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ABSTRACT

Confined animal feeding operations are known to produce odours, which often lead 

to public complaints. Efforts to reduce the odour of confined animal feeding 

operations focus on changes in housing, manure storage and animal diet, but 

evaluation of these efforts and the development of enforcement tools require precise 

odour measurements. This experiment attempted to determine if swine odour 

concentrations could be calculated using Artificial Neural Networks and the results of 

measurements of ammonia and hydrogen sulphide gases and the output of an 

AromaScan™ electronic nose. It was found that a recurrent network with, Symmetric 

Logistic activation of the hidden layer and Logistic of the output layer could be used 

to predict odour concentrations to account for 79% of the variation of the 

concentration measurements.
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1.0 INTRODUCTION

Livestock operations are increasing in size, and in Alberta they tend to be 

concentrated in the southern part of the province, near Lethbridge and Red Deer 

(NRCB, 2003). With large livestock operations come complaints about dust, noise, 

water quality degradation, and, most particularly, odour. Odour complaints need to 

be addressed, and odour-reducing methods are being researched and developed, 

but they need to be evaluated in a consistent and objective manner.

In Alberta, air quality objectives are measured in terms of weighted averages of 

specific gases (Alberta, 2004). Canadian regulations and enforceable standards 

(rather than objectives, which are not as easily enforced) govern gases based on the 

concentrations in air that are known to cause detrimental health effects (CCME, 

1999). With odour, however, the concentrations of the constituent gases may be 

well below health criteria when nuisance effects are being observed. Alberta criteria 

for ammonia and hydrogen sulphide are directed towards odour nuisance, averaged 

over one or 24 hours (Alberta, 2004), although the criteria are stated in terms of 

analytical concentrations. However, livestock operations emit a variety of gases, and 

odour nuisance may occur before the levels based on a single gas have been 

reached.

The standard method of odour measurement is the use of olfactometry, but this 

method can be time and personnel-intensive. In olfactometry, a sample of the odour 

is presented to qualified odour panellists at successively greater concentrations / 

lower dilutions. The extent of dilution required is a measure of the odour’s level 

above its detection threshold, or the odour concentration. However, there are 

drawbacks to the use of this method. Finding and retaining qualified panellists, time 

constraints and expenses of this method work against its ease of application. Thus, 

systems are being developed that do not require the large time investment of human 

subjects, but will retain the use their perceptions as the standard.

The electronic nose has been used for many odour-detecting applications, and best 

results are obtained when the odour-source is simple, consisting of one or two

1
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odorous chemicals. However, livestock odours are caused by a mixture of odorous 

constituents, so that each instrument’s results need to be calibrated and validated 

with human subjects and the particular odour source type before the instrument can 

be used to replace the human panels. This research project attempts to do that for 

swine odours using an electronic nose, and additional input data -  ammonia and 

hydrogen sulphide concentrations. The project will use statistical analysis methods, 

and Artificial Neural Networks to relate odour concentrations as determined by an 

odour panel with the results obtained from an electronic nose and the gas 

measurements.

It is hoped that the models derived from this research can be applied to swine 

manure odour samples so that quick field measurements can be taken of odour, with 

occasional validation and recalibration using odour panels. If odour assessment is 

simplified and made less time-consuming than olfactometry, it is possible that 

regulations may be developed and made enforceable regarding swine odour 

sources, and research into reducing odours from these specific sources may 

proceed with greater ease.

In this thesis, the need for research on odour measurement and a description of the 

different techniques used in the past are in Section 2, Review of Literature. The 

Review of Literature also describes the data analysis methods that have been used 

in the past for odour measurement. Section 3 describes the Objectives of this work 

and the hypotheses to be tested. Methods (Section 4) describes the sampling 

procedure and data analysis methods selected, along with a rationale for the 

methods of each chosen. This section also describes the instrumentation and 

equipment used, and the criteria used for determining success of the experiment. 

