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Abstract—We study the evolution of chaotic mixing in an
initially stratified circular vessel. The bottom and top halves of
the vessel are filled with viscoplastic and Newtonian fluids. A
circular stirrer in the vessel promotes the mixing. We considered
three different viscosity ratios to understand the effect of viscosity
on the mixing evolution. The results reveal that as the viscosity
ratio increases, the mixed region shrinks, and more time is
required for mixing.

Index Terms—Chaotic mixing, Laminar flow, Multiphase, Vis-
coplastic fluids, Yield stress.

I. INTRODUCTION

Mixing is a common process in various industries. Food,
pharmaceutical, wastewater treatment, and oil industry are
some examples where different fluids need to be mixed to-
gether. Turbulent flow has been the favorite choice for mixing
processes. However, in many applications, where working flu-
ids are highly viscous, reaching turbulent mixing is impossible
or requires a lot of energy which is not economical. In such
situations, chaotic mixing is an alternative to turbulent mixing.
Chaotic advection (or mixing) is defined as repeated stretching
and folding of fluid filaments. Compared to turbulent mixing
with considerable velocity fluctuations, chaotic mixing has a
spatially smooth velocity field [1].

In most previous studies on chaotic mixing, working fluid
is assumed to be homogeneous [2], [3]. In these studies,
the mixing is evaluated using a passive concentration field.
Gouillart et al. [4] studied the chaotic mixing of a dye blob in
a Newtonian fluid numerically and experimentally. The flow
regime was Stokes, and the mixing vessel was circular. They
observed that the chaotic region gradually expands to the entire
domain. Furthermore, it was found that the vessel wall strongly
influences the dye’s concentration field. They proposed a
reduced model for the evaluation of concentration. In another
study, Boujlel et al. [5] experimentally and numerically studied
the rate of chaotic mixing in a homogeneous viscoplastic fluid.
They studied the dispersion of a blob of dye in a cylindrical
vessel for different values of the yield stress. They found that
the mixing rate is proportional to the volume of highly sheared
regions. Moreover, they proposed a quantitative two zones
model to predict mixing.

There are limited studies on the mixing of inhomogeneous
fluids. Derksen [6] numerically investigated the turbulent

mixing of two miscible liquids, initially stratified in a con-
tainer. The fluids were Newtonian with different viscosity and
densities. He used Richardson number to characterize density
difference. He found that in his range of study, the viscosity
ratio has a small impact on the mixing time.

In the present study, we consider mixing an inhomogeneous
non-Newtonian fluid. The top and bottom halves of the do-
mains are filled with light Newtonian and heavy viscoplastic
fluids, respectively. We conduct numerical simulations to in-
vestigate the effect of the viscosity ratio on flow development
and mixing evolution.

II. PROBLEM SETUP

A. Model problem
To study chaotic mixing, we consider a circular vessel

with a stirrer that moves in a circular path with a constant
angular velocity, Ω̂ (see Fig. 1). The radiuses of vessel, circular
path, and rotating stirrer are R̂, r̂o, and r̂s, respectively. The
direction of the acceleration of gravity is also shown as ĝ.
Initially, the bottom and top halves of the vessel are filled with
the miscible viscoplastic and Newtonian fluids, respectively. At
the vessel’s wall, the no-slip boundary condition is applied.

Fig. 1: Geometry in the present study

Navier-Stokes and advection-diffusion equations are cou-
pled to model mixing of the fluid. The following non-
dimensional parameters are defined:
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The parameters with hat symbol ( ̂ ) represent dimen-
sional, and the parameters without hat symbol are non-
dimensional parameters. Using the parameters in Eq. 1, the
non-dimensional momentum and phase fraction equations can
be written as follows:
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where α is the phase fraction, which can be written as a

function of densisties, α =
ρ̂− ρ̂A
ρ̂B − ρ̂A

. Using this defenition,

α = 0 corresponds to pure fluid A and α = 1 represents pure
fluid B.
At is the Atwood number, which shows the dimensionless

density difference between two fluids:

