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ABSTRACT

- LY
‘ . - { o N

This thesis is concerned yizh three prop}ems: the ;alculus
of variations, optima® cohtrol and”’ the generalizéé’problem éf
Bolza. It presents kqown sufficiency conditions for eagh of the
problems, and explains their developmenp using the modified
Hanm1lton-Jacobi approach. It gives a new suffi;ient condition
for the opcimal'control problem where the control set is given by?
smooth functions. "This criterion generalizes prior results of
the same kind when the control set is polyhedral.

In the section dealing with the calcuius of variations, an
improvement is made on certain known results. Firally, she
intervelationships between the various sufﬁ&cien;y condiBons are-
studied. ‘

G .

K.

‘1v ) . .
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1. INTRODUCTION

Three areas of importance in the subject of optimization are the

) »

caléulus of varliations, optimal control, and the generalized prbblem of

Bolza. - These are ranked historicaliy and in terms of generality; a
. . N N \
. - * . -
_calculus of variations problem may be written as an optimal control

problem, which may in turn be'posed as a generalized problem of Bolza.
\ .

It 1s our aim to state sufficiency conditions for the three problems
. . +

and show how these conditions faterrelate. We will provide assumptions
under which bne‘result is a corollary to #ngther, and find
counterexamples when one result m;y be applied but another may not.
Special attention {is p;id to the problem of optimal control, for which
a new sufficiency condition has been develéped. We show how and when

the’ new condition improves on known ones.

~ "The {gene'ralized problem of Bolza is: = ¢
: . b L

oinimize J(x) = l(x(a),x(b))+[ L(t,x(t),x(t))dt

. . ) a\ i

where x:[a;ﬁ}yﬂln 1s absolutely continuous with derivative x st

everywhere) and where A

L:[a,b]x]RanRn-»(—-w,t o] and 1: R xR (- », + »] are given. WNe call

sﬁch a function x an arc. The Hamiltonian of this problem is defined

—
~

to be: ' ) .

-
‘

4

H(t,x,py = sup {<p,v> - L(t,x,v):vcnln}. .
We make the ass;ﬁnption tha;: L 1sLxB~ measurable, wherel 1s the

collection of Lebesgue measurable subsets of [a,b] and B the Borel,



2 n n . \ -
subsets of R 'x R . R v /

In Chapter 2 we present known conditions guaranteeing the
optimality of an arc x for this pfoblem. These conditions are based on

> the modified Hamilton-Jacobi inequality of [22] and fZé]. The results

('/ .
are written in terms of the ‘Hamiltonian.

-

Chapter 3 is concerned with the problem of optimal contr&lﬁ.‘

. b
" minimize K(x(b))+[ glt,x(t),u(t))dt
L
a

EY

[

* over all absolutely continuous functions x:[a;b]»ﬂin with derivative x

(almost everywhere), and over all measurable functions u:_[a,b]+IR n

¢ : ‘

' . o

satisfying:
i(t) = f(t,x(t),u(t)) a.e., x(a) = A, and_E(t)eU ;.e.
Thé.Hamiltonian is defipned as follows:
+ 'H(t,x,p) = sup {<p,f(t,x,ﬁ)> - g(tdx,u):geu}.}
It has been shown in [17] that the above problem may be wfitéen és a
gfneralized problem_of Bolza whepe‘thé‘ﬂamiltonian is the‘same.
‘ - : \YTJA 6 .

In this chapter we state known suffiéiency conditions (see [23]’w4
and [25]) parallelling thoﬁe of chaptef 2, 1hc%ud1ng second order |
repulté intten both in terms of the Hamiltonian ‘and in terms of the

" original data. The main conttibuttoﬁ.of this thesis lies in a new
condition, adaﬁted\ftom'these secoudioraer ré;ults for thg special_casg

when U is givéh<byjmmodth funotions, that 1s superior for U -

~



polyhedral.

The ‘calculus of variations i{s a generalized problem of Bolza where
+
L 1s a real-valued function, the boundary values x(a) = A and x(b) = B

are given, and the minimum {s taken over all piecewise smooth
\

x:[a,b] »R“. It 1s also easily seen to be a problem of optimal

control. . .

"In Chapter 4 we present the sufficency criteria of [25] for the

calculus of variations. We also improve slightly on the 'second order

"

result of that reference.

Chapter 5 1is devotea to the interrelationships between the
sufficiency conditions of the ﬁfevious chapters. It includes new work

that clarifies the situation for known results.

Various conditions necessary for optimality have been developed

for the three problems, and often our results involve these conditions
or strengthened versions of them. We will not state these é%nditions

o ‘ AN
:ac the outset, but will meﬁqion them ag they occur. A -

»



2. THE GENERALIZED PROBLEM‘OF BOLZA. KNOWN RESULTS-

Consider the generalized praoblem of Bolza (P) minimize

. b _
J(x) = 1(x(a),x(b))+f L(t,x(t),;(t))dt over arcs x, where \
a .

L:[a,b]x R"x R™s (- ©,+ @] and 1: R"x R "+ (- w,+ »]. We here present
known sufficiency conditions, developed by Zeidan in [21], {22} .and
[24], ensuring the optimality of a certain candidate for the prob&em
(P). We begin by defining optimality.

s ' . i ‘ . ‘ /
EEEE: Given a function z:[a,b]+]Rq and a positive number e, _we define
the e~tube about -z, denoted T(%;e), to be
T(z;e) = {(t,yj:tc[a,b],yeIRq,]y-z(t)[< e} .
The projection of T(z;e) on R I 1s denoted by N(z;e).
We say that a function yeT(z;e) 1if (t,y(t))éT(z;s) for te[a,ﬁ} a.e.
2552; Given an arc X such that J(%) is finite, we say that X 1s a .
strong local minimum for the problem kf) 1f we can find a positive

number € such that % minimizes J(x) over all arcs x satisfying, for all

Al

tefa,b], ¢ \ Y
(£, x(£) KTTRTE Y <. |
¢ :

e
] -~
N

The first sufficiency condition, from which all the results of this

section are ultimately derived, is the following.. : L

n ’ ~
Prop 2.1 [Zeidan) Assume that L isLxB—measurable and that x 1s a

4



p)
given arc with J(X) finite. Suppose that there exist a positive number
€ and a function W(t,x) defined on T(%:;€) such that, for all arcs

ch(ﬁ;e), the function W(e-,x(+)) 1s absolutely continuous and

(a) :—t W(t,x(e))-L(t,x(t),x(t)) < :—t W(E,i(t))-l:(:,’i(t),ﬁ(t))

a.e.;

(b) for all c,d with |c|< € and |d|< & we have: ° -

° M.
-

W(a,ﬁ.(a)‘#c)-bl(a,?((a)) + W(b,X(b))-W(b,X(b)+d)
< L(R(a)+e,R(b)+d) - 1(%(a),R(b)).
Then J(x) is well defined (possiblx'+¢).for X neaf %X, and % 1s a étrong

local minimum for (P). Moreover, if £ = oo than. % 1s a global minimum

Ter (P).

) oo )
Remark: If the function W(e,+) is Lipschitz, then W(e,x(-)) is

absolutély continuous for any arc x.r In the case where the boundary
values';éé fixed (x(a) = A,x(b) = ﬁ),\the condition (b) is

‘ automatically éatisfied for all c¢,d in Rr" and any function W. Note
that in this cése

1) = xgay(x) + xggy (%)

where for any set C

xc(x) - { 0 if xeC o
+o otherwise.

*

lProo%: Refer to (24].
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* The HamIlton—Jacobi equation, given in [l4] for the Calculus of
Variations, has been adapted in the generalized problem of Bolza to

yleld two sufficient conditions, involving respectively the modified

-

and the generalized Hamilton-Jacobi inequality. We now state these

results as corollaries of Propqe.l.

TE@Z-la [Zeidan] Let the function L bed x8 - measurable and 1oz X be

an arc such that J(%) is fimite. Suppose that there exist a positive
. ®

number € and a Lipsmhizz function W(t,x) defined on T(ﬁ;e)‘satisfying:
. o

i

(1) for all c,d such that [c|< e and |d|< &,

W(a,X(a)+c)-W(a,X(a)) + W(b,R(b))-W(b,RK(b)+d)

< 1(5a)be, K(b)+d) - 1(R(a),%(b));

(2) for Z(t,x) = sup {aH(t,x,8): (a,B)edH(c, )},
0

2(t,x) < 2(t,%(t)) te(a,b] a.e. .
Z(e,R(0) = T W, F0) ~L(e,R(0),8(0) ae.

Then‘J(xj is well définedv(poésibly + o)
for x near %X, and %-1s a strong local minimum for (P) Moreover, if

€= +w then % is a globaI minimum for (P)
> \
.

«

» .
~eI P . . -

Condition (2) is the modified Hamilton-Jacobi inequality. The

proof ié stained by showing that a Lipschitz Jfunction W(t,x)
" . . . } >
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satisfying condition (2) of Thmf.l also satisfies condition (b) of

Propn2.1; see [24] for details.

When we take Z(t,?(t)) = 0 condition (2) of Th™2.1 becomes the
generalizéd Hamilton-Jacobi 1nequa1@ty, which was developed in [l4] for
the problem (P) in Mayer's form, and is incorporated in the following
result.

Cor 2.1. [Zeidan] In ThmZ.l, condition (2) may'be replaced by the
folléwing:

For 2(t,x) = sup{a+H(t,x,B):(a,B)edW(t,x)},

Z(t,x)< 0 for te[a,b] a.e.,

and

ST W(t,X(t))-L(t,X(t),%X(t)) = 0 a.e.

The proof, which appears in [21], is obtained by showing that a
Lipschitz function W satisfying the conditions of Corollary 2.1 also
satlsfiés those of Th"2.1.

We now state a sufficiency condition derived ftom Prop"2.1 and
calling for the existence 6£-an a’bsolutel)" continuous matrix function
Q(t) satisfying a, certa{r’\ in’etiuality. ’
_Th"2.2. [Zeidan] Aséﬁmé‘ that L 18 x$B - measurable a-nd .that % is a
given arc with J(X) finite. Suppose that‘\ there exist a posit'ive nunber

€, an arc Su,an-q\ an absolutel)} continuous symmetric matrix function Q(t)

s



8.

such that: P -
(1) L(t,x(t),X(t)+v)-L(t,%(t),X(£))> < p(t),v>

for all v in R ™ and almost all te[a,b];
(2) H(t,x,B(0)-Q(r)(x=%(t))) - H(c,%(r),p(r))

<= <EB(),x - X(O)> - < R(t), Q)(x - K(e))>

+1/2 < x = %(0), 0 (x - ()

almost everywhere in t with (t,x) cT(ﬁ;e);i
(3) for all c,d with |c|< € and |d[< €, .