Data Collection (Section 5) summarise the data obtained from olfactometry, the 

electronic nose and the gas meters, and describe criteria for data that were removed 

from further analysis. In Results and Discussion (Section 6), the methods and the 

results of the detailed analyses are presented. Section 7 discusses ANN 

Refinement, or the steps taken to improve the network design for predicting odour 

concentrations. In Conclusions (Section 8) is a summary of the conclusions that can 

be drawn from this experiment. Section 9 contains Recommendations for future 

experimentation. Section 10 contains References.

2
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2.0 REVIEW OF LITERATURE

This section provides an overview of the literature as it pertains to the current study.

A description of the current state of swine odour issues in Alberta is presented. This 

is followed by a description of how odour is perceived, and of several odour 

measurement methods. The final portion of this section describes the methods of 

analysing data that have been used and how they may affect the conclusions that 

can be drawn.

2.1 Swine Production in Alberta

In Alberta, the majority of swine are raised in Confined Feeding Operations (CFOs) 

(AAFRD, 2003). CFOs are “An activity on land that is fenced or enclosed or within 

buildings where livestock are confined for the purpose of growing, sustaining, 

finishing or breeding by means other than grazing, but does not include seasonal 

feeding and bedding sites." as defined by the Agricultural Operations Act (Alberta, 

2001) (AOPA). CFOs are governed by AOPA, and administered by the Natural 

Resources Conservation Board (NRCB) and Alberta Agriculture, Food and Rural 

Development.

In 2002, the NRCB was given the responsibility for approvals and enforcement 

regarding CFOs in Alberta. Applications to the NRCB for new confined feeding 

livestock operations numbered 169 (approvals, registrations and authorizations) in 

2002 (NRCB, 2003) and 36 in the first quarter of 2003 (NRCB, 2004). Approximately 

half the applications in each year were for approvals as opposed to registrations, 

meaning that they were for facilities that housed large numbers of animals (NRCB,

2003).

The NRCB’s administrative regions in Alberta are shown below. They are, from 

North to South, Fairview, Barrhead, Red Deer and Lethbridge, as shown in Figure 1. 

From the inception of the AOPA and for the first quarter of 2003, the last period for 

which figures are available, applications for new facilities tended to be in Southern

3
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Alberta, with Lethbridge region having the most. In 2002 - 2003, 47 % of 

applications were for the Red Deer region of the NRCB’s 4 regions. In that fiscal 

year 91 of the 116 applications received in the province were for swine facilities.

NRCB
Regional Offices

APPROVALS, 
COMPLIANCE AND 
ENFORCEMENT

Service Areas

☆

Fairv>c\v
i s *  * 19 t ’SMW «l I r f i d n f
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rm  ' at. 

no  674 tu n
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i r d  Oce*,*» r « * 6 U  

W«40U4SSSM
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Aqr*<t,|lw»p£pfrf*» 10C .W O M  Awf V
l« tN n>gp . *4  * 1 i  evs Phem OIUU'M i«t40US1 *K»
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A A A i i .
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L
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Figure 1: Regions of the Alberta Natural Resources Conservation Board

(Reprinted with permission from the NRCB)
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Canada’s hog inventory grew from 5.2 million head in 1975 to 13.96 million head in 

2001 (AAFRD, 2003). At the same time, the number of farms with swine declined 

from 26,000 in 1976 to 2,677 in 2001, indicating a 10-fold rise in the average size of 

hog operations. Between 1996 and 2001 alone, the swine population of Alberta rose 

by 17%. The distribution of swine populations also changed, so that while areas 

from Camrose and north lost swine, areas near Lethbridge, Medicine Hat,

Drumheller and Wainwright experienced swine population increases of 20, 67, 47, 94 

percent, respectively (using Environment Canada census areas) (AAFRD, 2003).

In 2003, approximately 50% of Alberta’s swine population were in the Red Deer, 

Drumheller and Lethbridge areas and 82% of the animals were in operations that 

have more than one thousand (1127) pigs. Farms with less than 20 pigs are located 

predominantly from Edmonton and northwards to Peace River (AAFRD, 2003). In 

2004, Alberta’s swine population stands at just over 3 million animals (Alberta,

2004).

Of applications for new and expanding facilities received by the NRCB, swine 

facilities account for 54% of the total received in 2002 -  2003, with dairy operations a 

distant second at 17% (NRCB, 2004). Thus, the swine population of Alberta appears 

set to continue to increase for the foreseeable future, again with most of the growth 

expected to be in Southern Alberta.

