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Abstract 

While beneficial to the natural environment in many cases, wildfires become hazardous 

when they intersect with the built environment. As such, there is an ongoing effort to 

understand the fire environment, the fuels it contains, and the way that wildfire interacts 

with the built environment. In particular, communities and structures in the wildland urban 

interface (WUI) are often assessed to determine their exposure to wildfire ignition 

processes. Exposure assessment workflows at both scales require the identification and 

classification of hazard fuels. Thus, a method is presented for the remote automated 

detection of hazardous wildfire fuels and the application of fuel detections to community 

and structure scale exposure assessments. The outputs of the automated processes are 

intended to supplement rather than replace existing practices and form a preliminary 

basis of information that is both simple and rapid to collect, process, and interpret. 

Two workflows are devised to detect and classify large overstory trees from RGB imagery 

in the boreal, rocky mountain, and foothill natural regions of Alberta, Canada. The first 

workflow considers remotely piloted aircraft systems (RPAS), are used to collect RGB 

imagery. A convolutional neural network (CNN) is trained to detect trees in the overstory 

and to classify them as coniferous, deciduous, or snags. F1-scores reach 74.5% for tree 

detection and achieves classification F1-scores of 97.3%, 94.4%, and 90.9% for 

coniferous, deciduous, and snag classes respectively.  

The second workflow uses RGB satellite imagery to detect individual trees using a second 

trained CNN. An R
2

 of 0.76 is achieved comparing automated tree detection density to 

manual annotation density. A k-means clustering algorithm is used to determine winter 

‘leaf-off’ imagery and classify trees as ‘green-in-winter’ or ‘brown-in-winter’, an indication 

of coniferous or deciduous trees. Classifications from satellite imagery reach an F1-score 

of 0.82.   

Finally, tree detections and classifications from the RPAS model are visualized around a 

structure in the context of a FireSmart home assessment, and it is discussed how the 

workflow could be used to provide informative maps of tree vegetation around a structure. 

At a community scale, fuel maps derived from the satellite tree detection and classification 
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workflow are used in an existing community exposure assessment workflow to explore 

how fuel maps generated in this manner may be applied. 
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1.0 Introduction 

1.1 Problem Statement 

While wildfires are a natural part of the landscape, problems can arise when they intersect 

with human activity and the built environment. A number of strategies can be employed 

by communities to prepare for and mitigate the negative effects of wildfires and increase 

community resilience. This can include wildfire ignition exposure assessments at both the 

community and structure scale. This study explores leveraging technology in remote 

sensing (RS) and machine learning (ML) to supplement existing exposure assessment 

workflows with information that is automated, high-resolution, recent, and interpretable.  

The work takes place within Alberta, Canada, including both the boreal, rocky mountain, 

and foothill natural regions. These regions are relevant to the work performed as all 

contain coniferous tree stands (Downing & Pettapiece, 2006) and experience wildfire; in 

particular, a recent study found that from 1959-2021 wildfires in the boreal region 

accounted for 87.7% of burned area in Alberta (Ahmed & Hassan, 2023). Models in this 

thesis are trained to detect and classify trees into broad categories of coniferous / 

deciduous rather than individual tree species using data within these regions. Application 

outside of these regions would require further study. 

1.2 Problem Importance 

Wildfires are natural events that are essential to maintain the health of boreal forests. 

However, wildfires can cause damage to infrastructure, property, and threaten the health 

and safety of community members when they intersect with human activity. Wildfires can 

cost the communities they intersect with in terms of insurance, community planning, 

wildfire response, wildfire preparedness, and in disaster recovery.  

At the time of this thesis in 2023, news outlets speculate that this year Alberta could break 

its record area burned by wildfires, with Alberta Wildfire estimating over 1.4 million burned 

hectares so far (Mulcahy, 2023). In Alberta, $3.5 billion CAD in insured losses were 

caused by the 2016 Fort McMurray wildfire, which also required the evacuation of 88,000 

persons from the community and surrounding area (Mamuji & Rozdilsky, 2019). A study 

conducted post-fire revealed that, consistent with previous studies after other wildfires, 
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the majority of home ignitions were likely due to ember transmission from the wildfire to 

structures (Westhaver, 2017). As such, the investigation of new methods of fuel mapping 

may be of interest. 

1.3 Vegetation Mapping 

1.3.1 Wildfire Fuels 

Wildfire behavior can be said to be governed by three factors: weather, topography, and 

fuels. This is referred to as the ‘wildfire behaviour triangle’; these three factors interact 

and drive wildfire behavior (Countryman, 1972). Of these three factors, only fuel can be 

realistically modified by humans.  

No fire can burn without fuel. The fuel a wildfire consumes can influence many of its 

properties. However, quantifying fuel is a difficult task. There are many properties that 

influence a fuel’s propensity to burn, and more still that affect its behavior once it is 

burning. Fuel properties can vary on a small spatial scale, but information about those 

properties is required across large spatial extents - Brandt et al. (2013) estimate the 

boreal zone covers 552 million hectares in Canada, and Johnston & Flannigan (2018) 

estimate 32.3 million hectares of wildland-urban interface (WUI). Here, focus will be 

placed on ‘crown fuels’ – fires that burn in tree crowns are high intensity fires and can 

generate significant embers when accompanied by high winds (Van Wagner, 1983). In 

Canada, crown fires are generally exclusive to coniferous forests (Van Wagner, 1977). 

Thus, in order to quantify wildfire exposure as well as aspects of wildfire spread, fuel 

maps are required. 

In Alberta, the Alberta Vegetation Inventory (AVI) exists to collect information about 

vegetation across the province (Forest Stewardship and Trade Branch, 2022). AVI data 

is generated through manual interpretation of aerial imagery by certified technicians, as 

well as a suite of ancillary data. Here, the minimum collection resolution for aerial imagery 

is specified to be 0.3 m / px. Outputs include manually delineated polygons containing a 

variety of attributes, for example tree species composition, tree crown closure, and tree 

height. Over the years, AVI has produced major inventories under evolving specifications, 

including AVI version 1.0 (1988), version 2.0 (1990), version 2.1 (1991), version 2.1.1 
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(2007), and the current version 2.1.5. Vegetation data generated by the AVI are then 

reorganized and used in a decision tree procedure to generate wildfire fuel maps across 

the province (Frederick, 2012). 

Fuel maps are used to characterize the ‘fuel’ aspect of the wildfire behaviour triangle 

across the landscape. In Canada, the Fire Behaviour Prediction (FBP) system defines 5 

groups of 16 fuel types (Forestry Canada Fire Danger Group, 1992). These groups 

consist of coniferous, deciduous, mixedwood, slash, and open fuels. In general, fuels are 

categorized into these groups based on species, form, size, arrangement, and continuity 

(Forestry Canada Fire Danger Group, 1992). These fuel maps can serve as inputs to FBP 

models such as Prometheus. Prometheus is an FBP system which uses topography, fuel 

types, and weather to simulate fire spread using a wave propagation model (Tymstra et 

al., 2010). Models such as Prometheus allow for predictions of fire growth, intensity, and 

rate of spread, allowing for the coordination of suppression activities.  Fuel maps are also 

utilized when assessing community exposure to wildfire, which can in turn be used for 

planning fuel reduction treatments, creating firelines / firebreaks along vulnerable parts of 

the WUI, and prioritizing individual structures for risk reduction (Beverly et al., 2018). 

In summary, fuel is the only aspect of the wildfire triangle that can be readily modified by 

humans, and thus it is of interest to map fuels across large spatial extents. 

1.3.2 Remote Sensing and Vegetation 

As there is a clear need for fuel maps across large spatial extents, the derivation of fuel 

attributes from RS data has been explored. There is considerable research into using RS 

for measuring vegetation attributes that would be impractical or impossible to densely 

sample across the domains they are needed. Satellites, aerial vehicles, and remotely 

piloted aircraft systems (RPAS) now offer data products that can be used for vegetation 

monitoring, ranging from high density pointclouds generated using light detection and 

ranging (LiDAR), to hyperspectral and multispectral imagery. Several methods have been 

explored for the extraction of vegetation and forestry characteristics from this data. 

As RPAS become increasingly more accessible, interest in using these platforms for RS 

grows. To date, numerous works have been published on extracting forestry 
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characteristics from data collected via RPAS with a range of sensors. RGB imagery has 

been considered in Bennett et al. (2022), who use high-resolution RGB imagery collected 

via RPAS to train a convolutional neural network (CNN) to detect and classify trees as 

coniferous or deciduous, with F1-scores for tree detection averaging 72%. Mohan et al. 

(2017) performed similar work for the detection of trees using RPAS imagery; though in 

this work RGB imagery was used to generate a structure-from-motion (SfM) model of 

canopy height and a local maxima algorithm was used to detect trees. This was thus 

applied only to open canopy forests, where tree canopies do not overlap. Surový & 

Kuželka (2019) provide a lengthy review on the use of RS for forest attributes, including 

satellite, aerial, and RPAS data. Authors review how both imagery and laser scanning 

(LiDAR) are used on RPAS platforms for plantation monitoring, individual tree 

segmentation, forest and tree height assessments, forest inventory, species 

classification, and forest health. Egli & Höpke (2020) collect imagery via RPAS in 

Germany and apply a CNN for species classification. The resulting model proved to be 

92% accurate for classifying trees photographed at 1.6 cm / px resolution; authors also 

note the affordability and ease of collecting imagery in this manner. 

Other sensors beyond RGB cameras are also common RPAS payloads. Aerial LiDAR 

has used in forest inventory and vegetation mapping. Cameron et al. (2021) use aerial 

LiDAR over forest stands in Alberta to extract tree attributes relevant to wildfire behavior. 

Crown bulk density, crown fuel load, stem density, canopy height, and crown base height 

were predicted using the resulting data. It was found that all forest attributes, except for 

crown base height, had R
2

 values greater than 0.81 compared to ground measurements 

when mapped at 40 m
2

 resolution. RPAS-borne LiDAR was used by Rodríguez-Puerta et 

al. (2021) to detect individual trees and measure their height on tree plantations. RPAS-

borne multispectral imagery was used by Gallardo-Salazar & Pompa-García (2020) to 

gather multiple tree characteristics, including height, area, crown diameter, and estimates 

of basal diameter, and diameter at breast height. Hyperspectral cameras have also been 

mounted on RPAS and used for this purpose: Nevalainen et al. (2017) use such a platform 

to detect and classify individual trees, and score detection accuracies between 40% and 

95%, and an overall classification F1-score of 0.93. Together, the applicability of RPAS 
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and aerial RS platforms for forest inventory is apparent, with accurate results being 

achieved with low-cost RGB imagery, and with higher-cost multispectral, hyperspectral, 

and LiDAR sensors.  

Numerous studies also exist investigating the extraction of forest attributes from satellite 

collected RS data. Surový & Kuželka (2019) review the use of satellite data for 

stratification, plantation monitoring, forest height, inventory attributes, species 

classification, and forest health. Shtanchaev et al. (2021) use multispectral satellite 

imagery to classify tree crowns as birch, spruce, pine, and fir, and find that previously 

delineated tree crowns can be classified with F1-scores of up to 0.69. Classification using 

multi-spectral imagery collected via satellite is also considered by Immitzer et al. (2012), 

who used 8 spectral bands to classify trees into 10 species classes using a random forest 

algorithm with 82% classification accuracy. Synthetic Aperture Radar (SAR) has also 

been used, in combination with optical imagery, to produce maps of forest height in 

Finland, reaching an RMSE of 1.68 m (Ge et al., 2022). In Canada, Beaudoin et al. (2022) 

utilize a k-NN method to map forest attributes using a suite of input data, including 

multispectral satellite imagery, SAR, and environmental variables such as topography 

and climate indices. This work builds on previous work (Beaudoin et al. 2014), which 

utilized a similar method to map 127 forest variables including above ground biomass, 

species compositions, and landcover. This paper is of particular interest as it is the work 

cited by NRCAN as the basis for the national-scale FBP maps (Natural Resources 

Canada, n.d.), which are derived in part utilizing the forest attributes mapped by Beaudoin 

et al. (2014). 

