.S.B
NCUALE PRFCISICN C11,D124C22,033
INTEGFR RFEPEATY
INTEGER DFLTA

NN DI

! : . =%k« (CCMPUTF EFFECTIVE TRANSFORMED AREAS *%kkdkd¥ks

c

C

r

10

20

30

40

REAL MR

RFAL w~MUC

MR=ES/FC

PC 100 M=1.NF

NC 20 I=1.4

ACX{T1=Ca0)

ACY(1)=0.0

NC. 1C J=1,A1L

H=7(1+1)-70J)
AUX{II=0CX(MsT1oJ)*H
AJY(J)=0CYIN,TeJ)*H
ACX(I)=ACX{T)+AdXLI)
ACYLII=ACY (1) +ADY L)

CONTINUF

ACXUT)=ACKX{T)4MR* (ATX{MI+ABX(M))
ACY (I)=ACYLTI+NRE(ATY{M)+ARY({M))
CONYINUF

C %%%%x CCMPUTF NFUTRAL AXIS DEPTHS #¥#t#

ne 40 I=1,4

AMAX(T)=Co0

ANAY(I)=0.0

NC 20 J=1,.NL

H=7(J411-70])
AVXEII=0CX(MeTod)¥HRX{Z(J+2)42(J)) /2

AMY (J)=0CY (M, T4 J) R (Z(J41)+2(J)) /2,
AMAX(T)I=AMAX{T)+ANMX(J)

ANAY(T)=AMAY(T)+ANY(J)

CONTINUF

AMBAX(T)I=AMAX{I)+  MRA(ATX(MI*DTX(M)+ABX({M)=DBX{M))
AVMAY(T)=AMAY(TI#MR*¥(ATY(M)RNTY (M) +ARY (M) %DRY (M) )
DNX (M T)I=AMAXCT ) ZACKLT)

PAYANM T)=AMAY(T)?ACY(T)

CCNTINUE ’



D23

SURROUTINF STIFF
C xde k22 d ks bk thhkhhk ekt ddokkht Rhkd hhpkkk

€ ASSEMPLFS STRUCTURF STIFFNESS MATRIX IN BANDED FGORM
C AARRRR AR AERIINERRARRRRRAARARRERAER KSR SRRk S
C

CCMNON A(260:40)4S(16416)sPL260)3V1(34504441042),

1 V2(3.50+4+10+2),

2 EIX{5Ce4s10)oFIYI50,4410)sFIXY(5004010)4SCX(5054410),

3 SCYL5044+10)oSCXY(5004410), DNX{50,+4),

4G DNY(S044)eFIX{5044)4FIY{50,4)sFIXY{S5Cs4)+sEOX(50+4)9EOQY(5044),

SCAI343)eCBI3e3)aX{65)eY(65) MIOE5)HWX{E65) WY L65) HXY(65),HEDL20),

CLES)eNXLO6S)+DYLES)sDXY(65) ABXIS0)ABY(50)+ATX{S50)ATY (501},

CTX(50)+DTY{(50)4CBX(50)+0BY(S50),0PTH(50),T(25),U0DL(50),2(11)},

AIXU10) o AJY(10) 4 AMX(10),AMY{10},DC11(10),DC22(10),0CL2{10},+CD{2),
DELTA(504+4410),KODE(65),NODG(50),

NCDHI50)« NOCT{SOIoNODJISO ) o LM{4) s NEGNIJNL NFG,MBAND,NT,

REPFATLNTS

W\ D~

CCMMCMN/ZIDSYZ IC
DIMENSICN NOD(4)
NDCURLF PRFCISICN A,S.B
INTECER REPEAT

INTEGFR DELTA

DETERMINF BAND WIDTH

nEelel

Nf=C

0DC €0 I=1.NE
NOD(1)=NCNGHT)
NOD(2)=NODH( 1)
NCD(3)=NCDILT)
NENC(4)=NODJII(])

DC S0 J=1.3
_dd=a41

NC &0 K=JJd+4
KK=TABRS{NOD (I I=-NCC(K))

TF{(KK=-ND).LELO) CO TO 50
ND=KK
50 CCNTIMUE
MRAND=(ND#+1 ) *4
NFQ=42NJ
NC 200 I=1.NEC
R(I)=C.0
NG 20C J=1.MBAND
200 A(l.41=0.0

C
DC S0C N=1.NF
C FORM 16X16 ELEMENT STIFFNESS MATPIX
Ie=A
C
CAtL FLEM
C
C ADC FIEMENT STIFFNESS TO TOTAL STIFFNESS
C .

