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Abstract 

Elements from Gibbsian composite-system thermodynamics, classical nucleation 

theory, combinatorics, and statistical mechanics were used to provide insights into and develop 

models for some equilibrium systems of practical importance. This thesis consists of two parts. 

In part one, three problems were considered in which complex interfacial geometries dictate 

the stability of configurations and phase change properties of the system: (i) interacting drop–

drop and drop–bubble systems in an immiscible medium, (ii) vapor nucleation from a liquid–

gas solution inside a cylindrical nanopore, and (iii) solid nucleation from a pure liquid inside 

and out of cylindrical nanopores. Regarding the first problem, contributions were made to the 

calculation of equilibrium configurations and system behavior at the nanoscale. Regarding the 

second problem, a nonideal model was derived for liquid–vapor equilibrium across an 

arbitrarily curved interface, and its predictive capability was demonstrated when used with a 

constant-value line tension correction. Regarding the third problem, equilibrium shapes of the 

new-phase nucleus near a liquid meniscus and equilibrium shapes for the growth of the new 

phase out of a collection of cylindrical pores were analyzed; the roles of these calculated 

geometries on the ease of nucleation and growth were quantified. In part two of this thesis, 

contributions were made to the development and application of the multisolute osmotic virial 

equation and its combining rules. It was shown that a similar model to that which was proposed 

by Elliott et al. earlier using the regular solution model can be derived in a more general 

solution theory framework with less restrictive assumptions. The derived model has a corrected 

combining rule for the cubic terms and new combining rules for higher order terms. This model 
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was then extended to dissociating solutes by utilizing a previously used technique and was then 

applied to predict freezing points of ternary salt solutions yielding accurate predictions using 

binary data only as the input. Overall, the findings of this thesis can help further our 

understanding of the role of interfacial geometry in small systems and of multisolute mixtures, 

valuable in applications such as atmospheric physics, nanoscience, biology, and energy 

storage, among others. 
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treatment 

𝜔𝜔𝑖𝑖
nc  Nonconfigurational part of 𝜔𝜔𝑖𝑖 

 

Latin symbols 

Δ  Change in a quantity; quantity with respect to a reference value 

∆𝑠𝑠f
∘  Standard molar entropy change of fusion of a solvent 

𝛿𝛿𝑖𝑖𝑗𝑗  Kronecker delta 

ℓ  Index used to uniquely identify elements of 𝐀𝐀 

𝒫𝒫𝐀𝐀ℓ  Probability of formation of an 𝑛𝑛-tuple of composition 𝐀𝐀ℓ 

𝒵𝒵  Barrier transmission coefficient (Zeldovich factor) 

𝓏𝓏𝑛𝑛  Number of 𝑛𝑛-tuples sharing each particle 
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𝐀𝐀  Set of all multisets each corresponding to a unique 𝑛𝑛-tuple composition 

𝐀𝐀ℓ  Element of 𝐀𝐀 uniquely identified by its index ℓ; a multiset 

𝐴𝐴𝑗𝑗𝑗𝑗  Area of interface 𝑗𝑗𝑘𝑘 

𝐴𝐴PR, 𝐵𝐵PR Alternative parameters in transformed P–R EOS 

�̃�𝐴  Nondimensional area 

𝑎𝑎, 𝑏𝑏 Energy and co-volume parameters of pure components 

𝑎𝑎PR, 𝑏𝑏PR Energy and co-volume parameters in P–R EOS 

𝑎𝑎1  Relative activity of a solvent 

𝐵𝐵  Free energy 

𝐵𝐵𝑖𝑖, 𝐵𝐵𝑖𝑖𝑗𝑗, 𝐶𝐶𝑖𝑖, 𝐶𝐶𝑖𝑖𝑗𝑗𝑗𝑗 Second and third osmotic virial coefficients of used with molality as 
the variable 

𝐵𝐵𝑖𝑖
+, 𝐵𝐵𝑖𝑖𝑗𝑗

+, 𝐶𝐶𝑖𝑖
+, 𝐶𝐶𝑖𝑖𝑗𝑗𝑗𝑗

+  Second and third osmotic virial coefficients used with mole fraction as 
the variable 

𝐵𝐵�   Nondimensional free energy 

𝐵𝐵, 𝜕𝜕𝐵𝐵 Arbitrary three-dimensional body and its boundary surface 

𝑏𝑏  Microscopic length scale 

𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3 Auxiliary angles defined from 𝛼𝛼, 𝛽𝛽, and 𝜑𝜑 

𝐶𝐶𝑖𝑖  𝑖𝑖th order pure osmotic virial coefficient in the exact treatment 

𝑐𝑐  Lower bound of integration 

𝑐𝑐1, 𝑐𝑐2 Arbitrary constants 

𝑑𝑑  Diameter 

𝑑𝑑(𝑟𝑟)  Distance to the liquid–vapor interface from a circle of radius 𝑟𝑟 

𝐅𝐅  Matrix of regressors 

𝐹𝐹(𝜑𝜑)  Ratio of volumes 

𝐹𝐹𝑗𝑗, 𝐹𝐹𝑗𝑗𝑗𝑗 Helmholtz free energy of bulk phase 𝑗𝑗 or interface 𝑗𝑗𝑘𝑘 

𝑓𝑓  Equation of the profile representing the solid–liquid interface or 
arbitrary function 

𝑓𝑓𝑖𝑖
L, 𝑓𝑓𝑖𝑖

V  Fugacity of pure component 𝑖𝑖 as a liquid or vapor 

𝑓𝑓𝑖𝑖
L, 𝑓𝑓𝑖𝑖

V Fugacity of component 𝑖𝑖 in a liquid or vapor mixture 

𝐺𝐺  Gibbs free energy of a solution 

𝐺𝐺c  Configurational Gibbs free energy of a solution 

𝐺𝐺nc  Nonconfigurational Gibbs free energy of a solution 
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𝐺𝐺𝑗𝑗  Gibbs free energy of bulk phase 𝑗𝑗 

𝑔𝑔  Auxiliary function 

𝑔𝑔𝐀𝐀ℓ  Nonconfigurational Gibbs free energy of a particle group denoted by 
𝐀𝐀ℓ averaged over all spatial configurations 

𝐻𝐻12  Henry’s law constant 

𝑖𝑖, 𝑗𝑗, 𝑚𝑚, 𝑘𝑘, 𝑡𝑡 Dummy indices 
{𝑖𝑖1, 𝑖𝑖2 … 𝑖𝑖𝑛𝑛}  Set of dummy indices used in repeated sums 

𝑖𝑖𝑗𝑗  Element of {𝑖𝑖1, 𝑖𝑖2 … 𝑖𝑖𝑛𝑛} 

𝚤𝚤, 𝚥𝚥, 𝑘𝑘�⃗  Unit vectors in Cartesian coordinates 

𝐽𝐽  Nucleation rate 

𝑘𝑘B  Boltzmann constant 

𝑘𝑘c,  𝑘𝑘∗   Twice the mean curvature of an equilibrium surface 

𝑘𝑘𝑖𝑖  Empirical dissociation constant of solute 𝑖𝑖 used with molality as the 
variable 

𝑘𝑘𝑖𝑖
+  Empirical dissociation constant of solute 𝑖𝑖 used with mole fraction as 

the variable 

𝑘𝑘𝑖𝑖𝑗𝑗  P–R EOS binary interaction parameter 

(𝑘𝑘d)𝑗𝑗  Empirical dissociation constant of solute 𝑗𝑗 

𝑘𝑘� ∗  Nondimensional twice the mean curvature of an equilibrium surface 

𝑙𝑙  Distance between the centers of two adjacent pores 

𝑙𝑙p  Pore length 

𝑙𝑙  Nondimensional distance between two adjacent pores 

𝑀𝑀  Molar mass 

𝑚𝑚  Total number of components in a bulk phase or molality 

𝑚𝑚′, 𝑥𝑥𝑖𝑖′ Equivalent concentration and equivalent fraction 

𝑁𝑁  Total number of particles in a two-component solution 

𝑁𝑁𝐀𝐀ℓ  Number of 𝑛𝑛-tuples of composition 𝐀𝐀ℓ 

𝑁𝑁𝑖𝑖
𝑗𝑗, 𝑁𝑁𝑖𝑖

𝑗𝑗𝑗𝑗 Number of moles of component 𝑖𝑖 in bulk phase 𝑗𝑗 or surface excess of 
number of moles of component 𝑖𝑖 in interface 𝑗𝑗𝑘𝑘 

𝑁𝑁𝑗𝑗  Number of particles of type 𝑗𝑗 

𝑁𝑁��⃗   Unit normal vector 
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𝑛𝑛  Total number of components in an interface, number of pores 
participating in bridging, number of particles in an 𝑛𝑛-tuple, or number 
of data points used in a fit 

𝑃𝑃  Pressure 

𝑃𝑃𝑗𝑗  Pressure of bulk phase 𝑗𝑗 

𝑃𝑃c, 𝑇𝑇c Critical pressure and temperature 

𝑝𝑝  Degree of a polynomial 

𝑝𝑝0, 𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3 Empirical functions for calculating 𝜙𝜙1,sat 

𝑄𝑄𝑗𝑗
𝑛𝑛,𝑚𝑚  𝑚𝑚th order pure coefficient of the excess chemical potential expression 

of solute 𝑗𝑗 

𝑄𝑄�𝑗𝑗
𝑛𝑛,𝑚𝑚  𝑚𝑚th order pure osmotic virial coefficient of component 𝑗𝑗 

𝑅𝑅𝑗𝑗𝑗𝑗  Radius of curvature of interface 𝑗𝑗𝑘𝑘 

𝑅𝑅1,c, 𝑅𝑅2,c Principal radii of curvature of an equilibrium interface 

𝑅𝑅cap  Radius of a spherical cap 

𝑅𝑅p  Pore radius 

𝑅𝑅RTO,adj
2   RTO-adjusted R-squared value 

𝑅𝑅s  Radius of the vapor meniscus sphere 

𝑅𝑅�  Universal gas constant 

𝑟𝑟  Total number of components in a mixture 

𝐒𝐒  Covariance matrix 

𝑆𝑆  Saturation ratio 

𝑆𝑆, 𝜕𝜕𝑆𝑆 Arbitrary surface and its boundary line 

𝑆𝑆C  Total entropy of a composite system 

𝑆𝑆𝑗𝑗, 𝑆𝑆𝑗𝑗𝑗𝑗 Entropy of bulk phase 𝑗𝑗 or surface excess entropy of interface 𝑗𝑗𝑘𝑘 

𝑆𝑆𝑖𝑖𝑖𝑖  𝑖𝑖th diagonal element of 𝐒𝐒 

𝑠𝑠  Molar entropy or total salinity 

𝑇𝑇  Absolute temperature of a solution 

𝑇𝑇𝑗𝑗, 𝑇𝑇𝑗𝑗𝑗𝑗 Absolute temperature of bulk phase 𝑗𝑗 or interface 𝑗𝑗𝑘𝑘 

𝑇𝑇0  Temperature parameter 

𝑇𝑇m  Freezing point of a solution 

𝑇𝑇m
∘   Freezing point of a pure solvent 

𝑇𝑇r, 𝑇𝑇� Reduced temperature 
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𝑡𝑡  Experimental time 

𝑡𝑡𝑎𝑎
2,𝑛𝑛−𝑝𝑝  𝑎𝑎th percentile of Student’s t–distribution for 𝑛𝑛 − 𝑝𝑝 number of degrees 

of freedom 

𝑈𝑈𝑗𝑗, 𝑈𝑈𝑗𝑗𝑗𝑗 Internal energy of bulk phase 𝑗𝑗 or surface excess internal energy of 
interface 𝑗𝑗𝑘𝑘 

𝑢𝑢, 𝑣𝑣, 𝑧𝑧 Arbitrary independent variables 

𝑉𝑉𝑗𝑗  Volume of bulk phase 𝑗𝑗 

𝑉𝑉�   Nondimensional volume 

𝑣𝑣  Molar volume 

𝑣𝑣PR  P–R EOS molar volume 

𝑣𝑣1
L  Molar volume of a pure liquid solvent 

�̅�𝑣2,∞
L   Infinite dilution partial molar volume of a gas in a solution 

𝑤𝑤2, 𝑤𝑤3 Weight percentages of salts 

𝑤𝑤𝐀𝐀ℓ  Nonconfigurational Gibbs free energy change of formation of an 𝑛𝑛-
tuple of composition 𝐀𝐀ℓ 

𝑤𝑤�   Weight ratio of salts 

𝑤𝑤��⃗ , �⃗�𝑣  Arbitrary vector fields 

𝑥𝑥  Arbitrary variable 

𝑥𝑥0  Radius of the intersection circle of the meniscus and the solid–liquid 
interface 

𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 Liquid- or vapor-phase mole fraction of component 𝑖𝑖 

𝑥𝑥𝑗𝑗  Mole fraction of particles of type 𝑗𝑗 

y  Vector of calculated osmolalities or osmole fractions 

𝑦𝑦𝑖𝑖  𝑖𝑖th data point 

𝑦𝑦s  Equation of the circle representing the liquid–vapor meniscus 

𝑦𝑦�𝑖𝑖  Model prediction at the 𝑖𝑖th data point 

𝑍𝑍  Compressibility factor 

𝑧𝑧𝑖𝑖  Charge of species 𝑖𝑖 
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Chapter 1  
Introduction 

In the broadest sense, the physical world is classically described in terms of two 

concepts: the concept of matter and the concept of forces. The competition between different 

forces causes a collection of matter to exhibit distinct and easily observable qualitative 

behavior, historically referred to as being a solid, liquid, or gas. There exist other, more exotic 

phases of matter (e.g., plasma, Bose–Einstein condensate, neutron-degenerate matter), but 

these three are the most common in everyday life. Importantly, if the balance of the competing 

forces is changed (for example, by heating), the same collection of matter can go from being 

in one phase to another through a process known as phase transition. A phase can be further 

categorized as being single-component (pure) or multicomponent (mixture), depending on 

whether all its constituents, such as its molecules or atoms, are of the same type or not. 

Although pure phases have many applications in engineering and science, they are typically 

artificially made with almost all naturally occurring phases belonging to the multicomponent 

category. 

When a system contains more than one phase, it is referred to as a multiphase system. 

If two bulk phases are brought into contact, they will share a region of space—a two-phase 

contact area—through which they can interact, and this is known as an interface. Similarly, 

three phases (or equivalently, three interfaces) can meet at what is called a three-phase contact 

line. These interfaces and contact lines can be made using all combinations of the three phases 

of matter (except when there is more than one gas phase), and they can be made between phases 

consisting of the same component(s), different components, or sharing some components. 

Although intuitively recognized throughout history, it was not until the 19th century that the 

importance of interfaces was firmly established through deliberate studies, which, with 

intensive research over the subsequent years, led to the development of a field known today as 

interfacial science. While many important phenomena happen directly at these boundaries such 
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as evaporation, adsorption, catalysis, and corrosion, interfaces can also influence the properties 

of the bulk phases that they separate. 

The extent to which an interface affects the properties of a phase typically depends on 

system’s size. For example, water will take the shape of a glass it is poured into with no 

apparent interfacial effects, whereas a small rain drop on a flat surface can be observed being 

a spherical cap. If we were to measure the angle this cap makes with the surface at the solid–

liquid–gas contact line, we would find that it is a constant for different volumes of the drop. 

This observation was first qualitatively elucidated in 1805 by Thomas Young who assigned 

energy to each interface and further used this concept to explain liquid rise in a capillary [212]. 

Another piece of the puzzle was found a year later by Pierre-Simon Laplace, who, with 

mathematical arguments, showed that capillary action is related to the radius of the 

meniscus [115]. Later, mathematician Carl Friedrich Gauss unified the ideas from both works 

and gave a differential equation relating the mean curvature and energy of an interface to the 

difference in pressures in the phases it separates [56]. It turns out that the pressure inside a 

spherical liquid drop (gas bubble) suspended in a gas (liquid) is larger than the pressure of the 

gas (liquid) by an amount proportional to the energy of the interface and inversely proportional 

to its radius. Consequently, the effects of phase boundaries on the behavior of a system become 

increasingly important as either one or more of the phases it contains are made smaller. 

In natural processes and in engineering, many small domains of phases (solid, liquid, 

or gas) with curved interfaces often exist in the same system. For example, microscopic drops 

of water (pure or with solutes) interact with drops of organic matter and various types of solid 

particles in the atmosphere. Unlike liquids, solid particles come in different shapes and sizes, 

some with smooth surfaces, some with rough surfaces, and some containing pores. These 

features of solids are essential and often control phase transitions in a cloud, such as 

condensation of liquids or solid formation from liquid or vapor. The collective behavior of the 

aerosols determines characteristics of a cloud, ultimately affecting precipitation patterns and 

climate [165]. Another example is a process known as froth floatation used for recovery of 

bitumen from oil sands. One of the crucial steps in froth floatation involves encapsulation of 

air bubbles by the oil phase [180]. For the effectiveness of this process, it is important to know 

the energy required to separate these phases, or alternatively, how stable are the distinct spatial 

configurations of the phases. Interface-dominated systems can also be engineered for specific 
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purposes. For example, lab-made porous particles with tunable features such as the pore size 

and shape have gained popularity in recent years owing to their numerous applications in fluid 

separation, energy storage, and biology. These pores can contain liquids with down to a 

nanoscale spatial dimension in either one direction (liquid in a slit pore) or more directions 

(liquid in a cylindrical pore) creating a system with a small volume but large interfacial area. 

The phase-change and transport properties of liquids in such confinements are of particular 

interest in nanoscience. 

Besides being prevalent, small-scale multiphase systems typically contain at least one 

multicomponent phase. Following the above examples, in the atmosphere, water drops can be 

pure, or they may dissolve salts and/or other compounds, while the surrounding air is a mixture 

of mainly nitrogen, oxygen, and water vapor, with trace amounts of other gases. Bitumen in 

froth flotation is a blend of various types of hydrocarbons. In applications utilizing porous 

materials, the properties of liquids in the pores can be altered by adding solutes.  

While simple multiphase systems, such as a drop on a flat surface, a liquid with one 

solute, or a pure liquid in an isolated pore, have been extensively studied, our knowledge of 

equally important but more complicated systems, such as interacting drops and bubbles, a 

liquid with multiple solutes, a solution in a pore, or a pure liquid in a collection of pores, is not 

complete. This thesis seeks to answer some questions pertaining to these problems in the 

framework of thermodynamics—a branch of physics that quantitatively studies properties of 

matter, energy, and their relations to each other. 

1.1 Gibbsian composite-system thermodynamics 
As a scientific discipline, the history of thermodynamics began in the mid-1600s with 

the discovery that the temperature, pressure, and volume of a contained gas are related. The 

next two centuries saw the development of the field with contributions from many esteemed 

scientists, especially during the industrial revolution with the need to design powerful and 

efficient heat engines. This eventually led to two fundamental ideas: the conservation-of-

energy and increase-of-entropy principles—known today, respectively, as the first and second 

laws of thermodynamics. Later, in his two-part seminal paper [63], Josiah Willard Gibbs 

presented a complete mathematical framework of thermodynamics with a list of a few 
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necessary postulates from which all previously known results could be derived. In the same 

paper, he also introduced several new concepts such as chemical potential. 

To apply thermodynamics in Gibbs’s framework, the first step is to define the system. 

A system is any collection of matter (single-phase, multiphase, single component, 

multicomponent, with or without interfaces, and so on) that is being investigated. A system is 

often in contact with a reservoir with which it can exchange matter, volume, or energy. With 

respect to its relation to the reservoir, a system can be open—if both matter and energy 

exchange are allowed, closed—if only energy and/or volume exchange are allowed, or 

isolated—if no matter, volume, or energy exchange are allowed. One important contribution 

of Gibbs is that systems can also be categorized as being simple or composite. A simple system 

is a system whose macroscopic thermodynamic properties, such as its temperature, pressure, 

and chemical potential are uniform throughout, and which is not affected by fields (e.g., 

gravity) or charged. A composite system is a group of systems where each constituent can be 

described as a simple system. All macroscopic properties of a simple system can be put into 

two categories: An intensive property, such as temperature and pressure, does not change with 

the amount of matter in the system. An extensive property, such as energy and volume, depends 

on the amount of matter in the system. 

Another concept is that of a thermodynamic state. A thermodynamic state of a system 

refers to a set of values of macroscopic properties that uniquely identifies the system. 

Specifically, thermodynamics is the study of equilibrium states. Much like mechanical 

equilibrium, an equilibrium state in thermodynamics is a state corresponding to a stationary 

point in the energy landscape, i.e., at equilibrium states there exists no driving force in any 

direction for the system to change its macroscopic state. If an equilibrium state represents a 

global minimum, it is called a stable equilibrium state. If an equilibrium represents a local 

minimum, it is called a metastable equilibrium state. In all other extremum cases (local and 

global maxima, inflection points), it is called an unstable equilibrium state. 

Gibbs’s work is also noted for its treatment of interfaces. From a molecular standpoint, 

an interface is a region where the density of particles changes smoothly as one moves from 

one bulk phase to the other. Gibbs represented this region with a mathematical surface having 

area but no volume. To account for the density variation in a real system, he introduced surface 

excess quantities, which can be negative or positive. With these definitions, an interface can 
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be treated as another phase and assigned properties. One important property of an interface is 

its interfacial tension—the analog of pressure for a two-dimensional surface. Still, a choice 

needs to be made regarding the placement of the mathematical surface with respect to the bulk 

phases. Gibbs gave two choices: For a flat interface, the surface is placed such that the surface 

excess moles of one of the components is zero. This uniquely placed surface is known as the 

Gibbs dividing surface. For a curved interface, the surface is placed such that the interfacial 

tension is not a function of the curvature of the surface. This uniquely placed surface is known 

as the Gibbs surface of tension. 

At the center of the Gibbsian composite-system thermodynamics approach is the so-

called fundamental equation relating different properties of each simple subsystem. For a bulk 

phase denoted by 𝑗𝑗, the differential form of the fundamental equation in the entropy 

representation is given as [25] 

 d𝑆𝑆𝑗𝑗 =
1

𝑇𝑇𝑗𝑗 d𝑈𝑈𝑗𝑗 +
𝑃𝑃𝑗𝑗

𝑇𝑇𝑗𝑗 d𝑉𝑉𝑗𝑗 − �
𝜇𝜇𝑖𝑖

𝑗𝑗

𝑇𝑇𝑗𝑗 d𝑁𝑁𝑖𝑖
𝑗𝑗

𝑖𝑖

 (1-1) 

where the extensive quantities 𝑆𝑆, 𝑈𝑈, and 𝑉𝑉 are the entropy, internal energy, and volume of the 

phase, respectively. The intensive quantities 𝑇𝑇 and 𝑃𝑃 are the temperature and pressure of the 

phase, respectively. 𝜇𝜇𝑖𝑖 (intensive) and 𝑁𝑁𝑖𝑖 (extensive) are the chemical potential and number of 

moles of each species 𝑖𝑖 present in the phase, respectively. Equation (1-1) can also be written 

for the reservoir. 

For an interface separating bulk phases 𝑗𝑗 and 𝑘𝑘, the fundamental equation takes the 

following form [25]: 

 d𝑆𝑆𝑗𝑗𝑗𝑗 =
1

𝑇𝑇𝑗𝑗𝑗𝑗 d𝑈𝑈𝑗𝑗𝑗𝑗 −
𝜎𝜎𝑗𝑗𝑗𝑗

𝑇𝑇𝑗𝑗𝑗𝑗 d𝐴𝐴𝑗𝑗𝑗𝑗 − �
𝜇𝜇𝑖𝑖

𝑗𝑗𝑗𝑗

𝑇𝑇𝑗𝑗𝑗𝑗 d𝑁𝑁𝑖𝑖
𝑗𝑗𝑗𝑗

𝑖𝑖

 (1-2) 

where 𝜎𝜎 is the interfacial tension, and 𝐴𝐴 is the area of either the Gibbs dividing surface (when 

the interface is flat) or the Gibbs surface of tension (when the interface is curved). All the other 

variables in Equation (1-2) are the same as in Equation (1-1), except that the extensive variables 

here (𝑆𝑆, 𝑈𝑈, and 𝑁𝑁𝑖𝑖) represent the surface excesses of these quantities. 

Once the system to be examined is defined, its entropy is written as the sum of the 

entropies of its constituents using Equations (1-1) and (1-2). At equilibrium states, the entropy 

of an isolated system must be an extremum, so the derivative of the total entropy of the system, 
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including the reservoir, can be set to zero. Combining this condition with the constraints of the 

system (e.g., conservation of energy, conservation of the number of moles, conservation of 

volume, etc.), a set of equations can be derived that must hold at equilibrium. These conditions 

for equilibrium can then be combined with equations of state for each phase (e.g., the ideal gas 

law for a gas or an empirical equation for the tension of an interface) yielding useful equations 

involving observables. 

While the above method identifies the equilibrium states and produces the conditions 

for equilibrium, it does not contain information about the stability of the equilibrium states. 

For that, the free energy (equivalently, thermodynamic potential) of the system should be 

identified. The equation acting as the free energy of the system can be found by requiring the 

overall change in the entropy of the entire system be nonnegative, subject to constraints. 

Usually, its first-order approximation with respect to extensive variables is used, which is only 

valid at the equilibrium states, but nevertheless, has the correct convexity at the equilibrium 

states allowing the states to be sorted. The equilibrium states of a system with one or two 

independent variables in the free-energy equation can be visually sorted by plotting the free-

energy equation vs. these variables. When there are more independent variables, the Hessian 

matrix can be constructed and analyzed or, if this is not feasible, the free-energy landscape can 

be discretized to numerically compare the equilibrium points with their neighborhood. 

1.2 Literature overview 
This section provides a brief background on the problems investigated in this thesis. In 

order to avoid having an excessive overlap, a more comprehensive literature review is reserved 

for the introduction of each chapter. 

1.2.1 Equilibrium configurations of two-phase drops 
The interaction between two small fluid domains surrounded by another fluid has 

applications in microfluidics, atmospheric physics, soft photonics, and oil recovery, among 

others. Often, qualitative methods, such as spreading coefficient, are used to sort the resulting 

equilibrium configurations. However, these simple methods do not provide enough detail to 

calculate the exact geometries and energies of the configurations. Furthermore, their 

applicability to drop–bubble systems needs to be checked, especially at small scales where the 

compressibility of the gas becomes important. 
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Drop–drop and drop–bubble systems at the macroscopic scale have been previously 

investigated, and the effects of interfacial tensions are well established. For example, 

Mori [144,145] gave the conditions for stability of millimeter-sized drop–bubble systems using 

the same free-energy equation used for drop–drop systems. In the same work, comparison with 

experiments verified the deduced criteria for two-phase drops. Zhang et al. [222] provided a 

method for tuning the configurations of oil–air two-phase drops in water by adding cellulosic 

particles. These particles were absorbed at the interfaces resulting in changes in interfacial 

tensions. However, only drop–drop systems have been investigated at the small scale. For 

example, Zarzar et al. [220] and Nagelberg et al. [148] used surfactants to adjust the interfacial 

tensions of micrometer-sized drop–drop systems to achieve full encapsulation or lens 

configurations with highly tunable and predictable behavior. In another study, Qiu and 

Molinero [167] studied the morphologies of atmospherically relevant water–organic liquid 

systems in vapor, both from thermodynamic free-energy perspective and molecular 

simulations. Their findings suggest that, when the system’s size is larger than ~100 nm, the 

interfacial tensions between the phases can be used to accurately calculate the resulting 

geometries. In smaller systems, the inclusion of a line-tension term in the free-energy equation 

was necessary for quantitative agreement. 

While there are studies dedicated to the morphology of multiphase systems, 

configurations and free energy of drop–bubble systems at small scales have not been 

thoroughly investigated. This gap in the literature is addressed in this thesis.  

1.2.2 Phase change in confinement 
When a liquid is confined in nanoscopic pores, the phase-change behavior of this liquid 

can significantly differ from its bulk behavior, and understanding the role of this confinement 

is one of the goals of nanoscience. Specifically, the effects of added solutes, such as dissolved 

gases, and the effects of the geometry of a porous medium, such as sharp corners, are not well 

understood. 

Regarding the influence of gases, liquid-to-vapor transition in nanopores has been 

previously studied using equilibrium density functional theory [174], molecular dynamics 

simulations [12,26,120,123,129,166], and experiments [121,122,166,206]. For example, the 

calculations of Roth et al. [174] showed that a small amount of xenon gas in a hydrophobic 
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channel can significantly decrease its probability of being in dry state. In molecular dynamics 

simulations by Camisasca et al. [26], a single atom of argon was able to cause the drying of a 

water-filled pore in simulation time. Attempts were made [121] to predict the drying pressure 

of nanopores in the presence of a gas using the ideal solution model, but the ideality assumption 

is questionable in extreme confinement. 

When it comes to the influence of geometry of porous media, there is a particular 

interest in the liquid-to-solid phase transition in confinement because this process is believed 

to be responsible for atmospheric ice nucleation in certain conditions. Simulations [13,30,175] 

and experiments [27,28,200] show that sharp features of a material (pits, cracks, corners) can 

be efficient nucleation sites for the initial solid formation. However, the eventual growth of the 

solid to form a macroscopic phase seems to be limited by the geometry of pore openings as 

well as the proximity of neighboring pores [27,37,38]. For example, simulations [38] and later 

experiments [37] of David et al. showed that the condensation of vapor in nanopores, then 

freezing of liquid in individual pores, and finally, bridging of neighboring pores was 

responsible for ice nucleation in undersaturated conditions. There is also some evidence that 

free liquid–vapor interface can further promote solid nucleation [2,75,95,100,187].  

With simulation studies being time-consuming and often having limited spatial and 

temporal resolution (small pores, short simulation times), there is an opportunity to use 

Gibbsian composite-system thermodynamics to investigate the phase-change behavior of 

liquids in pores. To that end, one chapter of this thesis is dedicated to the calculation of the 

effects of a dissolved gas on the drying pressure of nanopores. In another chapter, the role of 

the liquid–vapor meniscus inside a pore and the role of pore proximity of the material on the 

ease of solid formation from a liquid are investigated. 

1.2.3 Multicomponent solutions 
One of the important problems of thermodynamics is the determination of the chemical 

potential of a mixture. Consequently, there are numerous predictive models varying in 

application type, complexity, and accuracy. The simplest solution model is the ideal solution 

model where only the entropy of mixing is considered [69]. Therefore, it is only applicable to 

dilute solutions. The regular solution model [69,70] adds pairwise interactions to the ideal 

solution model, which allows more accurate predictions to be made when the solution is no 
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longer dilute. However, in order to apply the regular solution model, the binary interaction 

parameters need to be determined. The nonrandomness of the entropy of mixing is addressed 

in the quasi-chemical family of models [69,82] with interactions in particle groups of varying 

sizes. Although the quasi-chemical approach may provide good accuracy, these models can be 

quite complicated to apply in practice requiring multiple input parameters. Finally, there are 

the so-called exact models (e.g., McMillan and Mayer solution theory) [83,84,140] with 

minimum number of assumptions, but their application can be difficult and computationally 

expensive. 

One easy-to-use but accurate multicomponent model was proposed by Eliott et al. [42], 

which has combining rules to make predictions for the chemical potential of a solvent with 

multiple solutes. This polynomial model was derived based on the regular-solution assumption 

but its application to different types of solutions, some of which are not expected to be regular, 

showed surprisingly good agreement with experimental measurements [42,163,223,224,226, 

227]. The combining rules of Eliott et al. [42] take the form of arithmetic average for quadratic 

terms and geometric average for cubic terms. Additionally, this model was empirically 

extended to dissociating solutes by including a single fitting parameter for each solute [163]. 

In this thesis, a generalized polynomial model [102,179] for the Gibbs free energy of 

mixing of a solution (with less restrictive assumptions) is explored to derive an equation for 

the solvent chemical potential and update the combining rules. Furthermore, the connection 

between the studied model and the above-mentioned solution theories is discussed. Then, the 

revised model is empirically extended to dissociating solutes in the same fashion as the Eliott 

et al. version and successfully applied. 

1.3 Thesis scope 
The objectives of this thesis are (i) to provide insights into the behavior of multiphase 

systems in confinement and (ii) to develop a simple predictive model for the chemical potential 

of multicomponent solutions. Accordingly, the thesis consists of two independent parts titled 

“Part I: Interplay of geometry and thermodynamics in three applications” and “Part II: 

Multicomponent solutions”. 
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1.3.1 Part I: Interplay of geometry and thermodynamics in three applications 
Part I combines geometry and equilibrium thermodynamics in three different 

applications where the phases exist as small domains, such as drops, or a liquid confined in a 

nanopore, and their behavior differs from that of their bulk counterparts.  

In Chapter 2 (Thermodynamic Investigation of Droplet−Droplet and Bubble−Droplet 

Equilibrium in an Immiscible Medium), equilibrium morphologies of drop–bubble and drop–

drop systems are rigorously analyzed in the framework of Gibbsian composite-system 

thermodynamics. For exactly calculating the geometry of each configuration and computing 

the corresponding free energies, a set of equations are derived and solved. Additionally, by 

varying the fluid volumes and interfacial tensions, stability diagrams for these systems are 

constructed showing the regions of stability of each configuration. The importance of the 

correct free-energy equation for drop–bubble systems at small sizes is also highlighted.  

In Chapter 3 (Quantifying the Effects of Dissolved Nitrogen and Carbon Dioxide on 

Drying Pressure of Hydrophobic Nanopores), the effects of a dissolved gas on drying pressure 

of hydrophobic cylindrical nanopores (emptying of liquid-filled pores) are investigated. To 

that end, an equation is derived that relates the nonideal chemical equilibrium of the 

components to the geometry of the liquid–vapor interface. This interface takes a nontrivial 

shape, which is calculated using an open-source finite-element tool, Surface Evolver, and the 

interface geometry is essential for the behavior of the liquid in the pore. Furthermore, line-

tension effects are discussed, the incorporation of which shows satisfactory agreement between 

the available experimental data and the developed model.  

In Chapter 4 (The Role of Geometry on the Ease of Solidification Inside and Out of 

Cylindrical Nanopores), solidification inside and out of nanopores is investigated from the 

free-energy perspective. First, the nucleation of a solid inside the pore, near the three-phase 

contact line, where the liquid, vapor, and the pore wall meet, is studied. Different nucleus 

geometries are identified depending on the internal angles of the solid and the angle of the 

corner generated by the liquid meniscus in the pore. Second, the bridging of neighboring pores 

on the porous particle surface is discussed. By considering the different number of pores 

participating, distance between the pores, and solid–particle contact angles, free-energy 

barriers are calculated. In this chapter too, the nontrivial shapes of the nuclei and bridges are 
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mainly calculated numerically, except for certain cases for which an analytical solution could 

be developed.  

Overall, Part I of this thesis gives valuable insights into the behavior of three practically 

important systems by combining equilibrium thermodynamics with geometry. 

1.3.2 Part II: Multicomponent solutions 
Part II focuses on the development and application of an improved solvent chemical 

potential model.  

The first chapter of Part II, Chapter 5 (Multicomponent Solutions: Combining Rules for 

Multisolute Osmotic Virial Coefficients), is dedicated to a theoretical exploration of a particular 

multicomponent solution theory, which results in a polynomial equation for the chemical 

potential of the solvent with multiple solutes. Additionally, combining rules are derived for 

this model, which allows predictions to be made for a multicomponent system based on binary 

data alone (data for each solute with the solvent). Furthermore, the connection between the 

derived model and well-known exact solution theories is elucidated.  

In Chapter 6 (Predicting Freezing Points of Ternary Salt Solutions with the Multisolute 

Osmotic Virial Equation), the developed model is empirically extended to dissociating solutes 

and then applied to ternary salt solutions of water. This application requires the binary data to 

be fitted with polynomials, the degrees of which are determined using a newly proposed 

criterion. Moreover, a comparison with similar models used previously by our group is given.  

To summarize, Part II of this thesis derives an easy-to-use polynomial model for 

multicomponent solutions and then illustrates its practical application to obtain accurate 

predictions. 

The main outcomes of this thesis are summarized in Chapter 7. 
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Part I: Interplay of Geometry and Thermodynamics 

in Three Applications 
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Chapter 2  
Thermodynamic Investigation of Droplet–Droplet 

and Bubble–Droplet Equilibrium in an Immiscible 

Medium1 

 

Chapter summary 
In the absence of external fields, interfacial tensions between different phases dictate 

the equilibrium morphology of a multiphase system. Depending on the relative magnitudes of 

these interfacial tensions, a composite system made up of immiscible fluids in contact with one 

another can exhibit contrasting behavior: formation of lenses in one case, complete 

encapsulation in another. Relatively simple concepts such as spreading coefficient (SC) have 

been extensively used by many researchers to make predictions. However, these qualitative 

methods are limited to determining the nature of the equilibrium states and do not provide 

enough information to calculate the exact equilibrium geometries. Moreover, due to the 

assumptions made, their validity is questionable at smaller scales where pressure forces due to 

curvature of the interfaces become significant or in systems where a compressible gas phase is 

 
1 Reproduced, with minor changes, with permission from H. Binyaminov, F. Abdullah, L. Zargarzadeh, and J. A. 
W. Elliott. Thermodynamic Investigation of Droplet–Droplet and Bubble–Droplet Equilibrium in an Immiscible 
Medium, J. Phys. Chem. B 125, 8636 (2021). https://doi.org/10.1021/acs.jpcb.1c02877 © 2021 American 
Chemical Society. 

https://doi.org/10.1021/acs.jpcb.1c02877
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present. Here, we investigated equilibrium configurations of two fluid drops suspended in 

another fluid, which can be seen as a simple building block of more complicated systems. We 

used Gibbsian composite-system thermodynamics to derive equilibrium conditions and the 

equation acting as the free energy (thermodynamic potential) for this system. These equations 

were then numerically solved for an example system consisting of a dodecane drop and an air 

bubble surrounded by water, and the relative stability of distinct equilibrium shapes was 

investigated based on free-energy comparisons. Quantitative effects of system parameters such 

as interfacial tensions, volumes, and the scale of the system on geometry and stability were 

further explored. Multiphase systems similar to the ones analyzed here have broad applications 

in microfluidics, atmospheric physics, soft photonics, froth flotation, oil recovery, and some 

biological phenomena. 

2.1 Introduction 
Bubble–droplet or droplet–droplet systems, which involve attachment of two 

nonmixing fluids surrounded by another mutually immiscible medium (e.g., an air bubble and 

an oil drop in water; a phase separated aerosol drop in the atmosphere, etc.), have been 

investigated by many researchers due to their importance in both natural and industrial 

processes. Although there exist methods to estimate the nature of the interactions and resulting 

geometries [6,24,78,116,144,145,167,192,220,222], increasing interest in the applications of 

these systems in recent years has made it necessary to study them in a more detailed framework 

in order to make better predictions [19,98,108,116]. For applications such as froth flotation 

there is a growing interest in particular properties of configurations involving bubbles. During 

the froth flotation used for the recovery of bitumen from oil sands, for example, the air bubbles 

are encapsulated by the bitumen in the conditioning step [180]. In this process, it is important 

to identify critical parameters of the system that result in the most stable configuration. In 

another example, in dissolved air flotation, microbubbles (40–70 μm) are used for removing 

impurities in water and wastewater treatment facilities. In this application, it is desirable to 

know the carrying capacity of bubbles of various sizes from an energy-difference perspective 

for the efficiency of the operation [136,189]. In the atmosphere, phase-separated aerosols have 

a strong impact on a number of physical and chemical processes. Their morphology determines 

the characteristics of absorption and reflection of solar radiation, facilitates certain chemical 
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reactions, creates nucleation sites for condensation or freezing in clouds, and affects the uptake 

of important atmospheric gases such as N2O5 [79,138,167,214,228]. 

In microfluidics, encapsulation of one phase by another immiscible fluid is required for 

some applications. For instance, in microreactors, each pH-sensitive reaction must be carried 

out separately in its own environment. For this reason, compartmental hydrogels, where one 

phase encapsulates the other with each phase being a compartment, are used [194]. 

Additionally, the study of the dynamics of encapsulation and decapsulation by fluids can help 

give explanations for a number of biological phenomena, including fecundation, pinocytosis, 

and phagocytosis with eventual utilization for advancing cancer treatment through selective 

encapsulation of cancer cells [196]. Configurations resembling encapsulation or decapsulation 

and effects of shape in biological systems have been previously considered to a great extent in 

references  [98] and  [96].  

Recently, special particles known as “Janus particles” with two opposite sides 

exhibiting dissimilar chemical and physical properties have drawn significant interest for their 

promising applications [57,73,116,192,220]. For these particles, it is important to be able to 

design and alter their morphologies to achieve certain characteristics. For example, for the 

perfect Janus state, the particle as a whole is required to be a perfect sphere [73]. In addition 

to this, increasing curiosity in soft photonics as a result of attempts to mimic nature by the use 

of deformable, reconfigurable materials has created an extra need for the making of virtually 

infinitely adjustable multiphase arrangements such as those for liquid–liquid multidrop 

lenses [108,148,150]. 

Microemulsion science is another area where understanding of interactions of 

immiscible fluids from the stability perspective is needed [20,57,113,177,220]. Depending on 

the mole fractions of components and the size of individual drops, microemulsion systems can 

be made stable and coalescence-free over a long period of time. For ternary, surfactant-free 

systems, this is usually captured in a triangular phase diagram where each side of the triangle 

represents the fraction of one component. A comprehensive study of single drop–drop or drop–

bubble systems as presented in this chapter, can give new insights into the behavior of 

microemulsion systems, especially those in the presence of gas phase(s) as we provide a novel 

free-energy equation for drop–bubble systems. Furthermore, in the future, the effects of 

surfactants can be studied by building upon the framework provided in this work. 
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Overall, previously these bubble–droplet or droplet–droplet systems have been mostly 

studied in the context of spreading coefficient (SC) [19,78,132,146,153,173,210], which, by 

definition, is restricted only to limiting cases of the emerging shapes, and even then, their 

validity is questionable at the scales where other effects (e.g., effects of the pressure forces due 

to curvature of the interface) become significant alongside the interfacial forces. The concept 

of spreading coefficient was first formalized in 1865 by Carlo Marangoni [133,134] (similar 

results were later published by other authors independently [78,98,173]). The spreading 

coefficient is defined as [196] 

 SC = 𝛾𝛾13 − 𝛾𝛾23 − 𝛾𝛾12 (2-1) 

where 𝛾𝛾13 is the interfacial tension between the base fluid and the surrounding medium, 𝛾𝛾23 is 

the interfacial tension between the spreading fluid and the surrounding medium, and 𝛾𝛾12 is the 

interfacial tension between the base fluid and the spreading fluid. The study of spreading 

behavior and spreading coefficient is highly focused on the spreading of aliphatic 

hydrocarbons on a bulk water phase, primarily due to its relevance in enhanced oil recovery 

from reservoirs. This is because a positive spreading coefficient (SC > 0) means the oil phase 

would spread on the water phase instead of forming a lens of static oil, thereby improving oil 

recovery [51,132,178,180,222].  

The result of the calculation in Equation (2-1) is usually used in a qualitative fashion, 

in that, its sign is used to determine whether a fluid will exhibit spreading behavior or form a 

lens. This criterion alone does not provide enough information about the geometry of the 

configurations, such as radii of curvature or contact angles of the interfaces of the lenses. 

Therefore, it is desirable to explore these systems in a more detailed framework to make better 

predictions about their observed behavior, and consequently, have the knowledge to design, 

produce, and control their geometry as required.  

In this chapter, we use Gibbsian surface thermodynamics [45,63], which is one of the 

most powerful tools to study interfacial thermodynamics of composite systems, as previously 

shown by many works that have made use of it with great success [41,45,49,125,183–

185,203,215–217]. Briefly, the fundamental Gibbsian thermodynamics approach is first, to 

develop a system of equations for the equilibrium states based on the equilibrium conditions, 

then combine these equations with the equations of state to calculate equilibrium geometry 

(possibly, more than one), and finally, derive the free energy acting for the system and analyze 
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the free energy to determine whether specific equilibrium states are stable, metastable, or 

unstable. 

2.2 System definition and governing equations  

2.2.1 System definition 
Here, we investigate configurations of three-phase systems with interfacial curvature 

and determine their relative stability from the perspective of the thermodynamic free energy 

(thermodynamic potential). More specifically, we focus on two immiscible drops (or a drop 

and a bubble) in another mutually immiscible bulk medium with all interfaces considered 

throughout this chapter having constant curvature, as would be the case in the absence of field 

effects. Figure 2-1 shows reference and possible final configurations for such a system. In the 

reference state, there are two immiscible fluid drops (or a drop and a bubble) denoted by phase 

1 and phase 2 that are not touching each other in another mutually immiscible bulk fluid 

denoted by phase 3 that is placed in a container sealed with a moveable, massless piston. 

Through its walls, the container is in contact with a reservoir denoted by superscript R, which, 

by definition, has fixed pressure, 𝑃𝑃R, and temperature, 𝑇𝑇R [25]. The reservoir and the container 

are only allowed to exchange volume and energy but not mass with each other, and together 

they make up an isolated system. After the phases are brought into contact, three final 

equilibrium configurations are possible (not including the reference configuration itself): (I) 

attached configuration where one phase partially enters the other; (II) full encapsulation of 

phase 1 by phase 2; and (III) full encapsulation of phase 2 by phase 1. It should be noted that 

these three configurations presented here are hypothetical at this point as we will need to 

perform free-energy analysis for a given system and for a set of system parameters to decide 

which configuration is more favorable compared to the reference state, if any. 
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Figure 2-1. Schematics for (a) the reference state and (b) possible final states, where (I) is the 
attached configuration, (II) is the full encapsulation of phase 1 by phase 2 and (III) is the full 
encapsulation of phase 2 by phase 1. For all three configurations, the radii of curvature of the 
three interfaces are: 𝑅𝑅13—the radius of curvature of the interface between phase 1 and phase 
3; 𝑅𝑅23—the radius of curvature of the interface between phase 2 and phase 3; and 𝑅𝑅12— the 
radius of curvature of the interface between phase 1 and phase 2. For the attached 
configuration, the contact angles of these interfaces are given by 𝛼𝛼, 𝛽𝛽, and 𝜑𝜑—all defined with 
respect to the three-phase plane (vertical dashed line). 

2.2.2 Derivation of conditions for equilibrium 
In the framework of Gibbsian composite-system interfacial thermodynamics, one finds 

conditions for equilibrium of a system by equating its total variation of entropy about 

equilibrium to zero, subject to constraints. The entropy of a composite system can be expressed 

as the sum of the entropies of its constituent subsystems [25]. For the most general case of our 

problem (the attached configuration with three maximum possible interfaces) we can write 

 d𝑆𝑆C = d𝑆𝑆R + d𝑆𝑆1 + d𝑆𝑆2 + d𝑆𝑆3 + d𝑆𝑆12 + d𝑆𝑆13 + d𝑆𝑆23 = 0 (2-2) 

where d𝑆𝑆C represents an infinitesimal change in total entropy of the composite system, d𝑆𝑆R, 

d𝑆𝑆1, d𝑆𝑆2, and d𝑆𝑆3 represent entropy changes of the reservoir and corresponding bulk phases, 

and finally, d𝑆𝑆12, d𝑆𝑆13, and d𝑆𝑆23 represent entropy changes of the corresponding interfaces, 
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all about equilibrium. Each of the terms in Equation (2-2) can be expressed in the entropy 

representation of the fundamental equation of thermodynamics. For the reservoir and each of 

the three bulk phases, the differential form of the fundamental equation is given as 

 d𝑆𝑆𝑗𝑗 =
1

𝑇𝑇𝑗𝑗 d𝑈𝑈𝑗𝑗 +
𝑃𝑃𝑗𝑗

𝑇𝑇𝑗𝑗 d𝑉𝑉𝑗𝑗 − �
𝜇𝜇𝑖𝑖

𝑗𝑗

𝑇𝑇𝑗𝑗 d𝑁𝑁𝑖𝑖
𝑗𝑗

𝑚𝑚

𝑖𝑖=1

 (2-3) 

where 𝑇𝑇𝑗𝑗, 𝑈𝑈𝑗𝑗, 𝑃𝑃𝑗𝑗, 𝑉𝑉𝑗𝑗 are temperature, internal energy, pressure, and volume respectively, for 

𝑗𝑗 = R or 1, 2, or 3. 𝜇𝜇𝑖𝑖
𝑗𝑗 and 𝑁𝑁𝑖𝑖

𝑗𝑗 are chemical potential and number of moles, respectively, of 

component 𝑖𝑖 in phase 𝑗𝑗. 𝑚𝑚 is the number of components in the bulk phase. Since we only 

consider single-component bulk fluids throughout this chapter, 𝑚𝑚 = 1. For each of the 

interfaces, the fundamental equation can be written as 

 d𝑆𝑆𝑗𝑗𝑗𝑗 =
1

𝑇𝑇𝑗𝑗𝑗𝑗 d𝑈𝑈𝑗𝑗𝑗𝑗 −
𝛾𝛾𝑗𝑗𝑗𝑗

𝑇𝑇𝑗𝑗𝑗𝑗 d𝐴𝐴𝑗𝑗𝑗𝑗 − �
𝜇𝜇𝑖𝑖

𝑗𝑗𝑗𝑗

𝑇𝑇𝑗𝑗𝑗𝑗 d𝑁𝑁𝑖𝑖
𝑗𝑗𝑗𝑗

𝑛𝑛

𝑖𝑖=1

 (2-4) 

where 𝛾𝛾𝑗𝑗𝑗𝑗 represents interfacial tension between phases 𝑗𝑗 and phase 𝑘𝑘 with an interfacial area 

of 𝐴𝐴𝑗𝑗𝑗𝑗, and 𝑛𝑛 stands for the number of components present at that interface. There are always 

two components at any given interface (between the bulk phases, each bulk phase considered 

to be made of a different pure component), as a result of using Gibbs surface of tension [63] to 

define the location of the dividing surface for curved interfaces, 𝑛𝑛 = 2. 

Next, constraints of the system must be specified. These constraints are given below: 

(i) the system together with the reservoir are isolated, and their energy is conserved: 

 d𝑈𝑈R + d𝑈𝑈1 + d𝑈𝑈2 + d𝑈𝑈3 + d𝑈𝑈12 + d𝑈𝑈13 + d𝑈𝑈23 = 0 (2-5) 

(ii) there is no mass transfer between the system and the reservoir: 

 d𝑁𝑁1
1 + d𝑁𝑁1

12 + d𝑁𝑁1
13 = 0 (2-6) 

 d𝑁𝑁2
2 + d𝑁𝑁2

12 + d𝑁𝑁2
23 = 0 (2-7) 

 d𝑁𝑁3
3 + d𝑁𝑁3

13 + d𝑁𝑁3
23 = 0 (2-8) 

 d𝑁𝑁R = 0 (2-9) 

(iii) there is volume exchange between the system and the reservoir: 

 d𝑉𝑉R + d𝑉𝑉1 + d𝑉𝑉2 + d𝑉𝑉3 = 0 (2-10) 
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By definition, the reservoir is large enough that its intensive parameters (𝑇𝑇R, 𝑃𝑃R) stay 

constant and are equal to their initially set values [25]. We assume that the values of interfacial 

tensions (𝛾𝛾12, 𝛾𝛾13, and 𝛾𝛾23) do not vary for the types of interactions we investigate if the 

temperature is fixed. 

Due to the existence of derivatives of volumes of bulk phases in Equation (2-3), as well 

as of interfacial areas in Equation (2-4), we must list geometric relations. These relations are 

stated below for the attached configuration and full encapsulation cases separately. To describe 

the geometries conveniently, we consider the symmetry plane (the plane of the paper) that 

passes through the centers of both spheres and define everything two-dimensionally on this 

plane. For the attached configuration [Figure 2-1 (b), case (I)] the geometric relations are: 

 
𝑉𝑉1 =

𝜋𝜋(𝑅𝑅13)3

3
[2 + cos 𝛼𝛼 (2 + sin2 𝛼𝛼)]

−
𝜋𝜋(𝑅𝑅12)3

3
[2 − cos 𝜑𝜑 (2 + sin2 𝜑𝜑)] 

(2-11) 

 
𝑉𝑉2 =

𝜋𝜋(𝑅𝑅23)3

3
[2 + cos 𝛽𝛽 (2 + sin2 𝛽𝛽)]

+
𝜋𝜋(𝑅𝑅12)3

3
[2 − cos 𝜑𝜑 (2 + sin2 𝜑𝜑)] 

(2-12) 

 𝐴𝐴13 = 2𝜋𝜋(𝑅𝑅13)2(1 + cos 𝛼𝛼) (2-13) 

 𝐴𝐴23 = 2𝜋𝜋(𝑅𝑅23)2(1 + cos 𝛽𝛽) (2-14) 

 𝐴𝐴12 = 2𝜋𝜋(𝑅𝑅12)2(1 − cos 𝜑𝜑) (2-15) 

 
𝑅𝑅13 =

𝑅𝑅12 sin 𝜑𝜑
sin 𝛼𝛼

 (2-16) 

 
𝑅𝑅23 =

𝑅𝑅12 sin 𝜑𝜑
sin 𝛽𝛽

 (2-17) 

For encapsulation of phase 1 by phase 2 [Figure 2-1 (b), case (II)] the geometric 

relations are: 

 𝑉𝑉1 =
4𝜋𝜋
3

(𝑅𝑅12)3 (2-18) 

 𝑉𝑉2 =
4𝜋𝜋
3

[(𝑅𝑅23)3 − (𝑅𝑅12)3] (2-19) 

 𝐴𝐴12 = 4𝜋𝜋(𝑅𝑅12)2 (2-20) 
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 𝐴𝐴23 = 4𝜋𝜋(𝑅𝑅23)2 (2-21) 

For encapsulation of phase 2 by phase 1 [Figure 2-1 (b), case (III)] the geometric 

relations are: 

 𝑉𝑉2 =
4𝜋𝜋
3

(𝑅𝑅12)3 (2-22) 

 𝑉𝑉1 =
4𝜋𝜋
3

[(𝑅𝑅13)3 − (𝑅𝑅12)3] (2-23) 

 𝐴𝐴12 = 4𝜋𝜋(𝑅𝑅12)2 (2-24) 

 𝐴𝐴13 = 4𝜋𝜋(𝑅𝑅13)2 (2-25) 

To continue further, for each configuration separately, we need to differentiate the 

respective volumes and areas with respect to each independent variable of that configuration 

and obtain the total derivatives. For the attached configuration, because of the geometric 

relations given in Equations (2-16) and (2-17), only four of the six variables (𝛼𝛼, 𝛽𝛽, 𝜑𝜑, 𝑅𝑅13, 

𝑅𝑅23, and 𝑅𝑅12) are independent. The choice of the set of four variables is arbitrary. However, 

in order to completely describe the geometry, this set must include at least one variable from 

each variable pair describing each interface: {𝛼𝛼, 𝑅𝑅13}, { 𝛽𝛽, 𝑅𝑅23}, and { 𝜑𝜑, 𝑅𝑅12}. For example, 

the set { 𝛼𝛼, 𝑅𝑅13, 𝛽𝛽, 𝜑𝜑} is a valid choice of variables, but the set {𝛼𝛼, 𝑅𝑅13, 𝛽𝛽, 𝑅𝑅23} is not a valid 

choice of variables since it does not contain a variable from the last pair. Here, we choose {𝛼𝛼, 

𝛽𝛽, 𝜑𝜑, 𝑅𝑅12} as our set of independent variables and rewrite Equations (2-11) to (2-15) in terms 

of these four variables. Both the contact angle of the interface between phase 1 and phase 2, 

𝜑𝜑, and the radius of curvature of this interface, 𝑅𝑅12, are allowed to take positive and negative 

values, depending on whether the interface is convex or concave, respectively, towards phase 

1 (e.g., in Figure 2-1 (b), case (I), since the interface between phase 1 and phase 2 is arbitrarily 

given as convex towards phase 1, both 𝜑𝜑 and 𝑅𝑅12 are positive). Additionally, angles 𝛼𝛼 and 𝛽𝛽 

are taken to be positive. Overall, we have the domains of the independent variables as given 

below: 

 

⎩
⎪
⎨

⎪
⎧ 𝑅𝑅12 ∈ (−∞, ∞)

 
𝛼𝛼, 𝛽𝛽 ∈ (0∘, 360∘)

 
𝜑𝜑 ∈ (−180∘, 180∘)

 (2-26) 
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with the condition that 𝑅𝑅12 and 𝜑𝜑 have the same signs. These are just the conventions that we 

adopt throughout this chapter, and the results are unaffected if different conventions are 

chosen. 

For the case where phase 1 fully encapsulates phase 2, it is easy to see that the two radii 

of the spheres, 𝑅𝑅13 and 𝑅𝑅12, completely describe the geometry and that they are the only 

independent variables. Likewise, when phase 2 fully encapsulates phase 1, the final 

configuration is completely described by 𝑅𝑅23 and 𝑅𝑅12. 