1.3.3 Computer Vision 

With remote sensing platforms offering rapid collection of data across large spatial 

domains, methods must be considered for the extraction of information from the data. 

Satellite imagery can be obtained from a number of vendors, and RPAS are now easily 

accessible and often come with onboard high-resolution RGB cameras. Raw data 

collected is a set of many spatial high-resolution RGB images, and converting these 

images to useful information is not trivial.  
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The identification of individual trees from imagery is an ‘object detection’ problem; a class 

of problem concerned with localizing and classifying objects within an image (Zhao et al., 

2018). This task is not straightforward, as objects can appear in many different contexts, 

in different lighting conditions, and there may be extensive variation within object classes 

(i.e., tree species, dog breeds, traffic signs, etc.). The goal is to detect objects in diverse 

contexts from RGB imagery; this is a task that machine learning is well-suited to. Neural 

networks are able to detect a variety of objects in a variety of settings by extracting feature 

representations. As discussed by Zhao et al. (2018), CNNs are one such type of network 

and have the ability to develop complex and deep feature representations during training; 

that is, feature representations do not have to be manually designed. Zhao et al. (2018) 

highlight numerous advantages of using CNN architecture for object detection over other 

methods, including hierarchical feature representation, increased expressive capability, 

ease of task combinations, and large learning capacities. There are numerous CNN 

architectures to select from. In this research, RetinaNet and YOLO are utilized and 

compared. RetinaNet leverages a pyramidal feature map structure to enhance scale 

invariance and a novel implementation of focal loss to account for background sample 

imbalance (Lin et al., 2016, 2017). YOLO uses a unified detection framework to both 

localize and classify objects, and operates rapidly and efficiently (Redmon et al., 2015). 

The use of CNNs for tree detection has been explored in research. CNNs are commonly 

used for general image recognition, including tree detection with some extension into tree 

attribute modelling. Braga et al. (2020) implemented a mask R-CNN to detect and 

delineate tree crowns in high-resolution multispectral satellite imagery, reaching recall, 

precision and F1 scores of 0.81, 0.91, and 0.86, respectively, in a tropical forest. The 

CNNs AlexNet and GoogLeNet were used to detect dead pine trees in southeastern 

China (Tao et al., 2020). When trained on 768 samples and tested in three regions, the 

algorithms obtained identical F1 scores of 0.57. This score is depressed by errors of 

omission, with a sub 0.5 recall in both cases. Mubin et al. (2019) considered 0.3 m px
-1

 

satellite imagery for palm tree detection, separating young and mature palms in the 

workflow. The CNN achieves overall accuracies of 95.11% and 92.96% for detection of 

the relatively well-delineated young and mature palm crowns. Ferreira et al. (2020) 
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detected palm species with an accuracy of 87.8 ± 4.4%. This workflow incorporated 

ResNet-19 (He et al., 2016) in a DeepLabv3+ semantic segmentation architecture (L.-C. 

Chen et al., 2018). DeepForest is a tree detection convolutional model based on a 

RetinaNet structure with a ResNet50 backbone (He et al., 2016; Lin et al., 2017; 

Weinstein et al., 2019). It is a research model developed and trained on a database of 

annotated tree data and tested on various locations in the United States, reaching recall 

and precision of 0.69 and 0.61, respectively, with a stem detection of 0.82. Weinstein et 

al. (2019) overcame the low amount of available training data by relying on semi-

supervised training that leveraged LiDAR data to improve the training set. Bennett et al. 

(2022) utilize the DeepForest API to detect and classify trees in Alberta boreal forest, and 

reach an average F1-score of 0.72, and classify deciduous and coniferous trees with F1-

scores of 0.97 and 0.87 respectively. Briechle, Krzystek, and Vosselman (2021) use 

hyperspectral imagery, LiDAR pointclouds, and tree location polygons to train two CNNs 

(one per input modality) to classify trees as coniferous or deciduous and reach F1 scores 

of over 96%. The use of hyperspectral and RGB imagery as inputs into CNNs for the 

purposes of tree species classification were compared by Fricker et al (2019); authors 

found that classification using hyperspectral offered a 23% higher accuracy compared to 

RGB data, though trees were classified into seven species and one dead class as 

opposed to coniferous / deciduous classification. As can be seen, the use of CNNs to 

detect trees from RS data is well-explored in research. 

1.4 Exposure Assessment 

Due to the cost of wildfire, it is in the interest of communities and governments to manage 

and mitigate its effects. This motivates the development of a community level exposure 

assessment. 

At a community scale, it is of interest to assess exposure to wildfire ignition vectors: 

radiant heat, short-range firebrands, and long-range firebrands. Assessments at this 

scale can allow mitigation to be prioritized, communities to be compared to each other, 

and to prioritize home-scale assessments (Beverly et al., 2010). Originally developed by 

Beverly et al. (2010), FireSmart Alberta defines a community exposure assessment 

procedure (Beverly et al., 2018). The assessment procedure requires hazard fuels to be 
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mapped around the community. The definition of hazard fuels in Beverly et al. (2010) 

includes: “FBP fuel types C-1 (spruce–lichen woodland), C-2 (boreal spruce), C-3 (mature 

jack or lodgepole pine), C-4 (immature jack or lodgepole pine), C-7 (ponderosa pine–

Douglas-fir), O-1 (grass), and M-2 (boreal mixedwood)” depending on the ignition vector 

considered. It is also noted that depending on the time of year, certain fuels types such 

as aspen could possibly be considered hazardous if they are in their spring dormancy or 

have low moisture content (Beverly et al., 2018). Once fuels are mapped, the community 

is divided into a grid. A moving circular window is used to calculate the area proportion of 

hazard fuel within the window at each grid cell. Three radii are used for the window, 

corresponding to different ignition types: 30 m is used to assess for exposure to radiant 

heat from wildfires, 100 m is used for short-range ember spotting, and 100 m to 500 m is 

used to assess exposure to longer range spotting (Beverly et al., 2010). The proportions 

of hazard fuel for each fuel type are then binned into nil, low, moderate, high, or extreme 

exposures. Finally, the community receives maps of exposure to each of the three ignition 

types. These exposure maps are useful for several reasons. Ember exposure has been 

shown to be the primary reason for structure loss in previous WUI fire events in Alberta 

(Westhaver, 2017). Thus, understanding where the community is most vulnerable to this 

ignition vector is a key aspect of preplanning. Further, it has been shown that wildfires 

primarily occur in areas with high exposure to hazardous fuels (Beverly et al., 2021). In 

Beverly et al. (2021), fuel maps were derived at a 100 m resolution using a combination 

of AVI (updated every 10-15 years), Alberta Ground Cover Characterization (generated 

with satellite data from 2000) (Sanchez-Azofeifa et al., 2004), and annually updated 

disturbance inventories. In Beverly et al. (2010), land cover was identified resolution via 

orthophoto interpretation at 1 m, field verification, and with support from local officials.  

At the individual structure scale, FireSmart Alberta outlines a home assessment 

procedure to numerically score a structures exposure to wildfire (FireSmart Alberta, 

2015). Attributes of both the structure itself and the surrounding area are assessed 

including topography, building materials, building condition, surface vegetation, and 

surrounding tree vegetation. Regarding tree vegetation, scoring is predicated on the 

establishment of vegetation management zones surrounding the structure. Within 10 m 



Thesis 
Wildfire Fuel Mapping with Convolutional Neural Networks for Remote Automated 

Exposure Assessment 
Fall 2023 

 

Liam Bennett 9 

 

from the structure, the surrounding tree type is classified as deciduous, mixed wood, or 

coniferous. At 10 m to 30 m from the structure, tree type is again assessed, and if 

coniferous, it is noted whether tree crowns are continuous or separated. Results of the 

assessment can be used to recommend modifications to the yard, surrounding 

vegetation, or structure itself that can reduce the hazard wildfire poses to the property. 

1.5 Thesis Objectives and Outline 

Based on the review of current practices in community exposure assessment, an 

opportunity exists for the leveraging of RS and ML in existing workflows to automate photo 

interpretation that supplements decision making. The objectives of this study are: 

1. To develop a method of fuel mapping (automated interpretation of imagery) from 

satellite imagery and RPAS at an individual tree scale 

2. To explore the possible use of these fuel maps in existing exposure assessment 

workflows 

Thesis Statement: Automating tree detection and classification from RPAS and satellite 

imagery can produce useful outputs that can be integrated into exposure assessment 

workflows to supplement existing practices. 

The work thus completed in this thesis is broken down into five chapters.  Chapter 2 

outlines the construction of a CNN model for the purpose of detecting and classifying 

trees from RPAS collected imagery, including RPAS and flight specifications, dataset 

summation, model architecture, assessment procedure, and overall performance. 

Chapter 3 is structured similarly and focuses on detecting and classifying trees from 

satellite imagery. Chapter 4 explores potential uses of these models in exposure 

assessments at both the individual structure and community scale, and notes both 

benefits and limitations. Chapter 5 includes a conclusion and outlines recommendations 

for future work. 

  



Thesis 
Wildfire Fuel Mapping with Convolutional Neural Networks for Remote Automated 

Exposure Assessment 
Fall 2023 

 

Liam Bennett 10 

 

2.0 Tree Detection and Classification from RPAS RGB 

Imagery 

To aid in exposure assessment activities, it is useful to have high-resolution maps of fuels; 

part of the FireSmart Alberta Homeowners Assessment requires homeowners to assess 

local vegetation, including tree type and spacing up to 30 m from the home (FireSmart 

Alberta, 2015). To explore the benefits of high-resolution fuel mapping, a platform is 

sought that can rapidly collect very high-resolution imagery around areas of interest. This 

leads to the use of remotely piloted aircraft systems (RPAS), or ‘drones’, to collect 

imagery around areas of interest. These platforms allow for extremely high (> 2 cm) 

resolution maps to be created around the wildland-urban interface (WUI).  

These systems are used to collect imagery around communities and values-at-risk 

(VARs), to process that imagery into high resolution orthomosaics, and to train a 

convolutional neural network (CNN) model to detect and classify trees from the collected 

imagery. 

2.1 Data Acquisition 

Over recent years, drone platforms have become increasingly accessible to both 

enterprise users as well as the general public. The market currently has many options, 

ranging from small, lightweight hobbyist drones to larger platforms tailored for use by 

governments, researchers, and emergency response agencies. In this research, three 

drones are used. All drones are manufactured by DJI. A table of drone and sensor 

parameters is included in Table 1. 

Table 1: Summary of RPAS systems utilized in this study 

RPAS Platform Weight (g) 
Wind 

Resistance 
(kph) 

Onboard Sensors 
Cost 

($USD) 

DJI Mavic Mini 249 28 Wide Camera $400 

DJI Mavic 2 
Enterprise 

905 38 
Wide, Zoom 

$4,000 

DJI M30T 4000 55 
Wide, Zoom, Thermal Camera, 
Laser Rangefinder 

$14,000 
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The drones utilized in this project represent a range of what may be available to both 

researchers and agencies. Most drone platforms allow for surveys to be preplanned and 

flight paths automated to allow for efficient surveys and consistency between surveys. 

The Mavic Mini is a small, compact, relatively cheap drone that requires minimal piloting 

experience. At 249 g, the drone may be flown by any user under current regulations; 

drones 250 g and up require the user to have a drone pilot certificate to operate (Transport 

Canada, 2023). However, this drone must be manually piloted, and a drone of this size is 

also susceptible to wind. The DJI Mavic 2 Enterprise represents an intermediate drone, 

with additional onboard sensors and stronger wind resistance. Survey automation 

software is compatible with this drone, allowing flight parameters to be set and surveys 

to be automatically flown. The DJI M30T represents the high-end range of possible 

drones. This platform is specifically marketed for use by first responders, offers high wind 

resistance, a suite of onboard sensors, and increased weatherproofing. Due to its design 

for first responders, additional features including laser rangefinders for in-flight 

measurements and highly accurate GPS / surveying sensors are onboard to ensure 

captured products are accurate.  

Despite the differences in drones used on this platform, onboard cameras are very similar. 