LMUL)=4%NONG(N)~4



——

400

500

LNM{2)=4*NODH(IN) -4
LVEIN=4%NODT(N ) -4
LMI4)=4xNODYINY -4

DC 40C 1=1,4
DR 400 U=1.4

DC 400 K=1,4
TT=1MmiT)+K
KK=4%T-44K

DC 40C 1=1.4
JI=LMESI4L=1T41

IF (JJ.LE.N) GC TO 400

IF (JJeGT.MBAND) GO T0 400
Li=4%J-~44L
A(lloJJ)=A(Il-JJ’+S(KK.LL)
CCNTINUF

CCNTINUF
RFTURN

EAD

D24



200

210

220

250

COlYe6)==1/AX
CC(P2+6)=—AX/BY%%2
COt3.¢)==-2/RY
CO{Y1e?)=RY/AXBR2
Cot2,7)=1/RYy
CCUE2,7¥=2/AX
COU1,P)=RY/AX
CNE2.E6)Y=AX/RY
CClL3A,R)=2,
CCU14S)=1/7AX%*2
CCU2+9)=1/RY%%?
COL2.G)=7/0LAXMRY)
CO1,10)=—1/AX
COt2.3CHh==AX/BY®%R%D
COt3,10)==-2/RBY
CCl1e11)=-RY/AX%¥%X?
COtzs11)=~-1/BY
CO0L3.11)==2/AX
COLYL12)=BY/AX
CCULZ412)=AX/RAY
CC(3.12)=2.
COUY1.33)==1/AX%%2
CCl2:12)==-1/BY%*%2
CCU3,12)==2/{AX%BY}
COl1.14)=1/AX
CCU24146)=AX/RY%X%D
CClAs14)=2/RY
CO(1,15)=~RY/AXE%2
COt2.15)=—-1/RY
CC(3,15)==2/AX
C1.,16)=BY/AX
CCl2,16)=AX/BY
CCt3,16)=2,

NnC 40C I=1.16
D0 400 J=1.16
N0 30C M=1.%

IF (MelFe3) GC TO 200
TF (M. FQ.4) GC TO 210
IF (M.FQ.5) GC TO 220

L=
G 1C 250
K=2
L=1
GC 10 2750
k=1
L=2
G0 10 250
CCNT INUF

OLIMI=CIIK,T)}*CLIL,J)
Q2(M)=CL(K TIHC2(L+II+C2TKsI)*C1(L,J)
02MI=CLIKeIIHCAILLII4C2(KTDI*C2{L4J) +C3(Ks11%C1(L,J)

D26

04IMI=CLIKeTIACAILLII+C2(K TIRC3 (Lo JI+CI(KIIIRC2{LsJI+CHIK T}%

1C1ML.J)

OSIMI=C2{KeT 1 *CAIL JI+CIKIT*RCI(L IV +CA(K, I IXC2(L o)
06IFI=CIIKsII*C4(LJV+CL{KsT)*C3(LsJ)
O7(MI=C4lK.IDVRCa(LJ) :



c

200

D27

RIINMI=PI(K,I)2P1(L,+J)

R2UMI=PIIK T)}I*F2(L+JI+PO2(K I)%PIIL,J)
PRACMISPI(KT)I#P(L o J)4P2UK T IEP2(L o JI4PI(KyIDRPL{L,J)
RAUNMI=FPI(KeTI#PAIL I 4P2UIK T IRPI(L,J)4P3(K,1)%P2(L,J)+
1P4tKT)2P1{L 4 )
RE(CNMI=P2UKoTIHPAIL oI} +#PI (K TIXPI(L o J)+P4H{K,I1%P2(L,J)
REIMI=PI(KeTIRPLILLU)+PAIK,T)*P3UL )

RTUMI=P4LIK,I)AF4(L.J)

AQUNM)I=QLIMI+Q2 (M) /24403 (M) /3a404IM)/4.+05(M)/5.4Q6(M)/6.4QT(MY/ T,
AR({M)=RIIM)4R2(M)/2.4R3(M)/3.4R4(M)I/4o+R5(M)/S5.+REIMI/6.+RTIMY/T,
27UM)=A0(MYSAR(M)

CONTINUE

A(T.4)=22(1)
A2(T.4)=772(2)
A2(1.d)=72(3)
AWt T.d)=72714)
AS5(1.41=72(5)

‘400 SEToUI=AX¥RY*(CO(1sTIRCOMLsd)I%*AL(T,4)2D1LCID)

lalie Nal

1 +C0U2,1)*CCU24JI*A2(T, U1 %D2201ID)  +COU3,J)*A3LT,J)%COL3,1)
2 333LID) +C0(2,1)1*COML+J)*AG(T,J)%D1I2{ID}
3 4CCELTI*COT264V2AS(T,3)%D12(1D))

RFTURN
FAD



C
C
C
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SURRCUTINF RANSOL
P S T T Tt R LR LT L L AL L Ll bhbh bbbt

IN-CCRE LINEAR EQUATION SOLVER FOR SYMMETRIC BAND MATRICES

CCMMCA A(?60o40'95(16016,vB(ZGO'vVl(3050'401002"

1 V2034500410420,

? E'X(57.4910,'EIY(50'4110)oElXY(50.9010"SCX(5004’10,O

3 SCY(50040]0’05CXY(50v4o10)' DNX(50.4),

4 nNV(50.4).FIX(SO.4’.FIY(50.«D.F!XY(50.4).EOX(50.4).EOY(50.4)o
SCA(3.?D.CB(3.3).X(bS).V(bS).H(65D.HXI65).HY(bsl-HXY(65).HED(ZO).
C(65)onX(ﬁs'vDY(é§).DXV(65)DABX(SO,QABV(50)'ATX(50’OATY(SO)v
CTx‘qn)'DTY(SO"EBX(SO"DBY‘SO"DPTH(SO"T(ZS)'UUDL(SO"Z‘11"
AJX(]O).AJY(lO).AMx(10).AMY(10).DC11(lO).DC?Z(lO).DClZ(lO).CD(Z).