After differentiating the volume and area equations, the resulting derivatives are 

substituted into Equations (2-10) and (2-3) for volumes, and into Equation (2-4) for areas, 

together with constraints given in Equations (2-5) to (2-9) for each bulk phase and interface 

respectively. Note that the volume of phase 3 is arbitrary—it is not a function of the set of the 

variables used, and its derivative must be kept as d𝑉𝑉3 throughout the derivation. After some 

algebraic manipulation, the results are substituted into Equation (2-2), which yields 
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(2-27) 

Because Equation (2-27) must hold valid for any arbitrary displacement about 

equilibrium, we may equate each coefficient of every independent variation to zero. The 

resulting system of 17 equations (one equation per each independent variation) is then solved 
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with the help of some algebraic manipulation and using trigonometric identities, which yields 

the conditions for equilibrium for the attached configuration: 

 𝑇𝑇1 = 𝑇𝑇2 = 𝑇𝑇3 = 𝑇𝑇12 = 𝑇𝑇13 = 𝑇𝑇23 = 𝑇𝑇R (2-28) 

 𝜇𝜇1
1 = 𝜇𝜇1

12 = 𝜇𝜇1
13 (2-29) 

 𝜇𝜇2
2 = 𝜇𝜇2

12 = 𝜇𝜇2
23 (2-30) 

 𝜇𝜇3
3 = 𝜇𝜇3

13 = 𝜇𝜇3
23 (2-31) 

 𝛾𝛾13 cos 𝛼𝛼 + 𝛾𝛾23 cos 𝛽𝛽 − 𝛾𝛾12 cos 𝜑𝜑 = 0 (2-32) 

 𝛾𝛾13 sin 𝛼𝛼 + 𝛾𝛾12 sin 𝜑𝜑 − 𝛾𝛾23 sin 𝛽𝛽 = 0 (2-33) 

 𝑃𝑃1 − 𝑃𝑃3 =
2𝛾𝛾13

𝑅𝑅13  (2-34) 

 𝑃𝑃2 − 𝑃𝑃1 =
2𝛾𝛾12

𝑅𝑅12  (2-35) 

 𝑃𝑃2 − 𝑃𝑃3 =
2𝛾𝛾23

𝑅𝑅23  (2-36) 

 𝑃𝑃3 = 𝑃𝑃R (2-37) 

Note that Equation (2-35) does not directly result from Equation (2-27). It is obtained 

by inserting Equations (2-16) and (2-17) into Equations (2-34) and (2-36), respectively, 

subtracting Equation (2-34) from Equation (2-36) and then combining the result with Equation 

(2-33). For this reason, there are 18 equilibrium conditions in Equations (2-28) to (2-37) 

compared to 17 independent variations in Equation (2-27). 

Following the same procedure highlighted for the attached configuration but instead 

using the geometry of the full encapsulation cases, the corresponding conditions for 

equilibrium are obtained. For encapsulation of phase 1 by phase 2, these conditions are found 

to be: 

 𝑇𝑇1 = 𝑇𝑇2 = 𝑇𝑇3 = 𝑇𝑇12 = 𝑇𝑇23 = 𝑇𝑇R (2-38) 

 𝜇𝜇1
1 = 𝜇𝜇1

12 (2-39) 

 𝜇𝜇2
2 = 𝜇𝜇2

12 = 𝜇𝜇2
23 (2-40) 

 𝜇𝜇3
3 = 𝜇𝜇3

23 (2-41) 
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 𝑃𝑃1 − 𝑃𝑃2 =
2𝛾𝛾12

𝑅𝑅12  (2-42) 

 𝑃𝑃2 − 𝑃𝑃3 =
2𝛾𝛾23

𝑅𝑅23  (2-43) 

 𝑃𝑃3 = 𝑃𝑃R (2-44) 

Similarly, the conditions for equilibrium for encapsulation of phase 2 by phase 1 are: 

 𝑇𝑇1 = 𝑇𝑇2 = 𝑇𝑇3 = 𝑇𝑇12 = 𝑇𝑇13 = 𝑇𝑇R (2-45) 

 𝜇𝜇1
1 = 𝜇𝜇1

12 = 𝜇𝜇1
13 (2-46) 

 𝜇𝜇2
2 = 𝜇𝜇2

12 (2-47) 

 𝜇𝜇3
3 = 𝜇𝜇3

13 (2-48) 

 𝑃𝑃2 − 𝑃𝑃1 =
2𝛾𝛾12

𝑅𝑅12  (2-49) 

 𝑃𝑃1 − 𝑃𝑃3 =
2𝛾𝛾13

𝑅𝑅13  (2-50) 

 𝑃𝑃3 = 𝑃𝑃R (2-51) 

Equations (2-28), (2-38), and (2-45) indicate that temperatures in equilibrium states 

must be equal across all bulk phases and interfaces. Equations (2-29) to (2-31), (2-39) to (2-41), 

and (2-46) to (2-48) indicate equality of chemical potentials of component 𝑗𝑗 in the subsystems 

in contact. Equations (2-32) and (2-33) are interfacial mechanical force balance equations in 

the vertical and horizontal planes, respectively, which are also known as the Young equations. 

Equations (2-34) to (2-36), (2-42), (2-43), (2-49), and (2-50) are additional mechanical 

equilibrium equations—the Young–Laplace equations for the corresponding interfaces. Note 

that the Young–Laplace equations for the attached configuration [Equations (2-34) to (2-36)] 

are given in more familiar forms in terms of the radii of curvature of the corresponding 

interfaces 𝑅𝑅12, 𝑅𝑅13, and 𝑅𝑅23 instead of in terms of the set of independent variables {𝛼𝛼, 𝛽𝛽, 𝜑𝜑, 

𝑅𝑅12}. 

2.2.3 On the possibility of the attached configuration 
Observe that Equations (2-32) and (2-33) impose limits on the range of possible values 

of 𝛾𝛾13, 𝛾𝛾23, and 𝛾𝛾12 for which an attached configuration is at all possible (i.e., possibility to 
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find angles that satisfy these equations for given 𝛾𝛾13, 𝛾𝛾23, and 𝛾𝛾12). To investigate this, we 

construct a new system of three equations (clearly, only any two of the new equations are 

linearly independent as in the original two equations) by multiplying Equation (2-32) by 

cos 𝛼𝛼 ≠ 0, multiplying Equation (2-33) by sin 𝛼𝛼 ≠ 0, linearly combining them together, and 

then repeating for 𝛽𝛽 and 𝜑𝜑. Noting that sin2 𝑥𝑥 + cos2 𝑥𝑥 = 1 we get 

 
𝛾𝛾13 + 𝛾𝛾23(cos 𝛽𝛽 cos 𝛼𝛼 − sin 𝛽𝛽 sin 𝛼𝛼) − 𝛾𝛾12(cos 𝜑𝜑 cos 𝛼𝛼 − sin 𝜑𝜑 sin 𝛼𝛼)

= 0 
(2-52a) 

 
𝛾𝛾13(cos 𝛽𝛽 cos 𝛼𝛼 − sin 𝛽𝛽 sin 𝛼𝛼) + 𝛾𝛾23

− 𝛾𝛾12(cos 𝜑𝜑 cos 𝛽𝛽 + sin 𝜑𝜑 sin 𝛽𝛽) = 0 
(2-52b) 

 
𝛾𝛾13(cos 𝜑𝜑 cos 𝛼𝛼 − sin 𝜑𝜑 sin 𝛼𝛼) + 𝛾𝛾23(cos 𝜑𝜑 cos 𝛽𝛽 + sin 𝜑𝜑 sin 𝛽𝛽)

− 𝛾𝛾12 = 0 
(2-52c) 

Further simplifying using the trigonometric identity cos 𝑥𝑥 cos 𝑦𝑦 − sin 𝑥𝑥 sin 𝑦𝑦 = cos(𝑥𝑥 + 𝑦𝑦), 

we obtain 

 𝛾𝛾13 + 𝛾𝛾23 cos(𝛼𝛼 + 𝛽𝛽) − 𝛾𝛾12 cos(𝜑𝜑 + 𝛼𝛼) = 0 (2-53a) 

 𝛾𝛾13 cos(𝛼𝛼 + 𝛽𝛽) + 𝛾𝛾23 − 𝛾𝛾12 cos(𝛽𝛽 − 𝜑𝜑) = 0 (2-53b) 

 𝛾𝛾13 cos(𝜑𝜑 + 𝛼𝛼) + 𝛾𝛾23 cos(𝛽𝛽 − 𝜑𝜑) − 𝛾𝛾12 = 0 (2-53c) 

Solving for cos(𝛼𝛼 + 𝛽𝛽), cos(𝜑𝜑 + 𝛼𝛼), and cos(𝛽𝛽 − 𝜑𝜑) we get 

 cos(𝐶𝐶1) =
(𝛾𝛾12)2 + (𝛾𝛾23)2 − (𝛾𝛾13)2

2𝛾𝛾12𝛾𝛾23  (2-54a) 

 cos(𝐶𝐶2) =
(𝛾𝛾12)2 − (𝛾𝛾13)2 − (𝛾𝛾23)2

2𝛾𝛾13𝛾𝛾23  (2-54b) 

 cos(𝐶𝐶3) =
(𝛾𝛾12)2 + (𝛾𝛾13)2 − (𝛾𝛾23)2

2𝛾𝛾12𝛾𝛾13  (2-54c) 

where 𝐶𝐶1 = 𝛽𝛽 − 𝜑𝜑, 𝐶𝐶2 = 𝛼𝛼 + 𝛽𝛽, and 𝐶𝐶3 = 𝜑𝜑 + 𝛼𝛼 are constants that only depend on the 

interfacial tensions, 𝛾𝛾12, 𝛾𝛾13, and 𝛾𝛾23, and they satisfy the equality 𝐶𝐶2 = 𝐶𝐶1 + 𝐶𝐶3. Ignoring the 

differences in the signs of some terms, the Equations (2-54a) to (2-54c) together are generally 

known as the law of cosines. The sign differences arise because we have defined: (i) 𝛽𝛽 in the 

opposite direction of 𝛼𝛼, and (ii) 𝜑𝜑 in the opposite direction with a 180∘ shift compared to the 

direction of 𝛼𝛼. Since −1 ≤ cos 𝑥𝑥 ≤ 1 for all real values of 𝑥𝑥 and 𝛾𝛾12, 𝛾𝛾13, 𝛾𝛾23 > 0, we finally 

have 
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 𝛾𝛾13 + 𝛾𝛾23 > 𝛾𝛾12 (2-55a) 

 𝛾𝛾12 + 𝛾𝛾23 > 𝛾𝛾13 (2-55b) 

 𝛾𝛾12 + 𝛾𝛾13 > 𝛾𝛾23 (2-55c) 

as the necessary conditions for the attached configuration. Equalities are ignored as they 

correspond to the degenerate cases (i.e., full encapsulation and the reference configurations). 

These inequalities are sometimes referred to as the triangle inequalities. 

Using the definition of the inverse cosine function, bounds can be put on the angles 

appearing in Equations (2-54a) to (2-54c) as follows: 

 0∘ < 𝐶𝐶1 < 180∘ (2-56a) 

 0∘ < 𝐶𝐶2 < 180∘ (2-56b) 

 0∘ < 𝐶𝐶3 < 180∘ (2-56c) 

Since the cosine function is continuous and one-to-one (bijective) in [0∘, 180∘], 𝐶𝐶1, 𝐶𝐶2, and 𝐶𝐶3 

exist and are unique for any given 𝛾𝛾12, 𝛾𝛾13, and 𝛾𝛾23 satisfying the triangle inequalities. 

Combining Equations (2-56a) to (2-56c) with the previously defined domains of variables 𝛼𝛼 

and 𝛽𝛽, given in Equation (2-26), we additionally have 

 −𝐶𝐶1 < 𝜑𝜑 <  𝐶𝐶3 (2-57) 

Now, we want to show that these inequalities are also the sufficient conditions to 

guarantee the existence of the attached configuration. First, notice that the conditions given by 

Equations (2-34) to (2-36) do not impose any restrictions on the solution, so we can ignore 

them for our analysis here. Next, we take the ratio of the volumes given by Equations (2-11) 

and (2-12), substitute Equations (2-16) and (2-17), and use the identity sin2 𝑥𝑥 + cos2 𝑥𝑥 = 1 to 

get 

 

𝐹𝐹(𝜑𝜑) =
𝑉𝑉1

𝑉𝑉2

=

2 + 3 cos(𝐶𝐶3 − 𝜑𝜑) − cos3(𝐶𝐶3 − 𝜑𝜑)
sin3(𝐶𝐶3 − 𝜑𝜑) − 2 − 3 cos 𝜑𝜑 + cos3 𝜑𝜑

sin3 𝜑𝜑
2 + 3 cos(𝜑𝜑 + 𝐶𝐶1) − cos3(𝜑𝜑 + 𝐶𝐶1)

sin3(𝜑𝜑 + 𝐶𝐶1) + 2 − 3 cos 𝜑𝜑 + cos3 𝜑𝜑
sin3 𝜑𝜑

 
(2-58) 

as a function of the single variable 𝜑𝜑 [because 𝐶𝐶1 and 𝐶𝐶3 are constants when the interfacial 

tensions are fixed, see equations (2-54a) to (2-54c)]. There are three special points (points of 
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discontinuity) of 𝐹𝐹(𝜑𝜑): 𝜑𝜑 = −𝐶𝐶1, 𝜑𝜑 = 0 and 𝜑𝜑 = 𝐶𝐶3. It is easy to see that lim
𝜑𝜑→−𝐶𝐶1

+
𝐹𝐹(𝜑𝜑) = 0 

and lim
𝜑𝜑→𝐶𝐶3

− 𝐹𝐹(𝜑𝜑) = +∞ by substitution. For the case where 𝜑𝜑 = 0, by applying l’Hôpital’s rule 

for indeterminate limits to Equation (2-58) [from the quotient rule for limits, we can apply the 

limit operator in the numerator and denominator of 𝐹𝐹(𝜑𝜑) as they are nonzero], we have 

 
lim
𝜑𝜑→0

2 − 3cos 𝜑𝜑 + cos3 𝜑𝜑
sin3 𝜑𝜑

= lim
𝜑𝜑→0

(2 − 3cos 𝜑𝜑 + cos3 𝜑𝜑)′
(sin3 𝜑𝜑)′

= lim
𝜑𝜑→0

sin 𝜑𝜑 
cos 𝜑𝜑

= 0 
(2-59) 

Hence, 𝜑𝜑 = 0 is a removable discontinuity, and we have 

 lim
𝜑𝜑→0

𝐹𝐹(𝜑𝜑) =

2 + 3cos 𝐶𝐶3 − cos3 𝐶𝐶3
sin3 𝐶𝐶3

2 + 3cos 𝐶𝐶1 − cos3 𝐶𝐶1
sin3 𝐶𝐶1

 (2-60) 

As 𝐹𝐹(𝜑𝜑) approaches 0 and +∞ in 𝜑𝜑 ∈ (−𝐶𝐶1, 𝐶𝐶3), from the intermediate value theorem 

for continuous functions, we conclude that 𝐹𝐹(𝜑𝜑) takes all positive values for 𝜑𝜑 ∈ (−𝐶𝐶1, 𝐶𝐶3), 

proving that a solution always exists for any final volumes. From another perspective, all 

values of 𝜑𝜑, including 𝜑𝜑 = 0—given by Equation (2-60)—can be achieved by tuning the ratio 

of the volumes in a system. Furthermore, we will assume that the solution set is unique for a 

given set of system parameters provided that the triangle inequalities are satisfied (i.e., only 

one attached configuration is possible). 

2.2.4 Derivation of the free-energy equation 
One of the most fundamental laws of nature, as we know it today, is the second law of 

thermodynamics. It states that the entropy of a system, together with its surroundings, should 

always increase towards equilibrium and stay constant at that equilibrium—the state of 

maximum entropy—for any spontaneously evolving processes. The free energy (also known 

as the thermodynamic potential) of any system can be calculated by combining this law with 

constraints imposed on the system following procedures developed previously [25,45,63,203]. 

Since the reservoir, has constant intensive parameters, the change in its internal energy can be 

written as 

 ∆𝑈𝑈R = 𝑇𝑇R∆𝑆𝑆R − 𝑃𝑃R∆𝑉𝑉R + 𝜇𝜇R
R∆𝑁𝑁R

R (2-61) 
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Rearranging and substituting the difference forms of Equations (2-5), (2-9), and (2-10), as well 

as Equations (2-28) and (2-37) into Equation (2-61), we get 

 
−𝑇𝑇∆𝑆𝑆R = ∆𝑈𝑈3 + ∆𝑈𝑈1 + ∆𝑈𝑈2 + ∆𝑈𝑈12 + ∆𝑈𝑈13 + ∆𝑈𝑈23 + 𝑃𝑃3∆𝑉𝑉1

+ 𝑃𝑃3∆𝑉𝑉2 + 𝑃𝑃3∆𝑉𝑉3 
(2-62) 

The increase-of-entropy principle can be expressed as 

 
∆𝑆𝑆R + ∆𝑆𝑆3 + ∆𝑆𝑆1 + ∆𝑆𝑆2 + ∆𝑆𝑆12 + ∆𝑆𝑆13 + ∆𝑆𝑆23 ≥ 0 

 
(2-63) 

After multiplying Equation (2-63) by −𝑇𝑇 and substituting Equation (2-62) for −𝑇𝑇Δ𝑆𝑆R, we have 

 
∆ �

(𝑈𝑈3 − 𝑇𝑇𝑆𝑆3 + 𝑃𝑃3𝑉𝑉3) + (𝑈𝑈1 − 𝑇𝑇𝑆𝑆1) + (𝑈𝑈2 − 𝑇𝑇𝑆𝑆2) + (𝑈𝑈12 − 𝑇𝑇𝑆𝑆12)
 

+(𝑈𝑈13 − 𝑇𝑇𝑆𝑆13) + (𝑈𝑈23 − 𝑇𝑇𝑆𝑆23) + 𝑃𝑃3𝑉𝑉1 + 𝑃𝑃3𝑉𝑉2
�

≤ 0 

(2-64) 

identifying the free energy as the terms inside the square brackets. Finally, using the definitions 

of auxiliary thermodynamic functions, we obtain the equation acting as the thermodynamic 

potential of the system as 

 𝐵𝐵 = 𝐺𝐺3 + 𝐹𝐹1 + 𝐹𝐹2 + 𝐹𝐹12 + 𝐹𝐹13 + 𝐹𝐹23 + 𝑃𝑃3𝑉𝑉1 + 𝑃𝑃3𝑉𝑉2 (2-65) 

which includes the Gibbs free energy, 𝐺𝐺, of phase 3, the Helmholtz free energy, 𝐹𝐹, of the 

remaining bulk phases as well as the interfaces, and additional terms, 𝑃𝑃3𝑉𝑉1 and 𝑃𝑃3𝑉𝑉2. The 

free energy of a system must be computed with respect to a reference state. As shown in Figure 

2-1 (a), for convenience, we choose our reference state to be the state before the contact, where 

phase 1 and phase 2 are separate in phase 3. (It should be noted that any equilibrium state can 

be taken to be the reference state, and the results will be equivalent). To quantify free energy, 

we rewrite Equation (2-64) using the Euler relations [25,63] for bulk phases and interfaces 

respectively: 

 𝑈𝑈𝑗𝑗 = 𝑇𝑇𝑗𝑗𝑆𝑆𝑗𝑗 − 𝑃𝑃𝑗𝑗𝑉𝑉𝑗𝑗 + � 𝜇𝜇𝑖𝑖
𝑗𝑗𝑁𝑁𝑖𝑖

𝑗𝑗
𝑚𝑚

𝑖𝑖=1

 (2-66) 

 𝑈𝑈𝑗𝑗𝑗𝑗 = 𝑇𝑇𝑗𝑗𝑗𝑗𝑆𝑆𝑗𝑗𝑗𝑗 + 𝛾𝛾𝑗𝑗𝑗𝑗𝐴𝐴𝑗𝑗𝑗𝑗 + � 𝜇𝜇𝑖𝑖
𝑗𝑗𝑗𝑗𝑁𝑁𝑖𝑖

𝑗𝑗𝑗𝑗
𝑛𝑛

𝑖𝑖=1

 (2-67) 

which, when substituted into Equation (2-64), gives 
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𝐵𝐵 = 𝜇𝜇3
3𝑁𝑁3

3 + (−𝑃𝑃1𝑉𝑉1 + 𝜇𝜇1
1𝑁𝑁1

1) + (−𝑃𝑃2𝑉𝑉2 + 𝜇𝜇2
2𝑁𝑁2

2)

+ (𝛾𝛾12𝐴𝐴12 + 𝜇𝜇1
12𝑁𝑁1

12 + 𝜇𝜇2
12𝑁𝑁2

12)

+ (𝛾𝛾13𝐴𝐴13 + 𝜇𝜇1
13𝑁𝑁1

13 + 𝜇𝜇3
13𝑁𝑁3

13)

+ (𝛾𝛾23𝐴𝐴23 + 𝜇𝜇2
23𝑁𝑁2

23 + 𝜇𝜇3
23𝑁𝑁3

23) + 𝑃𝑃3𝑉𝑉1 + 𝑃𝑃3𝑉𝑉2 

(2-68) 

for the system free energy and 

 

𝐵𝐵r = 𝜇𝜇3,r
3 𝑁𝑁3,r

3 + �−𝑃𝑃r
1𝑉𝑉r

1 + 𝜇𝜇1,r
1 𝑁𝑁1,r

1 � + �−𝑃𝑃r
2𝑉𝑉r

2 + 𝜇𝜇2,r
2 𝑁𝑁2,r

2 �

+ �𝛾𝛾13𝐴𝐴r
13 + 𝜇𝜇1,r

13𝑁𝑁1,r
13 + 𝜇𝜇3,r

13 𝑁𝑁3,r
13�

+ �𝛾𝛾23𝐴𝐴r
23 + 𝜇𝜇2,r

23𝑁𝑁2,r
23 + 𝜇𝜇3,r

23𝑁𝑁3,r
23� + 𝑃𝑃r

3𝑉𝑉r
1 + 𝑃𝑃r

3𝑉𝑉r
2 

(2-69) 

for the free energy of the reference state (in the absence of a phase 1–phase 2 interface), where 

the subscript “r” indicates the reference state. Next, to calculate Δ𝐵𝐵 = 𝐵𝐵 − 𝐵𝐵r, we assume that 

both the reference and the system states are equilibrium states (i.e., that conditions for 

equilibrium apply). As a consequence of the homogenous first-order property of the 

fundamental equation, the variation in chemical potential of a single-component, simple 

system is a function of the variations in pressure and temperature, and it can be computed 

according to the Gibbs–Duhem relation [25]. Since we keep both 𝑇𝑇R and 𝑃𝑃R constant, from 

Equations (2-28) and (2-37), 𝑇𝑇3 and 𝑃𝑃3 are also constant. Hence, we obtain 

 𝜇𝜇3 
3 = 𝜇𝜇3,r 

3  (2-70) 

To continue further, it is necessary to specify the equations of state and the relations 

for the chemical potentials for the remaining phases. Note that, as there is no notion of a gas–

gas interface (i.e., they always mix), there are three distinct possibilities depending on the 

physical phases of the sub-systems to fit in our framework: (i) two liquid drops surrounded by 

another liquid; (ii) a liquid drop and a gas bubble surrounded by a liquid; and, (iii) two liquid 

drops surrounded by a gas. From here on, we will assign the superscript “2” to the gas bubble 

in the discussions of the second scenario. 

Using the Gibbs–Duhem relation and assuming incompressibility, for the chemical 

potential and volume of any liquid phase, we can write [25,45] 

 𝜇𝜇(𝑇𝑇, 𝑃𝑃) = 𝜇𝜇r(𝑇𝑇, 𝑃𝑃r) + 𝑣𝑣(𝑃𝑃 − 𝑃𝑃r) (2-71) 

 𝑉𝑉 = 𝑉𝑉r (2-72) 
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respectively, where 𝑣𝑣 denotes molar volume of liquid. Equivalently, assuming ideality, for the 

chemical potential and the volume of any gas phase in the system, we have [25,45] 

 𝜇𝜇(𝑇𝑇, 𝑃𝑃) = 𝜇𝜇r(𝑇𝑇, 𝑃𝑃r) + 𝑅𝑅�𝑇𝑇 ln
𝑃𝑃
𝑃𝑃r

 (2-73) 

 𝑃𝑃𝑉𝑉 = 𝑃𝑃r𝑉𝑉r (2-74) 

respectively, where 𝑅𝑅� is the universal gas constant. 

Additionally, we assume that the numbers of absorbed molecules at the interfaces are 

negligible compared to the numbers of molecules in the bulk phases. Finally, subtracting 

Equation (2-69) from Equation (2-68), substituting appropriate forms of Equations (2-71) to 

(2-74) and conserving the number of molecules in bulk phases yields the free-energy equation 

for the case when phase 2 is a gas (subscript “𝑔𝑔”): 

 
Δ𝐵𝐵𝑔𝑔 = 𝑃𝑃3(𝑉𝑉2 − 𝑉𝑉r

2) + 𝛾𝛾13(𝐴𝐴13 − 𝐴𝐴r
13) + 𝛾𝛾23(𝐴𝐴23 − 𝐴𝐴r

23) + 𝛾𝛾12𝐴𝐴12

− 𝑃𝑃r
2𝑉𝑉r

2 ln
𝑃𝑃r

2

𝑃𝑃2 
(2-75) 

and when both phase 1 and 2 are liquids (subscript “𝑙𝑙”): 

 Δ𝐵𝐵𝑙𝑙 = 𝛾𝛾13(𝐴𝐴13 − 𝐴𝐴r
13) + 𝛾𝛾23(𝐴𝐴23 − 𝐴𝐴r

23) + 𝛾𝛾12𝐴𝐴12 (2-76) 

The first term in Equation (2-75) represents the energy contribution related to the volume 

change of phase 2, and it is not cancelled by the last term, which is due to the chemical potential 

change. These two contributions cancel each other when both phases (phase 1 and phase 2) are 

liquids as seen in Equation (2-76). 

Note that the free-energy equations are derived for the attached configuration as the 

general case but are also applied to the other two cases by simply taking 𝐴𝐴13 = 0 when phase 

2 encapsulates phase 1, and 𝐴𝐴23 = 0 when phase 1 encapsulates phase 2. As we did not need 

to specify whether phase 3 is liquid or gas for the purposes of derivation of Equation (2-76), it 

is valid when two immiscible liquid drops are surrounded by either a liquid or a gas. 

2.2.5 On the stability of the equilibrium states 

2.2.5.1 Explicit forms of the free-energy equations as functions of geometry around 

equilibrium 

Equilibrium states can be stable, metastable, or unstable depending on whether the 

function acting as the free energy of the system attains a global minimum, a local minimum, 
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or a maximum (or an inflection point, or a saddle point if there is more than one degree of 

freedom), respectively, at the equilibrium point. Therefore, it is sufficient to investigate the 

free energy in the neighborhood of the equilibrium to identify the nature of that equilibrium. 

For arbitrary small variations in the vicinity of an equilibrium state, higher order terms in the 

expansion of the equations of the intensive parameters of the system can be neglected retaining 

only the first order terms. Therefore, intensive parameters can be assumed to be constant and 

equal to their equilibrium values around equilibrium [203]. Additionally, the volume of the 

gaseous phase at equilibrium, 𝑉𝑉2, is constant for small changes around equilibrium as it is a 

function of the pressure of the gas, given by the ideal gas law.  

After inserting Equations (2-13) to (2-15) into Equations (2-75) and (2-76), we obtain 

 
Δ𝐵𝐵𝑔𝑔 = 𝜋𝜋(𝑅𝑅12)2 �

𝛾𝛾13 sin2 𝜑𝜑
1 − cos 𝛼𝛼

+  
𝛾𝛾23sin2 𝜑𝜑
1 − cos 𝛽𝛽

+ 𝛾𝛾12(1 − cos 𝜑𝜑)� − 𝛾𝛾13𝐴𝐴r
13

− 𝛾𝛾23𝐴𝐴r
23 + 𝑃𝑃3(𝑉𝑉2 − 𝑉𝑉r

2) − 𝑃𝑃r
2𝑉𝑉r

2 ln
𝑃𝑃r

2

𝑃𝑃2 

(2-77) 

 
Δ𝐵𝐵𝑙𝑙 = 𝜋𝜋(𝑅𝑅12)2 �

𝛾𝛾13 sin2 𝜑𝜑
1 − cos 𝛼𝛼

+  
𝛾𝛾23sin2 𝜑𝜑
1 − cos 𝛽𝛽

+ 𝛾𝛾12(1 − cos 𝜑𝜑)� − 𝛾𝛾13𝐴𝐴r
13

− 𝛾𝛾23𝐴𝐴r
23 

(2-78) 

as functions of geometry. Note that 𝑉𝑉2 and 𝑃𝑃2 in Equation (2-77) are not functions of geometry 

in the neighborhood of an equilibrium state, and they take different values at different 

equilibrium states. 

2.2.5.2 Reference configuration and full encapsulation cases viewed as the limits of the 

attached configuration 

From Equations (2-13) to (2-15), we notice that as 𝛼𝛼 → 0∘ and 𝜑𝜑 → 180∘, the attached 

configuration approaches the phase-1-encapsulating-phase-2 case, and 𝛽𝛽 becomes undefined. 

Similarly, as 𝛽𝛽 → 0∘ and 𝜑𝜑 → −180∘, the attached configuration approaches the case where 

phase 2 encapsulates phase 1, and 𝛼𝛼 becomes undefined. Additionally, as 𝛼𝛼 → 0∘ and 𝛽𝛽 → 0∘, 

the configuration corresponds to two phases being separate (the reference state), where 𝜑𝜑 is 

undefined. Of course, these values cannot be directly substituted into the equations describing 

the attached configuration as the system would not be well-defined; instead, a simpler, more 

intuitive approach can be used to investigate the stability of these cases due to their simpler 

geometry. Without loss of generality, we take a drop and a bubble that are in the reference state 
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(i.e., separate in phase 3) and analyze what happens when they just touch each other and create 

a small drop–bubble interfacial area denoted by d𝐴𝐴12. Because this area is small, it can be 

approximated by a flat disk with diameter 

 𝑑𝑑 = �4d𝐴𝐴12

𝜋𝜋
 (2-79) 

From geometry, angles 𝛼𝛼 and 𝛽𝛽 are given by the following relations: 

 𝛼𝛼 = sin−1 𝑑𝑑
2𝑅𝑅r

13 (2-80) 

 𝛽𝛽 = sin−1 𝑑𝑑
2𝑅𝑅r

23 (2-81) 

where 𝑅𝑅r
13 and 𝑅𝑅r

23 indicate the radii of the drop and the bubble, respectively, and sin−1 is the 

inverse sine function. Using Equations (2-13) and (2-14), corresponding changes in the areas 

of the remaining interfaces would be 

 

d𝐴𝐴13 = 𝐴𝐴13 − 𝐴𝐴r
13 = 2𝜋𝜋(𝑅𝑅r

13)2 �1 + cos �sin−1 𝑑𝑑
2𝑅𝑅r

13�� − 4𝜋𝜋(𝑅𝑅r
13)2

= 2𝜋𝜋(𝑅𝑅r
13)2 �1 + �1 − �

𝑑𝑑
2𝑅𝑅r

13�
2

� − 4𝜋𝜋(𝑅𝑅r
13)2

= 2𝜋𝜋(𝑅𝑅r
13)2 �1 + �1 −

d𝐴𝐴12

𝜋𝜋(𝑅𝑅r
13)2� − 4𝜋𝜋(𝑅𝑅r

13)2

= 2𝜋𝜋(𝑅𝑅r
13)2 �2 −

d𝐴𝐴12

2𝜋𝜋(𝑅𝑅r
13)2� − 4𝜋𝜋(𝑅𝑅r

13)2 = −d𝐴𝐴12 

(2-82) 

and 

 d𝐴𝐴23 = 𝐴𝐴23 − 𝐴𝐴r
23 = −d𝐴𝐴12 (2-83) 

In Equations (2-82) and (2-83), we have used the approximation √1 − 𝑥𝑥 ≈ 1 − 𝑥𝑥/2 

because the higher order terms are negligible when 𝑥𝑥 is sufficiently small. Substituting 

Equations (2-82) and (2-83) back into Equation (2-75) and noting that 𝑃𝑃2 and 𝑉𝑉2 do not change 

around equilibrium, we have 

 d𝐵𝐵𝑔𝑔 = (𝛾𝛾12 − 𝛾𝛾13 − 𝛾𝛾23)d𝐴𝐴12 (2-84) 
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Notice that the reference configuration is unstable (i.e., the change in free energy is 

negative) when 𝛾𝛾12 < 𝛾𝛾13 + 𝛾𝛾23. With similar arguments, it can be shown that the case where 

phase 1 encapsulates phase 2 is unstable when 𝛾𝛾23 < 𝛾𝛾12 + 𝛾𝛾13, and that the case where phase 

2 encapsulates phase 1 is unstable when 𝛾𝛾13 < 𝛾𝛾12 + 𝛾𝛾23. Furthermore, note that when all 

three of these configurations are unstable (i.e., when the triangle inequalities are satisfied), the 

physical interpretation is that the attached configuration must be stable. Additionally, it is easy 

to check that only one configuration out of four (including the reference configuration) 

discussed in this chapter can be stable for given 𝛾𝛾12, 𝛾𝛾13, and 𝛾𝛾23. These results are in full 

agreement with the predictions of the spreading coefficient concept and can be seen as the 

generalization of it to systems of all scales that may have a gas phase present. 

2.2.6 On the contributions of the first and the last terms in Equation (2-75) 
In the case of a liquid drop and a gas bubble surrounded by a liquid, depending on the 

size of the bubble or the magnitude of the external pressure, if the Laplace pressure is small 

compared to the external pressure (𝑃𝑃R ≫ 𝑃𝑃Laplace) we have: 𝑃𝑃3 ≈ 𝑃𝑃2 ≈ 𝑃𝑃r
2. Using the Taylor 

series expansion of ln 𝑥𝑥 at 𝑥𝑥 = 1 we have 

 ln
𝑃𝑃r

2

𝑃𝑃2 ≈
𝑃𝑃r

2

𝑃𝑃2 − 1 (2-85) 

Substituting Equation (2-85) into Equation (2-75), the first and the last terms cancel 

out leaving only the interfacial terms [i.e., Equation (2-75) reduces to Equation (2-76)]. 

Intuitively, this means that, when the pressure caused by a curved interface is small compared 

to the external pressure, the compression of the gas can be neglected and the free energy is the 

same as that for the liquid case. 

On the other hand, if the Laplace pressure is much higher than the bulk pressure (PR ≪

PLaplace) (e.g., a nanoscale system), we note that the contribution of the last term in Equation 

(2-75) would be significantly larger compared to the first term. This is because the last term is 

of order of magnitude of ~Pr
2Vr

2, whereas the first term is of order of magnitude of ~P3Vr
2, 

where P3 ≪ Pr
2. 

2.3 Results and discussion 
In this section, the equilibrium of an air bubble with a dodecane drop (referred to as 

“oil” hereafter) in water is considered for analysis as an example (for clarity, superscripts are 
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changed: “1” to “o” for oil, “2” to “a” for air and “3” to “w” for water). For simplicity, 

solubilities of these substances in one another are ignored and they are treated as completely 

immiscible. To solve for equilibrium, the required system parameters are given in Table 2-1. 

Temperature, 𝑇𝑇R = 22 °C, is only given for reference for which the values of the interfacial 

tensions were selected, and it is not directly used in the calculations. We first use the parameters 

from Table 2-1 to obtain solutions for each equilibrium configuration and compare free 

energies, then explore how varying some of these parameters individually or, in some cases, 

systematically may affect the resulting geometries. Lastly, the effects of the system scale are 

investigated. 

Table 2-1. Input parameters used to solve for equilibrium configurations in Table 2-2. 𝛾𝛾ow and 
𝛾𝛾oa are from reference  [65], and 𝛾𝛾aw is from reference  [229]. 

Parameter Value Units 

𝑇𝑇R 22 °C 

𝑃𝑃R 101325.0 Pa 

𝑉𝑉o 100 × 10−9 m3 

𝑉𝑉r
a 75 × 10−9 m3 

𝛾𝛾ow 53.7 mN/m 

𝛾𝛾aw 72.4 mN/m 

𝛾𝛾oa 25.3 mN/m 
 

Due to the complexity and nonlinear nature of the equations, an analytical solution 

could not be developed. Instead, the numerical solver vpasolve() from MATLAB (v.2020b, 

Natick, MA, USA) was successfully adopted to solve for equilibrium configurations. First, we 

calculate the radius of the air bubble in the reference state, 𝑅𝑅r
aw, using the equation for the 

volume of a sphere and the corresponding reference pressure of air 𝑃𝑃r
a from the Laplace 

equation written for the reference radius of curvature 𝑅𝑅r
aw. Then we simultaneously solve: (i) 

Equations (2-11), (2-12), (2-16), (2-17), (2-32) to (2-34), (2-36), and (2-74) for unknowns 𝑉𝑉a, 

𝑅𝑅aw, 𝑅𝑅ow, 𝑃𝑃o, 𝑃𝑃a, 𝑅𝑅oa, 𝛼𝛼, 𝛽𝛽, 𝜑𝜑 for the attached configuration, (ii) Equations (2-18), (2-19), 

(2-42), (2-43), and (2-74)for unknowns 𝑉𝑉a, 𝑅𝑅aw, 𝑃𝑃o, 𝑃𝑃a, 𝑅𝑅oa for the configuration where air 

encapsulates oil, and (iii) Equations (2-22), (2-23), (2-49), (2-50), and (2-74) for unknowns 

𝑉𝑉a, 𝑅𝑅ow, 𝑃𝑃o, 𝑃𝑃a, 𝑅𝑅oa for the configuration where oil encapsulates air. Therefore, we obtain the 
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values describing the geometry and the states of the bulk phases of final configurations. Free 

energies are then calculated for each configuration by substituting these results into Equation 

(2-75). Results are given in Table 2-2 with diagrams drawn to scale. 

Table 2-2. Solutions of the systems of equations for each configuration with given parameters 
as specified in Table 2-1 with diagrams to scale. 

Configuration: (I) (II) (III) Units 

Figures to scale 

   

 

𝑉𝑉a 75.006 × 10−9 75.01 × 10−9 75.004 × 10−9 m3 

𝑅𝑅r
a 0.002616 0.002616 0.002616 m 

𝑃𝑃r
a 101380.4 101380.4 101380.4 Pa 

𝑅𝑅aw 0.003070 0.003470 N/A m 

𝑅𝑅ow 0.003379 N/A 0.003470 m 

𝑃𝑃o 101356.8 101384.3 101356.0 Pa 

𝑃𝑃a 101372.2 101366.7 101375.3 Pa 

𝑅𝑅oa 0.003287 0.002879 0.002616 m 

𝛼𝛼 63.009 N/A N/A ° 

𝛽𝛽 101.317 N/A N/A ° 

𝜑𝜑 66.326 N/A N/A ° 

𝐵𝐵 − 𝐵𝐵r −1.75 × 10−6 1.77 × 10−6 −1.52 × 10−6 J 
 

In this particular example, because the interfacial tensions, 𝛾𝛾ow, 𝛾𝛾aw, and 𝛾𝛾oa satisfy 

the triangle inequalities, the reference configuration and the two full encapsulation 

configurations are unstable, while the attached configuration is stable. To visualize this, a 3D 

free-energy plot is given in Figure 2-2 (a). It is plotted using Equation (2-77) with two volume 

constraints given by Equations (2-11) and (2-12) with geometry Equations (2-16) and (2-17) 

oil air

1 mm

oil

air

1 mm

air

oil

1 mm
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substituted in. The 𝑥𝑥- and 𝑦𝑦-axes represent 𝛼𝛼 + 𝛽𝛽 and 𝜑𝜑, respectively. Note that this selection 

of variables to plot against is arbitrary and setting both 𝛼𝛼 + 𝛽𝛽 and 𝜑𝜑 fixes both 𝛼𝛼 and 𝛽𝛽 as the 

system effectively only has two degrees of freedom (four variables, 𝛼𝛼, 𝛽𝛽, 𝜑𝜑, 𝑅𝑅12, and two 

constraints). However, this selection results in the best visual representation of the free-energy 

surface and all three of the limiting cases appear as straight lines since one of 𝛼𝛼, 𝛽𝛽, or 𝜑𝜑 is 

undefined at those limits as noted earlier. These straight lines are shown in red on all panels of 

Figure 2-2 at 𝜑𝜑 = 180∘ (representing the oil-encapsulating-air configuration), 𝜑𝜑 = −180∘ 

(representing the air-encapsulating-oil configuration), and 𝛼𝛼 + 𝛽𝛽 = 0∘ (representing the 

reference configuration; notice that the free energy is zero for the reference configuration). 

Figure 2-2 (a) shows that for the parameters in Table 2-1 only one minimum (a global 

minimum) is observed at the point corresponding to the stable equilibrium being the attached 

configuration with 𝛼𝛼 = 63°, 𝛽𝛽 = 101.3°, and 𝜑𝜑 = 66.3° [indicated by the blue lines on Figure 

2-2 (a)]. It is clear from this plot that the limiting cases are unstable meaning that, as soon as 

the three-phase contact line is created, the system will evolve towards the stable attached 

configuration. 
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Figure 2-2. 3D free-energy plots and contour maps as functions of two variables, 𝛼𝛼 + 𝛽𝛽 and 
𝜑𝜑, for (a) a system with the system parameters given in Table 2-1; (b) the same system as in 
(a) except with 𝛾𝛾ow = 100 mN/m > 𝛾𝛾aw + 𝛾𝛾oa = 72.4 + 25.3 = 97.7 mN/m; (c) the same 
system as in (a) except with 𝛾𝛾aw = 100 mN/m > 𝛾𝛾ow + 𝛾𝛾oa = 53.7 + 25.3 = 79 mN/m; 
and (d) the same system as in (a) except with 𝛾𝛾oa = 130 mN/m > 𝛾𝛾ow + 𝛾𝛾aw = 53.7 +
72.4 = 126.1 mN/m. The plot in (a) shows a stable equilibrium (a global minimum) at 𝛼𝛼 +
𝛽𝛽 = 164.3∘ (𝛼𝛼 = 63∘ and 𝛽𝛽 = 101.3∘) and 𝜑𝜑 = 66.3∘ indicated by the blue lines 
corresponding to the attached configuration. The bold, red lines on all figures represent the 
limiting configurations. Namely, the line at 𝜑𝜑 = 180∘ represents the oil-encapsulating-air 
configuration, the line at 𝜑𝜑 = −180∘ represents the air-encapsulating-oil configuration, and 
the line at 𝛼𝛼 + 𝛽𝛽 = 0∘ represents the reference configuration. 

a) b)

c) d)
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We further explore the plot of the free-energy function by changing values of each 

individual interfacial tension to values such that the triangle inequalities no longer hold. In 

each case, this results in a shift to the plot towards one of the limiting cases making its free 

energy minimum, while the global minimum corresponding to the attached configuration 

disappears. In Figure 2-2 (b), the oil–water interfacial tension  is set to be 𝛾𝛾ow = 100 mN/m, 

while all the remaining system parameters are kept as given in Table 2-1, so that 𝛾𝛾ow > 𝛾𝛾aw +

𝛾𝛾oa = 72.4 + 25.3 = 97.7 mN/m for which the air-encapsulating-oil configuration 

(represented by the red line at 𝜑𝜑 = −180°) is the only stable configuration as shown by its free 

energy being a global minimum. Similarly, in Figure 2-2 (c), we set 𝛾𝛾aw = 100 mN/m >

𝛾𝛾ow + 𝛾𝛾oa = 53.7 + 25.3 = 79 mN/m for which the oil-encapsulating-air configuration 

(represented by the red line at 𝜑𝜑 = 180°) is the only stable configuration as shown by its free 

energy being a global minimum. And finally, in Figure 2-2 (d), we set 𝛾𝛾oa = 130 mN/m >

𝛾𝛾ow + 𝛾𝛾aw = 53.7 + 72.4 = 126.1 mN/m for which the reference configuration (represented 

by the red line at 𝛼𝛼 + 𝛽𝛽 = 0°) is the only stable configuration as shown by its free energy being 

a global minimum. 

2.3.1 Effects of system parameters on free energy and geometry of equilibrium 

configurations 
Next, we look at the effects of the system parameters on the free energy of the 

equilibrium configurations and geometry of the attached configuration. For brevity, the effects 

on the geometry of the full encapsulation cases are omitted since they are relatively simple. 

Because the number of initial parameters that can be individually varied is large (𝑇𝑇R, 𝑃𝑃R, 𝑉𝑉o, 

𝑉𝑉r
a, 𝛾𝛾oa, 𝛾𝛾ow, and 𝛾𝛾aw), it is not practical to analyze their combined effects all at once, instead 

they are considered individually, and the reservoir pressure, 𝑃𝑃R = 101.325 kPa, and the 

temperature, 𝑇𝑇R = 22 °C, are kept constant throughout for simplicity. 

2.3.1.1 Effects of the initial volume of the air bubble 

For a fixed volume of the oil drop of 𝑉𝑉o = 100 × 10−9 m3, the effects of the ratio of 

the initial volume of the air phase to the volume of the oil phase, 𝑉𝑉r
a/𝑉𝑉o are shown in Figure 

2-3 over a range from 0.001 to 1000. The 𝑥𝑥-axis is given in logarithmic scale for clarity. 

Figure 2-3 (a) shows the free energy with respect to a reference state as a function of relative 
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air volume for each configuration. As expected, at small volume ratios, the free energy 

associated with the air-encapsulating-oil configuration is high as this would mean a formation 

of a thin shell of the air phase around the much bigger oil phase resulting in an increase in the 

air–water interfacial area. On the other hand, at high volume ratios, the oil-encapsulating-air 

configuration has much higher free energy as this would mean a formation of a thin shell of 

oil around the much bigger air phase, hence greatly increasing the oil–water interfacial area 

and the free energy. In Figure 2-3 (a), note that each 𝑥𝑥-axis value represents a different system, 

and therefore, extrema on this plot do not have a stability meaning. It should be noted that the 

reference configuration and the two full encapsulation configurations are always unstable, and 

the attached configuration is always stable (minimum free energy) as expected. 
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Figure 2-3. Effect of the ratio of the initial volumes of air phase to oil phase on: (a) the free 
energy with respect to the reference state; (b) the radius of the oil–air interface, 𝑅𝑅oa, for the 
attached configuration; and (c) the contact angles 𝛼𝛼, 𝛽𝛽, and 𝜑𝜑, for the attached configuration. 
Three example schematics from the attached configuration are shown with (from left to right): 
positively curved interface (𝑉𝑉r

a/𝑉𝑉o = 0.01); flat interface (𝑉𝑉r
a/𝑉𝑉o ≈ 27); and negatively 

curved interface (𝑉𝑉r
a/𝑉𝑉o = 100). The volume of the oil phase, 𝑉𝑉o = 100 × 10−9 m3, is kept 

constant. The remaining system parameters are fixed as given in Table 2-1. The vertical dashed 
line indicates the volume ratio where the flat oil–air interface occurs. Note that, in (a), each 𝑥𝑥-
axis value represents a different system, and therefore, extrema on these plots do not have a 
stability meaning. 
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In Figure 2-3, panels (b) and (c) together describe the geometry in terms of the radius 

of curvature of the oil–air interface, 𝑅𝑅oa, and the contact angles 𝛼𝛼, 𝛽𝛽, and 𝜑𝜑, respectively, as 

the volume of the air phase is varied. In this range, both negative and positive curvatures of 

the oil–air interface are observed. This interface is flat around 𝑉𝑉r
a/𝑉𝑉o ≈ 27 for which a 

schematic is given, together with two additional example schematics at 𝑉𝑉r
a/𝑉𝑉o = 0.01 and 

𝑉𝑉r
a/𝑉𝑉o = 100, all indicated by the red arrows. 

The effects of changing the volume of the oil phase are omitted for brevity as they 

would be practically the same (but opposite in terms of direction) of changing the volume of 

the air phase. For example, increasing the volume of the air phase, in some sense, is equivalent 

to decreasing the volume of the oil phase as long as we are staying in roughly the same size 

scale. 

2.3.1.2 Effects of interfacial tensions 

To investigate the effects of the interfacial tensions, 𝛾𝛾ow, 𝛾𝛾oa, and 𝛾𝛾aw, we separately 

vary them while keeping all the other system parameters fixed as given in Table 2-1. Although 

this may not be achievable in practice (for example, using surfactants or changing temperature 

will usually affect more than one interfacial tension), doing so gives insight to the problem and 

combined effects can still be examined later. These effects are summarized in Figure 2-4, 

where the top row, (a), shows the effects on the free energy with respect to the reference, the 

second row, (b), shows the effects on the radius of curvature of the oil–air interface, 𝑅𝑅oa, and 

the third row, (c), shows the effects on the contact angles 𝛼𝛼, 𝛽𝛽, and 𝜑𝜑. Every column of figures 

corresponds to varying one of the interfacial tensions. Three example schematics of the 

attached configuration are given for each varying interfacial tension below its plot. Note that 

the attached configuration is only possible in a certain range in each case as the interfacial 

tensions are varied. As discussed earlier, this happens because of the violation of the triangle 

inequalities past a certain point when varying the interfacial tensions. These limits are indicated 

by vertical dashed lines in Figure 2-4 for each of the varying interfacial tensions, with the 

corresponding triangle inequality limits marked at the top of the figure. 



43 
 

 
Figure 2-4. Effects of individually varying 𝛾𝛾ow, 𝛾𝛾oa, and 𝛾𝛾aw on: (a) the free-energy difference 
between each final configuration and the reference state; (b) the radius of the oil–air interface, 
𝑅𝑅oa, for the attached configuration; and (c) the contact angles 𝛼𝛼, 𝛽𝛽, and 𝜑𝜑 for the attached 
configuration. When varying each interfacial tension, the remaining parameters are fixed as 
given in Table 2-1. Note that the attached configuration is only possible in certain ranges, 
where the triangle inequalities for the interfacial tensions are satisfied. These limits and the flat 
interfaces (when possible) are indicated by vertical dashed lines. Three example schematics 
are given for each of the varied interfacial tensions. 

a)

b)

c)
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Figure 2-5 shows the combined effects of the interfacial tensions on the contact angle 

of the oil–air interface, 𝜑𝜑, for three different volumes of air: (a) 𝑉𝑉r
a = 75 × 10−9 m3; (b) 𝑉𝑉r

a =

10 × 10−9 m3; and (c) 𝑉𝑉r
a = 1000 × 10−9 m3. The interfacial tension of the air–water 

interface, 𝛾𝛾aw = 72.4 mN/m, is kept constant. The horizontal axes are given by a 

nondimensional parameter 𝛾𝛾ow/𝛾𝛾aw, while the vertical axes are similarly given by 𝛾𝛾oa/𝛾𝛾aw. 

The shaded rectangular domains are bounded by the straight lines, which represent the limits 

of the triangle inequalities. Every solid line within these boundaries is a constant-angle contour 

of the resultant surface. As conventionally defined, the red-shaded areas correspond to positive 

radii of curvature (convex), while the blue-shaded areas correspond to negative radii of 

curvature (concave). It should be noted that changing 𝛾𝛾aw in a realistic, physical range does 

not change these plots at this scale since the contributions of pressure due to curvature are 

small compared to external pressure. This is also true if one chooses to take a different 

combination of the ratios of interfacial tensions—scaling all interfacial tensions proportionally 

in a physical range does not affect the geometry noticeably in this example. This is because, at 

this scale, the volume change of the gas phase due to the change in Laplace pressure (caused 

by the change in radius of the air–water interface) is negligible. When this is the case, we can 

factor out any of the interfacial tensions from Equations (2-32) and (2-33), divide both sides 

by it and only consider the ratios of the remaining interfacial tensions. 
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Figure 2-5. Contours of constant contact angle 𝜑𝜑 plotted for constant oil volume, 𝑉𝑉o =
100 × 10−9 m3, and three different initial volumes of the air bubble: (a) 𝑉𝑉r

a = 75 × 10−9 m3; 
(b) 𝑉𝑉r

a = 10 × 10−9 m3; and (c) 𝑉𝑉r
a = 1000 × 10−9 m3 as functions of the ratios of interfacial 

tensions, 𝛾𝛾ow/𝛾𝛾aw and 𝛾𝛾oa/𝛾𝛾aw. The air–water interfacial tension, 𝛾𝛾aw = 72.4 × 10−3 N/m, 
is fixed. Conventionally, the angle, 𝜑𝜑, is chosen to be positive when the interface is convex 
(red-shaded areas), and negative when it is concave (blue-shaded areas) towards the oil phase. 
The domains are bounded by the straight lines: 𝛾𝛾oa/𝛾𝛾aw = 𝛾𝛾ow/𝛾𝛾aw + 1; 𝛾𝛾oa/𝛾𝛾aw =
𝛾𝛾ow/𝛾𝛾aw − 1; and 𝛾𝛾oa/𝛾𝛾aw = 1 − 𝛾𝛾ow/𝛾𝛾aw. Outside of the domain boundaries, the attached 
configuration is not possible, so a representative schematic of the most stable configuration is 
drawn for each of the triangular regions. 
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2.3.1.3 Effects of scale 

In this section, we investigate the effects of the scale by comparing the same system at 

two different size scales. This is done to highlight the importance of using the correct free-

energy equation in a system with a gas phase. We take the original oil–air–water system and 

look at this system at two different size scales: (i) the millimeter scale, where we fix the volume 

of the oil phase at 𝑉𝑉o = 100 × 10−9 m3 (i.e., the same as all cases studied up to this point in 

this chapter); and (ii) the nanometer scale, where we fix the volume of the oil phase at 𝑉𝑉o =

100 × 10−24 m3, and vary the volume of the air phase such that the air-to-oil volume ratio is 

between 0.001 and 1000 in both cases. Doing so, we plot the free-energy contributions of the 

interfacial terms, Δ𝐵𝐵int.: 

 Δ𝐵𝐵int. =   𝛾𝛾ow(𝐴𝐴ow − 𝐴𝐴r
ow) + 𝛾𝛾aw(𝐴𝐴aw − 𝐴𝐴r

aw) + 𝛾𝛾oa𝐴𝐴oa (2-86) 

the pressure term, Δ𝐵𝐵P: 

 Δ𝐵𝐵P = 𝑃𝑃w(𝑉𝑉a − 𝑉𝑉r
a) (2-87) 

and the chemical potential term, Δ𝐵𝐵μ: 

 Δ𝐵𝐵μ = −𝑃𝑃r
a𝑉𝑉r

a ln �
𝑃𝑃r

a

𝑃𝑃a � (2-88) 

to the total free energy, Δ𝐵𝐵total: 

 Δ𝐵𝐵total = Δ𝐵𝐵P + Δ𝐵𝐵int. + Δ𝐵𝐵μ (2-89) 

as given by Equation (2-75). This is shown in Figure 2-6 for the attached, the air-encapsulating-

oil, and the oil-encapsulating-air configurations separately. The 𝑥𝑥-axis (relative air volume) is 

given in logarithmic scale for clarity. We observe that, when the system is at the millimeter 

scale, the pressure and the chemical potential terms cancel each other leaving the total free 

energy equal to the interfacial terms only (the reason explained earlier). This is no longer the 

case when the system is at a much smaller nanometer scale, where these contributions do not 

cancel each other, and the total free energy with respect to the reference is different than the 

interfacial free energy with respect to the reference. Therefore, it is important to take the 

pressure and chemical potential terms into account when studying systems at small scales. This 

is further highlighted by superimposing the plots of the total free energy and the interfacial free 

energy in Figure 2-7 [similar to Figure 2-3 (a)]. We note that, when the chemical potential term 

is ignored (the pressure term is already negligible; see Figure 2-6 and theoretical discussion on 
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the contributions of these terms), this results not only in quantitative errors, but also the relative 

positions of the curves with respect to each other may change. Without these contributions, for 

some range of 𝑉𝑉r
a/𝑉𝑉o(well-pronounced around 𝑉𝑉r

a/𝑉𝑉o = 10), the oil-encapsulating-air 

configuration appears to have less free energy than the attached configuration resulting in a 

wrong conclusion (i.e., the oil-encapsulating-air configuration is wrongly concluded to be 

more stable than the attached configuration when only the interfacial free-energy terms are 

considered). However, when the correct free-energy equation considered [with the pressure 

and the chemical potential terms as given in Equation (2-75)], we arrive at the correct 

conclusion that the attached configuration is the most stable configuration at all volume ratios 

since the triangle inequalities for the interfacial tensions are satisfied. 

 
Figure 2-6. Contributions of the interfacial (Δ𝐵𝐵int.), pressure (Δ𝐵𝐵P), and chemical potential 
(Δ𝐵𝐵μ) terms to the total free energy (Δ𝐵𝐵total) of each configuration at two different size scales. 
The top row corresponds to a system at the millimeter scale (𝑉𝑉o = 100 × 10−9 m3), where the 
free-energy contributions due to pressure and chemical potential cancel each other leaving the 
total the free energies with respect to the reference equal to the interfacial free-energy 
contributions (Δ𝐵𝐵total = Δ𝐵𝐵int.). The bottom row corresponds to a system at the nanometer 
scale (𝑉𝑉o = 100 × 10−24 m3), where these contributions do not cancel. The remaining system 
parameters of both systems are fixed as given in Table 2-1. Note that each 𝑥𝑥-axis value on 
these plots represents a different system, and therefore, extrema on these plots do not have a 
stability meaning. 
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Figure 2-7. Effect of the ratio of the initial volumes of the air phase to the oil phase on the free 
energy with respect to the reference state at the nanoscale. The thick lines represent the total 
free energy, whereas the thin gray lines represent the free energy only due to the interfacial 
terms. The volume of the oil phase, 𝑉𝑉o = 100 × 10−24 m3, is kept constant, and the remaining 
system parameters are fixed as given in Table 2-1. Note that each 𝑥𝑥-axis value on this plot 
represents a different system, and therefore, extrema on this plot do not have a stability 
meaning. 

