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CHAPTER 1: INTRODUCTION 

Background of the Problem 

Students’ achievement test scores are often used as a piece of information in 

making educational decisions, such as selecting students for a particular program and 

evaluating educational progress. The making of decisions in many contexts requires a test 

be administered on multiple occasions. For example, some large-scale achievement tests 

are given over years to track educational trends over time. For security reasons, different 

parallel forms of the test are often administered on different dates. However, the use of 

“parallel” forms leads to the concerns that the test forms may differ somewhat in 

difficulty or the two groups of examinees may differ in ability, thereby confounding the 

educational decisions to be made. For example, if two students each complete one of two 

parallel college entrance examinations on different dates, and the second student’s raw 

score is two points higher than the first student’s score, does the higher reported score 

reflect a higher achievement level or a less difficult test? In order to answer this question, 

different equating designs and procedures have been proposed to adjust for differences in 

difficulty among test forms that are built to be similar in difficulty and content (e.g., 

Angoff, 1971, 1984; Kolen & Brennan, 1995; Lord, 1980).

Kolen and Brennan (1995) described three basic equating designs: common-item 

non-equivalent groups design, single group design, and random groups design (e.g.,). In 

the common-item non-equivalent groups design, one test form with unique items is given 

to one group of examinees, an alternative form with another set of unique items is given 

to a second group, and an internal or external anchor test (common items) is given to both 

groups. In the single group design, all examinees are administered two test forms, often at
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two different times and counter-balanced for order. In the random groups design, two test 

forms are administered typically by distributing the test forms alternatively at a test site. 

Among these designs, the common-item non-equivalent groups design is frequently used 

in many testing programs, because it has certain advantages over the others. For example, 

in the common-item non-equivalent groups design, only one test form needs to be 

administered at a given test date and each examinee takes only a single exam. No 

assumption is made about the equivalence of the groups on the latent trait being 

measured. Any differences of group ability or test difficulty can be identified and 

controlled by the common items. Consequently, this design will be the only design used 

for addressing the research questions in the current study.

Many equating methods have been proposed for the common-item non-equivalent 

groups design (e.g., Kolen & Brennan, 1995; Loyd & Hoover, 1980; Stocking & Lord, 

1983). These methods can be categorized as classical equating methods, which typically 

refer to linear equating and equipercentile equating, and item response theory (IRT) 

based equating methods. Researchers (e.g., Han, Kolen, & Pohlmann, 1997; Hills, 

Subhiyah, & Hirsch, 1988; Kolen & Whitney, 1982; Lord & Wingersky, 1984; Modu, 

1982; Yang & Houang, 1996) have compared the effectiveness of classical equating 

methods and IRT-based equating methods. Overall, most studies have shown that the two 

types of equating methods lead to comparable results. Kolen and Brennan (1995) 

presented a detailed list of the characteristics of equating situations for which each of the 

equating methods is most appropriate. However, in the case of equating large-scale 

achievement tests, no sound evidence has shown that the classical equating methods are 

more precise than the IRT equating methods or vice versa. For example, Hills et al.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

(1988) compared linear equating, Rasch model equating, three-parameter item response 

theory (3PL) - concurrent calibration method, 3PL - fixed common item parameters 

(FCIP) method, and 3PL -  separate calibration with the linear transformation method. 

They found that all these equating methods yielded similar results.

However, Kolen and Brennan (1995) pointed out that since many large-scale 

testing programs use unidimensional IRT models to develop tests, the use of IRT-based 

equating methods often seems natural. Hambleton, Swaminathan, and Rogers (1991) 

claimed that IRT-based equating methods are particularly useful for test developers to 

manage test forms, maintain the security of tests, and compare students across test forms. 

Thus, IRT-based equating methods have become more and more attractive to large-scale 

testing practitioners. A plethora of studies have been conducted on applying IRT to test 

equating (e.g., Baker, 1992; Cook & Eignor, 1983; Haebara, 1980; Han et al., 1997;

Kolen & Brennan, 1995; Lord, 1982; Loyd & Hoover, 1980; Stocking & Lord, 1983). 

However, there are still some questions, especially related to the assumptions of IRT, 

open to researchers and the practitioners in the field.

The basic assumptions of the commonly used IRT models are unidimensionality, 

local independence, and nonspeededness (Hambleton & Murray, 1983; Lord, 1980).

Uni dimensionality means that only one dominant latent trait accounts for examinees’ 

performance on a test. Local independence follows the assumption of unidimensionality.

It means that once the major latent trait influencing examinees’ test performance is held 

constant, examinees’ responses to any pair of items are statistically independent. In other 

words, the latent trait or ability is the only factor influencing examinees’ responses to test 

items. The assumption of nonspeededness is based on the same belief that there is only
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one latent trait. Speededness will not influence examinees’ performance. When a given 

IRT model fits the test data of interest, several features are obtained: (1) examinee ability 

estimates are not test dependent; (2) item parameter estimates are not group dependent;

(3) ability estimates obtained from different sets of items will be the same except for 

measurement error; and (4) item parameter estimates obtained in different groups of 

examinees will be the same except for measurement error.

It is important to choose an IRT model that fits the test data of interest while 

applying this model. Hambleton and Murray (1983) suggested three ways to check the 

model data fit: (1) evaluating the assumptions (for example, unidimensionality) of an IRT 

model with the given test data; (2) evaluating if the expected advantages derived from the 

use of an IRT model (for example, invariant item parameter and ability estimates) are 

obtained; and (3) evaluating the closeness of fit between predictions and observable 

outcomes (for example, test score distribution) using the parameter estimates and the test 

data.

It is also a crucial aspect of IRT applications to study the robustness of the models 

to violations of the assumptions and expected advantages (Kolen & Brennan, 1995). 

Several studies have been conducted to explore the effects of violating the assumptions 

(for example, dimensionality and local dependence) of IRT models on the equating 

results under a variety of conditions (e.g., Bogan & Yen, 1983; Bolt, 1999; De 

Champlain, 1996; Dorans & Kingston, 1985; Lee, Kolen, Frisbie, & Ankenmann, 2001; 

Modu, 1982; Skaggs & Lissitz, 1986a; Yen, 1984). However, only a few studies involved 

the issue of item parameter invariance that is specific to the common-item non-equivalent 

groups design (e.g., Bejar & Wingersky, 1981; Cook, Eignor, & Hutton, 1979; Linn,
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Levine, Hastings, & Wardrop, 1980; Stocking & Lord, 1983; Vukmirovic, Hu, & Turner, 

2003).

In the common-item non-equivalent groups design, the IRT-based equating 

methods are typically applied following a three-step process (Kolen & Brennan, 1995). 

First, item parameters of the reference and equated tests are calibrated separately.

Second, item parameter estimates from the equated test are scaled onto the scale of the 

parameter estimates for the reference test using a linear transformation method (also 

referred to as formula methods), which involves using methods such as mean/mean 

(Loyd & Hoover, 1980), mean/sigma (Marco, 1977), and characteristic curve (Haebara, 

1980; Stocking & Lord, 1983) to estimate the transformation coefficients. Alternatively, 

the parameters of common items are held constant in the calibration of the equated test 

using the parameters estimated in the reference test (referred to as fixed common item 

parameters method, FCIP); consequently, the estimation of unique items is constrained 

by the scale of the common items (Hills et al., 1988; Li, Lissitz, & Yang, 1999; Zenisky, 

2001; Vukmirovic et al., 2003). An alternative procedure for the first two steps is IRT 

concurrent calibration. Examinees’ responses from the two tests to be equated are 

combined as one data file, and the parameters are estimated simultaneously from one 

computer run; thus, they are put onto one scale. In the third step, if number-correct scores 

are reported instead of the estimated theta, the number correct scores on the equated test 

are converted to the number-correct scores on the reference test using true score equating 

(Kolen, 1981; Lord, 1980) or observed score equating (Lord & Wingersky, 1984).

In the first step, one may expect that item parameters, such as the discrimination 

(a-parameter) and difficulty (h-parameter) parameters, of the common items are the
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same, within sampling error, if they are estimated separately from two randomly 

equivalent groups; and they are different but have a linear relation if they are estimated 

from two non-equivalent groups. The guessing parameter (c-parameter), if it is specified 

in the model, will remain the same regardless of the form of the group equivalence 

(Hambleton & Murray, 1983).

In the case of common-item non-equivalent groups, as indicated, the a- and b- 

parameters of common items calibrated separately from two groups may be different. 

These differences are due to the indeterminacy of the estimation. Since both item 

parameters and ability parameters are not known in an IRT model, in order to conduct the 

estimation, the mean of the ability scale is often defined as 0 and the standard deviation 

as 1. That is, although the two groups may differ in ability, the abilities for each group are 

scaled to have a mean of 0 and a standard deviation of 1. As a result, the common item 

parameters of two non-equivalent groups are expected to have a linear relation and 

become the same once they are put on the same scale. If a scatter plot is made based on 

the a- or b- parameters estimated from two groups, all the points are expected to be 

located along a straight line (Hambleton & Murray, 1983) or within a narrow band 

around the least square fitting straight line. However, some points may be located outside 

the band. These “outliers” may be due to the estimation errors, curriculum changes, 

disclosure of common items, or sampling fluctuation. Regardless of the type of outlier, 

how should they be handled?

Researchers have realized that poorly estimated item difficulties may have a 

serious impact on the computation of sample moments, thus, producing a linear 

transformation that does not fit most of the estimated items’ difficulties (Stocking &
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Lord, 1983). Various methods have been developed to reduce the influence of outliers 

when using the mean/mean and mean/sigma methods (e.g., Cook et al., 1979; Bejar & 

Wingersky, 1981). For example, Cook et al. (1979) proposed to restrict the range of the 

difficulties used in computing moments. Linn et al. (1980) tried to reduce the influence of 

outliers by using weighted moments where the weights are inversely proportional to the 

estimated standard error of the estimates of the item difficulties. Bejar and Wingersky 

(1981) proposed robust methods that give smaller weights to outliers. Stocking and Lord 

(1983) combined Linn et al.’s (1980) and Bejar et al.’s (1981) methods in an attempt to 

solve the outlier problem.

Outliers also adversely affect the FCIP procedure. Vukmirovic et al. (2003) 

compared the equating results between fixing and not fixing outlier common item 

parameters when estimating the equated test parameters using the FCIP. The difference 

between the two equating results produced by the two procedures increased as a function 

of the number of outliers and, especially, when the outliers were located on one side of 

the straight line in the scatter plot.

Questions that remain are that (1) do IRT-based equating methods that consider 

outliers produce a better result? (2) Which IRT-based equating method best reduces the 

influence of outliers? and (3) What conclusions drawn from existing comparison studies 

of IRT-based equating methods still hold in the presence of outliers?

Purpose of Study

The purpose of this study, therefore, was to investigate the comparability of IRT - 

separate calibration with mean/sigma transformation and test characteristic curve 

transformation methods, IRT - FCIP calibration method, and IRT - concurrent calibration
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method in the presence of outliers with inconsistent ^-parameter estimates. The group 

ability differences, number/score-point of outliers, and the types of outliers were 

manipulated. The IRT - concurrent calibration method and the IRT - separate calibration 

with test characteristic curve transformation method were conducted where the data to be 

analyzed included outliers and did not include outliers; the IRT -  separate calibration 

with mean/sigma transformation method was conducted with data with no outliers, 

outliers, and outliers with weights; and the IRT - FCIP calibration method was conducted 

in which the outliers were fixed, not fixed, and removed. These ten variations of IRT- 

based methods were compared under a variety of conditions to answer the research 

questions: (1) Do the IRT-based equating methods that consider the influence of outliers 

produce a better result than the IRT-based equating methods that do not consider the 

influence of outliers? (2) Is the effect found in Question 1, if any, confounded by factors 

such as the characteristics of outliers and the group ability differences? (3) Which of the 

IRT-based equating methods produces a better result, especially among the IRT-based 

equating methods that consider the influence of outliers? (4) Is the effect found in 

Question 3, if any, confounded by factors such as the characteristics of outliers and the 

group ability differences?

Definition of Terms

Equating: A statistical procedure that is used to adjust the differences in difficulty among 

test forms that are built to be similar in difficulty and content. The scores on 

different test forms can be interpreted interchangeable after equating. The 

following properties need to be satisfied for equating two or more test forms:
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Symmetry Property: the function used to transform a score on Form X to the 

Form Y scale is the inverse of the function used to transform a score on 

Form Y to the Form X scale.

Same Specification Property: the test forms must be built to the same content and 

statistical specifications.

Equity Properties: the examinees with a given true score have identical observed 

score means, standard deviations, and distribution shapes of converted 

scores on Form X and scores on Form Y.

Equal Observed Score Distributions Property: the characteristics of score 

distributions are set equal for a specified population of examinees.

Group Invariance Property: the equating relationship is the same regardless of the 

groups of examinees used to conduct the equating.

Common-item Non-equivalent Groups Design: Test form X that contains a set of unique 

items and Form Y that contains another set of unique but randomly parallel items 

are administered to two non-equivalent groups on different occasions. Further, 

Form Z that contains items representing the content and statistical characteristics 

of Forms X and Y is administered to both groups. Thus, scores on Form X are 

equated onto the scores on Form Y through the common items in Form Z.

Reference and Equated Tests: Reference test is also referred to as base test to which

another form is to be equated. The latter is referred to as the equated form. In the 

present study, Form Y is the reference test and Form X is the equated test.

Anchor Test: In the present study, Form Z that contains a set of common items is called 

the anchor test.
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Internal Anchor Test: When the scores on the set of common items contribute to the 

examinees’ scores on the test, the set of common items is referred to as the 

internal anchor test.

External Anchor Test: When the scores on the set of common items do not contribute to 

the examinees’ scores on the test form, the set of common items is referred to as 

the external anchor test. Typically, the external anchor test is administered as a 

separately timed section.

Outliers: When the ^-parameters of common items are estimated from the data sets of 

two non-equivalent groups, the two sets of ̂ -parameters are supposed to be 

distributed along a least squares fit straight line and have a linear relationship. In 

other words, if two perpendicular straight lines are drawn from this item’s X-axis 

and Y-axis position, the intersection point of these two perpendicular lines is 

supposed to be on the least squares fit line. However, if the intersection point is 

not on the least squares fit line, and the distance between the intersection point 

and its presumed position is equal to or more than two score points, which is 

based on the scale with a mean of 0 and standard deviation of 1, then this item is 

defined as an outlier. For example, in the left panel of Figure 1, there are no 

outliers. In contrast, in the right panel, Item il is an outlier.
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Figure 1. Illustration of the definition of outliers.

Organization of the Dissertation 

Chapter 2 contains a review of the IRT models for dichotomous and polytomous 

items, the common-item non-equivalent groups equating design, IRT-based equating 

methods, criteria to evaluate IRT-based equating methods, comparison studies on the 

IRT-based equating methods, and studies on outliers. In Chapter 3, the equating design, 

controlled and manipulated conditions, computer simulation, and evaluation of the IRT- 

based equating methods are presented. This is followed by the presentation and 

discussions of results in Chapter 4. The summary of the results and methods, limitations 

of the current study, conclusions, implications for future practice, and recommendations 

for future research are presented in Chapter 5.
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CHAPTER 2: LITERATURE REVIEW

The equating of two parallel tests has been described in various ways using 

classical test theory (CTT) since the early 1950s (e.g., Flannangan, 1951; Lord, 1950, 

1955). Typically, these traditional equating methods are conducted based on examinees’ 

total scores. However, the total score may not reflect the latent trait (or ability) precisely 

because it is confounded with factors such as item difficulty, item discrimination, and/or 

guessing. For example, if two examinees get the same number-correct scores, it may not 

be that the two examinees have the same ability level because one examinee may get 

most of the difficult items right and the other may answer only the easier items correctly. 

In the framework of IRT, more factors are considered. More specifically, the probability 

(P) for an examinee to answer one question correctly not only depends on the examinee’s 

ability (0) but also on the item difficulty (b), item discrimination (a), and /or guessing 

chance (c). Many IRT models have described the mathematical function between P and 

0, b, a, and/or c. Along with the development of IRT models, parameter estimation 

methods, and corresponding computer programs, IRT-based equating methods are now 

being used in many large-scale testing programs.

IRT models for dichotomously and polytomously scored items are described in 

the first section of this chapter. Then, equating designs, IRT-based equating methods, and 

the criteria to evaluate IRT-based equating methods will be reviewed. This is followed by 

a review of comparison studies of IRT-based equating methods. Finally, the studies on 

the influence of outliers will be presented.
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IRT Models

IRT consists of a family of probabilistic models that hypothesize the relationship 

between an examinee’s latent trait and a correct response to an item. The basic belief of 

these models is that the factors that determine an examinee’s performance on an item 

could be the characteristics of the item including item difficulty, item discrimination, and 

guessing chance; a latent trait; and/or a number of latent traits. More complicated IRT 

models have been developed to capture the factors that may influence examinees’ 

performance on a specific test (Van der Linden, & Hambleton, 1997). For example, 

Reckase (1985) proposed a compensatory multidimensional IRT model that describes the 

non-linear logistical regression relation between the probability of a correct response of a 

person to a specific item and the individual’s multidimensional latent traits. The latent 

traits in this model are supposed to be additive, which means that being high on one or 

more traits can compensate for being low on another trait. Although some equating 

procedures have been developed for multidimensional IRT (Li & Lissitz, 2000), one of 

the difficulties of applying these procedures to large-scale achievement tests is that there 

is no sound evidence that shows that the underlying latent traits of achievement tests have 

the relations indicated in the existing models. Further, providing meaning for each of the 

latent traits is difficult (Li & Lissitz, 2000). Cognitive psychologists have proposed IRT 

models (e.g., Emberson, 1984, 1985; Whitely, 1980) based on the cognitive study of a 

latent construct of interest. However, the application of these models to achievement tests 

is less than ideal due to the construct complexity of achievement in different subject 

areas.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

Compared to the multidimensional or cognitive IRT models, unidimensional IRT 

models have been and continue to be widely used in the large-scale testing programs. 

Although the assumption of unidimensionality has been criticized, factor analysis has 

revealed that large-scale achievement tests usually have one major factor that is large 

relative to the remaining factors. Consequently, good ability and item parameter 

estimates can be obtained using unidimensional IRT models (Reckase, 1979). Hence, the 

following will focus on the review of the unidimensional IRT models.

IRT Models for Dichotomously Scored Items

The 1PL, 2PL, and 3PL IRT models are commonly used for dichotomously 

scored items. In the 1PL model, which is also called the Rasch model (Rasch, 1960), the 

probability of correct response, Py, of individual i on item j  depends only on the ability of 

person i, $, and the difficulty of item j, bj. This relationship is expressed by:

P m  = exp ( f l - w  , ( it
1 + exp (di-bj )

where “exp” is the natural logarithm exponent.

In the 2PL model, the probability of answering a question correctly is not only 

related to an examinee’s ability and the item difficulty, but also to the item 

discrimination, aj. In this case, the logistic function equation is (Lord, 1980):

P „m  = e x p  ( P a j ( f t - M )  _ (2)
1 + exp(Da;(<9;  -  bj))  

where D is the constant 1.7, which is used to make the logistic model similar to the 

normal ogive model (Hambleton et al., 1991). Comparing Equations 1 and 2, it can be 

seen that the 1PL model is a special case of the 2PL model, where “Da,” equals one. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

in turn means that, in the case of 1PL model, the items are assumed to be equally 

discriminating.

In the 3PL model, the pseudo-guessing parameter or lower asymptote, Cjt is 

allowed to be different for each item. However, in the 1PL and 2PL models, no guessing 

is assumed. In other words, the 1PL and 2PL models are special cases of the 3PL model 

when the pseudo-guessing parameter equals 0. In the 3PL model, the probability of a 

correct response to the item j  for the examinee i with ability 0  is given by (Lord, 1980):

P u W  = CJ + (1 -  o )  _
1 + exp  ( D a j ( 0 i - b j ) )

An item characteristic curve (ICC) is often plotted to show the relation between 

the probability of correct response to an item and the ability of an examinee. Figures 2 to 

4 illustrate the ICCs of two items for the above models, respectively. The X-axis 

represents the “true” ability or the latent trait. It cannot be directly observed and has to be 

estimated based on the observed item responses of an examinee. Theoretically, the range 

of the ability parameter is from -°° to +°°; however, in practice, the ability parameter is 

often located within a limited range, say -4 to +4. The Y-axis is the probability of a 

correct response to an item. It is assumed that this probability increases as ability 

increases.

The pseudo-guessing parameter, q,  is “the probability that a person completely 

lacking in ability (0= - °°) will answer the item correctly” (Lord, 1980, p. 12). It is also 

called the pseudo-chance score level. When the items cannot be answered correctly by 

guessing, the c-parameter equals zero. In this case, it is appropriate to use the 1PL model 

or the 2PL model. As shown in Figures 2 to 4, the ICCs in the 1PL and 2PL models start 

from the points that correspond to probabilities (Y-axis) equal zero. The ICCs in the 3PL
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model start from the points along the Y-axis at 0.12 and 0.20, which represent the 

probabilities of low ability examinees correctly answering the items.
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The difficulty parameter, bj, is the location parameter. It is located along the 

ability scale at the point at which the slope of the ICC is a maximum. The ^-parameters 

determine the position of the curve along the ability scale. The more difficult the item, 

the further the curve is to the right. For example, in Figures 2 to 4, Item 2 is more 

difficult than Item 1. Large positive ^-parameters indicate difficult items while large 

negative ^-parameters represent easier items. In the 1PL and 2PL models, bj is the ability 

level where the probability of a correct answer is 0.50; however, in the 3PL model, bj is 

the ability level where the probability of a correct answer is halfway between Cj and 1.00 

(Hambleton, et. al., 1991; Lord, 1980). As shown in Figure 4, the probabilities of a 

correct response to Item 1 and to Item 2, p j  and p 2 , are greater than 0.50 since c\ and C2 

are greater than 0.