DELTA(SOQ*'10)|KODE(65'QNDDG(SO"

hnDH(So).NODl(SOD.NODJ(SOD.LMlhl-NE'hJ.NL.NEC.MBAND'NT.
REPEFAT(NTS

INTEGER REPEAT

INTEGER DELTA

DIMENSION S$S(10400)

ECUIVALENCE (SS.A)

DCURLE PRECISICN A.S.B

DOURLF PRECISICN €S,PIVOT,C

NN 0N

NCOL=260
NA=4*N)
NR=AN
NRS=NR-1
MMR=MBAND-1

100 DC 120 N=14NRS
M=N-1
MR=MINO (MARAND.NR-M)

PIVOT=SSIN)
J=N
DC 120 1=2.MR
J=J+NCOL

104 C=SSLN/PIVOTY
Tl=MelL
12=114{MR=1L)*NCAOL
1i=J

NnC 110 I=11,12.NCCL
SS{T)=SS(I)=-C2*SSUIT)
110 1I=114NCCL
120 SS€J)1=C

ICHECK=0

PO 150 T=1.AA

IF (SS{1)el FaCaO) ICHFCK=1
150 CONTINUF

1F (ICHFCKL.FCa1) CALL EXIT

200 DC 220 N=1.NRS



2?20

300

320

400

MR=FMINO(MMRAR=-N)
C=R(N)
BINI=C/SSIN)

K=N

Li=N+]

L2=N4MR

DC 22¢C L=L1,L2

K=K +NCOL
RILI=R(L)I-SSIK)*C
ARINR)=RINR)I/SS{NR)
DC 320 T=1.NRS
N=NR-1
MR=MINO(MMR, 1}
J=N

Ll=N+1

L2=N+MR

NnC 220 L=L1,12
J=J#NCOL
RINI=RIN)=-SSCJI*R{L)

RFTURN
FAD

D29
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SLRRCLUTINF CMOD

(. #**t**t#*##*##t#t‘####t##*##**####***#*#*##**##

G

CCMPUTFES PSFULO-TASTANTANEOUS ELASTIC AND SHEAR MQODULL

C *##*##Q#1###*#t#0’t‘####***tt#*##*#**#####****t

2(

COMPEN AL260640)9S016516)4R(I260)4V1135505401Co2)0

1 V2103:50e4¢10e2),

2 FIXUECeae10)oFIYIS0,4410) EIXY (50049100 4SCXI5004410),

3 SCY(BNL4e10)eSCXY(5004¢10), DNX(5044),

4 DNY(%f.«).FlX(SO.ki.FlVfSO.«I.FlXY(50-4)oECX(SO.hr-EOY(SO.hl'
scn(3.11.ra(3.3’.x¢65).vtss).hlbﬁ).uxtesl.wV(éﬁi.wxvlosh.HED(ZO)'
D(eEl.nxtﬁﬁl.DY(&S).OXY!b%)-ABX(SO).ABY(SO'.AtX(50)oATY(SO'o
nTxl%n).nTY(SO).PBX(SO)oDBV(SO)'nPTH(SO)oT(ZSioUUDL(SO)oZ(ll'v
AJxIlOl.AJV(lO!.AMx(10).AMY(IO).DCII(IOl.DCZZ(IO).DCIZ(IOl.CD(Z).

' DELTA(50+4+10)KODE(65)¢NADG(S50),

nnnw(%o).nnnltsoi.nothso).LM(A).NE.AJ.NL.NEC.MBAND.NT.
REPEATLNTS _

CONNONZCONC /NLC L ESLFCoSCT W GC

NOURLE PRECISICN A,S,8

INTECEP REPFAT

INTFCFR NFITA

RFAL MUC

W = D~

Fr'—'(.('
e 20 14=142
'FC=F(0(B(|J02)'(Cb(lJo3)4CA(lJc?"