Table 2 summarizes the on-board wide-angle cameras used for imaging on each drone. 

Table 2: Summary of RPAS cameras utilized in this study 

RPAS Platform Camera Sensor Image Size 

DJI Mavic Mini 
1/2.3" CMOS: 

12 MP 
4000x3000 

DJI Mavic 2 Enterprise 
1/2.3" CMOS: 

12 MP 
4000x3000 

DJI M30T 
1/2" CMOS: 12 

MP 
4000x3000 

 

 A number of parameters must be set when flight planning to ensure consistency between 

surveys. First, the area to be flown is defined using a polygon on a map. Flight height 

must then be entered; the drone must fly high enough so as to be clear of all obstacles, 
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but low enough that the ground sample distance (GSD) will yield an acceptable resolution. 

Here, GSD is a relationship between camera sensor width, focal length, flight height, and 

output image width, and is calculated as follows. 

𝐺𝑆𝐷 =  
𝐻 ∗ 𝑆𝑤

𝑓 ∗ 𝐼𝑤
 Eq. 1 

Where GSD is ground sample distance (cm / pixel), H is flight height (m), Sw is sensor 

width (mm), f is focal length (mm), and Iw is image width (pixels). Flight speed is also set; 

faster speeds can mean larger surveys in less time and battery life, though speeds that 

are too high will result in image blurring. Frontal and side overlap of the image footprints 

must also be set. This is the percentage to which adjacent images overlap; generally, 

higher overlap percentages allow for more detailed 3D models to be constructed by the 

stitching software. Parameters are chosen to reach a similar GSD to other studies that 

have been performed in tree detection and classification using CNNs: Egli & Höpke 

(2020) utilize 1.6 cm / px GSD for tree classification, while Schiefer et al. (2020) utilize 

1.1 cm / px GSD imagery for the mapping of tree species. Table 3 summarizes the 

parameters commonly used on this project. 

Table 3: RPAS flight parameters for M30T 

Time 
Midday, consistent cloud 

cover preferred 

Flight Height (m) 50 

Flight Speed (m/s) 2 

Side Overlap (%) 80 

Front Overlap (%) 90 

Camera Resolution 3000 x 4000 

Camera Focal 
Length (mm) 

4 

Camera Sensor 
Width (cm) 

6.3 

Final GSD (cm / px) 2.0 
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The metadata in the collected images is used to stitch the images into one large 

orthomosaic. Agisoft Metashape Professional is the software used to generate the 

orthomosaic from the collection of survey images (Agisoft, 2023). First, the images are 

added and aligned. Next, a digital elevation model (DEM), pointcloud, and 3D mesh 

model are generated of the survey area. Finally, an orthomosaic is generated and 

exported. Each survey now has an accompanying orthomosaic, 3D pointcloud, 3D mesh 

model, digital surface model (DSM), and digital terrain model (DTM).  Figure 1 

demonstrates these outputs for a home in rural Alberta. 

 

Figure 1: Survey outputs for a home in rural Alberta, including (a) orthomosaic, 

(b) 3D mesh, (c) 3D pointcloud, and (d) DEM 

To train a CNN model to detect and classify trees, a training dataset of trees is required. 

To build this set, 11 surveys are flown at various locations around Alberta. These sites 
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contain several different tree species under various lighting conditions to ensure training 

dataset variability. Surveys are carried out at the parameters previously mentioned, 

ensuring GSD is maintained at 2 cm / px. The locations of these surveys are shown below 

in Figure 2, with additional information provided in Table 4. 

 

Figure 2: RPAS survey locations, including training surveys and surveyed 

communities 
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Table 4: Training survey summary 

Survey ID 
Marker 

Date 
Surveyed 

Area (ha) 
Conifer 
Count 

Dec 
Count 

Snag 
Count 

Totals 

A 10-Jun-20 2.69 682 0 39 721 

B 12-Jun-20 1.89 154 155 28 337 

C 12-Jun-20 2.52 374 20 5 399 

D 12-Jun-20 3.36 581 97 45 723 

E 19-Jun-20 2.28 693 0 89 782 

F 22-Jun-20 2.68 1121 3 70 1194 

G 07-Jun-22 1.15 1524 272 48 1844 

H 07-Jun-22 1.54 122 611 17 750 

I 07-Jun-22 4.2 79 667 57 803 

J 07-Jun-22 4.61 1569 763 163 2495 

K 07-Jun-22 0.94 29 145 1 175 

Totals   6928 2733 562 10,223 

 

2.2 RPAS Model 

As mentioned previously, the need to detect trees from RGB imagery is a problem that 

lends itself well to the use of CNNs. Trees appearing in orthophotos can have different 

shapes and colors, while still sharing features that enable humans and machine 

algorithms alike to identify and classify the tree.  

The field of computer vision is one that advances rapidly, and the optimal method for 

object detection from imagery is not yet settled. Researchers continually release models 

that use different techniques to identify objects in imagery, and additionally it is not certain 

that the model that currently best identifies cars will also best identify other objects, such 

as trees. As such, a suite of commonly used CNN models is assembled for the task of 

identifying tree locations and classifying trees in the stitched orthophotos. The models 

selected are RetinaNet and YOLOv5 (nano, small, and large configurations) (Jocher et 
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al., 2022; Lin et al., 2017). Both models are CNNs that score well in existing object 

detection benchmark competitions. 

To detect trees in a set of imagery, the model must first be trained using a large number 

of examples. The more examples the model is allowed to train with, the more accurate 

the model is expected to be, as it has a deeper set of objects to extract features from. 

Generating these examples is still a human task – all surveys flown in the aforementioned 

set are manually annotated. A rectangular box is placed by a human over each tree in 

each survey, and the class of the tree is denoted as coniferous, deciduous, or snag (a 

standing dead tree). This allowed a dataset of 10,223 trees to be created, with 6928 

conifers, 2733 deciduous, and 562 snags.  

To fairly assess model performance, five datasets are created from the collected 

orthophotos and corresponding annotations. Five training and testing subsets are 

created, ensuring two things: that no model is both trained and tested using data from the 

same survey to preserve fairness, and that each model has approximately the same 

number of total tree annotations to train on. The total dataset is thus split using these two 

rules, so that models could be trained using four of the subsets and tested using the 

remaining one. This is commonly known as a k-fold cross validation and is repeated 5 

times so that each subset is omitted from the training data and used as a test set. A 

summary of the dataset, as well as the five subsets, is included in Table 5. 
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Table 5: RPAS dataset summary 

Split 
Group 

ID 

Training 
Surveys 

Testing 
Surveys 

Training 
Conifer 

Training 
Deciduous 

Training 
Snag 

Testing 
Conifer 

Testing 
Deciduous 

Testing 
Snag 

Training 
Total 

Testing 
Total 

1 

A, B, C, 
D, E, F, 
G, H, I, 

K 

J 5359 1970 399 1569 763 163 7,728 2,495 

2 
A, B, C, 
D, E, F, 
H, I, J, K 

G 5404 2461 514 1524 272 48 8,379 1,844 

3 
D, E, F, 
G, I, J, K 

A, B, C, 
H 

5596 1947 473 1332 786 89 8,016 2,207 

4 
A, B, C, 
D, E, G, 
H, J, K 

F, I 5728 2063 435 1200 670 127 8,226 1,997 

5 
A, B, C, 
F, G, H, 

I, J 
D, E, K 5625 2491 427 1303 242 135 8,543 1,680 

 

With the datasets created, the models are then trained. Python packages have been 

created by various groups to allow common models to be modified, trained, and tested. 

The RetinaNet model API used is provided by MMDetection (K. Chen et al., 2019), and 

the YOLOv5 model API by Ultralytics (Jocher et al., 2022).  

Training and testing are performed in an Anaconda Environment on a Windows 10 

desktop computer. The computer is equipped with 256 GB of RAM and an NVIDIA 

GeForce RTX 4090 GPU. First, for each of the five above datasets, training surveys and 

their corresponding annotations are tiled to allow training to fit into RAM, and to allow 

varied image augmentations. The surveys are sliced into 800 px tiles that overlap with 

each other by 30%, to ensure trees on tile borders appear whole in at least one image. 

The tiles are then split into a training and validation set at a 90/10 ratio. Upon training, 

image augmentations are applied, including random image flips, image scaling, and 

alterations to the image’s hue, saturation, and value characteristics. Training consists of 
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200 epochs with an initial learning rate of 0.01 using the stochastic gradient descent 

(SGD) optimizer. Training time depends on the size of the dataset as not all are exactly 

equal but takes around 5 hours to complete. Upon completion, the training metrics are 

analyzed, and the model is tested on the withheld surveys to assess its performance. 

Inference time is negligible when compared to training time, as it is on the scale of 

seconds to minutes per survey. 

2.3 RPAS Model Results 

Model performance is assessed via a k-fold testing strategy. Using the manual 

annotations as truth and the model outputs as predictions, performance metrics are 

calculated. Metrics are divided into two categories: identification performance and 

classification performance.  

Precision, recall, stem recall, and F1-score are used to determine the model’s ability to 

identify and properly box trees regardless of class. Here, ‘properly boxed’ means that the 

box predicted by the model sufficiently overlaps the true box. This is determined by 

calculating the intersection-over-union (IoU) of the predicted box and the true box. IoU is 

calculated as follows. 

𝐼𝑜𝑈 =  
𝐴𝑂

𝐴𝑈
 Eq. 2 

Here, Ao is the area of overlap, and AU is the area of union. Figure 3 provides a graphical 

representation. In the figure, two boxes are represented; one being ground truth, the other 

being the model detection. The shaded area represents the area calculated: in the 

numerator, the area of intersection only, and in the denominator the area of union. 

Dividing the two results in IoU. 
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Figure 3: Graphical representation of IoU 

A cutoff threshold is then used – a prediction box is said to have properly boxed the true 

tree if the IoU is greater than 0.5. With a ‘correct box’ defined, precision and recall are 

then calculated. Precision is a measure of how often an estimated tree box output by the 

model correctly boxed a true tree and is calculated as follows. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Eq. 3 

Here, a true positive (TP) refers to a box drawn by the model that correctly overlaps a 

true tree, and false positive (FP) refers to a box drawn by the model that does not properly 

overlap any true tree. Recall measures the model’s ability to properly identify all true 

examples in the testing set and is calculated below. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Eq. 4 

Here, false negative (FN) refers to the number of true trees that are not properly boxed 

(i.e., missed) by the model. F1-score is the harmonic mean of precision and recall, 

combining them into one number so that model performances can be more directly 

compared. F1-score is calculated as follows. 

𝐹1 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 Eq. 5 

 



Thesis 
Wildfire Fuel Mapping with Convolutional Neural Networks for Remote Automated 

Exposure Assessment 
Fall 2023 

 

Liam Bennett 20 

 

Stem recall is the final metric used for tree detection in this study. Due to the nature of 

the study, there are circumstances where tree size may be irrelevant, such as when 

calculating tree stem density. As such, true trees must not always be ‘properly’ boxed 

(i.e., IoU > 0.5) to count as a true positive. It is of interest to know how often the model 

detects a tree at all, regardless of if the box is properly sized. Stem recall is then defined 

as the percentage of times the stem of the tree, defined as the centre point of the true 

box, is within a prediction box regardless of size. 

Classification of the identified trees into the three defined classes must also be assessed. 

Similar metrics are used. Here, classification metrics are calculated using only detection 

boxes that properly boxed (IoU > 0.5) a true box. This is to ensure the classification 

assessment is fair, as the model can only be asked to classify trees that are properly 

boxed. Further, no ground truth can be assigned to a box that does not properly contain 

a tree. Again, precision and recall are calculated and combined into the F1-score for 

classification of each class. The formulas used are included below. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 1 =  
𝑇𝑃𝐶𝑙𝑎𝑠𝑠 1

𝑇𝑃𝐶𝑙𝑎𝑠𝑠 1 + 𝐹𝑃𝐶𝑙𝑎𝑠𝑠 2 + 𝐹𝑃𝐶𝑙𝑎𝑠𝑠 3
 Eq. 6 

𝑅𝑒𝑐𝑎𝑙𝑙𝐶𝑙𝑎𝑠𝑠 1 =  
𝑇𝑃𝐶𝑙𝑎𝑠𝑠 1

𝑇𝑃𝐶𝑙𝑎𝑠𝑠 1 + 𝐹𝑁𝐶𝑙𝑎𝑠𝑠 2 + 𝐹𝑁𝐶𝑙𝑎𝑠𝑠 3
 

Eq. 7 

A FP for a class occurs when, for instance, a tree of class 2 or 3 is classified as class 1. 