1{x(a)+c,%(b)+d)-1(k(a),%(b))

> </s(a),c > - <P(b),d >-1/2 < cA,Q(a)c >+ 1/2 < d,Q(b)d >.
[ / -
»1an J(x) 1s well-defined (possibly + ) for x near x, and x is a

'strong 1ocal minimum for (P). If ¢ = + w then X is a global minigum.

RemarK. The existence of a function P (not necessarily'absolutely

continuous) satisfying condition (1) is a necessary condition (see

'[‘2]). ' /

The proof of Th™2.2 appears in [24], where it is shown that, giveﬁ
the conditions of Th™2. 2, the function T
W(t,x) = < p(t),x >~ 1/2<x—x(t) Q(t)(x—x(t))) defined on T(x,e)

satisfies the conditions of PrOp L.1.
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Remark. In the special case where 1(s,9) and’fgat,-,ﬁ(t)) are convex

and p is an arc satisfying the Hamiltonian inclusions and the

transversality condition, the matrix Q(t)z O satisfies conditions (2)
. . - .

and (3) of our theorem.

If we define on T(Q;e) the function

Ve, x) = H(t,x,B(t)-Q(t) (x=%(t)))+< B(r),x-R(c)>

-

+ <§(t),Q(t)(x—i(t))> - 1/2 <x=%(t),Q(t)(x-%X(t))> then
conditjon (2) of the theorem is eqivalent to the condition that
V(t,x) < V(t,X(t)) almost everywhere in t with (t,x)eT(X;¢e). By
lmposing first order or second order conditions on the function V(t,x),
we wmay guaranteé that this 1is the case. For the first order result see
(24]; we prefer to pass to the second order result, which is proven in

the same reference. We need, from [22] and [24], the following.

The Hamiltonian*H is said to be C1+‘near a given arc Z = (X,p)
if we can find some positive Y‘such that for each t ixxéa,b], H(t,s)
is C1 with locally Lipschitz first derivatives on the s;t of x with
.lx'ﬁ(t)l <v.

.

If H is Cl_ near Z then the generalized Jacobian ({6]) 3 H (t,»)

¢

exists on x with lx-x(t)l( Y, and it is defined at a point z as being
the convex hull of all matrices M of the form

y = lm {pu,(t,z,))

i+

where zi.converges to z and the usual JacobiénszHZ(t,zi) exists for

>

’ ~
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each 1.

+ ~ ”~ ”~ .
Defn: Let the Hamiltonian H be C1 near z= (x,p). The extended Jacobi

condition is said to be éatisfied at Z 1f there exists a Lipschitz
maérix function Q(+) from [a,b] to the space of nxn - matices such
that, for all t, in [a,b],Q(t)fis symmetric and satisfles:
n(t)-Q(t)Y(t)Q(t)+Q(t)8(t)+6(t)Q(f)—u(t)> 0

for all t in [a,b], for all matrices

a(t) s(t)
€ 3 H (t,2(v)),

B(t) y(t)

and for all n(t)e3dQ(t).

Suppose we are given arcs ﬁ,ﬁ from {a,b] to R . The following

hypothesis will be made:

The Hamiltonian H is ¢t on T(Z;y)
and the map 5 (H)
(t,z) » asz(t,z)
;513 upper semicontinuous on T(Z;y).
1
m Z B - ~ ~A A
Th 2.3. [Zeidan] Assume that L is< x.B- measurable and that z = (%,p)
is a given arc such that J(X) is finite and hypothesis (H) holds. 1In

addition, assume that there exists a Lipschitz symmetric matrix
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function Q(t) such that

(a) L(t,ﬁ(c),ﬁ(c)+v)-L(i,§(c>,i(c))z_<§(t).v>

for all v ¢ R" and almost all te [a,b];

(b)  (-p(t),X(t)) = H (r,2(1)) a.e.;
(c) for all c,d with |c<e and |d|<e,
1(X(af+c,X(b)+d)-1(X(a),%(b))

> <p(a), e - <B(b),d> - 1/2<c,Q(a)e>+1/2<d,Q(b)d>;

(d) the extended Jacobl condition is satisfied by some matr%x function
Q.
Then J(x) is well defined (possibly + =) near X, and % providgs a

strong local minimum for (P).

Remark: The proof of this theorem is given in [24] using the modified
Hdmilton-Jacobi approach. Another proof is presented in [21] and [22]

that uses canonical transformations of Hamiltonianwequations.‘

'

{

ﬂemark: Condition (a) is called the Weierstrass condition and
‘condition (b) is called the Hamiltonian equations. Under some

additional hypotheses, we know from [2], [3] and [5] that these

conditions are necessary.

This completes our presentation of results concerning sufficient’

-
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conditions for the Generalized Problem of Bolza. The following diagram
1llustrates how the theory has been developed; an arrow A+B means that

B has been proven as a corollary of A.

-~
Figure (1)
n m o .
Prop 2.1 > Th 2.1 : : > Cor 2.1
(mod. H-J) (gen. H-J)

Th™2.2

(zero order)

Th"2.3
(second order)
As the remainder of the thesis wil be concerned with problems in

which at least one boundary value is fixed, we make the following

remark. : N

Remark: Consider the generalized problem of Bolza (P) with a given

boundary value x(a) = A. ‘Then the function 1{x,,x,) takes the form

?

l(xlrxz) = 'X{A} (x1)+'1°(12)
where 1°: R" & RuU{+=}, and x{A}{x} 1s the indicafor function of the
set {Af,

- that 1is,



x{A}(x) =

0 {f x = A

+ o {f x # A .

13



3. OPTIMAL CONTROL. KNOWN AND NEW RESULTS

A problem of optimal control may .be written as a generalized

problem of Bolza, and may therefore be solved by similat wmeans.

In-this éhapter we present three known sufficiency criteria that

are adaﬁted directly from results of Chapter 2, and then go on to

-

deve[gg\b\ggyﬂeuff1c1eﬁcy criterion in a more specialized context,
4
f?pély when the control set is given by smooth functions. It is seen

that when the control set 1is polyhedral, our results improve on prior

results of the same kind. N
Let f, g and 1 be given functions:

f:(a,b] xIRanRm +> IRn, ‘g:[a,b]xmanRm + IR and 1:1Rn + R- .

Let U be a .closed subset of R™ and A a point of R". Thegaptimal

control problem 18 defined to be ‘ e
b '
(G) minimize J(x,u) = 1 (x(b))+ f g(t,x(t),u(tr))dt
. ' a ‘

over .'all absolutely co;ltinOus functions x:[a,b]+™"
with derivative x (almost everywhere), and over all méasurable
. >
functions u:’i[:a,bl‘_’-»lRm satisfying .
x(t) = £(t,x(t),u(t)) a.e., , . . (3.15

x(a) = A - O (3.2)

u(t)eU a.e. ' , \\\\\\ - (3.3)

14
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The Hamiltonian is defined as
H(t,x,p) = sup {<p,f(tyx,u)>glt,x,u):uel}.
gggi: An absolutely continuous function from [a,b] to R" is ;aylpl’;n
arc. A palr (x,u) is admissible for (C) 1f x is an arc, u is
measurable, and (x,u) satisfies (3.1)-(3.3).

Defn:' An admissible pair {i,ﬁ) 1s a weak local minimum for (C) 1f .

there exists a positive number e ‘such that (%,0) minimizes J(x,u) over

all admissible pairs (x,u) satisfying, for all te[a,b],

4""%

“

(t,X(t),u(t))eT((;,G);g), }

Def": An admissible pair -(x,4) is a stro7g'local minimuﬁ for (C) if
for some € >.0, (%,0) nifintzés J(x,u) over all admissible pairs (x,u)
satisfying, for all te[a,b],.

(e,xg Jerxiéy. _ N\

The following assumption will be made:

vf and g’are measurable 6n T(%;¢e)xU and, for each t,g(t,e,s) is lower
(H))

semicontinuous and f(t,+,*) is continuous on N(i;e)xU.

>

-

3.1 Known Results

The next three results.parallel-Proan.l, Th™2.1 and Thm2.2, and

)
are similarly proven. }

Progn3.1. [Zeidan] " Let (X,0) be an admissible pair for (C) such ﬁhat

i%
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J(X,3) ts finite. Assume that for some positive ¢ hypothesis,(Hl)

holds and there exists a function W(t,x) defined on T(ﬁ;s) sugh that,

for all admissible (x,u) with |x(t)-%(t)|< € Yte[a,b], the function

W(e,x(+)) is absolutely cofitinuous and \ o

() S w(e,x(e))-g(t,x(c),u(t))

d T - .
< gp Wex(0))-g(£,%(0),5())

(b) for all d with |d|<e we have

W(b,X(b))-W(b,X(b)+d)< 1(X(b)+d)-1(X(b)).

Then J(x,u) is well defined (possible 4+w) for x near %, and (%,1)

1s a global minimum for (C).

Th™3.1. [Ze(aan] Let (x,3) be én admissible pair for (C) such that
J(X,0) is finite. Assume that for some positive ¢ hypothesis'(Hl)
holds and there exists a Lipschitz function W(t,x) defined~on T(ﬁ;e)

such that, for all admissible (x,u), we have

(1) W(b,X(b))-W(b,R(b)+d) < 1(%(b)+d)-1(%(b)) for all [d|<e ;
(2) for z(t,x) = sup{a+i(t,x,B8):(a,8)eaW(t,x)},
Z(t,x) < z(t,%(t)) for,té[a,b] a.e. and

2(,%(t)) = 3= W(t,%(0))-g(c,%(t),8(t)) ave.
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Then J(x,u) is well defined (possibly +w) for x near X, and (X,3)
is a strong local minimum for (C). Moreover, i1f ¢ = 4= then (Q,G) is a

P

global minimum for (C). ©

Th™3.2. [Zeidan] Let (x,u) be an admissible palr for (C) such that
J(Q,G) is finite. Assume that there exist on arc ﬁ,an absolutely
continueus symmetric matrix function Q(t), and a positive number ¢

that:

(1) < p(r),f(t,X(t),u) > - g(t,%x(t),u)
< <P(), (6, %X(0),0(0))> - g(t,%(e),3(t))

for te[a,b] a.e. and all ueU;

(11) H(t,x,5(£)=Q(t) (x%(t))) - H(t,R(t),p(t))

<= <plE),x=%X(t)> - <&(t),Q(t)(x~R(t))>
+ 1/2<x-8(t), Q0) (x=%(£))>

for te[a,b] a.e. with (t,x)eT(X;¢e);

(111) 1(X(b)+d)-1(X(b)) > - <B(b),d> + 1/2 <d,Q(b)d> ' »

~for all d with |d | <e.