3 CONTINUF

FC=FCAeNI214CN 1Y)
FC=2.C/FC
GC=I1C/7(2.% 1 144MUCH)
WRITE(A.9035) E( ' GC

QNG FrRNVATIICY ! INST, FLASTIC MODULUS=*4F12454/

| I SHEAR MODULUS =V ,F12.5)
RETURAM
FAD
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SULRRILTINME PARAN
T I e R T
cr CCMPUTFS CRFFP PARPAMETERS CALCBWCD,
(. P Y Ll 22 R 2R RS AR S AN E R RSN
COMNMEN A260.40)YeST1641A)eRI26014VEII3¢500441042),
1 V2{3¢500441042),
? FIX(50.4.]0"F1Y|5004010)oF‘XV(50¢4010'qSCX(SO'Qvlﬂ,v
A YISV ebel0) e SCXYI5004410) DNX(50,4),
4 D'\lV(S(‘o/«o)oFIX(SOQ"'oFlY(sOv‘Q"F‘XV(5C0‘0)'an(')'."/ﬂvEUY“SOv",v
GCA(WQ‘)vﬂH(?o?)vX(ﬁS)-Y(hq)vW(ﬁs)vHX(bS’vWY(bS)vHXY(65)oHFn(Zn"
[ FUES)eNXIAE)JDYLES) NXYIES) 4ARX(50) s ARY(S0)4ATXISN)4ATY(50),
7 CTX(QO’.DTV(ﬁO,ofFX(GO)'ﬁPYlso)'ﬂpTH(SO)oT(?S)'UUDL(SO)QZ(11).
Q AIXCI0) oAJYL10) o AMXTIO) ¢ AMY(10),NC11(10),DC22110),DCL2(10),CI02),
1 NELTA(50444,10)KODEL6S5) NONGISN),
2 NCOHISOY S ACDT(50)NODI(S0)oLMI4) ¢ NEGNJoNLoNEC,MBAND(NT,
2 RFPFATLNTS
COMMON/TRACK/NTT
CCMMCN/PARNMS/ KleK24K3, Al PHL ALPH2,ALPH3,A1+A2+A3,A4,AAC,BRC
CONNOMNICONG/MUCWFSHaECySCT oGO
NCURLE PRFCISICN A.SHB
INTFCFR REPFAT
INTFCFP NDFLTA
RFAL MUC
RFAL Kl ,K2eK3

C
C *exkkadd44R%RCRFFP PARAMETFRS At ook ook R R KRk Rk Rk K

IFINTLEQ.D) GC TOY 72
J1=1
GO TC 732
72 J1=?
72 DC 101 J=d1.3
JJI=0-1
TF{J.EQa1) TT=TINT-1)
TF(JFCe?2) TT=TINT)
TRFEJFCI)TT=TINT+1)
29 CCNTINUF
TFINTTL.FQel) TT=T(NT)
a0 CONTINUE

Fl=K1ATY
F2=K2*TT
Fa=k3sTT

CAA=AY+A2/TTH40,14A3/TTHR024A4/TTx*( .3

CAL1.J)==AL PE1#CARREXP(F1)
CAL?,d)=— ALPH2®CAAXEXP(F2)
CA(,J)=-AL PH2RCAMAXEXP(F3)

1F (JJeLTe1) GC TC 101
Fa=-F1

F&=-F2

Fe=~F2
CRIL1.JJ)=EXPIF4)
CRUE2JJI=EXPLFS)
CPU2,JJ)=FXP(F6)

CCUJII=(ALPRI4ALPH2+ALPH3 I *CAA®AAC/TT+BRC

31 CONTINUF
101 CONTINUF

WRITF(6,5003) TINTT)
ANTT=NTT+]
SO0 FORNMAT{ Y1, wédksdokdokkdokd ko kkx ANALYSTS AT TIMF T=9,F1C45
T ¢ CAYS dkdhtdkdddidkkddrkakiobdhkt)
C
RFTLRNM
FAD
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SLRRCUTINE CREFP
C AR sndddidrhatddhaprpknkriiimkeRskphtikhkkk

C- COMPUTES TNFLASTIC STRAINS AT EACH TIMESTEP
C 'k ok AR REDRERER AR A AR ARk R Rk kb ek Ak Rk
! CCMMCA A(260'40,0S(16016'tB(ZbO'ch‘3v50'4010'2’o
1 V2(3,5044.:1042), *
? F‘X(SCvQ'YO"EIY(5004oIO)OEIXY(50'4OIO)oSCX(SOo“le"
3 SCY(ENs4410)eSCXY{5044410) DNX{5044),
4 DNY(5Cc4)qF]X(50'4,qFlY(50o4)oF[XY(5094’vEOX(50'4)oEUV(50'4)'
5Cb(3-3)'CB(3-3)0X‘65)oY(65’vH(65‘QHX(65)0“Y(65)v“XY(65’.HED(20,'
C(éﬁ’-ﬂX(ﬁS)oDY(éB,'DXV(65,oABX(50’OABV(50)9ATX(50’.ATY(50,'
rTx(SO)ODTY‘S0,0CBX(SO’QEBY(SO,'DPTH(SO"T(ZS"UUDL(so,'l‘ll"
AJX(10).AJY(10l.AMX(IO).AMY(loi.DCII(IOD.DCZZ(IO).DCIZ(10).CD(Z)-
DELTA(50+4¢10).KODE(65) 4NODG(50),
NﬂCH(SO)-NCD](50’.NDDJ(50'QLM(4)'NEQNJ'NLoNEQ'MBANDoNT'
RFPEATLNTS :
CCMNCAN/SHRINKZESH(25)
chVCAIVIVAIV3l3.50.4.10.2).50X(50-4.10)cSOY(50.4.lO’-
1 SCXY(5C.4410)
COMNCN/CHEK/ECXT15044410)4,0CYV(50,4410)
COMNCA/CONC/NMLCoESSECSCTGC
DIMFENSICN FSS(2)
NCURLF PRECISICN A,S5.8
INTEGFR REPEAT
INTECER DELTA
RFAL MUC
FSSI2)=FSHINT+1)
ESSE1)=FSHINT)