The discrimination parameter, aj, indicates how well an item distinguishes 

between high and low ability examinees. It is proportional to the slope of the ICC at the 

inflexion point, i.e., at 0  = b (Lord, 1980). The actual slope at 6 = b is 0.425*a*(l-c). 

The steeper the slope, the higher the a-parameter, and the better the item discrimination 

power. For example, the ICCs in Figures 3 and 4 indicate that Item 2 is more 

discriminating than Item 1. However, under the 1PL model, as shown in Figure 2, all the 

items have the same discrimination. It means that the slopes of all the ICCs are similar 

except that they have different locations.

IRT Models for Polytomously Scored Items 

A variety of IRT models are available for polytomously scored items. For 

example, Bock (1972) proposed the nominal response model for multi-category items. 

Masters (1982) developed the partial credit model (PCM) with fixed slope parameter.
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Muraki (1992, 1993) developed the generalized partial credit model (GPCM) in which 

the slope parameter is allowed to vary across items. Muraki and Bock (1999) further 

extended the GPCM and Samejima’s graded response model (GRM) to model items with 

rating scales. According to Thissen and Sternberg (1986), these models can be classified 

as either “difference” models or “divided-by-total” models. The best known models from 

the first category are the graded response model (Samejima, 1969) and its variations, and 

the best known models from the second category are the partial credit model (Masters,

1982) and its extensions.

Difference Models

In Samejima’s (1969) GRM, person i’s response to item j  is categorized into one 

of nij + 1 ordered categories. Associated with each category k of item j  is a category score 

k, which equals 0, 1... nrij. The probability of obtaining a score k is the difference between 

the probability of obtaining a score of k or higher and the probability of obtaining a score 

of k+l or higher, which can be written as:

^ )  = P ’# ) - P V  + i(« )  , (3)

where

/ / )  \  e x p ( D a j ( 0 i -  bjk))P jk{0 i) -  ------------------------------------  , (4)
1 + e x p ( D a j(0 i  -  bjk))

0i is the latent trait,

D is the scaling constant (D -  1.7 to scale the logistic to the normal ogive metric; 

D = 1 to preserve the logistic metric),

aj is the item discrimination power or common slope parameter for all response 

options for item j, and
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bjk is the threshold parameter for score k on item j.

Two constraints are made to Equation 3: P*jo (Qi) = 1 and P*j> „,+/ (0  J = 0. That 

is, the probability of obtaining any score that is equal to or greater than 0 is 1, and the 

probability of obtaining any score that is greater than the highest score is 0. When the 

item is scored dichotomously, Equation 3 is simplified as Equation 2, which represents a 

2PL model. In other words, the 2PL model is a special case of the GRM when an item 

has only two possible scores.

If the relation between P*jk(&i) and theta is plotted, a set of S-shaped category 

response curves (CRC) will be formed; and if the relation between Pjk (d ,) and theta is 

plotted, the operating characteristic curve (OCC) will be formed. Figures 5 and 6 

illustrate these curves for two items with two sets of a- and ^-parameters. In the GRM, 

the a-parameter, ay, is the common slope parameter for an item. It represents the 

steepness of the curves. The bigger the a-parameter, the steeper the curves. For example, 

in Figures 5 and 6, when the a-parameter decreases from 2 to 1, both the CRCs and 

OCCs become flatter.

bjk is the category threshold parameter. It is the ability level where the probability 

of a correct answer to a category and its above categories is 0.50. When the 6-parameter 

increases, the corresponding CRC(s) and OCC(s) shift to the right along the ability scale. 

For example, in Figures 5 and 6, when 6/2 changes from 0 to 0.50, CRC2, OCC1, and 

OCC2 shift to the right. One may also notice that OCC2 becomes flatter. It indicates that 

the slopes of the middle OCCs are affected not only by the slope parameter, ay, but also 

by the distance between adjacent categories. However, the slopes of the two extreme 

OCCs are affected only by the slope parameter since they are essentially the respective
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cumulative probability functions. This phenomenon indicates that the slope parameter for 

the polytomous item response model is no longer the synonymy of discriminating power 

as it is for the dichotomous item response model.
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Muraki and Bock (1999) extended Samejima’s GRM to the rating scale model for 

items scored in successive categories. The logistic form of this extension is: 

exp(Daj(0i -  bj + djk)) exp( Dajdi -  bj + djk +1))

Note that item category threshold parameter, bjk, in Equation 4 is resolved into an item 

location parameter bj and a category parameter djk- In other words, bjk equals bj - djk 

(Childs & Chen, 1999). If an item has four category responses, this item would have one 

slope parameter (aj), one location parameter (bj), and three category parameters (djk). 

Divided-by-Total Models

Andrich (1978) extended the Rasch model for dichotomous items to the Rasch 

polytomous rating response model. Masters (1980) reformulated Andrich’s model to 

form the partial credit model. Later, Muraki (1992, 1993) generalized the partial credit 

model by including a slope parameter in his model. All these models are based on the 

assumption that the probability of choosing the Mi category over the (Ml)th category is 

governed by the dichotomous response model. The probability of responding in a 

category k to an item i is expressed by the conditional probability of responding in 

category k, given the probability of responding in the k -  1 and k categories. For example, 

Muraki’s GPCM is given by:

where bj0 = 0. When nij = 1 and k = 0, 1, the partial credit model reduces to the 2PL 

model.

Pjk(a) =
1 + exp(Daj(6i -  bj + djk)) 1 + exp(Daj(di -  bj + djk +1))

Pjk(di) (5)
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Operating characteristic curves for two items under the GPCM are illustrated in 

Figures 7 and 8. aj is the slope parameter for item j. When the a-parameter increases, the 

OCCs become steeper. This is illustrated by the change of the a-parameter and the 

operating characteristic curves in Figures 7 and 8.

The bjk in the GPCM is no longer defined as it is in the GRM. Masters (1980) 

named bjk as the item step parameter. It is located along the ability scale at the 

intersection point of two adjacent characteristic curves. The magnitude of bjk determines 

the relative difficulty of passing each step. Consequently, it is not always sequentially 

ordered within item j  as it is in GRM because it is possible that passing one step is more 

difficult than passing the next step. This is illustrated in Figure 8 where (-1) is smaller 

than bj] (0). When the bjk increases, the corresponding OCC), k-i and OCCy* move to the 

right along the ability scale, which means the step from k-l to k becomes more difficult. 

The property that the slope of the middle operating character curves will be affected not 

only by the slope parameter but also by the 6-parameter found in GRM can also be found 

in GPCM. For example, when the distance between bjk and bj,u-i becomes narrower, the 

corresponding OCCjk-i become flatter. The two extreme OCCs will be influenced only by 

the slope parameter.

Muraki and Bock (1999) also extended the GPCM to rating scales. This extension 

is given by:

where bj is the item location parameter, and djk is the category parameter. The bjk in

(6)

Equation 5 equals bj - djk in Equation 6. Andrich (1978) first introduced this separation of
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item location and the category parameter. He claimed that the rating formulation 

preserves the ordering of the response categories.
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As described above, the mathematical formulation for the two classes of 

polytomously scored item response models are different. The different formulations are 

used to capture different response processes. The “difference” models, like the GRM, 

assume that the adjacent categories can be collapsed through cumulative frequencies. In 

contrast, in the “divided-by-total” models, like, the GPCM, the adjacent categories cannot 

be collapsed arbitrarily. This indicates that the response process of a respondent 

characterized by the first type of model is going from one category to the next category 

sequentially. However, the latter models reflect the process of a respondent who 

considers all of the response categories at once (Andrich, 1995).

IRT-based Equating 

Common-item Non-equivalent Groups Design 

As indicated in Chapter 1, the common-item non-equivalent groups design has 

some advantages over the other designs and, thus, has been widely used in practice. 

Although some variations of this design have been developed, the common 

characteristics of them are that two unique test forms are administered on two test dates 

respectively, and an anchor test with common items is administered on both test dates for 

the purpose of equating. Figure 9 illustrates a typical common-item non-equivalent 

groups design where test form Y with unique test U1 and anchor test C l is administered 

in Year 1 and test form X with unique test U2 and anchor test C l is administered in Year 

2. These two unique tests can be equated through C 1. This design may be extended over a 

number of different administrations.
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Y e a r 1 Form  Y

Y e a r 2 Form  X

U i C l

U 2 C l

Figure 9. Illustration of common-item non-equivalent groups design.

One major concern of this design is centred on the selection or development of the 

common items to be included in the anchor test. Questions that are continuously asked 

are: (1) How many common items should be administered? (2) Should the common items 

represent the content and statistical characteristics of the unique test? (3) How should 

common items be selected when equating tests with a mixture of item formats?

Number o f Common Items

The appropriate length of the anchor test has been studied under a variety of 

conditions (e.g., Budescu, 1985; Hills et al., 1988). Budescu (1985) revealed that large 

numbers of common items lead to less random equating error. Petersen, Cook, and 

Stocking (1983) indicated that too few items could lead to equating problems. However, 

Yang and Houang (1996) found that increasing the number of common items beyond 

20% of the number of total items in the test led to improvements on equating accuracy 

that were not practically significant.

Other researchers have shown that a few common items can produce sufficient 

equating results. For example, Hills et al. (1988) studied the effect of anchor test length 

and found that ten randomly chosen anchor items were sufficient when the IRT - 

concurrent method was used to equate two mathematics tests. Raju, Edwards, and Osberg 

(1983), Raju, Bode, Larsen, and Steinhaus (1986), and Wingersky and Lord (1984)
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suggested that as few as five or six carefully chosen items could perform well in IRT- 

based equating when the item parameters of both tests (i.e., U l+C l and U2+C1) were 

estimated simultaneously.

If both sufficiency and efficiency are considered, two similar rules of thumb have 

been suggested for determining the number of common items. Angoff (1984) 

recommended that at least 20 items or 20% of the total number of items in a test, 

whichever is larger, should be included in the anchor test. Kolen and Brennan (1995) also 

said that the anchor test should be at least 20% of the length of a total test containing 40 

or more items unless the test is very long, in which case, 30 common items might be 

sufficient.

Content and Statistical Representativeness o f Common Items

Kolen and Brennan (1995) suggested “the number of common items to use should 

be considered on both content and statistical grounds” (p. 248). Petersen, Marco, and 

Steward (1982) investigated a variety of test form and anchor test characteristics, 

including content representativeness and item difficulty. They consistently found that 

both of these anchor test properties are crucial when the two groups differed in ability. 

Klein and Jarjoura (1985) found that a content representative anchor test functioned 

better than a longer, non-representative anchor test. Cook and Petersen (1987) reviewed 

several studies that considered anchor test properties. In their summary, they pointed out 

that the effectiveness of an anchor test depends on the extent to which the anchor test is 

similar to the total test, and that content and statistical representativeness is especially 

important when groups vary in ability. Yang (1997) found out that the accuracy of 

equating depended on the content representativeness of the anchor items, no matter which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

equating method (Tucker linear and two IRT-based methods) was used to equate two test 

forms.

However, other researchers have shown that content and/or statistical 

representativeness are not important under some conditions. Kromrey, Parshall, and Yi 

(1998) compared the unweighted approach (using equal weights for all the items in the 

anchor test) and two differential weighting methods for the items in non-representative 

anchor tests. They found that the weighting did not perform better than no weighting, 

although this result may be due to the use of equivalent groups. Harris (1991) examined 

the effect of content and statistical non-representativeness. She found that content itself 

did not greatly influence equating results. However, if the anchor test was not statistically 

representative, a content representative anchor test may produce less equating error than a 

content non-representative anchor test. Budescu (1985) pointed out that the magnitude of 

correlation between the anchor test and the total test was the most important determinant 

of the efficiency of the equating process; a high correlation resulted in a better equating 

result. In agreement, Beguin (2002) found that the unidimensional equating procedures 

are fairly robust to violations of the assumption of content and statistical 

representativeness of the anchor test as long as the anchor test is highly correlated with 

the tests to be equated.

Item Format o f Common Items

With the increasing use of open-ended response items in large-scale achievement 

tests, the issue of whether the common items should include different item types has been 

addressed. In practice, an anchor test consisting exclusively of MC items is frequently 

used instead of using mixed item types (Sykes, Hou, Hanson, & Wang, 2002). The use of
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MC items only is based on the assumption that, when used, it is easier to represent all of 

the content categories covered in the total test or when there is evidence that a single 

dimension adequately explains the item responses in the total test. The use of an MC 

anchor test has its practical advantages. For example, it allows equating to take place in 

frequently narrow time frames demanded by the rapid turn-around of scores (Sykes et al., 

2002). The use of MC items avoids the possibility that examinees will remember any 

open-ended response items included in the anchor test. However, Tate (2000, 2002) noted 

that anchor tests that were unbalanced with respect to item type (i.e., exclusively MC 

items) underestimated the simulated increase in abilities relative to anchor tests that were 

balanced across item type, and that the exclusive use of MC items in an anchor test failed 

to capture the large change in the mean ability attributable to the inclusion of open-ended 

response items. Since different types of items are believed to assess somewhat different 

constructs or cognitive processes (Bennett & Ward, 1993), it is reasonable to construct an 

anchor test that includes the item types employed in the total test.

However, in the simple common-item non-equivalent groups design, there are 

practical concerns about constructing a single anchor test with enough content, statistical, 

and item format representative items. For example, if all these factors are considered, it 

may lead to a long anchor test. However, a long internal anchor test may not be allowed 

in practice due to limited test administration time. Some large-scale achievement testing 

programs employ an external anchor test to solve this problem. However, other factors, 

such as lack of motivation, may influence examinees’ observed performance on the 

external anchor test. Consequently, the scores may under represent the latent trait.

Further, as indicated previously, it is difficult to guarantee the security of the common
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items using this simple single common-item anchor non-equivalent groups design. For 

example, in the design with an internal anchor test, if an examinee took Form Y on one 

date and Form X on the next test date, it is very possible that the examinee may 

remember the answers for some of the common items.

A variant of the simple common-item non-equivalent groups design has been 

employed in some studies and large-scale testing programs, especially when the number 

of examinees is quite large (e.g., greater than ten thousand) (e.g., Zenisky, 2001; 

Vukmirovic, et al., 2003). In this design (see Figure 10), known as the common-item 

non-equivalent groups matrix design, the tests to be equated are administered on two 

different test dates. On one test date, say Year 1, multiple test forms are administered to 

different students at the same time. For example, in Year 1, a sub-form, FormY_l, of the 

test form Y could be administered to 3000 students, the FormY_2 could be administered 

to a different 3000 students, and so on. On one test date, different test forms include 

exactly the same unique items but different sets of common or equating items. For 

example, in Year 1, all the test forms include one set of unique items, U l, but different 

sets of common items: C_l, C_2, C_3, and C_4. The unique items administered in Year 

2 are different from those administered in Year 1. However, the same sets of common 

items are used. Thus, examinees scores on U l and U2 can be equated through common 

items in C_l, C_2, C_3, and C_4. Note that the common items are not scored as part of 

examinees’ final scores although they are administered with the unique items at the same 

time. Further, these different sets of common items are assumed to be statistically similar 

and with the same item format. Together, the full set of common items represents the 

content and statistical characteristics of the unique items.
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Test Form Y

FormY_l U l C_1

e a r l  FonnY_ 2 U l t_2

FonnY 3 U l C_3

FoimY 4 Ul C_4

FormX_l 
Year 2 FormX_ 2 

FoimX_3 
ForrnX 4

Figure 10. Illustration of common-item non-equivalent groups matrix design.

The advantage of the common-item non-equivalent groups matrix design over the 

simple common-item non-equivalent groups design (see Figure 9) is that part of the 

common items can be imbedded into each test form without excessively prolonging the 

test administration time. Meanwhile, examinees are equally motivated to take both 

unique and common items. If some examinees take the test next year, the possibility that 

they will take the same common items they did in the previous year is low. In other 

words, the common items are more secure in this design. As a result, it is possible to 

include open-ended response items in the anchor test without risking test security. 

Finally, the total number of common items shared between two consecutive years could 

be far more than the minimum number suggested by the rules of thumb provided by 

Angoff (1984) and Kolen and Brennan (1995). Because of these advantages, the 

common-item non-equivalent matrix groups design will be considered in the present 

study.

Test Form X

U2 C l

U2 C_2

U 2 C_3

U 2 C_4
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IRT Calibration/Transformation

As indicated in Chapter 1, the estimated parameters for the two non-equivalent

equating groups are often not on the same scale and, therefore, need to be equated. Three

IRT calibration/transformation methods are frequently used to perform the calibration

and transformation: separate calibration/linear transformation, concurrent calibration, and

calibration with fixed common item parameters.

Separate Calibration/Linear Transformation

In practice, test forms from different years are often calibrated separately. In the

random groups design, because the groups are randomly equivalent, and the abilities are

scaled to the same metric with the same mean and standard deviation in both groups, no

further transformation is needed. In contrast, for the common-item non-equivalent groups

design, the two groups are assumed to be drawn from different populations. The

estimated parameters for the two groups will not be in the same metric. In this case, a

transformation procedure is needed to convert the parameter estimates of the two test

forms onto a common scale. After the transformation, the parameters of the common

items estimated from the two groups are expected to be the same within sampling error.

A linear relationship exists between the IRT scales for the two test forms. In other

words, if an IRT model fits a set of data, then any linear transformation of the Q scale also

fits the set of data, given the item parameters also are transformed (Kolen & Brennan,

1995; Lord, 1982). For example, in the 3PL model, the theta values and the three

parameters for the X and Y scales are related as follows (Kolen & Brennan, 1995, p. 163):

0Yi -A dxi + B 

a-Yj -  axjl A 

byj = Abxj + B
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CYj =  Cxi ,

where

A  and B are referred as to equating coefficients,

&Yi and &xi are the theta values for individual i on Scale Y and Scale X,

axj, bxj, and Cxi are the item parameters for item j  on Scale X, and

ay], byj, and cYj are the item parameters for item j  on Scale Y.

For the polytomously scored IRT models, the following linear relation exists (Li,

et al., 1999, p.8):

&Yi = A6xi + B 

aYj = aXj /  A 

Yj = Abxj + B 

byjk = Abxjk + B

dyjk = Adxik ,

where

byjk is equal to bYj - dYjk, 

bxjkis equal to bxj - dXjk ,

bxjk, bxj, and dxjk are the category threshold, location, and category parameters on 

Scale X, and bYjk, bYj, and dY}k are the category threshold, location, and category 

parameters on Scale Y.

Many procedures have been proposed to estimate the coefficients A and B (e.g., 

Haebara, 1980; Lin, et al., 1980; Loyd & Hoover, 1980; Marco, 1977; Stocking & Lord, 

1983). One procedure is to use moment statistics in terms of groups of items and/or 

persons. For example,

A = ^  (7)
a(b:,)

ju(ax)
ju(ar) (8)
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_ a  (By)

~  < y{9 x)

B -  ju(br) -  Aju(bx) (9)

= ju(By) -  Aju(Bx) ,

where

ju(br) ,ju(bx) ,jU(ciy) , and ju(ax) are the means of common items’ b- and a- 

parameters on Scale Y and Scale X,

a (br)  and cr(bx) are the standard deviations of common items’ ^-parameters on 

Scale Y and Scale X,

ju(By) , /j(Bx) , <7(By) , and a(Bx) are the means and standard deviations of 

examinees’ abilities on Scale Y and Scale X.

Marco (1977) described a mean/sigma method that uses the mean and standard 

deviation of ̂ -parameters to estimate the coefficients A  and B (Equations 7 and 9). Loyd 

and Hoover (1980) proposed to use the means of a- and ^-parameters to estimate the 

equating coefficients A  and B (Equations 8 and 9), and this method is referred as to 

mean/mean method. However, these methods are sensitive to deviate values (outliers), 

especially poorly estimated item difficulties (Cohen & Kim, 1998; Stocking & Lord,

1983). Cook et al. (1979), Bejar and Wingersky (1981), Linn et al. (1980), and Stocking 

and Lord (1983) developed procedures to overcome this problem. For example, Linn et 

al. (1980) modified the mean/sigma method by using weighted item difficulty estimates 

where the weights are inversely proportional to the estimated standard errors of the item 

difficulties. Cohen and Kim (1998) extended the mean/sigma method and Linn et al.’s 

modification to the graded response model by treating each categorical threshold 

parameter as an individual ^-parameter.
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It is theoretically correct to use the mean/mean and mean/sigma methods. 