2.4 Conclusion 
In this chapter, we used Gibbsian composite-system thermodynamics to derive the 

conditions for equilibrium for a three-phase system with spherical interfaces at constant 

external pressure and temperature, where all phases are assumed to be immiscible. Effects of 

any external fields were neglected. We considered liquid-only systems in parallel with systems 

where a gas phase may be present. The equations for the free energy for these systems were 

then derived and compared. We rigorously explained the predictions of the spreading 

coefficient concept from the perspective of free energy and showed that it is valid for liquid–

gas systems at any scale as well as liquid–liquid systems. In addition to this, we also provided 

a method for calculating the exact geometries of the configurations that may arise in these 

systems such as an attached configuration (i.e., lens formation) or full encapsulation 

configurations. We used a numerical solver to solve the system of equations describing each 

equilibrium geometry. 

An example system consisting of a dodecane drop and an air bubble surrounded by 

water was further investigated. Effects of various initial parameters such as initial volume, 

r
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interfacial tensions, and overall size scale of the system on the equilibrium geometry and the 

relative stability of the configurations were explored. Finally, we showed that using the correct 

form of the free-energy equation is important even for qualitative conclusions. 
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Chapter 3  
Quantifying the Effects of Dissolved Nitrogen and 

Carbon Dioxide on Drying Pressure of Hydrophobic 

Nanopores1 

 

Chapter summary 
The effects of a dissolved gas on the behavior of liquid in cylindrical nanopores were 

investigated in the framework of Gibbsian composite-system thermodynamics and classical 

nucleation theory. An equation was derived relating the phase equilibrium of a mixture of a 

subcritical solvent and a supercritical gas to the curvature of the liquid–vapor interface. Both 

the liquid and the vapor phases were treated nonideally, which was shown to be important for 

the accuracy of the predictions in the case of water with dissolved nitrogen or carbon dioxide. 

The behavior of water in nanoconfinement was found to be only affected when the gas amount 

is significantly more than the saturation concentration of these gases in atmospheric conditions. 

 
1 Reproduced (including Appendix A), with minor changes, with permission from H. Binyaminov and J. A. W. 
Elliott. Quantifying the Effects of Dissolved Nitrogen and Carbon Dioxide on Drying Pressure of Hydrophobic 
Nanopores, J. Chem. Phys. 158, 204710 (2023). https://doi.org/10.1063/5.0146952 © 2023 American Institute of 
Physics. 

https://doi.org/10.1063/5.0146952
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However, such concentrations can be easily reached at high pressures during intrusion if there 

is sufficient gas present in the system, especially considering gas oversolubility in 

confinement. By including an adjustable line tension term in the free-energy equation 

(−44 pJ/m for all points), the theory can make predictions in line with a few data points 

available from a recent experimental work. But we note that such a fitted value empirically 

accounts for multiple effects and should not be interpreted as the energy of the three-phase 

contact line alone. Compared to molecular dynamics simulations, our method is easy to 

implement, requires minimal computational resources, and is not limited to small pore sizes 

and/or short simulation times. It provides an efficient path for first-order estimation of the 

metastability limit of water–gas solutions in nanopores. 

3.1 Introduction 
The dynamics of intrusion and extrusion of liquids into and out of nanoscale 

environments has drawn great interest in recent years, owing mainly to the increasing number 

of technological and industrial applications, such as fluid separation [110], energy dampening 

and storage [29,48,68,155], porosimetry [81], and DNA sequencing [191], among many 

others. The interplay of the parameters that dictate the behavior of a liquid in confinement is 

notoriously difficult to determine leading to poor predictability, controllability, and other 

design challenges [39,59]. Additionally, understanding of these processes is crucial from the 

fundamental-science perspective as they are believed to play an important role in many organic 

phenomena, such as gating in biological channels [11,94,130,168,174]. 

One of the variables that strongly affects the characteristics of a liquid in confinement 

is the dissolved gas, such as nitrogen, which is naturally present in the liquid, such as water, if 

special precautions are not taken to eliminate it [71,72]. The ability of the dissolved gas to 

promote drying of a liquid-filled pore has implications beyond technological applications. For 

example, in biology, the anesthetic potency of a gas is known to be related to its solubility [126] 

(the Meyer–Overton correlation). Although the phenomenon has been known for over a 

century and many hypotheses have been put forward to explain it since, a scientific consensus 

has not yet been reached. In recent years, a new idea has been gaining popularity with growing 

evidence suggesting a mechanism where the gas migrates to the channels of the lipid bilayer, 

destabilizes the liquid, and creates a vapor bubble that blocks ion transfer [26,130,174]. 
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Previously, equilibrium density functional theory [174] and molecular dynamics 

simulations [12,26,120,123,129,166] have been utilized to study the effects of a weakly soluble 

gas on the wet-to-dry transition in nanoconfinement. Roth et al. [174] studied gating in a model 

hydrophobic biological channel. Their calculations show that a small amount of xenon gas 

dramatically decreases the open probability of a channel with radius in the 0.4–1.2 nm range. 

In molecular dynamics simulations by Camisasca et al. [26], a single atom of argon gas was 

able to migrate into a water-filled nanopore with radius of 0.7 nm and result in drying of the 

pore within the simulation time by reducing the free-energy barrier considerably and 

nucleating a bubble. By means of molecular dynamics simulations, Li et al. [123] studied the 

effect of nitrogen gas on the critical distance between hydrophobic plates in water. They 

concluded that, by aggregating near the surfaces of the plates, the gas increases the critical 

distance below which water is unstable in the confinement. In a similar study by Feng et 

al. [53], electric field applied perpendicularly to the plates resulted in enhanced aggregation of 

the nitrogen molecules in the slit and further increased the critical distance in proportion to the 

field strength. Leung et al. [120] realized that, at atmospheric pressures, the dissolved gases 

should have no significant effect on drying by performing simulations with water confined in 

hydrocarbon-like slits. In their simulations, a single nitrogen molecule inserted into the slit 

reduced the free-energy barrier by ~2𝑘𝑘B𝑇𝑇, where 𝑘𝑘B is the Boltzmann constant and 𝑇𝑇 is 

absolute temperature. Luzar et al. [129] found that the fugacities of nitrogen and carbon 

dioxide required to trigger expulsion of water from a 1.4 nm hydrophobic slit were ~40 bar 

and ~2 bar, respectively. 

There have been some experimental attempts [121,122,166,206] to quantify the effects 

of dissolved gases on the behavior of water in nanoconfinement. Li et al. [121,122] used 

nanoporous material with cylindrical pores of varying sizes mixed with water and conducted 

experiments with different amounts of air in the system. At the end of the first compression–

decompression cycle, depending on the amount of gas, very little, some, or most of the total 

nanopore volume could be recovered for use in the second cycle. In the works of Xu et al. [206] 

and Qiao et al. [166], the researchers performed experiments with cylindrical nanopores open 

at both ends, and closed at one end, respectively, with trapped gas occupying the pore volume 

at the beginning of intrusion (i.e., air; the samples were not degassed). Both groups observed 

that, if the samples were held at high pressures at the end of the infiltration process (~3–12 hrs 
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holding time), a significant portion of the usable nanopore volume was lost in the next cycle. 

On the other hand, if the intrusion and extrusion processes were performed in succession with 

no holding, all pore volume was recovered allowing practically identical intrusion–extrusion 

cycles. This was because the trapped gas in the nanopores was not enough to saturate the liquid 

at the pressure at which the samples were held, and the gas was diffusing into the bulk liquid 

(a rather slow process) reducing the gas concentration in the pores. No drying was observed in 

the same experiment of Qiao et al. [166] performed with material with larger average pore 

size, regardless of the presence of the gas or high-pressure holding. 

In this chapter, we study the effect of dissolved nitrogen and carbon dioxide on the 

wet/dry state of a cylindrical nanopore in the framework of Gibbsian composite-system 

thermodynamics coupled with classical nucleation theory. Previously, using similar methods, 

our group has explored free-energy landscapes in other geometries such as formation of 

bubbles in finite cones [217] or stability of surface nanobubbles [218]. In these works, the 

pressures considered were low so that the ideal-mixture assumptions could be safely made. We 

have also developed equations for liquid–vapor equilibrium of multicomponent mixtures of 

condensable components accounting for the effect of interfacial curvature and the liquid-phase 

nonideality [183,186]. The extension to nonideal vapor phase was mentioned in reference  [45] 

but not applied. Here, to study the stability of water in cylindrical nanopores in the presence 

of gas, we derive the fully nonideal phase equilibrium equations for a mixture of a condensable 

solvent and a noncondensable gas with a curved liquid–vapor interface. These equations can 

be applied to any confinement geometry and interface shape and are accurate for typical 

pressures of interest in the studies of liquids in nanopores. 

Regarding the applicability of the macroscopic thermodynamic equations at extreme 

confinement and reliability of the predictions, there are many works in the literature supporting 

their validity under certain circumstances in the 1–4 nm size range [46]. For instance, it has 

been shown that the macroscopic equation relating the saturation vapor pressure of the liquid 

to the curvature of the interface—the Kelvin equation—holds for clusters as small as 0.7 nm 

in radius [50]. In our group’s previous work, the multicomponent version of this equation 

applied to pores of 2 nm radius gave predictions of composition-dependent dew points of 

subcritical mixtures in excellent agreement with independent measurements [183]. Another 

example is the Young–Laplace equation (in fact, it is used in the derivation of the Kelvin 
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equation), which has been demonstrated to be valid for nanodroplets down to drop radius of 

1 nm [131]. In the context of nanopores, this equation is known to predict the intrusion 

pressures accurately for pore radii 1.3 nm and larger [71,72,118,119]. Additionally, it has been 

concluded that the properties of water bridges sandwiched between two planar surfaces can be 

calculated using capillary theory for wall separations of 3 nm and above with no additional 

corrections [3]. Moreover, classical nucleation theory with the Kelvin equation applied to the 

nitrogen–ethyl ether mixture was able to accurately predict the homogeneous bubble 

nucleation rate and correctly capture its pressure and temperature dependencies [54,201]. 

3.2 System definition and free energy 
A schematic description of the system is given in Figure 3-1. We consider a piston–

cylinder device that is coupled with a constant pressure (𝑃𝑃R) and constant temperature (𝑇𝑇R) 

reservoir with which only volume and energy exchanges are allowed. We let the system exist 

in the absence of external forces, such as gravity. We assume that the container is filled with a 

liquid with dissolved gas in it, which is denoted by the superscript letter “L” (referred to as 

“liquid” or “solution”). Sufficient for the analysis here, we consider a single cylindrical pore 

open at both ends with internal radius of 𝑅𝑅p and length of 𝑙𝑙p placed in the liquid. It is assumed 

that the pore is made of a solid material with which the liquid would have a macroscopic 

equilibrium contact angle 𝜃𝜃eq (measured through the liquid) if placed on a flat surface. The 

solid is taken to be insoluble, nonvolatile, and infinitely rigid.  

After the pore is filled with the liquid, the pressure is suddenly brought to pressure 

𝑃𝑃ext = 𝑃𝑃R, which is referred to as the extrusion pressure. This is the pressure at which the pore 

empties (or dries) in an experiment in a reasonable time. A schematic of the system 

immediately after the pressure is brought to 𝑃𝑃ext is given in Figure 3-1 (a). As depicted in 

Figure 3-1 (b), after a short time, the liquid starts to empty the pore while the piston moves up 

to accommodate for the formation of the new vapor phase in the pore, which is denoted by “V” 

(referred to as “vapor”). Finally, the system reaches a new equilibrium state where the pore is 

sealed at both ends with pinned spherical liquid–vapor interfaces as depicted in Figure 3-1 (c). 

We note that the final pinned equilibrium state is only possible if the difference between the 

vapor-phase pressure and the liquid-phase pressure, Δ𝑃𝑃 = 𝑃𝑃V − 𝑃𝑃L, is not larger than the pore 

mouth geometry can accommodate. This threshold pressure difference is denoted by Δ𝑃𝑃∗. 
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Assuming a flat pore mouth surface, it can be calculated as Δ𝑃𝑃∗ = 2𝜎𝜎LV sin 𝜃𝜃eq /𝑅𝑅p, where 

𝜎𝜎LV is the surface tension of the liquid–vapor interface. This means that the inequality Δ𝑃𝑃 ≤

Δ𝑃𝑃∗ should be satisfied for the vapor phase to stay confined in the pore. 

It has been experimentally confirmed [71,72,118,119] that the capillary pressure 

required to force the liquid into an initially dry pore (initially, the pressure is zero inside the 

capillary) is well described by Laplace’s law of capillarity: 

 𝑃𝑃int = −
2𝜎𝜎LV cos 𝜃𝜃a

𝑅𝑅p
 (3-1) 

where 𝑃𝑃int is the required intrusion pressure, and 𝜃𝜃a ≥ 𝜃𝜃eq is the advancing contact angle. 

Notice that a positive intrusion pressure is required if the solid is nonwetting (i.e., if 𝜃𝜃eq >

90°). 
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Figure 3-1. Schematic description of drying of a cylindrical nanopore immersed in a liquid–
gas solution. The metastable reference state is shown in panel (a) with a solution-filled cylinder 
of radius 𝑅𝑅p and length 𝑙𝑙p. After a short waiting time, a new vapor phase forms and pushes the 
solution out of the pore following a nucleation event. A snapshot of the process after the 
nucleation is shown in panel (b), where two disjoint spherical caps are moving in opposite 
directions. The final equilibrium state with the vapor-filled pore and a pinned liquid–vapor 
interface covering the pore mouth at the end of this process is depicted in panel (c). In this 
panel, the light blue, purple, and black lines indicate example positions of the interface, 
depending on the pressure difference, 𝑃𝑃V − 𝑃𝑃L. The liquid–gas solution is indicated by the 
letter “L” and the vapor is indicated by the letter “V”. The liquid has an equilibrium contact 
angle of 𝜃𝜃eq with the solid. While the interface is in motion, the contact angle, 𝜃𝜃r, in general, 
is assumed to be different than 𝜃𝜃eq. Note that 𝜃𝜃r does not appear in our calculations because 
we are only concerned with equilibrium states in this work. Schematics of possible critical 
nuclei geometries considered in this work are depicted in panels (d) (localized nucleus) and (e) 
(symmetric nucleus). 

In our analysis, the intrusion pressure, 𝑃𝑃int, only serves as a guide for the concentration 

of the gas in the liquid, which can be independently set to make the liquid (i) undersaturated, 

(ii) saturated, or (iii) oversaturated with respect to 𝑃𝑃int. The most obvious case would be to 

assume that the concentration of the gas in the liquid, after the system pressure is brought to 

𝑃𝑃ext, is equal to the saturation concentration of the gas at 𝑃𝑃int. However, other possibilities are 

also considered to gain insight into the physics of the problem. In practice, undersaturation 

may happe n due to, for example, not having enough gas molecules in the system for saturation, 

and oversaturation can be the result of the initial pressure being higher than the required 

(minimum) intrusion pressure, 𝑃𝑃int, in abundance of gas. In experiments, one usually deals 
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with many pores in one system with a certain pore size distribution. As a result, the maximum 

pressure reached for the complete intrusion of all pores can be significantly higher (typically 

at least ~30%–50% higher) than the mean intrusion pressure. If the pore studied in this work 

represents the average pore size in the experiments, it is reasonable to consider oversaturation 

with respect to the required intrusion pressure. Furthermore, nanopores are known to attract 

“hydrophobic” dissolved gas resulting in a significant increase in gas concentrations in the 

pore compared to the bulk concentration [23,86–90,129,158]. 

In the experiments, the extrusion pressure is often measured to be significantly lower 

than the required intrusion pressure, while (linearly) increasing with temperature, indicating 

that there exists a free-energy barrier that needs to be overcome. This energy barrier is 

associated with the formation of a critical nucleus of vapor (which contains both vapor of the 

solvent and gas) because of random fluctuations in the liquid, as formulated in the context of 

classical nucleation theory [103]. This nucleus is in an unstable equilibrium with the liquid, 

and as a result, smaller nuclei disappear, and larger nuclei grow until a new equilibrium state 

is reached. It is well known that heterogeneous bubble nucleation (i.e., creation of a nucleus in 

contact with the pore wall) has a lower energy barrier compared to homogenous bubble 

nucleation (i.e., creation of nucleus in the bulk liquid inside the pore), especially when 𝜃𝜃eq >

90° [103]. Therefore, only the formation of a critical nucleus on the pore wall (inside the pore) 

is considered. The shape of this nucleus will be discussed later as it may have nontrivial 

geometry due to the confinement inside the cylinder. The nucleus shape need not be specified 

for the derivation and qualitative description of the thermodynamic potential of the system (the 

free-energy equation). 

To investigate the nature of equilibrium states, it suffices to study the free-energy 

equation in the neighborhood of an equilibrium state. Following the standard 

techniques [41,43,45,201,203,215], the expansion of the free energy in intensive parameters 

around the equilibrium state can be written. Because the variations around equilibrium can be 

made arbitrarily small, only the first order terms can be retained, which reduces to [215] 

 Δ𝐵𝐵(𝑉𝑉V) = −𝑉𝑉V𝜎𝜎LV𝑘𝑘c + 𝜎𝜎LV𝐴𝐴LV + 𝜎𝜎LV𝐴𝐴SV cos 𝜃𝜃eq (3-2) 

where 𝐵𝐵 is the free-energy function, 𝑉𝑉V is the volume of a nucleus, 𝑘𝑘c = 1/𝑅𝑅1,c + 1/𝑅𝑅2,c is 

twice the mean curvature of the liquid–vapor interface of the critical nucleus with 𝑅𝑅1,c and 𝑅𝑅2,c 

being the principal radii of curvature of the surface (the surface is oriented with the unit 
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normals pointing towards the liquid). For brevity, we will refer to 𝑘𝑘c simply as “curvature” in 

the remainder of this chapter. 𝐴𝐴LV and 𝐴𝐴SV are the areas of the liquid–vapor and the solid–

vapor interfaces, respectively. The reference state is chosen to be the metastable liquid state in 

the absence of a vapor nucleus [as depicted in Figure 3-1 (a)] and the following conditions for 

equilibrium have been incorporated: 

(i) uniformity of temperature across all phases 

 𝑇𝑇R = 𝑇𝑇𝑗𝑗 = 𝑇𝑇𝑗𝑗𝑗𝑗 (3-3) 

where 𝑗𝑗 = L or V, and 𝑗𝑗𝑘𝑘 = LV, SL, or SV representing bulk phases and interfaces, 

respectively. 

(ii) equality of chemical potentials of each component in each subsystem 

 𝜇𝜇𝑖𝑖
𝑗𝑗 = 𝜇𝜇𝑖𝑖

𝑗𝑗 = 𝜇𝜇𝑖𝑖
𝑗𝑗𝑗𝑗 (3-4) 

where the subscript denotes the component 𝑖𝑖. In this chapter, we use 𝑖𝑖 = 1 for the 

solvent and 𝑖𝑖 = 2 for the gas. 

(iii) mechanical equilibrium conditions 

 𝜎𝜎SV = 𝜎𝜎SL + 𝜎𝜎LV cos 𝜃𝜃eq (3-5) 

 𝑃𝑃L = 𝑃𝑃R (3-6) 

 𝑃𝑃V − 𝑃𝑃L = 𝜎𝜎LV𝑘𝑘c (3-7) 

𝜎𝜎SV and 𝜎𝜎SL in Equation (3-5) are the interfacial tensions of the solid–vapor and 

the solid–liquid interfaces, respectively.  

For derivation of Equation (3-2), it is also assumed that the liquid surrounding the 

critical nucleus is large enough that the temperature and pressure changes due to the formation 

of the nucleus can be neglected. Additionally, since the number of molecules of various 

components that go into the creation of the critical nucleus can be shown to be small compared 

to the number of molecules in the solution, the concentration of the components in the solution 

can be assumed to be constant. Consequently, the variations in the chemical potentials of 

components in solution can also be neglected because they are functions of temperature, 

pressure, and concentration only [201]. 
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3.3 Nonideal multicomponent liquid–vapor equilibrium across a 

curved interface 
For heterogenous nucleation of a vapor bubble from a pure liquid, the critical curvature, 

𝑘𝑘c, in Equation (3-2) can be found by knowing the vapor pressure of the liquid at the given 

temperature and using a version of the Kelvin equation [41] generalized to nonspherical liquid–

vapor interfaces. In the presence of other components, however, the equations for 

multicomponent liquid–vapor equilibrium need to be established first, while considering the 

geometry (i.e., the curvature of the liquid–vapor interface). Since the pressure is not uniform 

in the system, the applicability of the typical phase equilibrium equations for uniform pressure 

(i.e., 𝑃𝑃 = 𝑃𝑃L = 𝑃𝑃V) from the literature need to be checked and the necessary modifications 

should be made. Here, we give a detailed derivation of the liquid–vapor equilibrium equations 

for the general case where 𝑃𝑃L ≠ 𝑃𝑃V.  

We start by writing the equality of chemical potentials [Equation (3-4)] in liquid and 

vapor phases for both components: 

 𝜇𝜇1
L(𝑇𝑇, 𝑃𝑃L, 𝑥𝑥1) = 𝜇𝜇1

V(𝑇𝑇, 𝑃𝑃V, 𝑦𝑦1) (3-8) 

 𝜇𝜇2
L(𝑇𝑇, 𝑃𝑃L, 𝑥𝑥2) = 𝜇𝜇2

V(𝑇𝑇, 𝑃𝑃V, 𝑦𝑦2) (3-9) 

where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the mole fractions of the components in liquid and in vapor phases, 

respectively. Considering the pressures in the systems of interest can be quite high, we do not 

make ideality assumptions a priori. For the solvent, using the definition of fugacity [44], 

Equation (3-8) can be rewritten as 

 𝜇𝜇1
L(𝑇𝑇, 𝑃𝑃L, 𝑥𝑥1 = 1) + 𝑅𝑅�𝑇𝑇 ln �

𝑓𝑓1
L

𝑓𝑓1
L� = 𝜇𝜇1

V(𝑇𝑇, 𝑃𝑃V, 𝑦𝑦1 = 1) + 𝑅𝑅�𝑇𝑇 ln �
𝑓𝑓1

V

𝑓𝑓1
V� (3-10) 

where 𝑓𝑓𝑖𝑖
L is the fugacity of pure component 𝑖𝑖 as a liquid at 𝑇𝑇 and 𝑃𝑃L, 𝑓𝑓𝑖𝑖

L is the fugacity of 

component 𝑖𝑖 in a liquid mixture (i.e., in the presence of other components) at 𝑇𝑇 and 𝑃𝑃L, 𝑓𝑓𝑖𝑖
V is 

the fugacity of pure component 𝑖𝑖 as a vapor at 𝑇𝑇 and 𝑃𝑃V, 𝑓𝑓𝑖𝑖
V is the fugacity of component 𝑖𝑖 in 

a vapor mixture at 𝑇𝑇 and 𝑃𝑃V, and 𝑅𝑅� is the universal gas constant. In the framework of our 

problem, the solvent component is always kept subcritical. Hence, for convenience, the state 

at which the pressure is equal to the saturation pressure of the solvent, 𝑃𝑃1,sat, at temperature 𝑇𝑇 

can be chosen as the reference state. Using the Gibbs–Duhem equation, we can write [25] 
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𝜇𝜇1
L�𝑇𝑇, 𝑃𝑃1,sat, 𝑥𝑥1 = 1� + � 𝑣𝑣1

Ld𝑃𝑃
𝑃𝑃L

𝑃𝑃1,sat

+ 𝑅𝑅�𝑇𝑇 ln �
𝑓𝑓1

L

𝑓𝑓1
L�

= 𝜇𝜇1
V�𝑇𝑇, 𝑃𝑃1,sat, 𝑦𝑦1 = 1� + 𝑅𝑅�𝑇𝑇 ln �

𝑓𝑓1
V

𝑓𝑓1,sat
V � 

(3-11) 

where 𝑣𝑣1
L is the molar volume of pure liquid solvent. For a component 𝑖𝑖 in a liquid solution, 

the activity coefficient is defined as 𝛾𝛾𝑖𝑖 = 𝑓𝑓1
L/𝑥𝑥𝑖𝑖𝑓𝑓𝑖𝑖

L, and the fugacity coefficient is defined as 

𝜙𝜙�𝑖𝑖
V = 𝑓𝑓𝑖𝑖

V/𝑦𝑦𝑖𝑖𝑃𝑃V [44]. Note that the pure component activity coefficient is unity [i.e., 

lim
𝑥𝑥𝑖𝑖→1

(𝛾𝛾𝑖𝑖) = 1]. However, note that the pure gas fugacity coefficient is not necessarily unity: 

𝜙𝜙𝑖𝑖
V = lim

𝑦𝑦𝑖𝑖→1
�𝜙𝜙�𝑖𝑖

V� = 𝑓𝑓𝑖𝑖
V/𝑃𝑃V. Using these definitions and the equality of chemical potentials of 

the liquid and vapor of pure solvent at saturation, we can write 

 𝜙𝜙�1
V𝑦𝑦1𝑃𝑃V = 𝑥𝑥1𝛾𝛾1𝜙𝜙1,sat𝑃𝑃1,sat𝜂𝜂1 (3-12) 

where 𝜙𝜙1,sat is the fugacity coefficient of the vapor of pure solvent at saturation, and 𝜂𝜂1 is 

defined as 

 𝜂𝜂1 = exp �
∫ 𝑣𝑣1

Ld𝑃𝑃𝑃𝑃L

𝑃𝑃1,sat

𝑅𝑅�𝑇𝑇
� (3-13) 

Equation (3-12) is a practically more useful version of Equation (3-8) for the equality of 

chemical potential of the solvent between the phases. 

Since the typical gas component is usually supercritical at the conditions of interest 

(e.g., nitrogen or carbon dioxide at 50 °C), 𝑃𝑃2,sat may not be defined at 𝑇𝑇 and the pure gas 

component at saturation cannot be chosen as the reference state. Instead, we first consider a 

state where both vapor and solution are at the pressure 𝑃𝑃L with arbitrary concentrations of gas 

as 𝑥𝑥2
′  and 𝑦𝑦2

′  in the solution and in the vapor phases, respectively. Using Equation (3-9), we 

write 

 𝜇𝜇2
L(𝑇𝑇, 𝑃𝑃L, 𝑥𝑥2

′ ) + 𝑅𝑅�𝑇𝑇 ln �
𝑓𝑓2

L

𝑓𝑓2
′L� = 𝜇𝜇2

V(𝑇𝑇, 𝑃𝑃L, 𝑦𝑦2
′ ) + 𝑅𝑅�𝑇𝑇 ln �

𝑓𝑓2
V

𝑓𝑓2
′V(𝑃𝑃L) 

� (3-14) 

For clarity, in the parentheses, we indicate the pressure at which the quantity needs to 

be evaluated if it is different than what is indicated by the phase descriptor (i.e., the superscript 
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letter). Using the definitions of the fugacity and activity coefficients and rearranging, Equation 

(3-14) can be rewritten as 

 𝜇𝜇2
V(𝑇𝑇, 𝑃𝑃L, 𝑦𝑦2

′ ) − 𝜇𝜇2
L(𝑇𝑇, 𝑃𝑃L, 𝑥𝑥2

′ ) = 𝑅𝑅�𝑇𝑇 ln �
𝑥𝑥2𝛾𝛾2𝜙𝜙�2

′V(𝑃𝑃L)𝑦𝑦2
′ 𝑃𝑃L

𝑥𝑥2
′ 𝛾𝛾2

′𝜙𝜙�2
V𝑦𝑦2𝑃𝑃V � (3-15) 

Now, we choose 𝑃𝑃1,sat as the reference pressure for the left-hand-side of Equation 

(3-15) and write 

 

𝜇𝜇2
V�𝑇𝑇, 𝑃𝑃1,sat, 𝑦𝑦2

′ � − 𝜇𝜇2
L�𝑇𝑇, 𝑃𝑃1,sat, 𝑥𝑥2

′ � + 𝑅𝑅�𝑇𝑇 ln �
𝑓𝑓2

′V(𝑃𝑃L)

𝑓𝑓2
′V

�𝑃𝑃1,sat� 
� − � �̅�𝑣2

Ld𝑃𝑃
𝑃𝑃L

𝑃𝑃1,sat

= 𝑅𝑅�𝑇𝑇 ln �
𝑥𝑥2𝛾𝛾2𝜙𝜙�2

′V(𝑃𝑃L)𝑦𝑦2
′ 𝑃𝑃L

𝑥𝑥2
′ 𝛾𝛾2

′𝜙𝜙�2
V𝑦𝑦2𝑃𝑃V � 

(3-16) 

where �̅�𝑣2
L is the partial molar volume of the gas component in the solution at 𝑥𝑥2

′ . By rearranging 

and taking the limit as 𝑥𝑥2
′ → 0 of both sides of Equation (3-16), we can write 

 

lim
𝑥𝑥2

′ →0
�𝜇𝜇2

V�𝑇𝑇, 𝑃𝑃1,sat, 𝑦𝑦2
′ � − 𝜇𝜇2

L�𝑇𝑇, 𝑃𝑃1,sat, 𝑥𝑥2
′ ��

= lim
𝑥𝑥2

′ →0
�𝑅𝑅�𝑇𝑇 ln �

𝑥𝑥2𝛾𝛾2𝜙𝜙�2
′V�𝑃𝑃1,sat�𝑦𝑦2

′ 𝑃𝑃1,sat

𝑥𝑥2
′ 𝛾𝛾2

′𝜙𝜙�2
V𝑦𝑦2𝑃𝑃V � + � �̅�𝑣2

Ld𝑃𝑃
𝑃𝑃L

𝑃𝑃1,sat

� 
(3-17) 

Instead of keeping 𝑦𝑦2
′  independent, for a small 𝑥𝑥2

′  chosen arbitrarily close to zero, we 

choose the equilibrium concentration 𝑦𝑦2
′  (also close to zero) such that the vapor pressure is 

equal to 𝑃𝑃1,sat (the vapor is almost entirely component 1), which makes the left-hand side of 

Equation (3-17) vanish. Additionally, one can make the following definitions at this 

equilibrium: 

(i) infinite dilution activity coefficient of component 2 

 𝛾𝛾2
∗ = lim

𝑥𝑥2
′ →0

�
𝛾𝛾2

𝛾𝛾2
′� (3-18) 

Note that lim
𝑥𝑥2→0

(𝛾𝛾2
∗) = 1 (i.e., 𝛾𝛾2

∗ is normalized to unity at 𝑥𝑥2 → 0). 

(ii) partial molar volume of component 2 in solution at infinite dilution 

 �̅�𝑣2,∞
L = lim

𝑥𝑥2
′ →0

(�̅�𝑣2
L) (3-19) 

(iii) the ratio of fugacity in the vapor to the concentration in the liquid of component 2 

at infinite dilution 
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 𝐻𝐻12 = lim
𝑥𝑥2

′ →0
�
𝜙𝜙�2

′V�𝑃𝑃1,sat�𝑦𝑦2
′ 𝑃𝑃1,sat

𝑥𝑥2
′ � (3-20) 

which is Henry’s law constant by definition [31,188]. 

Substituting these definitions into Equation (3-17) and rearranging, the liquid–vapor 

equilibrium for the gas component across a curved interface can be expressed as 

 𝜙𝜙�2
V𝑦𝑦2𝑃𝑃V = 𝑥𝑥2𝛾𝛾2

∗𝐻𝐻12𝜂𝜂2 (3-21) 

where 𝜂𝜂2 is defined as 

 𝜂𝜂2 = exp �
∫ �̅�𝑣2,∞

L d𝑃𝑃𝑃𝑃L

𝑃𝑃1,sat

𝑅𝑅�𝑇𝑇
� (3-22) 

Like Equation (3-12), Equation (3-21) is a practically more useful version of Equation 

(3-9). Equations (3-12) and (3-21) together establish the nonideal liquid–vapor equilibrium for 

a liquid–gas mixture, which, in general, may have different phase pressures. Note that, by 

setting 𝑃𝑃 = 𝑃𝑃V = 𝑃𝑃L in Equations (3-12) and (3-21), we recover the two-component liquid–

vapor equilibrium equations across a flat interface [44]. 

By combining Equations (3-12) and (3-21) with Equation (3-7) and noting that 𝑃𝑃V =

𝑦𝑦1𝑃𝑃V + 𝑦𝑦2𝑃𝑃V, we can write 

 𝑘𝑘c = �
𝑥𝑥1𝛾𝛾1𝜙𝜙1,sat𝑃𝑃1,sat𝜂𝜂1

𝜙𝜙�1
V +

𝑥𝑥2𝛾𝛾2
∗𝐻𝐻12𝜂𝜂2

𝜙𝜙�2
V − 𝑃𝑃L� /𝜎𝜎LV (3-23) 

Equation (3-23) relates the equilibrium thermodynamic properties of the mixture to the 

equilibrium geometry. It can be viewed (after some rearranging) as the nonideal Kelvin 

equation for a liquid–gas mixture, generalized to an arbitrary constant-mean-curvature 

interface shape. 

When dealing with aqueous systems, it is customary to use an activity model for the 

liquid phase activity coefficients, 𝛾𝛾1 and 𝛾𝛾2
∗, and to use an equation of state for the vapor phase 

fugacity coefficients, 𝜙𝜙�1
V and 𝜙𝜙�2

V, to correlate them to other variables and/or known parameters 

(the so-called 𝛾𝛾–𝜙𝜙 approach/model). This method generally produces a more accurate 

description compared to, for example, using the same equation of state for both liquid and 

vapor, while still being relatively simple. We use the nonrandom two-liquid model [169] for 

the activity in solution and the Peng–Robinson cubic equation of state [157] for the vapor phase 

fugacity. Since the only solvent in this chapter is water, the parameters 𝜙𝜙1,sat, 𝑃𝑃1,sat, 𝑣𝑣1
L, 𝐻𝐻12, 
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and �̅�𝑣2,∞
L  in Equations (3-12) and (3-21) can be accurately obtained from the tabulated values 

and/or functional correlations from the literature. For nitrogen–water and carbon dioxide–

water solutions, the model we have chosen provides enough accuracy for pressures up to 

100 MPa at moderate temperatures (see Figure A-2 and Figure A-3). This pressure range is 

sufficient do describe equilibrium across a spherical liquid–vapor interface with the radius of 

curvature down to ~1.4 nm assuming negligible pressure at the low-pressure side (for 𝜎𝜎LV =

0.068 J/m2—the value at 𝑇𝑇 = 323.15 K). For comparison, a critical nucleus (having free-

energy barrier of ~35𝑘𝑘B𝑇𝑇; see the next section) for heterogeneous vapor nucleation from liquid 

water on a hydrophobic flat substrate with contact angle of 120° (i.e., a spherical cap) has a 

radius of curvature of ~2 nm. This presents the worst-case scenario because the critical nuclei 

corresponding to the same energy barrier in nanoconfinement need not be as curved (mean 

curvature implied). Note that the liquid-phase pressure is allowed to be negative (i.e., tension), 

although, there is no experimental data available for this case since most experiments are done 

at the macroscopic scale having a flat liquid–vapor interface (i.e., uniform pressure; negative 

pressure is not defined for a gas). The detailed description of the thermodynamic model, the 

correlations used, and the validation against available experimental data are given in Appendix 

A. 

3.4 Estimating free-energy barrier from experiments 
We use classical nucleation theory to estimate the free-energy barrier from the 

nucleation rate, which has been applied to nanopores before in references  [71] and  [118]. To 

summarize, the probability of fluctuations in thermodynamic properties of liquid is inversely 

proportional to the exponential of the reversible work associated with such fluctuations. For 

the formation of a vapor bubble, this reversible work is the corresponding free-energy barrier. 

Written in units of expected nucleation events per unit length of the pore, 𝑙𝑙p, per unit time, the 

nucleation rate is given as [118] 

 𝐽𝐽 =
𝒵𝒵𝜈𝜈
𝑏𝑏

exp �−
Δ𝐵𝐵c

𝑘𝑘B𝑇𝑇� (3-24) 

where 𝒵𝒵 is the barrier transmission coefficient (also known as the Zeldovich factor), 𝑏𝑏 and 𝜈𝜈 

are the microscopic length and frequency scales, respectively, and Δ𝐵𝐵c denotes the free-energy 

barrier. Note that references  [71] and  [118] use transition state theory approximation to 
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extract the nucleation energy barriers, which presumes negligible barrier recrossings (i.e., 𝒵𝒵 =

1). This approximation is questionable because of flat energy profiles and diffusive 

propagation characteristics of nucleation [139]. Indeed, for capillary drying of water in a 

hydrocarbon-like slit, the transmission coefficient was found to be  𝒵𝒵~0.01–0.1 [120]. 

Since 𝐽𝐽 depends much more strongly on Δ𝐵𝐵c than the pre-exponential factor, the 

dependence of 𝜈𝜈 on pore radius is neglected. The typical values of 𝑏𝑏 and 𝜈𝜈 for pure water are 

 ~ 0.1–1 nm and  ~ 1012–1013 Hz, respectively [71,118]. We will assume that these values 

are also applicable to the liquid–gas solutions considered in this work. 

To estimate the free-energy barrier that is low enough for the nucleation event to be 

observable in typical experimental time, 𝑡𝑡, one usually sets 𝐽𝐽𝑡𝑡𝑙𝑙p = 1. Using this value, we can 

invert Equation (3-24) to find the energy barrier: 

 Δ𝐵𝐵c = 𝑘𝑘B𝑇𝑇 ln �
𝒵𝒵𝑡𝑡𝜈𝜈𝑙𝑙p

𝑏𝑏
� (3-25) 

Typical cylindrical nanopores have lengths of hundreds of nanometers (𝑙𝑙p~100–

1000 nm) [10,111,213] and typical experimental times range from a fraction of a second to a 

few tens of seconds (𝑡𝑡~0.1–100 s). By substituting the parameters from the listed ranges above 

in Equation (3-25), one calculates Δ𝐵𝐵c ~ 25𝑘𝑘B𝑇𝑇 as the lowest value, and Δ𝐵𝐵c ~ 44𝑘𝑘B𝑇𝑇 as the 

highest value with the average being Δ𝐵𝐵c = 35𝑘𝑘B𝑇𝑇. We use this average as a representative 

value of the energy barrier, where applicable in the following sections. Since the energy barrier 

scales with the square of the pore radius, this translates to ~12% uncertainty for the inference 

of the pore size. Note that about 2/3 of the uncertainty in Δ𝐵𝐵c is eliminated with information 

about the pore length in the experiment and the observation time. For example, for drying of 

an average-sized pore with length of 500 nm that is observed for 10 seconds, the range 

becomes Δ𝐵𝐵c~32–38 𝑘𝑘B𝑇𝑇. 

3.5 Shape of the critical nucleus 
Once the chemical equilibrium is solved at given conditions, the critical curvature of 

the liquid–vapor interface, 𝑘𝑘c, is known from Equation (3-23) (see Appendix A for the details 

of the solution procedure). Next, the goal is to find a nucleus shape inside a cylinder whose 

liquid–vapor interface has the curvature 𝑘𝑘c and calculate the free-energy barrier corresponding 

to this shape. If there are more than one nucleus geometries corresponding to 𝑘𝑘c, the one with 
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the lowest free energy should be chosen as the critical nucleus. Following reference  [118], 

two distinct possibilities are considered for the shape of the critical nucleus confined to a 

cylinder wall: (i) an annulus shape—a symmetric nucleus with the axis of symmetry being the 

cylinder axis and with two disjoint three-phase contact lines [Figure 3-1 (e)], and (ii) a saddle 

shape—a localized nucleus on the wall of the cylinder with one continuous three-phase contact 

line [Figure 3-1 (d)]. To our knowledge, only the symmetric nucleus has a known analytical 

solution, details of which can be found in reference  [118] (see Appendix A for the main 

equation written in our notation). To determine the geometry of the localized nucleus we use 

the Surface Evolver (SE) code [21], which is a specialized software package designed for 

complex variational problems involving surface forces. 

Briefly, SE tries to minimize the energy of a surface subject to constraints, such as fixed 

volume of the nucleus and fixed walls with surface energy. The surface of the shape to be 

evolved is approximated by triangles (i.e., the surface is represented as a simplicial complex) 

that are moved towards an equilibrium (minimum-energy) shape by gradient descent or 

conjugate gradient methods. The shape usually converges fast, although the accuracy may 

depend on the mesh size as well as the number of evolution steps. Surface Evolver works in a 

unitless system (i.e., it only deals with numerical values), in that, the user is free to assign a 

consistent system of units of measurement to relate the results to real-world applications. The 

volume of the shape is calculated by evaluating surface integrals (Gauss’s theorem), and the 

solid–vapor interfacial area is calculated by evaluating a line integral over the contact line 

(Stokes’s theorem). This eliminates the need to cover the solid surfaces with otherwise useless 

facets. More details about Surface Evolver can be found elsewhere [21]. 

In general, it is not practical to run SE with a prescribed curvature because stability 

becomes an issue. Instead, we created a series of saddle shaped nuclei in the volume range 

from 0.1 to 7 (with an increment of 0.05; a total of 139 points) for contact angles 110°, 120°, 

and 130° in a unit cylinder (radius of 1) and generated look-up tables for the curvature and the 

area of the liquid–vapor interface, the area of the solid–vapor interface, and the length of the 

three-phase contact line. This way, after converting the tabulated values to a consistent system 

of units for a given pore radius, the quantities can be interpolated in the table for the prescribed 

critical curvature. The free-energy barrier can be calculated using these values directly in 
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Equation (3-2). Then, the volume and the areas can be varied following the trends around this 

equilibrium to investigate the stability of the equilibrium. 

The summary of nondimensionalized results of geometry calculations is given in Figure 

3-2 (a), (b), and (c) for both symmetric (dotted dashed lines) and localized nuclei (solid lines) 

and for three different values of contact angle. The quantities are plotted against the 

dimensionless critical curvature, 𝑘𝑘c𝑅𝑅p. The corresponding free-energy barriers are given in 

Figure 3-2 (d) as calculated using Equation (3-2). It is seen that the symmetric nucleus is only 

slightly preferred when the prescribed curvature is close to the minimum possible curvature in 

the pore (i.e., 𝑘𝑘c𝑅𝑅p~2 cos 𝜃𝜃eq). This is in complete agreement with previous results [71,118]. 

Note that there are infinite solutions for the shape of the nucleus when 𝑘𝑘c𝑅𝑅p = 2 cos 𝜃𝜃eq with 

different volumes and solid–vapor interfacial areas, which all have the same liquid–vapor 

interfacial areas and energies. These correspond to the vapor nuclei sealed with two disjoint 

spherical caps at both ends. The end points of the curves in Figure 3-2 (b) and (d) indicate the 

transition to the two-disjoint-spherical-caps geometry.  For 𝑘𝑘c𝑅𝑅p < 2 cos 𝜃𝜃eq there are no 

solutions, meaning that the pore cannot dry at such conditions. 
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Figure 3-2. Nondimensional geometrical quantities for the critical nuclei and the corresponding 
energy plots as functions of nondimensional curvature for three different contact angles: blue 
for 𝜃𝜃eq = 110°, orange for 𝜃𝜃eq = 120°, and yellow for 𝜃𝜃eq = 130°. The solid lines are for the 
localized nuclei and the dotted dashed lines are for the symmetric nuclei. Panels (a), (b), and 
(c) show the plots of volume, liquid–vapor interfacial area, and solid–vapor interfacial area, 
respectively. Panel (d) shows the plots of energy barrier as calculated using Equation (3-2). 
The inset shows a zoom-in of the curvature range where the symmetric nuclei have slightly 
lower energy. Here, the energy curves for the localized nuclei are shown in black to highlight 
the transition points. 

Examples of the lowest-energy shapes for the prescribed curvature are given in Figure 

3-3 for contact angle 𝜃𝜃eq = 120°. These examples are chosen from ranges where they have 

lower energy compared to the other geometry. The curvatures of the localized nuclei in panels 

(a) and (b) are 𝑘𝑘c𝑅𝑅p = 0.83 and 𝑘𝑘c𝑅𝑅p = 0.21, respectively. In panel (c), the two-dimensional 

slices of three symmetric nuclei with curvatures 𝑘𝑘c𝑅𝑅p = −0.8 (dotted line), −0.87 (dashed 

line), and −0.94 (solid line) are shown. For the equation used to calculate these profiles, see 

Appendix A. 
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Figure 3-3. Examples of localized and symmetric nuclei. As calculated using Surface Evolver, 
the three-dimensional views of the liquid–vapor interfaces for the localized nuclei are shown 
in panels (a) and (b), which have constant curvatures of 𝑘𝑘c𝑅𝑅p = 0.83 and 𝑘𝑘c𝑅𝑅p = 0.21, 
respectively. For clear views of these shapes, only the contours of the cylinders are shown at 
the ends of the bounding boxes. The three-phase contact lines are shown in red. In panel (c), 
the two-dimensional view of three symmetric nuclei on an axial plane are shown. The three-
dimensional surfaces are obtained by rotating these profiles around the cylinder axis (blue 
dotted dashed line). These surfaces have constant curvatures of 𝑘𝑘c𝑅𝑅p = −0.8 (dotted line), 
−0.87 (dashed line), and −0.94 (solid line). 

It is important to discuss the reasonableness of both nucleus geometries in the context 

of physical theory, which has not been addressed in previous studies. One of the main 

assumptions of classical nucleation theory is that the primary dynamic variable of interest (i.e., 

the reaction coordinate) is the number of molecules in the nucleus and that other variables 

equilibrate much faster [103,160]. The number of molecules is often well approximated by the 

volume of the nucleus. From atomistic simulations in nanopores, it has been concluded that, 

even for a pore with radius 𝑅𝑅p~1 nm, the volume of the nucleus alone is a good choice for the 

reaction coordinate [120]. This means that the shape found by solving the variational problem 

for a prescribed curvature should also be the minimum-energy shape at that volume to describe 

a critical nucleus. To test this, the symmetricity constraint should be removed since there is no 

physical basis for this requirement. In other words, a symmetric nucleus should be allowed to 

transform to a localized nucleus if this transition is energy-minimizing. For a given volume in 

the volume range where the symmetric nuclei are possible [see Figure 3-2 (a)], there are two 
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or three solutions, one of which is the localized nucleus. Using their corresponding curvatures 

on the energy plot [Figure 3-2 (d)], we see that the localized nucleus always has the lowest 

energy for a given volume up to the maximum volume above which only the disjoint-spherical-

caps geometry is possible. We confirmed this using SE by initializing the shapes symmetrically 

for prescribed volumes, which, upon evolution towards minimum energy, quickly destabilized 

and transformed into localized nuclei. Therefore, we believe that the formation of the 

symmetric nuclei (excluding the disjoint-caps geometry) as part of the nucleation path is 

unlikely in a physical system. In the remainder of this chapter, we only consider either the 

localized geometry or the two-spherical-caps geometry (at large volumes when a localized 

nucleus is not possible) as the shape of the critical nucleus. However, it is worth noting that 

the nucleation barrier is only slightly different in a small range of curvature values [see the 

inset in Figure 3-2 (d)] depending on the choice of symmetric or localized geometry as the 

critical nucleus shape in the potential range. Therefore, both our qualitative and quantitative 

results would not be altered noticeably, even if the symmetric nuclei were physically possible. 

As part of the discussion of the nucleus shape, it is instructive to highlight the 

importance of confinement geometry and its effect on the phase transition. It is due to the shape 

of the confinement that the nuclei with close to zero and negative (according to our sign 

convention) curvatures are also energy-minimizing. For pores small enough so that the 

corresponding free-energy barrier is Δ𝐵𝐵c ~ 35𝑘𝑘B𝑇𝑇, this means that, even at conditions where 

𝑃𝑃L ≫ 𝑃𝑃V, the liquid-to-vapor transition can happen. Without the confinement geometry of the 

pore, 𝑃𝑃L ≪ 𝑃𝑃V is required for phase transition because the energy-minimizing nuclei would 

necessarily have spherical liquid–vapor interfaces with 𝑘𝑘c > 0 while also having to be small 

to satisfy Δ𝐵𝐵c ~ 35𝑘𝑘B𝑇𝑇. 

3.6 Results 

3.6.1 Comparison of free-energy profiles 
Next, we investigate the effects of dissolved nitrogen and carbon dioxide in water on 

the nucleation free-energy barrier. Here, it is convenient to introduce an auxiliary variable, 𝑆𝑆, 

termed the saturation ratio, defined as the ratio of the concentration of the gas in the liquid 

phase to the saturation concentration at the intrusion pressure: 𝑆𝑆 = 𝑥𝑥2/𝑥𝑥2,sat with 𝑥𝑥2,sat being 
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the saturation concentration at 𝑃𝑃int. We consider three pore sizes: 𝑅𝑅p = 1, 1.5, and 2 nm; three 

contact angles: 𝜃𝜃eq = 110, 120, and 130°. These are the typical sizes of the pores and the 

typical contact angles of the materials used in the experiments. The advancing contact angle, 

𝜃𝜃a, used to calculate the intrusion pressure is taken to be equal to the equilibrium contact angle, 

𝜃𝜃eq. This choice does not affect the results because slight incorrect estimation of the intrusion 

pressure, which is only needed to estimate the gas concentration, is compensated for by varying 

the gas concentration independently around this saturation value. The temperature is fixed at 

𝑇𝑇 = 323.15 K (to avoid subcriticality and potential error in the phase description of carbon 

dioxide below its critical temperature of 304.13 K). 

The interfacial tension of liquid with vapor is taken to be constant and equal to the 

surface tension of pure water at 𝑇𝑇 = 323.15 K (𝜎𝜎LV = 0.068 J/m2). Studies on the effects of 

dissolved gas have shown that the water surface tension is lower when the gas is present (as 

low as 𝜎𝜎LV = 0.030 J/m2 for dissolved carbon dioxide at high pressures) [14,127]. The 

adsorption of the gas at the solid–liquid interface would also decrease the solid–liquid 

interfacial tension with both changes in 𝜎𝜎SL and 𝜎𝜎LV affecting the contact angle. Assuming 

these effects are comparable in size, the inclusion of only one of them is expected to give worse 

predictions compared to if both effects are neglected. Quantifying these effects is beyond the 

scope of this chapter, with only the former effect being well-documented in the 

literature [14,127] (and not at the nanoscale), we will assume that, in the presence of the gas, 

the interfacial tension of the liquid–vapor interface and the contact angle are equal to those of 

for pure water. 

Assuming a localized nucleus, the free-energy plots [calculated using Equation (3-2)] 

are given in Figure 3-4 for 𝜃𝜃eq = 110°, in Figure 3-5 for 𝜃𝜃eq = 120°, and in Figure 3-6 for 

𝜃𝜃eq = 130°. Only the region up to the transition to the two-disjoint-spherical-caps geometry 

is shown. The intrusion pressures are calculated using Equation (3-1) for each pore size and 

contact angle combination. In these three figures, each row of plots is for a different pore size, 

whereas the columns are for different liquid pressures. For each plot, the 𝑥𝑥-axis is the volume 

of the nucleus in nm3, and the 𝑦𝑦-axis is the energy in units of 𝑘𝑘B𝑇𝑇. The Δ𝐵𝐵 = 35 𝑘𝑘B𝑇𝑇 limit is 

shown by the horizontal solid black line on each subplot for visual reference. The green lines 

correspond to the pure-water case, while the orange lines are for nitrogen dissolved in water, 
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and the light blue lines are for carbon dioxide dissolved in water. The lines are solid for 𝑆𝑆 = 1, 

dashed for 𝑆𝑆 = 2, and dotted dashed for 𝑆𝑆 = 0.5. All curves are highlighted in red around the 

critical volume and the corresponding free-energy barrier, indicating an unstable equilibrium 

in all cases. Overall, the presence of gas is seen to decrease the free-energy barrier significantly 

in most cases: the higher the gas concentration the easier it is to nucleate. This is because of 

the increased vapor pressure in the presence of the gas. 

 
Figure 3-4. Free-energy plots for 𝜃𝜃eq = 110° at different pore radii, liquid pressures, and 
saturation ratios. The temperature is fixed at 𝑇𝑇 = 323.15 K. The green lines are for pure water, 
the light blue lines are for water with dissolved carbon dioxide, and the orange lines are for 
water with dissolved nitrogen. Each row of subplots is for a different pore radius, while the 
columns are for different liquid pressures. The solid lines are for 𝑆𝑆 = 1, the dashed lines are 
for 𝑆𝑆 = 2, and the dotted dashed lines are for 𝑆𝑆 = 0.5. The horizontal solid black lines 
represent Δ𝐵𝐵 = 35 𝑘𝑘B𝑇𝑇 for visual reference. All curves are highlighted in red around the 
critical volume and the corresponding free-energy barrier. 
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Figure 3-5. Free-energy plots for 𝜃𝜃eq = 120° at different pore radii, liquid pressures, and 
saturation ratios. The temperature is fixed at 𝑇𝑇 = 323.15 K. The green lines are for pure water, 
the light blue lines are for water with dissolved carbon dioxide, and the orange lines are for 
water with dissolved nitrogen. Each row of subplots is for a different pore radius, while the 
columns are for different liquid pressures. The solid lines are for 𝑆𝑆 = 1, the dashed lines are 
for 𝑆𝑆 = 2, and the dotted dashed lines are for 𝑆𝑆 = 0.5. The horizontal solid black lines 
represent Δ𝐵𝐵 = 35 𝑘𝑘B𝑇𝑇 for visual reference. All curves are highlighted in red around the 
critical volume and the corresponding free-energy barrier. 
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Figure 3-6. Free-energy plots for 𝜃𝜃eq = 130° at different pore radii, liquid pressures, and 
saturation ratios. The temperature is fixed at 𝑇𝑇 = 323.15 K. The green lines are for pure water, 
the light blue lines are for water with dissolved carbon dioxide, and the orange lines are for 
water with dissolved nitrogen. Each row of subplots is for a different pore radius, while the 
columns are for different liquid pressures. The solid lines are for 𝑆𝑆 = 1, the dashed lines are 
for 𝑆𝑆 = 2, and the dotted dashed lines are for 𝑆𝑆 = 0.5. The horizontal solid black lines 
represent Δ𝐵𝐵 = 35 𝑘𝑘B𝑇𝑇 for visual reference. All curves are highlighted in red around the 
critical volume and the corresponding free-energy barrier. 

3.6.2 Importance of mixture nonideality 
In the literature [121,122,129], the effects of gas on nucleation are often quantified by 

assuming simple, ideal solution theories such as Henry’s or Raoult’s laws. For gases that have 

very low solubility, the error because of this assumption is not expected to be large. By taking 

𝛾𝛾1 = 𝛾𝛾2
∗ = 𝜙𝜙�2 = 𝜙𝜙�1 = 𝜙𝜙1,sat = 𝜂𝜂1 = 𝜂𝜂2 = 1, Equation (3-21) reduces to Henry’s law and 

Equation (3-12) to Raoult’s law. Here, the model with these assumptions is referred to as the 

ideal model. Note that, for nitrogen in water, we already assume 𝛾𝛾1 = 𝛾𝛾2
∗ = 1, even for the 

nonideal model (see Appendix A). We compare the primary parameter of interest in this 
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study—the free-energy barrier—of both nonideal and ideal models in Figure 3-7. The orange 

lines are for the nonideal nitrogen–water system, the light blue lines are for the nonideal carbon 

dioxide–water system, and the purple dashed lines are for the ideal model. Notice that, for the 

ideal model, the type of gas is irrelevant because the vapor pressure does not depend on the 

liquid pressure. We consider three pore sizes (the same pore sizes as above), and the 

concentration of gas in the liquid is set to be the saturation concentration at the pore intrusion 

pressure. Since carbon dioxide in water exhibits a highly nonideal behavior at the pressures of 

interest (see Figure A-3), we see large deviations between the predictions of the two models. 

The nonideal and ideal curves for the nitrogen–water system follow the same trend while still 

being noticeably different. For instance, in a 1.5 nm-radius pore, the ideal model overestimates 

the drying pressure for the carbon dioxide–water mixture by ~40 MPa and for the nitrogen–

water mixture by ~20 MPa [using Δ𝐵𝐵c = 35𝑘𝑘B𝑇𝑇; Figure 3-7 (b)]. On all panels of Figure 3-7, 

the intersection points of the three free-energy curves correspond to the intrusion pressure of 

the pore. Consequently, the critical nucleus at this point has a liquid–vapor interface with zero 

(mean) curvature. 

 
Figure 3-7. Comparison of free-energy barriers as functions of liquid pressure for ideal and 
nonideal solution models for three different pore sizes: (a) 𝑅𝑅p = 1 nm, (b) 𝑅𝑅p = 1.5 nm, and 
(c) 𝑅𝑅p = 2 nm. The orange lines are for nitrogen–water and the light blue lines are for carbon 
dioxide–water. The solid lines correspond to the nonideal model while the dashed lines 
correspond to the ideal model. The concentration of the gas in the solution is the saturation 
value at the intrusion pressure of each pore. The horizontal solid black lines represent Δ𝐵𝐵 =
35 𝑘𝑘B𝑇𝑇 for visual reference. All calculations were done for 𝜃𝜃a = 𝜃𝜃eq = 120°, 𝑇𝑇 = 323.15 K, 
and 𝜎𝜎LV = 0.068 J/m2. 
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3.6.3 Extrusion pressures and effect of line tension 
Previous studies [71,118,195] have found that the free-energy barrier calculated from 

Equation (3-2) for pure water (see the green curves on Figure 3-4, Figure 3-5, and Figure 3-6) 

is too high to match with the experiments. Additionally, atomistic simulations in collective 

variables [195] have shown that, even though the saddle-shaped nucleus is a good 

approximation, the energy barrier is significantly lower than what is predicted by Equation 

(3-2). In both cases, it was possible to match the predictions of Equation (3-2) (using the 

geometry from SE) and the results from the experiments or simulations by adding an energy 

term to Equation (3-2) proportional to the length of the three-phase contact line. While these 

may seem like attempts to artificially force classical nucleation theory to agree with the 

observations, it is often found that an equivalence can be established for the complex physics 

due to small size by assigning energy to the three-phase contact line (the so-called apparent or 

effective line tension) [8,33,64,190,193,204,205]. For instance, a good agreement could be 

achieved between the heterogeneous nucleation experiments and the predictions of classical 

nucleation theory by including a line tension term in the free-energy equation [149]. 