BN DN

C
DO 75CM=14NF
DC 175C T=1.4
D0 740 J=1.NL
C
C
C *&kAzdktd CREEP STRAINS sokkdfodhakdordhdhikiohik
IFINT.FQe1) GC TO 28
GC TC 29
C
C *k#xx  FCR FIRST TIME STEP ONLY kekkkdkashadiss
C

728 CAC1,1)=CA(1,2)
CAL241)=CA(2.2)
CAl2,1)=CA13,2)
K=1
L=J
SCXINM,T4J)=CsC
SNY (M, 1.,J)=0.0
SCXY{FeToJ)=Cul
NC 22 f1=1.3
Vl(llvvaolol,=0.o
V2{ T T MKl vl }=0.0
V3I{ITeMeKoeLos1)=0.0
VIVE(SOX(MeKol 1 =SCXIMsKoLIV*(CA(TT,1)+CAIIL,2)1/24
VITTToMoKolo2)=VI(IIsMeKoLal) VLV
V2V=(SCY{MeKoL)=SCY(MeKoL)I*(CA(TT,1)+CA(IT,2))/20
V20TIT eMeKel 02)1=V2(IToMeKel s1)4V2V
VIV={SCXY{MeKoL)=SCXY{M KoL) )*(CACTT 1) +CA(IT 20072,
VIETTeMeKolo2)=VI(TToMeKoLo1)4V3V

22 CCNTINUF



29
C

C

183

100

C

c

T20

740

750

D34

GC TC 152
CONTINUF

6 *x*xx FOR SURSECUENT TIME STEPS ok ook ok ok koo Rk kok

K=1

L=J

nC 152 11=1,2
VIV=(SCXIMeKoL)=SOXIM KoL) I*(CA(TIT,1)+CA(I],2))72,

VI(TIoMeKoel e2)=VI(Il ,MeKyLo1)eVLiV
Vo2V=(SCY(MeKoL)-SCY (M KoL) )*(CA(ITI,1)+CAL]I1,2))72,
V2{TT eMeKeLoe2)=V2{ITMsKel o1)4V2V
VIV=(SOXY{MoKeL)-SOXY{MoK L)) *(CA(TITI,1)4CA(I],2)072,
VI(ITeMeKeloe2)=VI(IT MeKoLosl)eV3iV

CCNTINUE

CR1=0.0C

CR2=C.C

CR3=0,0

DC 1CO TI=1,3
CRI=CPISICRITIZ2)-CBIIL 1)1 {VITIToMeK,Lo2)-MUCKRV2UTIT MiK,oL,2))

CR2=CR24+(CRITT42)=CRUTT 1) )IR(V2(ITsMsKel+2)~MUCKRVICtIIoMoKsL,2))
CRA=CRI+(CR(T1,2)-CB(IT1+11)1%(VI(I1,MeKsLs2) }

COCNTINUF

CR3=2,%(1.-NMUC)*CR3

CRII=(SCX(M,K4L)=-MUCKXSCY(M.,K,L)V/EC
CR22=(SCY(MyKoL)=NUCKRSCX{NM4K,L)D}/EC
CR3I=SCXY( M, KoL )*2.%{1.,-MUC)/EC

C ®%x% TCTAL STRAINS IN COORD DIRECTIONS #tiskkddkkkiky

ETX=ECXIMTI-(Z(J+1D42(J)D/2.*%FIX{NMT)
ETY=FCY(MeT)=(Z21J41)42(J))/2.*FIYIM,I)
ETXY=(DPTHIN)/2.=(Z(J+1L)42(J) )/ 2. )*FIXY(MsT)

ETXY==ETXY

ETX{NM KoL )=CRI4+ETX-CRI14ESS(2)-FSS(1)
FIVY{MeKoL)=CR2+ETY-CR22+FSS(2)-ESS(1)
EIXY(PMK.LI=CRI+ETXY-CR33

no 12¢ 11=1,123

VICIT oMeKol o 1)=VI{ITeMaKelL42)
VI2UTITeMeKel ol)=V2(TTsMyKel 42)
VAI(TTeMeKol o1)=V3(I1,MeKelLo2)
CONTINUF
SOX(MKoLI=SCX(NsK4L)
SOY(NeKoL I=SCY{MK,L)
SCXYUVM Kol )=SCXYINMoK,L)
CCNTINUE

CCNTIMUF
NY=AT+}
RFTURN
END
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StRRCUTINE STRFSS
C #hkt sk dd dhhdkd Rk Rk e d ko g Aok koo ook