At =
ρ̂B − ρ̂A
ρ̂A

(4)

The dimensionless shear stress and viscosity are defined as
follows:

τij = η γ̇ij (5)

η =
(1− α)µ̂A + αη̂B

µ̂A
(6)

Since fluid B is a viscoplastic fluid, its dimensionless
viscosity is:

ηB =
η̂B
µ̂A

= n+
Bn

γ̇
(7)

where γ̇, Bn =
τ̂y

µ̂AΩ̂
, and n =

µ̂B
µ̂A

represent the

strain rate magnitude, Bingham number, and viscosity ration,
respectively. Also, τ̂y is the yield stress of fluid B. Using Eq.
7, we can rewrite Eq. 6 as follow,

η = (1− α) + α(n+
Bn

γ̇
) (8)

Re, Pe, and Ri represent Reynolds, Peclet, and Richardson
numbers, respectively,

Re =
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Atĝ

r̂oΩ̂2
(9)

Reynolds number represents the ratio of inertial forces to
Newtonian viscous forces, Peclet number represents the ad-
vective over diffusive phase transport, and Richardson number
indicates the ratio of buoyancy to inertial forces.

We quantify mixing by defining the overal mixing index
(MI) using the standard deviation of phase fraction,

MI(t) = 1−

√
1

π(R2−r2s)
∫ R
0

∫ 2π

0
(α− ᾱ)2r dr dθ

ᾱ
(10)

Here α is the phase fraction field and ᾱ is the averaged
phase fraction in the domain, which is 0.5. In order to study
mixing in radial direction, we also define θ-averaged mixing
index as follow,

MIθ(t, r) = 1−

√
1
2π

∫ 2π

0
(α− ᾱ)2dθ

ᾱ
(11)

Using this defenition MIθ will be limited between 0 and 1.
MIθ(ro, to) = 0 represents no mixing at (ro, to) (i.e., α = 0
or 1 for r = ro and 0 ≤ θ < 2π), and MIθ = 1 indicated that
the fluid is fully mixed at r = ro (i.e., α = ᾱ for r = ro and
0 ≤ θ < 2π).

The dimensionless groups that govern the problem, along
with the values considered here, are presented in Table. I.

TABLE I: Range of non-dimensional parameters

Non-dimensional num-
bers

Definition Range

Reynolds (Re)
ρ̂AΩ̂r̂2o
µ̂A

2.7 × 102

Peclet (Pe)
Ω̂r̂2o

D̂m

1010

Richardson (Ri)
Atĝ

r̂o Ω̂2
10−2

Bingham (Bn)
τ̂y

µ̂AΩ̂
5 × 10−1

Atwood (At)
ρ̂B − ρ̂A

ρ̂A
10−2

Viscosity ratio (n)
µ̂B

µ̂A
1 − 10

Vessel radius (R)
R̂

r̂o
3.07

Stirrer radius (rs)
r̂s

r̂o
3.07 × 10−1

B. Numerical method

The simulations are carried out using the OpenFOAM
toolbox, an open-source C++ library. OpenFOAM uses the
finite volume method to discretize the governing equations.
We use the modified twoLiquidMixingFoam solver, which
we add the dynamic mesh utility to it. The pressure and
velocity are coupled by the PIMPLE algorithm, a combination
of PISO and SIMPLE methods. In all simulations, Courant-
Friedrichs-Lewy number is equal to 0.025 (CFL = 0.025). We
use the Crank-Nicolson time scheme, and space schemes are
discretized using the second-order linear.

C. Validation

To verify the numerical solver in the present study, we
compared our results with Zare et al. [7]. They studied the
injection of a heavy Newtonian fluid in a channel filled
with a light viscoplastic fluid. We compared the evolution of
displacing fluid and the thickness of the residual layer on the
channel’s wall. As can be seen in Fig. 2, the results agree well.