A FN occurs when a tree of class 1 is classified as class 2 or 3. During training, the 

precision, recall, and F1-score are calculated on the validation set to ensure training is 

progressing properly and the model is learning. Figure 4 demonstrates the learning curve 

of the model on the validation set during training.  
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Figure 4: Training metrics for YOLOv5, folds 1 through 5 

Once all five models are trained, they are each tested on their corresponding test set. As 

stated, the surveys included in the test set of each data split were not used for training, 

and thus represent a fair assessment of model performance. A table of the overall results 

for both identification and classification is included in Appendix A: RPAS Detection 

Results. In the instance that multiple surveys are withheld for testing in a fold, such as in 

sets 3, 4, and 5, a weighted average of the metrics is calculated corresponding to the 

number of trees contained in that survey so that a final overall metric can be determined 

for that fold. It is seen that the large configuration of YOLOv5 has the best combined F1-

score, as well as the best classification accuracies of coniferous and deciduous trees. 

With an F1-score of 74.5% and a stem recall of 87.1%, the model identifies trees fairly 

consistently. Classification F1-scores reveal that the model is also highly accurate at 

classifying identified trees as coniferous, deciduous, or snag: the large configuration of 

the model achieved classification F1-scores of 97.3%, 94.4%, and 90.9% respectively. 
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Results can also be assessed visually. Boxes output from the model are drawn on the 

imagery and compared to the manual annotations. Figure 5, generated using the 

YOLOv5L model, demonstrates the model in action, with the prediction boxes also color 

coded by predicted class.  

 

Figure 5: Sample tree detections and classifications on new RPAS survey 

As can be seen visually, the model is able to detect trees of all classes, and to classify 

the trees into their respective types. The survey above was previously unseen by the 

model; it was not part of the training set. Individual tree crowns are clearly well-delineated, 

especially in the case of conifers. The predictions made by the model in this sample are 

not error free; dense and overlapping deciduous stands remain challenging for individual 

crown detection. However, as discussed previously, deciduous trees are generally not 

considered to be hazardous fuels. Coniferous trees are correctly detected and classified 

with an F1-score of 79.9% - compared to the global average for detection alone at 74.5%, 
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it is clear the model excels at coniferous detection and classification. Detections around 

a structure can also be shown, as in Figure 6.  

 

Figure 6: Sample RPAS property survey and classified tree detections 

Figure 6 demonstrates tree detections around an inhabited structure. As can be seen the 

majority of vegetation, both coniferous and deciduous, is well-boxed and correctly 

classified around the structure. 
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2.4 RPAS Model Discussion 

In summary, a workflow is presented in which aerial imagery is flown using an RPAS and 

collected nadir RGB imagery, processed into a suite of data products, and a CNN is 

developed and applied to detect and classify trees. The workflow developed is fully 

automated and shown in Figure 7. 

 

Figure 7: Automated RPAS image collection and detection workflow 

Once survey bounds are decided, they can be uploaded to the RPAS and the survey is 

automatically collected. Data is transferred onto a computer for processing, which is 

automated and requires only a few keypresses. The resulting outputs can thus be 

collected and generated rapidly and with little work to the individual performing the survey. 

Outputs such as these could be generated on timescales as little as an hour or two from 

flight takeoff to output generation and visualization. This demonstrates the workflow’s 

ability to rapidly gain information about the vegetation surrounding a VAR.  

It is important that YOLOv5 detection results be understood and used in context of their 

limitations. Primarily, the fact that a perfect RPAS model that correctly detects and 

classifies every single tree is an extremely difficult goal to achieve and may be functionally 

impractical to develop. Most significantly in Figure 6, a conifer just to the north of the 

structure was missed by the model. Reasons as to why can only be speculative, but it is 

worth reiterating that the F1-score of 74.5% and the stem recall of 87.1% means errors 

still occur. There are a multitude of variables that can change between surveys and affect 

how trees appear in the final survey imagery, including variations in tree species, tree 

growth, weather conditions, lighting, and RPAS camera or flight parameters. Model 
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performance is expected to only improve as additional surveys are carried out for an 

increased number of training examples, and as model architecture continues to be 

developed in the field of computer vision. RPAS surveys that collect RGB imagery are 

also limited to detecting trees in the overstory. As visible light cannot pass through thick 

canopies, the survey collected by the drone will capture only the top layer of the trees. 

Smaller trees and undergrowth, which can often represent a significant portion of the 

wildfire fuel in an area, cannot be detected using this method.  

RPAS data collection can also be limited due to the upfront cost of the drone system. 

While a number of options are presented for use that range from $400 to $14,000 USD, 

drone purchasing, accessories (including additional batteries), software, and training can 

represent a significant up-front investment. While much of the process in both data 

collection and stitching is automated, it still requires the training and certification of 

personnel piloting the drone. Surveys may also be considered time consuming depending 

on the scenario – while the majority of the work is in preplanning and the flight itself is 

automated, someone must still be present to monitor the drone while it is flying.  

Survey flights can also be impeded by a number of factors. Weather conditions, including 

heavy rains and high winds, can ground the drone. Different drones have different 

weather and wind resistance ratings, but moderate to high winds can limit takeoff and can 

limit the area that can be surveyed due to increased battery consumption. Flights can 

also be impeded by members of the public concerned about privacy and by local bylaws 

that regulate drone flight and imagery collection that vary by jurisdiction.  

The time-lag between collection and data processing is minimal, though not zero. The 

time to plan a survey, fly, process, and interpret the data into useful products are all 

affected by various factors, though each step itself is on the time scale of minutes to 

hours. While instantaneous turn-around is not the intention of this study, the workflow 

represents a means to which fuel information can be collected same-day. 

The proposed workflow can detect and classify individual overstory trees and achieves 

an F1-score for detection of 74.5% and classification accuracies above 90%. Many 

wildfire processes do not operate on the tree-to-tree scale; rather, they are larger scale 
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processes that rely on patches of fuels, including both overstory tree fuels and ground / 

surface fuels. As such, future work should be performed in the aggregation of individual 

tree properties to the stand level. Further, the extraction of other fuel attributes such as 

tree height, crown base height, and crown bulk density from other data products output 

from the survey (such as the pointcloud seen in Figure 1) should be explored. Such work 

could allow for generated fuel maps to be used in additional workflows such as Fire 

Behaviour Prediction. 

The outputs of the proposed workflow offer high resolution overstory fuel detections that 

can be collected and processed rapidly and in an automated fashion. Within the bounds 

of the stated limitations, these outputs could be used as an informational supplement to 

structure scale exposure assessments.  
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3.0 Tree Detection and Classification from Satellite RGB 

Imagery 

While remotely piloted aircraft system (RPAS) imagery can offer extremely high-

resolution information over multiple hectares, the boreal zone alone in Canada covers 

552 million hectares (Brandt et al., 2013). As such, it is infeasible to collect 2 cm resolution 

RPAS imagery across its entire extent. Even ignoring outlying forests and focusing on the 

wildland-urban interface (WUI), it is estimated that Canada has 32.3 million hectares of 

WUI, 10.5 million hectares of wildland-industrial interface, and 109.8 million hectares of 

wildland-infrastructure (including railways and roads) across the country (Johnston & 

Flannigan, 2018). It is then of interest to utilize a new source of data across these massive 

areas. Satellite imagery is increasingly accessible to interested buyers at increasing 

resolutions. Satellites offer reasonably high-definition imagery with high spatial coverage 

and within recent timespans. Satellites such as WorldView-2 offer high-resolution (0.5 m 

panchromatic and 1.8 m multispectral) data with revisit times of up to 1 day (DigitalGlobe, 

2009). The utilization of an algorithm to detect and classify fuels in satellite imagery across 

massive spatial extents is thus of interest.  

Satellite imagery is purchased covering 5 communities within Alberta, as well as their 

surrounding area. A convolutional neural network (CNN), similar to what was developed 

in the RPAS workflow, is utilized to detect trees within the satellite imagery after being 

trained using manual annotations. Model performance is assessed by comparing 

estimated tree densities to manual annotations. A classification scheme to classify trees 

into a proxy for coniferous / deciduous fuel types is then developed and assessed. The 

result is an estimate of wildland fuel coverage and type at high resolutions and at large 

spatial extents. The possible use of these results in a community exposure assessment 

is later demonstrated.  

3.1 Data Acquisition 

Satellite imagery is ordered for 5 communities in Alberta. Seba Beach, Lobstick, and 

Tomahawk are in the boreal forest region of Alberta, while Bragg Creek and Redwood 
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Meadows fall within the rocky mountain natural region. All communities contain significant 

amounts of WUI. A map of these communities is provided in Figure 8. 

 

Figure 8: Satellite survey locations in Alberta, Canada 

The goal is to acquire high-resolution RGB imagery covering the community and its 

surrounding area. A number of specifications are important when collecting satellite 

imagery to ensure it is useful for fuel identification. Resolution is specified to be 0.5 m / 

px: the highest resolution available at the time of purchase across the areas of interest. 

Imagery selected must also be free of cloud cover, as trees are then obscured and 

undetectable. The angle off-nadir is also held to less than 30°; this ensures that trees are 
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viewed at approximately the same angle of incidence. Views that are considerably off-

nadir can impact model performance as trees begin to look significantly different as more 

of the side profile is captured. Finally, the most recent imagery that can be acquired that 

meets all specifications is ordered. An image is ordered in the summer, when all trees are 

green and visible, and a fall/winter image is also ordered, after the point when deciduous 

trees have gone dormant but without significant snow coverage, for later use in fuel 

classification. A side-by-side of satellite imagery near Seba Beach, Alberta, is shown in 

Figure 9 to demonstrate the resolution of the imagery as well as the difference in summer 

/ winter imagery. Table 6 summarizes all acquired surveys, which are then used to 

develop a tree detection model. 

 

Figure 9: Satellite imagery near Seba Beach, Alberta. Summer (left) and winter 

(right) 

 

 

 

 

 



Thesis 
Wildfire Fuel Mapping with Convolutional Neural Networks for Remote Automated 

Exposure Assessment 
Fall 2023 

 

Liam Bennett 30 

 

Table 6: Specifications of satellite surveys used in this study 

Location Satellite 
Date 

Surveyed 
(Summer) 

Date 
Surveyed 
(Winter) 

Area 
(ha) 

Angle Off-
Nadir 

(Summer) 

Angle Off-
Nadir 

(Winter) 

Bragg Creek, AB 
Pleiades-

1 
29-Jun-21 17-Oct-18 4700 21.4 10.6 

Seba Beach, AB 
Pleiades-

1 
12-Sep-19 25-Oct-15 3900 15.9 25.0 

Lobstick, AB 
Pleiades-

1 
15-Jul-19 25-Oct-15 3600 9.0 11.4 

Redwood 
Meadows, AB 

Pleiades-
1 

17-Jul-18 30-Dec-15 4000 18.9 12.6 

Tomahawk, AB 
Pleiades-

1 
12-Aug-17 12-Oct-15 3700 9.8 15.8 

 

3.2 Satellite Model 

The large configuration of the YOLOv5 model is preferred for RPAS imagery (Chapter 2). 

Therefore, this model is also considered for satellite imagery. The same distribution 

provided by Ultralytics is utilized for model training and inference (Jocher et al., 2022).  