However, Stocking and Lord (1983) pointed out that a potential drawback of these 

methods is that the a-parameter and/or the ^-parameter are separately used to estimate the 

equating coefficients. The above methods may lose the information that can be obtained 

from considering all the item parameters simultaneously. Thus, Stocking and Lord (1983) 

proposed the test characteristic curve method. Baker (1992) and Li et al. (1999) extended 

this procedure to the polytomously-scored items. In their approach, equating coefficients 

are obtained by minimizing the quadratic loss function:

where

N  is the number of “arbitrary” points along the reference test 0 scale. 

t,Y is the expected number-correct true scores for the reference test, 

and ti*x —> y is the transformed number-correct true scores for the equated test. 

Uy and ti*x -» y are defined, respectively, as

where

nc is the number of common items,

nij is the number of categories minus 1 for item j ,

ujk is the weight allocated to the response category k for item j ,  ranging from 0 to 

1 for a dichotomous scored item or 0 to 3 for a four-category scored item,

tiY — II U j k P j k Y ( d i Y ; CLjY, b j Y , CjY)
j =1 i=0

(10)

and

(11)
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PjkY is the observed probability that an examinee answers item j ’s category k 

correctly given the item parameters and ability parameters are calibrated on Scale 

Y,

and Pjk*x -> y is the probability that an examinee answers item f  s category k  

correctly given the item parameters and ability parameters on Scale X have been 

transformed onto Scale Y.

Note that 0nm  Equations 10 and 11 is in the reference test metric because the 

goal is to convert the scores on the equated test to the reference test metric. The function 

F, which is a function of both A  and B, will be minimized when dF/dA  = 0  and dF /dB  

= 0. An iterative multivariate procedure has been proposed to find the two equating 

coefficients that will minimize F  (Baker, 1992; Li et al., 1999; Stocking & Lord, 1983).

No matter which linear transformation method is used, the item parameter 

estimates of common items in the reference test metric are often not the same as those 

transformed from the equated test due to sampling error, parameter estimation error, and 

transformation error. Hambleton and Swaminathan (1985) suggested averaging these two 

sets of common item parameter estimates. However, Kim and Cohen (1998) argued that 

when the item parameter estimates are changed, the subsequent ability distribution of the 

reference group may no longer be N (0, 1). This problem is overcome by the following 

two calibration methods.

Concurrent Calibration

Concurrent calibration means the parameter estimation for the test forms to be 

equated is completed in one analysis. The parameter estimates, therefore, are 

automatically calibrated onto the same scale and no further transformation is needed
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(Hambleton et al., 1991; Hanson & Belguin, 2002; Mislevy & Bock, 1990). Hambleton et 

al. (1991) summarised the general procedure of concurrent calibration:

1. Examinees taking the parallel test forms are treated as one sample and the 

data from different groups are combined;

2. The scores for the items that are not responded by some group(s) are coded 

as “not presented”;

3. The ability parameters for all the examinees and the item parameters for all 

the items are calibrated in a single analysis.

Theoretically, the concurrent calibration method is expected to yield more stable 

equating results than the separate calibration method because more examinees are 

available to take the common items and more information is available for the parameter 

estimation. Further, the equating errors produced by calibration and inaccurate 

transformation functions may be reduced or, perhaps, removed (Li, Griffth, & Tam,

1997; Li et al., 1999). Li et al. (1997) indicated that the greatest potential benefit of using 

concurrent calibration is that concurrent calibration may minimize the impact of sampling 

fluctuations on estimating the guessing parameters. The increased number of low ability 

examinees that comes about by combining the different samples is especially informative 

in the estimation of the guessing parameters (Stocking, 1990). In contrast, when there is a 

small number of examinees, the guessing parameter estimates will be unstable (Van der 

Linden & Hambleton, 1997). This uncertainty may, in turn, cause uncertainty in the 

difficulty parameter estimates, especially for the easy items (Thissen & Wainer, 1982). 

Since the parameter estimation of common items may improve due to the increased
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number of examinees, the estimation of examinees’ ability parameters may profit from 

this improvement.

However, when the concurrent calibration is conducted using the marginal 

maximum likelihood estimation (MMLE) procedure, there needs to be a single 

underlying ability distribution for the total or combined sample. If the ability distribution 

of the target group is different from that of the reference group, the marginalization of the 

likelihood function under the assumption of a single ability distribution may not be 

correctly specified, which, in turn, will lead to the problems in estimating the parameters 

(Kim & Cohen, 1997).

There are also some practical difficulties that can occur when the concurrent 

calibration method is used to equate test forms. For example, Li et al. (1997) pointed out 

that coding the “not reached items” can be very tedious when there are more than two test 

forms. When the two groups are not equivalent, the ability scale derived from the 

concurrent calibration will be located somewhere between the ability scales of the two 

groups. This may lead to the difficulty of scale explanation when more test forms are 

equated over time (Vukmirovic et al., 2003).

FCIP Calibration

Mislevy and Bock (1990) combined the separate and concurrent calibration 

procedures to produce what they called the fixed common item parameters (FCIP) 

method. First, the reference and equated tests are calibrated separately. Second, the 

parameters of common items are held constant in the calibration of the equated test using 

the values of the parameter estimates from the reference test (Li et al., 1997). As a result, 

the equated test items are calibrated onto the existing reference scale without changing
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the parameter values for the reference test.

Like concurrent calibration, FCIP calibration is expected to produce more stable 

equating results than separate calibration because it removes the equating errors caused 

by inaccurate transformation functions, and it takes the c-parameter into account for 

metric conversion. Further, if multiple groups take the common items, the common item 

parameter estimates are expected to be more stable, which, in turn, leads to a more 

accurate equating results. FCIP can be adapted to a variety of data collection methods 

such as computer adaptive testing and online item linking (Vale, 1986; Li et al., 1999).

However, there are some potential problems with FCIP when the two equated 

groups are extremely different in terms of location and variability of ability. For example, 

it may produce extreme item parameter estimates. It may not converge when some 

common items are fixed. To overcome this latter problem, these item parameters have to 

be freed (Li et ah, 1997).

IRT True Score Equating

IRT true score equating is used to equate number-correct true scores on Form X 

and Form Y (Kolen & Brennan, 1995). It is completed via a given ability parameter 9  

This 6  is associated with the number-correct true scores on the two test forms in the 

following way (Kolen & Brennan, 1995, p. 175-176);

nx mJ

tx{9l) = ^  ̂  UjkPjk{9i)
7=1 k=0

and

nv mj

TY(9i) = ^  UjkPjkjOi) ,
7=1 *=0
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where

nx and nr are the number of items in the Form X and Form Y,

mj is the number of categories for item j  minus 1,

ujk is the weight allocated to the response category k for item j ,

Pjk{Pi) is the item response function that could be defined in any of the IRT 

models.

In the case of 3PL, Tx(0i) and Ty(9,) are constrained by the sum of c-parameters 

and the total number of items and categories in Form X and Form Y as defined below:

nx mj nx mj n y  mi n y  miII Cjk < T x  <  Ujk and II Cjk < T y < II Ujk
7=1 k=0 j=l k= 0 7=1 k 7=1 k

Kolen and Brennan (1995) described the procedure of conducting true score 

equating: First, specify a number-correct true score on Form X. Second, find the 6  i that 

corresponds to this number-correct true score. Third, find the number-correct true score 

on Form Y that corresponds to the 6 i . The second step requires the solution of a 

nonlinear equation using an iterative process. In this case, the Newton-Raphson method is 

used for finding the roots of the nonlinear function:

nx mj

T x  ~ ' Y J 'Y j U jkP jk (d i)

Q+ __ 0 ~  , /= l  ________________
nx mj ’

~'y, ̂  UjkP j k ( 0 i)
7=1 k=0

where

0+ is the new value calculated after the initial value £T is chosen.

This new 6+ is typically closer to the root of the equation than 0~. In the next 

cycle, 0 ~  is replaced by the <9+ calculated from the previous run. This process continues
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until a criterion such as 0 +-8~< 0.001 is obtained. Then 8+ from the last run is the 8 

corresponding to the true score assigned on Form X.

P jk(8i) is the first derivative of Pjk(8i) with respect to 8i. It is defined (Lord,

1980) as:

p . m  = l . l a j ( l - M 0 i ) ) ( M 0 d - C j )
1 -c j

True score equating has been criticized. For example, Kolen and Brennan (1995) 

pointed out that there is no theoretical basis to apply the relationship between the 

estimated number-correct true scores to that of the observed number-correct scores 

(Kolen & Brennan, 1995). Besides, the true scores are not available in practice. Thus, 

observed-score equating was proposed to overcome this theoretical disadvantage. 

However, comparison studies did not show consistent results about the comparability of 

the IRT observed-score equating and the IRT true-score equating. For example, Kolen’s 

(1981) study revealed that the two methods produced different equating results across the 

1PL, 2PL, and 3PL models using cross-validation criterion and the random groups 

design. The IRT observed-score equating showed better stability. However, Lord and 

Wingersky (1984) found no difference between these two methods when the circular 

chain equating criterion was used to evaluate equating stability using a common-item 

non-equivalent groups design. Han et al. (1997) further examined these two methods and 

the traditional equipercentile equating. They found that the IRT true-score equating 

produced more stable equating results than the IRT observed-score equating. However, 

the mean difference in equating stability was statistically insignificant. Despite these 

concerns, the IRT true score equating has been more widely used than the IRT observed-
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score equating in practice because the IRT true score equating is sample independent and 

easy to compute (Kolen & Brennan, 1995).

Criteria for Evaluating IRT-based Equating Methods 

As described above, there are many equating designs and equating methods 

available for conducting equating. One may have to answer the question about whether a 

specific option of these designs and methods leads to an acceptable equating result. A 

variety of criteria have been used to evaluate the equating results (Harris & Crouse,

1993). What are called the indices and the standard error are the two most commonly 

used criteria to compare and evaluate the precision of equating methods.

Indices

Overall summary indices are often used to compare the equating results across 

methods. These indices typically include root mean square difference ( RMSD) (also 

referred to as root mean square error), mean square error ( M SE ) or total error, mean 

absolute difference ( MAD ), and mean signed difference (M SD ). These four indices can 

be used with both weighting and no weighting. The weighted indices are defined as:

RMSDw =
Y f i V n - V n ) 2
^    (12)

i=l

Y j fi(V n-V i2f
MSEW =   (13)

±fi(=i
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n

~ L A v « - M
MADw  —

1=1 (14)
n

i f

n

Y ,f i (V n - V ,2 )

MSDw  = n (15)

T . f

where

Vu and V,2 typically are the raw scores of examinee i on the equated test that are 

equivalent to the raw scores on the reference test using equating methods 1 and 2 

when the purpose of using these indices is to evaluate the consistency between 

different equating methods. In the computer simulation studies, Vu often refers to 

the estimated values, and V,2 refers to as the true values. 

fi is the frequency of the raw score of examinee i on the equated test, and i runs 

over the possible raw score range. If the indices are not weighted, the/j in 

Equations 12-15 is set to one. 

n is the number of values of V.

The weighted indices and unweighted indices sometimes produce different 

results. For example, Skaggs and Lissitz (1986b) found that although the weighted 

indices appeared acceptable in some instances, the unweighted indices appeared 

relatively large. The selection of any of these indices depends on the researcher’s 

emphasis on the differences. Weighted indices allow relatively more emphasis to be 

given to score point differences that occur frequently, and lower emphasis to differences 

in the extremes of the score range where few or no examinees score. However, 

sometimes it is also important to know the differences throughout the score scale. For
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example, Jaeger (1981) found that substantial equating error might be considered serious, 

even if it only occurs for score points that have small frequency. In this case, the use of 

unweighted indices is more appropriate.

In computer simulation studies, the comparison of differences are usually 

replicated R times. Gifford and Swaminathan (1990) and Hanson and Belguin (2002) 

demonstrated that the mean squared difference for each comparison across r = 1, 2, ..., R 

replications, can be decomposed into the variance of the difference across replications 

(also referred to as random error) and bias (referred to as systematic error) squared. For 

example, the formula for the MSE of ^-parameters across R replications, when 

decomposed, becomes:

MSEb -  — --------------+ tb] -/),,)2 , (16)
R

where

b*jr is the /j-parameter for item j  in the equated test, say Test X, that has been

equated on the reference test, say Test Y, for replication r,

b* is the mean of b*r across r replications, and

bj is the true value of the ^-parameter for item j.

In Equation 16, the first term on the right of the equation is the random error and 

the second part is the bias squared. Only the bias term (systematic error, denoted by 

MSEb_SE  ) reflects of accuracy of equating. Thus, it is used to calculate the MSE of b- 

parameters across items. For example:
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2 > * - 6 , ) 2
MSEb _ SE = ■£!------------

n

where n is the number (or score-points) of items in the test.

Although a majority of equating studies have employed one or more of these 

indices to evaluate the consistency of equating methods, there are some concerns about 

these indices. For example, Harris and Crouse (1993) pointed out that it was not clear 

what amount of difference between two indices is significant, or what amount of 

differences indicates a satisfactory equating. Further, it is not clear that which equating 

method should be considered as the standard against which other equating methods are 

compared. Even when the differences between two methods are found, it is not clear 

which method is better.

However, the accuracy of equating can be evaluated in simulation studies because 

when one generates the data, one knows the true values one is trying to recover. For 

example, examinees’ true ability, the true item parameters, and the true equating 

coefficients are known in a computer simulation study. Thus, the estimated values using 

of an equating method can be compared to the true values.

The use of these indices has been abundant in the literature, especially in 

computer simulation studies. For example, Li et al. (1997) calculated the MSD and 

RMSD for the difference between the true parameters and the estimated parameters to 

examine the robustness of FCIP under the situation of large standard errors in the item 

difficulty and guessing parameters. Kim and Cohen (1998) used RMSD for the a- 

parameter and 6-parameter to compare the methods of separate calibration with the 

characteristic curve transformation and the method of concurrent calibration. Kaskowitz
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and De Ayala (2001) examined the effect of error in item parameter estimates on the test 

characteristic curve method using RMSD and MSD for the equating coefficients A and 

B. However, no evidence has been presented that indicates which index is the best to use.

Standard Error

Equating error may occur randomly or systematically (Kolen & Brennan, 1995). 

Random error is due to random sampling of examinees from the population of interest. 

Thus, increasing the sample size can decrease the random error. Systematic error may 

result from the estimation error of the equating relationship, violation of the assumptions 

of an equating method, or improper implementation of an equating design. For example, 

in the common-item non-equivalent groups design, systematic error may arise when the 

common items are not representative of the total test in terms of the content and statistical 

characteristics. Systematic error may also occur when the common items function 

differently from one test administration to another.

The delta method or analytical procedure (Kolen & Brennan, 1995) has been used 

to develop formulas for calculating the random error of IRT-based equating. For 

example, Thissen and Wainer (1982) developed a mathematical expression to examine 

how the sample size, the shape of examinees’ ability distribution, and the characteristics 

of test items cause differences in the errors of parameter estimates. Li et al. (1999) 

extended this formula to the general partial credit model. Ogasawara (2001) derived 

asymptotic standard errors of the IRT-based equating coefficient estimates for the 2PL 

and 3PL models. However, due to the lack of simple computation, the analytical 

procedure is not widely used in evaluating the IRT-based equating methods in the 

literature.
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Another procedure to estimate the random equating error is referred to as the 

“bootstrap” (Kolen & Brennan, 1995). It can be used when the analytical procedure is not 

available or its assumptions are questionable. In this procedure, many samples, for 

example, 25 to 200 (Efron & Tibshirani, 1993), are drawn from the sample data and the 

equating is conducted for each replication. Then, the standard deviations are computed 

over all the replications to obtain the standard error of equated scores at all raw score 

points for the equated test form (Kolen & Brennan, 1995; Tsai, Hanson, Kolen, &

Forsyth, 2001). However, this procedure is time consuming in the context of IRT-based 

equating; therefore, it is not widely used.

Some empirical suggestions have been made on how to control the random error 

as well as the systematic error. For example, Kolen and Brennan (1995) recommended 

that a sample size of 400 for the Rasch model or 1500 for the 3PL model should be used 

when using IRT-based equating. Kolen and Brennan (1995) also suggested that the 

proportion of common items over the total test items should be at least 20% in the 

common-item non-equivalent groups design.

Comparison Studies on the IRT-based Equating Methods

Because of the lack of definite criteria to evaluate an equating method, many 

studies have focused on comparing the different equating methods (e.g., Tsai et al.,

2001). For example, Kolen (1981) compared the traditional linear, equipercentile, 

modified 1PL estimated true score, modified 1PL estimated observed score, 2PL 

estimated true score, 2PL estimated observed score, 3PL estimated true score, and 3PL 

estimated observed score equating methods. The equating data was collected under the 

randomly equivalent groups design. The results from the equating methods were
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compared using cross-validation criterion. He found four major results: (1) the 1PL 

method results were inadequate for equating tests differing in difficulty; (2) the 3PL 

methods produced the most stable cross-validation results; (3) the linear method was not 

satisfactory when equating tests of unequal difficulty; and (4) the equipercentile method 

produced reasonably adequate results. Kolen and Whitney (1982) compared the 

equipercentile, linear, 1PL, and 3PL equating methods when the sample size was 200. 

Cross-validation analyses were used to evaluate the equating results. They found that the 

3PL equating method produced unacceptable equating results. The 1PL method produced 

results that were as stable as those from traditional methods.

Petersen et al. (1983) compared the equipercentile, linear, and IRT -concurrent 

calibration methods in terms of scale drift using a sample of approximately 2670 cases. 

Overall, they found the IRT - concurrent calibration method appeared to be the best 

equating method for reducing scale drift over time. Cook and Eignor (1983) investigated 

the feasibility of applying IRT-based equating methods by comparing these methods with 

traditional equating methods. Scale drift was used to evaluate the equating results. If the 

results of equating test form A directly to test form D are not the same as that obtained by 

equating test form A to test form D through forms B and C, then scale drift was thought 

to occur. They found that the IRT - concurrent calibration and the IRT - separate 

calibration with characteristic curve transformation methods were both feasible and that 

the two methods produced similar results.

Hills et al. (1988) compared the linear equating, 1PL, 3PL-concurrent, 3PL-fixed 

parameter, and 3PL-linear transformation methods. He reported that the different 

methods produced similar results in the situation in which the tests were made parallel in
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difficulty and content, and the groups were equivalent over two years. Further, an anchor 

test with 10 items provided equating as effective as an anchor test with 30 items using the 

IRT - concurrent calibration method. However, Kim and Cohen (1998) found some 

differences between the IRT separate and concurrent equating methods. In their study, a 

test of 50 items and four sets of common items (5,10, 25, and 50) were administered to 

two groups with 500 examinees. Three IRT-based equating methods were compared: 

separate calibration with Stocking-Lord characteristic curve method, concurrent 

calibration via marginal maximum “a posteriori” estimation, and concurrent calibration 

via marginal maximum likelihood estimation. They found that separate calibration 

yielded smaller RMSD for both item discrimination and difficulty parameters for a 

smaller number of common items than the other two methods. For a larger number of 

common items, the three methods yielded essentially the same results.

Hanson and Belguin (2002) compared IRT - concurrent calibration and IRT - 

separate calibration with mean/mean, mean/sigma, Stocking-Lord characteristic curve, 

and Haebara characteristic curve methods. Four factors were considered in their study: 

program (MULTILOG versus BILOG-MG), sample size per form (3000 versus 1000), 

number of common items (20 versus 10), and equivalent and non-equivalent groups (no 

mean difference and a mean difference of 1 standard deviation). They found that, overall, 

the concurrent calibration resulted in less MSE than the separate calibration/linear 

transformation.

Tsai et al. (2001) employed bootstrap error as their criterion to compare the IRT 

- separate and IRT - concurrent calibration methods. In the separate calibration, Stocking 

-Lord’s characteristic curve method was followed to estimate the equating coefficients.
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In both calibrations, the true score equating and the observed score equating were 

examined separately. Overall, five methods were compared. The standard deviation was 

computed over 500 bootstrap replications to obtain the standard error of IRT-based 

equating at each raw score point for the equated test form. They found that the concurrent 

calibration methods produced smaller standard errors than the separate calibration 

method did.

Cohen and Kim (1998) extended the comparison studies to tests with only 

polytomously scored items. Simulated data were used to investigate the IRT - separate 

calibration with different transformation methods: Stocking-Lord characteristic curve 

method, mean/mean, mean/sigma, and weighted mean/sigma. Underlying ability 

distribution (N (0, 1) - N (0, 1) versus N (0, 1) - N (1, 1)), sample size (300 versus 1000), 

and number of common items (5,10, 20, and 30) were manipulated. The results indicate 

that differences in the equating coefficients estimated by these methods were small.

RMSD of ability parameters were very small under most conditions. The methods 

yielded similar results for the longer common-item designs with larger sample size.

It is difficult to summarize these comparison studies because (1) almost every 

study compared different IRT-based equating methods under a variety of conditions, 

which sometimes lead to inconsistency of the results, and (2) different criteria were used 

to evaluate the equating results. The only common conclusion one may draw from these 

previous studies is that all the IRT-based equating methods yield more similar results 

when their assumptions were not violated.
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Studies on Outliers

One of the major benefits of using IRT in large-scale achievement tests is that the 

estimation of item parameters is group independent. That is to say, when a set of items 

are administered to two groups, the item parameters (e.g., a-, b-, c-parameters) estimated 

from these groups are expected to be linearly related (i.e., located along a straight line if a 

scatter plot is plotted). However, some observed item parameters of the two groups to be 

equated have been found that are located far away from the straight line in the scatter 

plots (e.g., Stocking & Lord, 1983; Vukmirovic et al., 2003).