C CCMPUTFS RFFERENCE SURFACFE STRAINS ,STEEL £ CCNCRETE STRESSES, MOMENTS
C ANC CFHFCKS FCR CRACKING
C bk dpnadedki kbbb dokddhodhoh ks phkhk st P fp ko k%
COMMON A(260440)¢5(16916)+B(260)sV1(3,50+4410+2),
1 V2€23,500441042)
7 FIXUS0,4410),EIY(5044,10) ¢EIXY(5044410)4SCX(5944,101},
X 3 SCY(%O.#.IO).SCXY(SO‘lnth DNX(SO!‘O"
4 DNYLS0e4)oFIXES5044) o FIY(SC44) s FIXY{50+4)+ECX{50+4),EQ0Y(50+4),
SCAL2e23)4CRIB 421 X(65) oY (65) 4 WIE5) WXIES) WY (E5)4WXY(65),HED(20),
CUES)NXI65)4CY(ES)NXY{ES) JABXISO) +ARY{50) 4ATX(50),ATY(50),
CTX(50)«DTY(E0).TRX{50),LBY(S50)DPTH{50),T(25),UUDL(50},2(11),
AIXCICYAIYLI0) o AMXI10) o AMY(10),NCL1(10)eDC221(10)4DCLI2(10)4CN(2),
DELTAL5044+10).KODE(65)4NODG(50),
NCDH{50) s NODT(50) «NODJ{SC )y LM{4) s NEsNIJNL NEQ,MBANDNT,
RFPFATNTS
COMNCAN/CHEK/CCX(5044410),0CY{(50+4.10)
CCMMCN/CRAK/ SCT1,SCT2,SCT3,5CT4,GAM1,GAM2,GAM3,GAMS
COMNCN/CONC/VMUCLESLEC,SCTLCC
CCMMCA/PRNT/ZIPRINT(S50,4)
DIMENSICN RMX(S5044)RMY(S50,4)
DINENSICON FTX(10)oETY(10),ETXY(10),EEX(10)4EEY(10),EEXY(10)
NCURLE PRECISICN AyS.R
INTEGFR REPEAT
INTEGER TOX,TCY
INTEGFR DELTA
REAL MUC
RFAL MNUMTR

N\ DN

C tERTER AT L L L) REFERENCE SURFACE STRAINS Aok ko fodokok ok ik

NC 55 NM=1,NF

DC 55 I1=1.4

A1120.0

A12=0.C

A?272=0.0

Cil=C.0

€22=C.0

DO 45 J=1.NL

H=7 (J41)=-71(0J)
AYI=FC/(1-MUCH*2)%QCXIM, I, J)*H +All
A12=MUCHQCX (Mo T4 J)#0QCY (Mo 1, J)¥HREC/(1-MUC**2) +A12
A22=FC/{1=MUCH#2)130CY{MsT,J)%H +A22
ClA=(Z20J+1) 420D )72 %FIX(MoII+EIX(MyI0J)
C20=MUCK{Z(J+1V420I))/2.%FIY(MTDIROCY(Ms14J)
1 +NUCHETY(MoT,J)#0CYI(MeI,Jd)
CI11=C1140CXIM, T4 J)¥HREC/ ({1-MUCR#2)%{CL1A+C2A)
CIR=(7(J41 047401 /2.%FIYIM,TI+ETY(MyI4J)
C2R=MUCK(Z(J+1)#7(J))/2.%FIX( Mo I)*QCX(Ms14J)
1 +MUCHEIXIN T4} #QCXIMyT 4}
CP2=C2240CY (Mo T4 J)*H¥EC/{1-MUCH%2)%(C1B+C2B)

C

45 CCNTINUE

C
Al1=A114FSH(ATX(M)+ABXIM))
AZ2=A22+FS*(ATY(M)+ARY(M))
CI1=ClI4FESH(DTX(MI*FIX(M, TI#ATX(MI+DAXIMIRFIX (M, [ }EABX(M))
C272=C224FS*{DTY(MIRFIV(M, I)*ATY(M)+DBY(M)I#FIVIM, 1 )*ABY (M})



[P,

54

C »*

lnlet

L2

o

155

fnlia

%

%k

lnlie el

SHAD

NUVMTR=C11%A22-C22%A12
DNTR=AM1I*A22-A12%A12

FOX (M TI=NIMTR/CNTR

NUMTR=C11%A12-C22%A11
DMTR=A12%#A12-022%211

FRY (Mo T)=NUNTR/OMTR
CONTINUF
$22% kA HSTRESSES AND MCMFENTS ##kkehksx

NC SC Mz=1,4ANF
NC €0 I=1.4

RVX(N,T1=0.0
RMY (N, 1)=Ca0
IFIRFPFATLFQ.1Y GC TO 155

STFFL STRAINS

ESTY=FCY{M, T)=DTY(MIXFIY(VM,T)
FSTX=FOX(My II=DTX{MIXFIX(NM,I)
ESBY=FOY{Me T)=CBYIM)XFIV{M,1I)
FSRY=FOX(M  I)=DBX(M)*FIX(VM. T}

#xdxdA® FCRCE IN STEEL #kkdddgksx

STY=ATY(NMI*ESTY*ES
STX=ATY(M)XFSTX%FS
SPY=ARY(M)*FSRYXES
SEX=ARX(M)EESAX*FS
CONTINUF

NC 40 J=1eNL

as 284 TOTAL STRAINS fdoboltorbddoks
FIXCOI=FCXIME) =02 (J+1 1420 J))/2%FIXIN,T)