A set of annotations is needed to train the model to predict tree locations. Training CNN 

models is most successful when the models are supplied with many examples of the 

object of interest under various lighting conditions, orientations, shapes, and sizes. This 

allows the model to learn the features that constitute the object, allowing for a robust 

detection model to be built. However, manually annotating satellite imagery is time 

consuming, difficult, and prone to errors as trees are difficult to distinguish at the 

resolution available and are closely packed. Further, even small sections of forest can 

contain hundreds or thousands of visible trees. When generating an annotated dataset, 

all examples of the object must be annotated; if trees are left in the dataset but are not 

annotated, they will be interpreted by the model to be negative examples during the 

training process, which can result in instability and an error-prone model. 

To begin training, large satellite images are thus split into more manageable tiles – 150 

m x 150 m (2.25 ha) crops taken from the greater survey image. Thirteen tiles are then 

completely annotated by a human: each example of a tree in the image is manually boxed 

and assigned the class of ‘tree’. These surveys include Bragg Creek, Redwood Meadows, 
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and Seba Beach. Survey tiles are chosen so that trees are included as well as typical 

surrounding environments; dense woods, trees bordering grass fields, and trees in the 

urban and semi-urban environment are all represented in the dataset. Figure 10 

demonstrates a sample of tiles selected for human annotation, and Table 7 summarizes 

the manual annotation dataset for satellite imagery. All 13 tiles are included in Appendix 

B: Satellite Training Tiles. 

 

Figure 10: Example of annotation tiles, in urban, semi-urban, and forested 

environments 
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Table 7: Manual annotation dataset summary in satellite imagery 

Survey Image ID Boxed Trees 

Bragg 
Creek 

BC1 576 

BC2 389 

BC3 486 

BC4 928 

BC5 118 

Redwood 
Meadows 

RW1 412 

RW2 284 

RW3 258 

RW4 295 

RW5 201 

Seba 
Beach 

SB1 609 

SB2 894 

SB3 465 

   

Human annotated tiles are then used to train a blank YOLOv5 model to detect trees. To 

assist in the generation of the many annotations required for training mentioned 

previously, an iterative process is devised, shown in Figure 11. First, a model is trained 

using only manual annotations. This first newly trained model is then used to generate 

predictions over the entirety of the greater satellite image. Model predictions are then 

utilized as a ‘pretraining’ set for a new, blank YOLOv5 model. Pretraining allows weights 

to be initialized and to allow the model to build a level of familiarity with the object prior to 

the regular, full course of training on high-quality human annotated data. The model is 

then refined using human annotated data, and the process is iterated: the model is used 

to generate predictions over the entire satellite image again, and these predictions are in-

turn used as pretraining for another new model. Iteration continues until negligible 

performance increases are observed. This process took 11 iterations to complete. The 

final model is then saved and used for prediction. 
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Figure 11: Satellite model pretraining procedure 

Satellite model training took place on the same machine utilized for RPAS model training. 

In pretraining, satellite surveys and their annotations are tiled in a similar manner, 

resulting in a dataset of 12688 tiles and 5,901,510 corresponding tree annotations. To 

initialize weights, the model is pretrained for 100 epochs at a learning rate of 0.01 with 

the stochastic gradient descent (SGD) optimizer. This is followed by 100 epochs of 

training using only the human-annotated dataset at a learning rate of 0.01. Due to the low 

resolution of the imagery as well as the small size of the objects attempting to be detected, 

limited image augmentation is considered, only random flips were used. The pretraining 

of the satellite model took 4 hours to complete, while the training process took 

approximately 30 minutes due to the low number of human-annotated tiles. 

3.3 Satellite Model Results 

Model performance is assessed via k-fold cross-validation. To ensure fairness, in each 

fold an entire satellite survey is withheld from the pretraining and training set and used 

for testing. For example, when testing on manually annotated tiles in the Bragg Creek set, 

the Bragg Creek survey and annotations are removed from the pretraining set and the 

training set to unsure an unbiased assessment. However, the assessment metric utilized 

for satellite tree detection differs from the precision, recall, and F1-score used in the RPAS 

assessment. Trees in the 0.5 m / px resolution satellite imagery are typically only a few 

pixels in size. This means that the bounding boxes that are drawn are very small. Further, 
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drawn bounding boxes must align with the pixel grid as bounding boxes cannot be 

described in terms of fractions of a pixel. Thus, the minimum step a bounding box can be 

placed is 0.5 m. As the formula for intersection-over-union (IoU) is calculated as a fraction 

of area of overlap over area of union, shifting a corner of a bounding box by even a 

singular pixel can cause the area of union to grow significantly, or the area of overlap to 

shrink significantly, even though the tree is still approximately bounded. Figure 12 

demonstrates how a tree detection shifted merely by a single pixel left and downwards 

can result in an IoU of 0.33 – well below the 0.5 threshold normally used for scoring a 

‘correct’ box. 

 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
=

6

18
= 0.33 

Figure 12: Example of how a prediction box placed mere pixels away can result in 

a low IoU 

The result is that a tree must be boxed with near-perfect accuracy to count as a positive 

case. This assessment style is unfair to the model, as there may be the discussed human 

error or disagreement between human and machine understanding of where the exact 

bounds of the tree are interpreted to be. Thus, a metric of stem density is introduced and 

utilized for assessment. 
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Here, the stem of a tree is defined as the geometric centre of the bounding box that 

defines it. Once predictions are generated for the tile in the testing set, measures of 

density of tree stems are then taken from both the predicted results and the manually 

annotated results. Recall that training tiles are square tiles with side lengths of 150 m. To 

calculate density, a circle with a 20 m radius is centered on each grid location and the 

number of stems in each circle is counted. The grid location is then assigned a density 

value (ntrees / area) in units of trees per square metre. However, this means that a grid 

location in a treeless field 20 m away from the nearest trees will still record the grid 

location as having some trees per square metre. To correct for this ‘blurring’ effect, a 

second circle is used with a radius of 3 m. If no tree stems are within this circle, the grid 

location is set to 0. Figure 13 demonstrates both the issue of an area far from trees being 

assigned a density value, as well as the 3 m circle used to address the issue. Finally, the 

density grids of both manual and predicted trees can be compared. 

 

Figure 13: An area without trees (a) could still be assigned a tree density value if 

a large radius is used alone. The 3 m circle (b) is used to set this cell to 0 if no 

trees are found. 

The manual and machine-predicted densities of the grids overlaid on each tile are 

compared, and R
2

 calculated. Table 8 summarizes the results of the k-fold. 
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Table 8: Satellite detection assessment results 

Survey 
Image 

ID 
Image 

ID 

Actual 
Tree 

Boxes 

Predicted 
Tree 

Boxes 
R2 

Bragg 
Creek 

1 BC1 576 558 0.73 

2 BC2 389 471 0.60 

4 BC3 486 539 0.80 

7 BC4 928 797 0.58 

9 BC5 118 105 0.75 

Redwood 
Meadows 

2 RW1 412 331 0.66 

3 RW2 284 311 0.82 

7 RW3 258 222 0.83 

8 RW4 295 232 0.75 

10 RW5 201 304 0.94 

Seba 
Beach 

2 SB1 609 697 0.71 

3 SB2 894 800 0.85 

4 SB3 465 514 0.83 

Average         0.76 

 

Densities correlate with an R
2

 of 0.76. Sample plots in Figure 14 show the manual and 

predicted tree boxes, along with the generated density comparison chart, and a cross-

plot of manual and predicted tree densities.   
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Figure 14: Assessment of manual and predicted boxes in satellite imagery 

3.4 Individual Tree Classification 

A number of methods for classifying coniferous and deciduous trees from remote sensing 

(RS) data have been explored in research. Persson et al. (2018) used multiple sensing 

bands, including shortwave infrared and near infrared to classify tree species in Sweden 

with a random forest model. Immitzer et al. (2012) also use a random forest to classify 

tree species, here considering up to 8-band WorldView-2 imagery and achieving an 

overall accuracy of 82% when performing object-based classification. Bolyn et al. (2022) 

use a deep learning algorithm to derive tree species proportions from satellite imagery 
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captured via the Sentinel-2 satellite, which acquires imagery at 10 to 60 m resolution, 

depending on the selected band. Researchers used this data to estimate tree species 

proportions in tree stands at a resolution of 2.5 m and achieved an overall R
2

 score of 

0.50 when assessing species proportions, though when mapping majority proportion an 

overall accuracy of 0.73 is achieved. Authors note that combining remote sensing and 

deep learning is advantageous in scenarios such as forestry. Gazzea et al. (2022) use 

imagery from WorldView-2 at 0.5 m / px to classify pixels as pine, spruce, or deciduous, 

and achieve F1-scores 0f 0.883, 0.648, and 0.761 respectively. Overall, classifying tree 

species from satellite-collected imagery is a problem that has been explored in research. 

A method for classification for tree classification in this study is outlined. 

The classification of fuels into coniferous and deciduous categories is a useful fuel 

property. As mentioned, coniferous fuels drive wildfires with increased severity and 

intensity, and are considered to be hazard fuels (Van Wagner, 1977). Alternatively, 

deciduous fuels can often limit the spread of crown fires (Quintilio et al., 1991). Tree 

classification, at least into coniferous / deciduous categories, is a requirement for 

exposure assessment. To this end, winter and summer imagery is purchased for the 

same area. While all trees are detected utilizing summer imagery, winter imagery can be 

utilized for tree categorization. Winter imagery is intentionally purchased after deciduous 

trees have gone dormant, but prior to significant snow accumulation on trees. Tree boxes 

generated by the model utilizing the summer imagery are then drawn on the winter 

imagery; as the imagery is georeferenced, it is assumed that boxes generated using 

summer imagery will still box trees in the winter imagery. The fact that deciduous trees 

go dormant, lose leaves, and ‘turn brown’ is leveraged for classification. Trees are 

categorized into ‘brown-in-winter’ and ‘green-in-winter’ categories, a proxy for coniferous 

and deciduous vegetation. 

An unsupervised classification method, k-means clustering, is utilized for tree 

classification in satellite imagery. Unsupervised classification refers to the ability of the 

model to classify without the use of training data. Comparing to the supervised YOLOv5 

CNN model utilized for tree detection, which is fed a set of imagery and corresponding 

annotations to train model weights to identify trees, unsupervised classification methods 
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make classifications directly from the set of data they are provided. This is advantageous, 

as it does not need a training set of annotations to be manually generated, which is often 

a highly time-consuming process, and difficult to perform for two reasons. Firstly, it is 

difficult to distinguish between a coniferous and deciduous tree in summer imagery due 

to the 0.5 m resolution of the satellite imagery. While in high-resolution RPAS imagery 

the different characteristics of each tree type are clear, many of the differentiating features 

of coniferous and deciduous trees are not discernable at 0.5 m / px resolution. Secondly, 

it is difficult to distinguish ‘bare’ or ‘dormant’ deciduous trees in winter imagery at the 

available resolution. Dormant deciduous trees at 0.5 m / px resolution are extremely 

difficult to reliably identify, especially as surrounding vegetation also enters dormancy, 

loses leaves, and ‘turns brown’.  Recalling Figure 9, the figure demonstrates an area in 

both winter and summer imagery; the issues with visually classifying trees as coniferous 

or deciduous in the summer imagery and with identifying individual deciduous trees in the 

winter imagery can be clearly seen. 

These two reasons mean it is an impractical task for a human to build a training dataset, 

as it would require the annotator to either classify trees using summer imagery, or to 

identify trees in winter imagery; both tasks that are likely to result in high error rates. 

However, once tree boxes are drawn on summer imagery, transferring the boxes to winter 

imagery and calculating their color values is a simple task. Finally, it is useful to detect all 

trees in summer imagery and later classify as coniferous or deciduous, rather than simply 

to detect all green trees in winter imagery, as deciduous trees can still impact fire spread 

and danger. 