Many researchers have been aware of the effects of outliers on IRT-based 

equating, especially when the common-item non-equivalent groups design is employed 

(e.g., Bejar & Wingersky, 1981; Cohen & Kim, 1998; Cook et al, 1979; Hanson & 

Feinstein, 1997; Linn et al., 1980; Stocking & Lord, 1983). For example, Stocking and 

Lord (1983) pointed out that the poorly estimated item difficulties might negatively affect 

the estimation of the equating coefficients A and B when the mean/mean and mean/sigma 

transformation methods were used. Vukmirovic et al. (2003) found that fixing and not 

fixing the item parameters with inconsistent ^-parameters might lead to different equating 

results when the FCIP was employed.

To overcome this problem, procedures have been proposed to modify the 

mean/mean and mean/sigma transformation methods. For example, Cook et al. (1979) 

tried to restrict the range of the difficulties used in computing moments. Bejar and 

Wingersky (1981) suggested giving smaller weights to the outliers that are used to 

estimate moments. Linn et al. (1980) used weighted item difficulties where the weights 

were the inverse of the squared standard errors. Stocking and Lord (1983) proposed an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

iterative procedure that employed both Linn et al.’s (1980) method and Bejar and 

Wingersky’s (1981) robust method. Cohen and Kim (1998) extended Linn et al.’s (1980) 

procedure to calculate the equating coefficients for polytomously scored items. However, 

it wasn’t clear how much these procedures improved the equating results. For example, 

Cook et al.’s (1979) method may lead to the deletion of some outliers. Although this may 

eliminate the negative effect of outliers, it may lead to a non representative sample of 

common items. The other modified methods may be useful when the outliers are due to 

the item parameter estimation errors. However, other reasons, such as disclosure of some 

items, may also produce outliers. In this case, it is not clear whether these modified 

methods will result in a better equating result.

Few studies have addressed the issue of outliers when other IRT-based equating 

methods such as the separate-calibration/characteristic curve transformation, FCIP, and 

concurrent calibration are employed. Vukmirovic et al. (2003) explored the effects of 

fixing and not fixing random outliers using FCIP. However, how to deal with outliers 

when they appeared non-randomly was not clear. Theoretically, one may suggest 

removing outliers when no harm would be done to the balance of content in the set of 

common items (Hanson & Feinstein, 1997). However, further systematic study needs to 

be conducted to obtain a more clear understanding of the effect of the presence of outliers 

on the results obtained using IRT-based equating methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

CHAPTER 3: METHODOLOGY 

In the current study, simulated data were generated for the common-item non­

equivalent groups matrix design that reflected the characteristics of outliers and group 

ability differences. Ten IRT-based equating methods were used to equate the simulated 

data. The equating results were compared and evaluated; as a result, the performance of 

the IRT-based equating methods in the presence of outliers was investigated. The 

methodology involved in the above procedures is described in the following four 

sections.

Equating Design

The results of the current study are intended to be generalized to equating large- 

scale achievement tests with mixed item formats using IRT-based methods. As indicated 

in Chapter 2, since the common-item non-equivalent groups matrix design has many 

advantages in the context of large-scale achievement tests, a simple form of this design 

(see Figure 11) was employed. As shown in Figure 11, test forms Y and X were 

administered in two years and needed to be equated. There were three sub forms in each 

of these two test forms defined by different sets of the equating items. For example, test 

form Y included sub forms FormY_l, FormY_2, and FormY_3. In Year 1, all the test 

forms included one set of unique items, U l, but different sets of common items: C_l,

C_2, and C_3. The unique items, U2, administered in Year 2 were different from those 

administered in Year 1. However, the same sets of common items were used. Thus, 

examinees scores on U l and U2 were equated through common items in C_l, C_2, and 

C_3.
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Test Form Y

F orm Y_ 1 U l C l

Year 1 FonnY_2 U l C_2

FonnY 3 U i C_3

Test Form X

FonnX_l U2 C_1

Year 2 FonnX_ 2 U 2 C_2

FormX_3 U 2 C_3

Figure 11. Illustration of the equating design employed in the current study.

The number of items and the types of items considered in the current study are 

intended to best simulate a state-wide large-scale mathematics achievement test. Based 

on the available item characteristics from the mathematics test and the basic 

considerations for test development (for example, content representativeness and test 

administration time), 72 unique items and 30 common items were used to measure 

examinee’s achievement in five mathematics content areas. As shown in Figure 12, there 

were 36 unique items in each sub test of Form Y. Of these, 26 were multiple-choice items 

(MC) with two score categories, 5 were short-answer items (SA) with two score 

categories, and 5 were open-ended response items (OR) with five score categories. Each 

sub form contained a different set of 8 common MC items, 1 common SA item, and 1 

common OR item. The 30 common items together represented the statistical, content, and 

item format characteristics o f the unique items. The same structure was used for Form X  

but with a different set of 36 unique items. Using the 30 common items, the unique items 

in the test form Y and X were equated onto the same scale. The common items were not 

scored as part of the examinees’ final scores.
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Year I

FormY_l 
FomtY_ 2 
FonnY 3

~ Test Fora* Y 
M C  SA O R  M C  SA O R

26 Y 5v 5y 1 8a 1a 1a m c s a o r

26y 5y 5 y 8b 1b 1b

26 y  5 y  5y
M C SA OR

8c lc It

T e s t  Form X

FonnX_l 
Year 2 FonnX_2 

FonnX_3

26;c 5? 5x

26x 5a

2 6;C5a 5x

8a  1a  1a

8b 1b 1b

8c lc It

Figure 12. The number and the types of items in each test form.

The numbers of different types of items are presented for each content area in 

Table 1. For example, in the content area of number sense, there are 10 MC, 1 SA, and 1 

OR unique items and 9 MC, 2 SA, and 2 OR common items. The number of items varies 

across content areas.

Table 1

The Number o f Unique and Common Items in Each Content Area

Content Area Item MC SA OR Score-points

Number Sense Unique Items 10 1 1 15
Common Items 9 2 2 19

Patterns, Relations, and Unique Items 6 1 1 11
Functions Common Items 5 0 1 9

Statistics and Probability Unique Items 5 1 1 10
Common Items 5 0 0 5

Geometry Unique Items 3 1 1 8
Common Items 3 0 0 3

Measurement Unique Items 2 1 1 7
Common Items 2 1 0 3
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Fixed and Manipulated Factors 

The accuracy of IRT-based equating for the common-item non-equivalent groups 

matrix design might be influenced by factors such as sample size, the IRT model used for 

the estimation of parameters, the computer program used for parameter estimation, the 

number/score-points and the representativeness of common items, the characteristics of 

outliers, group ability differences, and equating method. In the current study, the first 

three factors were fixed and, therefore, were not examined. The remaining factors were 

manipulated.

Sample Size

The sample size for each sub test form was controlled at 2000, which has been 

suggested as large enough to produce stable parameter estimates (e.g., Kolen & Brennan, 

1995; Zeng, 1991). Consequently, the total sample size for each of the test forms X and Y 

was 6000 (2000 x 3 = 6000), respectively.

IRT Models

Three IRT models, 3PL, 2PL, and GRM, were chosen for modelling the 

data generated for the test form X and test form Y. The 3PL model was used for 

modelling the multiple-choice items. This is based on the observation that it is 

always possible for an examinee to answer a multiple-choice item correctly by 

guessing since the answer is provided with the alternatives. The 2PL model was 

used for modeling the short-answer items. The use of 2PL model is based on the 

belief that the possibility of answer a short-answer question correctly by guessing is 

close to zero, and it is reasonable to assume the discrimination power for all the 

items are different. The rationale for choosing the extended GRM to model the
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polytomously scored items is that (1) the scores for the math open-ended items are 

ordered; (2) the adjacent scores, for example, 2, 3, and 4, can be collapsed as one 

category, if necessary; and (3) it is meaningful to know the possibility of getting a 

higher score over getting a lower score.

Computer Programs 

Several computer programs have been developed for parameter estimation. For 

example, once the data for two equating groups are collected, the parameters can be 

estimated through IRT software packages such as LOGIST (Wingersky, Barton, & Lord, 

1982), BILOG (Mislevy & Bock, 1990), BILOG-MG (Zimowski, Muraki, Mislevy, & 

Bock, 1996), MULTILOG (Thissen, 1991), or PARSCALE (Muraki & Bock, 1999). The 

last two programs can be used for polytomously scored items. These programs were 

thought as one factor that might influence the equating results (e.g., Hanson & Beguin,

2002). However, after comparing the performance of MULTILOG and BILOG-MG in 

the context of concurrent calibration and separate/linear transformation, Hanson and 

Beguin (1999) concluded that the two programs tended to perform similarly. Childs and 

Chen (1999) found that although the MULTILOG and PARSCALE parameterize the 

polytomous IRT models differently (for example, MULTILOG uses GRM while 

PARSCALE uses the extended GRM as described in Chapter 2), similar parameter 

estimates were obtained. Thus, only PARSCALE was used to estimate the parameters.

The PARSCALE control files were altered for the concurrent, separate, and FCIP 

calibrations. The sample control files for each of these methods were presented in 

Appendixes A, B, and C.
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The Number/Score-points and the Representativeness o f Common Items 

The number and the representativeness of common items were originally well 

controlled. Li et al. (1999) and Tate (2000) suggested that while determining the number 

of common items, a polytomously scored item can be treated as several dichotomously 

scored items that are equal to the number of score categories. Since the tests simulated in 

the current study have open-ended response items, the score-points rather than the 

number of items was considered. However, the number of items was also reported as a 

reference. The ratios expressed as percentage of common items over the unique items 

based on the score-points and the number of items are listed in Table 2. As shown in 

Table 2, the total percentage of the score-points of the common items over that of the 

unique items was about 76.5%; and the percentage of the number of common items over 

the number of unique items was about 83.3%. In terms of content areas, the smallest 

percentage based on the score-points was 37.5% for the content of geometry. Table 2 

indicates that the number or the score-points of the common items was originally large 

enough to represent the unique items.

Table 2

Percentages o f the Common Items over the Unique Items

Content Area
No. of Score-points of the 

Common Items / No. of Score- 
points of the Unique items

No. of the Common 
Items / No. of the 

Unique Items

Number Sense 126.7% 108.3%
Patterns, Relations, and Functions 81.8% 75.0%
Statistics and Probability 50.0% 71.4%
Geometry 37.5% 60.0%
Measurement 42.9% 75.0%

Total 76.5% 83.3%
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The means and the standard deviations of the ^-parameters of the unique and 

common items based on the score-points and the number of items are listed in Table 3. As 

indicated in the table, the ^-parameters of the common items (or anchor test) represented 

the ^-parameters of the two unique tests. The mean difficulties of the three sets of 

common items in each test form were similar, which indicated that the difficulties of each 

sub test form were similar.

Table 3

The Descriptive Statistics o f the b-parameters o f the Unique and the Common Items

Item
Based on the Score-points Based on the Number of Items
Total

Score-points
Mean S.D. Total Number 

of Items
Mean S.D.

Ul 51 -0.0595 1.1130 36 -0.3074 0.6902
U2 51 -0.0460 1.1648 36 -0.3061 0.7348
Common 39 -0.1220 0.8599 30 -0.2942 0.7525
C 1 13 -0.0963 0.8631 10 -0.2919 0.6388
C 2 13 -0.1302 0.8622 10 -0.2888 0.8373
C_3 13 -0.1395 0.9231 10 -0.3019 0.8459

However, these properties were changed when the outliers and the IRT-based 

equating methods were manipulated. For example, if the outliers were from one content 

area and they were removed while conducting equating, then the content 

representativeness of common items would be violated.

Characteristics o f Outliers 

The presence of outliers may be due to a change in the instructional emphasis of a 

certain content area, the revelation of some common items, and item parameter 

estimation error (especially for items with extreme 6-values). Thus, the manipulation of 

outliers reflected these possible reasons. For example, some outliers were from one 

content area to reflect the first possible reason, which meant that the content
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representativeness was altered in this manipulation. That is to say, by excluding all the 

outliers from one content area, the content representativeness was violated. Based on the 

characteristics of the data used in the current study, the following six conditions were 

examined:

1. There was no outlier in the common items.

2. The outliers were 3 MC items with 3 score-points. These items were from one 

content area.

3. The outliers were 3 MC items with 3 score-points. These items were randomly 

selected from any of the five content areas.

4. The outliers were 5 MC items and 1 OR items with 9 score-points. These 

items were from one content area.

5. The outliers were 5 MC items and 1 OR items with 9 score-points. These 

items were randomly selected from any of the five content areas.

6. The outliers were 3 MC items with 3 score-points. These items could be either 

very difficult or very easy. However, in the current study, all of them were 

very easy given the available properties of the ^-parameters.

The first condition served as the baseline of comparison. Conditions 2 to 4 

reflected the increase of the number/score-points of outliers and the first two possible 

reasons for the presence of outliers. Since the most possible result of the instruction 

emphasis on one content area and the exposure of some common items is that the 

corresponding items become easier when they are administered in the second year, only 

the outliers located on the left side of the straight line on the scatter plot of ̂ -parameters
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were examined in the current study. The sixth condition represents the situation that 

estimation error leads to the presence of outliers.

Group Ability Differences 

Group ability difference was the second factor manipulated in the current study. 

Theoretically, in the common-item non-equivalent groups matrix design, equating is only 

needed when the groups taking the two tests are non-equivalent. However, for the 

purpose of comparison, equating was conducted for the situations with equivalent and 

non-equivalent groups in the current study. Samples for the item responses for test form 

Y were generated by sampling the latent trait (0 ) from a normal distribution with mean 

zero and standard deviation one (N (0, 1)). Two sets of item responses were generated for 

test form X by sampling 0 from an N (0, 1) distribution and an N (1, 1) distribution. The 

samples with N (0, 1) for test form Y and test form X were used to examine the case that 

the two groups were equivalent. The samples with N (0, 1) for test form Y and with N (1, 

1) for test form X were used to examine the case where the two groups were not 

equivalent. This factor was fully crossed with the six conditions defined by the outliers. 

Thus, a total of 12 (2 x 6 = 12) response conditions were produced.

IRT-based Equating Methods 

The IRT-based equating method was the third factor manipulated in the current 

study. The following ten equating methods were conducted for each of the 12 response 

conditions:

1. concurrent calibration with outliers included (i.e., this method did not consider 

the influence of outliers by including the responses to outliers in the data file 

used for the concurrent calibration; i.e., the outliers were ignored)
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2. concurrent calibration with outliers excluded (i.e., this method considered the 

influence of outliers by excluding the responses to outliers from the data file 

used for the concurrent calibration)

3. TCC transformation with outliers included

4. TCC transformation with outliers excluded

5. M/S transformation with outliers included

6. M/S transformation with outliers excluded

7. M/S transformation with outliers weighted

8. FCIP calibration with outliers fixed

9. FCIP calibration with outliers not fixed

10. FCIP calibration with outliers excluded

Note that for the response conditions with no outliers, the above ten methods 

reduced to four methods: concurrent calibration, TCC transformation, M/S 

transformation, and FCIP calibration. As a result, a total of 108 ( 1 x 2 x 4  (“0” outlier by 

group ability differences by equating method) + 5 x 2 x 10 (5 combinations of outliers’ 

characteristics by group ability differences by equating method) = 108) conditions were 

examined in the current study.

Computer Simulation

Simulation studies are actually statistically sampling experiments with an 

underlying model whose results are used to address research questions (Robinstein,

1981). Using simulated data to study statistical problems can be found in the early 1900s. 

With the development of high-speed computers, the computer-based simulation became a 

popular and a formal research method for solving statistical problems (Harwell, Stone,
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Hsu, & Kirisci, 1996). Computer simulations have played an important role for studying 

the properties of the IRT models and their applications. For example, many studies have 

employed this method to investigate IRT-based equating methods (e.g., Baker, 1992,

1996; Bolt, 1999; Cohen & Kim, 1998; Hanson & Beguin, 2002; Li, et al. 1997; Li, et al. 

1999; Wang, Hanson, & Harris, 2000).

Lehman and Bailey (1968) pointed out that a computer simulation might be 

conducted when an experiment study in the real world is too costly or impossible. In the 

publication policy of Psychometrika (Psychometric Society, 1979), it is pointed that 

simulation studies should be employed only if the information cannot reasonably be 

obtained in other ways, for example, in an analytical way. These reasons support the use 

of computer simulation in the current study. It is difficult for a researcher to collect real 

data to represent the outliers of interest. More importantly, it is almost impossible to 

pursue a research question such as which IRT-based equating method produces a more 

accurate result using real data due to the lack of definite evaluation criteria. A simulation 

study can solve these problems. For example, the different conditions of interest can be 

reflected in the simulated data or implied in the simulation process. The equating results 

of the IRT-based equating methods can be compared with the true scores that are known 

before the simulated data are generated. Therefore, the accuracy of the performance of 

the IRT-based equating methods can be compared.

In the current study, computer simulation was used. The steps followed were:

1. For test form Y, an item response sample was generated for each of the 6 

outlier conditions that had an underlying theta distribution of N (0, 1).
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2. For test form X, an item response sample was generated for each of the 6 

outlier conditions with an underlying theta distribution of N (0, 1); another 

item response sample was generated for each of the 6 outlier conditions with 

an underlying theta distribution of N (1, 1). The samples for the test form X 

were paired with the samples for the test form Y to represent the 12 response 

conditions.

3. The response samples for the two test forms were calibrated and/or equated by 

the four IRT-based equating methods or their ten variations listed on Pages 66 

and 67. Each of these methods was followed by the IRT true score equating.

4. This process was replicated 50 times, which is thought to be sufficient to 

compare the results obtained from Step 3 (Hanson & Belguin, 2002; Harwell 

et al., 1996).

Evaluation of the IRT-based Equating Methods

The purpose of the current study was to compare the IRT-based equating methods 

in the presence of outliers. As described in Chapter 1, four specific research questions 

were studied: (1) Do the IRT-based equating methods that consider the influence of 

outliers produce a better result than the IRT-based equating methods that do not consider 

the influence of outliers? (2) Is the effect found in Question 1, if any, confounded by 

factors such as the characteristics of outliers and the group ability differences? (3) Which 

of the IRT-based equating methods produces a better result, especially among the IRT- 

based equating methods that consider the influence of outliers? (4) Is the effect found in 

Question 3, if any, confounded by factors such as the characteristics of outliers and the 

group ability differences?
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To answer these questions, the unweighted mean square error for the ^-parameters 

( MSEb) and the unweighted mean square error for the number-correct true scores 

( M SE t) were calculated for the 108 conditions:

where

nij is the number of categories minus 1 for item j,

b*jkr is the ^-parameter for the unique item j  category k in the equated test, say Test 

X, that has been equated on the reference test, say Test Y, for replication r,

b jk  is the true values of the ^-parameter for item j  category k,

t]r is the number-correct true score at score point s in the equated test, say Test 

X, that has been equated on the reference test, say Test Y, for replication r,

and Ts is the true number-correct true score at score point s.

The mean square errors were further decomposed into systematic errors 

( MSEb _  SE  and MSEt _ S E ) and random errors ( MSEb _  RE  and MSEt _  R E ). The 

systematic errors were calculated by:

50 36 mj
2

MSEb = r=l j=1 k-0 (17)
50x51

and

50 51

M SE , = (18)
50x52
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36 m j

M SEb _ S E  = - ^ - ^ 5 ------------------------
51 

and

51

M S E t  _ S E  = ^ --------------------
52

The random errors were calculated by:

50 36 mi

E E I> v -*;)2
M SEb_RE = —  j = 1 *=0

50x51 

and

50 51

EZ^r-?;)2
M SEt _ R E  = ---------------------

50x52 

where

b*k is the mean of the ^-parameters for the unique item j  category k in the equated 

test that have been equated on the reference test across 50 replications,

t* is the mean of the number-correct true scores at score point s in the equated 

test that have been equated on the reference test across 50 replications,

and the other symbols have the same meaning as those in Equations 17 and 18.
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In the current study, the systematic errors for the ^-parameters and the number- 

correct-true scores under the 108 conditions were compared to answer the research 

questions. The justification for using the systematic errors is described in detail in 

Chapter 4.
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CHAPTER 4: RESULTS

The purpose of this chapter is to present and discuss the results of the analyses 

conducted to answer the four research questions addressed in this study:

(1) Do the IRT-based equating methods that consider the influence of outliers 

produce a better result than the IRT-based equating methods that do not consider the 

influence of outliers?

(2) Is the effect found in Question 1, if any, confounded by factors such as the 

characteristics of outliers and the group ability differences?

(3) Which of the IRT-based equating methods produces a better result, especially 

among the IRT-based equating methods that consider the influence of outliers?

(4) Is the effect found in Question 3, if any, confounded by factors such as the 

characteristics of outliers and the group ability differences?