ETY (J)=FCY M I =(2(S+1)470I) /2 %FIV(M, 1)

FIXY ()=~ (DPTHIM) 72e=(Z(J+1D42 (D V2V XFIXY (M, T)

sndkhad FLASTIC STRAINS skakhdddodokik

EEX{II=ETXIINN-FIXIM, T )
FEY(J)=ETYLIV-FIY (M, I.J)

S5 4544 ACONCRETE STRESSES %kdskhkdkkk

XCS=OCX(N.I.J)*EEX(J)fMUC*GCX(le-J)*GCYlMoIcJ)*FFY(J)
Y(S=PUC*OCX(P.l.J)*QCY(M.l.J)*EEX(Jl+OCY(N'I.J’*EEY(J)
SCXUN T4 JI=FC2{1=MUCH*? ) *X(S
SCY(Ne14J)=FC/{1=-MUC*2)xYCS
SCXY(N-I.J)=GC*LETXY(J)-FIXY(M'I-J))

K=1
L=J

D36 .
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sssndntkd PRINCIPAL STRESSES ##kshsitdhhix

DIFF=SCX{MeToJ)=SCY(MosI+J)
TF(DIFF.EQ.0C) GC TO 22
ANG=2 o %SCXY{My T4V /7 (SCXIMeToJ)=SCY(MyIsd})
THFT=ATAN(ANG) /2.0
TFET1=THET+2,1415926/2,
GC € 23

2?2 COCNTINUF
THFT=C.0

. THETI=THET+3,.1415926/2.
?3 CONTINUE

SS1= SCXIMeT IV R(CCS{THET) I %#24SCY (M, T, JI*(SIN(THET) }**2
1 #2.%SCXY{M,1,J) *COSUTHET)*SINITHET)
§$§2= SCX{MeToJ)*(CCSITHETL) IA¥24SCY (M, FoJ)*(SINITHETL) ) *#2

1 42.%SCXYIMa T J)*SINI(THET1)*COS(THETL)
#asaa%dsd  CHECK CRACKING MATRIX skkssdhkthhhsdithntd

TFC(USST el TaSCT3)e0R(S52eLToSCT3))oANDL(DELTA(MKyL)eEQa3))

1 6C 10 333
GC 10 317

333 TF(SCX(MeKol)olTo0,0) QCX(M,KyL)=GAM3

TFISCY(MeKoL 1oL To0.0) QCY(MK,L}=GAM3
DELTAIM,K.L)=4
REPEAT=1

317 CCNTINUE

TFO(SS1aLToSCT2)a0Ra{5S2eLTaSCT2))oANDL(DELTA(NM,K,L)oEQa2))

1 GC 10 4123
GC TC 417

433 IF{SCXIMeKoel)eLT4CeO) QCX(MyK,L)=GAM2Z

TFOSCYIMKoL ) ol To0u0) QCY(NM KoL )I=GAM2
NDELTA(M,Kel )=3
RFPEAT=1

417 CCNTIMNUF

.

C

C

O

TFUC(SSTal TeSCT1)eORe(SS2.LToSCT1))oANDL(DELTA(MeKyL)oEQel))
1 G6GC 70 523
G0 TC 517
533 TFRESCX(MeKeL)alToCe0) QCX(NMsKoL)=GAM]
TFISCY{MoKoeL}olTa0s0) OCY(M,K,sL }=GAML
DELTA(MKsL)=2
REPEAT=1
517 CCNTINUF
R26 CCNTINUE

100 CCNTIMNUE
IF(REPEAT,FQ.1) GO TO 156

MOMFANT (CCNCRETE)

RMXANGT)=SCXING LoV (Z(L+1)=Z(LII*(Z(L+LI4Z(L))/2.0¢RMX(M, 1)
RMY (M1 )=SCYINgTIoJIR(ZILLI=Z(LII*(ZIL+L)+2Z{L))/2.0 +RMY(M,T)
156 CCNTIMUF
40 CONTINUF
IF(REPFATLFQL1) GC TO 157
TFOIPRINTI(M,I)aNFa1) GO TO 701

WRITE (6,7C20)
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WRITF(F,2010)
NC 520 J=1.Nt .
WRITF(Re2020) Mol odoSCXIMaTod)oSCYIMyT1od)eSCRY(MToJ)eFTX(I),
VRTYCS ol TXY LIV eFTIXIMaT o) o FIVIM Tl FIXYIN,T,J)
K20 CONTINUF

[
SSTYFSTY®FS
SSTxX=FSTX#*FS
SSRY=FSRY*FS
SSAX=FSAX*FS
&

WPTTF (6,7010)
WRITFUE.2055) MeSETY,SSTXSSBY,SSAX
701 CONTINUF
€ MOMENT  (ARD STEFL CCNTRIBUTION)
RMXA(MT)=STXRCTX(M)+SAXENBXIM) ¢RMX(M, 1)
AMY (N, T)=STYSCTY(NM)+SAYXCRY(NM) & RMY({M,])
157 CONTINUF
S0 CCNTINUF
C
TFIRFPFAT . FQL1) GC TN 552
[
WRITF(£,7020)
WRITF(6e2428)
BC 12 M=1.\F
WRITF(£e24267) W NODGIM) JRMXIN 1) RMY (Vo1 ) NOCDHIM) JRMX{M,2),
T AMYINGO)JNODTIM) RMX(Me3) JRMY (N, 3) JNCPJIM) sPMX(Me4) RMY (M, 4)
12 CONTINUF