Additionally, by preferentially accumulating near the three-phase contact line, dissolved gases 

in water are reported to act as line-active agents and increase the magnitude of the line tension 

promoting nucleation [12]. Regardless, we acknowledge that the topic of line tension stays 

controversial in the scientific community. This is mainly due to difficulties in its direct 

measurability and a wide range of values reported that vary up to a few orders of magnitude 

and can be both negative and positive [4]. For pure water in hydrophobic nanopores the 

reported values are somewhat consistent ranging from −10−11 J/m to −6 × 10−11 J/m 

 [67,71,118,195]. 

The inclusion of line tension necessarily modifies the geometry of the critical nucleus. 

However, by directly calculating the shape, Guillemot et al. [71] found that simply calculating 

the shape without the line tension and then adding an energy term proportional to the length of 

the three-phase contact line is an excellent approximation, which was first hypothesized by 

Lefevre et al. [118]. Hence, the only modification to the classical model is to add a line energy 

term, 𝜏𝜏𝜆𝜆c, to Equation (3-2), where 𝜏𝜏 is the line tension and 𝜆𝜆c is the length of the three-phase 

contact line of the critical nucleus [160]. We report the theoretical extrusion pressures in Figure 

3-8 (a), (b), and (c), for three different values of line tension: (a) 𝜏𝜏 = 0 J/m (i.e., no line tension 
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correction), (b) 𝜏𝜏 = −1.5 × 10−11 J/m, and (c) 𝜏𝜏 = −3 × 10−11 J/m. The orange lines are for 

the nitrogen–water system, the light blue lines are for the carbon dioxide–water system, and 

the green lines are for pure water. The required intrusion pressures (the intrusion pressures for 

a dry pore with no gas or vapor present in the pore) are also shown with black lines as calculated 

using Equation (3-1). The saturation ratios of gases are 𝑆𝑆 = 1 for the solid curves and 𝑆𝑆 = 1.5 

for the dashed curves. 

 
Figure 3-8. Various pressures of interest as functions of pore radius for different values of line 
tension: (a) and (d) 𝜏𝜏 = 0 J/m, (b) and (e) 𝜏𝜏 = −1.5 × 10−11 J/m, and (c) and (f) 𝜏𝜏 =
−3 × 10−11 J/m. The black lines on panels (a)–(c) indicate the intrusion pressures for a dry 
pore. On these panels, the extrusion pressures are shown in green for pure water, in orange for 
water with dissolved nitrogen, and in light blue for water with dissolved carbon dioxide. The 
solid lines are for 𝑆𝑆 = 1 and the dashed lines are for 𝑆𝑆 = 1.5. On panels (d)–(f), the required 
pressure difference for nucleation, 𝑃𝑃V − 𝑃𝑃ext (red lines), and the maximum pressure difference 
where the vapor phase stays confined in the pore after nucleation, Δ𝑃𝑃∗ = 2𝜎𝜎LV sin 𝜃𝜃eq /𝑅𝑅p 
(blue curves), are shown. All calculations were done for 𝜃𝜃a = 𝜃𝜃eq = 120°, 𝑇𝑇 = 323.15 K, 
𝜎𝜎LV = 0.068 J/m2, and Δ𝐵𝐵c = 35𝑘𝑘B𝑇𝑇.  

For all cases in Figure 3-8 (a), (b), and (c), since the amount of dissolved gas decreases 

as the required intrusion pressure becomes lower with increasing pore size, the effect of the 

d) e) f)
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dissolved gas on the nucleation barrier is negligible for large pores. As the pore size gets 

smaller, however, the effect becomes more pronounced, and below a certain pore size, a filled 

pore is unstable even at pressures much higher than the required intrusion pressure. Note that 

this threshold is independent of the type of gas, if the saturation ratio is 𝑆𝑆 = 1, but changes 

with the magnitude of the line tension. This is the pore size where a nucleus with zero curvature 

(𝑃𝑃V = 𝑃𝑃L) has energy of 35𝑘𝑘B𝑇𝑇 meaning that a fluctuation of this size is enough to empty the 

pore. Clearly, this pore size is independent of the gas type because we assume that water is 

saturated with gas at 𝑃𝑃int (i.e., the chemical equilibrium is also at 𝑃𝑃V = 𝑃𝑃L = 𝑃𝑃int). 

It is seen that the stability of pure water in the pore can be controlled by changing the 

extrusion pressure for all pore sizes, although, the extrusion pressure below a certain pore size 

becomes at least equal to the intrusion pressure. This is because, at lower temperatures, the 

pressure of pure water vapor can be taken to be zero because it would be small compared to 

the pressures of interest in the system. Hence, at pressures higher than the intrusion pressure, 

a filled pore will be stable because the pressure difference required to form a critical nucleus 

cannot be accommodated in the pore. Once the extrusion pressure is below the intrusion 

pressure, however, small pores can always accommodate the required pressure difference for 

chemical equilibrium, while the corresponding nucleus would have an energy barrier Δ𝐵𝐵c ≤

35𝑘𝑘B𝑇𝑇, resulting in drying of the pore. For pores larger than a certain size, the extrusion 

pressure is lower than the intrusion pressure and this gap grows with the pore size. For pure 

water at high temperatures (but below the critical temperature), water-filled small pores will 

be unstable even at pressures significantly higher than the intrusion pressure, since water vapor 

will have high pressures (i.e., comparable to extrusion pressures). However, the extrusion 

curve in this region will still be parallel to the intrusion curve. The qualitative differences 

between the pure-water and the water-with-dissolved-gas cases are the result of water being at 

subcritical conditions while the dissolved gas is supercritical. We also note that, between the 

two gases, the variation of extrusion pressure with the pore size is smoother for nitrogen 

compared to carbon dioxide. This is ultimately due to the differences in response of gas 

solubility to pressure variation [see Figure 3-9 (b), Figure A-2 and Figure A-3].  

In Figure 3-8 (d), (e), and (f), we also show the required pressure difference, 𝑃𝑃V − 𝑃𝑃ext, 

in red and the maximum pressure difference a given pore can maintain after nucleation, Δ𝑃𝑃∗ =

2𝜎𝜎LV sin 𝜃𝜃eq /𝑅𝑅p, in blue, assuming a flat pore mouth, constant vapor and liquid pressures, and 
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gas concentration after nucleation. With more negative line-tension value, the required 

pressure difference is not as high, and pores in a larger size range can maintain the confinement 

of the vapor phase by pinning the liquid–vapor interface [as depicted in Figure 3-1 (c)]. 

3.6.4 Required gas concentration to empty the pore at fixed liquid pressure 
Instead of fixing the gas concentration and seeking the required extrusion pressure, the 

inverse problem can also be solved, which provides more insights. In Figure 3-9, the plots of 

gas concentration vs. pore size are given. In panel (a), the extrusion pressure is set to 

atmospheric pressure, and in panel (b), it is taken to be equal to the intrusion pressure (varying 

with pore size). On each panel, for each system (orange curves: nitrogen–water; light blue 

curves: carbon dioxide–water) three curves are shown representing the three different values 

of line tension. The solid lines are calculated assuming no line tension, the dashed lines are 

calculated assuming 𝜏𝜏 = −1.5 × 10−11 J/m, and the dotted lines are calculated assuming 𝜏𝜏 =

−3 × 10−11 J/m. All curves start from a certain pore size below which pure water in the pore 

becomes unstable (i.e., 𝑥𝑥2 = 0; no gas required). These limits are indicated with the vertical 

dashed lines. We also show the saturation concentration of gases at 𝑃𝑃ext with the solid red 

(nitrogen–water) and the solid blue (carbon dioxide–water) curves for visual reference. From 

panel (a), we see that, at atmospheric pressure, the saturation concentrations of these gases are 

at least a few orders of magnitude lower than what is required for nucleation. On the other 

hand, from Figure 3-9 (b) we see that, if the liquid is saturated with the gas at the pore intrusion 

pressure, there will be a significant shift in what pore sizes can maintain the liquid-filled state. 

For example, assuming a line tension value of 𝜏𝜏 = −3 × 10−11 J/m, if the liquid is saturated 

with the gas at the intrusion pressure, the pores ~2.2 nm or smaller in size are expected to dry, 

whereas for pure water this size limit is ~1.2 nm [see Figure 3-9 (b) dotted lines and Figure 

3-8 (c) solid lines]. 
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Figure 3-9. The minimum required gas concentrations in the solution, 𝑥𝑥2, to empty the pore in 
typical experimental times as functions of pore radius at two different extrusion pressures: (a) 
𝑃𝑃ext = 1 atm and (b) 𝑃𝑃ext = 𝑃𝑃int and for three different values of line tension. The bold solid 
lines are for 𝜏𝜏 = 0 J/m, the dashed lines are for 𝜏𝜏 = −1.5 × 10−11 J/m, and the dotted lines 
are for 𝜏𝜏 = −3 × 10−11 J/m. The light blue lines are for carbon dioxide in water and the orange 
lines are for nitrogen in water. For reference, the thin, solid blue and red lines show the 
saturation concentrations of gases in water at 𝑃𝑃ext for carbon dioxide and nitrogen, 
respectively. The thin vertical black dashed lines indicate the metastability limit of pure water. 
All calculations were done for 𝜃𝜃a = 𝜃𝜃eq = 120°, 𝑇𝑇 = 323.15 K, 𝜎𝜎LV = 0.068 J/m2, and 
Δ𝐵𝐵c = 35𝑘𝑘B𝑇𝑇.  

3.6.5 On the oversolubility and distribution of gas in confinement 
So far, we have assumed that the system is homogeneous in terms of the distribution 

of the gas in the bulk and in the pores. However, for pore sizes of interest here (~1–5 nm), it 

is well documented [23,86–90,129,158] that the gas tends to migrate into the pores from the 

bulk resulting in the so-called gas oversolubility due to confinement. For example, from 

molecular simulations [129], the concentrations of nitrogen and carbon dioxide in water in a 

pore size of 𝑅𝑅p = 1.5 nm have been found to be ~10 and ~5 times more than the bulk 

concentration, respectively. Since we consider equilibrium for a vapor nucleus inside the pore 

and far from the bulk environment, our results are not altered. With oversolubility in mind, 

when interpreting our results, one should think about the concentrations of gas in the pore and 

not in the bulk. In practice, this would mean that the amount of gas in the bulk liquid can be 

an order of magnitude smaller than the saturation concentration (at 𝑃𝑃int) while still having a 

significant effect on the extrusion pressure due to oversolubility. 

Furthermore, although the distribution of water molecules was found to be bulk-like in 

the pore, the gas tends to accumulate closer to the walls of the pore [120,123,129,158]. Note 

that the saturation solubilities of carbon dioxide and nitrogen in water at the conditions 
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considered are ~5% and ~0.5% at most, respectively (mole fraction units; see Figure A-2 and 

Figure A-3). If the gas was distributed homogeneously inside the pore, it would be unlikely to 

get a fluctuation that results in a large vapor nucleus containing ~10 gas molecules 

(corresponding to the typical size of the critical nucleus). The highly localized distribution 

profile of the gas molecules makes these fluctuations more likely. This further suggests that 

the nucleus should form near the wall of the pore where the gas has significantly higher density. 

3.7 Comparison with available experimental data 
We are aware of only one experimental work with open cylindrical nanopores where a 

large gas volume was dissolved in water and the drying effects were quantified. In the 

experiments of Li et al. [121], the authors compared intrusion–extrusion cycles of water in 

cylindrical nanopores with various amounts of dissolved air. They found that, with more gas 

present, more of the total pore volume could be recovered at the end of the extrusion process. 

In these experiments, the samples were not held at high pressures at the end of intrusion, and 

the minimum extrusion pressure was atmospheric. We simulated representative experiments 

by transforming and fitting to the reported pore size distribution data and calculating the 

corresponding intrusion–extrusion cycles (for the analysis of the data and the fitted distribution 

curve, see Appendix A). We used nitrogen for calculations assuming that its effect would be 

very close to that of air. We fixed the temperature and the contact angle at 𝑇𝑇 = 298.15 K, 

𝜃𝜃a = 𝜃𝜃eq = 120°,  respectively. Note that these values were not reported in reference  [121], 

but the experiments were conducted in lab conditions, and there are other experimental works 

in the literature [36,71,118] reporting a value of ~120° for the contact angle of pure water with 

the same grafting/coating material [chloro(dimethyl)octylsilane]. To mimic the experiments, 

we set the maximum intrusion pressure to 35 MPa. This value corresponds to a minimum 

intruded pore radius of 2.1 nm, which meant that only ~92% of the total available pore 

volume, Δ𝑉𝑉max, was accessible. 

In the experiments of Li et al. [121], they had gas-filled pores as well as a controlled 

volume of gas at the top of the water column at the beginning of the experiments. During the 

intrusion, the researchers recorded the pressures at which all extra gas dissolved into the liquid, 

and for the amount of gas they had, this pressure was always lower than the peak pressure 

reached in the system. From the information about the pore volume, the calculation of gas 
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concentration in the pore was straight forward. Then, they calculated the gas concentration in 

the bulk using the ideal Henry’s law and added the extra gas concentration to the pore gas 

concentration. Since the pore volume and the pressure data are reported in reference [121], we 

could recalculate the extra gas concentration using the nonideal model and determine the gas 

concentration in the pore more accurately. At the highest gas concentration, we found that our 

result is ~16% lower than the reported value calculated with the ideal Henry’s law. 

The results are summarized in Figure 3-10 for 105 simulated pores (a large number for 

smoother curves and reproducibility) sampled from the fitted distribution. In panel (a), the 

simulated intrusion–extrusion cycles are shown. The 𝑥𝑥-axis is the normalized volume change 

of the system, Δ𝑉𝑉/Δ𝑉𝑉max, where Δ𝑉𝑉 is the magnitude of the volume change of the system. The 

black line is the intrusion curve, the green line is the extrusion curve for pure water, and the 

orange lines are the extrusion curves for water with dissolved nitrogen. The solid orange line 

is for 𝑥𝑥2 = 1.518 × 10−3, the dashed orange line is for 𝑥𝑥2 = 1.055 × 10−3, and the dotted 

orange line is for 𝑥𝑥2 = 7.695 × 10−4. These values are the concentrations of nitrogen in the 

confinement as recalculated here using the data from reference [121]. In panel (b), the 

simulated results (blue curve) are compared with the experimental results (green and orange 

squares) in terms of the percentage of the total intruded pore volume recovered at the end of 

the extrusion. Note that, in the experiments, the minimum pressure reached at the end of 

extrusion was atmospheric, which is shown by the horizontal black dashed line in panel (a) 

(precise value not reported; assumed to be 1 atm). We treated the line tension, 𝜏𝜏, as an 

adjustable parameter. A constant value of 𝜏𝜏 = −4.4 × 10−11 J/m was chosen to best fit the 

experimental data in terms of root-mean-square deviation from the reported data for the portion 

of the recovered volume. This value of the line tension is reasonable and within the range of 

the previously published results for pure water in hydrophobic nanopores [67,71,118,195]. 

In Figure 3-10 (b), it is seen that the simulated line does not exactly go through all 

experimental points, but it is close and follows a similar trend. One of the reasons for the 

deviation could be the accuracy of the reported data and the inherent uncertainties due to the 

lack of experimental detail. Note that the results in reference [121] are given without isolating 

the volume change purely due to the intrusion and extrusion of solution in and out of the 

nanopores from other effects, such as the volume change due to the compressibility of the test 

chamber and the compressibility of the solution itself. That such effects are important is 
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obvious when the intrusion–extrusion cycles in reference [121] are compared to other works 

in the literature where the device was calibrated, or the results were numerically corrected like 

in reference [72] (additionally, see the intrusion–extrusion curves in references [118] 

and [71]). Consequently, the way the volume change information was inferred from the raw 

experimental data is ambiguous. Therefore, we believe that the reported data in reference [121] 

may not exactly reflect the recovered nanopore volume. Clearly, there are other factors and 

inherent uncertainties, including that the actual macroscopic contact angle could be slightly 

different than the one we used in the simulations, or the pore size distribution after the 

hydrophobic coating was applied could be different from the theoretical estimation we made 

(see Appendix A). The uncertainties in the ambient temperature and pressure at the time of the 

experiments are also important as these parameters are input to the phase equilibrium 

equations. The assumption we made of nitrogen exhibiting the same quantitative behavior as 

air should be revaluated as well. Additionally, the effects of dissolved gas on the liquid–vapor 

interfacial tension, the solid–liquid contact angle, and the line tension need to be quantified, 

which are not considered here. Also note that there are uncertainties in selecting 35𝑘𝑘B𝑇𝑇 as the 

height of the activation barrier. 
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Figure 3-10. Summary of the simulated experiments based on data from Li et al. [121]. (a) 
simulated intrusion–extrusion cycles where the 𝑥𝑥-axis is the magnitude of the normalized 
volume change of the system, Δ𝑉𝑉/Δ𝑉𝑉max. The black line is the intrusion curve, the green line 
is the extrusion curve for pure water, and the orange lines are the extrusion curves for water 
with dissolved nitrogen at the recalculated experimental gas concentrations. Note that air was 
used in the experiments, which is modeled here with nitrogen. The solid orange line is for 𝑥𝑥2 =
1.518 × 10−3, the dashed orange line is for 𝑥𝑥2 = 1.055 × 10−3, and the dotted orange line is 
for 𝑥𝑥2 = 7.695 × 10−4. The vertical black dashed line shows the maximum intruded volume 
at peak pressure (0.92). The horizontal black dashed line shows the minimum extrusion 
pressure in the experiments (1 atm). (b) comparison of recovered nanopore volume at the end 
of the experiments when the pressure was brought to 1 atm (green square: pure water, orange 
squares: water with dissolved air) with the simulated results (blue line). All calculations were 
done for 𝜃𝜃a = 𝜃𝜃eq = 120°, 𝑇𝑇 = 298.15 K, 𝜏𝜏 = −4.4 × 10−11 J/m, 𝜎𝜎LV = 0.072 J/m2, and 
Δ𝐵𝐵c = 35𝑘𝑘B𝑇𝑇. See the main text and Appendix A for more details. 

3.8 Conclusion 
In this chapter, we used Gibbsian composite-system thermodynamics with classical 

nucleation theory to study the effects of dissolved nitrogen and carbon dioxide on the behavior 

of water in hydrophobic cylindrical nanopores open at both ends. For this purpose, we derived 

an equation relating the nonideal chemical equilibrium of a mixture made of a subcritical 

solvent and a supercritical gas to the curvature of the liquid–vapor interface. The role of the 

confinement geometry on drying pressure of a nanopore was highlighted. To summarize, in a 

cylindrical pore, the surface of the energy-minimizing nuclei can be either negatively or 

positively curved. It is due to this shape that small pores can empty at high liquid pressures. 

Following previous works, we used Surface Evolver to calculate the nontrivial nucleus 

geometry. Unlike previous studies, the possibility of symmetric nuclei as part of the nucleation 

path was ruled out based on physical arguments. 

a) b)
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Our findings are in qualitative agreement with the previous molecular dynamics 

simulations, and experiments; that is, the dissolved gas effects are negligible if water is 

saturated with the gas in atmospheric conditions. However, if, at intrusion pressure, an ample 

amount of gas is present in the system to dissolve, it can greatly reduce the vapor nucleation 

barrier, and as a result, increase the pressure at which the pore dries. This was attributed to 

increased vapor pressure inside the critical nucleus hence its smaller size and energy compared 

to the pure-liquid case at the same liquid pressure and temperature. A direct consequence of 

this is that smaller pores can dry even at pressures much higher than their intrusion pressures 

(intrusion pressure for an empty pore). Furthermore, it was found that the ideality assumption 

typically made in the studies of weakly soluble gases may result in significant errors at the 

conditions of interest. 

There is a recent study in the literature where the recovered nanopore volume at the 

end of extrusion was observed to be proportional to the amount of dissolved air in water. By 

simulating the experimental intrusion–extrusion cycles and adjusting the line tension, a semi-

quantitative agreement could be achieved between the theory and the reported data for water 

with dissolved air. However, more carefully controlled experiments are needed for a 

conclusive test of the theory because of the scarcity of available measurements that are directly 

comparable. Moreover, there are uncertainties in the studied dataset that are difficult to 

evaluate. 

Molecular dynamics simulations might shed light on some of the aspects that are 

difficult to probe experimentally, such as the concentration of the gas in the pore, shape of the 

critical nucleus in the presence of the gas, and phase partitioning during nucleation. Simulation 

of rare events, such as nucleation with traditional methods have been difficult and expensive 

because of different time scales involved. Up until recently, long waiting times before the onset 

of nucleation and the fast dynamics near the criticality region have forced researchers to 

simulate in unrealistic conditions and extrapolate their results. With the development of new, 

rare-event-specific algorithms and increasing computational power, however, it is becoming 

feasible to simulate larger systems for longer times obtaining more realistic results. 

Finally, we emphasize that what is referred to as line tension in this chapter is merely 

an adjustable parameter and the corresponding energy term scales linearly with the size of the 

nucleus. In the previous section, its value is obtained from fitting to the experimental data. 
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Neither the magnitude nor the sign of this value should be interpreted as the energy of the 

three-phase contact line as it empirically accounts for other effects. These other effects include 

the shortcomings of the continuum approach at the relevant scale, experimental uncertainties 

(e.g., pore size distribution, temperature), model uncertainties (e.g., height of the energy 

barrier), and the simplifications made by neglecting the interfacial effects of the dissolved gas. 
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Chapter 4  
The Role of Geometry on the Ease of Solidification 

Inside and Out of Cylindrical Nanopores1 

 

Chapter summary 
We investigated the role of a nanoporous particle on the formation of macroscopic solid 

in the framework of equilibrium thermodynamics and from the free-energy perspective. The 

model particle has cylindrical pores with equidistant circular openings on the particle surface. 

We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single 

pore and (ii) the bridging of multiple pores on the particle surface via vapor deposition. We 

examined the nucleation near the liquid–vapor meniscus inside a pore by considering different 

solid–vapor and solid–pore wall contact angles, as well as the liquid–vapor meniscus angles.  

For bridging, we quantified the effects of the proximity of neighboring pores and the number 

of participating pores where we considered two or three pores, placed two different distances 

apart, and three contact angles of the solid with the particle surface. Except in special cases for 

 
1 This chapter and Appendix B of this thesis, with minor changes, have been submitted for publication as H. 
Binyaminov and J. A. W. Elliott, The Role of Geometry on the Ease of Solidification Inside and Out of Cylindrical 
Nanopores. 
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which an analytical solution could be developed, we determined the equilibrium nucleus and 

bridge shapes numerically using the Surface Evolver code. The geometry of these equilibrium 

shapes was the key for correctly calculating the energy barriers. Our results indicate that the 

meniscus angle can be an important factor in reducing the barrier for nucleation if the internal 

angles of the solid nucleus satisfy a certain criterion. For the solid growth out of the pores, we 

found that the barriers were significantly lower in the presence of multiple, closely packed 

pores compared to the growth from a single pore. This chapter is deliberately written with no 

reference to material properties or a specific process to highlight the generality of geometry-

controlled barriers. A direct application where our findings can be particularly valuable is the 

ice formation in clouds, which is the subject of intensive research in atmospheric sciences for 

its role in influencing precipitation patterns and hence the climate. 

4.1 Introduction 
Solid formation from liquids in confinement has been extensively researched starting 

with experiments as early as the beginning of the 20th century, followed by an exponential 

growth in the number of articles over the past few decades, thanks to the ability to now image 

nanoscopic phenomena, make porous materials of desired characteristics in the lab, and access 

to advanced computational tools such as atomistic simulations. The interest in these systems 

stems from their abundance in nature as well as a plethora of technological applications. 

Consequently, there are many theoretical, experimental, and simulation works in the literature 

focusing on solid–liquid phase behavior in various confinements. Excellent reviews on this 

topic can be found in references [58], [34], and [1]. Although the general effects of 

confinement on phase transition have been well established, the influence of geometrical 

features of porous media have stayed somewhat elusive. We discuss below some of the more 

recent articles regarding the role of geometry, which have been the inspiration for our analysis 

presented in this chapter. With water being, by far, the most studied fluid in literature due to 

its importance, the majority of works mentioned here deal with water–ice systems. 

The molecular simulation work of David et al. [38] showed that the pore condensation 

and freezing process is responsible for ice nucleation in the presence of porous particles and 

below water saturation. Using model porous particles with cylindrical pores in atmospherically 

relevant conditions, they concluded that water vapor first condenses in the pores, and then 
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freezes homogenously. However, the ice in the pores remained confined unless vapor pressure 

was substantially increased, in which case the neighboring pores bridged and grew into 

macroscopic ice on the particle surface. The same particle with a single ice-filled pore, or with 

no pores did not grow bulk ice at the same conditions during the simulation time. Later, 

experiments of David et al. [37] supported the ice nucleation via the pore condensation and 

freezing mechanism and showed the importance of the pore size, water contact angle, and 

surface functionalization. The researchers also observed solid nucleation above the 

homogenous nucleation temperature of ice, which they attributed to the presence of so-called 

active sites and/or to the effect of the surface functionalization. In another study, Campbell et 

al. [27,28] experimentally investigated solid formation from water [27,28] and organic 

vapors [28] inside and out of mica pockets with sharp wedges. By directly imaging the 

crystallization within the pockets, they demonstrated that the acute angle of the pocket provides 

extremely efficient nucleation sites. After the condensation of the liquid, the solid phase first 

formed along the apex of the wedge and then proceeded to grow out of the pockets, if a 

threshold vapor pressure was achieved. In the case of ice [27], the limiting step for bulk solid 

formation was not the nucleation of the solid within the pockets but rather the growth of the 

solid out of the pockets. 

Molecular simulations of Bi et al. [13] with a coarse-grained water model revealed that 

atomically sharp concave wedge geometries made of carbon can promote ice nucleation, with 

or without a match between the wedge angle and the ice lattice structure. In a different study 

by the same group, Cao et al. [30] observed temperature-dependent simultaneous ice formation 

in hydrophobic slit pores and sharp wedges. In simulations with the wedges, the formation of 

ice started at the intersection line of the wedge walls (i.e., at the wedge apex). Roudsari et 

al. [175] performed similar simulations with model AgI pores, but they also used an atomistic 

model of water in addition to the coarse-grained model. They found that, besides the effect of 

the confinement, the ice nucleation efficiency of the slit and wedge pores depends on the 

geometrical match between the slit width, wedge angle, and ice lattice structure. Furthermore, 

a small amount of ice remained in the wedge apex even above the melting point of ice in their 

simulations. They also demonstrated the inability of ice to grow out of the slit pores unlike for 

the wedge shapes. While most of the findings of Roudsari et al. [175] were consistent with the 

conclusions of Bi et al. [13] and Cao et al. [30], the discrepancies were attributed to the 
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accuracy levels of the models used and the strong lattice match between AgI and ice compared 

to that between carbon and ice. Another finding in favor of geometry-dominated heterogenous 

ice nucleation was provided by Wang et al. [200]. Their experiments with microscopic 

kaolinite particles—a material whose basal plane has a good lattice-match with ice—showed 

the emergence of ice crystals from the rough features (pits, cracks) on the particles rather than 

from the smooth basal planes of the particles. 

Experiments have also shown solid-like behavior in a nanomeniscus above the bulk 

melting point of the solid. For example, Jinesh and Frenken [100] used an atomically sharp 

tungsten tip with a friction force microscope and scanned over a graphite surface. They found 

that water condensation between the tip and the surface and the subsequent formation of solid 

at ambient temperature was responsible for the observed stick-slip motion of the tip during the 

scanning. Using spherical noble-metal particles in contact with one another, Shin et al. [187] 

demonstrated the existence of ice-like water near the contact points of the spheres in ambient 

conditions. This behavior seemed to be unaffected by the temperature, material type, particle 

size, and particle shape. In another study, by high-resolution imaging, Algara–Siller et al. [2] 

reported “square-ice” at room temperature in samples of water trapped between two graphene 

monolayers. Molecular simulations in the same work indicated that “square-ice” should be 

present in any water inside hydrophobic nanopores, independent of the exact nature of the 

confining atoms. 

The role of the liquid–vapor interface in the formation of a solid phase has also been 

the subject of many studies. For example, Haji-Akbari and Debenedetti [75] used a molecular 

model of water to study the influence of the liquid–vapor interface on ice nucleation in free-

standing thin water films (4 nm in thickness). Since the liquid–vapor interfaces were flat, 

curvature effects were not present. The authors observed seven orders of magnitude increase 

in the ice nucleation rate compared to the bulk nucleation rate at the same conditions with the 

ice nuclei starting in the subsurface regions of the film. Interestingly, the opposite trend was 

observed by the same [76] or different researchers utilizing computationally less expensive 

coarse-grained water models. For example, molecular simulations by Rosky et al. [171] of 

water bridges confined between two hydrophilic walls with varying separations and well-

defined liquid–vapor interfaces showed no preference for the nucleation of ice at the meniscus. 

In fact, the nuclei avoided the immediate vicinity of the interface and primarily formed near 
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the walls. The predominant role of the meniscus in this study was to create a negative pressure 

in the liquid, which facilitated an increase in nucleation rate. Simulations with a coarse-grained 

water model by Moore et al. [143] in hydrophobic, filled cylindrical nanopores and by 

Solveyra et al. [66] in hydrophobic or hydrophilic, partially-filled cylindrical nanopores 

showed no evidence for heterogenous nucleation. In all cases, ice formed away from the 

interfaces in the bulk-like regions of the liquid. In a recent study, Hussain and Haji-Akbari [95] 

used a modified version of the coarse-grained model, which had surface propensity for 

nucleation. Using this model, they investigated ice nucleation in water films of varying 

thickness attached to flat solid substrates. They found that when the liquid–vapor interface was 

close to the substrate (i.e., thin film; ~1 nm), the nuclei formed as hourglass shapes connecting 

the substrate surface and the free surface of the liquid. When the film thickness was larger 

(~3 nm), however, the nuclei formed on the surface of the substrate as spherical caps. This 

topological change in the nucleus shape was partially responsible for the observed several 

orders of magnitude increase in the ice nucleation rate in the thinner films. 

Overall, these problems, at least to some extent, seem to be amenable to the framework 

of classical heterogenous nucleation theory with a single reaction coordinate (nucleus volume). 

To that end, Bai et al. [7] experimentally probed the critical ice nucleus size by including 

graphene nanoparticles of different sizes in supercooled water droplets. They found that, if the 

nanoparticles are smaller than a certain, temperature-dependent size, then the pinning of the 

ice nucleus around the periphery of the particles results in suppression of the nucleation instead 

of promotion observed for larger particles—consistent with the predictions of classical 

nucleation theory. Furthermore, formation of a new phase at the three-phase contact lines (i.e., 

nucleation of a third phase at the intersection line of two phases and the confining wall) or in 

the corners of a fixed confinement geometry, and even the barrier-limited growth from the 

confinement into the bulk seem to be generic features of any system capable of criticality. For 

example, simulations of Sear [181] with a three-spin system (three-state Potts model) in a two-

dimensional box showed orders of magnitude increase in the nucleation rate at the three-phase 

contact line compared to nucleation in the bulk or heterogenous nucleation. In a similar study 

by Page and Sear [156], the new phase of a two-spin system started in the concave corner of a 

two-dimensional square well, and the growth of the new phase out of the well required 
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overcoming a second energy barrier. Based on nucleation theory, the authors argued that these 

findings equally translate to more complex systems such as ice or protein nucleation. 

Our work here aims to provide insights, from the equilibrium thermodynamics 

perspective, for the role of (i) liquid–vapor meniscus angle on the solid nucleation inside 

liquid-filled cylindrical nanopores and (ii) the pore numbers and proximity on the ease of 

growth of the solid out of the pores. Equilibrium thermodynamics has been previously used by 

our group to investigate similar systems, such as the stability of liquid capillary bridges and 

three-phase lenses [15,43], new phase formation in various geometries [17,215,217], and 

stability of surface nanobubbles [218], among others. The first part of this study was motivated 

by the growing literature providing evidence for the preferential solid nucleation in wedges as 

well as near the liquid–vapor interface, some of which have been referenced above. The second 

part of this study was mainly motivated by the simulation work of David et al. [38], where the 

authors argued that pore proximity plays an important role in the formation of bulk solid out 

of the pores. 

4.2 System definition and free energy 
A schematic description of the pore condensation and solidification process is given in 

Figure 4-1 (a). Initially, a dry porous particle exists in a vapor environment. The model particle 

is assumed to contain locally equidistant cylindrical nanopores with the same pore radii, 𝑅𝑅p, 

that have circular openings on the particle surface. The pore lengths are assumed to be much 

larger than their radii, hence, they can be assumed to be infinitely long for our purposes. The 

distance between the central axes of the pores is 𝑙𝑙. The particle surface is assumed to be flat in 

the neighborhood of a collection of a few pores. The mechanism by which the porous particle 

facilitates bulk solid formation has the following three stages: (I) condensation of liquid into 

the pores, (II) solidification of the liquid in the pores, and (III) formation of bulk solid. Stage 

(I) takes place due to the (inverse) Kelvin effect, and it has been thoroughly studied in the 

literature [85,112,141,209,211]. Stage (II) starts with the nucleation of a solid, which then 

grows to fill the entire pore. Similarly, in Stage (III), individual solid-filled pores should first 

bridge—possibly a barrier-limited step, which is then followed by growth.  In this chapter, we 

study, from the free-energy perspective, first, solid nucleation inside a single pore at the liquid–
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vapor meniscus, and then, solid bridging of multiple pores. Nonequilibrium growth of the solid 

in both Stages (II) and (III) is not discussed. 

 
Figure 4-1. Descriptions of the systems and processes of interest in this work: (a) schematic 
depiction for the pore condensation and solidifcation process, (b) system defintion for the solid 
nucleation at the liquid–vapor meniscus, and (c) system definition for the solid bridging of the 
pores. See the text for more details. 

4.2.1 Solid nucleation at the meniscus 
We consider nucleation of a solid phase in contact with the pore wall and the liquid–

vapor interface (meniscus), i.e., at the three-phase contact line. We assume that, because the 

flux of molecules from the vapor into the solid phase can be shown to be negligible compared 

to that from the liquid in the pore, the shape of the meniscus does not change upon the 

formation of the nucleus. In other words, the liquid–vapor interface is treated as fixed during 

this nucleation, which has been found to be the case for freezing of small domains of liquid 

water in molecular simulations [93,101,128]. This also means that our findings would equally 

apply if, instead of vapor, we had a fixed sphere (with potentially different chemistry than the 
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pore wall) that blocks the pore. We will refer to this phase as vapor and the interface as the 

meniscus throughout this chapter, although the thermodynamics would be the same if the vapor 

phase were to be replaced by a fixed immiscible sphere. 

The hypothetical equilibrium state of the system is schematically depicted in Figure 

4-1 (b). The reference state is chosen to be the liquid-filled pore at equilibrium with the vapor 

at the end of Stage (I). The system with the nucleus is described by the pore radius, 𝑅𝑅p, the 

meniscus angle, 𝛼𝛼, the solid–liquid–vapor contact angle, 𝛽𝛽, the solid–liquid–pore wall contact 

angle, 𝜑𝜑 (all angles measured through the solid), and the nucleus volume. The pore is assumed 

to be infinitely rigid and insoluble. The system is allowed to exchange mass, energy, and 

volume with the vapor phase, which acts as a reservoir; that is, its chemical potential 𝜇𝜇II
V, 

temperature 𝑇𝑇II
V, and pressure 𝑃𝑃II

V stay constant during the nucleation. However, because the 

nucleus volume is negligible compared to the bulk liquid volume in the pore, the volume 

change due to the difference in the densities of solid and liquid is assumed to be negligible 

upon nucleation. This leads to a system in the 𝜇𝜇𝑉𝑉𝑇𝑇 ensemble for which, following the increase-

of-entropy principle for a spontaneous change around equilibrium subject to constraints, the 

system free energy with respect to the reference state can be found as [15,43,202,215] 

 Δ𝐵𝐵nuc = −𝜎𝜎SL𝑘𝑘nuc
∗ 𝑉𝑉nuc

S + 𝜎𝜎SL𝐴𝐴nuc
SL − 𝜎𝜎SL cos 𝛽𝛽 𝐴𝐴nuc

SV − 𝜎𝜎SL cos 𝜑𝜑 𝐴𝐴nuc
SP  (4-1) 

where 𝑘𝑘nuc
∗  is twice the mean curvature of the solid–liquid interface of the equilibrium nucleus 

with the unit normals of the surface pointing from the solid to the liquid (simply curvature 

hereafter). 𝜎𝜎SL is the interfacial tension between the solid and the liquid. 𝐴𝐴nuc
SL , 𝐴𝐴nuc

SV , and 𝐴𝐴nuc
SP  

are the areas of solid–liquid, solid–vapor, and solid–pore wall interfaces, respectively. 

Equation (4-1) can be put in a dimensionless form by dividing both sides by 𝑅𝑅p
2𝜎𝜎SL yielding 

 Δ𝐵𝐵�nuc = −𝑘𝑘�nuc
∗ 𝑉𝑉�nuc

S + �̃�𝐴nuc
SL − cos 𝛽𝛽 �̃�𝐴nuc

SV − cos 𝜑𝜑 �̃�𝐴nuc
SP  (4-2) 

where Δ𝐵𝐵�nuc = Δ𝐵𝐵nuc/𝑅𝑅p
2𝜎𝜎SL, 𝑉𝑉�nuc

S = 𝑉𝑉nuc
S /𝑅𝑅p

3, 𝑘𝑘�nuc
∗ = 𝑘𝑘nuc

∗ 𝑅𝑅p, �̃�𝐴nuc
SL = 𝐴𝐴nuc

SL /𝑅𝑅p
2, �̃�𝐴nuc

SV =

𝐴𝐴nuc
SV /𝑅𝑅p

2, and �̃�𝐴nuc
SP = 𝐴𝐴nuc

SP /𝑅𝑅p
2. Furthermore, we denote the energy of an equilibrium nucleus 

by Δ𝐵𝐵�nuc
∗ , which is obtained when the volume and areas of an equilibrium nucleus are used in 

Equation (4-2). In general, we denote the quantities corresponding to an equilibrium state by a 

superscript asterisk. 
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For solid–liquid equilibrium, the curvature, 𝑘𝑘�nuc
∗ , is dictated by the well-known Gibbs–

Thomson equation [45,46], which relates the degree of undercooling, ∆𝑇𝑇, to the curvature of 

the solid–liquid interface: 

 ∆𝑇𝑇 = 𝑇𝑇m − 𝑇𝑇II
V =

𝑘𝑘�nuc
∗ 𝜎𝜎SL𝑣𝑣S

(𝑠𝑠L − 𝑠𝑠S)𝑅𝑅p
 (4-3) 

where 𝑇𝑇m is the melting point of the solid at the pressure of the liquid inside the pore, 𝑣𝑣S is the 

molar volume of the solid, and 𝑠𝑠L and 𝑠𝑠S are the molar entropies of the liquid and the solid, 

respectively. Equation (4-3) shows that, for a given pore, setting the temperature, 𝑇𝑇II
V, is 

equivalent to setting 𝑘𝑘�nuc
∗ . Therefore, for a comparative analysis, it is natural to investigate 

how the dimensionless free-energy barrier depends on the angles, 𝛼𝛼, 𝛽𝛽, and 𝜑𝜑 for a fixed 𝑘𝑘�nuc
∗ . 

We emphasize that, 𝑇𝑇m in Equation (4-3) depends on the liquid pressure in the pore, 

which is dictated by the Laplace pressure due to the curvature of the liquid–vapor 

interface [171]. Consequently, it is a function of the meniscus angle 𝛼𝛼. This dependence is 

complicated mainly because it is determined by the properties of the liquid as well (e.g., the 

slope of the solid–liquid equilibrium line in the phase diagram). For this reason, we assume 

that 𝑇𝑇m is independent of 𝛼𝛼. This simplification lets us isolate the direct effects of geometry 

alone on the energy barriers, which is our goal here. 

4.2.2 Bridging of the pores 
Once sufficient time has passed and all the pores have frozen at the end of Stage (II), 

the system reaches a new equilibrium state where each pore has a spherical solid cap pinned at 

the pore mouth. This state can be shown to be metastable or stable. For generality, we assume 

that the intensive properties of the reservoir may have changed, and that they take the new 

values of 𝜇𝜇III
𝑉𝑉 , 𝑇𝑇III

𝑉𝑉 , and 𝑃𝑃III
𝑉𝑉 . The curvature of the spherical caps at the pore mouth is dictated 

by the (complete) Kelvin equation [41], written for the vapor–solid equilibrium: 

 𝑘𝑘�cap
∗ =

𝑅𝑅p

𝑣𝑣S𝜎𝜎SV �𝑅𝑅�𝑇𝑇III
V ln �

𝑃𝑃III
V

𝑃𝑃∞
� − 𝑣𝑣S�𝑃𝑃III

V − 𝑃𝑃∞�� (4-4) 

where 𝑘𝑘�cap
∗ = 2𝑅𝑅p/𝑅𝑅cap is the dimensionless curvature of the equilibrium cap with 𝑅𝑅cap being 

the radius of the cap, 𝑅𝑅� is the universal gas constant, 𝑃𝑃∞ is the saturation vapor pressure with 

respect to solid across a flat interface at 𝑇𝑇III
V , and 𝜎𝜎SV is the interfacial tension of the solid–

vapor interface. We are only interested in scenarios where the vapor properties are such that it 
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can be in equilibrium with a cap with positive curvature (i.e., convex, protruding into the 

vapor). This limits the range of 𝑘𝑘�cap
∗  to 0 < 𝑘𝑘�cap

∗ < 2, for the following reasons: If the 

conditions are such that 𝑘𝑘�cap
∗ < 0, the solid–vapor interface is concave (i.e., depressed into the 

pore) so it cannot grow out of the pores because no negatively curved solid geometry is possible 

outside of the pore on a flat substrate. If 𝑘𝑘�cap
∗ > 2, the pinned caps are no longer equilibrium 

shapes so the solid is expected to grow out of the pore spontaneously without a barrier. The 

latter case will be shown by free-energy analysis in section 4.5.2. 

The ease of formation of the bulk solid beyond the pore mouths depends on the growth 

path and the corresponding free-energy barrier. One often-studied scenario is the growth from 

a single pore where the barrier is calculated by following a path of a sequence of spherical caps 

(first pinned, then not pinned). This is a reasonable assumption if the distance between the 

neighboring pores is large. If, however, the distance between the neighboring pores is 

comparable to the size of the pores, then the possibility of bridging of the pores should be 

considered because these shapes might provide energetically more favorable growth pathways. 

An example schematic of such a bridging scenario is depicted in Figure 4-1 (c). The bridging 

is characterized by the number of pores participating, 𝑛𝑛 [in Figure 4-1 (c), 𝑛𝑛 = 2]; the radii of 

the pores, 𝑅𝑅p; the distance between the pore centers, 𝑙𝑙; the solid–porous particle surface–vapor 

contact angle, 𝜃𝜃 (measured through the solid); and the volume of the entire shape above the 

plane of the particle surface. 

Similarly to the nucleation at the meniscus, following the increase-of-entropy principle 

for a spontaneous change around equilibrium subject to constraints, we can arrive at the free 

energy, Δ𝐵𝐵bri, for the bridging of 𝑛𝑛 pores by the formation of solid from the 

vapor [15,43,202,215]. In a dimensionless form, the free-energy equation can be written as 

 Δ𝐵𝐵�bri = Δ𝐵𝐵bri/𝑅𝑅p
2𝜎𝜎SV = −𝑘𝑘�bri

∗ 𝑉𝑉�bri
S + ��̃�𝐴bri

SV − 𝑛𝑛𝜋𝜋� − cos 𝜃𝜃 �̃�𝐴bri
SP  (4-5) 

for which the reference state is chosen as the state where 𝑛𝑛 number of pores are covered with 

flat disks of solid at the pore mouths at the same conditions (i.e., same chemical potential of 

the solid). This is a convenient reference state because the volume and solid–pore wall area 

above the particle surface plane are zero, hence the nondimensional free energy of the reference 

state is simply 𝑛𝑛𝜋𝜋. Note that the reference state does not need to be an equilibrium state. In 

Equation (4-5), 𝑘𝑘�bri
∗ = 𝑘𝑘bri

∗ 𝑅𝑅p with 𝑘𝑘bri
∗  being twice the mean curvature of the equilibrium 
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bridge with the unit normals of the surface pointing from the solid to the vapor (simply 

curvature hereafter), and since the bridge forms at the same conditions, 𝑘𝑘�bri
∗ = 𝑘𝑘�cap

∗ . That is, 

the curvature of the equilibrium bridge is also dictated by the solid–vapor equilibrium through 

Equation (4-4). 𝑉𝑉�bri
S = 𝑉𝑉bri

S /𝑅𝑅p
3𝜎𝜎SV is the dimensionless volume of the shape above the plane 

of the particle surface, �̃�𝐴bri
SV = 𝐴𝐴bri

SV /𝑅𝑅p
2𝜎𝜎SV is the dimensionless area of the solid–vapor 

interface, �̃�𝐴bri
SP = 𝐴𝐴bri

SP /𝑅𝑅p
2𝜎𝜎SV is the dimensionless area of the solid–particle surface interface 

(i.e., the flat part of the shape covering the particle surface). 

Similarly to the nucleation inside the pore, we denote the dimensionless free energy of 

an equilibrium bridge by Δ𝐵𝐵�bri
∗ , which corresponds to using the volume and areas of an 

equilibrium bridge in Equation (4-5). We also denote the quantities corresponding to an 

equilibrium state by a superscript asterisk when studying bridging. Furthermore, we define the 

dimensionless distance between the pores as 𝑙𝑙 = 𝑙𝑙/𝑅𝑅p. Since setting the temperature, 𝑇𝑇III
V , and 

the vapor pressure, 𝑃𝑃III
V , for a given pore is equivalent to fixing 𝑘𝑘�bri

∗  through Equation (4-4), it 

is natural to compare the energy barriers for different values of parameters, 𝑛𝑛, 𝑙𝑙, and 𝜃𝜃 for a 

fixed 𝑘𝑘�bri
∗ . 

4.3 Methods 
The volumes and areas in Equations (4-2) and (4-5) need to be quantified to compute 

the free energies of nuclei and bridges, respectively. To that end, we use the Surface Evolver 

(SE) code [21,22] to find the nontrivial equilibrium geometries. Surface Evolver is an open-

source software designed for complex variational problems involving surface and other forces 

(e.g., gravity). The surfaces in SE are discretized and represented by a union of triangles, 

including their edges and vertices. The equilibrium shapes are calculated by first providing a 

rough mesh of the expected shape (e.g., a cube to represent a sphere), which is then refined 

and moved towards the minimum-energy shape by the built-in gradient descent or conjugate 

gradient methods. Constraints can be put on the system such as the conservation of the volume, 

and fixed boundaries can be used with specified contact angles. For stability and to reduce the 

computational cost, the portions of the shape to be evolved that lie on the constraints are 

omitted and replaced by appropriate compensating integrals. The details of SE calculations 

used in this chapter are given in Appendix B. 
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While SE is versatile and can be used for all cases of this study, it is possible to develop 

an analytical solution in certain cases. Namely, when using SE for the nucleation at the 

meniscus, if the sum of the internal angles of the solid nucleus, 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑, is less than 180°, 

then the nuclei form axisymmetrically covering the entire meniscus–pore wall contact line. 

Because of this symmetricity, it is possible to find an analytical solution for the nucleus shape 

by solving the variational problem (Euler–Lagrange equation) 𝛿𝛿�Δ𝐵𝐵�nuc�/𝛿𝛿𝑓𝑓 = 0, where 𝑓𝑓 =

𝑦𝑦(𝑥𝑥) is the function for the profile of the nucleus, schematically shown in Figure 4-2. The 

actual surface is obtained by the revolution of this solid–liquid profile around the 𝑦𝑦-axis. We 

scale the coordinate system by 1/𝑅𝑅p in Figure 4-2 so that the cylinder has a base of a unit 

circle. Note that a version of this problem without the spherical boundary at the meniscus has 

been previously solved by Lefevre et al. [118] on which our solution here is based. 

 
Figure 4-2. 2D schematic of the symmetric nucleus profile at the three-phase contact line in a 
cylinder of radius 1. The red line represents the meniscus sphere, and the blue line represents 
the profile of the solid–liquid interface. 

Starting with Equation (4-2), we may express the volume and the areas as integrals and 

write the nondimensional energy as (normalized by 2𝜋𝜋): 

𝑟𝑟s 
𝑥𝑥0  

𝑓𝑓 

0 1
𝛼𝛼  

𝛽𝛽 𝜑𝜑 

𝑥𝑥 

𝑦𝑦 

𝑅𝑅s  
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Δ𝐵𝐵�nuc

2𝜋𝜋
= −𝑘𝑘�nuc

∗ � 𝑥𝑥(𝑓𝑓 − 𝑦𝑦s)d𝑥𝑥
1

𝑥𝑥0

+ � 𝑥𝑥�1 + �
d𝑓𝑓
d𝑥𝑥�

2

d𝑥𝑥
1

𝑥𝑥0
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d𝑥𝑥 �
2

d𝑥𝑥
1

𝑥𝑥0

− cos 𝜑𝜑 𝑓𝑓(1) 

(4-6) 

where 𝑦𝑦s is the equation of the vapor meniscus circle, which has the following form: 

 𝑦𝑦s = �𝑅𝑅s
2 − 𝑥𝑥2 − tan 𝛼𝛼 (4-7) 

with 𝑅𝑅s = 1/ cos 𝛼𝛼 being the radius of the vapor-meniscus sphere. 𝑥𝑥0 is the radius of the 

intersection circle of the meniscus and the solid–liquid interface. 

Taking the functional derivative of Equation (4-6) with respect to 𝑓𝑓 and setting it equal 

to zero, we obtain the following: 

 𝑘𝑘�nuc
∗ = −

1
𝑥𝑥

d
d𝑥𝑥
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⎥
⎥
⎥
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  (4-8) 

Equation (4-8) can be integrated once using the following boundary condition at 𝑥𝑥 =

1, which is simply the angle-of-intersection requirement at the wall (i.e., contact angle):  

 

d𝑓𝑓
d𝑥𝑥 

�1 + �d𝑓𝑓
d𝑥𝑥�

2
 |𝑥𝑥=1 = cos 𝜑𝜑 

(4-9) 

which yields 

 
d𝑓𝑓
d𝑥𝑥

=
𝑔𝑔

�1 − 𝑔𝑔2
 (4-10) 

where 

 𝑔𝑔(𝑥𝑥) = −
𝑘𝑘�nuc

∗ 𝑥𝑥
2

+
2 cos 𝜑𝜑 + 𝑘𝑘�nuc

∗

2𝑥𝑥
 (4-11) 

The second boundary condition states that the profiles of 𝑓𝑓 and 𝑦𝑦s should intersect at 

the point �𝑥𝑥0, 𝑦𝑦s(𝑥𝑥0)� and at the angle 𝛽𝛽. This can be mathematically expressed as 

 
𝑓𝑓′ − 𝑦𝑦s

′

1 + 𝑓𝑓′𝑦𝑦s
′ |𝑥𝑥=𝑥𝑥0 = tan 𝛽𝛽 (4-12) 
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where 𝑓𝑓′ = d𝑓𝑓/d𝑥𝑥 and 𝑦𝑦s
′ = d𝑦𝑦s/d𝑥𝑥. Substituting Equation (4-10) directly into Equation 

(4-12) and taking the derivative of Equation (4-7) and then substituting into Equation (4-12), 

Equation (4-12) can be numerically solved for 𝑥𝑥0. Once 𝑥𝑥0 is found, 𝑦𝑦s(𝑥𝑥0) can be found from 

Equation (4-7), and since 𝑓𝑓(𝑥𝑥0) = 𝑦𝑦s(𝑥𝑥0), this leads to 

 𝑓𝑓(𝑥𝑥) = �
𝑔𝑔

�1 − 𝑔𝑔2
d𝑥𝑥

𝑥𝑥

𝑥𝑥0

+ 𝑦𝑦s(𝑥𝑥0) (4-13) 

Substituting Equation (4-11) into Equation (4-13) and integrating it numerically, we 

obtain 𝑓𝑓. We use MATLAB’s (v. 2023a, Natick, MA, USA) built-in symbolic solver 

vpasolve() and integrator vpaintegral() for this problem. 

The geometries in all the remining cases (i.e., asymmetric nuclei and all cases of 

bridges) are calculated numerically with SE.  

The rest of the chapter is organized as follows: In section 4.4, we summarize all the 

cases considered in this work, give examples of the nucleus and bridge shapes, and discuss 

their features. In section 4.5, using the results of the geometry calculations, we determine the 

minimum-energy nucleation and bridging paths and calculate the energy barriers for nucleation 

and bridging. In section 4.6, we summarize the main findings of this study. 

4.4 Results: Geometry 
In this section, we discuss different nucleus and bridge geometries, analyze their 

features, and give examples. 

4.4.1 Geometry of nuclei at the meniscus 
For the nucleation at the meniscus, we consider three meniscus angles: 𝛼𝛼 = 5, 30, and 

60°, three solid–liquid–vapor contact angles: 𝛽𝛽 = 45, 90, and 135°, and three solid–liquid–

pore wall contact angles: 𝜑𝜑 = 45, 90, and 135°. All cases studied in this work for the nucleus 

angles are listed in Table 4-1. The remaining columns of Table 4-1 will be discussed later in 

the chapter. 

Table 4-1. Summary of all cases considered for nucleation at the meinscus. 

𝛼𝛼 (°) 𝛽𝛽 (°) 𝜑𝜑 (°) Nucleus 
type 𝑘𝑘�nuc,max

∗  𝑉𝑉�nuc,max
S  𝑉𝑉�nuc,tran

S  Notes 

5 45 45 sym −1.2371 1.9647 1.8896  
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5 45 90 sym 0.3555 1.3639 1.2989  

5 45 135 asym-1 − 1.45 1.0928  

5 90 45 sym −0.7045 2.4968 2.3067  

5 90 90 asym-1 − 2.5 1.8154 Figure B-1 

5 90 135 asym-2 − 3.15 2.7874  

5 135 45 asym-1 − 4 2.7690  

5 135 90 asym-2 − 3.8 3.0953  

5 135 135 asym-2 − 3.7 3.3814  

30 45 45 sym −1.2213 1.7451 1.6694  

30 45 90 sym 0.4494 1.1460 1.0804  

30 45 135 asym-1 − 1.55 1.0409  

30 90 45 sym −0.5858 2.2939 2.0994 Figure 4-3 
Figure 4-7 

30 90 90 asym-1 − 2.45 1.7602 Figure 4-4 
Figure 4-8 

30 90 135 asym-2 − 3 2.6237  

30 135 45 asym-1 − 3.9 2.7193  

30 135 90 asym-2 − 3.75 3.0310  

30 135 135 asym-2 − 3.7 3.3685 Figure 4-5 
Figure 4-8 

60 45 45 sym −1.1548 1.3858 1.3057  

60 45 90 asym-1 − 1.1 0.7537  

60 45 135 asym-1 − 1.05 0.8975  

60 90 45 asym-1 − 2.45 1.6502  

60 90 90 asym-1 − 2.15 1.6724  

60 90 135 asym-1 − 2.45 2.0708  

60 135 45 asym-1 − 4 2.7367  

60 135 90 asym-1 − 3.4 2.7191  

60 135 135 asym-2 − 3.65 3.3045  
 

Depending on the angles, three qualitatively different nucleus types were identified: 

(i) symmetric nucleus: if 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 < 180° 
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(ii) asymmetric nucleus of type 1: if 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 > 180° and 𝛽𝛽 + 𝜑𝜑 − 𝛼𝛼 < 180° 

(iii) asymmetric nucleus of type 2: if 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 > 180° and 𝛽𝛽 + 𝜑𝜑 − 𝛼𝛼 > 180° 

These nucleus types are separately discussed below. 

4.4.1.1 Symmetric nucleus 

As mentioned, when 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 < 180°, the nucleus forms as a symmetric shape 

around the pore axis at the three-phase contact line, and the nucleus shapes in this case are 

calculated analytically. 

It was found that the analytical method yields one solution when −∞ < 𝑘𝑘�nuc
∗ <

−2 cos 𝜑𝜑 and two solutions when −2 cos 𝜑𝜑 < 𝑘𝑘�nuc
∗ < 𝑘𝑘�nuc,max

∗ , where 𝑘𝑘�nuc,max
∗  is a 

numerically determined constant (for every given set of angles satisfying 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 < 180°) 

above which no solution exists. Furthermore, each combination of angles allows a maximum 

volume of the nucleus, which we denote by 𝑉𝑉�nuc,max
S . These constants for the symmetric case 

are given in Table 4-1. Note that the point of maximum curvature and the point of maximum 

volume do not coincide. 