-

Then (X,4) is a strong local minimum for the problem (C).

As with their counterparts of Chapter 2, Th"3.1 and Thm3.2 ére

corollaries of Propn3.1, .
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2, - N -~ ~
Remark: Assume that 1(+) is C ‘near x(b) with p(b) = —lx(x(b)), and

that Q(t) {s an n x n matrix function satisfying Q(b) < lxx[ﬁ(b)).

LY
Then for some ¢ > O, we have, for all

J

d with |d|< ¢, for all ce n’

1(X(a)+c,X(b)+d)-1(%(a),%(b)) > <P(a),c>

-<p(b),d>-1/2<c,Q(a)c>+1/2<d,Q(b)d>.

If we define on T(x;e)xU the function
;(t.i,u) = BE-QUE) (x=F(1)), £(t,x,u)> - g(t,x,u)
- 1/2 <e=R(1),Qe) (x=%(t))> + B(t),x-R(t)> (3.4)

.

+ <R(0),Q(0) (R(£))>

then conaition (11) of Thm3.2 may be expressed as the condition that
F(t,x,u) < F(c,%(t),ﬁ(t))

for élmost all t in [a,bl‘withv(t,k)eTtQ;e), and all ueU. This

formulgtion suggests the following. corollary of Th™3.2.

Cor.3.1. [Zeidan] Let.(X,i) be admissible for (C) with J(%,3) finite.
Assume that U is cowpact and that, for gome y>0, f and g‘are contipuous
on T(X;y)xU. Supgbse that there exist an arc P and an absolutely
continuous matrix function Q(t) such that cond{tion kiii) of Th™3.2
holds and

(a) F(t,x,u) < r(:;i(c),ﬁ(:)f for ueU and te[a,b] a.e. with

s

..(t.x,u)chﬁ,G;Y);
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(b) <3§t>,f(t,§(t).G(c))>-g(t,2<t),ﬁ(r>)
> <p(t),f(t,x(t),u)-g(t,x(t),u)

for all te[a,b] and all ueU with u 4 G(t);

(c) for all te[a,b], the function
Z(t,x,u) = <p(t)-Q(t)(x~x(t)), f(t,x,u)> - g(t,x,u)

1s strictly concave in u for ueU and (t,x,u)eT(X,G;v).

Then (§,G) is a strong local minimum for (C).

~
el

L
Proof: Given in reference/TZS].

Other conditiouns exist to guarantee that the function‘F(t,x,u)
achieve 1its maximum at F(t,ﬁ(t),a(t)) fér x near x(t) and uelU; by
imposing, for example, first and\;;hond order conditions on the
function F. A first order result appears in [25]. We pasé here to a
second ofder result, from the same reference, expre;sed in terms of the

data f .and g.

. -

Suppose we are given a pair (x,4) and a positive number ¢. The
following assumption 18 required: ' 7’
f and g and their partial derivatives up to second order with

respect to (x,u) exist.and are continuous on T(X;e)xU. ) (H2)

We define the following quantities:
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: . “-,; i A(J .
:(t?‘\— @ ; 7 .
. ’ [4 ‘ T - 3 - *
(t,X(t),0(t)) --D (f "(t,X(t),a(t))p(t)),
TN uu u u

1

% s
; L (6RO, u(t)) Dx(fxT(t,x,G(t))ﬁ(c))lx =R(ty T
A(%? - £ (t, x(£), u(t))

4’I

S(ty = guxu,ﬁ(t),ﬁgt)) - Dx<fu?({x,a(t))ﬁ(c)));x ~ %o,

- 6« , }
ht
£
and 7
. ) o N,
B(t) = £ (t,%(t),5(t)). =t
/ s . .

5 ¢ M ¢ M

Cor. 3.2. [Zeidan] Let Lx, u) be an admissible pair for (C). Assume

that Hypothesis (H ) holds for some e> 0, and o

~

(1) U is convex and compact ;

(2) there exists an arc ﬁ’satisfy}ng

-830 = £ (6R(0,8(0) B gs 8 (6,8(6),8(8) aveys
with . # el
B(b) = -1 (%(b));
(3) for_all te[a,b] and for ‘all ueU with uAd(t),

<p(te), f(t X(t), u(t))> - g(t X(t),4(t))

><B(e), (x, (£)iu)> - g(1,%(1),u);
(4) R(t)> O for all te[a,b];

(5) there exists a Lipschitz symmetric matrix function Q(t) on [a,b]
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satisfying
ALY <L, (R(D),
and, for all te[a,b] and all n(t)edQ(e),
- T -T =
M(e,n(t)): = n()+Q(T)A(T)+A ()Q(t)4D(t) - K (t)R(t)K(t)> O
— -1
where K(t) = R (0)(S(t)+BT(£)Q(t)) ..
Then-(%,ﬁ) ts a strong local minigum for .
Remark: In the classical calculus of vafiatiohé, condition (5) is seen

-y

to reduce to the Jacobi condition (see [25] and [26])).

Remark: Assume U is in Lw[a,ﬁ]. By replacing cgndition (3) of the
theorem with the weaker condition ' ) .
(3") <P(t),f(e,%x(),0(t))> - g(t,%(r),a(t))
> <CBCOLE(E,R(0),u)> - g(6,%(0),u)

for alll(t,u)eT(ﬁ;e) _ t
we obtaln = suficiency criterion for weak local optimality.
Remark: Let (X,3) be a candidate for strong local optimality. Then {f
_the problem is.normal‘the pair (%,%) must satisf& conditions (2) and

o . .

(3') for some arc P- These conditions together make up the maximum

principle (see [15}).
L
)

L]

Cors3.1 and 3.2 provide ways of testing whether the function F(&,x,u)
achieves its maximum at (%(t),G(t)) when x is“near %X(t) and u is in U,
which 1s equivalent to conditions (1) and (11) of Th™3.2.: If we now

- . ®



define on T(?;e) the function

Vit,x) = H(t,x,p(t)=Q(r) (x=X(t))) + < B(t),x-X(t)>

+ <6, %(1),0()),Q(t) (x=%(t))>

- 1/2 <R%(1), Q) (x=%(t))> (3.6)
then we may express condition (11i) of Thm3.2 as the condition that

V(t,x) S;V(t,ﬁ(t)f

almost everywhere in t with (t,x)eT(%x;¢). Again, firét and second
order conditions exist to guarantee this to be the case. See [25] for
_the.first order conditions; we pass to the second order result,g

appearing in [26])/, which applies to the autonomous control prbblem and

1s now expressed in terms of the Hamiltonian.

1+ - ~ ~ A
Def": Suppose the Hamiltonian H is C near a given arc z = (x,p). We

say that the extended Jacobi condition is satisfied at Z if there
~

exists a Lipschitz symmetric matrix function Q(+) on [a,b] such that
n{6)=Q(t)y (£)Q(E)+Q(£)B(E)+6(r)Q(t)~a(t)> 0
for all t in [a,b], all matrices
a(t) §(t) .
‘ €IVH(Z) (1)
B(t) / (e

and all nﬁ;;eaQ(t) .

Gor 3.3. [Zeidan] Let (X,3)be an admisslble pair for the autonomous
control problem. Assume that Hypothésis‘(ﬂz) holds for some €>0, and
(a) U 18 a nonempty convex compact polyhedron inR. " H

(b)“ there exists an arc p from {a,b] toR satisfying
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. N

-BCe) = £ (R(O,G(0) B0 - g (R(0),8(1))  awe.,
with
BB = L (R(6)); , ‘

(c¢) for all te[a,b] and all ueU such that ufﬁ(t),
<BCO),E(R(6),5(0))> - g(R(r),5(1))
> <p(t),£(X(t),u)> - 8(X(t),u);,

(d) R(t)>0 for all tela,b];

. (e) the extended Jacobi condition 1s satisfied by a matrix function Q

such that Q(b)<1xx(x(b))' //

Then the pair (x,u) provides a strong local minimum for the

autonomous control problem.

o~

A
Remark: In the classical setting, the Hamiltonian H is C2 and the

extended Jacobi condition reduces to the Jacobi condition written in
terms of the Hamiltonian. Thus, the extended Jacobi condition and
condition (5) of Cor. 3.2 are equivalent when H is CZ, otherwige they

differ. The assumption that U is a polyhedron is only needed to have &

1+ .
C Hamiltonian. Therefore, when H is given to be Cz, Cors. 3.2 and

3.3 are equivalent. In particular, when G(t) 1s in the interior of the
control set U, then H is C2 and Cor. 3.3 reduces to the result of Mayne

(13, Th"3.2].
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3.2 New Results.

We\now narrow our attention to the problem (C);where the \control
set U 1{s of the form

U = {uelR ":h(u) = 0,d(u)< 0) | : (3.7)
fogy functions

h:R ™R P and d:R PR 9 ,.'/
We present new second order sufficiency criteria for weak and strong
local optimality involving, like the criterion of Cor..3.2, an equality
expressed in termé of the data f and g which reduces to the Jacobi
condition incthe classical case. It {is geen that when the control set
U is polyhedral our results generalize Cors. 3.2 and 3.3. Moreover, we
give an example to which our result for weak local optimality applies

while the known one does not.

Let (%X,3) be a given palr. We will have call for the following
hypotheses:

There exists a positive number ¢ such that f and g and (H3)
their ppartial derivatives up to second order with respect to (x,u)
exist and are continuous on T((X,0);e); h and dyare C? on N({;e); and

1 1s c? on the € - neighbourhood of X(b).

There exists ¢>0 such that f and g and their partial (H,)
derivatives up to second order with reépectﬂto (x,u) exist and are’
continuous on T(i;e)xU; h and d are C2 on U, and 1 is C2 on the ¢ -

neighbourhood of %(b). ,

v
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Let (X,d) be a candidate for weak (resp. strong) local optlma%}ty.

