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Human	activities	such	as	trade,	agriculture	and	recreation	have	relocated	much	of	
the	world’s	flora	and	fauna	across	geographical	space.	While	some	newly	introduced	
species	have	faltered,	many	have	thrived	and	spread	spatially,	modifying	their	new	
environments.		Notorious	invaders	such	as	zebra	mussels	or	gypsy	moths	have	
wreaked	ecological	and	economic	havoc	(1).		The	vast,	uncontrolled	experiment	that	
constitutes	the	introduction,	spread,	and	impact	of	alien	species	across	continental	
scales	has	fascinated	biologists	since	the	time	of	Charles	Elton	(2),	a	pioneer	in	the	
subject.		Invasion	biology	has	now	emerged	as	a	discipline	in	its	own	right,	with	
experimental,	theoretical	and	management	components	(3).	
	
A	key	element	for	an	invader’s	success	is	the	speed	at	which	it	spreads	spatially	once	
established	into	a	new	environment.	High	spreading	speeds	yield	rapid	spatial	
coverage	and	the	possibility	of	large	geographical	impacts.		Ideally,	an	estimate	for	
the	spreading	speed	would	be	available	beforehand,	allowing	biologists	and	
managers	to	prepare	for	and	manage	the	consequences.		This	is	where	mathematical	
theory	has	an	unexpected	role	to	play:	it	can	come	up	with	a	formula	for	the	
spreading	speed,	based	on	details	of	life	history	and	movement	behavior,	long	
before	an	actual	invasion	takes	place.	
	
Models	may	be	in	continuous	or	discrete	time.		They	may	track	the	density	of	a	
single	species	or	of	multiple	interacting	species.	Amongst	this	variability	in	model	
structure,	mathematical	theory	has	shown	that	there	are	two	key	types	of	
population	waves	associated	with	biological	invasion.		Pulled	waves	are	driven	by	
growth	and	dispersal	processes	at	the	leading	edge	of	the	invasion	where	densities	
are	low.	Pushed	waves	are	driven	by	the	growth	and	dispersal	processes	further	
back	in	the	wave	where	densities	are	higher.	
	
The	PNAS	paper	by	Ghandi	et	al	(4)	undertook	an	ingenious	set	of	carefully	
controlled	experiments	to	investigate	pulled	and	pushed	waves	in	the	spatial	
invasion	of	budding	yeast	populations,	cultured	in	linear	arrays	of	wells	on	plates.			
Here,	the	exchange	of	small	volumes	of	growth	media	between	adjacent	wells	
simulated	spatial	dispersal,	while	manipulations	of	the	sugar	type	in	the	underlying	
culture	were	sufficient	to	switch	the	dynamics	from	pulled	to	pushed	waves.		The	
authors	were	able	to	connect	their	experimental	results	to	theoretical	predictions	
that	go	back	forty	years	regarding	the	speed	and	shape	of	pulled	and	pushed	waves.		
While	these	predictions	have	formed	a	mainstay	of	invasion	theory,	until	this	
present	work	they	had	never	been	adequately	tested	in	a	controlled	environment.	
	



To	fully	understand	the	paper,	it	is	necessary	to	take	into	account	a	historical	
perspective	on	the	mathematical	theory	of	population	spread	associated	with	
biological	invasions.	Developments	can	be	traced	back	to	the	well-known	Fisher-
KPP	equation,	originally	used	to	track	the	geographical	advance	of	an	advantageous	
allele	into	a	new	environment	in	the	late	1930s	(5,6),	and	then	later	reapplied	in	
ecological	contexts	to	invasion	biology	in	the	1950s	(7).	This	equation,	which	
couples	logistic	population	growth	to	a	spatial	diffusion	process,	yields	an	appealing	

and	tractable	formula	for	the	spreading	speed:	 ,	where	r	is	the	per	capita	
growth	rate	at	low	densities	and	D	is	the	diffusion	coefficient.		It	is	fascinating	that	
the	carrying	capacity	arising	from	competition	in	logistic	growth	plays	no	role	in	
this	formula	for	the	spreading	speed.		The	relevant	quantity	for	per	capita	growth,	r,	
is	measured	at	low	population	densities.	Mathematically,	the	wave	of	advance	is	
pulled	across	the	landscape,	driven	by	growth	and	dispersal	processes	at	the	leading	
edge	of	the	invasion	where	per	capita	growth	rates	are	highest	and	densities	are	
low,	rendering	nonlinear	interactions	negligible.	This	spreading	speed	formula	has	
been	widely	tested,	starting	with	the	work	of	Skellam	(1951)	(7)	and	continuing	to	
this	day.			These	tests	have	shown	that	theoretically	predicted	speeds	compare	well	
to	those	observed	from	geographical	case	studies	for	invasions,	ranging	from	the	
bubonic	plague	to	insect	pests	to	mammals	(8).		
	