Example solutions of the symmetric nuclei for angles 𝛼𝛼 = 30°, 𝛽𝛽 = 90°, and 𝜑𝜑 = 45° 

are given in Figure 4-3. Two-dimensional slices of the nuclei geometry are shown for four 

different 𝑘𝑘�nuc
∗ ’s in Figure 4-3 (a). Here, the small, blue-shaded area in the left-most panel of 

Figure 4-3 (a) is a solution from the range where only one solution is possible with 𝑘𝑘�nuc
∗ = −2. 

The orange-shaded areas in the second panel are for 𝑘𝑘�nuc
∗ = −1.414 (just above −2 cos 𝜑𝜑) for 

which there are two solutions, shown in dark and light orange, respectively. Note that one of 

these solutions—the larger light orange area—almost represents a spherical cap (deviations are 

not noticeable in the figure). If 𝑘𝑘�nuc
∗  is exactly −2 cos 𝜑𝜑, one solution would be practically the 

same as the dark orange region together with infinitely many spherical cap solutions spanning 

the pore length and all having the same spherical solid–liquid interfacial area but different 

volumes and solid–pore wall interfacial areas. The areas and volumes of these shapes are easily 

calculated using the formulae for a spherical cap and will be important in section 4.5. Another 

set of solutions is given in the third panel in yellow for 𝑘𝑘�nuc
∗ = −1.0732, the larger of which 

corresponds to the maximum possible nucleus volume, 𝑉𝑉�nuc,max
S . Note that in the second and 

third panels of Figure 4-3 (a), the light-colored areas contain the smaller, dark-colored areas as 
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well. Finally, the purple-shaded area in the right-most panel represents the two overlapping 

solutions corresponding to 𝑘𝑘�nuc,max
∗ . 

In Figure 4-3 (b) and (c), the energy of the equilibrium shape, Δ𝐵𝐵�nuc
∗ , is plotted vs. the 

curvature, 𝑘𝑘�nuc
∗ , and equilibrium volume, 𝑉𝑉�nuc

S∗ , respectively. In Figure 4-3 (d), 𝑘𝑘�nuc
∗  is plotted 

vs. 𝑉𝑉�nuc
S∗ . In panels (b), (c), and (d), the points corresponding to the solutions in Figure 4-3 (a) 

are shown with the same color. Note that, in these plots, each point corresponds to a different 

value of 𝑘𝑘�nuc
∗ , hence, different equilibrium. Therefore, the extrema on these plots do not have 

stability meaning. Other combinations of angles with 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 < 180° yield qualitatively 

similar results to what is illustrated in Figure 4-3. 

We note that the analytical method used for calculating the symmetric nucleus 

geometry takes 𝑘𝑘�nuc
∗  as an input and finds the stationary points of the energy. Surface Evolver, 

on the other hand, is a numerical tool that uses gradient descent to find the minimum of the 

energy, and it was run with 𝑉𝑉�nuc
S∗  as the input for stability. Hence, the high-energy branch 

between the yellow and orange dots in Figure 4-3 (c) [and the corresponding portions of the 

plots in panels (b) and (d)] would not be accessible with SE. However, we will see in section 

4.5.1.1 that this branch cannot be a part of the nucleation path anyway. 



103 
 

 
Figure 4-3. Examples of the symmetric nuclei at the meniscus. (a) 2D views of some symmetric 
nuclei solutions. (b) Energy vs. curvature plot. (c) Energy vs. volume plot. (d) Volume vs. 
curvature plot. All calculations are for 𝛼𝛼 = 30°, 𝛽𝛽 = 90°, and 𝜑𝜑 = 45°. In panel (a), the vapor 
meniscus is shown in red, and the solid nuclei are shown with the colored areas. The colored 
points on the plots in the bottom panels correspond to the nuclei shapes shown in panel (a). 

4.4.1.2 Type-1 asymmetric nucleus 

When 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 > 180° and 𝛽𝛽 + 𝜑𝜑 − 𝛼𝛼 < 180°, the nucleus forms on one side of the 

pore, and it contains a portion of the meniscus–pore wall intersection circle (i.e., there is no 

gap between the solid nucleus and the meniscus–pore wall intersection line). The nucleus 

shapes in this case are calculated numerically using SE. Example 3D nuclei profiles for this 

case, calculated with SE for 𝛼𝛼 = 30°, 𝛽𝛽 = 90°, and 𝜑𝜑 = 90°, are given in Figure 4-4 (a). 

Furthermore, in panels (b), (c), and (d) of Figure 4-4, like in Figure 4-3, we plot the energy vs. 

curvature, energy vs. volume, and volume vs. curvature, respectively. It is seen that, unlike in 

the symmetric case, these plots are simpler in the sense that they are single-valued functions. 

For all combinations of angles satisfying the criterion 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 > 180° and 𝛽𝛽 + 𝜑𝜑 − 𝛼𝛼 <

180°, qualitatively similar results were obtained. Note that in Figure 4-4 (b), (c), and (d), each 

liq. liq. liq. liq.vap. vap. vap. vap.

𝛼𝛼 = 30° , 𝛽𝛽 = 90° , 𝜑𝜑  = 45°  

(≈  − 2cos 𝜑𝜑) 

a)

b) c) d)
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point corresponds to a different value of 𝑘𝑘�nuc
∗ , and therefore, corresponds to finding an 

equilibrium state for a different system, so relative free-energy values do not have a stability 

meaning. 

𝑘𝑘�nuc,max
∗  is not defined for the present case because the nucleus can be made arbitrarily 

small increasing 𝑘𝑘�nuc
∗  indefinitely. However, there exists 𝑉𝑉�nuc,max

S , which is defined as the 

maximum volume of the nucleus calculated with SE. These values are listed in Table 4-1. If 

the set volume of the nucleus is larger than 𝑉𝑉�nuc,max
S , then the solid–liquid interface of the solid 

nucleus forms a spherical cap (concave, convex, or flat disk, depending on 𝜑𝜑), with the solid 

covering the entire meniscus on the other end [see Figure 4-4 (a), last illustration]. Note that 

we use a volume increment of Δ𝑉𝑉�nuc
S∗ = 0.05 when computing asymmetric geometries. 

Therefore, the maximum volumes listed in Table 4-1 for the present case are only accurate to 

0.05. 
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Figure 4-4. Example of type-1 asymmetric solid nuclei at the vapor meniscus. (a) The first 
three panels: 3D views of the type-1 asymmetric nuclei; the last panel: an example where 
𝑉𝑉�nuc

S∗ = 3 > 𝑉𝑉�nuc,max
S . The meniscus is shown by the red mesh, and the solid–liquid interface of 

the nucleus is shown in transparent grey. The contact line of the shape with the pore wall is 
shown in green. (b) Energy vs. curvature plot. (c) Energy vs. volume plot. (d) Volume vs. 
curvature plot. All calculations are for 𝛼𝛼 = 30°, 𝛽𝛽 = 90°, and 𝜑𝜑 = 90°. The plots in panels 
(b), (c), and (d) are up to 𝑉𝑉�nuc,max

S . 

4.4.1.3 Type-2 asymmetric nucleus 

Finally, when 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 > 180° and 𝛽𝛽 + 𝜑𝜑 − 𝛼𝛼 > 180°, the nucleus forms on one 

side of the pore, but it does not contain any portion of the meniscus–pore wall three-phase 

contact line (i.e., there is a gap between the solid nucleus and the meniscus–pore wall 

intersection circle). The nucleus shapes in this case are calculated numerically using SE. 

Example 3D nuclei profiles for this case calculated with SE for 𝛼𝛼 = 30°, 𝛽𝛽 = 135°, and 𝜑𝜑 =

135° are given in Figure 4-5 (a). Again, in panels (b), (c), and (d), we plot the energy vs. 

curvature, energy vs. volume, and volume vs. curvature, respectively. It is seen that these plots 

are similar to the plots for the type-1 asymmetric nuclei. For all combinations of angles 

satisfying the criterion 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 > 180° and 𝛽𝛽 + 𝜑𝜑 − 𝛼𝛼 > 180°, qualitatively similar results 

were obtained. Note that, in panels (b), (c), and (d), each point corresponds to a different value 
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of 𝑘𝑘�nuc
∗ , and therefore, corresponds to finding an equilibrium state for a different system, so 

relative free-energy values do not have a stability meaning. 

Similar to the type-1 asymmetric nucleus case, 𝑘𝑘�nuc,max
∗  is not defined for the present 

case becuase the nucleus can be made arbitrarily small increasing 𝑘𝑘�nuc
∗  indefinetly. However, 

again, there exists 𝑉𝑉�nuc,max
S , which is defined as the maximum volume of the nucleus calculated 

with SE. If the set volume of the nucleus is larger than this value, then the shape forms as a 

spherical cap on one end (convex or flat disk, depending on 𝜑𝜑) covering a circular middle 

portion of the meniscus on the other end with a gap between the nucleus and the meniscus–

pore wall intersection line [see Figure 4-5 (a), last illustration]. The values of 𝑉𝑉�nuc,max
S  for the 

type-2 asymmetric nuclei are also listed in Table 4-1. Like the type-1 asymmetric case, we use 

a nondimensional volume increment of Δ𝑉𝑉�nuc
S = 0.05 when computing type-2 asymmetric 

nucleus geometries. Hence, the maximum nondimensional volumes listed in Table 4-1 for the 

present case are only accurate to 0.05. 
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Figure 4-5. Example of type-2 asymmetric nuclei at the meniscus. (a) the first three panels: 3D 
views of the type-2 asymmetric nuclei; the last panel: an example where 𝑉𝑉�nuc

S∗ = 4 > 𝑉𝑉�nuc,max
S . 

The meniscus is shown by the red mesh, and the solid–liquid interface of the nucleus is shown 
in transparent grey. The contact line of the shape with the pore wall is shown in green.  (b) 
Energy vs. curvature plot. (c) Energy vs. volume plot. (d) Volume vs. curvature plot. All 
calculations are for 𝛼𝛼 = 30°, 𝛽𝛽 = 135°, and 𝜑𝜑 = 135°. The plots in panels (b), (c), and (d) are 
up to 𝑉𝑉�nuc,max

S . 

4.4.2 Geometry of bridges 
To calculate the bridge geometries, we use SE, the details of which are given in 

Appendix B. For bridging of the pores, we consider two or three pores: 𝑛𝑛 = 2 or 3, three 

contact angles: 𝜃𝜃 = 45, 90, or 135°, and two different nondimensional distances between the 

two adjacent pores: 𝑙𝑙 = 8/3 or 10/3. The summary of all cases considered in this work is 

given in Table 4-2. The remaining columns of Table 4-2 will be discussed later in the chapter. 

Table 4-2. Summary of all cases studied for bridging of pores. 

𝑛𝑛 𝑙𝑙 𝜃𝜃 (°) Transition 
type 𝑉𝑉�bri,min

S  𝑉𝑉�bri,tran
S  Notes 

2 8/3 45 pinned 1.2 1.2850  
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2 8/3 90 pinned 2.3 2.8255 Figure 4-6 
Figure 4-10 

2 8/3 135 pinned 3.3 4.1649 Figure B-2 

2 10/3 45 unpinned 1.5 1.7130  

2 10/3 90 pinned 3.2 4.0375  

2 10/3 135 pinned 4.7 6.6995  

3 8/3 45 pinned 1.3 1.7055  

3 8/3 90 pinned 2.6 3.5516 Figure 4-6 

3 8/3 135 pinned 3.6 5.1216  

3 10/3 45 unpinned 1.8 2.3346  

3 10/3 90 pinned 3.8 5.2818 Figure B-3 

3 10/3 135 pinned 5.5 8.2798  
 

Three-dimensional examples of geometries for the bridging of two pores are shown in 

Figure 4-6 (a), and examples of geometries for the bridging of three pores are shown in Figure 

4-6 (b), all for 𝜃𝜃 = 90° and 𝑙𝑙 = 8/3. The shapes are pinned at the pore mouths (red, blue, and 

green circular curves) but are required to meet the flat portion of the surface at the angle 𝜃𝜃 

(yellow curves). We found that, in all bridging scenarios, there exists a minimum bridge 

volume, 𝑉𝑉�bri,min
S , below which the shape is not stable with SE, and the solid–vapor interface 

becomes disconnected pinned caps at the pore mouths. The Δ𝑉𝑉�bri
S∗  values are listed in Table 

4-2, and they are accurate to 0.1 because we use a nondimensional volume increment of 

Δ𝑉𝑉�bri
S∗ = 0.1 for SE calculations of bridges. 

In Figure 4-6 (a) and (b), the top shapes roughly correspond to the minimum-volume 

bridges for two pores and three pores, respectively. The bottom shapes have equal volumes of 

𝑉𝑉�bri
S∗ = 4, and they are given for illustration purposes. In Figure 4-6 (c), (d), and (e), we plot 

the energy vs. curvature, energy vs. volume, and volume vs. curvature of equilibrium bridges, 

respectively. From Figure 4-6 (e), it is seen that the curvature of the shape varies nonlinearly 

with the volume, and it is not single-valued for 𝑛𝑛 = 3, resulting in sharp change in the energy 

plot in panel (c). Note that in these plots each point corresponds to a different value of 𝑘𝑘�bri
∗ , 

and therefore, corresponds to finding an equilibrium state for a different system, so relative 

free-energy values do not have a stability meaning. We also note that, as the bridge grows, it 
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becomes more spherical, eventually becoming a large spherical cap encapsulating all pore 

mouths. We define the bridge in each case only up to this volume. 

 
Figure 4-6. Examples of bridging of pores. (a) 3D geometries for the bridging of two pores. 
(b) 3D geometries for the bridging of three pores. (c) Energy vs. curvature plots. (d) Energy 
vs. volume plots. (e) Volume vs. curvature plots. In panels (a) and (b), the shapes are 
highlighted in red, blue, and green where they are pinned at the pore mouths and highlighted 
in yellow where they meet the flat surface at the angle 𝜃𝜃. All calculations are for 𝜃𝜃 = 90° and 
𝑙𝑙 = 8/3. 

4.5 Results: Free-energy analysis and energy barriers 
In this section, we perform free-energy analysis and calculate the energy barriers for 

the solid nucleation inside a single pore based on Equation (4-2) using the calculated nucleus 
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geometries. We then perform free-energy analysis and calculate the energy barriers for the 

bridging of neighboring pores based on Equation (4-5) using the calculated bridge geometries. 

4.5.1 Free-energy analysis for nucleation at the meniscus 

4.5.1.1 Free energy of symmetric nucleation 

Upon investigating the calculated solutions of the symmetric nuclei, we found that not 

all solutions correspond to a nucleation path. This is because, after the symmetric nucleus 

reaches a certain size, a nucleus of the same volume encapsulating the entire meniscus and 

having a spherical solid–liquid interface becomes energetically more favorable. In all cases 

studied in this work, this volume was slightly lower than 𝑉𝑉�nuc,max
S , and we denote this transition 

volume by 𝑉𝑉�nuc,tran
S . The numerically determined values are listed in Table 4-1 for all cases 

studied. 

In Figure 4-7, we show examples of free-energy profiles plotted at fixed values of 𝑘𝑘�nuc
∗  

vs. 𝑉𝑉�nuc
S  corresponding to the case discussed in section 4.4.1.1 (i.e., for angles 𝛼𝛼 = 30°, 𝛽𝛽 =

90°, and 𝜑𝜑 = 45). In panel (a), the solid lines are the free-energy profiles of the symmetric 

nuclei, and the dashed lines of the same color are the free-energy profiles for the nuclei with a 

spherical solid–liquid interface, both plotted vs. the nucleus volume, 𝑉𝑉�nuc
S . Following the 

principle of minimum-free-energy-path, the transition volume from the symmetric nucleus to 

the spherical-cap geometry, 𝑉𝑉�nuc,tran
S , is determined by the intersection of the paths where the 

lower free energy switches from one geometry to the other (shown by the vertical dashed line). 

The portions of the free-energy plots that lie above the minimum-free-energy path are deemed 

not physical and excluded. In Figure 4-7 (b), we plot the free energy vs. the distance of the 

solid–liquid–vapor contact line of the symmetric nucleus from the pore wall (i.e., 1 − 𝑥𝑥0 in  

Figure 4-2) to better visualize the free-energy landscape. Note that, however, unlike the 

nucleus volume, this distance does not have the meaning of “reaction coordinate”, so not all 

minima and maxima on this panel represent equilibrium. Specifically, the kinks in the free-

energy plots in Figure 4-7 (a) where their derivatives with respect to the nucleus volume are 

not defined, also appear as extremum points in the excluded region in Figure 4-7 (b). In Figure 

4-7 (c), we show a schematic sequence for the expected path of nucleation. Note that 

illustrations in the schematic are not to scale and they do not necessarily represent equilibrium 

states. 
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Considering the piecewise free-energy path described above, when 𝑘𝑘�nuc
∗ < −2 cos 𝜑𝜑 

[dark red lines in Figure 4-7 (a) and (b)], there is only one stable equilibrium state at the small 

volume of the nucleus. 𝑘𝑘�nuc
∗ = −2 cos 𝜑𝜑 [light blue lines in Figure 4-7 (a) and (b)] represents 

the case where the transition to the spherical-cap geometry has the same energy as the spherical 

cap itself, irrespective of the volume of the cap [note the horizontal dashed line in Figure 4-7 

(a)]. When −2 cos 𝜑𝜑 < 𝑘𝑘�nuc
∗ < 𝑘𝑘�nuc,max

∗  [green, purple, and yellow lines in Figure 4-7 (a) and 

(b)] the plots have energy barriers besides the local minima at the small volume, meaning that 

the pore can solidify if these barriers can be crossed. For the present example, when 𝑘𝑘�nuc
∗ =

−1.2 [green lines in Figure 4-7 (a) and (b)], the energy barrier corresponds to 𝑉𝑉�nuc,tran
S , and 

when 𝑘𝑘�nuc
∗ = −0.75 (yellow lines), the energy barrier corresponds to a volume smaller than 

𝑉𝑉�nuc,tran
S . 𝑘𝑘�nuc

∗ = −0.9 [purple lines in Figure 4-7 (a) and (b)] marks the point where the free-

energy plot of the symmetric nucleus becomes flat at the transition volume 𝑉𝑉�nuc,tran
S . Finally, 

when 𝑘𝑘�nuc
∗ ≥ 𝑘𝑘�nuc,max

∗  [orange and blue lines in Figure 4-7 (a) and (b)] the energy barrier and 

the local minimum disappear, meaning that the pore is expected to solidify spontaneously at 

these conditions. 
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Figure 4-7. Symmetric nucleation at the meniscus. (a) Example free-energy plots for 
symmetric nuclei for 𝛼𝛼 = 30°, 𝛽𝛽 = 90°, and 𝜑𝜑 = 45° (solid lines), and the corresponding 
spherical-cap geometries (dashed lines of the same color). (b) The free energy vs. the distance 
of the solid–liquid–vapor contact line of the symmetric nucleus from the pore wall. In panels 
(a) and (b), the vertical dashed lines represent the transition volume. (c) Schematic of the 
expected nucleation path for symmetric nucleation. 

4.5.1.2 Free energy of asymmetric nucleation 

We found similar transitions for both types of the asymmetric nucleus as well. In Figure 

4-8 (a), we show the free-energy profiles plotted at fixed values of 𝑘𝑘�nuc
∗  vs. 𝑉𝑉�nuc

S  for the type-1 

asymmetric nuclei corresponding to the case discussed in section 4.4.1.2 (i.e., for angles 𝛼𝛼 =

30°, 𝛽𝛽 = 90°, and 𝜑𝜑 = 90°). Furthermore, in Figure 4-8 (b), we show the free-energy profiles 

for the type-2 asymmetric nuclei with angles 𝛼𝛼 = 30°, 𝛽𝛽 = 135°, and 𝜑𝜑 = 135°. In both 

panels, the solid lines are for the asymmetric nuclei calculated with SE and the dashed lines 

are for the corresponding spherical-cap geometries (note that for 𝜑𝜑 = 90° the cap is a flat disk).  

 Similar to the symmetric case, we see that there exists a transition volume, 𝑉𝑉�nuc,tran
S , 

above which the nucleus with a spherical cap has smaller free energy. In all cases studied, this 



113 
 

volume was always smaller than the maximum volume calculated with SE. This was the case 

for all the different combinations of angles studied in this work if 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 > 180°. That is, 

both type-1 and type-2 asymmetric cases had qualitatively similar free-energy profiles, the 

only difference being their geometry as discussed in section 4.4.1. Therefore, based on the 

principle of minimum-free-energy path, as the nucleus grows past this point, it is expected to 

transform into a shape with a spherical cap on one end and the entire meniscus on the other 

end. The numerically determined transition volumes are given in Table 4-1. We show 

schematics of the expected nucleation paths for type-1 and type-2 asymmetric nuclei in Figure 

4-8, in panels (c) and (d), respectively. Note that these schematics are not to-scale and they do 

not necessarily represent equilibrium states. 

The general feature of the free-energy plots for the asymmetric nuclei is that there are 

no metastable states unlike for the symmetric case. Considering the type-1 asymmetric nuclei 

example, when 𝑘𝑘�nuc
∗ < −2 cos 𝜑𝜑 [blue lines in Figure 4-8 (a)], the liquid is stable in the pore 

as there is no finite energy barrier. At 𝑘𝑘�nuc
∗ = −2 cos 𝜑𝜑 [orange lines in Figure 4-8 (a)], the 

transition to the spherical-cap geometry has the same energy as the spherical cap itself, 

irrespective of the volume of the cap (note the horizontal dashed line). When 𝑘𝑘�nuc
∗ > −2 cos 𝜑𝜑, 

there always exists a free-energy barrier for the nucleation of the solid. Note that this contrasts 

with the symmetric case where the barrier ceases to exist for 𝑘𝑘�nuc
∗ ≥ 𝑘𝑘�nuc,max

∗ . In this example, 

the barrier corresponds to the transition volume when −2 cos 𝜑𝜑 < 𝑘𝑘�nuc
∗ < 0.95 [yellow lines 

in Figure 4-8 (a)], and a smaller volume of the asymmetric nucleus when 𝑘𝑘�nuc
∗ > 0.95 [green 

and light blue lines in Figure 4-8 (a)]. If 𝑘𝑘�nuc
∗ = 0.95 [purple lines in Figure 4-8 (a)], the free 

energy of the asymmetric nucleus becomes flat at the transition volume. 
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Figure 4-8. Asymmetric nucleation at the meniscus. (a) Example free-energy plots for the type-
1 asymmetric nuclei for 𝛼𝛼 = 30°, 𝛽𝛽 = 90°, and 𝜑𝜑 = 90° (solid lines), and the corresponding 
spherical-cap geometries (dashed lines of the same color). (b) Example free-energy plots for 
type-2 asymmetric nuclei for 𝛼𝛼 = 30°, 𝛽𝛽 = 135°, and 𝜑𝜑 = 135° (solid lines), and the 
corresponding spherical-cap geometries (dashed lines of the same color). The vertical dashed 
lines represents the transition volume. (c) Schematic of the expected nucleation path for the 
type-1 asymmetric case. (d) Schematic of the expected nucleation path for the type-2 
asymmetric case. 

d)

type-1 asymmetric

type-2 asymmetric

increasing solid volume

b)

increasing solid volume

c)
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4.5.1.3 Comparison of the energy barriers for nucleation 

In Figure 4-9, we plot the energy barriers, Δ𝐵𝐵�nuc
† , for nucleation at the meniscus for all 

angle combinations considered in this work. For the symmetric cases, Δ𝐵𝐵�nuc
†  is calculated as 

the difference between the local maximum and the local minimum at the small volume 

considering the path illustrated in Figure 4-7. For the asymmetric cases, it is simply the height 

of the local maximum following the path described in Figure 4-8. It is seen that all curves start 

at a minimum curvature (− 2cos 𝜑𝜑) below which the liquid is stable in the pore. In all cases, 

as the curvature increases, the energy barrier decreases as expected. However, as mentioned, 

the barrier for the symmetric cases ceases to exist if 𝑘𝑘�nuc
∗ ≥ 𝑘𝑘�nuc,max

∗ . 

Based on Figure 4-9, the effects of 𝛼𝛼 on the nucleation barriers can be summarized as 

follows: If by decreasing 𝛼𝛼 the value of 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 can be made less than 180° resulting in 

symmetric nuclei instead of asymmetric, then the energy barrier can be significantly reduced 

or completely eliminated. Clearly, both 𝛽𝛽 and 𝜑𝜑 need to be less than 90° for this to be possible. 

Otherwise, 𝛼𝛼 can slightly reduce (see the middle panel of Figure 4-9), slightly increase (see 

the top two panels on the right of Figure 4-9), or can have no practical effect on the barrier (see 

the bottom panel on the right of Figure 4-9), depending on 𝛽𝛽 and 𝜑𝜑. Note that, in most cases, 

the amount by which 𝛼𝛼 reduces the barrier for nucleation also depends on 𝑘𝑘�nuc
∗ . 

Comparing the plots in Figure 4-9 across the rows and columns and noting the different 

𝑦𝑦-axis scales, we see that the energy barriers have much stronger dependence on both 𝛽𝛽 and 

𝜑𝜑. The barriers significantly increase with increasing 𝛽𝛽 and 𝜑𝜑. 



116 
 

 
Figure 4-9. Comparison of energy barriers for nucleation at the vapor meniscus as a function 
of solid nucleus curvature. Each row corresponds to a different 𝛽𝛽, and each column 
corresponds to a different 𝜑𝜑. Colors in each panel correspond to a different 𝛼𝛼, as indicated in 
the first panel. 

4.5.2 Free energy of bridging 

In Figure 4-10, we show example free-energy profiles plotted at fixed values of 𝑘𝑘�bri
∗  

vs. 𝑉𝑉�bri
S  for bridging of two pores (𝑛𝑛 = 2) with 𝜃𝜃 = 90° and 𝑙𝑙 = 8/3. The solid lines 

correspond to the bridge shapes calculated with SE, the dotted lines correspond to the growth 

of two pinned spherical caps simultaneously (i.e., the volume, areas, and energy are twice those 

for a single cap), and the dashed lines correspond to the growth after the caps unpin. The caps 
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unpin when the pore mouth can no longer accommodate the cap because it would require 

contact angle larger than 𝜃𝜃. We see that there exists a transition volume, 𝑉𝑉�bri,tran
S , larger than 

the minimum stable volume calculated with SE, and the bridging of the pores past the transition 

volume is energetically more favorable. Therefore, following the principle of minimum-free-

energy path, the shapes are expected to start as separate spherical caps and eventually form a 

bridge and grow. In this example, the transition volume is smaller than what is required for the 

caps to unpin. In two of the cases studied in this work, when 𝑛𝑛 = 2 or 𝑛𝑛 = 3 for 𝑙𝑙 = 10/3, and 

𝜃𝜃 = 45°, this transition to the bridge happens after the caps unpin and grow a small amount in 

the unpinned state. The transition volumes for bridges are listed in Table 4-2. 

In Figure 4-10, the local minima of the free-energy paths correspond to metastable 

pinned caps at the pore mouths. There exists a 𝑘𝑘�bri
∗  where the minimum in the free energy 

corresponds to the transition volume (𝑘𝑘�bri
∗ = 1.92 in this example; purple lines in Figure 4-10). 

If the curvature is higher than this value, the solid is expected to grow spontaneously without 

a barrier. For all the other positive curvature values, there always exists a free-energy barrier 

(not all visible in Figure 4-10). If the required size of the nucleus is large, the barrier 

corresponds to a single large spherical cap encapsulating all the pore mouths instead of the 

bridge [see the last illustration in Figure 4-10 (b)]. At negative curvature values (−2 < 𝑘𝑘�bri
∗ <

0), pinned concave caps at the pore mouths would be stable. 
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Figure 4-10. Bridging of pores. (a) Example free-energy plots for the bridging of the pores for 
𝑛𝑛 = 2, 𝜃𝜃 = 90°, and 𝑙𝑙 = 8/3 (solid lines), and the corresponding profiles calculated for the 
growth of 𝑛𝑛 number of spherical caps (dotted lines pinned; dashed lines not pinned). The 
vertical dashed line represents the transition volume. (b) Schematic of the expected bridging 
path. 

4.5.2.1 Comparison of the energy barriers for bridging 

Assuming the growth path described above, we plot the energy barriers for bridging, 

Δ𝐵𝐵�  bri
† , in Figure 4-11. The barriers are calculated as the difference between the local maximum 

and the local minimum of free-energy profiles. The solid lines represent the cases where the 

maximum of the free energy is at some volume of the bridge. The dashed lines are where the 

required volume is large, so the maximum of the free energy is instead at some volume of a 

large spherical cap encapsulating the pore mouths [see the last illustration in Figure 4-10 (b)]. 

For comparison, we also show, by dotted lines of the same color, the barriers calculated for the 

growth of a cap from a single isolated pore. 

From Figure 4-11, we see that the bridging of pores often provides a significantly lower 

free-energy barrier compared to growth from a single pore at the same conditions. In general, 

a)

increasing solid volume

b)
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the difference in the barriers increases with more pores and closer pore proximity. If the pores 

are far apart and/or there are not many pores in the close vicinity of each other, at large 𝑘𝑘�bri
∗ , 

single-pore growth might be more favorable (e.g., see the yellow lines in the right panels of 

Figure 4-11). Comparing the plots in the same panel by color, smaller contact angle also 

reduces the barriers significantly. If 𝑘𝑘�bri
∗  is larger than the intersection points of the plots with 

the Δ𝐵𝐵�  bri
† = 0 line, then the solid is expected to grow spontaneously without a barrier. 
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Figure 4-11. Comparison of free-energy barriers for bridging of pores (solid and dashed lines) 
as well as growth of a cap from a single isolated pore as a function of curvature (dotted lines). 
Each row corresponds to a different number of pores 𝑛𝑛, and each column corresponds to a 
different pore spacing 𝑙𝑙. Colors in each panel corresponds to different contact angle 𝜃𝜃 as 
indicated in the first panel. Note that the dotted lines are the same in all panels since the growth 
from a single pore does not depend on 𝑛𝑛 or 𝑙𝑙. 

4.6 Conclusion 
In this chapter, we investigated two of the limiting steps in pore condensation and 

solidification in a model porous particle with cylindrical pores: (i) solid nucleation inside a 

single pore at the liquid–vapor meniscus, and (ii) solid bridging of multiple pores above the 
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particle surface. We approached these problems from the thermodynamic-free-energy 

perspective with the main goal of computing the free-energy barriers for nucleation and then 

for bridging. By considering many cases of geometrical parameters—the internal angles of the 

solid (𝛼𝛼, 𝛽𝛽, and 𝜑𝜑) for nucleation and the distance, number of pores, and contact angle (𝑙𝑙, 𝑛𝑛, 

𝜃𝜃) for bridging—we compared the energy barriers. One of the challenges was the calculation 

of nontrivial equilibrium geometries of the nuclei and bridges that arise in these systems. We 

employed the Surface Evolver code in all cases, except for the symmetric nuclei for which an 

analytical solution could be developed. We showed that the correct calculation of the interface 

shapes (both for the nuclei and bridges) can be a key factor in sorting the equilibrium states as 

well as calculating their energies. Additionally, based on the analysis of the free-energy 

profiles, we determined the volumes where the transition from one type of shape to another 

happens, which was important for properly computing the barriers. We formulated the 

problems in a nondimensional framework to highlight the general features of these systems 

rather than focusing on the specifics, such as the liquid or solid properties, pore size, etc. 

The findings of this study regarding the nucleation at the meniscus suggest that 

geometry in confinement can influence the liquid-to-solid transition by facilitating low-energy 

sites where the onset of phase-change is expected to take place. Specifically, besides the effects 

of the competition among the interfacial tensions of various interfaces (represented by angles 

𝛽𝛽 and 𝜑𝜑), the presence of sharp corners, (represented by the meniscus and its angle 𝛼𝛼) can play 

a role in reducing the energy barriers for nucleation in cylindrical pores. However, significant 

reduction is only predicted if the corner is such that the condition 𝛼𝛼 + 𝛽𝛽 + 𝜑𝜑 < 180° is met. 

If this is the case, not only can the barriers be reduced but also, the barriers can be completely 

eliminated meaning that the solid can spontaneously fill the entire pore. Furthermore, such 

corners can hold a small amount of solid in a metastable or stable equilibrium, because it would 

have lower free energy than the liquid at the same conditions. We found that, in some cases, 

somewhat counterintuitively, decreasing the meniscus angle results in slightly higher energy 

barriers. This is ultimately related to the complex relationships among all solid angles, the 

volume and areas of solid, and the curvature of the solid–liquid interface. 

When it comes to the bridging of the pores, we found that besides the well-known effect 

of the affinity of the new phase to the particle surface (represented by 𝜃𝜃), the presence of 

multiple pores in the vicinity of each other and their relative proximity determine the height of 
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the barrier that prevents the formation of bulk solid. Increasing the number of pores and 

decreasing the inter-pore distance resulted in significant reduction in the energy barriers 

compared to those for growth from a single, isolated pore. For example, putting a second pore 

next to a single pore 8/3𝑅𝑅p distance apart reduced the energy barriers by about as much as if 

the contact angle was decreased from 135° to 90° for an isolated pore (see the solid yellow 

and dotted red lines in the lower left panel in Figure 4-11). If the pores are not close enough, 

the single-pore growth might still be favorable at high supersaturations. At large pore 

separations, we expect no bridging, and the bulk solid should form following the growth from 

a single pore, regardless of supersaturation. 

We emphasize that, although we presented our results in the framework of the pore 

condensation and solidification process, this chapter highlights the importance of both 

confinement geometry as well as the geometry of the interfaces in all related systems. The 

general features of the shapes analyzed in this work remain valid for other types of phase 

transitions. For example, the results for the solid nucleation at the meniscus can equally be 

interpreted for a vapor-to-liquid transition in a cylindrical pore ended by a hard sphere instead 

of the meniscus. Similarly, the properties of the bridges and the corresponding reduction in the 

energy barriers should be the same for a vapor-to-liquid (when studying bulk liquid formation 

from a porous particle) or liquid-to-solid transition (in the case the porous particle is 

surrounded by a liquid instead of a vapor). Additionally, bridging would be the same if the 

cylindrical pores were to be replaced by, for example, spherical pores with circular openings. 
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Part II: Multicomponent solutions 
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Chapter 5  
Multicomponent Solutions: Combining Rules for 

Multisolute Osmotic Virial Coefficients1 

 

Chapter summary 
This chapter presents an exploration of a specific type of a generalized multicomponent 

solution model, which appears to be first given by Saulov in the current explicit form. The 

assumptions of the underlying theory and a brief derivation of the main equation was provided 

preliminarily for completeness and notational consistency. The resulting formulae for the 

Gibbs free energy of mixing and the chemical potentials are multivariate polynomials with 

 
1Reproduced (including Appendix C), with minor changes, with permission from H. Binyaminov and J. A. W. 
Elliott. Multicomponent Solutions: Combining Rules for Multisolute Osmotic Virial Coefficients, J. Chem. Phys. 
159, 164116 (2023). https://doi.org/10.1063/ 5.0166482 © 2023 American Institute of Physics. 

https://doi.org/10.1063/%205.0166482
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physically meaningful coefficients and the mole fractions of the components as variables. With 

one additional assumption about the relative magnitudes of the solvent–solute and solute–

solute interaction exchange energies, combining rules were obtained that express the mixed 

coefficients of the polynomial in terms of its pure coefficients. This was done by exploiting 

the mathematical structure of the asymmetric form of the solvent chemical potential equation. 

The combining rules allow one to calculate the thermodynamic properties of the solvent with 

multiple solutes from binary mixture data only (i.e., each solute with the solvent), and hence, 

are of practical importance. Furthermore, a connection was established between the osmotic 

virial coefficients derived in this chapter and the original osmotic virial coefficients of Hill 

found by employing a different procedure, illustrating the equivalency of what appears to be 

two different theories. A validation of the combining rules derived here has been provided in 

Chapter 6 where they were successfully used to predict the freezing points of ternary salt 

solutions of water. 

5.1 Introduction 
There exist numerous nonideal solution theories in literature. We will not attempt a 

review here but rather list a few that are essential for providing a context for the approach 

presented in this chapter. Regular solution theory [69] is the most widely used nonideal 

solution theory mainly because of its simplicity. It considers only pairwise interactions and 

assumes random mixing. The quasi-chemical treatment [69] improves on regular solution 

theory by considering pairwise additive interactions without assuming random mixing (we 

restrict the usage of the term “regular” to the former case; Guggenheim’s definition includes 

the quasi-chemical treatment as part of regular solution theory). The quasi-chemical approach 

provides a good balance of accuracy and simplicity. It is also commonly used, especially to 

capture the phase-change behavior of solutions more accurately. By accounting for complex 

interactions in larger particle groups, formally exact theories [82,83,140] avoid all 

approximations, but they are rarely used in practice due to their complexity and/or for being 

computationally expensive. 

Most solution models have been originally developed for binary mixtures and then 

extended to multicomponent mixtures. This extension is straight forward in the context of 

simple theories, such as regular solution theory, but it is challenging in more accurate 
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frameworks since they are complicated by nature. Hence, it is not surprising that explicit 

multicomponent formulae are usually not provided even when the existence of such an 

extension is obvious. Consequently, in practice, while the properties of a binary mixture can 

be calculated with any theory depending on the required accuracy, only the simple models can 

be effectively used for multicomponent solutions. In contrast, it is rare for mixtures in nature 

as well as in industrial processes to only contain two components. Consider, for example, 

solutions studied in biology [107,117,170], geology [151], oil processing [137,176], 

metallurgy [40,80,97,104], and atmospheric physics [5,35,106,109,159,182]. Therefore, it is 

desirable to have an accurate multicomponent solution model with manageable complexity so 

that practically useful equations can be developed. 

In this chapter, we look at a solution made of an arbitrary number of components by 

considering interactions in groups consisting of an arbitrary number of particles, but 

nevertheless, we assume random mixing. This approach can be viewed as an extension of 

regular solution theory in a specific way: while the quasi-chemical treatment addresses the 

nonrandomness of mixing in a system with pairwise additive interactions, the method 

employed herein accounts for multi-body interactions with random mixing. The objectives of 

this chapter are twofold: (i) to give a theoretical basis for the virial equation for the change in 

the chemical potential of the solvent (i.e., multisolute osmotic virial equation) and derive its 

coefficients from first principles, and (ii) to provide a method of estimating the chemical 

potential of a solvent in the presence of multiple solutes by deriving combining rules for the 

mixed coefficients. 

In the first part of this chapter, we list the assumptions of the present model and rederive 

the corresponding equation for the Gibbs free energy of mixing. Except for the structure of the 

arguments, some nuances in the assumptions, and notational differences, our formulation and 

the resulting equation are the same as what was obtained before by Saulov [179] (and by 

Kakuda et al. [102] for special cases). We give a brief, equivalent derivation here for the sake 

of completeness and consistency of notation with what follows. 

It should be noted that the idea of combining rules for the multisolute osmotic virial 

equation is not new. To our knowledge, the first such concept was put forward by Elliott et 

al. [42] who derived the arithmetic-average combining rule for the second-order mixed 

coefficient in the regular solution theory framework. A geometric-average combining rule was 
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also proposed for the cubic mixed coefficient in the same work. These combining rules were 

then used to predict the osmolality of solutions of interest in biology [42,164,225,226]. Later, 

a modified version of the multisolute osmotic virial equation with the same combining rules 

were applied to solutions containing salts as well [163,225,226]. In all cases, a good agreement 

was achieved between the predictions of the model and independent experimental 

measurements. This chapter aims to derive generalized combining rules in a specific solution 

theory framework. 

This chapter is intended as a standalone work on the theoretical exploration of the 

multisolute osmotic virial equation and corresponding combining rules. We note that, however, 

we have applied an extension of this model to dissociating solutes in Chapter 6. There, the 

predictions of the present model for freezing points of 11 ternary inorganic salt solutions of 

water were found to be in excellent agreement with independent experimental measurements 

(root-mean-square error of 0.45 K and close to zero mean bias for a total of 371 data points). 

5.2 The model 

5.2.1 Assumptions of the model 
We consider a single-phase multicomponent mixture theory that accounts for 

interactions in arbitrarily large particle groups. The goal here is to find an explicit formula for 

the thermodynamic potential (or free energy) of the system in terms of the energies of the 

particle groups. We are interested in solutions formed at constant temperature and pressure 

with fixed amounts of each component, hence, the Gibbs free energy, 𝐺𝐺, is the thermodynamic 

potential of the system. The assumptions of the model are listed below: 

(i) The total nonconfigurational Gibbs free energy of the system can be written as the 

sum of the interaction energies of all particle groups of a chosen size. The selection 

of this cutoff size is based on assumption (ii). 

(ii) For each particle, there exists a neighborhood, and the interactions of this particle 

with particles outside of this neighborhood can be neglected. The neighborhood is 

defined by the smallest spherical volume encapsulating a given number of particles. 

Note that negligible interaction outside of this sphere does not mean zero 

interaction, but instead, implies that the difference in the long-range interactions 
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between the pure substance and the mixture is negligible such that the associated 

energy remains unchanged upon mixing. 

(iii) Each particle is directly surrounded by a certain constant number of other particles, 

which is called the coordination number. The coordination number is well defined 

for a solid lattice but should be thought of as an average of many possible 

arrangements for liquids. The fluctuations around this average can be shown to have 

insignificant effect on the local geometry in liquids. No assignment of this constant 

is needed in our calculations. 

(iv) All particles are of similar size so that, when a particle at a site is replaced by a 

different type of particle, the coordination number can be assumed to be unchanged. 

(v) The particles are randomly distributed even though the exchange interaction 

energies are not zero. In other words, all particles have an equal probability of 

occupying any given site, which is also the same for all sites, independent of the 

occupancy of the neighboring sites. 

Assumption (v) is also known as the Braggs–Williams approximation [82], and it is the main 

simplification made in the present treatment. 

5.2.2 Nonconfigurational Gibbs free energy of random mixing 
Here, it is convenient to work with a modified Gibbs free-energy function that excludes 

the terms due to configurational entropy. This contribution can be separately calculated and 

added later. Consider 𝑛𝑛-tuples as the interacting particle groups (i.e., groups of 𝑛𝑛 particles; 

smaller or larger groups are not used in the formulation) at constant pressure and temperature. 

Then, based on assumptions (i) and (ii), the nonconfigurational Gibbs free energy, 𝐺𝐺nc, of a 

system made by mixing 𝑟𝑟 types of components can be expressed as the sum of energies of all 

particle groups: 

 𝐺𝐺nc = � 𝑔𝑔𝐀𝐀ℓ𝑁𝑁𝐀𝐀ℓ
ℓ

 (5-1) 

where 𝑔𝑔𝐀𝐀ℓ and 𝑁𝑁𝐀𝐀ℓ are the nonconfigurational Gibbs free energy and the number of a certain 

type of fixed composition 𝑛𝑛-tuples denoted by the index 𝐀𝐀ℓ, respectively. The subscript ℓ is 

an incrementing label pointing to each unique element of 𝐀𝐀ℓ (see the next paragraph). Each 

𝑔𝑔𝐀𝐀ℓ is assumed to be averaged over all possible spatial configurations of particle groups having 
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the same composition. The main idea of the present treatment is to not search for a 

decomposition of 𝑔𝑔𝐀𝐀ℓ in terms of the energies of smaller particle groups if not necessary, and 

instead, treat it as a fundamental quantity. This approach reduces mathematical complexity and 

avoids needless approximations that may be present in other approaches, such as the quasi-

chemical treatment, where the pairwise additivity of interaction energies had to be assumed. 

Note that this does not mean that the method presented here is superior to others. The choice 

is rather a matter of what one wishes to calculate/achieve using the model. For the purposes of 

this article, viewing the 𝑛𝑛–tuple energy as irreducible will suffice. 

In Equation (5-1), 𝐀𝐀 denotes the set of all multisets of length 𝑛𝑛, chosen from 𝑟𝑟 types 

(i.e., all the different 𝑛𝑛-tuples that can be made of 𝑛𝑛 particles chosen from 𝑟𝑟 particle types or 

components), and ℓ is used to label its elements. One such element represents a unique 𝑛𝑛-tuple 

type (and vice versa) in terms of its composition, and each 𝐀𝐀ℓ is permutation-invariant (i.e., no 

ordering is assumed). From basic combinatorics, the number of such multisets (i.e., the number 

of elements of 𝐀𝐀) can be found to be [52] 

 |𝐀𝐀| = �𝑛𝑛 + 𝑟𝑟 − 1
𝑛𝑛 � =

(𝑛𝑛 + 𝑟𝑟 − 1)!
𝑛𝑛! (𝑟𝑟 − 1)!

 (5-2) 

meaning that ℓ ∈ [1, |𝐀𝐀|] (note that 0! = 1). We use natural numbers from 1 to 𝑟𝑟 to label the 

components. For example, for 𝑛𝑛 = 2 and 𝑟𝑟 = 3 we have 

 𝐺𝐺nc = 𝑔𝑔11𝑁𝑁11 + 𝑔𝑔22𝑁𝑁22 + 𝑔𝑔33𝑁𝑁33 + 𝑔𝑔12𝑁𝑁12 + 𝑔𝑔13𝑁𝑁13 + 𝑔𝑔23𝑁𝑁23 (5-3) 

for 𝑛𝑛 = 3 and 𝑟𝑟 = 2 we have 

 𝐺𝐺nc = 𝑔𝑔111𝑁𝑁111 + 𝑔𝑔222𝑁𝑁222 + 𝑔𝑔112𝑁𝑁112 + 𝑔𝑔122𝑁𝑁122 (5-4) 

and so on, as desired. The complicated index notation we adopt here may seem unnecessary, 

however, its use has the benefit of making certain formulae in the following derivation much 

shorter and easier to comprehend. 

Using assumptions (iii) and (iv) and taking 𝓏𝓏𝑛𝑛 as the number of 𝑛𝑛-tuples sharing each 

particle, which only depends on 𝑛𝑛 and the coordination number, the number of particles of type 

𝑗𝑗 and the number of 𝑛𝑛-tuples can be related by simple counting as follows: 

 𝑁𝑁𝑗𝑗 =
1

𝓏𝓏𝑛𝑛
� 𝜉𝜉𝑗𝑗|𝐀𝐀ℓ𝑁𝑁𝐀𝐀ℓ

ℓ

 (5-5) 
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where 0 ≤ 𝜉𝜉𝑗𝑗|𝐀𝐀ℓ ≤ 𝑛𝑛 is the multiplicity of component 𝑗𝑗 in the multiset 𝐀𝐀ℓ. Noting that 

∑ 𝜉𝜉𝑗𝑗|𝐀𝐀ℓ
𝑟𝑟
𝑗𝑗=1 = 𝑛𝑛 for any 𝐀𝐀ℓ, we can sum the left- and right-hand sides of Equation (5-5) over 𝑗𝑗 

and obtain 

 � 𝑁𝑁𝐀𝐀ℓ
ℓ

=
𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑁𝑁𝑗𝑗

𝑟𝑟

𝑗𝑗=1

 (5-6) 

which relates the total number of 𝑛𝑛-tuples to the total number of particles of individual species. 

As it can be inferred from equation (5-6), the factor 𝓏𝓏𝑛𝑛/𝑛𝑛 is the number of times we overcount 

each particle when counting the particle groups. If we multiply both sides of Equation (5-5) by 

the pure 𝑛𝑛-tuple energy, 𝑔𝑔𝑗𝑗…𝑗𝑗, before summing its left- and right-hand sides over 𝑗𝑗, we instead 

get 

 
𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑔𝑔𝑗𝑗…𝑗𝑗𝑁𝑁𝑗𝑗

𝑟𝑟

𝑗𝑗=1

− � �
1
𝑛𝑛

� 𝜉𝜉𝑗𝑗|𝐀𝐀ℓ𝑔𝑔𝑗𝑗…𝑗𝑗

𝑟𝑟

𝑗𝑗=1

� 𝑁𝑁𝐀𝐀ℓ
ℓ

= 0 (5-7) 

Equation (5-7) can be added to Equation (5-1) and the result can be rearranged to give 

 𝐺𝐺nc =
𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑔𝑔𝑗𝑗…𝑗𝑗𝑁𝑁𝑗𝑗

𝑟𝑟

𝑗𝑗=1

+ � �𝑔𝑔𝐀𝐀ℓ −
1
𝑛𝑛

� 𝜉𝜉𝑗𝑗|𝐀𝐀ℓ𝑔𝑔𝑗𝑗…𝑗𝑗

𝑟𝑟

𝑗𝑗=1

� 𝑁𝑁𝐀𝐀ℓ
ℓ

 (5-8) 

Notice that the first term on the right-hand side of Equation (5-8) is the nonconfigurational 

Gibbs free energy of the system when only the like particles interact. It has the same value as 

if we calculated the total system energy with each pure-component subsystem existing far 

apart. 

From the second term on the right-hand side of Equation (5-8), we can naturally define 

the nonconfigurational Gibbs free-energy change of formation of a particle group by viewing 

the mixing process as the creation of a particular 𝑛𝑛-tuple from the “disassembly” and 

“reassembly” of the appropriate pure-component 𝑛𝑛-tuples: 

 𝑤𝑤𝐀𝐀ℓ = 𝑔𝑔𝐀𝐀ℓ −
1
𝑛𝑛

� 𝜉𝜉𝑗𝑗|𝐀𝐀ℓ𝑔𝑔𝑗𝑗…𝑗𝑗

𝑟𝑟

𝑗𝑗=1

 (5-9) 

Clearly, 𝑤𝑤𝑗𝑗…𝑗𝑗 = 0 for all 𝑗𝑗, however, we will not make this substitution in some cases to 

preserve the symmetry of certain expressions. With this notation, the nonconfigurational Gibbs 

free energy of the system can be expressed as 
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 𝐺𝐺nc =
𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑔𝑔𝑗𝑗…𝑗𝑗𝑁𝑁𝑗𝑗

𝑟𝑟

𝑗𝑗=1

+ � 𝑤𝑤𝐀𝐀ℓ𝑁𝑁𝐀𝐀ℓ
ℓ

 (5-10) 

Based on the random-mixing assumption, (v), the probability of a randomly chosen 𝑛𝑛-

tuple to have the composition 𝐀𝐀ℓ can be found with the help of combinatorics: 

 𝒫𝒫𝐀𝐀ℓ =
𝑛𝑛!

�∑ 𝑁𝑁𝑗𝑗
𝑟𝑟
𝑗𝑗=1 �𝑛𝑛 �

�𝑁𝑁𝑗𝑗�𝜉𝜉𝑗𝑗|𝐀𝐀ℓ

𝜉𝜉𝑗𝑗|𝐀𝐀ℓ!

𝑟𝑟

𝑗𝑗=1

 (5-11) 

which is the probability mass function of the multinomial distribution [52]. Here, it is assumed 

that each 𝑁𝑁𝑗𝑗 is much larger than 𝑛𝑛 so that the probability of each consecutive inclusion of a 

certain type of species in the group is independent of its existing fraction in that group. Using 

Equations (5-6) and (5-11), we can calculate the expected or average number of 𝑛𝑛-tuples of a 

given composition in the mixture as 

 〈𝑁𝑁𝐀𝐀ℓ〉 = 𝒫𝒫𝐀𝐀ℓ � 𝑁𝑁𝐀𝐀ℓ
ℓ

=
𝓏𝓏𝑛𝑛𝑛𝑛!

𝑛𝑛�∑ 𝑁𝑁𝑗𝑗
𝑟𝑟
𝑗𝑗=1 �𝑛𝑛−1 �

�𝑁𝑁𝑗𝑗�𝜉𝜉𝑗𝑗|𝐀𝐀ℓ

𝜉𝜉𝑗𝑗|𝐀𝐀ℓ!

𝑟𝑟

𝑗𝑗=1

 (5-12) 

Substituting Equation (5-12) into Equation (5-10), we can find the expected 

nonconfigurational Gibbs free energy of the entire system: 

 〈𝐺𝐺nc〉 =
𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑔𝑔𝑗𝑗…𝑗𝑗𝑁𝑁𝑗𝑗

𝑟𝑟

𝑗𝑗=1

+
𝓏𝓏𝑛𝑛

𝑛𝑛�∑ 𝑁𝑁𝑗𝑗
𝑟𝑟
𝑗𝑗=1 �𝑛𝑛−1 � 𝑤𝑤𝐀𝐀ℓ𝑛𝑛! �

�𝑁𝑁𝑗𝑗�𝜉𝜉𝑗𝑗|𝐀𝐀ℓ

𝜉𝜉𝑗𝑗|𝐀𝐀ℓ!

𝑟𝑟

𝑗𝑗=1ℓ

 (5-13) 

Used here to distinguish the exact value from the expected value, we drop the angle 

brackets in the remainder of the text. Applying the multinomial theorem to Equation (5-13), 

we can notationally simplify and rewrite it as 

 𝐺𝐺nc =
𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑔𝑔𝑗𝑗…𝑗𝑗𝑁𝑁𝑗𝑗

𝑟𝑟

𝑗𝑗=1

+
𝓏𝓏𝑛𝑛

𝑛𝑛�∑ 𝑁𝑁𝑗𝑗
𝑟𝑟
𝑗𝑗=1 �𝑛𝑛−1 � 𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑁𝑁𝑖𝑖1𝑁𝑁𝑖𝑖2 … 𝑁𝑁𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑛𝑛=1

 (5-14) 

where we use a single sum notation for a series of sums repeated 𝑛𝑛 times for each element (i.e., 

each index) from the set of variables {𝑖𝑖1, 𝑖𝑖2 … 𝑖𝑖𝑛𝑛}, each starting from 1 going up to 𝑟𝑟. Since the 

individual indices appear explicitly and the second sum is symmetric in Equation (5-14), this 

explicit notation will prove more useful in next sections compared to the notation used in 

Equations (5-1) to (5-13). Note that the choice to label the variable indices in an increasing 

order is a convention we make here and follow throughout the text. 
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Equation (5-13) has been previously obtained by Saulov [179] for the general case and 

by Kakuda et al. [102] for up to 𝑛𝑛 = 4 and 𝑟𝑟 = 4 using similar arguments and assumptions. 

Both articles have received minimal attention in the solution thermodynamics literature and 

are not particularly well known. 

5.2.3 Chemical potential 
To find the chemical potential of component 𝑗𝑗, 𝜇𝜇𝑗𝑗, we take the derivative of the total 

Gibbs free energy with respect to the number of that component, 𝑁𝑁𝑗𝑗, at constant temperature, 

𝑇𝑇, pressure, 𝑃𝑃, and the fixed numbers of the remaining species: 

 
𝜇𝜇𝑗𝑗 = �

𝜕𝜕𝐺𝐺
𝜕𝜕𝑁𝑁𝑗𝑗

�
𝑇𝑇,𝑃𝑃,𝑁𝑁𝑖𝑖≠𝑁𝑁𝑗𝑗

= �
𝜕𝜕𝐺𝐺nc

𝜕𝜕𝑁𝑁𝑗𝑗
�

𝑇𝑇,𝑃𝑃,𝑁𝑁𝑖𝑖≠𝑁𝑁𝑗𝑗

+ �
𝜕𝜕𝐺𝐺c

𝜕𝜕𝑁𝑁𝑗𝑗
�

𝑇𝑇,𝑃𝑃,𝑁𝑁𝑖𝑖≠𝑁𝑁𝑗𝑗

= 𝜇𝜇𝑗𝑗
∘ + 𝜇𝜇𝑗𝑗

ex + 𝑘𝑘B𝑇𝑇 ln 𝑥𝑥𝑗𝑗 

(5-15) 

where 𝐺𝐺c is the configurational part of the Gibbs free energy (𝐺𝐺 = 𝐺𝐺nc + 𝐺𝐺c), 𝜇𝜇𝑗𝑗
∘ = 𝓏𝓏𝑛𝑛𝑔𝑔𝑗𝑗…𝑗𝑗/𝑛𝑛 

is the chemical potential of the pure substance (by the definition of chemical potential), 𝑘𝑘B is 

the Boltzmann constant, and  𝑥𝑥𝑗𝑗 is the mole fraction of component 𝑗𝑗 in the solution. Termed 

the excess chemical potential of species 𝑗𝑗, 𝜇𝜇𝑗𝑗
ex is the derivative of the second term on the right-

hand side of Equation (5-14). The term 𝑘𝑘B𝑇𝑇 ln 𝑥𝑥𝑗𝑗 in Equation (5-15) is the derivative of 𝐺𝐺c 

under the random-mixing assumption and its derivation can be found in any standard textbook 

on the topic (e.g., see Guggenheim [69]). 