As described in Chapter 3, three factors were manipulated. These included (a) 

characteristics of outliers, which were six combination of number/score-points of outliers 

(0 outliers with score-points 0, 3 MC items with score-points 3, and 5MC items and 1 OR 

item with score-points 9) and types of outliers (outliers from one content area, randomly 

from any content area, and with extreme values applied to the 3 score-points condition 

and the first two types of outliers applied to the 9 score-points condition ), (b) group 

ability differences (equivalent groups (N (0,1) vs. N (0,1)) and non-equivalent groups 

(N (0, 1) vs. N (1,1)), (b), and (c) IRT-based equating methods (four methods with no 

outliers present and ten variations in the presence of outliers). The evaluation criteria 

used to compare the IRT-based equating methods were the systematic errors of the b- 

parameters and the number-correct true scores (MSEb _ SE and MSEt _SE) .
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The error values under various conditions are summarized in Tables 4 to 9. It was 

found that when the MSEb and MSEt values increased greatly, the corresponding 

MSEb _  SE  and MSEt _  SE  values also increased greatly. In contrast, the corresponding 

MSEb _  R E  and MSEt _ R E  values did not change too much. For example, when no 

outliers present in the data set, the M SEb, MSEb _  S E , and MSEb _  R E  values for the 

concurrent calibration under the equivalent groups condition were 0.0157, 0.0108, and 

0.0049 respectively (see left side, Panel A, Table 4, p. 76); the M SEb, MSEb _ S E , and 

MSEb _  R E  values for the concurrent calibration under the non-equivalent groups

condition were 0.6907,0.6836, and 0.0071 (see left side, Panel B, Table 4). This example 

indicated that the change of mean square errors was mainly due to the change of 

systematic errors. Besides, theoretically, systematic errors reflect the magnitudes of the 

bias introduced by specific equating methods and do not decrease as the sample size 

increases (Kolen & Brennan, 1995). Thus, the MSEt, _  SE  and MSEt _  SE  were used to (a) 

evaluate the accuracy of the equating methods and (b) to make comparisons among the 

methods.

In most equating simulation studies reported in the literature, the relative 

magnitudes of error values were compared to determine the relative accuracy of the 

equating methods considered. However, the use of relative magnitudes of systematic 

errors in the current study was problematic. For example:

(1) The MSEt _  SE  values for the M /S transformation and FCIP calibration in the 

presence of no outliers and with equivalent groups were 0.0859 and 0.0858 

respectively (see Panel A, Table 4). Based on the relative criteria, one may 

conclude that the FCIP calibration performed better than the M/S
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transformation since the former method had a smaller MSEt _ SE value than 

the latter one. However, should both the MSEt _ SE values of 0.0859 and 

0.0858 be treated as small and the difference of 0.0001 be ignored?

(2) The MSEt _ SE values for the TCC transformation with outliers included and 

concurrent calibration with outliers included under the condition of 3 outliers 

with extreme values and equivalent groups were 3.7795 and 0.6026 

respectively (see Panel A, Table 7, p.89). Based on the relative criteria, one 

may conclude that the concurrent calibration with outliers included performed 

better than the TCC transformation with outliers included since the former 

method had a smaller MSEt _ SE value than the latter one. While the 

conclusion may sound reasonable for this case, it likely makes no sense in the 

following case.

(3) The MSEt _ SE values for the M/S transformation with outliers included and 

the TCC transformation with outliers included under the condition of outliers 

with 9 score-points from one content area and equivalent groups were 19.5356 

and 16.2440 respectively (see Panel A, Table 8, p.91). Based on the relative 

criteria, one may conclude that the TCC transformation with outliers included 

performed better than the M/S transformation with outliers included.

However, should one care about the relative performance of these methods? 

The answer is probably no given the MSEt _ SE values were large, perhaps 

too large. Consequently, neither the TCC nor the M/S transformations with 

outliers included would be recommended in this situation.
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These examples lead to the question: what should the size of MSEb _ SE  and 

MSEt _  SE  be to claim the systematic error is small, moderate, or large? To answer this 

question and to make the discussion consistent, absolute rules for interpreting the sizes of 

the systematic errors for the 6-parameters and the number-correct true scores were 

developed.

Rules for MSEb _  SE  and MSEt _  SE  

The development of rules was based on the magnitude of the square root of 

systematic errors (referred to as bias), which represents the difference between the 

observed 6-parameters or the number-correct true scores and their corresponding true 6- 

parameters or number-correct true scores. For the 6-parameter, the bias values of 0.2500, 

one-fourth of the standard deviation of the distribution of the 6-parameters, and 0.5000, 

one-half of the standard deviation of the distribution of the 6-parameters, were adopted as 

the cut-off scores. These values correspond to 0.0625 and 0.2500 in the metric of mean 

square errors. Consequently, the rules for the M SE b_SE  are: (a) M SE b_SE  < 0.06 is 

considered as small; (b) 0.06 < MSEb _ S E <  0.25 is considered as moderate; (c)

MSEb _ S E >  0.25 is considered as large. The MSEb _  SE  values were rounded to two 

decimal points to avoid the situations when a MSEb _  SE  value is placed in a higher 

category due to a small difference from a cut-off value. The rules for the MSEt _  SE  are: 

(a) MSEt _ S E <  2.25 is considered as small; (b) 2.25 < MSEt _ S E <  6.25 is considered 

as moderate; (c) MSEt _ S E >  6.25 is considered as large. As for the case of MSEb _  SE  

values, two decimal points were used in judging the size of MSEt _  SE  values.

In the following sections, the systematic errors for the conditions with no outliers 

are reported and discussed first. Although these results do not answer any of the research
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questions, they serve as the baseline for the comparison of IRT-based equating methods 

in the presence of outliers. The results for the conditions with outliers are then presented 

and discussed.

No Outliers Present in the Data Set 

The results of the current study revealed that there were differences between the 

results of the four IRT-based equating methods when there was no group ability 

difference and the results when the two equating groups differed by one standard 

deviation of ability. Hence, the results for the two equivalent equating groups and the two 

non-equivalent equating groups are discussed separately. For each type of group, the 

systematic errors for the ^-parameters are reported first, and then the systematic errors for 

the number-correct true scores are presented.

Equivalent Equating Groups

Item Difficulty b

As shown in Panel A, Table 4, the MSEb _  SE  values for each of the four equating 

methods were small ( MSEb _ S E <  0.06) when the two equating groups were equivalent. 

Further, rounding each value to two decimal points yielded the same result, 0.01, which 

indicated that the four methods were equally accurate as determined by the criterion 

of MSEi, _  S E .

Number-correct True Score t

Turning to the number-correct true scores, the MSEt _  SE  values for each of the 

four equating methods were small (see Panel A, Table 4, MSEt _ S E <  2.25). This result 

indicated that the four equating methods performed equally accurate as determined by the 

criterion of MSEt _ S E .
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Table 4

Mean Square Total, Systematic, and Random Errors o f the four IRT-based Equating 
Methods

Method
Item Difficulty b Number-correct True Score t

MSEb MSEb _ SE MSEb _RE MSEt MSEt _ SE MSEt _ RE
A. Equivalent Groups (N(0,1) vs. N(0,1))

Concurrent 0.0157 0.0108 (S) 0.0049 0.1550 0.0459 (S) 0.1091
TCC 0.0189 0.0108 (S) 0.0081 0.2285 0.0646 (S) 0.1638
M/S 0.0176 0.0110 (S) 0.0067 0.2754 0.0859 (S) 0.1895
FCIP 0.0244 0.0118 (S) 0.0127 0.2277 0.0858 (S) 0.1419

B. Non-equivalent Groups (N(0,1) vs. N (l,l))

Concurrent 0.6907 0.6836 (L) 0.0071 2.7538 2.6989 (M) 0.0549
TCC 0.0699 0.0562 (S) 0.0136 1.6142 1.3888 (S) 0.2255
M/S 0.0288 0.0191 (S) 0.0097 0.3127 0.0960 (S) 0.2167
FCIP 0.1385 0.1302 (M) 0.0083 2.7546 2.7021 (M) 0.0525

Note: S, M, and L represent the size of systematic errors. S refers to small; M refers to moderate; 
and L refers to large.

Non-equivalent Equating Groups

Item Difficulty b

When the two equating groups differed by one standard deviation of ability, the 

MSEb _ SE values varied (see Panel B, Table 4). The TCC and M/S transformations had 

small MSEb _ SE values; the FCIP calibration had a moderate MSEb _ SE value; and the 

concurrent calibration had a large MSEb _ SE value.

Compared to the results for the equivalent groups (Panel A, Table 4), there was 

more variability among the systematic errors across the four equating methods when the 

two equating groups differed by one standard deviation of ability. The MSEb _ SE values 

for the TCC and M/S transformations were small regardless of the group equivalence. For 

the FCIP calibration, the MSEb _ SE value increased to moderate when the group ability 

difference increased to one standard deviation. The MSEb_SE value for the concurrent
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calibration was small under the equivalent groups condition but large under the non­

equivalent groups condition.

Number-correct True Score t

As shown in Panel B, Table 4, the values for MSEt _ SE varied. The TCC and 

M/S transformations had small MSEt _ SE values. The concurrent and FCIP calibrations 

had moderate MSEt _ SE values.

Compared to the results for the equivalent groups (Panel A, Table 4), there was 

more variability among the MSEt _ SE values across the four equating methods when the 

two equating groups differed by one standard deviation of ability. The TCC and M/S 

transformations had small MSEt _ SE values regardless of the equivalence of the 

equating groups. The MSEt _ SE values for the concurrent and FCIP calibrations were 

small for the equivalent groups but moderate for the non-equivalent groups.

To summarize, while the four equating methods produced comparable estimates 

of the item difficulties and number-correct true scores when the two equating groups 

were equivalent, the same cannot be said when the two equating groups were not 

equivalent. The four methods were sensitive, but not equally, to the presence of non­

equivalent groups.

Presence of Outliers 

When outliers are present in the data set, the four IRT-based equating methods 

can still be used to equate the two tests by simply ignoring the influence of outliers. 

However, six variations of the four methods that take into account the presence of 

outliers had been proposed in the literature in an attempt to reduce the adverse influence 

of outliers. To emphasize the presence of outliers and the difference between the methods
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that considered the influence of outliers and that did not consider the influence of 

outliers, the four basic equating methods were renamed as concurrent calibration with 

outliers included, TCC transformation with outliers included, mean/sigma transformation 

with outliers included, and FCIP calibration with outliers fixed. The corresponding 

methods that considered the influence of outliers were named as concurrent calibration 

with outliers excluded, TCC transformation with outliers excluded, mean/sigma 

transformation with outliers excluded, mean/sigma transformation with outliers weighted, 

FCIP calibration with outliers not fixed, and FCIP calibration with outliers excluded. The 

systematic errors for the ten methods are summarized in Tables 5 to 7 for the conditions 

involving outliers with 3 score-points and in Tables 8 and 9 for the conditions involving 

outliers with 9 score-points.

As for the case when there were no outliers present in the data, there were 

differences between the results of the ten IRT-based equating methods when there were 

no group ability differences and the results when the groups’ ability differed by one 

standard deviation under the condition of outliers with 3 score-points from one content 

area (see Table 5, p.80). Consequently, the results for the equivalent groups and non­

equivalent groups are discussed separately, with the results presented first for the b- 

parameters and then for the number-correct true scores.

Further, the results for the condition in which the outliers with 3 score-points were 

from one content area (Table 5), were randomly from any content area (Table 6, p.88), 

and had extreme values (Table 7, p.89) were similar. However, these results differed 

from the results for the condition of outliers with 9-score points from one content area 

(Table 8, p.91) and randomly from any content area (Table 9, p. 101), which were similar
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to each other. Therefore, the results are discussed in detail for the condition of outliers 

with 3 score-points from one content area, followed by a brief discussion of the results 

for the conditions of outliers with 3 score-points randomly from any content area and 

with extreme values. Likewise, the results are discussed in detail for the condition of 

outliers with 9 score-points from one content area, followed by a brief discussion of the 

results for the condition with 9 score-points randomly from any content area.

Outliers with 3 Score-points from One Content Area 

Equivalent Equating Groups

Item Difficulty b

As shown in Panel A l, Table 5, the concurrent calibration with outliers included 

and the FCIP calibration with outliers fixed had small MSEb _  SE  values; the TCC 

transformation with outliers included and the M/S transformation with outliers included 

had moderate MSEb _  SE  values. In contrast, all the MSEb _ SE  values for the methods 

that considered the influence of outliers in Panel A2, Table 5 were small.

Comparison o f the MSEb _ S E  values in Panels A l andA2, Table 5. It was found that the 

methods that did not consider the influence of outliers had either small or 

moderate MSEb _ SE  values. In contrast, all the methods that considered the influence of 

outliers had small M SE b_SE  values. More specifically, for the concurrent calibration, 

including outliers and excluding outliers produced small MSEb _  SE  values. Likewise, 

for the FCIP calibration, fixing, not fixing, and excluding outliers produced small 

MSEb _  SE  values. However, for the TCC and M/S transformations, without considering 

the influence of outliers produced moderate MSEb _  SE  values while considering the 

influence of outliers produced small MSEb _  SE  values.
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Table 5

Mean Square Total, Systematic, and Random Errors for the Ten IRT-based Equating 
Methods under the Condition o f Outliers with 3 Score-points and From One Content Area

Item Difficulty b Number-correct True Score t
Method MSEb MSEb _ SE MSEb _ RE MSEt MSEt _ SE MSEt _ RE

A. Equivalent Groups (N(0,1) vs. N(0,1))

A1. Methods that Did Not Consider the Influence of Outliers

C+include 0.0194 0.0154 (S) 0.0041 0.8131 0.7366 (S) 0.0765
TCC+include 0.1008 0.0907 (M) 0.0101 3.9423 3.6257 (M) 0.3166
M/S+include 0.1241 0.1179 (M) 0.0062 10.2838 9.5457 (L) 0.7381
FCIP+fixed 0.0345 0.0303 (S) 0.0042 0.9192 0.8197 (S) 0.0995
A2. Methods that Considered the Influence of Outliers

C+exclude 0.0150 0.0106 (S) 0.0044 0.2042 0.0648 (S) 0.1394
TCC+exclude 0.0203 0.0104 (S) 0.0099 0.3023 0.0687 (S) 0.2336
M/S+exclude 0.0163 0.0105 (S) 0.0057 0.3285 0.1103 (S) 0.2182
M/S+weight 0.0170 0.0104 (S) 0.0066 0.4073 0.0944 (S) 0.3129
FCIP+nofixed 0.0166 0.0105 (S) 0.0061 0.2142 0.0733 (S) 0.1409
FCIP+exclude 0.0167 0.0107 (S) 0.0061 0.1992 0.0660 (S) 0.1332

B. Non-equivalent Groups (N(0,1) vs. N (l,l))

B1. Methods that Did Not Consider the Influence of Outliers

C+include 0.5735 0.5673 (L) 0.0062 1.2162 1.0825 (S) 0.1337
TCC+include 0.1814 0.1697 (M) 0.0117 5.9277 5.6282 (M) 0.2995
M/S+include 0.1048 0.0901 (M) 0.0147 7.2565 6.2887 (L) 0.9679
FCIP+fixed 0.0790 0.0718 (M) 0.0072 1.7454 1.6267 (S) 0.1187
B2. Methods that Considered the Influence of Outliers

C+exclude 0.7170 0.7102 (L) 0.0068 3.4654 3.3607 (M) 0.1047
TCC+exclude 0.0635 0.0497 (S) 0.0137 1.5154 1.2560 (S) 0.2594
M/S+exclude 0.0259 0.0168 (S) 0.0091 0.2354 0.0726 (S) 0.1628
M/S+weight 0.4591 0.4545 (L) 0.0046 35.0008 34.5878 (L) 0.4130
FCIP+nofixed 0.1552 0.1473 (M) 0.0078 3.4173 3.3135 (M) 0.1038
FCIP+exclude 0.1576 0.1497 (M) 0.0078 3.5069 3.4004 (M) 0.1065

Note: C+include—concurrent calibration with outliers included; TCC+include—TCC transformation 
with outliers included; M/S include—M/S transformation with outliers included; FCIP+fixed—FCIP 
calibration with outliers fixed; C+exclude—concurrent calibration with outliers excluded;
TCC+exclude—TCC transformation with outliers excluded; M/S+exclude—M/S transformation with 
outliers excluded; M/S+weight—M/S transformation with outliers weighted; FCIP+nofixed—FCIP 
calibration with outliers not fixed; and FCIP+exclude—FCIP calibration with outliers excluded.
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Comparison o f the MSEb _ S E  values in Panels A l andA2, Table 5 and in Panel 

A, Table 4. When the systematic errors for the ^-parameters in Panel A l, Table 5 were 

compared with the systematic errors in Panel A, Table 4, it was found that the MSEb _ S E  

values for the concurrent calibration with outliers included and the FCIP calibration with 

outliers fixed and for the two corresponding methods under the condition of no outliers 

were small. In contrast, while the TCC and M/S transformations with outliers included 

had moderate MSEb _  SE  values, they had small MSEb _  SE  values under the condition 

of no outliers. The MSEb _  SE  values for the methods that considered the influence of 

outliers (Panel A2, Table 5) and the four methods under the condition of no outliers 

(Panel A, Table 4) were all small.

Number-correct True Score t

As shown in Panel A l, Table 5, the concurrent calibration with outliers included 

and FCIP calibration with outliers fixed had small MSEt _  SE  values; the TCC 

transformation with outliers included had a moderate MSEt _  SE  value; and the M/S 

transformation with outliers included had a large MSEt _  SE  value. In contrast, all the 

methods in Panel A2, Table 5 that considered the influence of outliers had small 

MSEt _ S E  values.

Comparison o f the MSEt _ S E  values in Panels A l andA2, Table 5. While the 

MSEt _  SE  values for the methods that did not consider the influence of outliers varied 

from large to small, they were all small for the methods that considered the influence of 

outliers. More specifically, for the concurrent calibration, both including and excluding 

outliers produced small MSEt _  SE  values. Likewise, for the FCIP calibration, fixing, not
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fixing, and excluding outliers produced small MSEt _  SE  values. However, for the TCC 

transformation, including outliers produced a moderate MSEt _  SE  value while excluding 

outliers produced a small MSEt _  SE  value. For the M/S transformation, including 

outliers produced a large MSEt _  SE  value while excluding outliers and weighting 

outliers produced a small MSEt _ SE  value.

Comparison o f the MSEt _  SE values in Panels A l and A2, Table 5 and in Panel 

A, Table 4. When the systematic errors for the number-correct true scores in Panel Al, 

Table 5 were compared with the corresponding systematic errors in Panel A, Table 4, it 

was found that the concurrent and FCIP calibrations had small MSEt _  SE  values in both 

tables. The TCC and M/S transformations with outliers included had moderate and large 

MSEt _  SE  values respectively but small MSEt _ SE  values under the condition of no 

outliers. In contrast, the M SE t_SE  values in Panel A2, Table 5 for each method that 

considered the influence of outliers were small as were the corresponding values in Panel 

A, Table 4.

Non-equivalent Equating Groups

Item Difficulty b

As shown in Panel B l, Table 5, the TCC transformation with outliers included, 

the M/S transformation with outliers included, and the FCIP calibration with outliers 

fixed had moderate M SEb_SE  values; and the concurrent calibration with outliers 

included had a large MSEb _  SE  value. Examination of the MSEb _  SE  values in Panel 

B2, Table 5 revealed that: the M SE b_SE  values for the TCC transformation with outliers 

excluded and the M/S transformation with outliers excluded were small; the MSEb _ SE
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value for the FCIP calibration with outliers not fixed and excluded were moderate; and 

the MSEb _ SE  values for the concurrent calibration with outlier excluded and M/S 

transformation with outliers weighted were large.

Comparison o f the MSEb _ S E  values in Panels B1 and B2, Table 5. Comparison 

of these two sets of results revealed that: for the TCC transformation, including outliers 

produced a moderate MSEb _ SE  value while excluding outliers produced a small 

MSEb _  SE  value. For the M/S transformation, including outliers produced a moderate 

MSEb _  SE  value. However, excluding outliers produced a small MSEb _  SE  value and 

weighting outliers produced a large MSEb _  SE  value for this transformation. For the 

FCIP calibration, fixing, without fixing, and excluding outliers produced moderate 

MSEb _  SE  values. Lastly, for the concurrent calibration, including and excluding outliers 

produced large MSEb _  SE  values.

Comparison o f the MSEb _ SE values in Panels B1 and B2, Table 5 and in Panel 

B, Table 4. When the systematic errors for the 6-parameters in Panel B l, Table 5 were 

compared with the systematic errors in Panel B, Table 4, it was found that for the TCC 

and M/S transformations, including outliers produced moderate MSEb _  SE  values. 

However, the MSEb _  SE  values for these two methods were small under the condition of 

no outliers. The concurrent and FCIP calibrations without considering the influence of 

outliers resulted in large and moderate MSEb _ S E  values. These two calibrations also 

had large and moderate MSEb _ S E  values under the condition of no outliers. In contrast, 

with the exception of the M/S transformation, the MSEb _  SE  values for the other three 

methods that considered the influence of outliers in Panel B2, Table 5 were the same size
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as those in Panel B, Table 4. For the M/S transformation, excluding outliers produced as 

small MSEb _  SE  value as that under the condition of no outliers present in the data set. 

However, weighting outliers produced a large rather than a small MSEb _  SE  value.