Then 1f the problem is normal the pair (%,3) must satisfy the maxi&<1

principle:
There exists an arc ﬁ:[a,b]»ﬂin such that
“P(E) = £ (6, %(0),T())P(L) - g (¢,%(1),8(t)) a.e. (3.8) s

P(b) = -vL(X(b));
<BCE), (e, %(t),5(t))> - g(t,%(t),G(r))
2 <p(t),f(r,x(t),u)>-g(t,X(t),u) : ) (3.9)

for almost all te[a,b] and all ueN(%;e)WU (respectively all uel).

If U(t) is a regular point for the constraints (3.7), gy [11]
1néquality (3.9) implies the existence of Lagrange multipliers }(t)e p.
and u(t)eﬂiq such that u(t)<0 and
£, (6,R(0),8(0)B(e) - g (£,%(e),8(0)) . Ga0)

T (OR(Ee) T () 7dE()) = 0;
uT(0)dcEe)) = 05
and ”
L(6) = g, (6,5(0),8(00)-D, (£, T(¢, }0,wB() 1 g,

ALy v*h(acen-uT (0)%ac@e) . @aan
is positive semidefinite én the tangent subspace of the acti§§;
constraints at u(t).

Y

For te[a,b], define the subspace



T(t) = {ueR"™: Vh(G(t))u = 0,1

(t)Vdj(G(t))u =0 j=1

26

..qb.

(3.12)

When the Lagrange multipliers associated with active constraints

are all non-zero, T(t) coincides with the tangent subspace of the

active constraints at u(t).

Let Y(t) be a matrix whose columns form a basis for T(x).

Suppose (x,4) is a pair for which there exist an arc p and

Lagfange*multipliers A and u satisfying (3.10) and, for te[a,b] a.e.,

YT(t)}.(t)Y(t)>O or Y(t) = Q.

' We say that the modified Jacobi condition is satisfied 1

i

f there

exists an absolutely continuous symmetric matrix function Q(t) with

T Q(b)K vzl(ﬁ(b)) and, for te[a,b] a.e.,

M(t,Q08)): = Q(E)HQCOIACE+AT (£)Q(t)
+ D(£)-KX (£)L(£)K(£)>0
lwhere
K(t) = z(e)[S()+BT(t)a(t)]
‘and |
(o[ (eL(e(e)] vl

Z(t) =

1f Y(t) 0

iIfY (t) =0

(3;135

(3.14)

(3.15)

|
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The mxm - matrix Z(t) is the generalized inverse of L(t).

T
We note that when R(t) (as opposed to Y (t)L(t)Y(t)) is assumed to
1

be positive definite and Z(t) 1in (3.15) is replaced by R_A(t) we obtain

the known Jacobi condition of Cor. 3.2.

Th"3.3: Let (X,4) with GeL” [a,b] be an admissible pair for (C)
satisfying (H3)- Assume that, for an arc p and for integrable
multipliers X(t),u(t)SQ, equations (3.8) and (3.10) hold for tefa,b]
a.e., and '

(1) for te[a,b] a-e., Y (L)L()Y(£)X or Y(t) = 0;

(2) the modified Jacobi coﬂdition 1s satisfied for some Q(t);

(3) U s convex.

Then (ﬁ,ﬁ) is a weak local minimum for (C).

Remark: Equations (3.8) and (3.10) are necessary for optimality.
Condition (1) is a strengthening of the pogitive semi-definiteness of
L(t) on the tangent subspa;e of the active co;straints at u(t). Note
that we do not require R(t) to be positive deflnite.

'Thm3.4: Let (%,3) with GeL”[a,b] be admissible for (C) and let (H,) be
satigfied. Assume that there exists an arc p and integrable
multipliers A(t) and u(t)<0 such that (3.8), (3.10) and conditions (1)
and (2) of Th"3.3 hold, and

(1) U 1is convex and compact;
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(11) R(t)>0 for all tela,b];
(111) tefa,b] and ¥ ueU with uAl(t),
B(e), £(6,8(0),8(0)> - g(t,x(t),a(t))
> <p(t),f(t,x(t),u)> - g(t,%(t),u).
Then (X,4) 1is a strong local minimum for (C).
Remark: Condition (1ii) is a strengthening of the necessary condition

gdven by (3.9) and 1t implies that equation (3.10) holds for some XA(t)

and u(t).

Remark: Consider the case when G(t) is 1n the interior of the control

~

set (hz0,d(u(t))<0). Then L(t)=R(t), T(t):R ™ and (3.10) impites
u(t)z0, so our criteria for weak and strong local optimality, Theorems
3.3. and 3.4, coincide with the known Jacobi sufficiency criterion Cor.

3.2, and 1its weaker version in which condition (3) 1is replaced by

(3").

Remark: When U = Hzm, Th™3.4 cannot be directly applied because
condition (1) demands that U be compact. However Th"3.4 may be applied

for uch, where
)
v - {u = (ul,...,um):dx(ul,...,uhl = 151“1‘x5-°}'
If X 1s so large that 4(t) is in the interior of Vx’ Th™3.4
reduces to Cor.3.2. Since optimality over ueﬂié is equivalent to
e N

optimality over ucvx for all large X, we deduce that in this case

Th™3.4 again-reduces to Cor. 3.2, where the requirement that U be /
. ™

- ‘ !
. ///
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compact 1is omftted.

LN

The proofs of Th™s. 3.3 and 3.4 are based on the following

result, which 1is a consequence of the Remark following Th"™3.2.

~ A

Lemma 3.1. Let (x,u) be admisgible for (C) and ler 1 be C2 near x(b).
Assume'that there exist a;fositive number ;, an arc p and a _Lipschitz
symmetric matrix }unction Q(t) satisfying

() B(b) = -VI(R(b)), Qb) < TA1(R(b));

(b)  F(t,x(t),u(r)) < F(t,é(t),ﬁ(t)) ¥ (x,u) such that

ueU,(t,x,u)eT(?,ﬁ;e), and for te[a,b] a.e.

Then (Q,G) i8 a weak local minimum for (C). 1If in addition condition

(b) is satisfied for all u(t)eU, then (%X,0) is a strong local minimum.

Proof of Theorem 3.3.: The proof 1s done by showing that the
conditions of Lemma 5.1 are satisfied. Let A(t),u(t) and Q(t) be the
functions given in ™"3.3. Then equations (3.8) an& (3.10) yield, for
fe[a,b] a.e., A ‘ .
v uF(:ji(c),G(t)) + (O,A?(t))vx’uh(ﬁ(t))

X,

+0,u ()7 4@ = o, (3.16)

where F(t,x,u) 1is given by (3.4).

Let T(t) be defined by (3.12) and let Y(t) be its basis matrix.

s
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We will first show that, for te[a,b] a.e.,

2
X,

- 0, (e)9? aGn)
X,u

T(t) = =95 F(t,%(0),0(0))-(0,A (2992  h(G(t))
u x,u

is positive definite on the subspace
T(t) = {(:]:xc R% ueT(v)} -
This {s equivalent to showing

T (OTOT(0)>0 for tefa,b] a-e.,

where

- I O
ey = [ 0 Y(1) ] '

Suppose that Y(t) # 0 on a set of positive measure. Then on that

set we find

Y (0)T(0)T(t) = M(e,d())>0 .

Suppose that Y(t) =0 on a set of positive measure. 'For such t,

define
JMe, ey o ]
N(e) [ 0 L(t)
and
I 0 )
“© feey 1], - , .

where M(t,Q(t)) and K(t) are as defined in (3.13) and (3.15). From
conditions (1) and (2) of ™™3.3 we have
?T(t)N(t)i'.(t»O

and hence
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-
cT(c)?q(t)N(t)?k:)C(n) - YT(t)C(c)?(a)>o ]
Thus for tel[a,b] a-.e.

L(t)>0 on the subspace T(t). (3.17)

The proof now proceeds by contradiction; suppose that condition

-~

(b) of Lemma 4.1 {s not satisfied. Then there exist a sequence Ak of

subsets of [a,b] with positive measure and functions (;k,;k),;k:Akv R "

and u A > U, such that:
VieA , (t,Zk(c),Gk(t))eT(a,G;l/k) and %(c,ik(t),Gk(t))>
F(t}Q(t),G(c)).

;k(t) for tcAk
X(t) for £2Ak

xk(t) = 4
~and

’ Gk(t) for teAk
u (t) =
K ﬁk(t) for teAk

Then, VYte[a,b], we héve (xk,uk)eT(ﬁ,ﬁ;l/k),uk(t)eU, and
b . b '
/ F(t,x, (£),u (£))de > [ F(e,%(e),0(r))de . ‘ (3.18)
a o a

Since F(t,xk(t),uk(t)) -

<BE)=Q() (% (£)=R(£)),£(t,x (£),u (£))> - g(t, (t),u (t))
% % (0 % (6o

- %; 1/2<x (£)=R(E),QE) (x (D)-R(£))> a.e. t

R



and since

Hu ] <17k,
- b
we have that ukcL [a,b] and f F(t,xk(t),uk(t))dt is finite.
a

Now, for each k write
(q (), (£)) = (R(0),3C0)) + 6, (4 (0),N (1))

where 6 = ll(xk‘ﬁ,uk‘ﬁ)llo ,

(t)-x(t) w (£)=G(e)
M (t) = ——————?a:—~ and N (t) = ————EE:—~—- )

Then 6,> 0, M () eL” [a,b], Nk(-)ch[a,b] and [|(M N )| =l. There 1s
a subsequence of (Mk'Nk)’ which we do aot -relable, convergling to a
funccioh S = (M ,N ) with [[(M N J||] =1 . Qe first show that
o o’ o 0’0"

So(t)cfkt) a.e., l.e. No(t)eT(t) a.e. We have
Q = h(uk(t))-h(a(t)) - Vh(Gk(t))GRNk(t) a.e. t, where G&(t) is between
u (t) and G(t) and HG;((t)-G(t)H°° < u ()-8 [] < 1/k Yk .
Therefore EL*G in La[a,b]. Since 6k> 0, we get at the fimit that
0= Vh(u(t))No(t)-
Let J be any index of d = (dj)' For te[a,b] a.e.
0< uj(t)[dj(?k(t))-éj(u(t))] = Gkuj(c)V§J(uk(t))-Nk(t)
where Gk(t),ie between uk(t) and 4(t). Again we have ;k’ﬁ in Lm[a,b],
and since 6k> 0 we get at the limit that 0< uj(t)Vdj(ﬁ(t))-No(t) a.e.
t, all j. It remains to show that for all 3

(t)vd, (t(t)). N(t) =0 a.e. t.