Next, we explicitly evaluate 𝜇𝜇𝑗𝑗
ex in Equation (5-15) using the expression through which 

it is defined: 

 

𝜇𝜇𝑗𝑗
ex =

𝜕𝜕
𝜕𝜕𝑁𝑁𝑗𝑗

�
𝓏𝓏𝑛𝑛

𝑛𝑛(∑ 𝑁𝑁𝑗𝑗
𝑟𝑟
𝑗𝑗=1 )𝑛𝑛−1 � 𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑁𝑁𝑖𝑖1𝑁𝑁𝑖𝑖2 … 𝑁𝑁𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑛𝑛=1

�

=
𝓏𝓏𝑛𝑛 

𝑛𝑛𝑁𝑁𝑗𝑗(∑ 𝑁𝑁𝑗𝑗
𝑟𝑟
𝑗𝑗=1 )𝑛𝑛−1 � �� 𝛿𝛿𝑗𝑗𝑖𝑖𝑘𝑘

𝑛𝑛

𝑗𝑗=1
� 𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑁𝑁𝑖𝑖1𝑁𝑁𝑖𝑖2 … 𝑁𝑁𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1) 

𝑛𝑛(∑ 𝑁𝑁𝑗𝑗
𝑟𝑟
𝑗𝑗=1 )𝑛𝑛 � 𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑁𝑁𝑖𝑖1𝑁𝑁𝑖𝑖2 … 𝑁𝑁𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑛𝑛=1

 

(5-16) 

where 𝛿𝛿𝑖𝑖𝑗𝑗 is the Kronecker delta (𝛿𝛿𝑖𝑖𝑗𝑗 = 1, if 𝑖𝑖 = 𝑗𝑗; 𝛿𝛿𝑖𝑖𝑗𝑗 = 0, otherwise). We can expand the 

innermost sum in Equation (5-16), reindex each resulting term, and recollect the terms to get 



133 
 

 

𝜇𝜇𝑗𝑗
ex =

𝓏𝓏𝑛𝑛 
𝑛𝑛𝑁𝑁𝑗𝑗(∑ 𝑁𝑁𝑗𝑗

𝑟𝑟
𝑗𝑗=1 )𝑛𝑛−1 �𝑛𝑛 � 𝛿𝛿𝑗𝑗𝑖𝑖1𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑁𝑁𝑖𝑖1𝑁𝑁𝑖𝑖2 … 𝑁𝑁𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑛𝑛=1

�

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1) 

𝑛𝑛(∑ 𝑁𝑁𝑗𝑗
𝑟𝑟
𝑗𝑗=1 )𝑛𝑛 � 𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑁𝑁𝑖𝑖1𝑁𝑁𝑖𝑖2 … 𝑁𝑁𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑛𝑛=1

 

(5-17) 

Cancelling out the terms in Equation (5-17) and writing it in mole fraction units, we have 

 

𝜇𝜇𝑗𝑗
ex = 𝓏𝓏𝑛𝑛 � 𝑤𝑤𝑗𝑗𝑖𝑖2…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖2,𝑖𝑖3…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� 𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑛𝑛=1

 

(5-18) 

Equation (5-18) is the most general form of the excess chemical potential given the current 

assumptions. It can be substituted into Equation (5-15) giving the equation for the full chemical 

potential. However, in the next few steps of the derivation, it will be more convenient to work 

with the excess chemical potential, thus we choose to make this substitution later. 

5.3 Solvent-dominant mixtures 
In many practical applications, multicomponent mixtures are often those consisting of 

a solvent as the main medium with added solutes in small amounts (not necessarily dilute). 

Therefore, it is valuable to have a method of estimating the chemical potential of the solvent 

from binary solution data only. Here, with one additional assumption about the exchange 

interaction energies of the components, we provide a derivation of such a method based on 

Equation (5-18). In the remainder of this chapter, we will denote the solvent by 1 and the 

solutes by 2, 3 … 𝑟𝑟. 

5.3.1 Asymmetric form of Equation (5-18) for the solvent 
Here, we work with Equation (5-18) written for the solvent (i.e., 𝑗𝑗 = 1). It is useful to 

write this equation in terms of the mole fractions of the solutes only. This can be done by 

repeatedly substituting 𝑥𝑥1 = 1 − ∑ 𝑥𝑥𝑗𝑗
𝑟𝑟
𝑗𝑗=2  in the expansion over each 𝑖𝑖𝑗𝑗 and simplifying the 

results by combining the like terms. Below we give the details of substitution for 𝑥𝑥1 in the 

expansion over 𝑖𝑖1: 
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Step (1) Separate the term containing 𝑥𝑥1 in the sum over 𝑖𝑖1 in Equation (5-18) from the rest 

and substitute for 𝑥𝑥1 to get 

 

𝜇𝜇1
ex = 𝓏𝓏𝑛𝑛 � 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖2,𝑖𝑖3…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 �1 − � 𝑥𝑥𝑗𝑗

𝑟𝑟

𝑗𝑗=2

� 𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖2,𝑖𝑖3…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� 𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖2,𝑖𝑖3…𝑖𝑖𝑛𝑛=1
𝑖𝑖1=2

 

(5-19) 

Step (2) Split the expression (1 − ∑ 𝑥𝑥𝑗𝑗
𝑟𝑟
𝑗𝑗=2 ) in Equation (5-19) into two terms to get 

 

𝜇𝜇1
ex = 𝓏𝓏𝑛𝑛 � 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖2,𝑖𝑖3…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖2,𝑖𝑖3…𝑖𝑖𝑛𝑛=1

+
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖2,𝑖𝑖3…𝑖𝑖𝑛𝑛=1
𝑖𝑖1=2

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� 𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖2,𝑖𝑖3…𝑖𝑖𝑛𝑛=1
𝑖𝑖1=2

 

(5-20) 

Step (3) Collect the terms over the same sums to get 

 

𝜇𝜇1
ex =

𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖2,𝑖𝑖3…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖2,𝑖𝑖3…𝑖𝑖𝑛𝑛=1
𝑖𝑖1=2

 
(5-21) 

If we now substitute 𝑥𝑥1 = 1 − ∑ 𝑥𝑥𝑗𝑗
𝑟𝑟
𝑗𝑗=2  in the expansion over 𝑖𝑖2 in Equation (5-21) and 

follow the same steps (see Appendix C), we get 
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𝜇𝜇1
ex =

𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖3𝑥𝑥𝑖𝑖4 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 2)

𝑛𝑛
� �𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3…𝑖𝑖𝑛𝑛=1
𝑖𝑖2=2

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 2𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1
𝑖𝑖1,𝑖𝑖2=2

+ 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛 

(5-22) 

Similarly, if substitute 𝑥𝑥1 = 1 − ∑ 𝑥𝑥𝑗𝑗
𝑟𝑟
𝑗𝑗=2  in the expansion over 𝑖𝑖3 in Equation (5-22) 

(see Appendix C), we get 

 

𝜇𝜇1
ex =

𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖4𝑥𝑥𝑖𝑖5 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 3)

𝑛𝑛
� �𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛 − 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖3𝑥𝑥𝑖𝑖4 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4…𝑖𝑖𝑛𝑛=1
𝑖𝑖3=2

−
𝓏𝓏𝑛𝑛(2𝑛𝑛 − 3)

𝑛𝑛
� �𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 2𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖2,𝑖𝑖3=2

+ 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 3𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 + 3𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖1,𝑖𝑖2,𝑖𝑖3=2

− 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛  

(5-23) 

Noticing the emerging pattern in this series, the result after 𝑛𝑛 steps can be cast into the 

following compact expression: 

 

𝜇𝜇1
ex

= �
𝓏𝓏𝑛𝑛(1 − 𝑚𝑚)

𝑛𝑛
� 𝑛𝑛

𝑚𝑚� � ��(−1)𝑗𝑗 �𝑚𝑚
𝑘𝑘 � 𝑤𝑤1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖𝑚𝑚

𝑚𝑚

𝑗𝑗=0

� 𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑚𝑚

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑚𝑚=2

𝑛𝑛

𝑚𝑚=2

 
(5-24) 
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where � 𝑛𝑛
𝑚𝑚� = 𝑛𝑛!

𝑚𝑚!(𝑛𝑛−𝑚𝑚)!
 and �𝑚𝑚

𝑘𝑘 � = 𝑚𝑚!
𝑗𝑗!(𝑚𝑚−𝑗𝑗)!

 are the binomial coefficients. The number of 1’s 

in the subscript of 𝑤𝑤 is equal to 𝑛𝑛 − 𝑚𝑚 + 𝑘𝑘 while the remaining 𝑚𝑚 − 𝑘𝑘 number of indices stay 

free. Note that more than one choice exists to label these free indices when 𝑘𝑘 ≥ 1; the choice 

from 𝑘𝑘 + 1 up to 𝑚𝑚 is arbitrary. Equation (5-24) is an asymmetric version of Equation (5-18) 

for the excess chemical potential of the solvent. It is a multivariate polynomial containing all 

possible configurations of powers from 2 to 𝑛𝑛 of solute mole fractions only (𝑟𝑟 − 1 variables), 

compared to powers of 𝑛𝑛 − 1 and 𝑛𝑛 in Equation (5-18), which also includes the solvent mole 

fraction as a variable (𝑟𝑟 variables). Below we give examples of each element in the main sum 

in Equation (5-24) for 𝑛𝑛 = 4: 

for 𝑛𝑛 = 4 and 𝑚𝑚 = 4, we have 

 

−
3𝓏𝓏𝑛𝑛

4
� ��(−1)𝑗𝑗 �4

𝑘𝑘� 𝑤𝑤1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖4

4

𝑗𝑗=0

� 𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3𝑥𝑥𝑖𝑖4

𝑟𝑟

𝑖𝑖1,𝑖𝑖2,𝑖𝑖3,𝑖𝑖4=2

= −
3𝓏𝓏𝑛𝑛

4
� �𝑤𝑤𝑖𝑖1𝑖𝑖2𝑖𝑖3𝑖𝑖4 − 4𝑤𝑤1𝑖𝑖2𝑖𝑖3𝑖𝑖4 + 6𝑤𝑤11𝑖𝑖3𝑖𝑖4

𝑟𝑟

𝑖𝑖1,𝑖𝑖2,𝑖𝑖3,𝑖𝑖4=2

− 4𝑤𝑤111𝑖𝑖4 + 𝑤𝑤1111�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3𝑥𝑥𝑖𝑖4 

(5-25) 

for 𝑛𝑛 = 4 and 𝑚𝑚 = 3, we have 

 

−2𝓏𝓏𝑛𝑛 � ��(−1)𝑗𝑗 �3
𝑘𝑘� 𝜔𝜔1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖3

3

𝑗𝑗=0

� 𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3

𝑟𝑟

𝑖𝑖1,𝑖𝑖2,𝑖𝑖3=2

= −2𝓏𝓏𝑛𝑛 � �𝑤𝑤1𝑖𝑖1𝑖𝑖2𝑖𝑖3 − 3𝑤𝑤11𝑖𝑖2𝑖𝑖3 + 3𝑤𝑤111𝑖𝑖3

𝑟𝑟

𝑖𝑖1,𝑖𝑖2,𝑖𝑖3=2

− 𝑤𝑤1111�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 

(5-26) 

for 𝑛𝑛 = 4 and 𝑚𝑚 = 2, we have 

 

−
3𝓏𝓏𝑛𝑛

2
� ��(−1)𝑗𝑗 �2

𝑘𝑘� 𝑤𝑤1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖2

2

𝑗𝑗=0

� 𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2

𝑟𝑟

𝑖𝑖1,𝑖𝑖2=2

= −
3𝓏𝓏𝑛𝑛

2
� �𝑤𝑤11𝑖𝑖1𝑖𝑖2 − 2𝑤𝑤111𝑖𝑖2 + 𝑤𝑤1111�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2

𝑟𝑟

𝑖𝑖1,𝑖𝑖2=2

 

(5-27) 
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5.3.2 Derivation of combining rules 
If we hope to obtain any type of combining rules (i.e., a model for a multisolute mixture 

that uses only single-solute–solvent binary information), we need to express the coefficients 

of the mixed terms (i.e., the terms containing the powers of more than one of {𝑥𝑥2, 𝑥𝑥3 … 𝑥𝑥𝑟𝑟}) of 

any order in terms of the coefficients of the pure terms (i.e., the terms containing the powers 

of only one of {𝑥𝑥2, 𝑥𝑥3 … 𝑥𝑥𝑟𝑟}). 

Note that Equation (5-24), written for a multicomponent mixture, inevitably contains 

terms with coefficients corresponding to purely solute–solute interactions (e.g., terms with 

𝑤𝑤223, 𝑤𝑤2345, etc.). Clearly, these coefficients are not expressible in terms of the solvent–solute 

binary coefficients, even with any additional (physically meaningful) approximations. 

Therefore, to continue further, we make the following simplifying assumption: 

(vi) The interaction exchange energies of the solute species with one another are 

negligible compared to the interaction exchange energies of the solute species and 

the solvent species. That is, the nonconfigurational Gibbs free-energy change of 

formation of a particle group made purely from solutes is zero. This is equivalent 

of assuming that a mixture made of any combination of the solute components only 

behaves ideally. 

Under assumption (vi), if one type of solute species is replaced by another type of solute 

species in a certain particle group, the change of the interaction energy of this group does not 

depend on the types of the other solute species present in the group: it only depends on the 

number of solvent particles in the group and the types of particles being exchanged. It is 

important to note that no restriction is imposed on the concentrations of the species. 

We can arrive at the mathematical implications of assumption (vi) with the following 

thought experiment: Consider some number of copies of the same 𝑛𝑛-tuple containing at least 

one solvent particle, that is, consider all copies having the same composition as one system. If 

we swap one solute particle of a certain type from one of the 𝑛𝑛-tuples in this system with 

another solute particle of a different type from a different 𝑛𝑛-tuple in this system, then the 

nonconfigurational Gibbs free energy of the entire system will not change because of 

assumption (vi). Clearly, we can repeat this particle swapping any number of times without 

affecting the total (nonconfigurational) energy of the system. Now, to ensure that we can 

reduce this system of copies to a sum of 𝑛𝑛-tuples each containing the same number of solvent 
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particles and only one type of solute particles (i.e., binary groups), we can make the initial 

system such that the number of the copies is equal to the number of the solute particles in one 

𝑛𝑛-tuple. Consistent with the notation in Equation (5-24), we can mathematically summarize 

this realization as a decomposition of 𝑔𝑔 in the following way: 

 𝑔𝑔1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖𝑚𝑚 =  
1

𝑚𝑚 − 𝑘𝑘
� 𝑔𝑔1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

 (5-28) 

where the number of 1’s and the number of the variable indices in the subscript of 𝑤𝑤 are 

preserved from the left side of the equation to the right side of the equation. Like in Equation 

(5-24), each variable index here can only represent a solute: 𝑖𝑖𝑗𝑗 ∈ [2, 𝑟𝑟]. The case 𝑚𝑚 = 𝑘𝑘 

corresponds to the pure 𝑛𝑛-tuple energy, so no decomposition exists in this case, and we do not 

need to worry about the division by zero. 

Using Equation (5-9), it can be checked that this representation of 𝑔𝑔 in terms of the 

binary group energies implies the same decomposition for 𝑤𝑤 (see Appendix C). That is, we 

can write 

 𝑤𝑤1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖𝑚𝑚 =  
1

𝑚𝑚 − 𝑘𝑘
� 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

 (5-29) 

As an example, the following series of equalities holds for 𝑛𝑛 = 4, 𝑚𝑚 = 4, and 𝑘𝑘 = 2: 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑤𝑤1123 =

1
2

(𝑤𝑤1122 + 𝑤𝑤1133)

𝑤𝑤1134 =
1
2

(𝑤𝑤1133 + 𝑤𝑤1144)

𝑤𝑤1124 =
1
2

(𝑤𝑤1122 + 𝑤𝑤1144)

𝑤𝑤1125 =
1
2

(𝑤𝑤1122 + 𝑤𝑤1155)
⋮

 (5-30) 

Substituting Equation (5-29) into Equation (5-24), after some reindexing and 

regrouping (see Appendix C), the equation for the excess chemical potential can be expressed 

as 

 𝜇𝜇1
ex = � �

1
𝑚𝑚 �� 𝑄𝑄𝑖𝑖𝑗𝑗

𝑛𝑛,𝑚𝑚
𝑚𝑚

𝑗𝑗=1

� 𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑚𝑚

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑚𝑚=2

𝑛𝑛

𝑚𝑚=1

 (5-31) 

where 
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 𝑄𝑄𝑗𝑗
𝑛𝑛,𝑚𝑚 =

𝓏𝓏𝑛𝑛(1 − 𝑚𝑚)
𝑛𝑛

� 𝑛𝑛
𝑚𝑚� �(−1)𝑗𝑗 �𝑚𝑚

𝑘𝑘 � 𝑤𝑤1…1𝑗𝑗…𝑗𝑗

𝑚𝑚

𝑗𝑗=0

 (5-32) 

𝑄𝑄𝑗𝑗
𝑛𝑛,𝑚𝑚 is the 𝑚𝑚th order pure coefficient of the excess chemical potential expression of solute 𝑗𝑗 

in a degree-𝑛𝑛 expansion, and it can be obtained by setting 𝑥𝑥𝑖𝑖 = 0 for all 𝑖𝑖 except 𝑖𝑖 = 𝑗𝑗 in 

Equation (5-24). Note that the lower bound of the main sum in Equation (5-31) is switched 

from 𝑚𝑚 = 2 to 𝑚𝑚 = 1 without affecting the result because the first-order pure coefficients are 

zero by definition (i.e., 𝑄𝑄𝑗𝑗
𝑛𝑛,1 = 0 for any 𝑛𝑛). 

In Equation (5-32), the number of 1’s and 𝑗𝑗’s in the subscript of 𝑤𝑤 changes from one 

term of the sum to another as 𝑘𝑘 varies. For instance, the fourth- and third-order pure 

coefficients of component 2 in a degree-4 expansion are 

 
𝑄𝑄2

4,4 = −
3𝓏𝓏𝑛𝑛

4
𝑤𝑤2222 + 3𝓏𝓏𝑛𝑛𝑤𝑤1222 −

9𝓏𝓏𝑛𝑛

2
𝑤𝑤1122 + 3𝓏𝓏𝑛𝑛𝑤𝑤1112

−
3𝓏𝓏𝑛𝑛

4
𝑤𝑤1111 

(5-33) 

and 

 𝑄𝑄2
4,3 = −2𝓏𝓏𝑛𝑛𝑤𝑤1222 + 6𝓏𝓏𝑛𝑛𝑤𝑤1122 − 6𝓏𝓏𝑛𝑛𝑤𝑤1112 + 2𝓏𝓏𝑛𝑛𝑤𝑤1111 (5-34) 

respectively. 

Substituting the expression for 𝜇𝜇1
ex given by Equation (5-31) into Equation (5-15) 

(written for the solvent), we can calculate 𝜇𝜇1. However, if we want to have a polynomial 

expression for 𝜇𝜇1 as well, we need to approximate ln(𝑥𝑥1) [which will be present in Equation 

(5-15) when it is written for the solvent] by a suitable polynomial expression first. This can be 

done by substituting 𝑥𝑥1 = 1 − ∑ 𝑥𝑥𝑗𝑗
𝑟𝑟
𝑗𝑗=2  into ln(𝑥𝑥1) and writing its Taylor series expansion 

around ∑ 𝑥𝑥𝑗𝑗
𝑟𝑟
𝑗𝑗=2 = 0 up to the 𝑛𝑛th term: 
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ln(𝑥𝑥1) = ln �1 − � 𝑥𝑥𝑗𝑗

𝑟𝑟

𝑗𝑗=2

�

≈ − � 𝑥𝑥𝑗𝑗

𝑟𝑟

𝑗𝑗=2

−
1
2 �� 𝑥𝑥𝑗𝑗

𝑟𝑟

𝑗𝑗=2

�

2

−
1
3 �� 𝑥𝑥𝑗𝑗

𝑟𝑟

𝑗𝑗=2

�

3

− ⋯

−
1
𝑛𝑛 �� 𝑥𝑥𝑗𝑗

𝑟𝑟

𝑗𝑗=2

�

𝑛𝑛

= − � 𝑥𝑥𝑖𝑖1

𝑟𝑟

𝑖𝑖1=2

− �
1
2

𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2

𝑟𝑟

𝑖𝑖1,𝑖𝑖2=2

− �
1
3

𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3

𝑟𝑟

𝑖𝑖1,𝑖𝑖2,𝑖𝑖3=2

− ⋯

− �
1
𝑛𝑛

𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑛𝑛=2

= − � �
1
𝑚𝑚

𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑚𝑚

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑚𝑚=2

𝑛𝑛

𝑚𝑚=1

 

(5-35) 

Chemical potential is more useful in practice when it is calculated with respect to a 

reference state. For a solvent with added solutes, one convenient reference state is the pure 

solvent system at the same temperature and pressure for which the chemical potential is 𝜇𝜇1
∘ . It 

is also convenient to express this change in chemical potential in units of 𝑘𝑘B𝑇𝑇 to have a 

nondimensional equation. Thus, substituting the results from Equation (5-31) and Equation 

(5-35) into Equation (5-15) (written for the solvent) and rearranging, we write the following: 

 
𝜇𝜇1 − 𝜇𝜇1

∘

𝑘𝑘B𝑇𝑇
= − � �

1
𝑚𝑚 �1 −

1
𝑘𝑘B𝑇𝑇 �� 𝑄𝑄𝑖𝑖𝑗𝑗

𝑛𝑛,𝑚𝑚
𝑚𝑚

𝑗𝑗=1

�� 𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑚𝑚

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑚𝑚=2

𝑛𝑛

𝑚𝑚=1

 (5-36) 

Because the quantity (𝜇𝜇1 − 𝜇𝜇1
∘)/𝑘𝑘B𝑇𝑇 appears frequently in calculations, it has been 

given different names in various forms. Some notable ones are the relative activity [69] of the 

solvent, defined as 

 𝑎𝑎1 = exp �
𝜇𝜇1 − 𝜇𝜇1

∘

𝑘𝑘B𝑇𝑇 � (5-37) 

and the osmolality [45,226] of the solvent, defined as 

 𝜋𝜋 = −
𝜇𝜇1 − 𝜇𝜇1

∘

𝑘𝑘B𝑇𝑇𝑀𝑀1
 (5-38) 
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where 𝑀𝑀1 is the solvent’s molar mass. A more directly related quantity is given as 

 𝜋𝜋+ = −
𝜇𝜇1 − 𝜇𝜇1

∘

𝑘𝑘B𝑇𝑇
 (5-39) 

which is usually referred to as the osmole fraction [45,226] of the solvent. Because of this 

simple relationship, we choose to express the change in chemical potential as osmole fraction. 

Thus, after distributing the 1 inside the brackets evenly into 𝑚𝑚 terms and introducing 

nondimensional coefficients, we can rewrite Equation (5-36) as 

 𝜋𝜋+ = � �
1
𝑚𝑚 �� 𝑄𝑄�𝑖𝑖𝑗𝑗

𝑛𝑛,𝑚𝑚
𝑚𝑚

𝑗𝑗=1

� 𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑚𝑚

𝑟𝑟

𝑖𝑖1,𝑖𝑖2…𝑖𝑖𝑚𝑚=2

𝑛𝑛

𝑚𝑚=1

 (5-40) 

where 𝑄𝑄�𝑗𝑗
𝑛𝑛,𝑚𝑚 is defined in terms of 𝑄𝑄𝑗𝑗

𝑛𝑛,𝑚𝑚 through the relation 

 𝑄𝑄�𝑗𝑗
𝑛𝑛,𝑚𝑚 =

1
𝑚𝑚

−
𝑄𝑄𝑗𝑗

𝑛𝑛,𝑚𝑚

𝑘𝑘B𝑇𝑇
=

1
𝑚𝑚

+
𝓏𝓏𝑛𝑛(𝑚𝑚 − 1)

𝑛𝑛𝑘𝑘B𝑇𝑇
� 𝑛𝑛

𝑚𝑚� �(−1)𝑗𝑗 �𝑚𝑚
𝑘𝑘 � 𝑤𝑤1…1𝑗𝑗…𝑗𝑗

𝑚𝑚

𝑗𝑗=0

 (5-41) 

and it can be described as the mole-fraction-based 𝑚𝑚th order pure osmotic virial coefficient of 

component 𝑗𝑗 in a degree-𝑛𝑛 expansion. Equation (5-40) is a multivariate polynomial in 𝑟𝑟 − 1 

variables for the change of the chemical potential of the solvent in the presence of solutes. It 

is a form of the multisolute osmotic virial equation derived using assumptions (i) through (vi). 

The physical meaning of each coefficient of the polynomial can be inferred with the help of 

Equations (5-41) and (5-9). One can also obtain [82,83] other thermodynamic properties of the 

solvent, such as its molar volume, heat content, etc., by suitable differentiations of 𝜋𝜋+, which 

are not discussed here. 

The arithmetic-average combining rules for the mixed-term coefficients follow 

naturally from the structure of Equation (5-40). The usefulness of such mixing rules is obvious: 

if one has data for the chemical potential change of the solvent as a function of solute 

concentration with each solute separately, then the chemical potential of the solvent in the 

presence of any combination of these solutes can be predicted. In practice, this can be done by 

fitting a polynomial to each binary solution dataset and taking the arithmetic average of the 

appropriate coefficients to get the coefficients of the cross terms. Alternatively, if no 

experimental data are available for certain binaries, the pure osmotic virial coefficients can be 

found from a more sophisticated model or molecular dynamics simulations. 
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The combining rules derived above based on assumption (vi) neglect effects expected 

when the solutes are ions (e.g., solute dissociation, charge screening). However, previous 

versions of the multisolute osmotic virial equation have been successfully adapted for use with 

salt solutes by incorporation of a single additional parameter, (𝑘𝑘d)𝑗𝑗 for each salt 𝑗𝑗, that is 

obtained empirically from fitting to experimental data (for each salt, replace 𝑥𝑥𝑗𝑗 with (𝑘𝑘d)𝑗𝑗𝑥𝑥𝑗𝑗 

in the virial equation) [163]. The parameter (𝑘𝑘d)𝑗𝑗  is called the “dissociation constant of solute 

𝑗𝑗” even though it empirically accounts for more electrolyte effects than just dissociation. As 

noted earlier, in Chapter 6 we have empirically incorporated the dissociation constant into the 

solution theory presented in this chapter and investigated whether the multisolute osmotic 

virial equation with the new combining rules derived here can describe salt solutions [18]. 

There it was found that the predictions of the extended multisolute osmotic virial equation were 

accurate for 11 ternary aqueous salt solutions and that the new combining rules had superior 

performance to those developed previously by our group. In Chapter 6, the data for most single 

salt–water solutions were fitted well by only quadratic or cubic polynomials [i.e., requiring 

only (𝑘𝑘d)𝑗𝑗, 𝑄𝑄�𝑗𝑗
𝑛𝑛,2, and sometimes 𝑄𝑄�𝑗𝑗

𝑛𝑛,3 for each salt; see section 5.4 for interpretation of 𝑛𝑛]. 

5.4 Discussion 
In this section, we only discuss the derived polynomial model written for a single-

solute–solvent system and its coefficients. Therefore, the validity of assumption (vi) and the 

resulting combining rules presented in section 5.3.2 are not required here. 

5.4.1 Connection to the original single-solute osmotic virial coefficients 
The single-solute osmotic virial equation was first derived by McMillan and 

Mayer [140] from first principles, which expresses the osmolality of a solution in terms of the 

molar concentration of a solute. Later, Hill [83] obtained the same result in molality and mole 

fraction units by choosing different sets of independent variables (i.e., different ensembles). 

Both methods are formally exact and necessarily equivalent through a suitable change of 

variables (only true if the virial expansions are kept as infinite sums; not true when they are 

truncated). Here, we show that one can obtain the pure osmotic virial coefficients derived in 

this work by applying the random-mixing assumption to an exact model. 
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Let us look at the quadratic and cubic coefficients of a two-component system, since 

these are the coefficients provided in Hill’s original paper. The extension of the argument to 

higher-order coefficients is straight forward and will be omitted here. For a single-solute 

solution, the polynomial expression is simply 

 𝜋𝜋+ = 𝑥𝑥2 + 𝐶𝐶2𝑥𝑥2
2 + 𝐶𝐶3𝑥𝑥2

3 … (5-42) 

and the corresponding second- and third-order coefficients from the work of Hill are 

 𝐶𝐶2 = 𝑁𝑁 �
1
2

− exp �−
𝜔𝜔2

𝑘𝑘B𝑇𝑇�� (5-43) 

and 

 
𝐶𝐶3 = 4𝑁𝑁2 �

1
2

− exp �−
𝜔𝜔2

𝑘𝑘B𝑇𝑇��
2

− 2𝑁𝑁2 �
1
3

− exp �−
𝜔𝜔2

𝑘𝑘B𝑇𝑇� + exp �−
𝜔𝜔3

𝑘𝑘B𝑇𝑇�� 
(5-44) 

respectively, where 𝑁𝑁 = 𝑁𝑁1 + 𝑁𝑁2 is the total number of particles in the system. We use here 

𝐶𝐶’s (as in the paper of Hill) instead of 𝑄𝑄�’s since they refer to coefficients derived within 

different theories. The quantity 𝜔𝜔𝑖𝑖 in Equations (5-43) and (5-44) is defined as the total Gibbs 

free-energy change for the following process: 𝑖𝑖 number of systems, each made of 𝑁𝑁 − 1 solvent 

molecules and 1 solute molecule, being rearranged into 1 system made of 𝑁𝑁 − 𝑖𝑖 solvent 

molecules with 𝑖𝑖 number of solute molecules, plus 𝑖𝑖 − 1 number of pure solvent systems each 

with 𝑁𝑁 solvent molecules. Approximating the entropy term that is present in 𝜔𝜔𝑖𝑖 with a random-

mixing entropy term, the exact configurational entropy change for this process can be written 

explicitly, and 𝜔𝜔𝑖𝑖 can be expressed as 

 𝜔𝜔𝑖𝑖 = 𝜔𝜔𝑖𝑖
nc − 𝑘𝑘B𝑇𝑇 �ln �𝑁𝑁

𝑖𝑖 � − 𝑖𝑖 ln �𝑁𝑁
1�� (5-45) 

where 𝜔𝜔𝑖𝑖
nc is the nonconfigurational part of Gibbs free-energy change, and the second term is 

due to the configurational entropy change for the process described above. Substituting 

Equation (5-45) into Equations (5-43) and (5-44), we get 

 𝐶𝐶2 = 𝑁𝑁 �
1
2

− �
1
2

−
1

2𝑁𝑁� exp �−
𝜔𝜔2

nc

𝑘𝑘B𝑇𝑇
�� (5-46) 

and 
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𝐶𝐶3 = 4𝑁𝑁2 �
1
2

− �
1
2

−
1

2𝑁𝑁� exp �−
𝜔𝜔2

nc

𝑘𝑘B𝑇𝑇
��

2

− 2𝑁𝑁2 �
1
3

− �
1
2

−
1

2𝑁𝑁� exp �−
𝜔𝜔2

nc

𝑘𝑘B𝑇𝑇
�

+ �
1
6

−
1

2𝑁𝑁
+

1
3𝑁𝑁2� exp �−

𝜔𝜔3
nc

𝑘𝑘B𝑇𝑇
�� 

(5-47) 

Retaining only the constant and linear terms in the Taylor series expansion for the exponentials, 

these equations reduce to 

 𝐶𝐶2 =
1
2

+
1

𝑁𝑁𝑘𝑘B𝑇𝑇
�𝑁𝑁

2� 𝜔𝜔2
nc (5-48) 

and 

 𝐶𝐶3 =
1
3

+
2

𝑁𝑁𝑘𝑘B𝑇𝑇
�𝑁𝑁

3� (𝜔𝜔3
nc − 3𝜔𝜔2

nc) (5-49) 

respectively. We can express the 𝜔𝜔𝑖𝑖
nc’s in terms of the alternative parameters defined in this 

work, 𝑤𝑤1…12…2’s, using their respective definitions. Doing so, with some algebraic 

manipulation (see Appendix C), we find 

 𝐶𝐶2 =
1
2

+
1

𝑁𝑁𝑘𝑘B𝑇𝑇
�𝑁𝑁

2� (𝑤𝑤1…122 − 2𝑤𝑤1…12) = 𝑄𝑄�2
𝑁𝑁,2 (5-50) 

and 

 𝐶𝐶3 =
1
3

+
2

𝑁𝑁𝑘𝑘B𝑇𝑇
�𝑁𝑁

3� (𝑤𝑤1…1222 − 3𝑤𝑤1…122 + 3𝑤𝑤1…12) = 𝑄𝑄�2
𝑁𝑁,3 (5-51) 

As indicated, Equations (5-50) and (5-51) are precisely what we can obtain from 

Equation (5-41) by taking 𝑛𝑛 = 𝑁𝑁, which translates to setting 𝓏𝓏𝑛𝑛 = 1 (each particle is shared 

by a single 𝑁𝑁-tuple, which is the entire system). At first, it may seem problematic to set 𝑛𝑛 =

𝑁𝑁1 + 𝑁𝑁2 because we had to assume that 𝑛𝑛 is much smaller than both 𝑁𝑁1 and 𝑁𝑁2 to be able to 

write Equation (5-11). However, this is allowed due to the different system definitions 

employed: While we fix both 𝑁𝑁1 and 𝑁𝑁2 and seek the chemical potentials, Hill fixes the total 

number of sites, 𝑁𝑁, and the chemical potential difference, 𝜇𝜇2 − 𝜇𝜇1, to arrive at his osmotic 

virial coefficients. In other words, we look at a large but finite closed system that can only 

exchange heat and volume with a reservoir (a piston–cylinder device), and Hill considers an 

open system with a fixed number of sites in equilibrium with an infinite reservoir, while 

effectively treating the system as a single interacting 𝑁𝑁-tuple. 
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5.4.2 On the size of 𝒏𝒏 
Based on the connection established above, a natural question arises: How big is the 

error due to the linear approximations of the exponentials in the osmotic virial coefficients of 

Hill? To answer this, let us consider a macroscopic system corresponding to 𝑁𝑁 → ∞ limit in 

Equations (5-46) and (5-47). Since we expect the osmotic virial coefficients to stay finite at 

this limit for any physical system far from criticality, we deduce from Equations (5-46) and 

(5-47) that lim
𝑁𝑁→∞

𝜔𝜔2
nc = lim

𝑁𝑁→∞
𝜔𝜔3

nc = 0. This means that the larger the system the more accurate 

are the linear approximations. That is, with increasing 𝑛𝑛, the present treatment becomes 

asymptotically close to the exact treatment with a random-mixing entropy term, applied to a 

macroscopic system. This is because, even if one does not assume random mixing when 

calculating the nonconfigurational Gibbs free energy of the system (like in the exact treatment), 

the larger the particle groups the more closely their number density will follow the multinomial 

distribution. In other words, provided that the system’s size is much larger than the range of 

interactions between particles, by choosing a large 𝑛𝑛 the errors introduced due to Equation 

(5-11) can be made vanishingly small. This realization is not surprising because the assumption 

of a single-phase system is the same as the homogeneity of the system on large size scales 

(compared to the range of interactions of particles). Therefore, when compared to the exact 

treatment, the only significant approximation in the present model with a large 𝑛𝑛 is due to the 

use of the random-mixing entropy term. 

Another valuable consequence to consider when 𝑛𝑛 is large is the potential for relaxation 

of assumptions (iii) and (iv). Consider, for example, a two-component solution of protein in 

water, where the sizes of the molecules, and hence, their coordination numbers differ greatly. 

Naturally, the present approach would not be applicable in the case of a small 𝑛𝑛 because 𝓏𝓏𝑛𝑛 

would not be constant between the two types of molecules. However, by choosing a large 𝑛𝑛 

such that each 𝑛𝑛-tuple occupies a much bigger space than the protein molecule, the discrepancy 

in 𝓏𝓏𝑛𝑛 can be made small. Also, note that when 𝑛𝑛 = 𝑁𝑁, the formulation is independent of 𝓏𝓏𝑛𝑛 as 

demonstrated in section 5.4.1. Therefore, we expect the present model with sufficiently large 

𝑛𝑛 would be a good approximation even for solutions containing particles of different sizes. 

In practice, if polynomials are fitted to binary experimental data, the obtained 

coefficients would represent full interactions as well as nonrandom entropy of mixing, as given 

in the framework of the exact formulation [e.g., Equations (5-43) and (5-44)], which would 
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also include empirical corrections due to the truncation of the polynomials. Therefore, no 

deliberate selection of 𝑛𝑛 is required in this scenario (assume 𝑛𝑛 = 𝑁𝑁 if interpreting the 

coefficients in our framework with a random-mixing entropy term). Notice that the full model 

contains terms up to 𝑁𝑁th degree, however, truncating the polynomial after the quadratic or 

cubic term typically describes the data well [18,226]. It is important to note that this truncation 

does not imply that only small particle groups are considered, rather it implies that the higher 

order terms of the polynomial are numerically negligible. 

There might be situations, however, where it is desirable to pick a value of 𝑛𝑛 that is as 

small as possible while still capturing the nonideal behavior of the system accurately (for 

example, due to computational cost when calculating the virial coefficients from molecular 

dynamics simulations). This is the same as finding the smallest system from which the osmotic 

virial coefficients of the macroscopic system can be inferred to within a desired accuracy. The 

decision of picking a suitable 𝑛𝑛 should be guided by the nature and range of the interactions in 

a given system while considering factors such as the desired accuracy and cost of computation. 

In general, a solvent with salts would require a larger 𝑛𝑛 compared to the same solvent with 

nonionic solutes because of the presence of long-range forces in the former. 

5.5 Conclusion 
In this chapter, we considered a general multicomponent solution model that assumes 

random mixing of the components at constant pressure and temperature, but accounts for 

complex interactions in arbitrarily large particle groups. Based on the model, the chemical 

potential of the mixture components could be expressed as a multivariate polynomial with 

mole fractions of the solutes as variables. It was demonstrated that, for a macroscopic system, 

the present model with 𝑛𝑛 = 𝑁𝑁 can be alternatively derived from the formally exact approach 

of Hill if the random-mixing entropy term is used. This was done to highlight the equivalency 

of two seemingly different theoretical approaches. It was also concluded that, if the model is 

implemented with large particle groups, it does not require some of the restrictive assumptions 

needed when considering small particle groups. 

Furthermore, using the developed equations, we provided a theoretical basis for 

multisolute osmotic virial equation combining rules. That is, assuming negligible solute–solute 

interactions, the mixed-term coefficients of the polynomial could be written as the arithmetic 
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average of suitable pure-term coefficients. These rules are practically useful for estimating the 

chemical potential of a solvent in the presence of multiple solutes when no multicomponent 

solution data are available. The model with the combining rules, in some sense, provides the 

best estimate of the solvent chemical potential within the context of the present theory when 

no multicomponent data are available. Of course, a better estimate would be possible if one 

has information about the interaction exchange energies of the solutes with one another and/or 

any multicomponent solution data. It is important to note that the noninteracting solutes 

assumption [i.e., assumption (vi)]  and the use of the random-mixing entropy term were 

sufficient to arrive at the proposed combining rules, but we do not have a proof of their 

necessity. Comparison of the predictions of the combining-rules approach to experimental data 

from different kinds of multicomponent mixtures (e.g., electrolyte solutions, polymer 

solutions, hydrocarbon solutions, their combinations, etc.) might shed light on the extent of the 

applicability of the combining rules and help researchers decide whether it is worth looking 

for their generalizations. 
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Chapter 6  
Predicting Freezing Points of Ternary Salt Solutions 

with the Multisolute Osmotic Virial Equation1 

 

Chapter summary 
Previously, the multisolute osmotic virial equation with the combining rules of Elliott 

et al. has been shown to make accurate predictions for multisolute solutions with only single-

solute osmotic virial coefficients as inputs. The original combining rules take the form of an 

arithmetic average for the second-order mixed coefficients and a geometric average for the 

third-order mixed coefficients. In Chapter 5, we derived generalized combining rules from a 

 
1 Reproduced (including Appendix D), with minor changes, with permission from H. Binyaminov, H. Sun, and J. 
A. W. Elliott. Predicting Freezing Points of Ternary Salt Solutions with the Multisolute Osmotic Virial Equation, 
J. Chem. Phys. 159, 244502 (2023). https://doi.org/10.1063/5.0169047 © 2023 American Institute of Physics. 

https://doi.org/10.1063/5.0169047
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first principles solution theory, where all mixed coefficients could be expressed as arithmetic 

averages of suitable binary coefficients. In this chapter, we empirically extended the new 

model to account for electrolyte effects including solute dissociation and demonstrate its 

usefulness for calculating the properties of multielectrolyte solutions. First, the osmotic virial 

coefficients of 31 commonsalts in water were tabulated based on the available freezing point 

depression (FPD) data. This was achieved by polynomial fitting, where the degree of the 

polynomial was determined using a special criterion that accounts for the confidence intervals 

of the coefficients. Then, the multisolute model was used to predict the FPD of 11 ternary 

electrolyte solutions. Furthermore, models with the new combining rules and the original 

combining rules of Elliott et al. were compared using both mole fraction and molality as 

concentration units. We find that the mole-fraction-based model with the new combining rules 

performs the best, and that the results agree well with independent experimental measurements 

with all-system root-mean-square error of 0.24 osmoles/kg (0.45 °C) and close to zero mean 

bias for the entire dataset (371 data points). 

6.1 Introduction 
Thermodynamic properties of aqueous salt solutions play a crucial role in many areas 

of natural, biological, and industrial processes. For example, the characteristics of freezing of 

the most abundant electrolyte solution on the planet—seawater—are controlled by the salt 

concentration [135]. Because the concentration and types of the salts in seawater vary, one of 

the crucial aspects of an accurate ocean model is the reliability of the thermodynamic method 

used to determine the phase behavior of multicomponent aqueous solutions [99,135]. In 

another example, when water vapor condenses on the cloud condensation nuclei in the 

atmosphere, it dissolves some of the salts from these particles and forms a droplet of an 

aqueous solution. The path this droplet takes (e.g., whether it evaporates or grows) in the later 

stages of cloud development is greatly impacted by the types of solutes and their 

concentrations [109,165]. Ultimately, the precipitative properties of a cloud are often 

determined by the microphysical processes that involve aqueous multisolute salt 

solutions [165]. Furthermore, as aqueous energy storage devices (e.g., aqueous Li-ion, Sn-ion, 

Na-ion batteries) evolve and become more practical for commercial use [9,32,91,92,142,152, 

207,208,221], there is a growing need for a simple and reliable multielectrolyte solution model. 
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One of the main concerns about aqueous batteries is their operability at extreme conditions, 

such as at temperatures below −20 ∘C. 

There exist many solution theories for nonideal, concentrated multisolute solutions, in-

depth discussion of some of which can be found in references  [161] and  [44]. Although maybe 

accurate, many of these approaches rely on fitting to multisolute solution data, while some 

require a lot of input model parameters. These characteristics make these models not suitable 

for general modeling purposes for many engineering applications because of the possibility of 

many solutes, their different combinations, and a wide range of concentrations. Furthermore, 

accurate solution theories are usually complicated by nature, hence, their implementation as 

part of engineering design can be challenging. The desirable qualities of any predictive model 

are that it should require a minimum number of fitting parameters, be mathematically simple 

and computationally cheap, and not rely on multisolute data. 

Over the past fifteen years, a form of the osmotic virial equation for multisolute 

solutions (multisolute osmotic virial equation or MSOVE) has been developed by Elliott et al. 

(the Elliott et al. MSOVE or E-MSOVE) that requires only binary solution data (i.e., each 

solute with the solvent) to predict the chemical potential of a solution with a mixture of 

solutes. [42,163,223,226] The original single-solute osmotic virial equation is a polynomial 

equation derived from first principles that expresses osmolality of a single-solute solution as a 

function of the concentration of the solute [83,84,140]. Later, Elliott et al. [42] proposed 

combining rules for osmotic virial coefficients in the regular solution theory framework, which 

enabled osmotic-virial-equation predictions for multisolute solutions without the need for 

fitting to multisolute data. By comparing predictions with experimental data, our group has 

previously demonstrated the accuracy of the molality-based form of the E-MSOVE for 

solutions of interest in cryobiology, including aqueous mixtures of cryoprotectants and 

aqueous mixtures of proteins [225,226]. It was rigorously shown that the molality-based form 

of the E-MSOVE can be applied to a “grouped solute” representing all solutes when the 

properties of individual solutes cannot be enumerated [223], which allows the approach to be 

applied to complicated intracellular solutions [55,162,172,224]. Additionally, a solute 

chemical potential equation that is consistent with the molality-based E-MSOVE was 

derived [47,219,223]. Furthermore, Pricket et al. [163] extended the E-MSOVE to solutions 

containing electrolytes by introducing an additional single-solute fitting parameter to capture 
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dissociation and other electrolyte effects and showed that this equation could make predictions 

for aqueous solutions containing NaCl plus another nonelectrolyte solute as accurately as if the 

NaCl contributions had been calculated by the Pitzer–Debye–Hückel model—a more 

sophisticated electrolyte theory with more fitting parameters. The E-MSOVE was shown to 

make accurate predictions for many aqueous solutions containing NaCl and one or two other 

nonelectrolyte solutes [225,226]. Liu et al. [124] used the mole-fraction-based E-MOSVE to 

make predictions of the freezing points of multielectrolyte solutions of interest to zinc–air 

batteries, but without comparison to experimental data. While the previous work suggests that 

multielectrolyte solution osmolalities could be predicted with the E-MSOVE, this proposition 

has not been tested. 

In Chapter 5, we further explored the theoretical aspects of the MSOVE and developed 

generalized combining rules for coefficients of arbitrary order in a specific solution theory 

framework. All newly derived combining rules take the form of an arithmetic-average of 

suitable pure-term coefficients, which contrasts with the geometric-average combining rule 

used for the cubic terms in the E-MSOVE implementation. In the previous applications of the 

E-MSOVE (mainly in cryobiology), most solutions were described sufficiently well by only 

the first- and second-order terms, and predictions using the geometric-average combining rule 

for the cubic-order terms were accurate enough for the application. Here, we find that some 

ternary salt solutions require a third-order combining rule for accurate predictions, and that 

there are enough accurate multielectrolyte solution data to compare different combining rules 

quantitatively. 

The main goal of this chapter is to demonstrate the viability of the MSOVE with new 

combining rules (the new MSOVE) for predicting thermodynamic properties of 

multicomponent salt solutions. The chapter is organized as follows: We start by introducing 

the necessary formalism, describing the models, and detailing the fitting procedure. Then, we 

tabulate the mole-fraction- and molality-based osmotic virial coefficients of 31 aqueous binary 

mixtures of common salts by fitting to binary FPD data taken from the literature. Using the 

obtained mole-fraction-based binary coefficients in the new MSOVE, we make predictions for 

11 ternary combinations (i.e., two salts plus water) of the listed salts for which experimental 

data are available in the literature for comparison. We conclude by comparing the prediction 
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accuracy of the E-MSOVE and the new MSOVE in molality and mole fraction concentration 

units. 

6.2 Methods 

6.2.1 Virial expansion and the original combining rules 
Osmolality is a measure of change in chemical potential of the solvent in the presence 

of solutes, mathematically defined as [42] 

 𝜋𝜋 = −
𝜇𝜇1 −  𝜇𝜇1

∘

𝑅𝑅�𝑇𝑇𝑀𝑀1
 (6-1) 

where 𝜋𝜋 is the osmolality (with units of osmoles/kg), 𝜇𝜇1 is the chemical potential of the 

solvent in solution (in this chapter, the only solvent is water), 𝜇𝜇1
∘  is the chemical potential of 

the pure solvent, 𝑅𝑅� is the universal gas constant, 𝑇𝑇 is absolute temperature, and 𝑀𝑀1 is the molar 

mass of the solvent. Osmolality can be related to other thermodynamic properties of the 

solution, such as its FPD and osmotic pressure. Needed for the purposes of the present study, 

the following expression establishes the relationship between the osmolality and the FPD of a 

solution [226]: 

 𝜋𝜋 =
𝑇𝑇m

∘ − 𝑇𝑇m

𝑅𝑅�𝑇𝑇m � 𝑀𝑀1
∆𝑠𝑠f

∘�
=

∆𝑇𝑇m∆𝑠𝑠f
∘

𝑅𝑅�𝑀𝑀1(𝑇𝑇m
∘ − ∆𝑇𝑇m) (6-2) 

where ∆𝑇𝑇m represents the FPD with 𝑇𝑇m and 𝑇𝑇m
∘  being the freezing point of the solution, and 

the freezing point of the pure solvent, respectively, and ∆𝑠𝑠f
∘ is the standard molar entropy 

change of fusion of the solvent at the freezing point of the pure solvent. We emphasize that, 

since the reference state in Equation (6-2) is pure water, Equation (6-2) should only be used 

for solutions where the concentration of the solute is below the eutectic composition.  

The single-solute osmotic virial equation is a polynomial equation for the osmolality 

of a binary solution expressed in terms of the concentration of the solute [42]. Originally 

developed in terms of molarity (moles of solute per liter of solution) by McMillan and 

Mayer [140] and later modified to use molality (moles of solute per kilogram of solvent) and 

mole fraction by Hill [83,84], this polynomial expansion can be written as a function in 

different concentration units with underlying self-consistent solution theories in different sets 

of independent variables. For a single solute, one form of this expansion in terms of the 
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molality of the solute is given below, which follows the solution theory of Landau and 

Lifshitz [114]: 

 𝜋𝜋 = 𝑚𝑚𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑚𝑚𝑖𝑖
2 + 𝐶𝐶𝑖𝑖𝑚𝑚𝑖𝑖

3 + ⋯ (6-3) 

where 𝐵𝐵𝑖𝑖 and 𝐶𝐶𝑖𝑖 are the second and the third osmotic virial coefficients of solute 𝑖𝑖, respectively 

(conventionally, 𝑖𝑖 starts from 𝑖𝑖 = 2, and subscript “1” is used to refer to the solvent). 

Physically, 𝐵𝐵𝑖𝑖 and 𝐶𝐶𝑖𝑖 correspond to interactions between two and three solute molecules in the 

solution, respectively. 𝑚𝑚𝑖𝑖 represents the molality of solute 𝑖𝑖. This expression was 

phenomenologically extended by Prickett et al. [163] to electrolyte solutions by modifying the 

osmolality equation as 

 𝜋𝜋 = 𝑘𝑘𝑖𝑖𝑚𝑚𝑖𝑖 + 𝐵𝐵𝑖𝑖(𝑘𝑘𝑖𝑖𝑚𝑚𝑖𝑖)2 + 𝐶𝐶𝑖𝑖(𝑘𝑘𝑖𝑖𝑚𝑚𝑖𝑖)3 + ⋯ (6-4) 

where 𝑘𝑘𝑖𝑖 is a fitting parameter, conventionally referred to as the dissociation constant of 

electrolyte 𝑖𝑖, although it empirically accounts for various electrolyte effects (e.g., ionic 

dissociation, charge screening, etc.) and might not indicate the actual degree of dissociation of 

the solute when obtained from fitting to data [45,163]. For nonelectrolytes, 𝑘𝑘𝑖𝑖 = 1 can be used, 

recovering the original form of the polynomial. Often, the polynomial can be truncated after 

the second-order term, or sometimes after the third-order term, while still accurately describing 

the behavior of the solution. For example, Equation (6-4) truncated to the second-order term, 

with only two fitting parameters (𝑘𝑘𝑖𝑖 and 𝐵𝐵𝑖𝑖), can describe the NaCl + H2O data as accurately 

as the Pitzer–Debye–Hückel model, which is a sophisticated model requiring six 

parameters [163]. 

Suggested by Elliott et al. [42] and Prickett et al. [163], combining rules for the osmotic 

virial coefficients can be used to predict the osmolality of a solution with more than one solute. 

Truncated to the third-order terms, for 𝑟𝑟 − 1 solutes (together with the solvent there are 𝑟𝑟 

components), the molality-based E-MSOVE has the following general form [42]: 

 

𝜋𝜋 = � 𝑘𝑘𝑖𝑖𝑚𝑚𝑖𝑖

𝑟𝑟

𝑖𝑖=2

+ � � 𝐵𝐵𝑖𝑖𝑗𝑗𝑘𝑘𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘𝑗𝑗𝑚𝑚𝑗𝑗

𝑟𝑟

𝑗𝑗=2

𝑟𝑟
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+ � � � 𝐶𝐶𝑖𝑖𝑗𝑗𝑗𝑗 𝑘𝑘𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘𝑗𝑗𝑚𝑚𝑗𝑗𝑘𝑘𝑗𝑗𝑚𝑚𝑗𝑗

𝑟𝑟

𝑗𝑗=2

𝑟𝑟

𝑗𝑗=2

𝑟𝑟

𝑖𝑖=2

 

(6-5) 

for which the following combining rules for the mixed osmotic virial coefficients were 

proposed [42]: 
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 𝐵𝐵𝑖𝑖𝑗𝑗 =
𝐵𝐵𝑖𝑖 + 𝐵𝐵𝑗𝑗

2
 (6-6) 

for the second-order term, which accounts for interactions between two solutes 𝑖𝑖 and 𝑗𝑗, and [42] 

 𝐶𝐶𝑖𝑖𝑗𝑗𝑗𝑗 = �𝐶𝐶𝑖𝑖𝐶𝐶𝑗𝑗𝐶𝐶𝑗𝑗�1/3
 (6-7) 

for the third-order term, which accounts for interactions among the three solutes 𝑖𝑖, 𝑗𝑗, and 𝑘𝑘. 

The importance of Equation (6-5) (together with the combining rules) is that it can be used to 

predict osmolality of a multisolute solution with parameters obtained from the fits to binary 

solution data only (i.e., two-component solutions of each solute with the solvent). However, 

care should be taken when extrapolating Equation (6-5) beyond the regression range (i.e., the 

data range from which the pure coefficients were obtained) because the combining rules given 

by Equation (6-6) and Equation (6-7) may not account for various effects, such as the ionic 

strength dependence in the case of electrolyte solutions [45,163]. 

6.2.2 New combining rules for the third- and higher-order coefficients 
In Chapter 5, we theoretically explored a generalized multicomponent solution model 

and obtained combining rules for any-order coefficients of the mole-fraction-based MSOVE 

in the form of arithmetic-averages of suitable pure coefficients. That is, with the mole-fraction-

based formulation, we obtained an equivalent of Equation (6-6), but the equivalent of the third-

order combining rule in Equation (6-7) is different, in that, it is also an arithmetic-average of 

suitable third-order pure coefficients. The new model allows for arbitrary-order polynomials 

to be combined in a similar fashion, unlike the original combining rules, which are limited to 

quadratic and cubic polynomials. 

In the present work, we find that every binary electrolyte mixture is described well by 

at most a cubic polynomial. Therefore, we only need the second- and third-order mixed 

coefficients from the new model and they take the following forms: 

 𝐵𝐵𝑖𝑖𝑗𝑗
+ =

𝐵𝐵𝑖𝑖
+ + 𝐵𝐵𝑗𝑗

+

2
 (6-8) 

and 

 𝐶𝐶𝑖𝑖𝑗𝑗𝑗𝑗
+ =

𝐶𝐶𝑖𝑖
+ + 𝐶𝐶𝑗𝑗

+ + 𝐶𝐶𝑗𝑗
+

3
 (6-9) 

respectively. Since the new model was derived with mole fractions of the solutes as variables, 

we use the superscript “+” to distinguish the mole-fraction-based coefficients from the 
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molality-based coefficients. The corresponding mole-fraction-based MSOVE, truncated to the 

third-order terms, takes the following form: 

 

𝜋𝜋+ = � 𝑘𝑘𝑖𝑖
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(6-10) 

where 𝑥𝑥𝑖𝑖 is the mole fraction of species 𝑖𝑖 in the solution, and 𝜋𝜋+ = 𝜋𝜋𝑀𝑀1 is referred to as the 

osmole fraction of the solvent [45,226]. Note that, similar to the modification presented in 

reference  [163] and used in Equation (6-5), we introduce the mole-fraction-based dissociation 

constants, 𝑘𝑘𝑖𝑖
+’s, empirically in Equation (6-10) to account for the dissociation of the salts. In 

our theoretical work (Chapter 5), we only considered nondissociating solutes (i.e., 𝑘𝑘𝑖𝑖
+ = 1 for 

all 𝑖𝑖). We will not attempt a justification here, hence, like 𝑘𝑘𝑖𝑖’s in Equation (6-5), 𝑘𝑘𝑖𝑖
+’s should 

be viewed as empirical fitting parameters only. 

Equation (6-10) has been previously used [226] as the mole-fraction-based counterpart 

of Equation (6-5), however, not with the arithmetic-average combining rule for 𝐶𝐶𝑖𝑖𝑗𝑗𝑗𝑗
+  [i.e., 

Equation (6-9)]. Notice that the two models truncated to the third-order terms and written for 

the same concentration units only differ in the combining rule for the third-order mixed 

coefficients. 

For most calculations in this chapter, conversion from molality to mole fraction or vice 

versa is needed. For component 𝑖𝑖 in an aqueous solution, the relationship between the mole 

fraction and the molality is given as 

 𝑥𝑥𝑖𝑖 =
𝑀𝑀1𝑚𝑚𝑖𝑖

1 + 𝑀𝑀1 ∑ 𝑚𝑚𝑖𝑖
𝑟𝑟
𝑖𝑖=2

 (6-11) 

The numerical values of the constants used for calculations in this chapter are given in 

Appendix D. 

Throughout the text, we present the results in osmolality units and refer to osmolalities 

obtained from the FPD data via Equation (6-2) as “experimental data” for brevity. 

Alternatively, we could invert Equation (6-2) and use it to convert osmolality (osmole fraction) 

calculated from Equation (6-5) [Equation (6-10)] to FPD and compare the predictions directly 
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to the true experimental FPD data. Clearly, both methods are equivalent for the purposes of 

evaluating the models. 

6.2.3 Determination of the osmotic virial coefficients 
As detailed by our group’s previous work [226], (multiple linear) regression through 

the origin (RTO) is implemented on the binary data in MATLAB (v. 2023a, Natick, MA, USA) 

to obtain the binary osmotic virial coefficients. The method is essentially polynomial fitting of 

a chosen degree with a matrix method, where the constant term of the polynomial is set to zero. 