Once tree detection boxes are transferred to the winter imagery, average color values of 

each boxed tree are calculated. The red (R), green (G), and blue (B) values of pixels 

within each bounding box are averaged, so that each tree has an average R, G, and B 

value, shown in Figure 15 for a green-in-winter and brown-in-winter tree in winter and 

summer imagery.  
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Figure 15: Green-in-winter and brown-in-winter trees, and associated average 

RGB values, in winter and summer imagery 

The k-means clustering algorithm is then applied. Clustering algorithms separate data 

into groups based on the data itself (that it, there is no comparison or training set). In 

particular, k-means clustering iteratively calculates the ‘centre’ of each cluster, assigns 

data nearest to the centre to that cluster, calculates the new centre, and repeats (Muller 

& Guido, 2016). This is done until all data is assigned to a cluster. Inputs consist of the 

data itself, in this case the average RGB values of each tree, and the number of clusters 

anticipated for this dataset, in this case two (green-in-winter and brown-in-winter). Figure 

16 visualizes the input data for the Lobstick, AB survey.  
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Figure 16: R, G, B distributions for trees detected in Lobstick imagery 

As can be seen, much of the variation appears in the red value of the trees. This is logical 

as in RGB color space, increasing a red value while holding green and blue values similar 

and constant results in a color approaching brown. Finally, the results of the k-means 

clustering algorithm applied to the Lobstick imagery across each of the R, G, and B 

dimensions are plotted in Figure 17. 
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Figure 17: Results of k-means clustering algorithm across the R, G, and B 

dimensions 

As can be seen in Figure 17, cluster boundaries are difficult to distinguish. An assessment 

procedure is defined to quantify the accuracy of the k-means algorithm at classifying 

individual trees. 

To assess the results of the classification scheme, boxes are compared to manual 

annotations generated using RPAS survey data. As both RPAS surveys and satellite 

imagery are georeferenced, boxes from one can be overlaid on the other. This is taken 

advantage of for the purposes of satellite tree classification assessment. As previously 

shown, coniferous and deciduous trees can be clearly distinguished by a human 

annotator in RPAS imagery. Thus, manual RPAS annotations can be taken as the true 

class of each tree, and the classifications generated by the k-means algorithm are 

compared. Manual annotations performed in RPAS imagery and detections generated by 

the satellite model are overlaid. A search is performed for satellite detection boxes and 

manual RPAS annotation boxes that box the same tree (defined at various IoU 

thresholds). Figure 18 depicts a manual annotation box made using RPAS imagery as 

well as its corresponding satellite model detection box.  
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Figure 18: RPAS manual annotation boxes and matching satellite model detection 

boxes overlaid on RPAS survey imagery at an IoU threshold of 0.5 

As mentioned, manual RPAS boxes and satellite model prediction boxes are said to box 

the same tree if they overlap with a certain IoU. Due to the issues mentioned above with 

measuring IoU in satellite detection boxes, this is performed at multiple IoU thresholds. 

In Figure 18, the IoU threshold used to define a match is set at 0.5; as this is the most 

strict threshold, only trees that are precisely boxed by both the RPAS and satellite models 

will be considered. Taking the manual RPAS annotations as the ground truth, the 

accuracy of the satellite classification scheme is assessed. Results are included below in 

Table 9. 

 

 



Thesis 
Wildfire Fuel Mapping with Convolutional Neural Networks for Remote Automated 

Exposure Assessment 
Fall 2023 

 

Liam Bennett 44 

 

Table 9: Satellite tree classification accuracy results 

IoU 
Total RPAS 

Annotations 

Total 
Matches 

Found 

Conifers 
Correct 

Conifers 
Incorrect 

Deciduous 
Correct 

Deciduous 
Incorrect 

Conifer 
F1 

Deciduous 
F1 

0 15023 15022 9559 474 3298 1221 0.92 0.80 

0.1 15023 4368 1852 193 1570 581 0.83 0.80 

0.2 15023 1924 670 96 784 298 0.77 0.80 

0.3 15023 814 278 42 352 111 0.78 0.82 

0.4 15023 358 110 17 163 57 0.75 0.82 

0.5 15023 140 46 6 71 14 0.82 0.88 

Average: 0.81 0.82 

 

As can be seen, the results of the classification scheme are promising. Overall, the 

classification procedure yields an average F1-score of 0.81 and 0.82 respectively. Results 

of the clustering are also assessed visually. The image at Seba Beach shown earlier is 

examined in Figure 19 with prediction boxes separated the two classes. 
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Figure 19: Results of k-means classification at Seba Beach, AB, showing (a) 

summer imagery, (b) winter imagery, (c) detections classified as brown-in-winter, 

and (d) detections classified as green-in-winter 

As can be seen, the method separates detections into green / brown classes. These 

detections can then be used to determine where hazardous fuels may exist. 

Comparisons can be drawn between the model outputs and a fire behavior prediction 

(FBP) system fuel type map generated by (A. Beaudoin et al., 2014), shown in Figure 20. 

Both maps in Figure 20 identify coniferous fuels in the west, north, and east portions of 

the image, while trees in the south, northwest, and southeast portions can be classified 

as deciduous. The detections output by the satellite tree detection model are shown to be 

at a much greater resolution than the FBP fuel map. There is some disagreement in the 

northeast (highlighted blue); closer examination of the winter satellite image suggests the 
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fuel map may be in error as the area is classified as fuel type O-1 (grass) in an area where 

trees are seen to exist. This error may be due to an error in the generation of the fuel 

map, or the time difference between the creation of the fuel map and the collection of 

satellite imagery used in this work.   

 

Figure 20: Fuel map comparison, including (a) summer imagery, (b) winter 

imagery, (c) Alberta 50 m fuel map (A. Beaudoin et al., 2014), and (d) satellite 

model detections 

3.5 Satellite Model Discussion 

A number of considerations must be made when viewing or utilizing the results of tree 

detection from satellite imagery. Fuel detections must be understood in the context in 

which they are generated. Satellite imagery resolution is limited, and low when compared 

to aerial or RPAS systems. A resolution of 0.5 m / px means that even large trees that 

have crown widths of multiple metres will only be represented by a few pixels. This makes 

detections susceptible to changes in the environment, such as lighting. This also means 
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that trees at or smaller than this resolution are impossible to detect. Thus, detections 

represent only large overstory trees.  

The accuracy of the model must also be considered. Even under the conditions of the 

study, the model struggles to reliably detect every tree individually. However, as shown 

in the density evaluation, detections considered at a large area extent correlate well with 

manual annotations, reaching an R
2

 of 0.76. Tree detections from satellite imagery using 

this process should then be used in applications where the scale of the task being 

performed covers large areas, and not in circumstances where the detection of every 

individual tree is required or can significantly change the output of the task or assessment.  

The classification of trees output from the process must also be considered in context. 

While a logical proxy for coniferous or deciduous classes, ‘brown-in-winter’ and ‘green-

in-winter’ classifications may not necessarily represent the reality of the fuel environment 

under examination. Trees may turn brown for various reasons, not simply because they 

are seasonal deciduous species. For example, coniferous trees afflicted with disease or 

pests (such as the mountain pine beetle) may shift color towards red or brown as the 

disease progresses, while still being a hazardous wildfire fuel. Misclassifications can also 

occur when the area under examination contains deciduous conifers such as tamarack 

which shed their needles in the fall. Finally, classifications are made based on the 

dominant colour in the overstory; this work does not detect understory fuels. 

There is also an associated error in tree classification from satellite imagery. Though an 

F1-score above 0.8 is achieved, not every tree is correctly classified when compared to 

manual annotations done on high-resolution RPAS imagery. Error can come from several 

sources. In the assessment performed, the RPAS imagery was captured in 2022, the 

summer imagery in 2019, and the winter imagery in 2015. As all are used and compared 

in the classification and assessment procedure, the time lag between surveys could be a 

source of error. As trees grow, age, and are felled, their appearance can change 

drastically, especially over a time period of 7 years (2015 to 2022). This could result in 

trees being detected in summer imagery that do not appear in winter imagery, meaning 

the classification algorithm has incorrect data to base its classification on. This could be 



Thesis 
Wildfire Fuel Mapping with Convolutional Neural Networks for Remote Automated 

Exposure Assessment 
Fall 2023 

 

Liam Bennett 48 

 

resolved with updated satellite imagery, should it be available. Another source of error in 

classification could be the difference in viewing angle between summer and winter 

imagery. While the summer and winter imagery are of the same area, it is not guaranteed 

they are captured from the same viewpoint; the imaging satellite may capture the same 

area on a different route. This could cause issues with detection boxes made in summer 

imagery aligning with trees in winter imagery: the detection box will still align with the trees 

geospatial location; however, the tree may be viewed from a different angle of incidence, 

resulting in background pixels being included in the detection box and used in the color-

based classification scheme. Figure 21 demonstrates this effect. 

 

Figure 21: Tree detected in (a) summer imagery at high angle of incidence; and 

(b) tree detection box overlaid on winter imagery at different angle of incidence 

includes background pixels 

Figure 21 depicts a tree in the Bragg Creek survey. This survey has the most pronounced 

effect as the difference between viewing angles is the greatest. As can be seen, more 

background pixels are included in the box when overlaid on the winter imagery. While 

classification still reaches F1-scores of above 0.8, classifications should be interpreted 

and used only when the nature of the area and forest under examination is well-
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understood. Finally, while RPAS imagery offers very high-resolution images of trees for 

human classifiers to interpret, it is suggested that field work be performed in the future to 

validate the classification procedure outlined above. 

Field work should also be performed to validate the satellite tree detections. The R
2

 score 

of 0.76 was reached when comparing detection density to manual annotation density. As 

the satellite tree detection workflow can only detect large overstory trees, surveyed areas 

should be measured to assess the relationship between satellite detections and field-

measured forest densities. 

Future work should include the aggregation of individual tree detections into stand-level 

fuel maps. As discussed in Chapter 2, the proposed workflow offers individual tree 

detection, while certain applications require stand-level attributes. As such, future work 

should explore the aggregation of individual tree detections into fuel maps at any scale. 

Utilizing additional spectral bands for tree classification is also of interest as a possible 

way to classify trees by species rather than ‘green-in-winter’ or ‘brown-in-winter’.  

While subject to a number of limitations, tree detections from satellite imagery are still a 

useful and informative basis of information when these limitations are understood. The 

method proposed offers a way to generate general inferences about hazardous wildfire 

fuels rapidly and across massive extents. This could be used to generate rough maps of 

hazard fuels across any area where satellite imagery is available; particularly around the 

32.3 million hectares of WUI (Johnston & Flannigan, 2018). With the limitations in mind, 

one possible application of this method of fuel mapping is the generation of remote 

community level wildfire ignition exposure assessments for areas of WUI. 
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4.0 Remote Exposure Assessments 

4.1 Structure Exposure Assessments 

4.1.1 Methodology 

A structure-level exposure assessment determines a value-at-risk’s (VAR) exposure to 

wildfire. VARs can take many forms: dwelling structures, infrastructure, or other assets 

that are deemed to have value. Determining a VARs exposure to wildfire is of interest as 

it allows hazards to be preemptively mitigated and can aid in emergency planning before 

actual wildfire encroachment. FireSmart Alberta, a wildfire preparedness initiative in 

Alberta, defines an exposure assessment procedure for individual structures to improve 

wildfire outcomes. There are many factors that go into an exposure assessment, including 

local vegetation, topography, and building materials (FireSmart Alberta, 2015).  

Structures assessed using the FireSmart assessment are typically along the wildland-

urban interface (WUI) – the border where wildlands and urban areas meet.  Information 

is gathered by visiting the structure and assessing both the structure itself and its 

surrounding environment. The structure then receives a numerical score reflective of its 

exposure to wildfire.  

The FireSmart Alberta home assessment procedure defines several zones around the 

structure and considers vegetation within these zones. Exposure is elevated if there are 

any coniferous trees within 10 m of the structure. In the 10 m to 30 m zone, the 

surrounding forest is assessed as deciduous, mixed wood (coniferous and deciduous), or 

coniferous. Further, if the surrounding forest is coniferous, it is determined whether the 

forest is separated, with wide gaps between tree crowns, or continuous, where trees are 

tightly spaced (FireSmart Alberta, 2015). Scores from each zone are then combined and 

the structure receives a final assessment rating as low, moderate, high, or extreme. In 

the case of high exposures, FireSmart can provide homeowners with advice on how to 

lower their exposure rating by modifying vegetation or making changes to their home, 

resulting in a house less threatened by encroaching wildfires. 