"3 j

»
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>
If not, there exist an index j and a subset BEC(a,b] of positive

Lebesgue measure such that:

uj(t)Vd (ﬁ(t))-No(t)>O for all teE

]

~ ) 2
Since No,u are L [a,b], u (t) 1s integrable and dJ {s C we have

3
b . b

gﬁg(t)Vdj(ﬁ(t))-No(t)dt>? and so iuj(t)Vd(G([)).No(t)dt}O

Using (3.16) we obtain

b :
jvx uF(t,Q(t),G(t))-(Mo(c),No(c))dc<o . (3.19)
a

But by (3.18) we have for all k that

b
0 < [{FCe,x (t),u (£))-F(t,%(0),3(0))}de
a

b = =
- fvx,uF(t,ik(t),ﬁk(c))-ck(mk(g),Nk([))d[,
a

for (ik,ik) between (xk,uk) and (%,3). Since (ik,ak)+(§,ﬁ) in Lm[a,wj
and 6k>0, at the limit we get (here we use the Lebesgue dominated

convergence theorem)

b

0< [9, (FCER(1),8(1))+(M_(£),N_(r))dt,
a

which contradicte (3.19).

It therefore follows that No(t)eT(t) a.e. and hence
(Mo(t),No(t))eT(t) a.e. |
Now, we want to obtain a contradiction of our assumption (3.18). ‘For
all k the folioving statments are true:

0 = A(8) [h(w, (£))-h(G(E))]
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S - ACt) . 2.T
S (0Th(E(0)6 N, ()+ 206 AT

2 t
(t)v h(uk(t))Nk(t) a.e.
for uﬂ between W and 4, ué»ﬁ in L ;

0 < u(e)[d(u (£))-d(G(t))]

. - 2 2. .
g w(0)-7d(G(t)8 N (t)+ “;t) GkNZ(t)V du ()N (t) a.e.

‘where ug* G in L™ ; and,

b
0< [{F(t,x (£),u (£))-F(t,%(t),3(t))}dt
a

b
- i{vx,uF(t’ﬁ(t)’G(t))dk(Mk(t)’Nk(t))

2 2 Mo (0
+ 1/2 Gk(Mk(t)’Nk(t))vx,up(t’xk (t),uk (t)) N () ét

“

where Qk +% and u +3 in L7,
. Using the integrability of A and y-and the fact that .0 and w are

@ » P
'L [a,b], we integrate the first two expressions and then add them to

©
. L

_the third to obtain:.

i b “
0< (M (), (£ V2 F(E,x (£),u, (0))
a »

T, ...2 N i 2 [ M (t)] ,
(0,2 (t?)Yx,uh(“k(‘))+(o’“ (£, wdCug (e N Et) de. e
By the Lebesgue dominated convergence theorem we get - -

0 [0, 00N (e 192 - P (e, (0, 8+ T ()92 ndce))

]

' M (t)
+0,u" (07 ud(ﬁ(:)‘)][Nf;(c)] a

But'(M;(t),No(t))efkc) a.e., and we know that

%

<
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M
(M (t),N (£))L()|N" (t)f> 0 a.e. t.
o o o
Thus we have a contradiction, and the theorem 1is proved.

+

Proof of Th™3.4: From the proof of Thm3.3, we know that condition (b),
N 3
O

of Lemma 4.1 holds for (t,x(t),u(t))cT(ﬁ,G;e)/with u(t)eU. Since
R(t)>0 for all te{a,b], there exists a positive number 6 (6<e) such
that Z(t,x,u) = (ﬁ(t)—Q(t)(x—ﬁ(t));f(t,x,u)>-g(t,x,u) is strictly
concave in u for (t,x,u)cT(ﬁ,ﬁ;G) with ueU. By {21], this ﬁfct
together with condition (111)’1mp11es that there exists a p 0 (a < 6)
such that i
V(t,x)cT(ﬁ;aj and 9€Q;/ ’

F(t,x,u) < F(t,x,u(t,x)) a.e.,

where (t,x,u(t,x))eT(X,0;e) -

Therefore, given a pair (x,u) with (t,x(t),u(t))eT(X;a)xl, we

have <

F(t,x(t),u(t)) < F(t,x(t),u(t,x(t)))

< F(t,x(t),4(t)) .

The result then folows by Lemma 3.1.

Remark: When in the problem (C) the value x(b) 1is prescribed, the
conditions B(b) = -V1(X(b)) and Q(b)<v21(R(b)) are omitted from Th"s
3.3 and 3.4. : )

>

. ) !
Remark: The conditions of Th™3.4 imply, by Lemma 3.1, that condition

" 14
’ ¢
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(a) of Cor. 3.1 1s satisfied. Therefore ThmB.& may be viewed as a

corollary of Cor. 3.1.

3.3 The Polyhedral Case.

We will now examine the specific case in which the control set U
is polyhedral. iThis is the case considered in Cor. 3.3. We will show
here that Th"3.4 generalizes both the Jacobi criterion expressed in

\

terms of the data (Cor. 3.2) and the one expressed In terms of the

. ' 1
Hamiltonian (Cor. 3.3), in which Q 1s assumeg/t6/be C . We will also

show that Th"3.3 generalizes the weak version of Cor. 3.2. .

Important remark: since the functions h and d in (3.7) are

affine, (3.11) yields that L(t) = R(t).

-

Thus,condition (1) of Thm3.3, which 1s now

(OR(DY(E) >0 or  ¥(r) = 0, ]
can be omitted from fhm3.4, since it 1s implied by the assumption
R(t) > O.
Progn3.2: Assume that U is a polyhedron. Then the weak.versiog of
Cor.3.2 (in which condition (3) is replaéed by condition (3') 6r (3{9))

1s a special case of Th™3.3.

-

Proof: Inequality (3.9) ylelds that, for some Lagrange multipliers
Xo(t) and ué(t), equations (3.10) hold. To Ao(t) and uo(t) there

correspond vid (3.12) a. subspace To(x) and its basis matrix Yo(t).

4

-
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Condition (4) of Cor. 3.2 fmplies condition (1) of—Thm3.3, and

]-IYOT(t) te[a,b] (3.20).

-1 T
Y R Y
RTCo2Y {Y T(ORY ()
Therefore the matrix function Q(t) in condition (5) of Cor.3.2

satisfies the modified Jacob!i condition (3.13).

* To see (3.20) fix t and let wk0 be an eligenvector of the matrix
-1 T -1, T
= -Y Y Y Y
A =R ()Y (OY T(OROY (1)] 7Y _“(e)
and let A be the eigenvalue corresponding to w, so that
Aw = \w . (3.21)
Assume A#0. Since.YOT(t)R(t) A = 0, we 'have by (3.21) that

Yo(t)TR(t)w = 0 , (3.22)

By (3.21) we have AwT = wTA, and sovkwT(R(t)w) - wTA(R(t)w)
T T ) -1, T T
=w (w Y (oY, (c)R(:)go(c)] Y T(OR(t)w) = w w by (3.22).
y
" The positive definiteness of R(t) then yields that A is positive,
and therefore eigenvalues of A are greater than or equal to zero and A

is positive semidefinite, as required.

Progn3.3; Assume that U is-a polyhedron. Then Cor. 3.2 is a special
case of Th™3.4.

Proof: Since Cor. 3.2 differs from its weaker version only 1in

-
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condition (3), and since this condition is duplicated in ThmB.A, it is

L]
clear that the conditions of Cor. 3.2 4mply those of T™h™3.4.

r'd
The next. proposition shows how Cor. 3.3 (which incorporates the

Jacpbi~conditibn expressed in terms of the Hamiltonian) relates to

N

Th™3.4 when the problem is autonomous. 4

ProEn3.é: Assume that the L;grange multipliers associated with actdve
constraints are all nbn—zero, and that u is a regular point for the
constraints. Assume also that f and g are independent of t and U is
polyhedral. If the function Q(t) satisfying the extended Jacobi
conditon in Cor. 3.2 is aséumed to be Cl, then Cor. 3.3 1s a special

v

case of Thm3.4.

Proof: It was mentioned (see 3.6) that 1in the proof.of Cor. 3.3, which
appears in [26], it is shown that the conditions of Cor. 3.3 imply that

for some positive €, and all xeTe(Q;e),

V(t,x) < V(t,x(t)),

whereé

~ L]

V(t,x)> = H(t,x,p(t)-Q(t) (x=%(t))) + <P(t),x-K(t)>
+ < f(t.'i(t).ﬁ(t)).Q(t)(x"i(t))>

- 1/2 <x=%(t),Q(t) (x=%(t))> .

By the definitifﬁ of the HamiltoniMhis 1s equivalent to saying
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that, for all (t,x,d)eT(X;e)xU
F(t,x,u) < P(t,%(t),0(t))
where, as in (3.4),
F(t,x,u) = <p(r)-Qt)(x-%(t)),f(t,x,u)>

/ .
'8(ET*TU)‘ 1/2 <x=%(t),Q(t) (x=%(t)>

\ ~. -/

+<p(t),x-x(t)> + <§(c),Q(t)(x—§(c)> .
Thﬁs, the theory of Lagrange multipliers ([11],pg 316) and the affine
property of U yield the existence of A(t),u(t)< 0 such that (3.10)
nolds and

R(t): = ~v2 F(t,x(t),0(t))
) X,u

is positive semidefinite on

= X n

<T(t) = {(u):xcﬂi.,u(T(t)}, where T(t)
1s the tangent subspace of the active constraints at u(t) and is equal

to T as defined in (3.12). Let Y(t) be the basis matrix sof T(t), and

define

MO o v . Y

where I is the nxn identity matrix. The above then implies that

~ I (OR(L)T(t) = -
Q(t)+Q(t)A(t) {sTree))B(e) Fr(e)
+AT(£)Q(t)+8(t) | ‘ >0
L v (e){s(e)+8 (0)a(e)) YT ()R(E)Y(t) }

Define
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M(t,Q(t)) 0

N(t) = 0 R(t)
where M(t,é(t)) 1s defined by (3.13). If Y(t) = O then from the above»
we have

M(t,Q(t)) > 0 .

If Y(t)=0, define

C(t) = »
K(e) I

where K(t) is defined by (3.14) and (3.15).

After computation we get
[cT(o)] (R [c)] ™ = Feomertce) » o,

from which it follows that M(t,Q(t))> O .

We conclude that for all tefa,b]

M(t,Q(e)) > 0 .

Using the embedding theorem of differential equations (see [9]), we can
find a function Q(t) satisfying M(t,b(t))) 0 for all te[a,b].