The general form of the matrix regression model is expressed as 

 y = 𝐅𝐅β + ϵ (6-12) 

where y is the vector of calculated osmolalities (or osmole fractions), 𝐅𝐅 is the matrix of 

regressors, and ϵ is the vector of model prediction errors. β is the vector of regression 

coefficients and it is calculated as 

 β = (𝐅𝐅T𝐅𝐅)−1𝐅𝐅Ty (6-13) 

The estimated model variance is calculated as 

 𝜎𝜎2 =
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛

𝑖𝑖=1

𝑛𝑛 − 𝑝𝑝
 (6-14) 

where 𝑦𝑦𝑖𝑖 represents the 𝑖𝑖th data point, 𝑦𝑦�𝑖𝑖 is the model prediction at that data point, 𝑛𝑛 is the 

number of data points used in the fit, and 𝑝𝑝 is the degree of the polynomial. 

With the covariance matrix being 𝐒𝐒 = (𝐅𝐅T𝐅𝐅)−1, the 95% confidence intervals (CI) are 

calculated as: 

 𝛽𝛽𝑖𝑖 ± 𝑡𝑡𝑎𝑎
2,𝑛𝑛−𝑝𝑝�𝜎𝜎2𝑆𝑆𝑖𝑖𝑖𝑖 (6-15) 

where 𝛽𝛽𝑖𝑖 is the 𝑖𝑖th element of β, and 𝑡𝑡𝑎𝑎
2,𝑛𝑛−𝑝𝑝 is the 𝑎𝑎th percentile of Student’s t–distribution for 

𝑛𝑛 − 𝑝𝑝 degrees of freedom. 𝑆𝑆𝑖𝑖𝑖𝑖 is the 𝑖𝑖th diagonal element of the covariance matrix. 

As the metrics to determine the degree of the polynomial fit, we use the RTO-adjusted 

R-squared value, defined as [226] 

 𝑅𝑅RTO,adj
2 = 1 −

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 /(𝑛𝑛 − 𝑝𝑝)

∑ (𝑦𝑦𝑖𝑖
2/𝑛𝑛)𝑛𝑛

𝑖𝑖=1
 (6-16) 

combined with the relative width of the 95% CIs of the coefficients as described directly 

below. 
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For each given dataset, the 𝑅𝑅RTO,adj
2  and the 95% CIs of the coefficients are linearly 

combined into a single criterion. The combined criterion is deemed necessary because using 

only the value of 𝑅𝑅RTO,adj
2  to justify the degree of the polynomial may result in large CIs for 

some datasets (i.e., overfitting). On the other hand, only using the CIs of the coefficients (i.e., 

looking for the narrowest CIs) to determine the degree of polynomial is not desirable (i.e., 

underfitting) because sometimes a much better fit (in terms of 𝑅𝑅RTO,adj
2 ) can be obtained while 

still having reasonable CIs. The proposed formula for the combined criterion is expressed as 

 𝜁𝜁 = 100𝜂𝜂𝑅𝑅RTO,adj
2 + (1 − 𝜂𝜂)

𝑦𝑦�max

𝑦𝑦�95+,max
 (6-17) 

where 𝑦𝑦�max denotes the model prediction at the highest experimental concentration, 𝑦𝑦�95+,max 

denotes the model prediction at the highest experimental concentration corresponding to the 

upper bound of the 95% CIs on the coefficients. As a continuous function of concentration, 

𝑦𝑦�95+ is constructed by taking all coefficients at the upper bounds of their 95% CIs. Notice that 

this method is different than the typical way of calculating the 95% CI of a fit in statistical 

analysis, which generally improves (i.e., gets more confident) with increasing the degree of the 

polynomial, and therefore, is not suitable for our purposes. In Equation (6-17), 𝜂𝜂 is an 

adjustable parameter between zero and one that determines the balance between a purely 

confidence-based fit (𝜂𝜂 = 0) and a purely 𝑅𝑅RTO,adj
2 -based fit (𝜂𝜂 = 1). When performing the 

fits, for each given binary mixture dataset, a series of polynomial models are generated up to 

𝑝𝑝 = 5 at fixed 𝜂𝜂 out of which the one with the highest 𝜁𝜁 value is picked as the best fit. 

The first term on the right-hand side of Equation (6-17) is multiplied by one hundred 

to assign appropriate weights to each term. For example, the changes of Δ𝑅𝑅RTO,adj
2 = 0.001 

and Δ � 𝑦𝑦�max
𝑦𝑦�95+,max

� = 0.1 have the same weights for the value of 𝜂𝜂 = 0.5. In other words, 𝜁𝜁 is 

made one hundred times more sensitive to a change in 𝑅𝑅RTO,adj
2  compared to the change in the 

relative width of the CI, 𝑦𝑦�max
𝑦𝑦�95+,max

. This is because, without scaling, Δ𝑅𝑅RTO,adj
2  is not particularly 

sensitive to the goodness of the fit, often changing by less than 1% when increasing the degree 

of the polynomial. Clearly, other choices can be made regarding the functional form of the 

combined criterion. The idea is to reward for goodness of the fit (in terms of 𝑅𝑅RTO,adj
2 ) while 

penalizing for large CIs of the coefficients. 
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6.3 Results 

6.3.1 Tabulation of osmotic virial coefficients 
Most of the binary FPD data were collected from the CRC Handbook of Chemistry and 

Physics [230] (CRC or CRC handbook hereafter). The exceptions are: the binary data for ZnCl2 

and ZnBr2 (obtained from Haghighi et al. [74]) and MgCl2 (obtained from Gibbard and 

Gossmann [62]) because the CRC does not list these salts. Additionally, we also use the CaCl2 

binary data of Oakes et al. [154] instead of the CRC data because the Oakes et al. [154] dataset 

has significantly more data points (55 vs. 27) and the fit confidence is significantly higher 

(when comparing the same-degree fits). The data in the CRC [230] are given as FPD vs. 

molality. The data in Gibbard and Gossmann [62] are given as FPD vs. equivalent 

concentration, and the data in Haghighi et al. [74] are given as  FPD vs. mass percent of the 

solutes. All datasets from Gibbard and Gossmann [62] and Haghighi et al. [74] were converted 

to molality (then to mole fraction, where needed) using suitable equations. These unit-

conversion equations are detailed in Appendix D.  

After iteratively adjusting 𝜂𝜂, we found that 𝜂𝜂 = 0.3 gives a good balance of accuracy 

and relatively narrow CIs for coefficients of all binary-mixture polynomials needed in this 

study. When we made the mole-fraction-based fitting significantly more sensitive to 𝑅𝑅RTO,adj
2  

by increasing 𝜂𝜂 from 0.3 up to 0.6, it did not affect the degree of fits of most salts except for 

ZnBr2, ZnCl2, Na2S2O3, ZnSO4, and MgSO4. With 𝜂𝜂 = 0.6: (i) for ZnCl2, the fit confidence 

was unacceptably low due to the lack of number of experimental data points; (ii) for MgSO4 

and ZnBr2, the fit confidences were considerably lower, although they may be usable in some 

settings; (iii) for Na2S2O3 and ZnSO4, the fit confidences were still high, although the data were 

sufficiently well described by the lower-degree fits as well. Since none of these salts are used 

in this study to make predictions, the value of 𝜂𝜂 in a reasonable range does not affect the 

prediction results, and we decided to pick a more conservative value of 𝜂𝜂 = 0.3. The only salt 

for which this value of  𝜂𝜂 results in the fitted polynomial having a different degree for the 

molality-based fit is ZnBr2, which changes from being a linear function in the mole-fraction-

based case to a quadratic function in the molality-based case. 

The resulting mole-fraction-based fit parameters are listed in Table 6-1, and the 

molality-based fit parameters are listed in Table 6-2, with each table containing additional 
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columns for the number of data points used for the fitting, the data limit for each dataset, the 

value of 𝑅𝑅RTO,adj
2 , and the degree of the polynomial fit. For the method of estimation of 

uncertainties in the coefficients and the graphical representations of the fits, see Appendix D. 

Table 6-1. Mole-fraction-based binary fit coefficients and related data. The coefficients were 
obtained by fitting to data after converting molality to mole fraction and FPD to osmole 
fraction. The data used for fitting are mainly from the CRC handbook [230] except where 
indicated by a superscript letter, in which case the data are obtained from: (a) Oakes et 
al. [154]; (b) Gibbard and Gossmann [62]; (c) Haghighi et al. [74]. 

Salt 𝑘𝑘+ ± 95% CI 𝐵𝐵+ ± 95% CI 𝐶𝐶+ ± 95% CI 𝑛𝑛 
Data limit 

(mole 
fraction) 

𝑅𝑅RTO,adj
2  p 

CaCl2 a 3.0464 ± 0.1607 −0.8134 ± 0.7336 51.5453 ± 8.5203 55 0.0664 1.0000 3 

FeCl3 3.3444 ± 0.4780 1.5734 ± 2.9214 79.9373 ± 36.7256 19 0.0497 0.9997 3 

K2CO3 2.3384 ± 0.0513 0.2501 ± 0.3986 35.2213 ± 2.8489 21 0.08 1.0000 3 

NaCl 1.8348 ± 0.0048 0.2853 ± 0.0533 14.8930 ± 0.2823 32 0.0843 1.0000 3 

MgCl2 b 2.5265 ± 0.0389 5.2909 ± 0.5892 84.8666 ± 6.1064 30 0.0352 1.0000 3 

LiCl 1.5655 ± 0.0452 11.5691 ± 0.7648 — 13 0.0647 0.9999 2 

KI 1.7730 ± 0.0078 1.5885 ± 0.0495 — 25 0.0675 1.0000 2 

KBr 1.7547 ± 0.0077 1.0952 ± 0.0515 — 27 0.0665 1.0000 2 

ZnBr2 c 0.7874 ± 0.0886 3.6988 ± 1.1404 — 5 0.2106 0.9998 2 

SrCl2 2.1184 ± 0.0633 14.6683 ± 1.0209 — 18 0.0346 0.9999 2 

NaNO3 1.6950 ± 0.0220 −0.9503 ± 0.1334 — 17 0.0761 0.9999 2 

NH4Cl 1.7336 ± 0.0146 1.6858 ± 0.1298 — 14 0.0479 1.0000 2 

ZnCl2 c 1.4260 ± 0.2031 — — 4 0.1213 0.9920 1 

NaBr 1.8654 ± 0.0085 −0.0311 ± 0.2142 30.8505 ± 2.4431 18 0.0346 1.0000 3 

CsCl 1.7036 ± 0.0067 — — 30 0.0261 0.9999 1 

KCl 1.8176 ± 0.0063 — — 14 0.0348 1.0000 1 

Na2S2O3 1.9556 ± 0.0368 — — 16 0.0277 0.9988 1 

MnSO4 0.9304 ± 0.0468 13.3605 ± 2.7310 — 20 0.0290 0.9995 2 

(NH4)2SO4 2.0757 ± 0.0492 −2.4553 ± 0.5976 — 14 0.0253 0.9998 2 

BaCl2 2.3985 ± 0.0378 4.7370 ± 0.5468 — 14 0.0162 0.9999 2 

MgSO4 0.9363 ± 0.0801 13.2531 ± 4.8420 — 14 0.0277 0.9987 2 

NaC2H3O2 1.8381 ± 0.0142 3.8493 ± 0.2510 — 10 0.0213 1.0000 2 

AgNO3 1.7860 ± 0.0115 −5.9317 ± 0.2486 — 14 0.0198 1.0000 2 

ZnSO4 1.0390 ± 0.0168 — — 17 0.0208 0.9990 1 

KNO3 1.7459 ± 0.0241 −6.1918 ± 0.5320 — 11 0.0194 1.0000 2 

CuSO4 0.9377 ± 0.0111 — — 15 0.0180 0.9995 1 

Na2CO3 1.9626 ± 0.0666 — — 7 0.0107 0.9987 1 
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Na2SO4 2.4642 ± 0.0627 −11.7675 ± 1.6586 — 7 0.0080 0.9999 2 

K2SO4 2.4229 ± 0.0579 −10.3976 ± 2.2870 — 9 0.0054 0.9999 2 

Na3PO4 3.5327 ± 0.1045 −22.6001 ± 3.7881 — 5 0.0028 1.0000 2 

KMnO4 1.8128 ± 0.0327 — — 4 0.0023 0.9999 1 

 

Table 6-2. Molality-based binary fit coefficients and related data. The coefficients were 
obtained by fitting to data after converting all concentration units to molality and FPD to 
osmolality. The data used for fitting are mainly from the CRC handbook [230] except where 
indicated by a superscript letter, in which case the data are obtained from: (a) Oakes et 
al. [154]; (b) Gibbard and Gossmann [62]; (c) Haghighi et al. [74]. 

Salt 𝑘𝑘 ± 95% CI 
𝐵𝐵 ± 95% CI 

(kg/osmoles) 
𝐶𝐶 ± 95% CI 

(kg2/osmoles2) 
𝑛𝑛 Data limit 

(molality) 𝑅𝑅RTO,adj
2  𝑝𝑝 

CaCl2 a 2.8116 ± 0.1172 0.0209 ± 0.0107 0.0142 ± 0.0019 55 3.9465 1.0000 3 

FeCl3 3.2165 ± 0.4169 0.0568 ± 0.0490 0.0218 ± 0.0093 19 2.9010 0.9997 3 

K2CO3 2.2362 ± 0.0718 0.0236 ± 0.0101 0.0079 ± 0.0010 21 4.8240 1.0000 3 

NaCl 1.8092 ± 0.0047 0.0046 ± 0.0009 0.0030 ± 0.0001 32 5.111 1.0000 3 

MgCl2 b 2.5045 ± 0.0354 0.1021 ± 0.0096 0.0220 ± 0.0016 30 2.0225 1.0000 3 

LiCl 1.6571 ± 0.0265 0.1454 ± 0.0057 — 13 3.8400 1.0000 2 

KI 1.7861 ± 0.0059 0.0143 ± 0.0006 — 25 4.0160 1.0000 2 

KBr 1.7620 ± 0.0061 0.0071 ± 0.0007 — 27 3.9540 1.0000 2 

ZnBr2 c 0.9796 ± 0.0593 — — 5 14.8081 0.9976 1 

SrCl2 2.1730 ± 0.0472 0.2214 ± 0.0116 — 18 1.9920 0.9999 2 

NaNO3 1.6793 ± 0.0244 −0.0238 ± 0.0026 — 17 4.5750 0.9999 2 

NH4Cl 1.7410 ± 0.0119 0.0167 ± 0.0018 — 14 2.7930 1.0000 2 

ZnCl2 c 1.2791 ± 0.1206 — — 4 7.6619 0.9965 1 

NaBr 1.8610 ± 0.0079 −0.0064 ± 0.0035 0.0083 ± 0.0007 18 1.9910 1.0000 3 

CsCl 1.6714 ± 0.01 — — 30 1.4850 0.9997 1 

KCl 1.7685 ± 0.0042 — — 14 2.0040 1.0000 1 

Na2S2O3 1.9150 ± 0.0421 — — 16 1.5810 0.9983 1 

MnSO4 0.9367 ± 0.0439 0.2019 ± 0.0430 — 20 1.6560 0.9995 2 

(NH4)2SO4 2.0690 ± 0.0496 −0.0498 ± 0.0107 — 14 1.4410 0.9998 2 

BaCl2 2.4036 ± 0.0367 0.0740 ± 0.0093 — 14 0.9150 0.9999 2 

MgSO4 0.9415 ± 0.0762 0.2019 ± 0.0777 — 14 1.5820 0.9988 2 

NaC2H3O2 1.8427 ± 0.0130 0.0556 ± 0.0040 — 10 1.2060 1.0000 2 

AgNO3 1.7798 ± 0.0125 −0.1118 ± 0.0048 — 14 1.1210 1.0000 2 

ZnSO4 1.0225 ± 0.0159 — — 17 1.1800 0.9991 1 

KNO3 1.7392 ± 0.0256 −0.1165 ± 0.0101 — 11 1.0990 1.0000 2 

CuSO4 0.9246 ± 0.0117 — — 15 1.0200 0.9995 1 
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Na2CO3 1.9455 ± 0.0694 — — 7 0.6020 0.9985 1 

Na2SO4 2.4600 ± 0.0632 −0.2152 ± 0.0301 — 7 0.4490 0.9999 2 

K2SO4 2.4210 ± 0.0581 −0.1920 ± 0.0412 — 9 0.3020 0.9999 2 

Na3PO4 3.5306 ± 0.1027 −0.4095 ± 0.0670 — 5 0.1560 1.0000 2 

KMnO4 1.8092 ± 0.0335 — — 4 0.1280 0.9999 1 

 

With 𝜂𝜂 = 0.3, it is apparent that aqueous solutions of most salts can be accurately 

modeled with only a linear and a quadratic term with only six binaries requiring a cubic term. 

Naturally, in all cases, the degree and/or the confidence of the fits can be improved by including 

more high-quality experimental data points. Additionally, since the fitted polynomials are 

forced to pass through the origin, they have varying sensitivity to the accuracy of experimental 

data at different concentrations. Therefore, it is important to have more high-quality data points 

covering the entire concentration range to obtain smaller CIs. 

When it comes to the physical meaning of the coefficients, if we assume that the 

empirical extension due to the electrolyte effects is correct in its functional form (i.e., the 

modification by a multiplicative constant from 𝑚𝑚𝑖𝑖 to 𝑘𝑘𝑖𝑖𝑚𝑚𝑖𝑖 or from 𝑥𝑥𝑖𝑖 to 𝑘𝑘𝑖𝑖
+ 𝑥𝑥𝑖𝑖), the 𝐵𝐵𝑖𝑖’s and 

𝐶𝐶𝑖𝑖’s (or the 𝐵𝐵𝑖𝑖
+’s and 𝐶𝐶𝑖𝑖

+’s) can be interpreted as the second and third osmotic virial coefficients 

of the salt (see reference [16]) with the numerical values of these parameters fitted to 

experimental data also being affected by the truncation of the polynomial. Although it is 

understood that the values of the 𝑘𝑘𝑖𝑖’s (or the 𝑘𝑘𝑖𝑖
+’s) reflect the collective effects of solute 

dissociation (i.e., stochiometric coefficients of the salt), ion charge, ion size, etc., their 

interpretation is not straight forward since various electrolyte effects are not explicitly 

accounted for in the model. 

Nevertheless, analyzing the numerical values of the 𝑘𝑘𝑖𝑖
+’s in Table 6-1, they show clear 

dependence on the salt’s stochiometric coefficients and the charge of the ions (the 𝑘𝑘𝑖𝑖’s in Table 

6-2 have similar values): 

1. All 1:1 salts with monovalent ions (NaCl, LiCl, KI, KBr, NaNO3, NH4Cl, NaBr, CsCl, 

KCl, NaC2H3O2, AgNO3, KNO3, KMnO4) have dissociation constants between 1.5 and 

2, whereas for 1:1 salts with bivalent ions (MnSO4, MgSO4, ZnSO4, CuSO4) the 

dissociation constants are close to unity. 

2. All 2:1 salts with monovalent cations and bivalent anions [K2CO3, Na2S2O3, 

(NH4)2SO4, Na2CO3, Na2SO4, K2SO4] have dissociation constants between 2 and 2.5. 
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3. The data for 1:2 salts with bivalent cations and monovalent anions (CaCl2, MgCl2, 

ZnBr2, SrCl2, ZnCl2, BaCl2) have a large range in the values of the dissociation 

constants from 0.8 for ZnBr2 to 3.1 for CaCl2. If we exclude ZnBr2 and ZnCl2 from the 

analysis due to the limited number of experimental data points to which the 

polynomials were fitted, this range becomes 2–3.1. 

4. FeCl3 and Na3PO4—the only salts with trivalent ions in the present study—have 

dissociations constants of about 3.5. 

We were not able to find any other consistent features in the results when we looked 

for patterns in the variation of the dissociation constants with the ion size, hydration number, 

or overall ionic strength of the solution. Tabulating and analyzing these parameters for more 

compounds (e.g., organic salts) while also including other types of experimental data might 

provide insight in the future. 

6.3.2 Predictions using the mole-fraction-based new MSOVE 
In this section, we compare the predictions of the mole-fraction-based new MSOVE to 

experimental data from the literature [60–62,74,77,105,147,154,197–199] (total 371 data 

points) for 11 different ternary systems. The studied solutions are mostly mixtures of chloride 

salts, in which case the anion is common between the two salts, except for NaBr + KBr and 

NaCl + NaNO3 systems, which share a bromide anion and a sodium cation, respectively. We 

choose to present the results as the osmolality of the solvent by converting the reported FPD 

data. The data and results in terms of the root-mean-square error (RMSE) are summarized in 

Table 6-3. Root-mean-square errors were calculated using the following formula: 

 RMSE = �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)𝑛𝑛
𝑖𝑖=1

2

𝑛𝑛
  (6-18) 

Root-mean-square errors were calculated for each subsystem separately as well as for 

all data points (all-system RMSE, 𝑛𝑛 = 371), which is shown at the end of Table 6-3 in blue. 

The data sources are indicated in the second column of Table 6-3 with the number of data 

points from each source shown in the third column. In all cases, there are one or more isopleths 

meaning the dataset can be connected by a common feature, depending on the original authors’ 

choice. For example, nine data points from Vilcu and Stanciu [198] for NaBr + KBr are all 

equimolal mixtures (𝑚𝑚NaBr = 𝑚𝑚KBr), while 62 data points measured by Hall et al. [77] for 
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NaCl + KCl can be combined into four isopleths, each at a certain constant value of the weight 

ratio of the salts. The number of isopleths for each dataset and the connecting feature of each 

isopleth are given in the fourth and fifth columns of Table 6-3, respectively. Additionally, 

across all data sources, different units of concentration are used, which are shown in the sixth 

column of Table 6-3. The conversion of these units to molality is discussed in Appendix D. 

The reported FPD values were converted to osmolality using Equation (6-2). As mentioned 

before, the resulting numbers are referred to as experimental data points. 

Table 6-3. Summary of ternary experimental data from the literature and RMSEs for each 
subsystem of prediction of the mole-fraction-based new MSOVE. The RMSEs are colored 
from green (lowest) to red (highest). The all-system RMSE was calculated by considering all 
data points as one system (total 371 data points). 

System Data source 
Number 
of data 
points 

Number 
of 

isopleths 

Connecting 
feature Original units 

RMSE 
[osmoles 
/kg (°C)] 

NaBr + KBr Vilcu et al. [198] 9 1 equimolality FPD vs. 
molality 0.018 (0.034) 

LiCl + NaCl 
Gibbard et al. [60] 42 4 

equivalent 
fraction wrt 

Li+ 

FPD vs. 
equivalent 

concentration 
0.030 (0.056) 

Vilcu et al. [197] 5 1 equimolality FPD vs. 
molality 0.020 (0.037) 

NaCl + MgCl2 

Gibbard et al. [62] 23 3 
equivalent 

fraction wrt 
Na+ 

FPD vs. 
equivalent 

concentration 
0.050 (0.093) 

Haghighi et 
al. [74] 5 1 wt % of 

NaCl 

FPD vs. mass 
percent of 

MgCl2 
0.391 (0.726) 

Mun et al. [147] 12 3 total 
molality 

FPD vs. 
molality 0.077 (0.143) 

NaCl + BaCl2 Gibbard et al. [61] 21 3 
equivalent 

fraction wrt 
Na+ 

FPD vs. 
equivalent 

concentration 
0.018 (0.034) 

LiCl + KCl Vilcu et al. [197] 5 1 equimolality FPD vs. 
molality 0.224 (0.417) 

LiCl + CsCl Vilcu et al. [197] 5 1 equimolality FPD vs. 
molality 0.216 (0.402) 

NaCl + KCl 

Hall et al. [77] 62 4 weight ratio 
of salts 

FPD vs. total 
salinity 0.108 (0.201) 

Vilcu et al. [197–
199] 13 1 equimolality FPD vs. 

molality 0.197 (0.366) 

Haghighi et 
al.  [74] 5 1 wt % of KCl 

FPD vs. mass 
percent of 

NaCl 
0.242 (0.450) 
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NaCl + CaCl2 

Gibbard et al. [61] 11 1 
equivalent 

fraction wrt 
Na+ 

FPD vs. 
equivalent 

concentration 
0.045 (0.084) 

Oakes et al. [154] 94 5 weight ratio 
of salts 

FPD vs. total 
salinity 0.144 (0.268) 

Haghighi et 
al. [74] 5 1 wt % of 

CaCl2 

FPD vs. mass 
percent of 

NaCl 
0.732 (1.356) 

CaCl2 + KCl Haghighi et 
al. [74] 5 1 wt % of KCl 

FPD vs. mass 
percent of 

CaCl2 
1.224 (2.260) 

NaCl +NaNO3 

Khitrova [105] 15 5 
wt % of 

NaCl in the 
initial binary 

FPD vs. wt % 
of salts 0.437 (0.811) 

Khitrova [105] 22 5 

wt % of 
NaNO3 in 
the initial 

binary 

FPD vs. wt % 
of salts 0.366 (0.680) 

KCl + MgCl2 Mun et al. [147] 12 3 total 
molality 

FPD vs. mole 
% 0.211 (0.392) 

 Total 371 45  All-system 
RMSE 0.240 (0.446) 

 

The fact that all data can be separated into isopleths allows us to efficiently present the 

goodness of the predictions graphically in 2D. The results are given in Figure 6-1 and Figure 

6-2 for each ternary solution of each source plotted as osmolality vs. mole fraction. The data 

are grouped so that Figure 6-1 contains comparisons with data from all references listed in 

Table 6-3, except for data from Haghighi et al. [74] and Vilcu et al. [197–199], which are given 

in Figure 6-2. In Figure 6-1 and Figure 6-2, the open circles (○) represent the experimental 

data (original FPD data converted to osmolality). The solid lines of the matching color 

correspond to the predictions of the mole-fraction-based new MSOVE in the entire data range 

following the same isopleth connecting feature, as defined in the title and in the legend of each 

panel. 

As evident by the small RMSE values listed in Table 6-3, as well as from Figure 6-1 

and Figure 6-2, in most cases, the predictions of the model agree well with the experimental 

data. Notable exceptions with above-average RMSE values are: (i) all datasets from Haghighi 

et al. [74] and (ii) both datasets from Khitrova [105] (see Appendix D for a discussion). The 

all-system RMSE value of 0.24 osmoles/kg (corresponding to FPD error of 0.45 °C) was 

calculated by summing the squares of errors for all data points, dividing the results by the 
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number of points (371) and taking the square root of it [see Equation (6-18)]. It is small, 

indicating that the model can predict the FPD of ternary electrolyte solutions well. A more 

detailed analysis of the errors is given in section 6.4. 

When using the MSOVE with combining rules for predictions, the apparent mismatch 

with experimental data or relatively large residuals can occur from three main sources: (i) 

inherent errors due to the simplifying assumptions of the model [16] (e.g., the assumption of 

noninteracting solutes); (ii) the multisolute experimental data not being accurate; and/or (iii) 

the binary data used for fitting either not being accurate or not having enough data points for 

high fit confidence. Additionally, errors in both binary data and multisolute data can add up to 

result in higher apparent discrepancy, or they can cancel out to result in better apparent 

prediction, depending on the relative signs of the deviations. The comparison of the binary data 

from the sources from which the ternary data were obtained and the fitted curves that were 

used for predictions is given in Appendix D. 
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Figure 6-1. Comparison of experimental data (○) with the predictions of the mole-fraction-
based new MSOVE for aqueous ternary electrolyte solutions from the following sources: (a) 
Oakes et al. [154]; (b) Hall et al. [77]; (c) and (d) Mun and Darer [147]; (e) and (f) 
Khitrova [105]; and (g)–(j) three papers by Gibbard et al. [60–62]. In the title of each panel, 𝛼𝛼 
indicates the connecting feature of each isopleth in that panel. Note that the 𝜋𝜋 axes are linear 
but the Δ𝑇𝑇m axes are slightly nonlinear due to the nonlinearity of Equation (6-2). 

a) b) c)

d) e) f)

g)

j)

h) i)
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Figure 6-2. Comparison of experimental data (○) from the given reference with the predictions 
of the mole-fraction-based new MSOVE for aqueous ternary electrolyte solutions from the 
following sources: (a)–(e) three papers by Vilcu et al. [197–199]; and (f)–(i) Haghighi et 
al. [74]. In the title of each panel, 𝛼𝛼 indicates the connecting feature of each isopleth in that 
panel. Note that the 𝜋𝜋 axes are linear but the Δ𝑇𝑇m axes are slightly nonlinear due to the 
nonlinearity of Equation (6-2). 

6.4 Comparison of the new and original combining rules 
In this section, we compare the prediction accuracies of the original and the new 

combining rules using the same dataset used in section 6.3.2 for validation. Previously, it has 

been argued that the E-MSOVE can be derived both in terms of molality and mole fraction, 

depending on the underlying assumptions of the theory [223]. Here, merely for comparison 

purposes, we assume that the same holds for the new MSOVE. As a result, we have four models 

that can be compared in terms of their predictive accuracy: (i) molality-based E-MSOVE 

a) b) c)

d) e) f)

g) h) i)
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[Equations (6-5) to (6-7)]; (ii) mole-fraction-based E-MSOVE [Equation (6-10) with 

combining rules analogous to Equations (6-6) and (6-7)]; (iii) molality-based new MSOVE 

[Equation (6-5) with combining rules analogous to Equations (6-8) and (6-9)]; and (iv) mole-

fraction-based new MSOVE [Equations (6-8) to (6-10)], which is the model tested in section 

6.3.2. 

The RMSEs of all four models are presented in Figure 6-3, which are grouped on a 

subsystem basis (see the third column of Table 6-3). Based on this figure alone, it seems that 

some data are better predicted with the new MSOVE, and some data are better predicted with 

the E-MSOVE. However, comparing RMSEs is not enough to assess the relative performance 

of the models conclusively because biases may be present within each model. Furthermore, the 

number of experimental data points varies significantly from one subsystem to another. For 

example, the NaCl + KCl dataset from Hall et al. [77] contains 62 data points, whereas the 

dataset for the same system from Haghighi et al. [74] has only five data points. The systems 

where the RMSEs are significantly higher for the new MSOVE (both mole fraction and 

molality-based versions) are the CaCl2 + KCl system from Haghighi et al. [74] with  five data 

points and the KCl + MgCl2 system from Mun and Darer [147] with 12 data points. 
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Figure 6-3. RMSE values of predictions for every ternary system (separated based on the 
source) obtained using four versions of the MSOVE. The letters in square brackets are for the 
references given in blue in the legend: (a) [198]; (b) [60]; (c) [197]; (d) [62]; (e) [74]; (f) [147]; 
(g) [61]; (h) [197–199]; (i) [77]; (j) [154]; (k) [105]. Notice that the data from the same source 
are grouped so that they appear sequentially. The numbers in parentheses in red at the end of 
each x-axis label are the numbers of experimental data points for each system. 

For a more thorough comparison, we additionally performed residual analyses, the 

summaries of which are shown graphically in Figure 6-4 and Figure 6-5 for the mole-fraction-

based and the molality-based models, respectively. In these figures, the top panels correspond 

to the new MSOVE, and the bottom panels correspond to the E-MSOVE. On the left panels, 

the predictions are plotted vs. the measurements, and on the right panels, the residuals are 

plotted vs. the total solute concentration. The histograms to the right of the plots show the 

distributions of errors, given on a log scale. 

To quantitatively compare the models, we calculate all-system mean absolute error 

(MAE) and all-system mean bias (MB). They are defined as 
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 MAE =
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛

𝑖𝑖=1

𝑛𝑛
 (6-19) 

and 

 MB =
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)𝑛𝑛

𝑖𝑖=1

𝑛𝑛
 (6-20) 

respectively. A numerical summary of the performance of these four models in terms of 

RMSEs, MAEs, and MBs is presented in Table 6-4. 

Based on Figure 6-4, Figure 6-5, and Table 6-4, it is seen that the mole-fraction-based 

new MSOVE performs better in terms of RMSEs and MAEs, but more importantly, the MB is 

close to zero, as evident by the distribution of the errors. Both versions of the E-MSOVE have 

negative biases, meaning that they tend to underpredict on average. Note that, although the 

absolute values of the MBs for the E-MSOVE predictions may still look small, they are 

significant because most of the experimental data points lie in the first half of the data spread 

(lower concentration region), where the deviations are not as pronounced. The tendency of the 

E-MSOVE to underpredict is the direct result of using the geometric-average combining rule 

for the third-order mixed coefficients. When this combining rule is used, if one of the pure 

coefficients is equal to zero (e.g., when combining a second-degree fit with a third-degree fit), 

the entire term (which is positive since all third-order pure coefficients are positive in this 

study; see Table 6-1 and Table 6-2) is eliminated, whereas for the arithmetic-average 

combining rule this is not the case. In general, the arithmetic mean of nonnegative numbers is 

never smaller than their geometric mean (AM–GM inequality), so one would expect relative 

underprediction from the E-MSOVE even in the case of combining two third-order fits. 

However, the resulting discrepancy between the predictions of the models for NaCl + CaCl2 

and NaCl + MgCl2 mixtures—the only cases where both salts have nonzero cubic 

coefficients—was negligible (see Figure 6-3). As an example, taking the pure cubic osmotic 

virial coefficient values from Table 6-1 for NaCl and CaCl2, a quick calculation shows that the 

arithmetic average vs. geometric average combining rule only results in 0.1 osmoles/kg 

difference at high salt concentration of 𝑥𝑥2 = 𝑥𝑥3 = 0.05. 
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Figure 6-4. Graphical representation of the performance and residuals of the mole-fraction-
based models. The top panels are for the mole-fraction-based new MSOVE, and the bottom 
panels are for the mole-fraction-based E-MSOVE. On the left panels, the predictions are 
plotted against the measurements with solid black lines representing perfect prediction. In the 
panels on the right, the residuals are plotted against the total concentration for each model with 
a histogram to the right of the panel showing the frequency distribution of the errors. Note that 
the histograms are given on a log scale. 
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Figure 6-5. Graphical representation of the performance and residuals of the molality-based 
models. The top panels are for the molality-based new MSOVE, and the bottom panels are for 
the molality-based E-MSOVE. On the left panels, the predictions are plotted against the 
measurements with solid black lines representing perfect prediction. In the panels on the right, 
the residuals are plotted against the total concentration for each model with a histogram to the 
right of the panel showing the frequency distribution of the errors. Note that the histograms are 
given on a log scale. 
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Table 6-4. Numerical summary of the performance of the models in terms of all-system 
RMSEs, MAEs, and MBs. All measures were calculated by considering all data points as one 
system (total of 371 data points). Each column is separately colored from green (lowest 
absolute value) to red (highest absolute value). 

Model RMSE 
(osmoles/kg) 

MAE 
(osmoles/kg) 

MB 
(osmoles/kg) 

Mole-fraction-based new MSOVE 0.2403 0.1176 0.0145 

Mole-fraction-based E-MSOVE 0.4597 0.2429 −0.2204 

Molality-based new MSOVE 0.2760 0.1336 0.0519 

Molality-based E-MSOVE 0.3639 0.1831 −0.1585 

 

6.5 Conclusion 
In this chapter, we demonstrated that the mole-fraction-based MSOVE with arithmetic-

average combining rules, developed in Chapter 5, can accurately predict the FPD of 

concentrated, ternary salt solutions of water. To do this, we first empirically extended our 

model to account for salt dissociation by including an extra fitting parameter (the dissociation 

constant) for each salt in the virial expansion. Then, we fitted polynomials to single-salt–water 

binary FPD data found in the literature, which are the only required inputs to the model. To 

determine the degree of each fitted polynomial, we proposed a unified criterion that allows the 

balance between the RTO-adjusted R-squared value and the CIs of the fitted coefficients to be 

set with a single user-adjustable parameter. Using the proposed fitting criterion, we tabulated 

both the mole-fraction-based and the molality-based osmotic virial coefficients of 31 salts in 

water (plus the dissociation constants). Next, using the tabulated coefficients, we predicted 

osmolalities of 11 different aqueous solutions containing two salts. Comparison with 

experimental data from various sources showed that the model can predict the FPD of ternary 

electrolyte solutions accurately. Finally, we compared two different combining rules and 

concentration units and found that the mole-fraction-based model with arithmetic-average 

combining rules works the best for aqueous electrolytes. 

We note that this article serves as a proof-of-concept since it only predicts a small set 

of a specific type of multisolute data from the experimental literature (i.e., FPD of water). The 

MSOVE with the arithmetic-average combining rules is a virial expansion for the 

concentration dependence of the chemical potential of the solvent, therefore, it can be used to 
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predict a plethora of other related thermodynamic properties of multicomponent solutions (e.g., 

activity, fugacity, osmotic pressure, vapor pressure, etc.) for which a lot of experimental data 

are available in the literature for comparison. Additionally, the model’s predictive capability 

can be tested for more complex solutions containing many species and/or different types of 

species (e.g., salts and proteins in the same solution). 

The main benefit of the method of combining rules is that equilibrium properties of 

multicomponent solutions can be predicted with a minimum number of fitting parameters 

obtained from binary data only. The model is simple, accurate, and computationally 

inexpensive. However, reliable binary data are required to determine the binary polynomials 

to high accuracies since the errors may propagate and result in poor predictions, which would 

be exacerbated with increasing number of solutes. When no or limited data are available, the 

binary coefficients can be alternatively calculated using a more sophisticated model or inferred 

from molecular dynamics simulations. These coefficients can be used in suitable combining 

rules to obtain the mixed coefficients. Then, the MSOVE can be constructed based on these 

parameters and used to make predictions. 

We are not aware of any model that is as simple and is able to predict the properties of 

multicomponent electrolyte solutions as accurately from binary data alone. Although the 

MSOVE and its combining rules for nonelectrolyte solutions can be derived rigorously from 

the theory, its extension to electrolyte solutions is purely empirical. Consequently, the good 

agreement between the model predictions and the experimental measurements is somewhat 

surprising. 
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Chapter 7  
Conclusions 

This work provided theoretical insights into the behavior of confined fluid phases and 

multicomponent solutions, valuable for many technological applications as well as for 

fundamental understanding of relevant systems. Based on these insights, two relatively simple 

models were proposed and applied: (i) a model for calculating the drying pressure of nanopores 

filled with liquid–gas solutions (derived and applied in Chapter 3) and (ii) a polynomial model 

for calculating the chemical potential of a solvent with multiple solutes (derived in Chapter 5, 

applied in Chapter 6). This thesis consists of two parts, and its main outcomes are summarized 

below. 

In Part I of this thesis, three problems were considered in the framework of Gibbsian 

composite-system thermodynamics where the geometry of interfaces and the geometry of 

confinement dictate the equilibrium properties of a system. 

Specifically, in Chapter 2, the interactions of drop–drop and drop–bubble systems were 

investigated, and their equilibrium configurations were identified. Using free-energy analysis, 

the stability of different configurations was explored, their energies were quantified, and 

stability diagrams were constructed. It was shown that the concept of spreading coefficient can 

equally be applied to liquid–gas systems, and it holds true for nanoscale systems as well. In 

addition, the effects of volumes and interfacial tensions of the phases on the free energies of 

the configurations were quantified. Finally, the importance of additional terms in the free-

energy equation due to the compressibility of the gas phase was highlighted. It was shown that 

neglecting these extra terms for a nanoscale drop–bubble system results in not only incorrect 

free-energy calculation, but also qualitatively wrong conclusions in certain cases. 

In Chapter 3, a predictive model was developed for quantifying the influence of a 

dissolved gas on the ease of drying of hydrophobic nanopores (emptying of liquid-filled pores). 

At the core of this model is an equation relating the curvature of the liquid–vapor interface of 
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the nucleus to the nonideal liquid–vapor equilibrium. This equilibrium was solved using the 

nonrandom two-liquid model for the liquid, and the Peng–Robinson equation of state for the 

vapor. At the pressures of interest, it was found that the typically made ideality assumption 

may result in considerable errors. The equilibrium vapor nucleus shape was found to be 

influenced by cylindrical confinement, which had to be computed numerically. The curvature 

of the liquid–vapor interface of the nucleus in turn dictates the equilibrium behavior of the 

system. The analysis showed that gases dissolved in water, such as nitrogen or carbon dioxide, 

can significantly reduce the pressure required for drying of the pores. The required gas 

concentration was much higher than the solubilities of these gases in atmospheric conditions. 

However, such concentrations can be reached at high pressures needed for liquid intrusion into 

the pores. For quantitative predictions, the small radius of the pores investigated (1–5 nm) 

necessitated that line tension effects be included. By combining the developed equation with 

classical nucleation theory, a single fitted line tension value—in the range of reported values 

for pure water systems in the literature—was sufficient for the model to satisfactorily describe 

independent experimental measurements. 

In Chapter 4, the ideas from Chapter 3 were extended to the problem of pore 

condensation and freezing. Namely, solid nucleation from a confined liquid near the liquid–

vapor meniscus in a nanopore and then bridging of neighboring solid-filled pores on the porous 

particle were considered. By computing the equilibrium nucleus and bridge geometries for 

many cases, a comparative free-energy analysis was performed allowing the determination of 

minimum-free-energy routes. For the nucleation inside the pore, depending on the internal 

angles of the solid nucleus, three qualitatively different geometry classes were identified. The 

analysis showed that sharp corners, such as the one created by the meniscus, can be efficient 

nucleation sites, or even reduce the energy barrier to zero (depending on the conditions) by 

making the sum of internal angles of the solid nucleus less than 180°. When it comes to the 

growth of the solid out of the pores, it was shown that having multiple pores in the vicinity of 

each other can lower the energy barriers by bridging, and hence, facilitate the bulk solid 

growth. In some cases, this bridging resulted in an order of magnitude decrease in the energy 

barrier compared to the growth from a single pore. 
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In Part II of this thesis, a practically important model for the chemical potential of a 

solvent with multiple solutes was rigorously derived using elements from combinatorics and 

statistical mechanics and then validated. 

The derivation of the model was provided in Chapter 5, which takes into account full 

interactions in a particle group of an arbitrary size and assumes random mixing of the species. 

The resulting equation is a multivariate polynomial in mole fractions of the components with 

physically meaningful coefficients. Moreover, the equivalency between the derived model and 

the exact solution theories was demonstrated in the large-particle-group limit. With one 

additional assumption about the relative strengths of the interaction between the solute 

particles and the interaction between the solute and solvent particles, combining rules were 

obtained. These combining rules allow the mixed coefficients of the polynomial to be 

expressed as arithmetic averages of appropriate binary coefficients (coefficients obtained from 

binary solvent–single solute mixture data), and therefore, multicomponent predictions to be 

made using only binary data. 

In Chapter 6, the derived model was extended to dissociating solutes by following a 

previous approach of introducing a single empirical fitting parameter (a constant) for each 

solute, and a new fitting criterion was described to truncate the binary polynomials when fitting 

to data. Using the extended model and the new fitting criterion, the binary coefficients of 31 

common salts were tabulated based on literature data. Then, predictions were made for freezing 

points of 11 different ternary aqueous mixtures (two salts + water) and the results were 

compared to a dataset consisting of 371 data points collected from the literature. The predictive 

ability of the model was found to be excellent with an all-system root-mean-square error of 

0.45 °C and negligible mean bias. Furthermore, a comparison to a similar model from the 

literature proved the new model to be more accurate. 

In the future, it would be interesting to compare the findings of Part I of this thesis to 

experiments or simulation studies. This will allow researchers to assess the validity of 

assumptions and the accuracy of calculations, identify the limits, and propose possible 

modifications. For example: What would be the impact of relaxing the immiscibility 

assumption of interacting drops and bubbles? What would be the impact of including the 

influence of dissolved gas on the interfacial tensions for vapor nucleation in a nanopore? How 

relevant is the lattice structure of a solid in a nanopore for computing the nucleation paths and 
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energy barriers? For Part II of this thesis, it would be interesting to check whether it is possible 

to derive the extra fitting parameters for dissociating solutes in the multisolute osmotic virial 

equation from theory instead of empirically introducing them. Additionally, the model could 

be used to make predictions for as many datasets as possible, including different types of 

solvents and solutes, to understand its validity region. 

Although the model from Part II was not applied to similar systems studied in Part I, 

its value for such systems is obvious. If, for example, a nanopore were to be filled with a 

solvent containing a high concentration of multiple solutes—an important case in the studies 

of liquid behavior in confinement—a nonideal chemical potential equation would need to be 

used. The model from Part II would be well suited for such a scenario. Overall, the insights 

and models provided in this thesis help further our understanding of interface-dominated 

multiphase systems in confinement and of multicomponent solutions. 
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Appendix A 

Supplementary Information for Chapter 3 

A.1 Description of the thermodynamic model 
A.1.1 NRTL activity model 

In the nonrandom two-liquid (NRTL) model [32], the activity coefficients are related 

to the concentration of species through the following equations: 

 ln 𝛾𝛾1 = 𝑥𝑥2
2 �𝜏𝜏21 �

𝐺𝐺21

𝑥𝑥1 + 𝑥𝑥2𝐺𝐺21
�

2

+
𝜏𝜏12𝐺𝐺12

(𝑥𝑥2 + 𝑥𝑥1𝐺𝐺12)2� (A-1) 

 ln 𝛾𝛾2
∗ = 𝑥𝑥1

2 �𝜏𝜏12 �
𝐺𝐺12

𝑥𝑥2 + 𝑥𝑥1𝐺𝐺12
�

2

+
𝜏𝜏21𝐺𝐺21

(𝑥𝑥1 + 𝑥𝑥2𝐺𝐺21)2� − (𝜏𝜏12 + 𝜏𝜏21𝐺𝐺21) (A-2) 

with  

 𝐺𝐺12 = exp (−𝛼𝛼12𝜏𝜏12) (A-3) 

 𝐺𝐺21 = exp (−𝛼𝛼21𝜏𝜏21) (A-4) 

where 𝛼𝛼12 and 𝛼𝛼21 are the nonrandomness parameters. The NRTL interaction parameters, 

𝜏𝜏12(𝑇𝑇) and 𝜏𝜏21(𝑇𝑇), are adjustable parameters in practice that are only functions of temperature. 

For carbon dioxide in water, we take 𝛼𝛼12 = 𝛼𝛼21 = 0.3 since it is a polar–nonpolar 

mixture and use the interaction parameters from Hou et al. [20]: 

 𝜏𝜏12 = 3.720 −
803.18

𝑇𝑇
+ 21.13 �

𝑇𝑇0 − 𝑇𝑇
𝑇𝑇

+ ln
𝑇𝑇
𝑇𝑇0

� (A-5) 

 𝜏𝜏21 = 18.664 −
5549.77

𝑇𝑇
− 112.67 �

𝑇𝑇0 − 𝑇𝑇
𝑇𝑇

+ ln
𝑇𝑇
𝑇𝑇0

� (A-6) 

where 𝑇𝑇 (K) is the temperature and 𝑇𝑇0 = 298.15 K. Due to its low solubility even at high 

pressures, for nitrogen in water we use 𝜏𝜏21 = 𝜏𝜏12 = 0, which means 𝛾𝛾1 = 𝛾𝛾2
∗ = 1. 

A.1.2 Peng–Robinson EOS 
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To calculate the fugacity coefficients in the vapor phase, we use the Peng–Robinson 

cubic equation of state (P–R EOS) [30]. For the vapor phase of a pure component, it is written 

as 

 𝑃𝑃V =
𝑅𝑅�𝑇𝑇

𝑣𝑣PR − 𝑏𝑏PR −
𝑎𝑎PR(𝑇𝑇)

𝑣𝑣PR(𝑣𝑣PR + 𝑏𝑏PR) + 𝑏𝑏PR(𝑣𝑣PR − 𝑏𝑏PR) (A-7) 

where 𝑣𝑣PR is the molar volume, and 𝑎𝑎PR and 𝑏𝑏PR are the energy and co-volume parameters 

defined below: 

 𝑎𝑎PR =
0.457235(𝑅𝑅�𝑇𝑇c)2𝛼𝛼(𝑇𝑇)

𝑃𝑃c
 (A-8) 

where 𝑇𝑇c (K) and 𝑃𝑃c (Pa) are the critical temperature and pressure, respectively, and 

 𝛼𝛼(𝑇𝑇) = �1 + (0.37464 + 1.54226𝜔𝜔 − 0.26992𝜔𝜔2) �1 − ��
𝑇𝑇
𝑇𝑇c

���

2

 (A-9) 

where 𝜔𝜔 is the acentric factor. 𝑏𝑏PR is defined as 

 𝑏𝑏PR =
0.077796𝑅𝑅�𝑇𝑇c

𝑃𝑃c
 (A-10) 

Using mixing rules, the P–R EOS can be extended to mixtures. The classical mixing 

rules are (written for the vapor phase) [30,31]: 

 𝑎𝑎PR = � � 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗
PR

𝑗𝑗𝑖𝑖

 (A-11) 

 𝑎𝑎𝑖𝑖𝑗𝑗
PR = �1 − 𝑘𝑘𝑖𝑖𝑗𝑗��𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗 (A-12) 

 𝑏𝑏PR = � �
𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗�𝑏𝑏𝑖𝑖 + 𝑏𝑏𝑗𝑗�

2
𝑗𝑗𝑖𝑖

 (A-13) 

where 𝑘𝑘𝑖𝑖𝑗𝑗 is the binary interaction parameter. 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 are the energy and co-volume 

parameters for pure components, as given by Equations (A-8) and (A-10). By substituting 

Equations (A-11) and (A-13) into Equation (A-7), it describes the vapor phase of a mixture. 

Equation (A-7) is equivalent to solving the following cubic equation [30] 

 
𝑍𝑍3 − (1 − 𝐵𝐵PR)𝑍𝑍2 + [𝐴𝐴PR − 3(𝐵𝐵PR)2 − 2𝐵𝐵PR]𝑍𝑍

− [𝐴𝐴PR𝐵𝐵PR − (𝐵𝐵PR)2 − (𝐵𝐵PR)3] = 0 
(A-14) 

where 𝑍𝑍 is the vapor phase compressibility factor defined as 
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 𝑍𝑍 =
𝑃𝑃V𝑣𝑣PR

𝑅𝑅�𝑇𝑇
 (A-15) 

and the parameters 𝐴𝐴PR and 𝐵𝐵PR are defined as 

 𝐴𝐴PR =
𝑎𝑎PR𝑃𝑃V

(𝑅𝑅�𝑇𝑇)2  (A-16) 

 𝐵𝐵PR =
𝑏𝑏PR𝑃𝑃V

𝑅𝑅�𝑇𝑇
 (A-17) 

Finally, the fugacity coefficients are related to the compressibility and the 

concentration through the following relation [30] 

 
ln 𝜙𝜙�𝑖𝑖

V =
𝑏𝑏𝑖𝑖

PR

𝑏𝑏PR (𝑍𝑍 − 1) − ln(𝑍𝑍 − 𝐵𝐵PR)

−
𝐴𝐴PR

2√2𝐵𝐵PR
�

2 ∑ 𝑦𝑦𝑗𝑗𝑎𝑎𝑗𝑗𝑖𝑖
PR

𝑗𝑗

𝑎𝑎PR −
𝑏𝑏𝑖𝑖

PR

𝑏𝑏PR� ln �
𝑍𝑍 + �1 + √2�𝐵𝐵PR

𝑍𝑍 + �1 − √2�𝐵𝐵PR
� 

(A-18) 

where 𝜙𝜙�𝑖𝑖
V is the fugacity coefficient of component 𝑖𝑖 in the vapor phase. The required 

parameters for the systems of interest in this work are given in Table A-1 [25]. 

Table A-1. Parameters for P–R EOS calculations [25]. 

Component 𝑇𝑇c (K) 𝑃𝑃c (MPa) 𝜔𝜔 

water 647.10 22.064 0.3443 

nitrogen 126.19 3.3958 0.0372 

carbon dioxide 304.13 7.3773 0.2239 
 

We use constant (temperature-independent) interaction parameters from Søreide et 

al. [37] for both systems: 𝑘𝑘H2O–N2 = 0.4778 and 𝑘𝑘H2O–CO2 = 0.1896. 

A.1.3 Calculating 𝝓𝝓𝟏𝟏,𝒔𝒔𝒔𝒔𝒔𝒔, 𝑯𝑯𝟏𝟏𝟏𝟏, 𝒗𝒗�𝟏𝟏,∞
𝑳𝑳 , 𝑷𝑷𝟏𝟏,𝒔𝒔𝒔𝒔𝒔𝒔, and 𝒗𝒗𝟏𝟏,𝒔𝒔𝒔𝒔𝒔𝒔

𝑳𝑳  

To calculate the fugacity coefficient of the vapor of pure water at saturation, 𝜙𝜙1,sat, we 

use the correlation from Hass [19]: 

 𝜙𝜙1,sat = exp �
10𝑃𝑃1,sat𝑝𝑝0 + 5𝑃𝑃1,sat

2 𝑇𝑇� 6𝑝𝑝1 + 2𝑃𝑃1,sat
5 𝑇𝑇� 24𝑝𝑝2

46.151𝑇𝑇
� (A-19) 

with 

 
𝑝𝑝0 = 0.512004 − 1.191807𝑇𝑇� + 2.599832𝑇𝑇� 2 − 21.433083𝑇𝑇� 3

+ 15.281761𝑇𝑇� 4 − 2.527165𝑇𝑇� 5 − 2.454047𝑇𝑇� 6 
(A-20) 
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𝑝𝑝1 = 0.661366 − 3.258346𝑇𝑇� + 6.393115𝑇𝑇� 2 − 6.447504𝑇𝑇� 3

+ 3.202128𝑇𝑇� 4 − 0.514945𝑇𝑇� 5 − 0.120192𝑇𝑇� 6 
(A-21) 

 

𝑝𝑝3 = (8.44104 + 28.86344𝑇𝑇� − 270.10366𝑇𝑇� 2 + 624.08835𝑇𝑇� 3

− 675.70455𝑇𝑇� 4 + 363.16788𝑇𝑇� 5 −  79.26405𝑇𝑇� 6)

× 10−6 

(A-22) 

where 𝑇𝑇 (K) is the temperature and 𝑇𝑇� = 𝑇𝑇/500. 

We calculate Henry’s law constant, 𝐻𝐻12, for nitrogen in water from the correlation of 

Harvey [18] using the improved parameters of Prini et al. [11] (given in units of Pa): 

 
𝐻𝐻12 = 𝑃𝑃1,sat exp �−

9.67578
𝑇𝑇r

+  4.72162
(1 − 𝑇𝑇r)0.355

𝑇𝑇r

+  11.70585𝑇𝑇r
−0.41 exp(1 − 𝑇𝑇r)� 

(A-23) 

where 𝑇𝑇 (K) is the temperature, 𝑃𝑃1,sat (Pa) is the saturation vapor pressure of pure water at 𝑇𝑇, 

and 𝑇𝑇r = 𝑇𝑇/647.1. 

We calculate Henry’s law constant, 𝐻𝐻12, for carbon dioxide in water using the 

correlation of Hou et al. [20] (given in units of Pa): 

 
        𝐻𝐻12 = 106 exp �−6.1384 +  42.842 �

𝑇𝑇0

𝑇𝑇 �  −  44.358 �
𝑇𝑇0

𝑇𝑇 �
2

+  12.786 �
𝑇𝑇0

𝑇𝑇 �
3

� 

(A-24) 

where 𝑇𝑇 (K) is the temperature and 𝑇𝑇0 = 298.15 K. 

We find the infinite dilution partial molar volume of nitrogen in water, �̅�𝑣2,∞
L , from the 

correlation of Sun [39] (given in units of m3/mol): 

 

�̅�𝑣2,∞
L = 𝑅𝑅� �2.3546047 × 10−5 − 1.04544 × 10−14𝑃𝑃L

− 4.3078 × 10−7𝑇𝑇 − 8.09187 × 10−7 𝑇𝑇
680 − 𝑇𝑇

+ 6.474123 × 10−8𝑇𝑇 ln 𝑇𝑇� 

(A-25) 

where 𝑇𝑇 (K) is the temperature and 𝑃𝑃L(Pa) is the liquid pressure. 

For carbon dioxide in water, we calculate the infinite dilution partial molar volume of 

the gas using the correlation of Sedlbauer et al. [36] (given in units of m3/mol): 
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�̅�𝑣2,∞
L = 𝜅𝜅T,1𝑅𝑅�𝑇𝑇 + 0.5558�𝑣𝑣1

L − 𝜅𝜅T,1𝑅𝑅�𝑇𝑇�

+ 𝜅𝜅T,1𝑅𝑅�𝑇𝑇𝜌𝜌1 �3.3921 × 10−3

− 1.3880 × 10−5 exp �
1500

𝑇𝑇 �

+ 1.4801 × 10−4[exp(0.005𝜌𝜌1) − 1]

+ 1.2 × 10−3[exp(−0.01𝜌𝜌1) − 1]� 

(A-26) 

where 𝜅𝜅T,1 (Pa−1) is the isothermal compressibility, 𝑣𝑣1
L (m3/mol) is the molar volume, and 

𝜌𝜌1(kg/m3) is the mass density of pure liquid water at 𝑇𝑇 (K) and 𝑃𝑃L (Pa). The values of 𝜅𝜅T,1, 

𝑣𝑣1
L, and 𝜌𝜌1 as well as the saturation properties, 𝑃𝑃1,sat and 𝑣𝑣1,sat

L , for water are taken from 

REFPROP 10 [25]. Note that, for ease of reference, we generated look-up tables using 

REFPROP 10 [25] for the properties of interest at each temperature used in our work. In these 

tables, we set the pressure increment to 0.1 MPa and used linear interpolation for in-between 

values. 