The applicability of the remotely piloted aerial system (RPAS) tree detection and 

classification workflow to a structure scale exposure assessment is explored. This 
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workflow is more appropriate for application at this scale as it is more accurate in both 

detection and classification and can detect smaller trees due to the increased resolution 

when compared to satellite imagery. Application is straightforward: flights are conducted 

in a portion of the WUI, and surveys are stitched using the same method defined in 

Chapter 2. Once stitched, the model developed in Chapter 2 is applied to detect and 

classify trees within the survey. The location of the inhabited structure is manually 

digitized. As the RPAS survey is geospatially projected, detections can then be 

automatically binned based on distance to structure. Distance is measured from the edge 

of the structure to the edge of the tree bounding box. Finally, structures can be examined 

visually from the imagery with detections overlaid, and the number of coniferous trees in 

each of the FireSmart zones can be counted. 

4.1.2 Discussion 

The workflow suggested above is applied. FireSmart recommends no vegetation within 

1.5 m of the VAR, only deciduous within 10 m, and only deciduous (with a limited amount 

of widely spaced conifers also being acceptable) within 10 m to 30 m. Figure 22 is 

generated for a home in the WUI and coniferous tree detections in each zone are counted.  
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Figure 22: RPAS model automated tree detections, colored by distance to 

inhabited structure based on FireSmart Alberta (2015) home assessment 

guidelines 

In Figure 22, the model detects 1 conifer within 1.5 m, 9 between 1.5 m and 10 m, and 

133 conifers between 10 m and 30 m. This could be quickly performed for every structure 

in collected surveys. As demonstrated, even preliminary analysis of model outputs can 

result in information that may be useful for VAR hazard assessments.  



Thesis 
Wildfire Fuel Mapping with Convolutional Neural Networks for Remote Automated 

Exposure Assessment 
Fall 2023 

 

Liam Bennett 53 

 

The proposed workflow could be used to quickly assess overstory tree vegetation around 

a structure in the context of a structure scale exposure assessment. The developed model 

can be applied to imagery collected at any distance from the structure. Further, the 

coniferous / deciduous classification allows for hazard fuels to be identified. If an entire 

community is surveyed, this workflow presents a remote and automated option for 

counting hazardous trees around structures in each of the FireSmart zones. Spacing 

between tree crowns is another consideration in the FireSmart Alberta home assessment 

procedure that could be assessed using this method. The use of orthographic and 

geospatially projected imagery allows the viewer to assess the spacing between trees as 

well as tree size. 

A number of limitations are present in the proposed workflow. Notably, this procedure 

remains ignorant to aspects in the structure scale exposure assessment other than tree 

vegetation. Structure scale exposure assessments include factors such as building 

materials, yard tidiness, deck and roof condition, and topography (FireSmart Alberta, 

2015). These are not assessed by the proposed workflow, and thus it is suggested that 

the proposed workflow supplement rather than replace existing methods. The model 

achieves a detection F1-score of 74.5% and classification accuracies above 90%, 

meaning that errors still occur. In the case of structure level exposure assessments, the 

omission of even one hazardous tree in close proximity to the VAR can affect its rating. 

This is especially relevant as this is a safety-critical-setting, and it is reiterated that this 

study explores the automation of one aspect of exposure assessment and does not make 

the case for replacing existing practices. Errors in detection and classification will also 

occur if the model is applied outside of the domain of its training data (in this study, 

surveys were collected in boreal, rocky mountain, and foothill regions in Alberta, Canada). 

As convolutional neural network (CNN) architectures continue to advance, and as more 

data is added to the training dataset as additional surveys are collected, accuracies in 

both identification and classification are expected to increase. Another important part of 

the exposure assessment workflow is the opportunity to connect with the homeowner and 

open a dialogue about best practices in preparation for a wildfire. Even if some aspects 
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of the assessment process can be automated, it remains important to keep humans in-

the-loop in both the assessment and decision-making processes. 

4.2 Community Exposure Assessments 

4.2.1 Methodology 

As previously discussed, exposure assessments are used by communities to determine 

areas in the WUI that may have elevated exposure to wildfire. Once these areas are 

identified, preplanning activities and even mitigation can take place that is informed using 

fuel maps and exposure maps. In this section, the application of the satellite tree detection 

and classification model (Chapter 3) to exposure assessments for communities in the 

WUI is explored. 

Beverly et al. (2010) outline the first method wildfire exposure assessment method for the 

built environment using spatial analysis. As mentioned, community bounds are defined, 

and a 5 m grid is overlaid on the community. Hazard fuels are identified and used to 

generate wildfire exposure maps for three wildfire ignition types (radiant heat, short-range 

embers, and long-range embers) by measuring the proportion of hazard fuel in a defined 

radius around a grid cell. Fire behavior prediction (FBP) fuel types C-1 (spruce–lichen 

woodland), C-2 (boreal spruce), C-3 (mature jack or lodgepole pine), C-4 (immature jack 

or lodgepole pine), C-7 (ponderosa pine–Douglas-fir), O-1 (grass), and M-2 (boreal 

mixedwood)” are defined as hazard fuels (Beverly et al., 2010). While the satellite model 

cannot identify FBP fuel types to this degree of specificity, it can classify detected trees 

into a green-in-winter and brown-in-winter proxy for coniferous / deciduous. It is also worth 

noting that, aside from grass, the FBP fuel types mentioned previously are coniferous or 

mixedwood fuels. Beverly et al. (2010) also note that deciduous forests are generally not 

considered as fuels of concern. Finally, it is noted that Beverly et al. (2010) only consider 

grass to be a fuel of concern for radiant heat exposure and short-range ember transfer 

and not for long-range ember ignitions. The exposure map for long-range ember ignitions 

is considered because the satellite model is designed to identify and classify overstory 

trees. Ember ignitions are of particular interest; previous post-wildfire investigations have 

shown that the majority of destroyed structures are ignited via ember exposure, such as 
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in the 2016 Fort McMurray wildfire (Westhaver, 2017). Moreover, it has been shown that 

high wildfire exposure correlates well with wildfire burn maps (Beverly et al. 2021). 

Applying the method described by Beverly et al. (2010) using the data output by the 

satellite model is straightforward. First, a WUI community in Alberta is selected, and 

satellite imagery purchased. To this end, Lobstick, AB will be used to demonstrate remote 

exposure assessment generation. Lobstick is a community in western Alberta that is 

surrounded by C-2 and D-1 fuels, shown in Figure 23. Further, the portion of the 

community that is selected consists of rural acreages that have significant intermingling 

of structures and the forest. Figure 23 shows both the satellite image of the area, as well 

as an FBP fuel map (André Beaudoin et al., 2022). 

 

Figure 23: Satellite image and fuel map near Lobstick, AB 

The model (Chapter 3) can be applied to the satellite image obtained. The tree detection 

boxes can be drawn on the satellite image (Figure 24). The satellite image and detections 

have been rotated to display the trees more clearly to the reader due to the off-nadir 

viewing angle. Next, tree classification is performed using winter imagery. Figure 25 

demonstrates the winter image, along with the tree detections separated by class. 



Thesis 
Wildfire Fuel Mapping with Convolutional Neural Networks for Remote Automated 

Exposure Assessment 
Fall 2023 

 

Liam Bennett 56 

 

 

Figure 24: Satellite tree detection boxes 

 

Figure 25: Satellite classification results at Lobstick, AB, showing (a) summer 

imagery, (b) winter imagery, (c) detections classified as ‘deciduous’, and (d) 

detections classified as ‘coniferous’ 
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Once classified, the tree detections are utilized as a fuel map for the exposure 

assessment procedure. All ‘green-in-winter’ tree detections are taken as hazardous fuels. 

The wildfire exposure assessment can be performed using the workflow in Beverly et al 

(2010). Figure 26 demonstrates how the assessment is calculated for long-range ember 

transfer. A circle with a radius of 500 m is placed at each grid cell in the community and 

the fuel groundcover proportion is calculated. 

 

Figure 26: Long-range spotting distance for a cell in the community 
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This can then be repeated for each grid cell within the community. Once nearby fuel 

groundcover proportions are calculated for each grid cell, thresholds included in Beverly 

et al. (2010) are used for converting fuel proportions to a hazard level. Table 10 lists the 

thresholds used. The remote exposure assessment is performed using these thresholds 

(Figure 27). 

Table 10: Exposure classes from Beverly et al. (2010) 

Land-Cover Occupied by Detected 
Coniferous Fuels from 100 m to 

500 m 

Nil 0 

Low > 0 - 0.15 

Moderate 0.15 - 0.30 

High 0.30 - 0.45 

Extreme > 0.45 
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Figure 27: Remote community long-range ember exposure assessment, 

generated using satellite model detections 

4.2.2 Discussion 

The application of the satellite tree detection and classification workflow to community 

scale exposure assessments is explored. This workflow is fully automated (Figure 28), 

meaning information can be generated rapidly for use as input to existing decision-making 

processes. 
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Figure 28: Remote community exposure assessment workflow 

This workflow explores a first-step towards both the generation of extremely high-

resolution fuel maps from satellite imagery, as well as the derivation of high-resolution 

exposure maps from said fuel maps. Compared to manual interpretation the proposed 

workflow (Figure 28) is fully automated while also being remote, generating results quickly 

from RGB satellite imagery. In its current form, this process could be applied to any 

satellite imagery that is both within the domain of the study (i.e., in the boreal, rocky 

mountain, and foothills regions of Alberta, Canada) and within the specifications set in 

this study (0.5 m / px, > 30° off-nadir, clear imagery). This means that individual trees 

could be detected and classified as coniferous / deciduous at any time period in which 

acceptable satellite imagery is available, allowing the change in the landscape over time 

to be assessed if historical imagery is obtained for an area. The workflow can input the 

latest in-specification satellite imagery, guaranteeing up-to-date results. 

The proposed workflow has several limitations. Stand attributes are omitted in the 

detection and classification of individual trees. The hazard fuels used in the above 

assessment are individual coniferous tree detections; these detections are not 

aggregated into stand-level patches. As such, mixedwood stands are not classified as 

they were in Beverly et al. (2010). However, a benefit of individual tree detection is the 

possibility for aggregation into fuel maps of any resolution. In Figure 29, a 30 m grid is 

overlaid on the area surrounding the community, and tree count is calculated within each 

cell. The proportion of green-in-winter trees within each cell is also calculated. Future 
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work should investigate the use of calculated metrics to aggregate detections into stand-

level patches. 

 

Figure 29: Tree count (left) and green-in-winter proportion (right) maps 

aggregated from individual tree detections 

The mapping of grass as a hazardous wildfire fuel was omitted from this study. Methods 

for mapping grass have been explored in other research and could be incorporated into 

the proposed workflow. The limitations of the satellite tree detection and classification 

workflow are reiterated – this workflow only detects large overstory trees and classifies 

as coniferous or deciduous based on a proxy (‘green-in-winter’ or ‘brown-in-winter’) rather 

than coniferous or deciduous categories directly. This could influence exposure ratings 

when coniferous trees appear brown in the winter because of pests or disease, or difficult 

to classify species such as tamarack. These may biasedly lower the perceived community 

exposure should this proposed method be relied upon alone. The accuracy of the satellite 

tree detection and classification model can also limit the applicability of this fuel mapping 

method. The model developed in Chapter 3 correlated tree detections to human 

interpretation of the same imagery at an R
2

 of 0.76, with classification scores above 80%. 

As wildfire planning is a safety critical task, all sources of error and limitations must be 

carefully considered, understood, and communicated when new methods are explored. 
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This section explores a wildfire exposure assessment, rather than a full threat or risk 

assessment. The R11 Forest Management Plan, a document that outlines forest 

management activities for the R11 Forest Management Unit in Alberta Canada, provides 

an example of a wildfire threat assessment (Alberta Sustainable Resource Development, 

2007). The threat assessment contains four components – fire behaviour potential, fire 

occurrence risk, values at risk, and suppression capability. While the proposed method 

of mapping wildfire fuels identifies and classifies trees, its outputs are not sufficient to 

inform fire behaviour potential mapping, which considers additional fuel attributes, 

topography, and climate. Finally, work has recently been performed investigating 

directional vulnerability to wildfire (Beverly & Forbes, 2023). The work in this study 

consisted of omnidirectional exposure assessments and did not consider how wind 

trajectories can influence community exposure. 