Comparison o f the MSEb _  SE values in Panels A and B, Table 5. For the 

methods that did not consider the influence of outliers, the FCIP calibration with outliers 

fixed had a small MSEb _  SE  value under the equivalent groups condition but a moderate 

MSEb _  SE  value under the non-equivalent groups condition; the concurrent calibration 

had a small MSEb _  SE  value under the equivalent groups condition but a large 

M SEb_SE  value under the non-equivalent groups; and the TCC and M/S 

transformations with outliers included had moderate MSEb _ SE  values regardless of the 

equivalence of the groups. All the methods that considered the influence of outliers had 

small MSEb _  SE  values under the equivalent groups condition. However, their 

MSEb _  SE  values varied under the non-equivalent groups condition: the MSEb _  SE  

values for the TCC and M/S transformations with outliers excluded were small; the 

MSEb _  SE  values for the FCIP calibration with outliers not fixed and excluded were 

moderate; and the MSEb _ SE  values for the concurrent calibration with outliers excluded 

and M/S with outliers weighted were large.

Number-correct True Score t

As shown in Panel B l, Table 5, the concurrent calibration with outliers included 

and FCIP calibration with outliers fixed had small MSEt _  SE  values; the TCC

transformation with outliers included had a moderate MSEt _  SE  value; and the M/S 

transformation with outliers included had a large MSEt _  SE  value. For the methods that
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considered the influence of outliers (see Panel B2, Table 5), the TCC and M/S 

transformations with outliers excluded had small MSEt _  SE  values, however, the M/S 

transformation with outliers weighted had a large MSEt _  SE  value; and the concurrent 

calibration with outliers excluded and FCIP calibration with outliers not fixed and 

excluded had moderate MSEt _  SE  values.

Comparison o f the MSEt _  SE values in Panels B1 and B2, Table 5. The 

concurrent and FCIP calibrations, without considering the influence of outliers, produced 

small MSEt _  SE  values while considering the influence of outliers produced moderate 

MSEt _  SE  values. For the TCC transformation, including outliers produced a moderate 

MSEt _  SE  value while excluding outliers produced a small MSEt _  SE  value. Lastly, for 

the M/S transformation, including and weighting outliers produced large MSEt _  SE  

values, while excluding outliers produced a small MSEt _  SE  value.

Comparison o f the MSEt _  SE values in Panels B1 and B2, Table 5 and in Panel 

B, Table 4. When the systematic errors for the number-correct true scores in Panel Bl, 

Table 5 were compared with the corresponding systematic errors in Panel B, Table 4, it 

was found that, for the concurrent and FCIP calibrations, the MSEt _  SE  values were 

small when the influence of outliers were not considered while the corresponding values 

were moderate under the condition of no outliers. In contrast, for the TCC and M/S 

transformations, their MSEt _ SE  values were moderate and large when the influence of 

outliers was not considered but small under the condition of no outliers. When the 

systematic errors for the number-correct true scores in Panel B2, Table 5 were compared 

with the corresponding systematic errors in Panel B, Table 4, it was found that, with the
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exception of the M/S transformation, the MSEt _ SE values for the other three methods 

that considered the influence of outliers were the same size as those under the condition 

of no outliers. For the M/S transformation, the MSEt _ SE values were small when the 

outliers were excluded and no outliers were present but large when the outliers were 

weighted.

Comparison o f the MSEt _ SE values in Panels A and B, Table 5. The 

MSEt _ SE values for the methods that did not consider the influence of outliers under 

the equivalent groups condition were the same size as those under the non-equivalent 

groups condition. In contrast, with the exception of the TCC and M/S transformations 

with outliers excluded, while the methods that considered the influence of outliers under 

the equivalent groups condition had small MSEt _ SE values, they had either large or 

moderate MSEt _ SE values under the non-equivalent groups condition. For the TCC and 

M/S transformations with outliers excluded, the MSEt _ SE values were small regardless 

of the equivalence of equating groups.

Outliers with 3 Score-points 

Randomly from Any Content Area and with Extreme Values 

As mentioned previously, the results for the condition in which the outliers with 3 

score-points were from one content area, were randomly from any content area, and had 

extreme values were similar, which indicated that the performance of the IRT-based 

equating methods was not confounded by the types of outliers (see Tables 5, 6, and 7). 

Hence, all the observations made for the condition of outliers with 3 score-points from 

one content area can be applied to the conditions of outliers with 3 score-points randomly 

from any content area and with extreme values.
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Summary

When the equating groups were equivalent, whether the methods that considered 

the influence of outliers performed better, as determined by the MSEb _  SE  and 

MSEt _  SE  values, than the methods that did not consider the influence of outliers 

depended on the specific method. For the TCC and M/S transformations, considering the 

influence of outliers resulted in small systematic errors while without considering the 

influence of outliers resulted in moderate or large systematic errors. However, for the 

concurrent and FCIP calibrations, the systematic errors were small no matter the 

influence of outliers were considered or not. All the methods that considered the 

influence of outliers had small systematic errors, which indicated that they all performed 

equally well.

When the equating groups were not equivalent, not all of the systematic errors for 

the methods that considered the influence of outliers were smaller than the corresponding 

values for the methods that did not consider the influence of outliers. Thus, caution needs 

to be taken while deciding whether the methods that considered the influence of outliers 

performed better than the methods that did not consider the influence of outliers when the 

equating groups were not equivalent. Among the methods that considered the influence 

of outliers, only the TCC and M/S transformations with outliers excluded produced small 

systematic errors. The findings are applicable to the conditions involving outliers with 3 

score-points a) from one content area, b) randomly from any content area, and c) with 

extreme values.
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Table 6

Mean Square Total, Systematic, and Random Errors for the Ten IRT-based Equating 
Methods under the Condition o f Outliers with 3 Score-points and Randomly From Any 
Content Area

Item Difficulty b Number-correct True Score t
Method MSEb MSEb _ SE MSEb_RE MSE, MSE, _ SE MSEt _ RE

A. Equivalent Groups (N(0,1) vs. N(0,1))
A1. Methods that Did Not Consider the Influence of Outliers

C+include 0.0211 0.0164 (S) 0.0047 0.8285 0.7601 (S) 0.0683
TCC+include 0.0836 0.0753 (M) 0.0082 3.0077 2.7929 (M) 0.2148
M/S+include 0.1077 0.1037 (M) 0.0040 7.7596 7.5302 (L) 0.2294
FCIP+fixed 0.0399 0.0346 (S) 0.0053 1.1577 1.0358 (S) 0.1218

A2. Methods that Considered the Influence of Outliers

C+exclude 0.0165 0.0116 (S) 0.0049 0.1335 0.0413 (S) 0.0922
TCC+exclude 0.0215 0.0118 (S) 0.0096 0.3050 0.0927 (S) 0.2123
M/S+exclude 0.0178 0.0117 (S) 0.0061 0.2238 0.0727 (S) 0.1512
M/S+weight 0.0198 0.0117 (S) 0.0081 0.4381 0.0819 (S) 0.3561
FCIP+nofixed 0.0267 0.0105 (S) 0.0162 0.2742 0.0803 (S) 0.1940
FCIP+exclude 0.0213 0.0118 (S) 0.0094 0.1777 0.0625 (S) 0.1152

B. Non-equivalent Groups (N(0,1) vs. N (l,l))
B1. Methods that Did Not Consider the Influence of Outliers

C+include 0.5648 0.5583 (L) 0.0065 1.1700 1.0259 (S) 0.1441
TCC+include 0.2062 0.1923 (M) 0.0139 6.4558 6.0737 (M) 0.3820
M/S+include 0.1412 0.1334 (M) 0.0078 10.3915 9.6805 (L) 0.7111
FCIP+fixed 0.0765 0.0691 (M) 0.0074 1.7081 1.5823 (S) 0.1258

B2. Methods that Considered the Influence of Outliers

C+exclude 0.7172 0.7099 (L) 0.0072 3.4527 3.3384 (M) 0.1143
TCC+exclude 0.0774 0.0642 (S) 0.0132 1.8550 1.5888 (S) 0.2662
M/S+exclude 0.0272 0.0181 (S) 0.0090 0.2742 0.0824 (S) 0.1919
M/S+weight 0.4563 0.4508 (L) 0.0055 35.5981 35.1571 (L) 0.4409
FCIP+nofixed 0.1556 0.1473 (M) 0.0083 3.4400 3.3267 (M) 0.1133
FCIP+exclude 0.1568 0.1485 (M) 0.0083 3.4712 3.3558 (M) 0.1154
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Table 7

Mean Square Total, Systematic, and Random Errors for the Ten IRT-based Equating 
Methods under the Condition o f Outliers with 3 Score-points and with Extreme Values

Item Difficulty b Number-correct True Score t
Method MSEb MSEb _ SE MSEb _ RE MSEt MSEt _ SE MSEt _ RE

A. Equivalent Groups (N(0,1) vs. N(0,1))

A1. Methods that Did Not Consider the Influence of Outliers

C+include 0.0182 0.0137 (S) 0.0045 0.6381 0.6026 (S) 0.0355
TCC+include 0.0909 0.0805 (M) 0.0104 4.1023 3.7795 (M) 0.3228
M/S+include 0.1707 0.1658 (M) 0.0049 16.9815 16.4099 (L) 0.5717
FCIP+fixed 0.0238 0.0192 (S) 0.0046 0.6573 0.6189 (S) 0.0384
A2. Methods that Considered the Influence of Outliers

C+exclude 0.0168 0.0120 (S) 0.0048 0.1615 0.0538 (S) 0.1078
TCC+exclude 0.0213 0.0120 (S) 0.0093 0.2954 0.0962 (S) 0.1992
M/S+exclude 0.0191 0.0120 (S) 0.0072 0.3092 0.0683 (S) 0.2410
M/S+weight 0.0190 0.0122 (S) 0.0068 0.3654 0.0958 (S) 0.2696
FCIP+nofixed 0.0213 0.0108 (S) 0.0106 0.2054 0.0711 (S) 0.1343
FCIP+exclude 0.0171 0.0122 (S) 0.0049 0.1846 0.0681 (S) 0.1165

B. Non-equivalent Groups (N(0,1) vs. N (l,l))
B1. Methods that Did Not Consider the Influence of Outliers

C+include 0.6310 0.6242 (L) 0.0068 2.2896 2.2091 (S) 0.0805
TCC+include 0.1107 0.0909 (M) 0.0198 4.4081 3.7821 (M) 0.6260
M/S+include 0.1405 0.1218 (M) 0.0186 12.4942 10.8171 (L) 1.6771
FCIP+fixed 0.1081 0.1001 (M) 0.0080 2.3669 2.2923 (M) 0.0746
B2. Methods that Considered the Influence of Outliers

C+exclude 0.7122 0.7047 (L) 0.0074 3.2681 3.1658 (M) 0.1022
TCC+exclude 0.0721 0.0601 (S) 0.0120 1.7085 1.4682 (S) 0.2402
M/S+exclude 0.0286 0.0182 (S) 0.0104 0.3177 0.0860 (S) 0.2316
M/S+weight 0.4590 0.4521 (L) 0.0068 34.9881 34.4702 (L) 0.5179
FCIP+nofixed 0.1480 0.1394 (M) 0.0086 3.1204 3.0315 (M) 0.0889
FCIP+exclude 0.1514 0.1428 (M) 0.0086 3.2292 3.1325 (M) 0.0967
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Outliers with 9 Score-points from One Content Area 

The error values for the conditions of outliers with 9 score-points are summarized 

in Tables 8 and 9. As mentioned previously, the results for the condition of outliers with 

9-score points from one content area (Table 8) and randomly from any content area 

(Table 9, p. 101) were similar to each other. Therefore, the results are discussed in detail 

for the former condition, followed by a brief discussion of the results for the latter 

condition.

Equivalent Equating Groups

Item Difficulty b

As shown in Panel A l, Table 8, the concurrent calibration with outliers included 

had a small MSEb _ SE value; the FCEP calibration with outliers fixed had a moderate 

MSEb_SE value; and the TCC and M/S transformations with outliers included had large 

MSEb _ SE values. In contrast, with the exception of the M/S transformation with outliers 

weighted that had a moderate MSEb _ SE value, the methods that considered the 

influence of outliers had small MSEb _ SE values (see Panel A2, Table 8).

Comparison o f the MSEb _SE  values in Panels A l andA2, Table 8. The methods that 

did not consider the influence of outliers had small, moderate, or large MSEb _ SE 

values. In contrast, with the exception of the M/S transformation with outliers weighted, 

all the methods that considered the influence of outliers had small MSEb_SE values. 

More specifically, for the concurrent calibration, including and excluding outliers 

produced small MSEb _ SE values. For the TCC transformation, including outliers 

produced a large MSEb _ SE value while excluding outliers produced a small MSEb _ SE 

value. For the M/S transformation, including outliers produced a large MSEb _ SE value,
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excluding outliers produced a small MSEb _  SE value, and weighting outliers produced a 

moderate MSEb _  SE value. Lastly, for the FCIP calibration, fixing outliers produced a 

moderate MSEb _  SE value while not fixing and excluding outliers produced small 

MSEb_SE  values.

Table 8

Mean Square Total, Systematic, and Random Errors fo r  the Ten IRT-based Equating 
Methods under the Condition o f Outliers with 9 Scored-points and From One Content Area

Item Difficulty b Number-correct True Score t
Method M SEb MSEb _  SE MSEb _  RE M SEt MSEt _  SE MSEt _ R E

A. Equivalent Groups (N(0,1) vs. N(0,1))
A1. Methods that Did Not Consider the Influence of Outliers

C+include 0.0504 0.0454 (S) 0.0050 4.6742 4.6003 (M) 0.0740
TCC+include 0.4837 0.4750 (L) 0.0087 16.4719 16.2440 (L) 0.2279
M/S+include 0.3230 0.3198 (L) 0.0032 19.8008 19.5356 (L) 0.2652
FCIP+fixed 0.1421 0.1364 (M) 0.0058 4.5481 4.4692 (M) 0.0789

A2. Methods that Considered the Influence of Outliers

C+exclude 0.0186 0.0107 (S) 0.0079 0.1462 0.0440 (S) 0.1022
TCC+exclude 0.0219 0.0107 (S) 0.0111 0.2354 0.0445 (S) 0.1909
M/S+exclude 0.0174 0.0107 (S) 0.0067 0.3231 0.0750 (S) 0.2481
M/S+weight 0.2022 0.2004 (M) 0.0018 39.0992 38.3385 (L) 0.7607
FCIP+nofixed 0.0399 0.0106 (S) 0.0293 0.2527 0.0591 (S) 0.1936
FCIP+exclude 0.0163 0.0109 (S) 0.0054 0.1777 0.0586 (S) 0.1190

B. Non-equivalent Groups (N(0,1) vs. N (l,l))
B1. Methods that Did Not Consider the Influence of Outliers

C+include 0.3777 0.3709 (L) 0.0068 0.4662 0.3283 (S) 0.1379
TCC+include 0.6389 0.6227 (L) 0.0162 20.7792 20.3331 (L) 0.4461
M/S+include 0.2777 0.2703 (L) 0.0075 14.8481 14.3375 (L) 0.5106
FCIP+fixed 0.0339 0.0252 (S) 0.0086 0.4173 0.3161 (S) 0.1012

B2. Methods that Considered the Influence of Outliers

C+exclude 0.7601 0.7521 (L) 0.0080 4.6354 4.5402 (M) 0.0952
TCC+exclude 0.0802 0.0633 (S) 0.0170 1.9827 1.6172 (S) 0.3655
M/S+exclude 0.0280 0.0174 (S) 0.0106 0.3054 0.0855 (S) 0.2199
M/S+weight 0.4280 0.4229 (L) 0.0051 37.6123 37.1089 (L) 0.5034
FCIP+nofixed 0.1928 0.1839 (M) 0.0089 4.7385 4.6466 (M) 0.0918
FCIP+exclude 0.1947 0.1857 (M) 0.0089 4.7823 4.6911 (M) 0.0912
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Comparison o f  the MSEb _  SE values in Panels A l and A2, Tables 8 and 5 and in 

Panel A, Table 4. When the systematic errors for the 6-parameters in Panel A l, Table 8 

were compared with the systematic errors in Panel A l, Table 5 and in Panel A, Table 4, it 

was found that when the score-points of outliers increased, the MSEb _  SE  values for the 

concurrent calibration with outliers included remained small. However, the MSEb _ SE  

values for the TCC and M/S transformations with outliers included changed from small 

to large with the increase in score-points of outliers. For the FCIP calibration with 

outliers fixed, although the MSEb _  SE  values were small under the conditions of no 

outliers and outliers with 3 score-points, they became moderate under the condition of 

outliers with 9 score-points. In contrast, the comparison of the MSEb _  SE  values in Panel 

A2, Table 8 with the corresponding values in Panel A2, Table 5 and in Panel A, Table 4 

showed that, with the exception of the M/S transformation with outliers weighted, the 

methods that considered the influence of outliers had small MSEb _  SE  values as do the 

corresponding methods under the conditions of no outliers and outliers with 3 score- 

points. The M/S transformation with outliers weighted had a moderate MSEb _ SE  value 

under the condition of outliers with 9 score-points but a small MSEb _  SE  value under the 

conditions of no outliers and outliers with 3 score-points.

Number-correct True Score t

As shown in Panel A l, Table 8, the concurrent calibration with outliers included 

and FCIP calibration with outliers fixed had moderate MSEt _ SE values; and the TCC

and M/S transformations with outliers included had large MSEt _ SE values. In contrast,

with the exception of the M/S transformation with outliers weighted that had a large
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MSEt _  SE  value, the remaining methods that considered the influence of outliers had 

small M SEt _ S E  values (see Panel A2, Table 8).

Comparison o f the MSEt _  SE values in Panels A l andA2, Table 8. The 

MSEt _  SE  values for the methods that did not consider the influence of outliers were 

either moderate or large. In contrast, with the exception of the M/S transformation with 

outliers weighted, the methods that considered the influence of outliers had small 

MSEt _  SE  values. More specifically, for the concurrent calibration, including outliers 

produced a moderate MSEt _  SE  value while excluding outliers produced a small 

MSEt _  SE  value; likewise, for the FCIP calibration, fixing outliers produced a moderate 

MSEt _  SE  value while not fixing and excluding outliers produced small MSEt _  SE  

values; for the TCC transformation, including outliers produced a large MSEt _  SE  value 

while excluding outliers produced a small MSEt _  SE  value; and for the M/S 

transformation, including outliers produced a large MSEt _  SE  value, excluding outliers 

produced a small MSEt _  SE  value, and weighting outliers produced a large MSEt _  SE  

value.

Comparison o f the MSEt _  SE values in Panels A l and A2, Tables 8 and 5 and in 

Panel A, Table 4. When the systematic errors for the number-correct true scores in Panel 

A l, Table 8 were compared with the corresponding systematic errors in Panel A l, Table 

5 and Panel A, Table 4, it was found that with the increase of the score-points of outliers, 

the MSEt _  SE  values for the methods that did not consider the influence of outliers also 

increased. More specifically, for the concurrent and FCIP calibrations, the MSEt _ SE  

values changed from small to moderate when the score-points of outliers increased from
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3 to 9. The MSEt _ SE  values for the TCC transformation changed from small to 

moderate and to large. And for the M/S transformation, the MSEt _  SE  values changed 

from small to large when the score-points of outliers changed from 0 to 3. In contrast, the 

comparison of the MSEt _ SE  values in Panel A2, Table 8, in Panel A2, Table 5, and in 

Panel A, Table 4 showed that, with the exception of the M/S transformation with outliers 

weighted, the MSEt _  SE  values for the methods that considered the influence of outliers 

remained small as the score-points of outliers increased.

Non-equivalent Equating Groups

Item Difficulty b

As shown in Panel B l, Table 8, the FCIP calibration with outlier fixed had a 

small MSEb _  SE  value. In contrast, the concurrent calibration with outliers included and 

the TCC and M/S transformations with outliers included had large MSEb _  SE  values. 

Examination of the MSEb _  SE  values in Panel B2, Table 8 showed that the MSEb _ SE  

values for the TCC and M/S transformations with outliers excluded were small; the 

MSEb _  SE  values for the FCIP calibration with outliers not fixed and excluded were 

moderate; and the MSEb _  SE  values for the concurrent calibration with outlier excluded 

and M/S transformation with outliers weighted were large.

Comparison o f the MSEb _ SE values in Panels B l and B2, Table 8. It was found 

that whether the methods that considered the influence of outliers had smaller MSEb _  SE  

values than the methods that did not consider the influence of outliers depended on the 

specific method used. The concurrent calibration produced large MSEb _  SE  values 

regardless of whether the outliers were included or excluded. For the TCC
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transformation, including outliers produced a large MSEb _  SE  value while excluding 

outliers produced a small M SEb_SE  value. For the M/S transformation, including and 

weighting outliers produced large MSEb _  SE  values while excluding outliers produced a 

small MSEb _  SE  value. Lastly, for the FCIP calibration, fixing outliers produced a small 

MSEb _  SE  value while without fixing and excluding outliers produced moderate 

M SE b_SE  values.