Furthermore, for the setup in this study, four different
meshes are used to check the mesh independence of results.



The simulatio The finest mesh (67000 cells) is used to cal-
culate relative error in other meshes. Fig. 3 illustrates the
evolution of mixing index and the relative error for different
cell sizes. As can be seen in Fig. 3b, the relative error reduces
by using the finer meshes. We used the finest mesh (67000
cells) for the simulations in the present study.
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Fig. 2: (a) Evolution of displacing fluid’s front position (xf )
along the channel. Re = 100, χ∗ = 200, Bn = 50,m = 10.
(b) Thickness of the residual layer on casing walls for different
Bingham numbers. Re = 20, χ∗ = 20,m = 1.
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Fig. 3: (a) Evolution of mixing index for different meshes.
(b) Relative error ER% of mixing index for different meshes
based on the finest mesh.

(Re = 2.7× 102, Bn = 5× 10−1, P e = 1010, Ri =
10−2, At = 10−2, n = 1)

III. RESULTS

As an illustrative case of mixing, we present the evolution
of mixing for n = 1. Fig. 4 and 5 represent the snapshots
of phase fraction and vleocity magnitude, respectively. As the
stirrer starts rotating in its circular path, it drags some amount
of fluid A into fluid B. Due to the formation of a wake region
behind the stirrer, two fluids start mixing together (see Fig.
4a). As the stirrer continues rotating, this time, the vortical
region behind the stirrer drags fluid B into fluid A (see Fig.
4b). The formation of vortices can be observed in Fig. 5b.
This repeating folding and stretching of fluid filaments lead to
the formation of a region with chaotic mixing (see Fig. 4c).
The mixing process continues until the phase fraction becomes
almost uniform in the chaotic region (see Fig. 4f). After this

stage, the mixing continues mainly by diffusion between the
mixed and unmixed region (a thin region near the vessel’s
wall).

(a) t = 2 (b) t = 5 (c) t = 16

(d) t = 60 (e) t = 100 (f) t = 130

Fig. 4: Snapshots of the phase fraction at different times.
(Re = 2.7× 102, Bn = 5× 10−1, P e = 1010, Ri =

10−2, At = 10−2, n = 1)

(a) t = 2 (b) t = 5 (c) t = 16

(d) t = 60 (e) t = 100 (f) t = 130

Fig. 5: Snapshots of the velocity magnitude at different times.
The gray lines represent the streamlines.

(Re = 2.7× 102, Bn = 5× 10−1, P e = 1010, Ri =
10−2, At = 10−2, n = 1)

Fig. 6a illustrates the evolution of mixing index. As can
be seen, there is a rapid growth in MI due to chaotic mixing
(until t ≈ 70). Afterward, the rate of MI decreases and mixing
continues mainly by diffusion. The evolution of radial mixing
is illustrated in Fig. 6b. The figure shows the spatio-temporal
diagram of θ-averaged mixing index.



For a quantitative measurement of the size of the mixed
region, we have defined rm, the averaged radius of the
boundary between mixed and un-mixed regions in a quasi-
steady state. Since MIθ changes between 0 (no mixing) to 1
(fully mixed), MIθ = 0.6 is chosen as the boundary between
these two regions, which is shown by the black dashed line
(see Fig. 6b). We can see that at rm ≈ 2.8, the boundary
remains almost constant, which indicates that the radial mixing
reaches a quasi-steady state. Furthermore, Fig. 6c illustrates
the distribution of MIθ along the r-direction in different time
instances and the dashed line shows rm. We can see that below
the rm, the mixing index gradually increases and becomes
uniform (mixing region), while beyond the boundary, the
mixing index remains almost unchanged (un-mixed region).
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Fig. 6: (a) Evolution of overal mixing index. (b) Spatio-
temporal diagram of θ-averaged mixing index. The dash line
represents MIθ = 0.6, which distincts the mixed and un-
mixed regions. (c) Distribution of MIθ along the r-direction
in different time instances.