5

We now present a numerical example 1llustrating the utility of the

—,

assumption (1) of Th™3.3 as compared to the usual éssumption: R(t)>0

for all tefa,b]. In this example we will see that the-weak version of
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Cor. 3.2 cannot be used and Th"3.3 is the only criterion which can be

applied to conclude weak optimality of our candidate.

Consider the optimal control problem (C)

minimize

Loy 2
-é (u]=(1/2)u3=(1/8)xu ) dt

subject to x = u ~(1/8)x,x(0) = x(1) = 0

2 2 :
(u, (e),u,(t))eU = {(ul,uz):(l/Z)u1+(1/2)u2 <2} . >

0. Then (X%,0)

Take the candidate X = 0, G = (0,2), and let p

and p satisfy (3.8) and (3.10) for u(t) = -1 ;
The matrices
a
10 O ~ 1 0 ’
R(t) = 0 -1 and L(t) = 0 0 are not positive definite. Thus,

we cannot repMace the conditions of Th"3.3 by those of Cor. 3.2.

{(3):ue R}, and so (1) : (é), for

However, from (3.12) we have T(t)

which YT(t)L(t)Y(t) =1>0.

From (3.13) we obtain

M(t,Q0e)) = QCE)-(176)Q(t)-(Q(t)-1/8)>

’ - 4()~Q% (t)-1/64. .

Taking Q(t) = (1/2)t, we have for all te[O,1]
Q) (e)-1/66 = 1/2-(1/6)e2-1/64> 0 .

'fherefore, by Thm3.3, X=0and 0 = (0,2) provide a weak local minimum

for (C).
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4. THE CALCULUS OF VARIATIONS

The calculus of variations is the least general of the three
problems. Results developed for the generalized problem of Bolza or
optimal control may be applied. 1In this section we state the zero

order condition of [25] and give a second order result that ilmproves on

that of (25].

n
Let L:{a,b]xR  x R " R be given. The calculus of varfations

problem is:

b
Min J(x) = [ L(t,x(t),x(t))dt )
a

subject to
x(a) = A,x(b) = B

over all absolutely continuous x:[a,b]*ﬂin .

The Hamiltonian corresponding to (V) is given by the conjugacy
formula

H(t,x,p) = sup{<p,v>-L(t,x,viiveR"} .

L

n B »
Def :".g absolutély continuous function x:[a,b]{Rn 1s admissible for

(V) {f x(a) = A and x(b) = B.

We present the proof of the next result so as to see how it
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follows from Thm3.2. For a given arc x, L(t) designates

- 5\

L(t,x(t),%x(t)).

Thmé.l. [Zeidan] Let X be admissible for (V). Assume that L(-,+,+) {is
1 .
C , and that there exist ¢ > O and an absolutely continuous symmetric

matrix function Q(t) such that

b

(1) there exists a constant ceﬁin satisfying tv(t) = f Cx(s) ds + ¢
a

(2) for almost all t, for x with (t,x)eT(X;e) and for all ve R" ,

L(t,x,v)-L(t) 2,<ﬁx(t),x-§(t)> + <£v(t)“Q(t)(X‘§(t)), V‘%(t)>

-1/2 <x=%(t),Q(t) (x~%(t))>

Then X is a strong local minimum for (V). If ¢ = + », then X 1is a
global minimum.

Proof: It suffices to show that conditions (1) and (11) of Thm3.2 are
satisfied, where the functiens f and g are as given in (V). Letting
p(t) = ﬁv(t),f(t,x,v)’- v and g(t,x,v) = L(t,x,v), condition (2)

becomes
g(t,x,v)=g(t,X(t),X(t))> <p(t),x-%(t)>

+<B(1)-Q(t) (x=K(t)), £(t,x,v)-R(£)>
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“1/2 <x=%(t),Q(t)(x-%(t))>

for te[a,b] a.e. and all veH(n . Rearrangement then ghows that

F(t,x,v) < F(t,x(t),x(t))
for te[a,b] a-e. with (t,x)eT(%X;e¢), and for all vcﬂin, where the
function F(t,x,v) 1s as defined in (3.4). This guarantees condition

(11) of T™h™3.2. Sgttinﬁ x = X(t) in the above gives condition (1).

X s

‘. . 3 . i
AL
%
Remark: If L(t,-,+) {s convex, then Q(t) = O satisfies condition (2)

of Th™4.1. ,
a

”~ 1
Cor.4.1: Let X be smooth and admissible for (V) and let L(t,x,v) be C

in (t,x) and C2 In v. Suppose that there exist €> O and an absolutely
symmetric matrix function Q(t) such that condition (1) of Thm4.1 holds

and

(1) cvv(;) >0

(11) L(t,%(t),v)-L(t) > € (t),v=%(t)>, all veR"™ with v 4 %(t), and

all tela,b)

(111)condition (2) of Th™4.1 holds for (t,x,v)eT(X,%¢) .

Then X is a strong local minimum for (V).

\
Proof: Since Th 3.2 reduces in this problem to Thmé.l, and since Cor.
3.1 follows from Thm3.2, we may prove that the above result is a
corollary of Th®4.1 by showing that it follows from Cor. 3.1. Define

£(e,x,v) = v, g(t,x,v) = L(t,x,v) and H(t) = ﬁv(t). Condition (i1) 1is

L]
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then exactly condition (b) of Cor. 3.1 and condition ({i{1) 1is conditton

(a) of Cor. 3.1. To check condition (¢) of Cor. 3.1, we have

Z(t,x,v) = (p(zr—Q(c)(x—i(c)),v>—L(c,x,v), s0 zw([,ﬁ(t),i(:)) -

-t ()< 0
vV

Therefore, we may find y>0 such that Z(t,x,v) is strictly concave {n v

for (t,x,v)cT(ﬁ,ﬁ;y), as desired.

Now Cor.3.l1 demands that U be compact. However, from our

conditions we may deduce strong local optimality of the pair (X,X) over

velU , where
x

<2
Ux - {va(vl,...,vn):izlvi—x < O}

for X sufficiently large. Since strong local optimality over U = R "
'

1s equivalent to strong local optimality over Ux for all large X, we

have our result.

-

Remark: Assumption (1) 1is the'étrengthened Legendre condition.

Remark: Cor. 5.1 of [25] 1is our Cor. 4.1 with condition (11) replaced

by the strengthened Weierstrass condition: ¢

L(t,x,v)-L(t,x,w) Z_(Lv(t,x,w),v-w> o (4.1)

for all (t,x,w)eT(i,ﬁ;e),‘all veR ",
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We claim our condition is the weaker. For suppose (4.1) holds,

and ﬁvv(t)> 0. Using the fact that ¢t L(t,ﬁ(t),o) is convex at Q(t),

we may find a positive € such that for all te[a,b] and w with lw=%(t) (<

€ we have

<Lv(z,ﬁ(:),w)—ﬁv(c),w—§(:)> >0 (4.2)

’ Fi‘gi and pick vcH?n, v # X(t). Take w to be a point on the line

segment joining v to X(t). Then (4.2) holds and v-w = a(w—ﬁ(t)), some

K
*\

a> 0.

Now,
y

L(e,%(t),v)-L(t) = L(t,X(t),v)-L(t,R(t),w)+L(t,R(t),w)~L(t)
> & (t,X(t),w),v=w> - < (t),%(t)-w> by (4.1)
- v v .
| &%

<Lv(t.£(c),w)-£v(c),v—w> + <nv(:),v—§(£)>

a <Lv(:,£(t),w)-tv(:),w-i(c)>

+

dv(c),v-i(t»

R
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> L (t),v-R(t}> " by (4.2).
This 1s exactly condition (i1).

At the end of this chapter we give an example that satisfies condition

(11) of Cor.4.1 but not (4.1).

2 A 1
Th™4.2: Let L(+,-,+) be C, x:[a,b]*ﬂ*n be C , and suppose there exist

-

€ > 0 and an absolutely continuous symmetric matrix function Q(t) such

that
T b
(a) there exists a constant ce R" satisfying ﬁv(t) - f ﬁx(s)ds + c
a
a.e.;

c\\
N
N

(b) CW(:) >0 ;

(¢) L(t,ﬁ(t),v)-ﬁ(t))(ﬁv(t),v-ﬁ(t)) for all ve R™ with v = x(t), and

all te[a,b];

_ - . -1 - .
(@ HM(£,(0) = AD-QOL (O, (DL ()L (r)a(e)
-1 -1
QUOL Q)L (L (L (erL_(0)> 0
for tef{a,b] a.e. ;

_Then X 1s a, strong local minimum for (V).
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Proof: The proof consist$ of showing that the above conditions are the -
’ , ¢

same as the conditions of Th"3.4 when applied to the -problem (V). It
‘ was seen in the remark follpowing Th™3.4 that when U= " the assumptions -

of}Thm3.4 become those of Cor. 3.2, with the exceﬁtion of the
&+ :

requiremeant that U be compact, whichqis dropped.

Set £(t,x,v) = v, g(t,x,v) = L(t,x,v) and U = R ™ . It is then
}
easlly cHlecked that conditions (a),(b) and (c) givezconditions (2),(3)

and (4) of Cor. 3.2. It remains to show that condition (5) of Cor. 3.2

1s satisfled. With f and g as above, we calculate

n
o

R(t) =L €e),D(ry =L (), ACt)

1

s(e) = £_(t) and B(t)

. » “ | i ,/“-\\i~\

The fanction M(t,Q{t)) of Cor.3.2 is then
M(t,Q(t)) -'i,6(c)’+t:)£x(;)—(t:xv(:)+qu))r:;jm(ﬁvx(t)«z(c))

" which 18 the: same as the function appearing in condition (d) of the
' -— ° - . ‘u
theorem.  M(t,Q(t)) 1is-therefore positive definite, which completes the

proof. )

L3

Remark: If there exists a solution‘Qo of‘ﬁkrlbo(t)) = 0, then by the ,
%ubedding theorem of differential equations ([9]) there exists a

L] »

solution Q of the ingqualityi?kt,b(:))) 0 . Since the existence of no
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conjugate points to a in (a,b] is equiwalent to the existence of a
solution Qo to ﬁ(t,bo(t)) = 0 for te[a,b], the sufficiency condition
involving the Jacobi condition ([9}, Chap. 3. Thm6.1] 1s a special case

of Th™6.2.

A similar result to Th"4.2 appears in [25] 1in which condition (c)
1s replaced by the strengthened Weirstrass condition. We have already
seen that our:condition i1s weaker than the other. We now provide an
example in which the conditions of Th" 4.2 are satisfied but the

function L does not satisfy the extended Welerstrass condition.
Example: Consider the calculus of variations problem:

b e 2
(V) Min J(x) = [ Tfiﬁ%———de
a x(t) + 1

subject to x(0) = x(1) =0 .