The availability and recency of satellite imagery should be considered. Satellite imagery 

is not always available at the resolution and specifications required. Despite having return 

periods of up to 1 day, this varies significantly depending on the location of the area of 

interest. Further, conditions may be unfavorable for satellite imagery capture on the day 

the satellite passes the area of interest. In Canada, the boreal forest may be snow 

covered or dormant for much of the year, leaving only a few months where ‘summer’ 

imagery can be collected. The collection of this imagery may be further impeded by clouds 

and other atmospheric conditions. Depending on the orbit of the satellite capturing the 

area, the angle off-nadir may also be too significant for the algorithm to be reliably applied. 

These limitations can result in a time-lag between the present day and the date at which 

suitable satellite imagery can be collected. Imagery used in this chapter was purchased 

between 2017 and 2021. 

The use of the satellite tree detection and classification workflow (Chapter 3) is explored. 

This study represents a first-step towards automated near real-time high-resolution fuel 

and exposure maps. This workflow is not intended to replace existing procedures and has 

limitations. There are multiple areas for future work. Additional validation through 

comparison with ground measurements and manual classification would improve the 

assessment of classification accuracy. The generated remote community exposure 
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assessments should be compared to existing validated community assessments to 

determine differences. This may be challenging to perform, as a fair comparison requires 

that a community assessment be performed at the same time acceptable satellite imagery 

is available. Further, the detection of other hazard fuels, such as grass, should be 

explored to extend the analysis of the fuel environment – the current assessment is limited 

to long-range ember exposure (a process that only includes tree fuels). The aggregation 

of individual tree detections into stand-level attributes should be further explored. 
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5.0 Conclusion 

5.1 Summary 

A workflow is presented wherein tree vegetation in the overstory can be detected from 

remotely sensed (RS) data products including remotely piloted aircraft system (RPAS) 

and satellite RGB imagery. Detections are performed utilizing a convolutional neural 

network (CNN); classifications are also generated for detected trees. The CNN trained on 

RPAS imagery is able to detect trees and to classify as coniferous, deciduous, or snag 

with detection F1-scores reaching 74.5% and classification accuracy above 90% across 

all classes. Satellite imagery is used to train a separate CNN to detect trees, and 

classifications are then made utilizing a k-means clustering algorithm. Satellite tree 

detection densities reproduce manual annotation densities with an R
2

 of 0.76, and 

classification accuracy is assessed to be above 81% for all classes. The potential use of 

these detections is demonstrated for exposure assessment. Satellite detections are 

utilized in a community scale wildfire ignition exposure assessment, showing how satellite 

tree detections can offer high-resolution and recent data for remote automated 

assessments. RPAS detections are shown around a value-at-risk (VAR), and vegetation 

in each of FireSmart Alberta’s priority zones is highlighted.  

5.2 Contributions 

A framework is presented for the automated processing of RS imagery into overstory fuel 

maps. A method of collecting fuel information using RPAS is shown to offer a high-

resolution method for fuel detection at the individual tree scale. A similar method using 

satellite imagery is also proposed; a model is developed and used to convert RGB satellite 

imagery into overstory fuel maps. Finally, a possible use of the generated fuel maps in 

exposure assessments at both the community and individual structure scale is 

demonstrated.  

5.3 Limitations 

Several limitations to the work performed remain evident. The accuracy of the CNN tree 

detection models from RPAS and satellite imagery could be improved. As the field of 

computer vision progresses, models continually become more accurate and stable. As 



Thesis 
Wildfire Fuel Mapping with Convolutional Neural Networks for Remote Automated 

Exposure Assessment 
Fall 2023 

 

Liam Bennett 65 

 

such, new models and CNN architectures should be implemented as they become 

available to ensure tree detections and classifications are as accurate as possible. 

Accuracy could also be improved though further data collection containing diverse tree 

species in a variety of conditions to enrich the training dataset with additional examples. 

It is also noted that wildfire fuels consist of more than overstory tree vegetation. All work 

in this study is performed utilizing overstory tree detections and classifications; surface 

fuels such as grass, litter, and other tree fuels in the understory are not considered. 

Further, validation is performed by comparing detections to manual annotations of the 

same imagery. It may be of interest to perform site measurements of stand species and 

densities to validate tree classification and tree detection accuracy. 

This study took place in the boreal, foothills, and rocky mountain regions of Alberta, 

Canada. As such, application to new regions would require the collection of new datasets 

for training the tree detection models to detect and classify tree species that may not have 

been seen within this region. Application of the workflow in regions beyond the domain of 

this study was not explored. 

Limitations also exist in the community exposure assessment workflow. The lack of grass 

detection limits the community exposure assessment to long-range embers. Grass 

detection should be added, though this task is not trivial as grass is only considered a 

hazardous fuel at certain lengths and moisture contents. Fuel maps generated via the 

satellite tree detection and classification workflow define hazard fuels as any location 

where a coniferous tree was detected and did not aggregate detections to the scale of 

tree stands, meaning hazard fuels consisted of overstory coniferous fuels only.  

The resolution of satellite imagery limits tree classification, which in this work is performed 

using color information. This study used a ‘green-in-winter’ and ‘brown-in-winter’ proxy 

for coniferous and deciduous classification. While classifications were shown to be fairly 

accurate when compared to high-resolution RPAS annotations, if classifications are 

applied in areas where coniferous trees appear brown in color (for example, due to 

disease or pest), they will either be interpreted as deciduous or not detected at all. This 

proxy for coniferous and deciduous classification must be understood and communicated 
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when applying the algorithm to new areas. The model should only be applied in cases 

where the nature of the fuel landscape is understood so that any errors or issues can be 

identified. Additionally, the availability, recency, and quality of satellite imagery can be a 

limiting factor, as specific cloud cover and viewing requirements should be satisfied when 

purchasing imagery. 

The use of RPAS detections in structure scale exposure assessments is subject to 

several limitations. Utilizing an RPAS platform can be a convenient way to collect aerial 

data but can be subject to flight limitations. Depending on the RPAS platform, battery life 

can limit the size of surveyed areas if no power is available for recharging at the survey 

site. Weather, site conditions, or legal restrictions can limit where and when RPAS 

surveys can be performed. Finally, the proposed exposure assessment workflow 

considers only local overstory tree vegetation, and thus should not be used as a substitute 

for complete FireSmart exposure assessments.  

5.4 Future Work 

Future work is proposed. Pace should be kept with advancements in CNN architecture to 

continue to increase detection and classification accuracy. Further, field validation for 

RPAS and satellite tree detections should be performed in order to improve accuracy 

assessment. The RPAS model is shown to be accurate in classifying coniferous, 

deciduous, or snag trees. The expansion of these classes into actual tree species, a 

useful characteristic in fuel mapping, should be explored with the collection of additional 

surveys to increase the size of the training dataset. Similarly, detecting grass from satellite 

imagery is also of interest; this would allow for a short-range ember and radiant heat 

exposure assessment to be performed. These exposure maps should be compared to 

existing community exposure maps to validate the procedure and contextualize any 

errors.  

Future work could explore the generation of more detailed fuel maps from other data 

products. In the case of RPAS, a pointcloud is also generated when stitching the survey 

using photogrammetry. This could prove useful data to describe the 3D aspect of fuels. 

In the satellite workflow, other research has shown that additional spectral bands can be 
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used to classify tree species – incorporating this data into the proposed workflow could 

allow for the classification of trees as coniferous or deciduous directly, rather than the 

‘green-in-winter’ or ‘brown-in-winter’ proxy. Finally, the aggregation of individual tree 

detections into stand-level fuel patches should be further investigated – detecting 

attributes on the individual tree scale could possibly allow for fuel maps of any resolution 

to be generated if properties are correctly aggregated. 

Finally, the work presented is still subject to the resolution of the data input. While the 

RPAS workflow utilizes extremely high-resolution imagery (~2 cm / px), the satellite 

imagery used was 0.5 m / px. In the future, this resolution is expected to continue to 

improve; thus, work should be performed to keep pace with improvements in RS 

technology to ensure the most accurate and detailed information can be delivered.  

The automation of aerial and satellite photo interpretation is explored, and fuel maps are 

generated. Use of these fuel maps in existing exposure assessment workflows is explored 

in the context of the workflow’s limitations. Overall, this study represents promising 

possibilities for the use of machine learning and remotely sensed data in the field of 

wildfire fuel mapping. 
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Appendix A: RPAS Detection Results 

Model 
k-fold 
Code 

Training 
Cons 

Training 
Decs 

Training 
Snags 

Testing 
Cons 

Testing 
Decs 

Testing 
Snags 

Precision Recall 
Stem 
Recall 

F1-Score 
(Detection) 

F1-
Score 
(Con) 

F1-
Score 
(Dec) 

F1-
Score 
(Snag) 

YOLOv5 
Small   

1 5359 1970 399 1569 763 163  59.2%  76.8%  92.6%  66.9% 95.6% 89.6% 84.7% 

2 5404 2461 514 1524 272 48  78.6%  73.1%  91.8%  75.7% 98.5% 90.9% 90.3% 

3 5596 1947 473 1332 786 89  71.6%  76.5%  87.0%  73.8% 96.9% 93.1% 91.3% 

4 5728 2063 435 1200 670 127  76.5%  77.3%  87.3%  76.7% 96.2% 97.7% 96.7% 

5 5625 2491 427 1303 242 135  59.9%  78.6%  91.4%  67.9% 96.8% 84.8% 95.2% 

RESULTS  68.9%  76.5%  90.0%  72.1% 96.8% 92.3% 91.5% 

YOLOv5 
Nano 

1 5434 1977 399 1569 763 163  58.3%  78.5%  93.0%  66.9% 95.7% 90.6% 86.0% 

2 5479 2468 514 1524 272 48  75.2%  73.8%  93.7%  74.5% 98.5% 89.9% 80.0% 

3 5671 1954 473 1332 786 89  66.3%  77.8%  90.3%  71.5% 97.6% 94.9% 94.2% 

4 5803 2070 435 1200 670 127  71.4%  80.8%  89.9%  75.8% 96.4% 97.4% 94.8% 

5 5625 2491 427 1378 249 135  55.8%  71.1%  94.6%  66.4% 94.8% 80.1% 97.6% 

RESULTS  65.2%  76.7%  92.2%  70.9% 96.6% 92.5% 91.6% 

RetinaNet 

1 5434 1977 399 1569 763 163  58.1%  57.1%  77.6%  57.6% 97.9% 95.9% 82.5% 

2 5479 2468 514 1524 272 48  65.0%  45.4%  79.3%  53.5% 91.7% 40.2% 0.0% 

3 5671 1954 473 1332 786 89  55.7%  63.3%  85.3%  58.6% 89.7% 4.3% 0.0% 

4 5803 2070 435 1200 670 127  70.5%  78.7%  91.7%  74.3% 92.0% 0.5% 0.0% 

5 5625 2491 427 1378 249 135  52.3%  78.0%  95.2%  62.4% 96.3% 90.1% 3.2% 

RESULTS  60.3%  64.0%  85.2%  61.1% 93.7% 40.3% 24.7% 

YOLOv5 
Large 

1 5434 1977 399 1569 763 163  72.0%  71.7%  85.0%  71.9% 96.5% 91.3% 87.9% 

2 5479 2468 514 1524 272 48  78.8%  69.1%  90.1%  73.7% 99.2% 95.8% 77.8% 

3 5671 1954 473 1332 786 89  73.4%  74.2%  88.1%  73.7% 97.7% 95.3% 93.1% 

4 5803 2070 435 1200 670 127  80.2%  75.7%  85.0%  77.7% 95.2% 98.1% 95.7% 

5 5625 2491 427 1378 249 135  74.9%  78.5%  88.1%  76.6% 97.8% 89.8% 93.1% 

RESULTS  75.6%  73.7%  87.1%  74.5% 97.3% 94.4% 90.9% 
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Appendix B: Satellite Training Tiles 
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