The plots of molar volumes as functions of pressure at three different temperatures are 

given in Figure A-1. In all cases, the linear (or close to linear) dependence on pressure allows 

us to evaluate the molar volume integrals in the phase equilibrium equations [Equations (3-13) 

and (3-22)] by the trapezoidal rule, ∫ 𝑓𝑓(𝑥𝑥)d𝑥𝑥𝑐𝑐2
𝑐𝑐1

≈ [𝑓𝑓(𝑐𝑐1) + 𝑓𝑓(𝑐𝑐2)](𝑐𝑐2 − 𝑐𝑐1)/2, without loss of 

accuracy. 

 
Figure A-1. Plots of molar volumes as functions of pressure at three different temperatures:  
𝑇𝑇 = 323.15 K (solid lines), 𝑇𝑇 = 348.15 K (dashed lines), and 𝑇𝑇 = 373.15 K (dotted lines). 
Panel (a) shows the plots of pure liquid water molar volume, 𝑣𝑣1

L, and panel (b) shows the plots 
of infinite dilution partial molar volume, �̅�𝑣2,∞

L , for nitrogen in water (red lines) and for carbon 
dioxide in water (blue lines). 
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A.1.4 Validation of the thermodynamic model 
We plot the mutual solubilities of nitrogen–water and carbon dioxide–water systems at 

three different temperatures and at high pressures (up to 100 MPa) in Figure A-2 and Figure 

A-3, respectively, as calculated from the (nonideal) model described in this work. Some 

experimental data points from the literature are also shown for comparison. Overall, although 

it is relatively simple, the model captures the behavior of both systems in the entire pressure 

range accurately enough for our purposes. 

 
Figure A-2. Mutual solubilities of nitrogen and water as functions of pressure at three different 
temperatures: (a) 𝑇𝑇 = 323.15 K, (b) 𝑇𝑇 = 348.15 K, and (c) 𝑇𝑇 = 373.15 K. The orange lines 
show the mole fraction of water in vapor phase, 𝑦𝑦1, and light blue lines show the mole fraction 
of nitrogen in the liquid phase, 𝑥𝑥2, as calculated from the model described in this work. The 
green markers are the experimental data points for the water concentration in the vapor phase 
and violet markers are the experimental data points for the gas concentration in the liquid phase 
from the literature [6,33,34,46] as compiled in reference [1]. 
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Figure A-3. Mutual solubilities of carbon dioxide and water as functions of pressure at three 
different temperatures: (a) 𝑇𝑇 = 323.15 K, (b) 𝑇𝑇 = 348.15 K, and (c) 𝑇𝑇 = 373.15 K. The 
orange lines show the mole fraction of water in the vapor phase, 𝑦𝑦1, and the light blue lines 
show the mole fraction of carbon dioxide in the liquid phase, 𝑥𝑥2, as calculated from the model 
described in this work. The green markers are the experimental data points for the water 
concentration in the vapor phase and the violet markers are the experimental data points for 
the gas concentration in the liquid phase from the literature [2,5,7–9,15,21,27,35,40,44,45] as 
compiled in reference [38]. 

A.2 Solution procedure for the system of equations 
In general, at a fixed temperature, there are eleven equations that need to be solved 

simultaneously for thermodynamic equilibrium: 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

Equation (3-12)
Equation (3-21)
Equation (A-14)

𝑥𝑥1 + 𝑥𝑥2 = 1
𝑦𝑦1 + 𝑦𝑦2 = 1

𝛾𝛾1 = 𝛾𝛾1(𝑥𝑥1, 𝑥𝑥2)
𝛾𝛾2

∗ = 𝛾𝛾2
∗(𝑥𝑥1, 𝑥𝑥2)

𝜙𝜙�1
V = 𝜙𝜙�1

V(𝑃𝑃V, 𝑍𝑍, 𝑦𝑦1, 𝑦𝑦2)
𝜙𝜙�2

V = 𝜙𝜙�2
V(𝑃𝑃V, 𝑍𝑍, 𝑦𝑦1, 𝑦𝑦2)

𝑣𝑣1
L = 𝑣𝑣1

L(𝑃𝑃L)
�̅�𝑣2,∞

L = �̅�𝑣2,∞
L (𝑃𝑃L)

 (A-27) 

However, there are thirteen unknowns: 𝑃𝑃L, 𝑃𝑃V, 𝑍𝑍, 𝑥𝑥1, 𝑥𝑥2, 𝑦𝑦1, 𝑦𝑦2, 𝜙𝜙�1
V, 𝜙𝜙�2

V, 𝛾𝛾1, 𝛾𝛾2
∗, 𝑣𝑣1

L, and �̅�𝑣2,∞
L . 

This means that two more equations are required to close the system of equations. We have 

four cases that are relevant in this work: 

(i) to solve for saturation across a flat interface 
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Step 1. fix the system pressure at 𝑃𝑃L = 𝑃𝑃V = constant (when pressure is 

known) or fix the gas concentration at 𝑥𝑥2 = constant and set 𝑃𝑃L = 𝑃𝑃V 

(when concentration is known) 

Step 2. solve the system of Equations (A-27) 

(ii) to find the free-energy barrier for the given pore size at fixed gas concentration and 

liquid pressure 

Step 1. fix the gas concentration at 𝑥𝑥2 = constant and the liquid pressure at 

𝑃𝑃L = constant 

Step 2. find the vapor pressure, 𝑃𝑃V, by solving the system of Equations (A-27) 

Step 3. find the curvature, 𝑘𝑘c, of the corresponding shape using Equation (3-7) 

[or Equation (3-23)] 

Step 4. find the shape and its energy, Δ𝐵𝐵c, for the prescribed curvature and pore 

radius by interpolating in the geometry data from Surface Evolver 

(iii) to find the extrusion pressure for the given pore size at fixed gas concentration 

Step 1. fix the gas concentration at 𝑥𝑥2 = constant and take the free-energy 

barrier to be Δ𝐵𝐵c = 35𝑘𝑘B𝑇𝑇 

Step 2. find the corresponding nucleus curvature, 𝑘𝑘c, by interpolating in the 

geometry data from Surface Evolver for the specified pore radius 

Step 3. use Equation (3-7) to find 𝑃𝑃V − 𝑃𝑃L = constant 

Step 4. solve the system of Equations (A-27) to find 𝑃𝑃ext = 𝑃𝑃L 

(iv) to find the required gas concentration to empty a given pore at fixed liquid pressure 

Step 1. fix the liquid pressure 𝑃𝑃L = 𝑃𝑃ext = constant and take the free-energy 

barrier to be Δ𝐵𝐵c = 35𝑘𝑘B𝑇𝑇 

Step 2. find the corresponding nucleus curvature, 𝑘𝑘c, by interpolating in the 

geometry data from Surface Evolver for the specified pore radius 

Step 3. use Equation (3-7) to determine the vapor pressure, 𝑃𝑃V 

Step 4. solve the system of Equations (A-27) to find the gas concentration, 𝑥𝑥2 

The system of Equations (A-27) is solved numerically with MATLAB (v. 2021a, 

Natick, MA, USA) using the built-in solver vpasolve() by providing physically appropriate 

ranges for the variables. The pressure dependence of the molar volume of pure water and the 

partial molar volume of carbon dioxide is implicit and complicated. However, they are much 
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weaker functions of pressure compared to the partial molar volume of nitrogen (see Figure 

A-1). If the liquid pressure is an unknown that is to be found by solving the system of equations 

[e.g., extrusion pressure calculations; see (iii) above], the molar volume of water and the partial 

molar volume of carbon dioxide are fixed at 𝑃𝑃1,sat as constants. For the nitrogen–water system, 

since �̅�𝑣2,∞
L  is explicitly given as a linear function of pressure, only water molar volume is fixed 

at 𝑃𝑃1,sat. 

A.3 Analytical solution of the symmetric nucleus profile 
It is possible to develop an analytical solution for the shape of the critical nucleus by 

requiring it to have rotational symmetry with the axis of symmetry being the cylinder axis and 

solving the variational problem (i.e., the Euler–Lagrange equation). This solution is given by 

Lefevre et al. [24], and the final equation for the profile is (translated to our notation) 

 𝑑𝑑(𝑟𝑟) = ± �
2cos 𝜃𝜃eq + 𝑅𝑅p𝑘𝑘c(𝑥𝑥2 − 1)

�4𝑥𝑥2 − �2cos 𝜃𝜃eq + 𝑅𝑅p𝑘𝑘c(𝑥𝑥2 − 1)�2

𝑟𝑟

𝑐𝑐

d𝑥𝑥 (A-28) 

where the magnitude of 𝑑𝑑(𝑟𝑟) is the distance to the liquid–vapor interface from a circle of radius 

𝑟𝑟 on the radial plane whose center is on the cylinder axis. 𝑥𝑥 is an integration variable, and the 

lower bound of integration, 𝑐𝑐, is given as  

 𝑐𝑐 =
�1 − 𝑅𝑅p𝑘𝑘c�cos 𝜃𝜃eq − 𝑅𝑅p𝑘𝑘c� − 1

𝑅𝑅p𝑘𝑘c
 (A-29) 

Equation (A-28) is integrated numerically. Example profiles calculated using Equation 

(A-28) are shown in Figure 3-3 (c). 

A.4 Pore size distribution data from Li et al. [26] 
The normalized pore volume distribution data from Li et al. [26] is given in Figure A-4 

(a) (manually digitized) for which the reported volume-based mean is 6 nm. We converted this 

data to a number distribution by dividing each data point by 𝜋𝜋𝑅𝑅p
2𝑙𝑙p where 𝑙𝑙p is the pore length 

assumed to be a constant (independent of 𝑅𝑅p). This distribution data is for the raw hydrophilic 

material as received. To make the pores hydrophobic, the pore surfaces were coated with a thin 
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layer of chloro(dimethyl)octylsilane. Although the authors do not mention the pore size 

distribution after this step, we could estimate the thickness of the applied layer using the 

method of Fadeev et al. [10]. Due to the structural differences in the arrangement of the 

molecules in this layer, the layer thickness is about one third of the radius for pores smaller 

than ~2.5 nm in radius and ~1 nm for larger pores. In order to have a continuous variation, 

we chose a slightly higher cut-off value at 𝑅𝑅p = 3 nm and subtracted the layer thickness from 

the pore radii. 

After transforming the data, we fitted a continuous distribution curve to this data using 

MATLAB’s (v. 2021a, Natick, MA, USA) built-in distribution fitter fitdist(). This function fits 

a chosen distribution to data using maximum likelihood estimation. Among many common 

distribution types tried, the Weibull distribution fitted the data best (i.e., the lowest root-mean-

square deviation) with the number-based mean of 2.5 × 10−9 m and the variance of 

3.1 × 10−18 m2. The fitted curve is shown in Figure A-4 (b) (black line) together with the 

transformed data. Using the fitted distribution, we could generate a collection of pores 

mimicking the samples in the experiments and simulate the intrusion–extrusion curves. 

 
Figure A-4. Pore size distribution data from the work of Li et al. [26]. (a) Volume density data 
as originally reported but normalized. (b) Transformed number density data with hydrophobic 
layer thickness subtracted (red) and fitted with a continuous distribution curve (black line). All 
curves (both data curves and the fitted curve) are normalized in the data range to unity. 
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Appendix B 

Supplementary Information for Chapter 4 

B.1 Surface Evolver calculation details 
We use the Surface Evolver (SE) code [3] to calculate the nontrivial shapes of the 

asymmetric nucleus and bridge geometries. Surface Evolver is a special software package 

designed for complex variational problems involving surface forces. The surface is represented 

as a simplicial complex using triangles, which are moved towards the equilibrium shape with 

the built-in gradient descent or conjugate gradient methods. The basic elements of geometry 

are the vertices, edges, and triangle facets. Additionally, level set constraints with prescribed 

contact angles can be included. For stability and speed, the facets on the constraints are not 

included and their areas are calculated using appropriate line integrals along the edges on the 

constraints using Stokes’s theorem (see below). Furthermore, the volumes are calculated by 

evaluating surface integrals according to the Divergence theorem, which are also converted to 

line integrals on the constraints. For numerical stability, it is better to evolve the shape with a 

prescribed volume and obtain the curvature, than prescribing the curvature to obtain the 

volume. 

Below we give a brief summary of the main ideas from the SE manual [4] relevant to 

our work. For more details, see the manual [4]. 

In general, the volume of a body 𝐵𝐵 is 

 𝑉𝑉 = � 1d𝑥𝑥d𝑦𝑦d𝑧𝑧
𝐵𝐵

 (B-1) 

Surface Evolver replaces this integral with a double integral around the body boundary 𝜕𝜕𝐵𝐵 

using the Divergence theorem: 

 𝑉𝑉 = � 𝑧𝑧𝑘𝑘�⃗ ⋅ 𝑁𝑁��⃗ d𝐴𝐴
𝜕𝜕𝐵𝐵

 (B-2) 
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since ∇ ⋅ 𝑧𝑧𝑘𝑘�⃗ = 1. We denote the unit vectors with 𝚤𝚤, 𝚥𝚥, and 𝑘𝑘�⃗  in the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 directions, 

respectively. Taking the upward pointing normal, SE actually calculates 

 𝑉𝑉 = � 𝑧𝑧d𝑥𝑥d𝑦𝑦
𝜕𝜕𝐵𝐵

 (B-3) 

The volume contributions of explicitly given facets are automatically handled by SE. 

Since the facets on the constraints are omitted, compensating integrals should be specified, 

which are evaluated as line integrals over the oriented edges on constraints using Stokes’s 

theorem. 

Let 𝑆𝑆 be a portion of 𝜕𝜕𝐵𝐵 that lies on the level set constraint 𝐹𝐹(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 0 with 𝜕𝜕𝑆𝑆 

being its oriented boundary, oriented counterclockwise with respect to the unit normal vector 

𝑁𝑁��⃗ . Because ∇ ⋅ 𝑧𝑧𝑘𝑘�⃗ ≠ 0, there does not exist a vector field whose curl is equal to 𝑧𝑧𝑘𝑘�⃗  [because 

∇ ⋅ (∇ × 𝑤𝑤��⃗ ) = 0 should hold for any 𝑤𝑤��⃗ ]. To be able to use Stokes’s theorem, the implicit 

equation of the constraint should be solved explicitly for 𝑧𝑧 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦). Then the volume 

contribution can be calculated as 

 �𝑓𝑓𝑘𝑘�⃗ ⋅ 𝑁𝑁��⃗ d𝐴𝐴
𝑆𝑆

= � 𝑤𝑤��⃗ ⋅ 𝑑𝑑𝑙𝑙
𝜕𝜕𝑆𝑆

 (B-4) 

for some vector field 𝑤𝑤��⃗  with 𝑓𝑓𝑘𝑘�⃗ = ∇ × 𝑤𝑤��⃗ . It remains to solve this equation for 𝑤𝑤��⃗ , which has 

many solutions all differing by a gradient of some scalar function. One convenient solution is 

to take 𝑤𝑤��⃗ = ⟨𝑀𝑀(𝑥𝑥, 𝑦𝑦), 𝑁𝑁(𝑥𝑥, 𝑦𝑦), 0⟩ with 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝜕𝜕𝑁𝑁
𝜕𝜕𝑥𝑥

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

. This still does not have a unique 

solution. For rotationally symmetric problems around the 𝑧𝑧-axis, one convenient solution is to 

take [4] 

 𝑤𝑤��⃗ = 𝑔𝑔(𝑡𝑡)(−𝑦𝑦𝚤𝚤 + 𝑥𝑥𝚥𝚥) (B-5) 

where 𝑡𝑡 = 𝑥𝑥2 + 𝑦𝑦2. Then, using the chain rule on 𝑡𝑡 and denoting ℎ(𝑡𝑡) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦), we can 

obtain [4] 

 𝑔𝑔(𝑡𝑡) =
1
2𝑡𝑡

� ℎ(𝑡𝑡)d𝑡𝑡 (B-6) 

Once 𝑔𝑔(𝑡𝑡) is found, the definition of 𝑡𝑡 can be substituted back in, and using 𝐹𝐹(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =

0, it can be further simplified, if needed, obtaining 𝑤𝑤��⃗ . The integration constant can be 

determined from the knowledge of the expected behavior of the vector field at certain points 

(e.g., the integral of 𝑤𝑤��⃗  vanishes at 𝑧𝑧 = 0). 
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Similarly, SE takes care of the areas of explicitly given facets. For areas on the 

constraints, we again want to use Stokes’s theorem [4]: 

 𝐴𝐴 = �1d𝐴𝐴
𝑆𝑆

= ��⃗�𝑣 ⋅ 𝑁𝑁��⃗ d𝐴𝐴
𝑆𝑆

= � 𝑤𝑤��⃗ ⋅ 𝑑𝑑𝑙𝑙
𝜕𝜕𝑆𝑆

 (B-7) 

with �⃗�𝑣 ⋅ 𝑁𝑁��⃗ = 1, ∇ ⋅ �⃗�𝑣 = 0, and �⃗�𝑣 = ∇ × 𝑤𝑤��⃗ . Using 𝑧𝑧 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) and 

 �⃗�𝑣 = �1 + �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�

2

+ �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦�

2

 𝑘𝑘�⃗  (B-8) 

rotationally symmetric 𝑤𝑤��⃗  can be found by integrating in the same way as the volume 

calculation. The vector field solutions to the above problems for volume and areas are directly 

used in the SE datafile. 

B.1.1 Calculating the asymmetric nucleus shape 
In the top row of Figure B-1, different views of the initial geometry of the shape for the 

asymmetric nucleus are shown. The cylinder (i.e., pore) axis is the 𝑧𝑧-axis and its radius is 1. 

The radius of the meniscus sphere is 𝑅𝑅s = 1/ cos 𝛼𝛼. The center of the sphere is placed at 𝑥𝑥 =

0, 𝑦𝑦 = 0, and 𝑧𝑧 = 𝑅𝑅s so that its lowest point in the 𝑧𝑧 direction is at 𝑥𝑥 = 0, 𝑦𝑦 = 0, and 𝑧𝑧 = 0. 

With this setup, the above-described method for the volume integrand on the sphere yields 

 𝑤𝑤��⃗ =  �
𝑅𝑅s

2

3(2𝑅𝑅s − 𝑧𝑧) −
𝑅𝑅s

2
− 𝑧𝑧� (−𝑦𝑦𝚤𝚤 + 𝑥𝑥𝚥𝚥) (B-9) 

and for the area integrand on the sphere, it yields 

 𝑤𝑤��⃗ =  −
𝑅𝑅s

2𝑅𝑅s − 𝑧𝑧
(−𝑦𝑦𝚤𝚤 + 𝑥𝑥𝚥𝚥) (B-10) 

The volume contribution of the cylinder is zero because it is parallel to the 𝑧𝑧-axis. The area 

integrand for the cylinder is found as 

 𝑤𝑤��⃗ =  𝑧𝑧(−𝑦𝑦𝚤𝚤 + 𝑥𝑥𝚥𝚥) (B-11) 

An example evolved shape is shown in the bottom row of Figure B-1. 
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Figure B-1. Different views of an example asymmetric nucleus geometry at the meniscus 
before (top row) and after (bottom row) the evolution with SE. The cylinder wall and the edges 
on the meniscus are not shown after the evolution for clarity. The radius of the cylinder is 𝑅𝑅p =
1 and the volume of the nucleus was set to 𝑉𝑉�nuc

S∗ = 0.2. The meniscus–nucleus contact angle is 
𝛽𝛽 = 90° and the contact line is highlighted in red. The cylinder–nucleus contact angle is also 
𝜑𝜑 = 90° and the contact line is highlighted in green. The meniscus angle is 𝛼𝛼 = 5°. Note that 
the initial shape is not required to have the correct, prescribed volume. 

B.1.2 Calculating the bridge geometries 
Different views of the initial geometry of the shapes for the bridging of two pores and 

three pores are shown in the top rows of Figure B-2 and Figure B-3, respectively. In both cases, 

the surface of the porous particle was placed at the 𝑧𝑧 = 0 plane. The shapes were pinned at the 

pore mouths and only the portions of the shapes between the pores were required to meet with 

the particle surface at the angle 𝜃𝜃. The pores centers are 𝑙𝑙 apart and the pores have radii of 1. 

Since the constraint is at 𝑧𝑧 = 0, it has no volume contribution. The area integrand for this 

constraint is 

 𝑤𝑤��⃗ = −𝑦𝑦𝚤𝚤 (B-12) 

which is integrated along appropriate edges (shown in yellow in Figure B-2 and Figure B-3). 

Example evolved shapes for two pores and three pores are shown in the bottom rows of Figure 

B-2 and Figure B-3, respectively. 
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Figure B-2. Different views of an example bridge geometry connecting two pores before (top 
row) and after (bottom row) the evolution in SE. The shape is pinned at the pore mouths 
(circles) but makes 𝜃𝜃 = 135° angle with the flat surface between the pores (the portions of the 
yellow lines connecting the circles). The radii of the circles are 𝑅𝑅p = 1 and the distance 
between the centers of the circles is 𝑙𝑙 = 8/3. The volume of the shape is 𝑉𝑉�bri

S∗ = 5. Note that 
the initial shape is not required to have the correct, prescribed volume. 

 
Figure B-3. Different views of an example bridge geometry connecting three pores before (top 
row) and after (bottom row) the evolution with SE. The shape is pinned at the pore mouths 
(circles) but makes 𝜃𝜃 = 90° angle with the flat surface between the pores (the portions of the 
yellow lines connecting the circles). The radii of the circles are 𝑅𝑅p = 1 and the distance 
between the centers of the circles is 𝑙𝑙 = 10/3. The volume of the shape is 𝑉𝑉�bri

S∗ = 6. Note that 
the initial shape is not required to have the correct, prescribed volume. 

As the convergence criterion, in all applicable SE calculations in Chapter 4, we stopped 

the evolution if the energy change for a given triangulation was at least less than 10−4 and the 

scale factor (see the SE manual [4]) was roughly stable in the expected range after 50 conjugate 
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gradient iterations. Note that finer meshes have been used for the final calculations reported in 

Chapter 4 than for the evolved surfaces shown in Figure B-1, Figure B-2, and Figure B-3. 
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Appendix C 

Supplementary Information for Chapter 5 

C.1 Detailed steps between Equations (5-21) and (5-22) and 

Equations (5-22) and (5-23) 
From the main text, Equation (5-21) is 

 

𝜇𝜇1
ex =

𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖2,𝑖𝑖3…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖2,𝑖𝑖3…𝑖𝑖𝑛𝑛=1
𝑖𝑖1=2

 
(C-1) 

To get Equation (5-22), the omitted steps are: 

Step (1) Separate the term containing 𝑥𝑥1 in the sum over 𝑖𝑖2 in Equation (C-1) from the rest 

and substitute 1 − ∑ 𝑥𝑥𝑗𝑗
𝑟𝑟
𝑗𝑗=2  for 𝑥𝑥1 to get 
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𝜇𝜇1
ex =

𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛 �1 − � 𝑥𝑥𝑗𝑗

𝑟𝑟

𝑗𝑗=2

� 𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1

+
𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1
𝑖𝑖2=2

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤𝑖𝑖11𝑖𝑖3…𝑖𝑖𝑛𝑛 − 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1 �1

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1
𝑖𝑖1=2

− � 𝑥𝑥𝑗𝑗

𝑟𝑟

𝑗𝑗=2

� 𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1
𝑖𝑖1,𝑖𝑖2=2

 

(C-2) 

Step (2) Where present in Equation (C-2), split the expression (1 − ∑ 𝑥𝑥𝑗𝑗
𝑟𝑟
𝑗𝑗=2 ) into two terms 

and recover the consecutive labels by reindexing the sum over 𝑖𝑖1 = 2 and 𝑖𝑖3, 𝑖𝑖4 … 𝑖𝑖𝑛𝑛 =

1 as the sum over 𝑖𝑖2 = 2 and 𝑖𝑖3, 𝑖𝑖4 … 𝑖𝑖𝑛𝑛 = 1 to get 
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𝜇𝜇1
ex =

𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖3𝑥𝑥𝑖𝑖4 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1
𝑖𝑖2=2

+
𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1
𝑖𝑖2=2

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1
𝑖𝑖2=2

+
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1
𝑖𝑖1,𝑖𝑖2=2

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1
𝑖𝑖1,𝑖𝑖2=2

 

(C-3) 

Step (3) Collect the terms over the same sums in Equation (C-3) to get 

 

𝜇𝜇1
ex =

𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖3𝑥𝑥𝑖𝑖4 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 2)

𝑛𝑛
� �𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3…𝑖𝑖𝑛𝑛=1
𝑖𝑖2=2

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 2𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖3,𝑖𝑖4…𝑖𝑖𝑛𝑛=1
𝑖𝑖1,𝑖𝑖2=2

+ 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛  

(C-4) 

which is the same as Equation (5-22). 

To get equation (23), the omitted steps are: 

Step (1) Separate the term containing 𝑥𝑥1 in the sum over 𝑖𝑖3 in Equation (C-4) from the rest 

and substitute 1 − ∑ 𝑥𝑥𝑗𝑗
𝑟𝑟
𝑗𝑗=2  for 𝑥𝑥1 to get 
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𝜇𝜇1
ex =

𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛 �1 − � 𝑥𝑥𝑗𝑗

𝑟𝑟

𝑗𝑗=2

� 𝑥𝑥𝑖𝑖4𝑥𝑥𝑖𝑖5 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1

+
𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖3𝑥𝑥𝑖𝑖4 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖3=2

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 2)

𝑛𝑛
� �𝑤𝑤1𝑖𝑖21𝑖𝑖4…𝑖𝑖𝑛𝑛 − 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖2 �1

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖2=2

− � 𝑥𝑥𝑗𝑗

𝑟𝑟

𝑗𝑗=2

� 𝑥𝑥𝑖𝑖4 … 𝑥𝑥𝑖𝑖𝑛𝑛

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 2)

𝑛𝑛
� �𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖2,𝑖𝑖3=2

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤𝑖𝑖1𝑖𝑖21𝑖𝑖4…𝑖𝑖𝑛𝑛 − 2𝑤𝑤1𝑖𝑖21𝑖𝑖4…𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖1,𝑖𝑖2=2

+ 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 �1 − � 𝑥𝑥𝑗𝑗

𝑟𝑟

𝑗𝑗=2

� 𝑥𝑥𝑖𝑖4 … 𝑥𝑥𝑖𝑖𝑛𝑛

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 2𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖1,𝑖𝑖2,𝑖𝑖3=2

+ 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛  

(C-5) 

Step (2) Where present in Equation (C-5), split the expression (1 − ∑ 𝑥𝑥𝑗𝑗
𝑟𝑟
𝑗𝑗=2 ) into two terms 

and recover the consecutive labels where needed by reindexing to get 
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𝜇𝜇1
ex =

𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖4𝑥𝑥𝑖𝑖5 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖3𝑥𝑥𝑖𝑖4 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖3=2

+
𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖3𝑥𝑥𝑖𝑖4 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖3=2

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 2)

𝑛𝑛
� �𝑤𝑤11𝑖𝑖3𝑖𝑖4…𝑖𝑖𝑛𝑛 − 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖3𝑥𝑥𝑖𝑖4 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖3=2

+
𝓏𝓏𝑛𝑛(𝑛𝑛 − 2)

𝑛𝑛
� �𝑤𝑤11𝑖𝑖3𝑖𝑖4…𝑖𝑖𝑛𝑛 − 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖2,𝑖𝑖3=2

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 2)

𝑛𝑛
� �𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖2,𝑖𝑖3=2

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 2𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖2,𝑖𝑖3=2

+ 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

+
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 2𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖1,𝑖𝑖2,𝑖𝑖3=2

+ 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 2𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖1,𝑖𝑖2,𝑖𝑖3=2

+ 𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛  

(C-6) 

Step (3) Collect the terms over the same sums in Equation (C-6) to get 
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𝜇𝜇1
ex =

𝓏𝓏𝑛𝑛

𝑛𝑛
� 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖4𝑥𝑥𝑖𝑖5 … 𝑥𝑥𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 3)

𝑛𝑛
� �𝑤𝑤11𝑖𝑖3𝑖𝑖4…𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖3=2

− 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖3𝑥𝑥𝑖𝑖4 … 𝑥𝑥𝑖𝑖𝑛𝑛

−
𝓏𝓏𝑛𝑛(2𝑛𝑛 − 3)

𝑛𝑛
� �𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 2𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖2,𝑖𝑖3=2

+ 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖2𝑥𝑥𝑖𝑖3 … 𝑥𝑥𝑖𝑖𝑛𝑛

−
𝓏𝓏𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛
� �𝑤𝑤𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑛𝑛 − 3𝑤𝑤1𝑖𝑖2…𝑖𝑖𝑛𝑛 + 3𝑤𝑤11𝑖𝑖3…𝑖𝑖𝑛𝑛

𝑟𝑟

𝑖𝑖4,𝑖𝑖5…𝑖𝑖𝑛𝑛=1
𝑖𝑖1,𝑖𝑖2,𝑖𝑖3=2

− 𝑤𝑤111𝑖𝑖4…𝑖𝑖𝑛𝑛�𝑥𝑥𝑖𝑖1𝑥𝑥𝑖𝑖2 … 𝑥𝑥𝑖𝑖𝑛𝑛  

(C-7) 

which is the same as Equation (5-23). 

C.2 Detailed steps between Equations (5-28) and (5-29) 
Using the definition of 𝑤𝑤 given by Equation (5-9), in the explicit notation, we can write  

 𝑤𝑤1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖𝑚𝑚 = 𝑔𝑔1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖𝑚𝑚 −
1
𝑛𝑛 �(𝑛𝑛 − 𝑚𝑚 + 𝑘𝑘)𝑔𝑔1…1 + � 𝑔𝑔𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

� (C-8) 

noting that each variable index here can only represent a solute: 𝑖𝑖𝑗𝑗 ∈ [2, 𝑟𝑟]. If we look at a 

generic binary group containing the same number of solvent particles (i.e., 𝑛𝑛 − 𝑚𝑚 + 𝑘𝑘) and the 

same number of solute particles as above (i.e., 𝑚𝑚 − 𝑘𝑘), we have 

 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗 = 𝑔𝑔1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗 −
1
𝑛𝑛

�(𝑛𝑛 − 𝑚𝑚 + 𝑘𝑘)𝑔𝑔1…1 + (𝑚𝑚 − 𝑘𝑘)𝑔𝑔𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗� (C-9) 

Now, if we take the sum over the labels from 𝑗𝑗 = 𝑘𝑘 + 1 to 𝑚𝑚 of both sides of Equation 

(C-9) and divide both sides by 𝑚𝑚 − 𝑘𝑘, we have 
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1
𝑚𝑚 − 𝑘𝑘

� 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

=
1

𝑚𝑚 − 𝑘𝑘
� 𝑔𝑔1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

−
1
𝑛𝑛 �(𝑛𝑛 − 𝑚𝑚 + 𝑘𝑘)𝑔𝑔1…1 + � 𝑔𝑔𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

� 

(C-10) 

Using Equation (5-28), we can substitute for the first term on the right-hand side of 

Equation (C-10) and obtain 

 

1
𝑚𝑚 − 𝑘𝑘

� 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

= 𝑔𝑔1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖𝑚𝑚 −
1
𝑛𝑛 �(𝑛𝑛 − 𝑚𝑚 + 𝑘𝑘)𝑔𝑔1…1 + � 𝑔𝑔𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

� 

(C-11) 

Comparing Equations (C-11) and (C-8), we get 

 𝑤𝑤1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖𝑚𝑚 =
1

𝑚𝑚 − 𝑘𝑘
� 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

 (C-12) 

which is the same as Equation (5-29). 

C.3 Detailed steps to arrive at Equation (5-31) using Equations 

(5-24) and (5-29) 
Given Equation (5-29), we want to show that the following holds for the sum appearing 

in Equation (5-24): 

 �(−1)𝑗𝑗 �𝑚𝑚
𝑘𝑘 � 𝑤𝑤1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖𝑚𝑚

𝑚𝑚

𝑗𝑗=0

=
1
𝑚𝑚

� �(−1)𝑗𝑗 �𝑚𝑚
𝑘𝑘 � 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=0

𝑚𝑚

𝑗𝑗=1

 (C-13) 

which would give us the sum over 𝑄𝑄’s when multiplied by the coefficient 𝓏𝓏𝑛𝑛(1−𝑚𝑚)
𝑛𝑛

� 𝑛𝑛
𝑚𝑚� (omitted 

here). 

Starting with the left-hand side of Equation (C-13), we substitute for 𝑤𝑤1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖𝑚𝑚 using 

its decomposition given by Equation (5-29): 
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 �(−1)𝑗𝑗 �𝑚𝑚
𝑘𝑘 � 𝑤𝑤1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖𝑚𝑚

𝑚𝑚

𝑗𝑗=0

= �(−1)𝑗𝑗 �𝑚𝑚
𝑘𝑘 �

1
𝑚𝑚 − 𝑘𝑘

� 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

𝑚𝑚

𝑗𝑗=0

 (C-14) 

Now, we extend the sum from 𝑗𝑗 = 𝑘𝑘 + 1 to 𝑚𝑚 to 𝑗𝑗 = 1 to 𝑚𝑚 by noting 

 � 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=1

= � 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

+ � 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑗𝑗

𝑗𝑗=1

 (C-15) 

Since we at most need 𝑚𝑚 − 𝑘𝑘 distinct labels for the indices of 𝑤𝑤 on the left-hand side 

of Equation (C-13), and the sum from 𝑗𝑗 = 𝑘𝑘 + 1 to 𝑚𝑚 is chosen arbitrarily, we can reindex the 

terms in the second sum on the right-hand side of Equation (C-15) by splitting each term into 

a sum over index labels 𝑘𝑘 + 1 to 𝑚𝑚. That is, we can write 

 

� 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=1

= � 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

+ �
1

𝑚𝑚 − 𝑘𝑘
� 𝑤𝑤1…1𝑖𝑖𝑡𝑡…𝑖𝑖𝑡𝑡

𝑚𝑚

𝑡𝑡=𝑗𝑗+1

𝑗𝑗

𝑗𝑗=1

=

= � 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

+
1

𝑚𝑚 − 𝑘𝑘
� � 𝑤𝑤1…1𝑖𝑖𝑡𝑡…𝑖𝑖𝑡𝑡

𝑗𝑗

𝑗𝑗=1

𝑚𝑚

𝑡𝑡=𝑗𝑗+1

= � 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

+
𝑘𝑘

𝑚𝑚 − 𝑘𝑘
� 𝑤𝑤1…1𝑖𝑖𝑡𝑡…𝑖𝑖𝑡𝑡

𝑚𝑚

𝑡𝑡=𝑗𝑗+1

=
𝑚𝑚

𝑚𝑚 − 𝑘𝑘
� 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑗𝑗+1

 

(C-16) 

Rearranging this result and substituting it back into Equation (C-14), we obtain Equation 

(C-13): 

 

�(−1)𝑗𝑗 �𝑚𝑚
𝑘𝑘 � 𝑤𝑤1…1𝑖𝑖𝑘𝑘+1…𝑖𝑖𝑚𝑚

𝑚𝑚

𝑗𝑗=0

= �(−1)𝑗𝑗 �𝑚𝑚
𝑘𝑘 �

1
𝑚𝑚 − 𝑘𝑘 �

𝑚𝑚 − 𝑘𝑘
𝑚𝑚

� 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=1

�
𝑚𝑚

𝑗𝑗=0

=
1
𝑚𝑚

� �(−1)𝑗𝑗 �𝑚𝑚
𝑘𝑘 � 𝑤𝑤1…1𝑖𝑖𝑗𝑗…𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=0

𝑚𝑚

𝑗𝑗=1

 

(C-17) 
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C.4 Detailed steps between Equations (5-48) and (5-50) and 

Equations (5-49) and (5-51) 
According to the definition before Equation (5-45), 𝜔𝜔2

nc in Equations (5-48) and (5-49) 

is defined as the nonconfigurational Gibbs free-energy change for the following process: 2 

systems, each made of 𝑁𝑁 − 1 solvent molecules and 1 solute molecule, being rearranged into 

1 system made of 𝑁𝑁 − 2 solvent molecules with 2 solute molecules, plus 1 pure solvent system 

with 𝑁𝑁 solvent particles. Similarly, 𝜔𝜔3
nc in Equation (5-49) is defined as the nonconfigurational 

Gibbs free-energy change for the following process: 3 systems, each made of 𝑁𝑁 − 1 solvent 

molecules and 1 solute molecule, being rearranged into 1 system made of 𝑁𝑁 − 3 solvent 

molecules with 3 solute molecules, plus 2 pure solvent system with 𝑁𝑁 solvent particles. Based 

on these definitions, denoting the solute by the subscript 2, we can write 

 𝜔𝜔2
nc = 𝑔𝑔1…122 + 𝑔𝑔1…1 − 2𝑔𝑔1…12 (C-18) 

and 

 𝜔𝜔3
nc = 𝑔𝑔1…1222 + 2𝑔𝑔1…1 − 3𝑔𝑔1…12 (C-19) 

where 𝑔𝑔’s denote the energies of the respective groups made of 𝑁𝑁 particles each, consistent 

with our notation (i.e., 𝑁𝑁-tuple energies). We can recast Equation (C-18) into the following 

form: 

 

𝜔𝜔2
nc = 𝑔𝑔1…122 −

1
𝑁𝑁

[(𝑁𝑁 − 2)𝑔𝑔1…1 + 2𝑔𝑔2…2]

− 2 �𝑔𝑔1…12 −
1
𝑁𝑁

[(𝑁𝑁 − 1)𝑔𝑔1…1 + 𝑔𝑔2…2]�

= 𝑤𝑤1…122 − 2𝑤𝑤1…12 

(C-20) 

which is the same equivalence used in Equation (5-50), and recast Equation (C-19) into the 

following form: 

 

𝜔𝜔3
nc = 𝑔𝑔1…1222 −

1
𝑁𝑁

[(𝑁𝑁 − 3)𝑔𝑔1…1 + 3𝑔𝑔2…2]

− 3 �𝑔𝑔1…12 −
1
𝑁𝑁

[(𝑁𝑁 − 1)𝑔𝑔1…1 + 𝑔𝑔2…2]�

= 𝑤𝑤1…1222 − 3𝑤𝑤1…12 

(C-21) 

Combining Equations (C-20) and (C-21) into the expression present in Equation (5-49), 

we have 
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𝜔𝜔3

nc − 3𝜔𝜔2
nc = 𝑤𝑤1…1222 − 3𝑤𝑤1…12 − 3(𝑤𝑤1…122 − 2𝑤𝑤1…12)

= 𝑤𝑤1…1222 − 3𝑤𝑤1…122 + 3𝑤𝑤1…12 
(C-22) 

which is the same equivalence used in Equation (5-51). The arguments above can be 

generalized to relate any order coefficients expressed in terms of 𝜔𝜔nc to the respective 

coefficients expressed in terms of 𝑤𝑤’s. 
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Appendix D 

Supplementary Information for Chapter 6 

D.1 Discussion of binary data reported in the references used for 

ternary data 
In Figure D-1, we plot some of the binary fits and compare them with the binary data 

found in the sources that were used to collect the ternary solution data. Note that none of the 

data points shown in Figure D-1 were included in the binary data used for fitting. The original 

binary data used to generate the fit polynomials, hence, used in predictions in section 6.3, are 

from Gibbard and Gossmann [14] for MgCl2, from Oakes et al. [29] for CaCl2, and from the 

CRC [47] for the rest. The ZnBr2 and ZnCl2 binary data from Haghighi et al. [16] are not 

required for predictions because there are no ternary solution data involving these salts. We 

focus on the fits that were used for the prediction of ternary data reported by Haghighi et 

al. [16] and Khitrova [22], where the predictions have relatively high, above average RMSE 

values (see Table 6-3 and Figure 6-3). When the fitted curves [Figure D-1 (b), (c), and (d)] are 

compared the reported binary data, we notice relatively large deviations for the mentioned 

references. Therefore, at least some of the errors in the predictions for these data sets can be 

attributed to the systematic mismatch of the experimental data used for binary fitting and the 

ternary solution data from these references. Since there were not enough binary data points in 

most of the ternary solution references to obtain a high-confidence fit and make predictions 

based on that fit, a direct comparison was not possible. 

Furthermore, in Figure D-1 (a), we show the fitted curve and its extrapolation for KCl. 

Since some ternary data extended beyond the data limit of the binary fit, the extrapolation 

region was used in these cases to make the predictions. It is clear from the plot that the binary 

data from Vilcu et al. [41] and from Hall et al. [17] deviate significantly from the extrapolated 

curve. However, it is not possible to state with confidence which is closer to the true osmolality 

curve. When we included the binary data points from these references for KCl fitting, the 
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polynomial changed from linear to quadratic, and the prediction results were not better on 

average, so we decided not to include these points for fitting. The highest RMSE value 

(1.22 osmoles/kg) for the prediction of the model is for the CaCl2 + KCl system data from 

Haghighi et al. [16]. Although the reported binary data for CaCl2 from this reference were 

poorly described with the binary curve [see Figure D-1 (c)], there were no KCl binary data for 

comparison. Nevertheless, it seems reasonable to assume that the prediction errors for ternary 

solutions that contain KCl can be, at least partially, attributed to the systematic mismatch 

between the results of the binary data source used for fitting (with its extrapolation) and the 

results of the ternary data source. 

One possible reason for the mismatch is the accuracy of the experimental methods and 

their various biases. Additionally, the measurement accuracies are important, although, they 

were not always reported (see the discussion of the data sources in section D.3) and even when 

they were reported, some are questionable. For example, Vilcu et al. [41–43] reported a 

temperature measurement accuracy of ± 0.0002 °C for all their works. However, Gibbard and 

Grossmann [14] found as high as 0.5 °C discrepancy when comparing their data to the Vilcu 

et al. [41] data, especially at molalities higher than 1.6 m. This is an indication of either 

different biases of two experimental methods and/or inaccurate measurements. 
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Figure D-1. Comparison of some of the mole-fraction-based binary fits [black lines; (a), (b), 
and (d) fit to CRC [47], (c) fit to Oakes et al. [29], and (e) fit to Gibbard and Gossmann [14]], 
used in this work to make predictions, with reported binary data from the sources from which 
the ternary data were obtained [Hall et al. [17] in panels (a) and (b); Vilcu et al. [41] in panel 
(a); Mun and Darer [28] in panels (a), (b), and (e); Haghighi et al. [16] in panels (b), (c), and 
(e); Oakes et al. [29] in panel (b); Khitrova [22] in panels (b) and (d); Gibbard and Gossman 
[14] in panel (b); Gibbard and Fong [13] in panel (c)]. Dashed lines represent extrapolation of 
the fitted curves. None of these data points were used for fitting in this work. In particular, note 
that the binary data points from Haghighi et al. [16] and Khitrova [22] are poorly described by 
the curves resulting from fitting to other data or their extrapolations [panels (b), (c), and (d)]. 
Additionally, note the discrepancy between the experimental data available and the 
extrapolated polynomial for KCl which was used for the high-concentration prediction region 
(panel a). Because of the high number of data points in the NaCl plot [panel (b)], black arrows 
are used to indicate the points that have the highest deviation from the curve. 

a) b)

c) d)

e)
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D.2 Graphical representations of binary fits 
Visual representations of the binary data fits are given in Figure D-2 (mole-fraction-

based fits) and Figure D-3 (molality-based fits). Binary fits were performed using multiple 

linear regression through the origin as described in the main text. The combined criterion 

described in the main text was used to determine the degree of the polynomials. The data are 

from Gibbard and Gossman [14] for MgCl2, Oakes et al. [29] for CaCl2, Haghighi et al. [16] 

for ZnBr2 and ZnCl2, and from the CRC [47] for the rest. See the main text for more details. 
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Figure D-2. Mole-fraction-based fits to binary solution data plotted as osmole fraction vs. mole 
fraction. Markers indicate the experimental data points, and solid lines of the same color 
indicate the best fit based on the mixed criterion described in the main text. The shaded region 
of the same color indicates the area where all coefficients are within their 95% CIs. The 
polynomial degree of each fit is given in the legend with the 𝑅𝑅RTO,adj

2  values in parentheses. 
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Figure D-3. Molality-based fits to binary solution data plotted as osmolality vs. molality. 
Markers indicate the experimental data points, and solid lines of the same color indicate the 
best fit based on the mixed criterion described in the main text. The shaded region of the same 
color indicates the area where all coefficients are within their 95% CIs. The polynomial degree 
of each fit is given in the legend with the 𝑅𝑅RTO,adj

2  values in parentheses. The units of osmolality 
are osmoles/kg, and the units of molality are (moles of solute)/(kg of solvent) on these 
plots. 
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D.3 Data sources and unit conversions 
Data for ternary solutions were obtained from multiple sources. Because of the different 

concentration units used, summaries for data sets from each source and the appropriate unit 

conversions are given separately below. Works from the same author(s) are grouped together. 

D.3.1 Gibbard et al. 
In a series of three papers [12–14], Gibbard et al. reported freezing point depression 

measurements for aqueous mixtures of: (i) NaCl + MgCl2 [14], (ii) LiCl + NaCl [12], and (iii) 

NaCl + CaCl2 and NaCl + BaCl2 [13]. In all three works, the reported accuracies were 

±0.001 °C for temperature measurements and ±0.1% for molality measurements. 

In all three works, units of “equivalent concentration”, 𝑚𝑚′, and “equivalent fraction”, 

𝑥𝑥𝑖𝑖
′, were used. These units are represented as 

 𝑚𝑚′ =
1
2

� 𝑚𝑚𝑖𝑖𝑧𝑧𝑖𝑖

# 𝑖𝑖𝑖𝑖𝑛𝑛 𝑡𝑡𝑦𝑦𝑝𝑝𝑡𝑡𝑡𝑡

𝑖𝑖=1

 (D-1) 

 𝑥𝑥𝑖𝑖
′ =

𝑚𝑚𝑖𝑖𝑧𝑧𝑖𝑖

𝑚𝑚′
 (D-2) 

where 𝑧𝑧𝑖𝑖 is the charge of the ion species labeled with 𝑖𝑖 and  𝑚𝑚𝑖𝑖 is molality. For NaCl and LiCl, 

Equation (D-1) becomes (in the following equations, × is used as a multiplication symbol in 

some places for clarity): 

 𝑚𝑚′ =
1
2

� 𝑚𝑚𝑖𝑖𝑧𝑧𝑖𝑖 =
1
2

[(𝑚𝑚𝑖𝑖 × 1) + (𝑚𝑚𝑖𝑖 × 1)] = 𝑚𝑚𝑖𝑖 (D-3) 

That is, for 1:1 salts, the equivalent concentration equals molality. However, for 1:2 

salts (MgCl2, BaCl2, CaCl2), the following is obtained: 

 
𝑚𝑚′ =

1
2

� 𝑚𝑚𝑖𝑖𝑧𝑧𝑖𝑖 =
1
2

[(𝑚𝑚cation × 2) + (𝑚𝑚anion × 1)]

=
1
2

[(𝑚𝑚cation × 2) + (2 × 𝑚𝑚cation × 1)] = 2𝑚𝑚𝑖𝑖 
(D-4) 

In the case of 1:2 salt mixtures (i.e., NaCl + BaCl2, NaCl + CaCl2, and NaCl + MgCl2), 

𝑥𝑥𝑖𝑖
′, chosen to be the equivalent fraction with regards to the sodium ion (𝑥𝑥𝑖𝑖

′ = 𝑥𝑥Na+), needs to 

be converted to the actual molality of both salts with the following conversion equations: 

 
𝑚𝑚′ =

1
2

�(𝑚𝑚Na+) × 1 + (𝑚𝑚Cl−) × 1 + �𝑚𝑚Mg2+� × 2 + 2 × (𝑚𝑚Cl−) × 1�

= 𝑚𝑚NaCl + 2𝑚𝑚MgCl2 
(D-5) 
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 𝑥𝑥𝑖𝑖
′ = 𝑥𝑥Na+ =

𝑚𝑚Na+

𝑚𝑚NaCl + 2𝑚𝑚MgCl2

 (D-6) 

Isolating 𝑚𝑚NaCl, we have 

 𝑚𝑚NaCl =
2𝑥𝑥Na+

1 − 𝑥𝑥Na+
𝑚𝑚MgCl2 (D-7) 

and substituting into 𝑚𝑚′, we get 

 𝑚𝑚NaCl = 𝑥𝑥Na+𝑚𝑚′ (D-8) 

 𝑚𝑚MgCl2 =
1 − 𝑥𝑥Na+

2
𝑚𝑚′ (D-9) 

Similarly, for 1:1 salt mixtures (i.e., LiCl + NaCl), using the same algebraic method, 

the following are obtained: 

 𝑚𝑚NaCl = (1 − 𝑥𝑥Li+)𝑚𝑚′ (D-10) 

 𝑚𝑚LiCl = 𝑥𝑥Li+𝑚𝑚′ (D-11) 

Furthermore, as noted in the main text, the binary MgCl2 data were also collected from 

the work of Gibbard and Gossmann [14] to obtain the osmotic virial coefficients because this 

mixture is not found in the CRC [47]. 

D.3.2 Haghighi et al. 
Haghighi et al. [16], measured the freezing point depression of four aqueous ternary 

mixtures: NaCl + KCl, NaCl + CaCl2, KCl + CaCl2, NaCl + MgCl2. The reported temperature 

measurement accuracy is ± 0.1 °C. Additionally, the reported binary data for ZnCl2 and ZnBr2 

from Haghighi et al. [16] were used to obtain the osmotic virial coefficients because these salts 

are not found in the CRC [47]. NaCl, CaCl2, MgCl2 single-solute data were only used in the 

prediction plots for comparison. All four ternary data sets and all data points in every set were 

included for prediction accuracy evaluation. Haghighi et al. [16] reported their measurements 

as mass percent in the solution, and the isopleths are the constant-mass-percent curves of the 

second salt (see the ordering of the salts above). The formulae below were used to convert the 

weight percentages to molalities: 

 𝑚𝑚2 =
𝑤𝑤2

𝑀𝑀2(100 − 𝑤𝑤2 − 𝑤𝑤3)  (D-12) 

 𝑚𝑚3 =
𝑤𝑤3

𝑀𝑀3(100 − 𝑤𝑤2 − 𝑤𝑤3)  (D-13) 
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where 𝑚𝑚2 and 𝑚𝑚3 are the molalities, 𝑀𝑀2 and 𝑀𝑀3 are the molar masses, and 𝑤𝑤2 and 𝑤𝑤3 are the 

weight percentages of solutes 2  and 3, respectively, in the solution (subscript “1” is reserved 

for the solvent). Note that 𝑤𝑤3 = 3% is constant for all ternary data sets from this reference. 

D.3.3 Hall et al. 
Hall et al. [17] measured the freezing point depression of ternary aqueous solutions of 

NaCl + KCl, including binary limits. All data points from this study were included in this work 

for comparison with MSOVE predictions. The results of Hall et al. [17] were reported as 

freezing point depression vs. weight ratio and total salinity. As reported by the authors, the 

measurement uncertainties of temperature and salinity are about ±0.05 °C and ±0.02% (mass 

percent), respectively. The weight ratios and total salinities were converted to molalities using 

the conversion equations given below: 

 𝑚𝑚NaCl =
𝑤𝑤�𝑠𝑠

𝑀𝑀NaCl(100 − 𝑠𝑠) (D-14) 

 𝑚𝑚KCl =
(1 − 𝑤𝑤�)𝑠𝑠

𝑀𝑀KCl(100 − 𝑠𝑠) (D-15) 

where 𝑤𝑤� = 𝑤𝑤NaCl/(𝑤𝑤NaCl + 𝑤𝑤CaCl2) and 𝑠𝑠 are the weight ratio and total salinity, respectively. 

D.3.4 Khitrova 
Khitrova [22] reported ternary solution data for NaNO3 + NaCl in terms of freezing 

temperature of solution vs. the mass percent of each component in the mixture and the initial 

concentration of one of the salts in mass percent. They also reported other phase-transition data 

for this system, which we do not use in this work. No measurement accuracies were reported. 

The concentration units were converted to molality using the same equations as for Haghighi 

et al. [16] [Equations (D-12) and (D-13)]. All data points for freezing point depression of 

solution were included in this work for comparison with MSOVE predictions. 

D.3.5 Mun and Darer 
The work of Mun and Darer [28] contains NaCl + MgCl2 and KCl + MgCl2 ternary data 

as freezing temperature of solution vs. mole percent of the salts added and total molality of 

solution. No measurement accuracy was reported. To convert the total molality to the molality 

of each salt, we multiplied the total molality by the reported mole percent of each salt. All 

ternary data points from this reference were included in this work for comparison with MSOVE 

predictions. 
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D.3.6 Oakes et al. 
Oakes et al. [29] reported freezing point depression of aqueous NaCl + CaCl2 solutions 

using a similar experimental method to Hall et al. [17]. The accuracy of the temperature 

measurements was generally better than ±0.02 °C, and the accuracy of the solution 

concentration measurements was similar to that of Hall et al. [17]. Additionally, we used 

binary CaCl2 data from this reference for fitting. Following the methodology of the authors, 

we excluded five data points from their results in our work. Four of these points were from the 

binary data for CaCl2. The same conversion equations were used as for the data from Hall et 

al. [17] [Equations (D-14) and (D-15)], where the second equation was written for CaCl2. 

D.3.7 Vilcu et al. 
In a series of three papers by Vilcu et al. [41–43], the authors reported freezing point 

depression measurements of equimolal aqueous ternary solutions of: (i) NaCl + KCl [43]; (ii) 

NaCl + KCl and NaBr + KBr [42]; and iii) LiCl + NaCl, LiCl + KCl, LiCl + CsCl, and NaCl 

+ KCl [41] .Data were reported as freezing point depression vs. total molality. All data points 

from these works were included for comparison with MSOVE predictions. Note that no 

measurement accuracy was reported for the determination of concentration and the reported 

temperature measurement accuracy was ± 0.0002 °C. However, as noted, Gibbard and 

Gossmann [14] found as high as 0.5 °C discrepancy when comparing the measurements to their 

data. Furthermore, when comparing these three works by Vilcu et al. [41–43], we found 

inconsistencies and round-off errors in the reported data. 

D.4 Estimation of uncertainties in MSOVE coefficients 
When fitting to binary data for electrolytes, we obtained the coefficients of the 

polynomial (for example, for a molality-based fit; the same holds for the mole-fraction-based 

fits) as 𝑘𝑘𝑖𝑖, 𝑘𝑘𝑖𝑖
2𝐵𝐵𝑖𝑖, 𝑘𝑘𝑖𝑖

3𝐶𝐶𝑖𝑖, etc. To obtain the uncertainties (here, uncertainty means a 95% CI; see 

the main text) in the coefficients of the virial equation (i.e., 𝐵𝐵𝑖𝑖’s, 𝐶𝐶𝑖𝑖’s, etc.), the uncertainties 

must be appropriately propagated upon dividing by a suitable non-negative integer power of 

𝑘𝑘𝑖𝑖. We used standard deviation-based error propagation, that is, if 𝑧𝑧 = 𝑓𝑓(𝑢𝑢, 𝑣𝑣) is a function of 

two independent variables 𝑢𝑢 and 𝑣𝑣 with uncorrelated uncertainties Δ𝑢𝑢 and Δ𝑣𝑣, respectively, 
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then the uncertainty Δ𝑧𝑧 of the dependent variable 𝑧𝑧 can be estimated from the following 

formula [23]: 

 (Δ𝑧𝑧)2 = �
𝜕𝜕𝑧𝑧
𝜕𝜕𝑢𝑢�

2

(Δ𝑢𝑢)2 + �
𝜕𝜕𝑧𝑧
𝜕𝜕𝑣𝑣�

2

(Δ𝑣𝑣)2 (D-16) 

Substituting 𝑧𝑧 = 𝑢𝑢/𝑣𝑣ℎ (where ℎ is a nonnegative integer) and simplifying, we have 

 Δ𝑧𝑧
𝑧𝑧

= ��
Δ𝑢𝑢
𝑢𝑢 �

2

+ ℎ2 �
Δ𝑣𝑣
𝑣𝑣 �

2

 (D-17) 

D.5 Numerical values of constants 
The numerical values of the required constants for calculations in Chapter 6 are listed 

in Table D-1 [48]. The molar masses of the salts were used for converting from the reported 

concentration units to molality and mole fraction. 

Table D-1. The numerical values of the required constants for calculations [48]. 

Constant Value Units 

𝑀𝑀H2O 18.015 × 10−3 kg/mole 

𝑀𝑀NaCl 58.443 × 10−3 kg/mole 

𝑀𝑀KCl 74.551 × 10−3 kg/mole 

𝑀𝑀MgCl2 95.211 × 10−3 kg/mole 

𝑀𝑀CaCl2 110.984 × 10−3 kg/mole 

𝑀𝑀ZnCl2 136.315 × 10−3 kg/mole 

𝑀𝑀ZnBr2 225.217 × 10−3 kg/mole 

𝑀𝑀NaNO3 84.995 × 10−3 kg/mole 

𝑅𝑅� 8.3145 J/(mole × K) 

∆𝑠𝑠f
∘ (for water) 21.9723 J/(mole × K) 

𝑇𝑇m
∘  (for water) 273.15 K 
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