In this problem we have L(t,x,v) = ; .
v +1

|
Congider the arc X(t)= O for te{0,1].

H

Then tx(t) avﬁv(t) =L (v)

o~ txx(:) z 0, and tvv(t) =2

Condition (a) is therefore satisfied for ¢ = O, and tvv(t)> 0 which is

condition (b). Pick v ¥ X(t) = 0; then

A}
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2 .
> <I:v(t),v—§<(c)> =0,

v

L(t,x(t),v)-L(t) =
v +1

so condition (c) is satisfied. Condition (d) becomes

>

M(t,QCe)) = QCt)- 1/2Q%(t) which is positive definite when Q(t)z t for

te{a,b]. Ry Th™4.2 we therefore conclude that X gives a strong local
g

aminimum for the problem. However, the result of [25] may not be

applied, because L(t,x,v) does not satisfy the strengthened Welerstrass

_conditien. For suppose there existed an e> O with

L(t,x,v)-L(t,x,w) Z_(Lv(t,x,w),v-w>

for (t,x,w)eT(X,%;e) and all v ¢ R.

v W 2w

viel w4l T (w2+1)

(v-w)

for w with |w|< € and all v ¢ R".
Assume € < 1, w = 0 and choose v = 1l/y .

The above becomes

1w? _ 2(1-w?)
7.2 7.3
w +1 (w +1)

or 1 Z

i > 1 which 1s a contradiction.
w +1 '
Thus Th 4.2 may be applied while the other result may'not.
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5. Interrelationships Between the Sufficient Conditions

1

In this chapter we ex;mlne how the diffgrent conditions developed
for the generalized problem of Bolza, the problem of optimal control
» and the calculus of variations relate to one another. From the way the
results were developed, we may construct the following diagram.

Figure (2) .

»

Prop's 2.1 ; Th®s 2.1 y Cor. 2.1
' 3.1 . 3.1 (gen. H-J)
(Mod. H-J)
Th" 2.2
Cor. 3.1 (zero order)
Cor. 4;1
l
Th"s 2.3
3.4 (second order)

4.2

In figure (2) the arrow between two sets of results A and B means that
a result for one of the three problems in group B is a corollary of the
result dealing ;ith the same problem in group A. We now g0 dd'to
present conditions under which éefcgin results are equivalent, and

provide counterexamples to show when they are not equivalent.

51
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The following result of Zeidan shows that under some conditions

Th™2.1 and Cor. 2.1 are equivalent.

ProEHS.l. [Zeidan]r Let X be an admissible arc for the generalized
problem of Bolza (P). If the Hamiltonian (t,x,p) Is continuous with
respect to (t,x,p), then the hypotheses of T™h™2.1 and Cor. 2.1 are

equivalent.
Proof: See [21].

Remark: The continuity assumption on H in PrOpDS.l cannot be removed .

This 1s shown in the following example, from f21].

Example: Consider the generalized problem of Bolza:
1 2
1 2 x ,
(P) mini'mize J(x) x{o}(x(O))ﬂ{o}(x(l)H-{) t—lﬁ(x + +l)de,

where xA(°)‘denotes the indicator function of the set A.

LN

" .. In this problem we have:

1
1/2

, o2
L(t,x,v) = (x flb-+ 1)

(a4

A\
\

and



= +
l(xl,xz) x{o}(xl) x{o}(xz)
It Is clear that L is«ixj;— measurable.
Consider the arc

X(t) = 0 for te(0,1].

Then,
1 . 1

J(R) = 1(%(0),%(1))+[ L(t,%(t),%(t))dt = | df/z =2
0 0t

hence J(ﬁ) is finite and % is admissible for (P).

The Hamiltonian corresponding to our problem (P) is:

/\Ir\

H(t,x,p) = sup{<p,v>-L(t,x,v):velR}

71 2 2
= gup {pv~ 173 (x"+ !Z + 1):ve R}
t

N “Mw{pz__l%(xzﬂ).
t

Thus, H(O,x,p) = - = and the Hamiltonian is not contifnuous.

Define
w(t,x)= 0
Then,

Z(t,x) = max {a + H(t,x,B):(a,ﬁ)e&W(t,x)}

1
R

(x2+ 1.

Clearly, for all te(a,b] and xe IR we have:

L 2 - A
Z(t,x) = - 172 (x +1)< - t—l—/; 6(t’x(tl)’

53
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and

Z(6,R(0)) = 77 = 32 W(e,8(0) ~ L(c,&(0),5(0))-

dt

Thus, all the conditions of Th"2.1 are satisfied and X = O {s a strong

local minimum for P).

Now suppose that there exists a locally Lipschitz function W

satisfying the conditions of corollory 2.1. In particular, W must

satisfy

d = ’ 1

Ew (t,0) L(I,0,0) tl/2 a.e.,
whence,

= 1
wt(t,O) - t_17-2— for t([O,l] a.e.

Thus, ﬁk-,O) is not Lipeéhitz, and there 1is no Lipschitz function W
satisfying the hypotheses of Cor. 2.l1. However, W(t,x) = O satisfies

the conditions of Th"2.1.
We now present some new results along these lines.

Claim: Th™s 2.1 and 3.1 are corollaries of Ptopn2.1 and 3.1, but not

vice versa. Proof 1s by example.

Example: Consider the problem
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1
min J(x) = f {(sin 1//E)(x+tv)— —ﬁz cos l//E}dt s
0 2/t

subject to: x(0) = x(1) = 0.

This problem may be viewed as a problem of optimal control, in which

g(t,x,v) = (sin 1//¢t)(x+tv)- ;Z: cos 1//t ,
2/t

f(t,x,v) = v, and

x(0) = x(1) = 0 .

1
Let X(t) = 0. Then J(X) = [ 0dt = 0, so J(X) is finite.
0

Suppose that the g:ondns of Th™3.1 are satisflied for some Lipschitz

W. Then for te[0,1] we have

Z(t,x) = sup {cx+H(t,x,B):~(a,8)63W(t,x)}
= sup {a + sup{(B- t sin 1//t)v-x sin 1//t + __x__ cos 1//t
2/t
:veR }:(a,B)edW(t,x)}

=  gup {u: (a,B)e&W(t,x)}—x sin 1/t + -i_—_ cos 1//?}
. : 2/t
if B = t sin 1//tWa,B)edW(t,x)

+ o if there exists B A t sin 1//%t with (a,B)e3W(t,x), some ac R .
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Now, the conditions of Thm3.l and the fact that L(t,ﬁ(t),ﬁ(:))= 0 €§r
te[0,1] a.e. imply

Z(t,x) < z(t,%(t)) = E(:i W(t,%(t)) for te[0,1] a.e.

Since W {s Lipschitz, we have Z(t,x)< = for te[0,1] a.e., from which we
deduce that (a,B)edW(t,x) = 8 = t sin 1//t for [0,1] a.e.

But 1f W 1s Lipschitz then for te[0,1] aW(t,x) is compact, so IW(t,x)

1
1s uniformly bounded on {0,1]. Choosing x>0 and t = ———— for neN, we
(2nl1)

then have that

Z(t,x) = sup {a: (a,B)cBW(t,x)} -x sin 1//t + “EZ,COS 1//t
2/t
(
= sup {a: (a,B)edwW(t,x)} + nllx
which 1s unbounded for large n contradicting the observation that

Z(t,x)< = .

Now let W(t,x) = xt sin 1//t, which is eaéily seen to be
absolutely continuous. For te[0,1], we then have
d = ' -1 - . - -
EE-W(C,X(C)) - x(t)[——:: cos 1//t + sin 1//?]+x(t)t sin 1//t =
2/t .

. n .
L(t,x(t),i(c)) so condition (a) of Prop 3.1 is satisfied. Thus the

conditions of Th"s 2.1 (resp. 3.1) are stronger than those of Propn2.1

(resp. 3.1).

Claim: Th"s 2.2, 3.2 and 4.1 are corollaries of Propns 2.1 and 3.1,

but not vice-versa.  Proof is by example.
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Example: Consider the problem

1
min J(x) = [ < (Ox(0de,
0 .

subject to x(0) = x(1) = 0.

This i{s a calculus of variations problem in which
L{t,x,v) = x v.

Let %X(t) = 0. Then J(x) = 0, so X is admissible.

, .

If W(t,x(t)) = 5—%52, then
(0L, x(£), 5 0)) = x2(OX(O)-x2()X(c) = 0
< T2 e R(O)L(E,R(0),R(0) = 0

8o the conditions of PropOZ.l are satisfied. N

Condition (2) of Th™4. 1 is in this case:

x2v > Q(O)xi-1/20(t) x> te[a,b] a.e., ve R"

for some absolutely continuous Q(t).

" We may assume Q(t)z0. Pick 0<t1<t2<1 such that |Q(t1)[ =2>0

and |Q(f1)-Q(t)| <e  telrg,t,].

Integrating with respect to t on [tl,tzl gives
tz 2 - . 2 Y\\
[ Sx“wH Q) xv+1/2Q(t)x” Hde .
t ;

1



2

- xzvat+xv[ Q(t)dt+1/2x2(Q(t2)*2(tl)) 2 0,

Y

where At = t,7t - Since Q(Cz)_Q(tl) <e,

we have ¢

)

vx(xAt+f Q(t)dt)+1/2x25 >0
t
1,

If Q(tl) = 2¢, pick x>0 with |x|<e.

Then

L2

eat< |xjat+] Q(t)dt < beat
t
1

and

v > -1/2]x]e

b t,
[x|at+f Q(t)de
t, ‘ .

1f Q(tl) ~ ~2¢, pick x < 0 with [x|< € .

Then
£2
-4eat<-|x|at+f Q(t)dr < -eat
t
1
and

v 5 ZH2(=|x])e

-|x|at+f Q(t)de
“1
In either case this,is a contradiction when we choose

-1/2{x]e o =lx]
€At 2At

v €

58
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.

Naore that such points v exist in any nelghbourhood of %z0, so

condition (2) does not hold even locally in v.
&

-

o
I'rn Figure (2), Th s 2.3 and 4.2 are shown as the respective

corollaries of Thm2.2 and Cor. 4.1.