Comparison o f the MSEb _ S E  values in Panels B l and B2, Tables 8 and 5 and in 

Panel B, Table 4. When the systematic errors for the ^-parameters in Panel B l, Table 8 

were compared with the systematic errors in Panel B l, Table 5 and in Panel B, Table 4, it 

was found that the MSEb _  SE  values for the concurrent calibration were large across the 

three tables. The MSEb _  SE  values for the TCC and M/S transformations increased from 

small to moderate, and to large as the score-points of outliers increased. The MSEb _  SE  

values for the FCIP calibration were moderate under the conditions of no outliers and 

outliers with 3 score-points but small under the condition of outliers with 9 score-points. 

In contrast, the MSEb _  SE  values for the methods that considered the influence of 

outliers were the same size across Tables 5 and 8. More specifically, when the equating 

groups were not equivalent, the MSEb _ SE  values for the TCC and M/S transformations 

with outliers excluded were both small; the MSEb _ SE  values for the FCIP calibration 

with outliers not fixed and excluded were both moderate; and the MSEb _ SE  values for 

the concurrent calibration with outliers excluded and M/S transformation with outliers 

weighted were both large. With the exception of the M/S transformation with outliers
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weighted, the MSEb _  SE  vales for the remaining methods in Panel B2, Table 5 and 8 

were the same size as the corresponding values in Panel B, Table 4.

Comparison o f the MSEb _  SE values in Panels A  and B, Table 8. For the 

methods that did not consider the influence of outliers, the concurrent calibration with 

outliers included had a small MSEb _  SE  value under the equivalent groups condition but 

a large value under the non-equivalent groups condition; the TCC and M/S 

transformations with outliers included had large MSEb _  SE  values regardless of the 

equivalence of the groups; and the FCIP calibration with outliers fixed had a 

moderate MSEb _  SE  value under the equivalent groups condition but a small value under 

the non-equivalent groups condition. The methods that considered the influence of 

outliers, with the exception of the M/S transformation with outliers weighted, had small 

MSEb _  SE  values under the equivalent groups condition. However, the MSEb _  SE  

values for these methods varied under the non-equivalent groups condition: the 

MSEb _  SE  values for the TCC and M/S transformations with outliers excluded were 

small; the MSEb _  SE  values for the FCIP calibration with outliers not fixed and excluded 

were moderate; and the M SEb_SE  values for concurrent calibration with outliers 

excluded and M/S with outliers weighted were large.

Number-correct True Score t

As shown in Panel B l, Table 8, the MSEt _ S E  values for the concurrent 

calibration with outliers included and FCIP calibration with outliers fixed were small, 

while for the TCC and M/S transformations with outliers included, they were large. For 

the methods that considered the influence of outliers (see Panel B2, Table 8), the TCC 

and M/S transformations with outliers excluded had small MSEt SE  values. The
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concurrent calibration with outliers excluded and the FCIP calibration without fixing 

outliers and with outliers excluded had moderate MSEt _  SE  values. The M/S 

transformation with outliers weighted had a large MSEt _  SE  value.

Comparison o f the MSEt _  SE values in Panels B l and B2, Table 8. It was found 

that whether the methods that considered the influence of outliers had smaller MSEb _  SE  

values than the methods that did not consider the influence of outliers depended on the 

specific method used. For the concurrent and FCIP calibrations, without considering the 

influence of outliers produced small MSEt _  SE  values while considering the influence of 

outliers produced moderate MSEt _  SE  values. For the TCC transformation, including 

outliers produced a large MSEt _  SE  value while excluding outliers produced a small 

MSEt _  SE  value. For the M/S transformation, including and weighting outliers produced 

large MSEt _  SE  values while excluding outliers produced a small MSEt _  SE  value.

Comparison o f the MSEt _  SE values in Panels B l and B2, Tables 8 and 5 and in 

Panel B, Table 4. When the systematic errors for the number-correct true scores in Panel 

B l, Table 8 were compared with the corresponding systematic errors in Panel B l, Table 

5 and in Panel B, Table 4, it was found that, for the concurrent and FCIP calibrations, the 

MSEt _  SE  values were small when outliers were present but not considered, while the 

corresponding values were moderate under the condition of no outliers. For the TCC and 

M/S transformations, the MSEt _  SE  values increased as the score-points of outliers 

increased. In contrast, when the systematic errors for the number-correct true scores in 

Panel B2, Table 8 were compared with the corresponding systematic errors in Panel B2, 

Table 5 and in Panel B, Table 4, it was found that the MSEt _  SE  values for the methods
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that considered the influence of outliers were the same size across Tables 5 and 8. More 

specifically, when the equating groups were not equivalent, the MSEt _ SE values for the 

TCC and M/S transformations with outliers excluded were small; the MSEt _SE  values 

for the concurrent calibration with outliers excluded and the FCIP calibration with 

outliers not fixed and excluded were moderate; and the MSEt _ SE values for the M/S 

transformation with outliers weighted were large. With the exception of the M/S 

transformation with outliers weighted, the MSEt _ SE values were the same size as the 

corresponding MSEt _ SE values under the condition of no outliers.

Comparison o f the MSEt _ SE values in Panels A and B, Table 8. For the methods 

that did not consider the influence of outliers, the MSEt _ SE values for the concurrent 

calibration with outliers included and FCIP calibration with outliers fixed were moderate 

under the equivalent groups condition while these values were small under the non­

equivalent groups condition. The MSEt _ SE values for the TCC and M/S 

transformations with outliers included were large regardless of the group equivalence. In 

contrast, all the methods that considered the influence of outliers, except the M/S 

transformation with outliers weighted, had small MSEt _ SE values under the equivalent 

groups condition while, with the exception of the TCC and M/S transformations with 

outliers excluded, they had either large or moderate MSEt _ SE values under the 

condition of non-equivalent groups. It is worth to point out that the TCC and M/S 

transformations with outliers excluded had small MSEt _ SE values regardless of the 

equivalence of equating groups.
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Outliers with 9 Score-points Randomly from Any Content Area

As indicated previously, the results for the condition in which the outliers with 9 

score-points were from one content area and were randomly from any content area were 

similar, which again indicated that the performance of the IRT-based equating methods 

was not confounded by the types of outliers. Hence, all the observations found under the 

condition of outliers with 9 score-points were from one content area can be applied to the 

condition of outliers with 9 score-points were randomly from any content area.

Summary

When the equating groups were equivalent, the methods that did not consider the 

influence of outliers tended to have greater systematic errors than the methods that did 

consider the influence of outliers, which indicated that the latter methods performed 

better, as determined by the MSEb _ SE  and MSEt _  SE  values, than the former methods. 

Among the methods that considered the influence of outliers, with the exception of the 

M/S transformation with outliers weighted, the remaining methods produced small 

systematic errors, which indicated these methods performed equally well under the 

condition of equivalent groups.

When the equating groups were not equivalent, not all the systematic errors for 

the methods that did not consider the influence of outliers were greater than the 

corresponding values for the methods that did consider the influence of outliers. Thus, as 

was the case for the outliers with 3 score-points, caution needs to be taken when one 

draws conclusion on whether the methods that considered the influence of outliers 

performed better than the methods that did not consider the influence of outliers when the 

equating groups were not equivalent. Among the methods that considered the influence
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of outliers, only the TCC and M/S transformations with outliers excluded produced small 

systematic errors. It is worth to note that the M/S transformation with outliers weighted 

produced large systematic errors under the conditions of outliers with 3 and 9 score- 

points and non-equivalent equating groups. This is probably due to the use of weight in 

this method. As described in Chapter 2, this method uses the weighted item difficulties to 

calculate the equating coefficients. The weights are inversely proportional to the standard 

errors of the item difficulty estimates. Under the non-equivalent groups condition, one 

group has an ability distribution with mean 1 and standard deviation 1, which means the 

standard errors of the item difficulty estimate are large when the item responses from this 

group are used. Unfortunately, this method uses these large standard errors to weight the 

item difficulty, which in turn leads to the large systematic errors.
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Table 9

Mean Square Total, Systematic, and Random Errors for the Ten IRT-based Equating 
Methods under the Condition o f Outliers with 9 Score-points and Randomly From Any 
Content Area

Item Difficulty b Number-correct True Score t
Method M SEb MSEb _ S E  MSEb _  RE M SEt MSEt _  SE MSEt _  R E

A. Equivalent Groups (N(0,1)I VS. N(0,1))
A1. Methods that Did Not Consider the Influence of Outliers

C+include 0.0461 0.0420 (S) 0.0041 4.6465 4.5843 (M) 0.0623
TCC+include 0.4073 0.3966 (L) 0.0107 16.4731 16.1420 (L) 0.3311
M/S+include 0.3304 0.3277 (L) 0.0027 27.1038 26.8693 (L) 0.2346
FCIP+fixed 0.1415 0.1372 (M) 0.0043 4.8023 4.7382 (M) 0.0641

A2. Methods that Considered the Influence of Outliers

C+exclude 0.0148 0.0102 (S) 0.0046 0.1285 0.0372 (S) 0.0913
TCC+exclude 0.0211 0.0102 (S) 0.0109 0.3004 0.0660 (S) 0.2344
M/S+exclude 0.0166 0.0102 (S) 0.0065 0.2731 0.0847 (S) 0.1884
M/S+weight 0.2463 0.2448 (M) 0.0015 32.2223 31.9253 (L) 0.2970
FCEP+nofixed 0.0192 0.0090 (S) 0.0103 0.1808 0.0541 (S) 0.1267
FCIP+exclude 0.0227 0.0104 (S) 0.0123 0.1954 0.0524 (S) 0.1430

B. Non-equivalent Groups (N(0,1) vs. N (l,l))
B1. Methods that Did Not Consider the Influence of Outliers

C+include 0.4069 0.4005 (L) 0.0063 0.4915 0.3633 (S) 0.1283
TCC+include 0.4889 0.4727 (L) 0.0162 19.4662 18.8192 (L) 0.6470
M/S+include 0.3514 0.3476 (L) 0.0038 28.1300 27.6667 (L) 0.4633
FCIP+fixed 0.0362 0.0284 (S) 0.0077 0.5435 0.4353 (S) 0.1082

B2. Methods that Considered the Influence of Outliers

C+exclude 0.7676 0.7597 (L) 0.0079 4.6465 4.5644 (M) 0.0821
TCC+exclude 0.0654 0.0507 (S) 0.0148 1.4692 1.1761 (S) 0.2931
M/S+exclude 0.0282 0.0185 (S) 0.0097 0.2850 0.0770 (S) 0.2080
M/S+weight 0.9206 0.9049 (L) 0.0156 33.2908 32.7707 (L) 0.5201
FCIP+nofixed 0.1929 0.1839 (M) 0.0090 4.6912 4.6068 (M) 0.0844
FCIP+exclude 0.1963 0.1873 (M) 0.0090 4.7627 4.6822 (M) 0.0805
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

In this chapter, a summary of the research questions and methods used to answer 

the research questions is presented first. The key findings are then summarized. This is 

followed by the discussion of the limitations of the study. Conclusions, implications for 

practice, and recommendations for future research are then made.

Summary of Research Questions and Methods 

A potential benefit of using IRT models is that the item parameter estimates (e.g., 

a-, b-, or c-parameters) are not group dependent. However, in the context of test equating, 

it has been found that the estimates of item parameters are not necessarily consistent when 

they are estimated from two equating groups and have been transformed onto the same 

scale. Outliers with large inconsistent item parameter estimates may have a serious impact 

on IRT-based equating results. Variations of the basic IRT-based equating methods have 

been used to remove the possible adverse influence of outliers. Do the IRT-based equating 

methods that consider the influence of outliers produce better results than the methods that 

do not consider the influence of outliers? Which IRT-based equating method best reduces 

the influence of outliers? Thus, the primary purpose of the current study was to investigate 

the comparability of ten IRT-based equating methods in the presence of outlier items with 

inconsistent 6-parameter estimates. The ten methods were concurrent calibration with 

outliers included, TCC transformation with outliers included, M/S transformation with 

outliers included, FCIP calibration with outliers fixed, concurrent calibration with outliers 

excluded, TCC transformation with outliers excluded, M/S transformation with outliers 

excluded, M/S transformation with outliers weighted, FCIP calibration with outliers not 

fixed, and FCIP calibration with outliers excluded.
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Simulated data were generated based on the real item parameters of a large-scale 

state mathematics achievement test. The equating design was the common-item non­

equivalent matrix groups design. In this design, two test forms need to be equated. There 

were three sub forms in each of these two test forms. Each sub form contained 26 unique 

MC items (with two score categories), 5 unique SA items (with two score categories), 5 

unique OR items (with five score categories), 8 common MC items, 1 common SA item, 

and 1 common OR item. The corresponding IRT models used were the 3PL, 2PL, and 

GRM models. The factors manipulated were group ability differences (equivalent groups 

(N (0,1) vs. N (0,1)) and non-equivalent groups (N (0,1) vs. N (1,1)), number/score- 

points of outliers (0 outliers with score-points 0, 3 MC items with score-points 3, and 5MC 

items and 1 OR item with score-points 9), types of outliers (outliers from one content area, 

randomly from any content area, and with extreme values applied to the 3 score-points 

condition and the first two types of outliers applied to the 9 score-points condition ), and 

IRT-based equating methods (four basic methods with no outliers present and ten 

variations in the presence of outliers). As a result, a total of 108 conditions ( 1 x 2 x 4  (“0” 

outlier by group ability differences by equating method) + 5 x 2 x 10 (5 combinations of 

outliers’ characteristics by group ability differences by equating method) = 108) were 

examined to answer the following research questions:

(1) Do the IRT-based equating methods that consider the influence of outliers 

produce a better result than those that do not consider the influence of outliers?

(2) Is the effect found in Question 1, if any, confounded by factors such as the 

group ability differences and the characteristics of outliers?
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(3) Which of the IRT-based equating methods produces a better result, especially 

among the IRT-based equating methods that consider the influence of outliers?

(4) Is the effect found in Question 3, if any, confounded by factors such as the 

group ability differences and the characteristics of outliers?

To answer the research questions, the unweighted mean square error for the b- 

parameters ( MSEb) and the unweighted mean square error for the number-correct true 

scores ( M SE t) were calculated for the 108 conditions. The mean square errors were further 

decomposed into systematic errors ( MSEb _  SE  and MSEt _ S E )  and random errors 

( MSEb _  RE  and MSEt _ R E ). Since the change of mean square errors was mainly due to 

the change of systematic errors and systematic error reflect the magnitudes of the bias 

introduced by specific equating methods, the MSEb _  SE  and MSEt _  SE  were used to (a) 

evaluate the accuracy of the equating methods and (b) to make comparisons among the 

methods.

To make the comparisons consistent, the following absolute rules were used: (a) 

MSEb _ S E <  0.06 was considered as small, (b) 0.06 < MSEb _ S E <  0.25 was considered as 

moderate, and (c) MSEb _ S E  >  0.25 was considered as large for the 6-parameters; and (a) 

MSEt _ S E <  2.25 was considered as small, (b) 2.25 < MSEt _ S E <  6.25 was considered as 

moderate, and (c) MSEt _ S E >  6.25 was considered as large for the number-correct true 

scores.

Summary of Findings

The key findings of the current study are:

1. When outliers were not present in the data set and the two equating groups were 

equivalent, the MSEb _ SE  and MSEt _  SE  values for the methods of concurrent
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calibration, TCC transformation, M/S transformation, and FCEP calibration 

were small. However, when the difference between groups mean abilities was 

one standard deviation, the MSEb _  SE  and MSEt _  SE  values for the four 

methods varied: the TCC and M/S transformations produced small MSEb _  SE  

and MSEt _ SE  values; the FCIP produced moderate MSEb _  SE  and MSEt _ SE  

values; and the concurrent calibration produced large MSEb _  SE  and 

M S E t_SE  values.

2. When outliers were present in the data, the IRT-based equating methods that 

did not consider the influence of outliers tended to produce different 

MSEb _  SE  and MSEt _  SE  values from the IRT-based equating methods that 

considered the influence of outliers. However, whether the latter methods 

produced smaller MSEb _  SE  and MSEt _  SE  values than the former methods

depended on the specific condition.

2a. When the equating groups were equivalent, the methods that did not consider 

the influence of outliers tended to have greater MSEb _  SE  and MSEt _  SE  

values than the methods that considered the influence of outliers. When the 

number/score-points of outliers increased, with the exception of the MSEb _ SE  

values for the concurrent calibration with outliers included, the MSEb _  SE  and 

MSEt _  SE  values for the methods that did not consider the influence of outliers 

tended to increase. In contrast, among the methods that considered the influence 

of outliers, with the exception of M/S transformation with outliers weighted, the
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remaining methods produced small M SEb_SE  and M S E t_ S E  values, and 

these values did not increase as the number/score-points of outliers increased.

2b. When the equating groups were not equivalent, not all the MSEb _  SE  and 

MSEt _  SE  values for the methods that did not consider the influence of outliers 

were greater than the corresponding values for the methods that did consider the 

influence of outliers. When the number/score-points of outliers increased, the 

change of the MSEb _  SE  and MSEt _ SE  values for each method that did not 

consider the influence of outliers were not consistent, however, the MSEb _ SE  

and MSEt _  SE  values for the methods that considered the influence of outliers 

did not change.

3. Among the IRT-based equating methods that considered the influence of

outliers, the TCC and M/S transformations with outliers excluded consistently 

produced small MSEb _ SE  and MSEt _ SE  values regardless of the group 

equivalence. In contrast, the M/S transformation with outliers weighted 

produced large MSEb _ SE  and MSEt _  SE  values especially under the non­

equivalent groups condition. The FCIP calibration with outliers not fixed and 

excluded produced small MSEb _  SE  and MSEt _  SE  values under the 

equivalent groups condition and moderate MSEb _ SE  and MSEt _  SE  values 

under the non-equivalent groups condition. The concurrent calibration with 

outliers included produced small MSEb _  SE  and MSEt _  SE  values under the 

equivalent groups condition but large MSEb _  SE  values and 

moderate MSS _  SE  values under the non-equivalent groups condition.
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Limitations of the Study

The present study was limited to the investigation of IRT-based equating methods 

in the presence of outliers with inconsistent 6-parameter estimates. The influence of 

outliers with inconsistent a- and/or c-parameter estimates was not considered. The 

selection of the 6-parameter was based on the observations that poorly estimated item 

difficulties had a serious impact on the equating results (Stocking & Lord, 1983) and that 

the a- and c-parameter estimates are not as stable as the 6-parameter estimates (Ironson, 

1983). However, theoretically, the exclusive use of 6-parameters did not cover all the item 

characteristic information.

Furthermore, only the outliers located on the left side of the straight line on the 

scatter plot of 6-parameters (see Figure 1, p. 11) were examined. This was based on the 

assumption that the most plausible result of placing instructional emphasis on one content 

area and/or the revelation of common items is that the corresponding items will become 

easier when they are administrated in the second year. However, it is possible that, in real 

data, some outliers may be located on both sides of the straight line.

Conclusions

The results of the current study revealed that when outliers were not present in the 

data set and the equating groups were equivalent, the methods of concurrent calibration, 

TCC transformation, M/S transformation, and FCIP calibration performed equally well. 

However, the same cannot be said when the two equating groups were not equivalent. The 

four methods were sensitive, but not equally, to the presence of non-equivalent groups. 

These findings about the concurrent calibration and the TCC and M/S transformations are 

consistent with the previous research (e.g., Hanson & Belguin, 2002; Kim & Kohen, 1998).
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When outliers were present in the data set, the performance of the ten IRT-based 

equating methods was confounded by the group ability differences and the number/score- 

points of outliers. However, the type of outliers had little impact on the performance of the 

ten IRT-based equating methods.

When the two equating groups were equivalent, the performance of the methods 

that did not consider the influence of outliers was sensitive to the number/score-points of 

outliers. When the number/score-points of outliers were small, the concurrent calibration 

with outliers included and the FCIP calibration with outliers fixed performed surprisingly 

well. However, the performance of the methods that did not consider the influence of 

outliers tended to become worse when the number/score-points of outliers increased. In 

contrast, with the exception of the M/S transformation with outliers weighted, the methods 

that considered the influence of outliers performed equally well regardless of the 

characteristics of outliers. The M/S transformation with outliers weighted performed well 

as suggested by Lin et al. (1980), but only when fewer outliers present in the data.

When the equating groups were not equivalent, overall, the performance of the 

methods that did not consider the influence of outliers was not ideal. Among the methods 

that considered the influence of outliers, the M/S and TCC transformations with outliers 

excluded performed consistently well regardless of the characteristics of outliers. The 

remaining methods, especially the M/S transformation with outliers weighted, did not 

perform well, in contrast to when the equating groups were equivalent.

Taken together, the TCC and M/S transformations with outliers excluded 

consistently performed well regardless of the group equivalence and the characteristics of 

outliers.
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Implications for Future Practice

The results of the current study reveal that if outliers with inconsistent ^-parameter 

estimates are detected in the common items, the influence of such outliers should be 

removed. The methods that can be considered are the TCC and M/S transformations with 

outliers excluded. If the two equating groups have similar ability distributions, the 

concurrent calibration with outlier excluded and the FCIP calibration with outliers 

excluded or not fixed can be considered too. When the two equating groups have large 

ability distribution difference, the M/S transformation with outliers weighted and the 

concurrent calibration with outliers excluded are not recommended.