(Re = 2.7× 102, Bn = 5× 10−1, P e = 1010, Ri =
10−2, At = 10−2, n = 1)

A. Effect of viscosity ratio

To explore the effect of viscosity ratio (n), we consider
three different values including n = 1, 5, and 10. Fig. 7
and 8 illustrate the evolution of phase fraction and velocity
magnitude in different viscosity ratios. At the viscosity ratio
n = 1, a series of vortices are formed by the stirrer’s movment.
The vortices stretch and fold the fluid’s filaments as they
advect in the domain, enhancing chaotic mixing (Fig. 7a and
8a). As the viscosity ratio increases, highly sheared zones
shrink, starting from the vessel’s wall (see Fig. 8b, 8e, and 8h).
Therefore, the vortices near the vessel’s wall become weaker,
and the chaotic zone gradually becomes limited to the regions

closer to the circular path of the stirrer (see Fig. 7b, 7e, and
7h). As mixing continues, the mixed and unmixed regions in
the quasi-steady state can be observed. Increasing viscosity
ratio results in the shrinkage of the mixed region and growing
the unmixed region around the vessel’s wall (see Fig. 7c, 7f,
and 7i).

Fig. 9 illustrates the evolution of the overall mixing index
for different viscosity ratios. As viscosity ratios increase, the
overall mixing index drops, which means more time is required
to reach the desired amount of mixing.

The spatio-temporal diagrams of θ-averaged mixing index
are represented by Fig. 10. Fig. 10d shows rm in different
viscosity ratios. As n increases, radius of the mixed region
reduces.

(a) t = 5, n = 1 (b) t = 16, n = 1 (c) t = 130, n = 1

(d) t = 5, n = 5 (e) t = 16, n = 5 (f) t = 130, n = 5

(g) t = 5, n = 10 (h) t = 16, n = 10 (i) t = 130, n = 10

Fig. 7: Snapshots of the phase fraction for different viscosity
ratios.

(Re = 2.7× 102, Bn = 5× 10−1, P e = 1010, Ri =
10−2, At = 10−2)

IV. CONCLUSION

This study has explored an illustrative case of chaotic
mixing of an inhomogeneous fluid in a circular vessel. We
consider mixing in a 2D circular domain using a stirrer that
follows a circular path. The bottom and top halves of the vessel
is filled with heavy Bingham and light Newtonian fluids. We
investigated the effect of the viscosity ratio on the fluid flow
and mixing evolution.



(a) t = 5, n = 1 (b) t = 16, n = 1 (c) t = 130, n = 1

(d) t = 5, n = 5 (e) t = 16, n = 5 (f) t = 130, n = 5

(g) t = 5, n = 10 (h) t = 16, n = 10 (i) t = 130, n = 10

Fig. 8: Snapshots of the velocity magnitude for different
viscosity ratios. The gray lines represent the streamlines.

(Re = 2.7× 102, Bn = 5× 10−1, P e = 1010, Ri =
10−2, At = 10−2)
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Fig. 9: Evolution of overal mixing index in different viscosity
ratios.

(Re = 2.7× 102, Bn = 5× 10−1, P e = 1010, Ri =
10−2, At = 10−2)

We found that the formation of vortices plays an important
role in mixing. As the viscosity ratio increases, the vortices
near the vessel’s wall become weaker, and the chaotic mixing
zone gradually shrinks.

Moreover, it is found that as the viscosity ratio increases,
more time is needed to reach the desired amount of mixing.
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Fig. 10: (a-c) Spatio-temporal diagrams of θ-averaged mixing
index for different viscosity ratios. (d) Averaged radius of the
mixed region.

(Re = 2.7× 102, Bn = 5× 10−1, P e = 1010, Ri =
10−2, At = 10−2)
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