ProEQS.Z. [Zeidan] Consider the problem of Bolza (P) with a fixed
boundary value x(a) = A. Assume that the hypotheses of Th 2.1 are
satisfied by a Lipschitz function W.
Suppos‘{additionally ghat

(1) wW(t,+) is C3, the fgnctions W(-,x),w;(-,x) and Wxx(-,x) are

1 2 ~ ~ A
C ,Wt(t,-) is €, and wtx(t,x(t)) - th(t,x(t)),wtxx(t,x(t)) =

Wxxt(t,i(t));

(11) for p(t) = Wx(t,ﬁ(t)), the function H(t,+) is C° near 2 = (x,p)

and the functions Hz(-,z) ahd DZHZ(-,z) are continuous on [a,b];

(1i1)%(t) = Hp(c,ﬁ(c),ﬁ(t)) for te(a,b].
:ﬁ&'ﬁ
Then the hypotheses of Th"™2.3 are satisfied for some Cl ~ function Q.

Remark: In the case where the hypotheses of Th™2.2 hold, the

m )
conditions of Th 2.1 and con51¥ion (1) of Propn5.3 are automatically

satisfied.

Proof of Proan.Z: See reference [21].
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The next proposition, for the problem of optimal control, shows
that under certain conditions Th™3.1 may be regarded as a corollary of
Th"3.4. We note here that the conditions H(b) = - V1(X(b)) and Q(b)<
lx%(Q(b)), which appear in Thm3.4, serve only to guarantee that
condition (111) of ™h™3.2 1s satisfied, and are not essential ﬁo the

thrust of the resulrt.

ProEn5.3: Consider the problem of optimal control (C) where U is
convex, compact and polyhedral of the form (3.7). &e will assume that
the Lagrdnge multipliers associated with active’ constraints are all
nonzero, and that 4 1s a regular point for the constraints. Suppose
there existsla function W satisfying the requirements of Thmj.l as well
as conditiéns (1) and (ii) of PrOan.Z. Suppose also that Hypothesis

(HA) holds, that R(t) as defined in Chapter 3 1is positive definite, and

that for 3(t) = Wx(t,ﬁ(t)), we have

<CBCE),E(E,R(6),8(0))> - g(e,%(1),8(1)) - (5.20)

> < B(t),£(t,%(t),u)> - g(t,%(t),u)
for all te[a,b] and all ueU with wAlU(t). Then the hypotheses of ih?B.A

are satisfied, where the conditioms B(b) = - V1(R(b)) and

£ Q)< 1 (R(b)) are replaced by condition (111) of Th™3.2.



Remark: It is seen in the proof that E(C) as chosen satisties (5.20)

in which strict inequality {s replaced by inequality.

&

Proof: Let (X,3) be the admissible pair given 1in ™h™3.1. Following

the proof- of PrOpn572 we have

Z(t,x) = Wt(t,;)+ﬂ(t,x,wx(t,x)) (5.21)

N

and , for all te[a,b],

L] N 5

2(6,R(0)) = W (£,R(0)) + sup (< B(O),ECL,R(0),u)> - g(t,R(0),u)iue’k ™
. . (5.22)

But condition (2) of Thm3.1 glves

2(e,%(e)) = W (£,%e)) + <BCe),E(r,R(e),8(0))> - g(t,%(0),3C))

From these last two equalities we.obtain the weakened version -of
. ~ . *
(5;20),'35 noted in the remark. : T _ ;- : .
~ ) ° ' o™ ¢ )
. .

“
-

Now, from condition (2) of Thw3.1 weﬁhave, for te(a,b] and x near

o

X(t), that -

>

'{,max Z(t,x) = z(t,%x(t)) .

. . »

If we define
- . . . e
P(t,x,u) = W (t,%) + < wx~(:.x>.f’(\c’;:'e;q»&s(:,x;u)-" (5.23)

B

/
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this 18 equivalent to saying that, for te[a,b], x near X(t) and uel,

max P(t,x,u) = P(c,%x(t),d(t))

Consequently, for all t 1in [a,b], there exist Lagrange multipfier

4

functions A(t) and:u(t)f»O such thét
v, P(t,%(1),0(t)) = 0, . (5.24)

0, (5.25)

1]

»

7, PCLRD,E(0) + AT O @) + 1 (07 d(E(0)

.
.

uT(t)Vud(G(t)) = 0, and ’ (5.26)

e —

Vi o P(E,X(£),8(e)) . - T(s.27)

4 : >

18 negative semidefinite on the subspace
T(t) = {(X):xeR ",ueT(r))

where T(t) is as defined in «(3.12).

Using (5.23), equatioh (5.24) becomes

W ROR + £, R(0), (N (£,%(0)) + £ (6,80, 8N (£,5(0))
X :

.- 8x(t,§(t),ﬁ(t)) =0 .
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Since p(t) = Wx(t,Q(t)), we have

p(t) g (EX(0)) (t,x(t),u(r)) wx (X)),
and the above equality may be written

<D

- B(e) = £L(,R(0),8(0)B(0) - g (£,5(0),5(0)),

which is equation (3.8) of T™h™3.4.

Equation (5.25) gives
£,(E,R(0),8()B(0) - g (£,%(0),8(0)

+2T(07 h(@() + b ()7 a(@(t)) = 0
which together with (5.26) gives equations (3.10).

&
e -~
Using (5.23), we find

2 .
Vx l:IP(t:,x,u) =

Moo (BR(D) (6, R(E(6,%(0),8(0) s (0)-w_ ¢e,%(1))B(c)
- W (5% (e)A(e) + AT(:)wxx(t,i(t))

- D(t)

S(t) - BT(t)wm;?y.?:(c)) . R(t)




64

where A(t),B(t),D(t) and S(t) are as in Chapter 3.
Define Q (t) = - wﬂ(c,i(:)). Then
Qu(e) = =W (ER(0) - W (e, R(0))E(L,R(e),E(n)),

and (5.27) yields that the matrix

- —

Q, (£)+Q_ (0)A(t) 5T ()4Q(0B(L)

+AT(t)Qo(t)+D(t)

S(t)+B 1 (£)Q(t) R(t)

T

is positive semidefinite on the subspace f_(t).

Following the steps in the proof of Propn3.4, wé_deduce in the
. . S
same way that M(t,QO(t))Z_O where M(t,Q(t)) 1is defineajﬁy (3.13).

""'
Using the imbedding theorem of differential equations and the fact that

1

Qo(p) - -q;x(b,Q(b)), we may find a C° =ctrix function Q(t) with

M{t,Q(t))> O and Q(b)< = W _ (b,&(b))-

From the proof of Propn5.2 we may then find some a > O such that,
for |d|< a,
-L(R(B)+d)-1(R())> - <B(b),d> + 1/2 <d,Q(b)d>,

which 1s condition (#ii) of Th"3.2.

. ¢
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Propns 5.2 and 5.3 may now be used to show that, under certain
conditions, the zero order results of Th® 2.2, Cor. 3.1 and Cor. 4.1
are in fact equivalent to the second order results of Th's 2.3, 3.4 and

4.2. We first examine the case for the generalized problem of Bolza.

ProEHS.A: Consider the generalized problem of Bolza (P) with a fixed
boundary value x(a) = A. For the arcs X and B, assume that the

2 ~ ”~ ~ "
function H(t,+) is C° near 2z = (x,p), that the functions HZ(-,zl'and\ - -

DZ(-,z) are continuous on {a,b], and that

X(t) = Hp(c,ﬁ(t),s(t)) for tela,b].

1
Suppose also that the function Q appearing in Th®s 2.2 and 2.3 18\C .

.Then the two theorems are equivalent.

Proof: We have already seen that Th"2.3 18 a corollary of Th™2.2. It
remains to show that the converse is true. Assume the conditions of

Th"2.2 are satisfied, and define the function

W(t,x) = < (1), x> - 1/2 <x=%(t),Q(t)(x-R(t)> (5.285
on‘T(ﬁ;e), where € 1s the number supplied in Th™2.2. It 1is shown in .
f21] that W(t,x) satisfies Th"2.1. Using Propn5.3, we than deduce

that the conditions of>Thm2.3 are satisfied.

Prop”s.5. Consider the problem of optimal control (C) where U is
ZTop J-J

polyhedral of the form (3.7). We will assume chas the Lagrange

A
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oultipliers associated with active constraints are all nonzero, and
that G is a regular point for the constraints. Assume that Hypothesis

(HA) holds, and that R(t) 1is positive detbnite.

Suppose also that the function Q appearing in Cor. 3.1 and Th"3.4 is
Cl. Then the two results are equivalent, where the conditions p(b) =

- V1((x(b)) and Q(b) < lxx(g(b)) are replaced by condition (11i) of

Th™3. 2.

Proof: We have already seen that ™"3.4 is a corollary of Cor.3.1. To
prove the converse, suppose the conditions of Cor. 3.1 are satisfied
and let W(t,x) be as defined in (5.28) on the set T(Q;e).l Our chain of
feasoning will»bir;s follows: if the conditions of Cor. 3.1 are
satisfied, then, by the proof of that result, the conditions of Th™3.2
are satisfied. Given this, the function W(t,x) will be seen to satisfy

the conditions of Th"3.1. Propn5.3 will then be applied to deduce that

the conditions of Th"3.4 hold for some C1 function Q.

So, let us assume that the conditions listed in Thm3.2 hold. As

in the proof of Proan.a, we find, after using (5.28), that con&ition
{

(1) of Th™3.1 is just condition (1i1) of Th™®3.2. Ué*ng [24] we then

see that condition (2) of T™h™3.1 is also satisfied.
- . /

[
This shows that the function W(t,x) satisfies the conditioms of

Th™3.1. It is then easy to seg,tﬁif‘ﬂ(g{;)’ﬁgiiéfies the hypotheses of
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n
Prop 5.2, and we conclude that the conditfons of Th™3.4 are satisfied

1 ~ -
by some C function Q, where, the requirement that p(b) = -v1(x(b)) and

Q(b)< 1xx(§(b)) is replaced by condition (iti) of Th™3. 2.

ProEnS.éz Consider the calculus of variations problem (V). Let

~ 1
%:{a,b]+R™ be C', L(-,-,+) be C° and Q(-) be C' where Q 1s the
function appearing in Cor. 4.1 and Th"4.2. Then the conditions of Cor.

4.1 and Th"4.2 are equlvalent.

Proof: Singe Thm4.2 is derigéq\from Th™3.4 and Cor. 4.1 is Cor. 3.1
when applied to the problem (V), it follows that Th 4.2 1s a corollary

of Cor. 4.1. Propn5.5 then shows the converse.

'/
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