Recommendations for Future Research

Further research is needed to determine the influence of outlier items defined by 

their values for the ^-parameters, c-parameters, and item characteristic curves that 

represent the interaction of item parameters. Investigation of the influence of outliers 

located on both sides of the straight line in the scatter plot of ̂ -parameters is also needed.

In the current study, it was relatively easy to detect the outliers since this was a 

computer simulation study and the outliers with inconsistent ^-parameter estimates were 

pre-designed. However, how to detect outliers in a real data set needs to be investigated. 

Detection procedures have been indicated in the literature. For example, Linn et al. (1980) 

indicated that outliers might be due to the large standard error of the item difficulty 

estimate and proposed the method of M/S transformation with outliers weighted. However, 

as revealed in this study, the M/S transformation with outliers weighted did not work when 

equating groups were not equivalent and a large number of outliers were present in the
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data. This result may indicate that using standard error of the item difficulty estimate to 

determine if an item as outlier may not be appropriate. The perpendicular distance between 

a point, which represents an item, and the straight line of best fit (see Figure 1, p. 11) could 

be used to detect outliers based on Stocking and Lord (1983). However, since the true 

location of the straight line of best fit is unknown in the real data, it is impossible to 

determine an outlier based on an accurate perpendicular distance. Thus, a graphic 

procedure (Z. Vukmirovic, personal communication, August 23, 2002) was proposed. In 

this procedure, outliers are detected by looking at the relative location of an item compared 

to the location of the most of the items (e.g., Figure 1, p .ll) . If it is relatively far from the 

straight line that represents the most of the items, this item may be considered as an outlier. 

However, this is a very subjective procedure. A more objective procedure needs to be 

developed.

Absolute rules were proposed in the current study to distinguish small, moderate, 

and large systematic errors of ̂ -parameters and number correct true scores. The 

development of these rules is somewhat subjective. More research is needed to investigate 

whether these rules will hold over the other studies.
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Appendix A

Concurrent Calibration

This appendix gives the sample PARSCALE control file used in the FCIP

calibrations for the conditions that outliers (with 3 and 9 score-points) were included and

outliers (with 3 score-points and from one content area) were excluded in the data file.

Record File for the Concurrent Calibration with Outliers Included

Concurrent calibration of reference and equated tests.
>COMMENT;
This analysis is based on 102 items. There are:
26 operational MC items in the reference test, 3PL model,
5 operational SA items in the reference test, 2PL Model,
5 operational OR items in the reference test, GR model, 5 categories,

24 common MC items, 3PL model,
3 common SA items, 2PL Model,
3 common OR items, GR model, 5 categories,

26 operational MC items in the equated test, 3PL model,
5 operational S A items in the equated test, 2PL Model,
5 operational OR items in the equated test, GR model, 5 categories,;

>FILE DFNAME='C:\Psl3\conc.DAT',
NFNAME='C:\Psl3\conc.KEY',
SAVE;

>SAVE PARM='C:\Psl3\conc.PAR';
>INPUT NIDW=5,NTOTAL=102,NTEST=1,LENGTH=(102), SAMPLE=100; 
(5A1,102A1)

>TEST 1 TNAME=concurrentin,ITEM=( 1(1)102) ,NBLOCK= 102;
>BLOCKl BNAME=MC-UNI,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1),

GUES SING=(2,ESTIMATE) ,GP ARM=(. 25),REPEAT=26;
>BLOCK2 BNAME=SA-UNI,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

REPEAT=5;
>BLOCK3BNAME=OR-UNI,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4),
REPEAT=5;

>BLOCK4 BNAME=MC-EQ1,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=8;

>BLOCK5 BNAME=SA-EQ1 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
REPEAT=1;

>BLOCK6 BNAME=OR-EQl,NITEMS=1 ,NCAT=5,ORIGINAL=(0,1,2,3,4), 
REPEAT=1;

>BLOCK7 BNAME=MC-EQ2,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=8;

>BLOCK8 BNAME=SA-EQ2,NITEMS=1,NGAT=2,ORIGIN AL=(0,1),
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REPEAT=1;
>BLOCK9 BNAME=OR-EQ2,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 

REPEAT=1;
>BLOCK10 BNAME=MC-EQ3,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=8;
>BL0CK11 BNAME=S A-EQ3 ,NITEMS=1 ,NC AT=2,ORIGIN AL=(0,1), 

REPEAT=1;
>BLOCK12BNAME=OR-EQ3,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4),

REPEAT=1;
>BLOCK13 BNAME=MC-EQ3,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=26;
>BLOCK14 BNAME=SA-EQ3,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 

REPEAT=5;
>BLOCK15 BNAME=OR-EQ3,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 

REPEAT=5;
>CAL GRADED,LOGISTIC,NQPTS=30,CYCLE=(50,2,2,2,2), 

GPRIOR,TPRIOR,SPRIOR,NEWTON=0,CRIT=0.001 ,DIAGNOS=l; 
>SCORE NOSCORE;

Record File for the Concurrent Calibration with Outliers Excluded

Concurrent calibration of reference and equated tests with outliers excluded. 
>COMMENT ;
This analysis is based on 99 items. There are:
26 operational MC items in the reference test, 3PL model,
5 operational SA items in the reference test, 2PL Model,
5 operational OR items in the reference test, GR model, 5 categories,

21 common MC items, 3PL model,
3 common SA items, 2PL Model,
3 common OR items, GR model, 5 categories,

26 operational MC items in the equated test, 3PL model,
5 operational SA items in the equated test, 2PL Model,
5 operational OR items in the equated test, GR model, 5 categories,;

>FILE DFNAME='C:\Psl3\conc.DAT',
NFNAME-C:\Psl3\conc.KEY',
SAVE;

>SAVE PARM='C:\Psl3\conc.PAR';
>INPUT NID W=5 ,NTOT AL= 102,NTEST = 1 ,LENGTH=(99);
(5A1,102A1)

>TEST 1 TNAME=concEX,ITEM-( 1 (1 )43,45(1)52,54(1)62,64(1) 102), 
NBLOCK=99;

>BLOCKl BNAME=MC-UNI,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=26;

>BLOCK2 BNAME=SA-UNI,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 
REPEAT=5;

>BLOCK3 BNAME=OR-UNI,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4),
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REPEAT=5;
>BLOCK4 BNAME=MC-EQ1,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=7;
>BLOCK5 BNAME=SA-EQ1 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 

REPEAT=1;
>BL0CK6 BNAME=OR-EQ 1 ,NITEMS=1 ,NC AT=5 ,ORIGINAL=(0,1,2,3,4), 

REPEAT=1;
>BL0CK7 BNAME=MC-EQ2,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=7;
>BL0CK8 BNAME=SA-EQ2,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

REPEAT=1;
>BLOCK9 BNAME=OR-EQ2,NITEMS=1 ,NCAT=5,ORIGINAL=(0,1,2,3,4), 

REPEAT=1;
>BLOCK10 BNAME=MC-EQ3 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=7;
>BLOCKl 1 BNAME=SA-EQ3,NITEMS=1 ,NCAT=2,ORIGIN AL=(0,1), 

REPEAT=1;
>BLOCK12 BNAME=OR-EQ3,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 

REPEAT=1;
>BLOCK13 BNAME=MC-EQ,NITEMS=1,NCAT=2,ORIGENAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=26;
>BLOCK14 BNAME=SA-EQ3,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

REPEAT=5;
>BLOCKl 5 BNAME=OR-EQ3 ,NTTEMS=1 ,NCAT=5 ,ORIGINAL=(0,1,2,3,4), 

REPEAT=5;
>CAL GRADED,LOGISTIC,NQPTS=30,CYCLE=(50,2,2,2,2), 

GPRIOR,TPRIOR,SPRIOR,NEWTON=0,CRIT=0.001 ,DIAGNOS=l;
>SCORE NOSCORE;
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Appendix B 

Separate Calibration

This appendix gives the sample PARSCALE control files used in the separate 

calibrations with TCC and M/S transformations. Note that the procedure of 

transformation rather than the calibration involves the consideration of outliers. 

Record File for the Separate Calibration o f Reference Tests

Calibration of the reference test.
>COMMENT ;
This analysis is based on 66 items. There are:
26 operational MC items in the reference test, 3PL model,
5 operational SA items in the reference test, 2PL Model,
5 operational OR items in the reference test, GR model, 5 categories,

24 common MC items, 3PL model,
3 common SA items, 2PL Model,
3 common OR items, GR model, 5 categories,

>FILE DFN AM E-C :\Psl3\ref .D AT',
NFNAME='C:\Psl3\ref.KEY',
SAVE;

>SAVE PARM='C:\Psl3\ref.PAR';
>INPUT NIDW=4,NTOTAL=66,NTEST=l,LENGTH=(66), SAMPLE=100; 
(4A1.66A1)

>TEST 1 TNAME=ref,ITEM=( 1 (1 )66),NBLOCK=66;
>BLOCKl BNAME=MC-UNI,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=26;
>BLOCK2 BNAME=SA-UNI,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

REPEAT=5;
>BLOCK3 BNAME=OR-UNI,NITEMS=l ,NCAT=5,ORIGINAL=(0,1,2,3,4), 

REPEAT=5;
>BLOCK4 BNAME=MC-EQ 1 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=8;
>BLOCK5 BNAME=SA-EQ1 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 

REPEAT=1;
>BLOCK6 BNAME=OR-EQ 1 ,NITEMS=1 ,NC AT=5 ,ORIGINAL=(0,1,2,3,4), 

REPEAT=1;
>BLOCK7 BNAME=MC-EQ2,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=8;
>BLOCK8 BNAME=SA-EQ2,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

REPEAT=1;
>BLOCK9 BNAME=OR-EQ2,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 

REPEAT=1;
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>BLOCK10 BNAME=MC-EQ3,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=8;

>BLOCKl 1 BNAME=SA-EQ3,NITEMS=1,NCAT=2,ORIGIN AL=(0,1), 
REPEAT=1;

>BLOCK12 BNAME=OR-EQ3,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 
REPEAT=1;

>CAL GRADED,LOGISTIC,NQPTS=30,CYCLE=(50,2,2,2,2), 
GPRIOR,TPRIOR,SPRIOR,NEWTON=0,CRIT=0.001,DIAGNOS=1;

>SCORE NOSCORE;

Record File for the Separate Calibration o f Equated Tests

Calibration of the equated test.
>COMMENT;
This analysis is based on 66 items. There are:
26 operational MC items in the reference test, 3PL model,
5 operational SA items in the reference test, 2PL Model,
5 operational OR items in the reference test, GR model, 5 categories,

24 common MC items, 3PL model,
3 common SA items, 2PL Model,
3 common OR items, GR model, 5 categories,

>FILE DFNAME='C:\Psl3\new.DAT',
NFNAME='C:\Psl3\new.KEY',
SAVE;

>SAVE P ARM -C :\Psl3\new .PAR';
>INPUT NID W=4,NTOT AL=66 ,NTEST = 1 ,LENGTH=(66);
(4A1,66A1)

>TEST 1 TNAME=new,ITEM=( 1 (1 )66),NBLOCK=66;
>BLOCKl BNAME=MC-UNI,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1),

GUES SING=(2,ESTIMATE) ,GP ARM=(. 25),REPEAT=26;
>BLOCK2 BNAME=SA-UNI,NTTEMS=1,NCAT=2,ORIGIN AL=(0,1), 

REPEAT=5;
>BLOCK3 BNAME=OR-UNI,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 

REPEAT=5;
>BLOCK4 BNAME=MC-EQ1,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=8;
>BLOCK5 BNAME=SA-EQ1 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 

REPEAT=1;
>BLOCK6 BNAME=OR-EQ1,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 

REPEAT=1;
>BLOCK7 BNAME=MC-EQ2,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=8;
>BLOCK8 BNAME=SA-EQ2,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 

REPEAT=1;
>BLOCK9 BNAME=OR-EQ2,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 

REPEAT=1;
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>BLOCK10 BNAME=MC-EQ3,NITEMS=1,NCAT=2,ORIGENAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=8;

>BL0CK11 BNAME=SA-EQ3,NITEMS=1,NCAT=2,ORIGIN AL=(0,1), 
REPEAT=1;

>BLOCK12 BNAME=OR-EQ3,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 
REPEAT=1;

>CAL GRADED,LOGISTIC,NQPTS=30,CYCLE=(50,2,2,2,2), 
GPRIOR,TPRIOR,SPRIOR,NEWTON=0,CRIT=0.001 ,DIAGNOS=l; 

>SCORE NOSCORE;
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Appendix C 

FCIP Calibration

This appendix gives the sample PARSCALE control files used in the FCIP 

calibrations for the conditions that outliers (with 3 and 9 score-points) were fixed, outliers 

(with 3 score-points and from one content area) were not fixed, outliers (with 3 score- 

points and from one content area) were excluded in the data file. The file ref.IFL was 

renamed from the file ref.PAR, which was generated from the calibration of reference 

tests.

Record File for the FCIP Calibration with Outliers Fixed

FCIP Calibration with outliers fixed.
>COMMENT ;
This analysis is based on 66 items. There are:
26 operational MC items in the reference test, 3PL model,
5 operational SA items in the reference test, 2PL Model,
5 operational OR items in the reference test, GR model, 5 categories,

24 common MC items, 3PL model,
3 common SA items, 2PL Model,
3 common OR items, GR model, 5 categories,

>FTLE DFNAME='c:\Psl3\new.DAT',
NFNAME-c:\Psl3\new.KEY',
IFNAME=,c:\Psl3\ref.IFL,,
SAVE;

>SAVE P ARM='c :\Psl3\new .PAR';
>INPUT NIDW=5,NTOTAL=66,NTEST = 1 ,LENGTH=(66), SAMPLE=100; 
(5A1.66A1)

>TEST 1 TNAME=ref ,ITEM=( 1(1 )66),NBLOCK=66;
>BLOCKl BNAME=MC-UNI,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=26;
>BLOCK2 BNAME=SA-UNI,NITEMS=1,NCAT=2,ORIGIN AL=(0,1), 

REPEAT=5;
>BLOCK3 BNAME=OR-UNI,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 

REPEAT=5;
>BLOCK4 BNAME=MC-EQ1 ,NITEMS=1 ,NCAT=2,ORIGIN AL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=8,SKIP;
>BLOCK5 BNAME=SA-EQ1,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

REPEAT= 1 ,SKIP;
>BLOCK6 BNAME=OR-EQ 1 ,NITEMS=1 ,NC AT=5 ,ORIGINAL=(0,1,2,3,4),
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REPEAT=1,SKIP;
>BLOCK7 BNAME=MC-EQ2,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2, ESTIMATE), GPARM=(.25),REPEAT=8, SKIP;
>BLOCK8 BNAME=SA-EQ2,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
REPEAT=1,SKIP;

>BLOCK9 BNAME=OR-EQ2,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 
REPEAT = 1 ,SKIP;

>BLOCK10 BNAME=MC-EQ3,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=8,SKIP;

>BL0CK11 BNAME=SA-EQ3,NITEMS=1,NCAT=2,ORIGIN AL=(0,1), 
REPEAT=1,SKIP;

>BLOCK12 BNAME=OR-EQ3 ,NITEMS=1 ,NC AT=5,ORIGIN AL=(0,1,2,3,4), 
REPEAT=1,SKIP;

>CAL GRADED,LOGISTIC,NQPTS=30,CYCLE=(50,2,2,2,2), 
GPRIOR,TPRIOR,SPRIOR,NEWTON=0,CRIT=0.001,DIAGNOS=1;

>SCORE NOSCORE;

Record File for the FCIP Calibration with Outliers Not Fixed

FCIP Calibration with outliers NOT fixed.
>COMMENT ;
This analysis is based on 66 items. There are:
26 operational MC items in the reference test, 3PL model,
5 operational SA items in the reference test, 2PL Model,
5 operational OR items in the reference test, GR model, 5 categories,
24 common MC items, 3PL model,
3 common SA items, 2PL Model,
3 common OR items, GR model, 5 categories,

>FTLE DFNAME='c:\Psl3\new.DAT',
NFNAME='c:\Psl3\new.KEY',
IFNAME='c:\Psl3\ref.IFL',
SAVE;

>SAVE PARM='c:\Psl3\new.PAR';
>INPUT NIDW=4,NTOTAL=66,NTEST=l,LENGTH=(66);
(4A1,66A1)

>TEST1 TNAME=fcipNF,ITEM=( 1 (1)66) ,NBLOCK=66;
>BLOCKl BNAME=MC-UNI,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 

GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=26;
>BLOCK2 BNAME=SA-UNI,NITEMS=1,NCAT=2,ORIGIN AL=(0,1), 

REPEAT=5;
>BLOCK3 BNAME=OR-UNI,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 
REPEAT=5;

>BLOCK4 BNAME=MC-EQ 1 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=7,SKIP;

>BLOCK5 BNAME=MC-EQ1 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT= 1;
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>BL0CK6 BNAME=SA-EQ1,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 
REPEAT=1,SKIP;

>BLOCK7 BNAME=OR-EQl ,NITEMS=1 ,NCAT=5,ORIGIN AL=(0,1,2,3,4), 
REPEAT=1,SKIP;

>BLOCK8 BNAME=MC-EQ2,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=6,SKIP;

>BLOCK9 BNAME=MC-EQ 1 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2, ESTIMATE), GPARM=(.25),REPEAT=1;

>BLOCK10 BNAME=MC-EQ 1 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=1,SKIP;

>BLOCKl 1 BNAME=SA-EQ2,NITEMS=1 ,NC AT=2,ORIGINAL=(0,1), 
REPEAT=1,SKIP;

>BLOCK12 BNAME=OR-EQ2,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 
REPEAT=1,SKIP;

>BLOCK13 BNAME=MC-EQ3,NITEMS=1,NCAT=2,ORIGIN AL=(0,1), 
GUESSING=(2, ESTIMATE), GPARM=(.25),REPEAT=6, SKIP;

>BLOCK14 BNAME=MC-EQ 1 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=1;

>BLOCKl5 BNAME=MC-EQ 1 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=1,SKIP;

>BLOCK16 BNAME=SA-EQ3,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 
REPEAT=1,SKIP;

>BLOCK17 BNAME=OR-EQ3,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 
REPEAT=1,SKIP;

>CAL GRADED,LOGISTIC,NQPTS=30,CYCLE=(50,2,2,2,2), 
GPRIOR,TPRIOR,SPRIOR,NEWTON=0,CRIT=0.001,DIAGNOS=1;

>SCORE NOSCORE;

Record File for the FCIP Calibration with Outliers Excluded

FCIP Calibration with outliers excluded.
>COMMENT;
This analysis is based on 63 items. There are:
26 operational MC items in the equated test, 3PL model,
5 operational SA items in the equated test, 2PL Model,
5 operational OR items in the equated test, GR model, 5 categories,;

21 common MC items, 3PL model,
3 common SA items, 2PL Model,
3 common OR items, GR model, 5 categories,

>FILE DFNAME='C:\Psl3\new.DAT',
NFNAME='C:\Psl3\new.KEY',
IFNAME='c:\Psl3\ref.IFL',
SAVE;

>SAVE PARM='C:\Psl3\new.PAR';
>INPUT NIDW=4,NTOTAL=66,NTEST=l,LENGTH=(63);
(4A1,66A1)
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>TESTlTNAME=fcipEX,ITEM=(l(l)43,45(1)52,54(1)62,64(1)66), 
NBLOCK=63;

>BLOCKl BNAME=MC-UNI,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=26;

>BLOCK2 BNAME=SA-UNI,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
REPEAT=5;

>BLOCK3 BNAME=OR-UNI,NITEMS=l,NCAT=5,ORIGINAL=(0,1,2,3,4), 
REPEAT=5;

>BLOCK4 BNAME=MC-EQ1,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2, ESTIMATE), GPARM=(.25),REPEAT=7, SKIP;

>BLOCK5 BNAME=SA-EQ1 ,NITEMS=1 ,NCAT=2,ORIGINAL=(0,1), 
REPEAT=1,SKIP;

>BLOCK6 BNAME=OR-EQ 1 ,NITEMS=1 ,NCAT=5,ORIGINAL=(0,1,2,3,4), 
REPEAT=1,SKIP;

>BLOCK7 BNAME=MC-EQ2,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=7,SKIP;

>BLOCK8 BNAME=SA-EQ2,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 
REPEAT=1,SKIP;

>BLOCK9 BNAME=OR-EQ2,NITEMS=1,NCAT=5,ORIGINAL=(0,1,2,3,4), 
REPEAT=1,SKIP;

>BLOCK10 BNAME=MC-EQ3,NITEMS=1,NCAT=2,ORIGINAL=(0,1), 
GUESSING=(2,ESTIMATE),GPARM=(.25),REPEAT=7,SKIP;

>BLOCKl 1 BNAME=SA-EQ3 ,NITEMS=1,NCAT=2,ORIGIN AL=(0,1), 
REPEAT=1,SKIP;

>BLOCK12 BNAME=OR-EQ3,NITEMS=l,NCAT=5,ORIGIN AL=(0,1,2,3,4), 
REPEAT=1,SKIP;

>CAL GRADED,LOGISTIC,NQPTS=30,CYCLE=(50,2,2,2,2), 
GPRIOR,TPRIOR,SPRIOR,NEWTON=0,CRIT=0.001 ,DIAGNOS=1;

>SCORE NOSCORE;
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