Although	hailed	as	a	success	story	in	theoretical	ecology	(8),	tests	of	the	Fisher-KPP	
spreading	speed	theory	have	been	subject	to	major	shortcomings.	First,	they	have	
been	primarily	retrospective,	explaining	historical	observations	rather	than	
predicting	future	outcomes.		Second,	there	has	been	little	possibility	for	
replication—indeed,	preventing	repetition	of	significant	invasions	is	essential	to	
protecting	the	environment.		Third,	the	actual	form	of	nonlinear	density-
dependence	described	by	logistic	growth	is	too	simplistic	for	many	populations.	
Social	interactions	such	as	cooperative	feeding	or	sexual	reproduction	produce	so-
called	Allee	effects—diminished	per	capita	population	growth	rates	at	low	densities	
due	to	a	lack	of	partners.	Allee	effects	can	cause	a	breakdown	in	the	celebrated	
Fisher-KPP	spreading	speed	formula.		In	this	case,	rather	than	being	pulled,	the	wave	
of	advance	is	actually	pushed,	with	populations	that	are	well	behind	the	leading	edge	
having	the	highest	per	capita	growth,	and	then	spilling	over	via	diffusion	to	push	the	
wave	forward	(9).	Although	some	theory	has	been	developed	for	this	case	(10),	
there	is	no	simple	replacement	formula	for	the	spreading	speed.		To	compound	the	
issue,	the	demographic	details	needed	to	predict	the	spreading	speed	of	a	
population	with	an	Allee	effect	are,	by	definition,	difficult	to	measure	because	they	
require	observations	of	declining	populations	at	low	densities.		Thus,	predictions	
and	subsequent	comparisons	with	geographical	case	studies	have	been	few	and	far	
between	(but	see	11).	
	
In	the	PNAS	paper	by	Ghandi	et	al	(4),	the	Allee	effect	was	induced	by	the	
cooperative	growth	dynamics	arising	from	sucrose	versus	glucose	consumption	in	
yeast	(Table	1).		Thus,	the	set	of	laboratory	experiments	allowed	for	replication	and	
modulation	of	the	Allee	dynamics	based	on	known	underlying	causes,	thereby	

c = 2 rD



providing	a	perfect	mechanism	for	predicting	outcomes	from	specific	experimental	
manipulations	on	the	spreading	speed.		In	summary,	the	work	overcame	the	three	
major	shortcomings	in	testing	invasions	outlined	in	the	previous	paragraph	and	
thus	constitutes	a	breakthrough	in	connecting	experiment	to	theory.	
	
Furthermore	the	experimental	set-up	allowed	for	additional	detailed	comparisons	
between	other	theoretical	predictions	and	experimental	observations.		As	noted	
above,	the	theoretical	prediction	for	pulled	waves	is	that	the	spreading	speed	is	
independent	of	carrying	capacity.		This	was	tested	using	glucose	versus	galactose	
sugars,	the	former	having	a	lower	carrying	capacity	than	the	latter	(Table	1).	It	was	
also	possible	to	test	the	steepness	of	the	wave	in	pushed	versus	pulled	dynamics.	
The	theoretical	prediction	is	that	pushed	waves	have	the	steeper	profile.		Both	
theoretical	predictions	were	tested	experimentally	and	held	true.	
	
The	paper	illuminates	the	role	of	controlled	small-scale	experiments	in	connecting	
theory	to	experiment	in	mathematical	ecology.		Other	notable	examples	include	the	
search	for	chaos	in	biological	populations	via	the	manipulation	of	flour	beetle	
populations	(12)	and	the	analysis	of	founder	effects	in	spread	rates,	again	using	
flour	beetles	(13).		Ecologists	may	claim	that	these	experimental	systems	are	
manipulated	to	the	point	where	conclusions	are	no	longer	ecologically	relevant.		
However,	a	strong	argument	can	be	made	that	the	systems	actually	become	crucial	
stepping-stones	that	lie	between	the	abstract	mathematical	theory	and	the	highly	
complex	natural	ecological	systems	that	we	ultimately	wish	to	understand.	
	
It	is	sobering	to	contemplate	that,	as	with	many	subjects	in	mathematical	ecology,	
the	theory	of	pulled	versus	pushed	waves	preceded	experiment	by	a	long	shot:	this	
paper	comes	approximately	forty	years	after	the	pioneering	mathematical	work	in	
the	subject	(9).		Although	belated,	the	connectivity	speaks	to	the	value	of	deep	
mathematical	analysis	of	biological	phenomena,	even	long	before	experimental	
testing	is	possible.			
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TABLE	
	

Growth	
Medium	

Carrying	
Capacity	

Growth	Rate	 Density	
Dependence	

Invasion	
Wave	Type	

galactose	 high	 low	 negative	 pulled	
glucose	 low	 high	 negative	 pulled	
sucrose	 -	 -	 positive/negative	 pushed	

	
Table	1:	Effects	of	sugar	types	on	growth	and	invasion	dynamics	in	budding	yeast	
	