WRITF (£,200R)(AsDIN)JOXIND),CYIN)sDXYIN)4N=1,N) )
WRITFLE,201R8)  TUAT)
CC 10 &&?
G822 CONTINUF
WRITF(£,20C2)
553 CCNTINUF

.
TFIRFEFATL.FOL1) GC TD 29
WREITE(£.2095])
WRITF(6.2094)
DC 28 T1=1.NF
nr 2R JJu=l.4
WRITF(E.2093) THedJel(QOX{TTIoJIeKKIoQCYITTodJoKK))KK=1,10)
28 CONTINGF
29 COATINUGF
[#
200R FCRMAT (70H] JCINT L WX WY
1 WXy /{110,4E15.€))
2010 FORMAT('C? IFLFM CCRNFR LAYFR SCx SCy SCxy
1 FTx Fl1y FTXY FIX ElY Flxye)

2018 EORNMAT(ICY (022 8sDSPLACFMENTS FOR TIME T=',FReb," *¥kxtn?)

2020 FCRMATIY P, 14,1%,16,9F12.3)

2066 FrRMAT(Y 1,0 ELFMO,165,% SSTY=t,F15464°% SSTX=?,F1546¢* SSAY=?,
1F18,6¢' SSAX=',F1546)

2082 FCANMAT( ', * CRACKING DETFCTED THIS ITERAVICN )

3626 FORMET(TG415,2F)24341542F1243015,2E12.3415,2F12.3)

3428 FORMAT(C'L*FLEM MODG RV XG RMYG NODH  RMXH
1 RFYH MCCT RMXT RMY ] NCDJ RVMXJ RMYJ*)

3093 FCRMAT(? ',21%,20F5,.3)

3IN94 FCRMAT('CY'G*ELEM CORNR 1x 18 4 2% 2Y 3x 3y 4X QY
15X ey 6X 6Y kA s 7Y 8x 8y S X gy 10X 10V )

3098 FCRMAT('1*,* CRACKING CCFFFICIFENTS - LAYFRS 1 TO 10")

TO10 FORMAT('(C, STYFFL STRFSSES ')
7020 FCRNMATL'C?,* CONCRETE STRESSES AND STRAINS ¢}
7070 FORNMATY (*0°%.* MOCMENTS COMFUTEN AT NCCAL POINTS ')
8
c
RFETLRA

FAD
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SURRCUTEINE MCDIFY
Codndatadod okokokokokok ok o bbb okob g okook ok ol o okok dolok o AR e atolokok %

C CALLEC RY CISPL FOR MODIFICATION OF EOQUNS FOR BOUNDARY CCNDITIONS
o L L Y L T T A AP PR SR A
COMMCN A(260440)05(16416)1+R(260)eV1IL13+5044410421),
1 V2(3+5064410e2),
2 EIXU50,4,10) oFIY(5044,1C)oFIXY(5044¢10)+SCX{50e44+10),
3 SCYLR0e4410)4SCXY(50e64410), DNX{50,4),
4 DNY(CCo4)eFIX{5044)4FIYISD44)oFIXY(5044)+sECX(5044)+EOY(5044),
SCAC2e¢2VeCBU3a2)eX{65) s YIO5)oNI65) e WXIE65) HYLE5),WXY(65),HED(20),
COES)eDXUES I DYLES)oDXY(ES) JABXISO) s ABY(S0) o ATX{50),ATY(501),
CTX(S50) «DTY(50)+CBX(50) sCRY(SO)oNDPTH(S0),TI25),UUDLISO},2(11),
BAIX{1C) 4 AIYL10) o AMXEL10) 4 AMY(10)4DCI1€10)4DC22(10),DCL2(10),CD(2),
DELTA(50,4.,10),KODE(65)NODG(50),
NCDHES0) o NODTI(S0) ¢ NODJIISO) o LM(4) ¢ NESNJoNL o NEQ, MBANDGNT,
REPFAT,LNTS
CCMNMON/CONC/NMLCLESHEC,SCT4GC
CCMMCN /TEM / TEMP , NI
DOUPLE PRECISION 2,S5,8B
INTECER REPERY
INTECER DEITA
REAL MUIC

AN A D g N

DC 20 K=2,MBAND
I=NI~-Kk+]
1F(I.LF.C) GC TC 10
BITI=F{I)=AL] K)XTEMP
AlTl.K}=0.,0

10 TI=NT+4k-)
IFCITLCT NFCY GG T0 20
PUIT)=R(IE)=A(NI K)XTEMP
A{NTK)=C.0

20 CCNTIMUF
RFTURN
END