The NRCB is also the body which receives complaints lodged regarding confined 

feeding operations. In the first year of administering AOPA the NRCB received 981 

complaints about CFOs (Alberta, 2003). Compliance reports for NRCB-govemed 

operations indicate that odour complaints are most common (NRCB, 2003). Of the 

complaints, more than 75% were regarding southern Alberta facilities, with NRCB 

Regions Red Deer and Lethbridge accounting for 52 and 25% respectively, and 249 

complaints generated by a single facility. Complaints regarding facilities (as opposed 

to development permits and non-compliance, livestock disposal and other 

complaints) numbered 431, with 31% of these relating to swine facilities. Odour 

complaints accounted for 42% of all facility complaints.

5
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Swine odour as a nuisance in Alberta has been clearly established by the above 

statistics. Research is currently underway in Alberta and in other jurisdictions with 

high swine populations on methods of reducing swine facility odours. Methods under 

consideration include feed management, housing improvements and manure 

handling methods. However, the success of any measure must be evaluated before 

large scale implementation of potentially expensive changes. Farmers’ reluctance to 

make changes for the purpose of reducing odours can be inferred from a Statistics 

Canada study which found that Alberta’s implementation of odour reduction 

strategies on livestock operations was highest in the country at a dismal 34% of 

operations (Beaulieu, 2004). The most common methods of odour management 

were the planting of shelter-belts, and housing improvements. Feed management 

was also conducted for odour reduction. All methods were found to be more in use 

at swine operations than at any other type of livestock operation (Beaulieu, 2004).

Producers make efforts to reduce the odour emissions from their facilities, but 

without a simple method of measuring odours, the efficacy of these measures and 

the impact of their failure on downwind residents may not be quantifiable. If a field 

method of measuring odours can be shown to be consistent and reliable, measuring 

the nuisance impacts and the benefits of mitigation measures would become simpler.

2.2 Odour

2.2.1 Human perception of Odour

Odour perception is the result of chemicals interacting with nerve receptors (Ohloff, 

1994). When an individual inhales, volatile molecules travel to olfactory receptor 

cells (neurones) high in nose and cross a 20 pm thin aqueous mucous layer to get to 

receptor surface, the olfactory epithelium, which is 6 cm2 in size and approximately 

at level with the eyes (Gardner and Bartlett, 1999). The molecule reacts with 

proteins in the olfactory epithelium. A signal is generated, and travels down the 

nerve axon to the olfactory bulb of brain. The olfactory bulb processes the signal, 

and passes it to the olfactory cortex of cerebral cortex. It is estimated that there are 

100 million receptor cells. A simplified diagram of the olfactory system is shown in 

Figure 2.

6
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Figure 2: Simplified diagram of the olfactory system 

(adapted from Markert, 2002 and Ohloff, 1994)

The Trigeminal nerve also reacts to odours. The reaction is processed as “mouth 

feel” or other physical reactions, such as a warming, burning, tingling or cold 

sensation. However, the response of the trigeminal nerve are processed in a 

different part of the brain from the olfactory nerve, and the trigeminal nerve receptors 

may be less sensitive than are olfactory receptors (Ohloff, 1994). An example of this 

is that Schiffman et al. (2001) found that if an odour sample was supplied to a 

subject one nostril at a time, the subject could not identify which nostril had received 

the odour, but could identify which nostril received the irritant- which is processed 

as a trigeminal response.

Moncrieff (1970) states that non-polar molecules are reflected off the olfactory 

epithelium, producing no signals and therefore are not detected. Moncrieff (1970) 

also stated that it is the adsorption and desorption of odorous molecules that causes

7
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the energy changes in the olfactory epithelium which are translated into nerve 

signals. Molecules that are not adsorbed are not detected as odorous.

Additionally, air must be moving for odour to be perceived (Moncrieff, 1970). If the 

subject holds his or her breath, or plugs their nose, even with odourous molecules 

already in nostrils, perception of odour is diminished.

The sensitivity of the nose to an odorous compound is partially only a function of the 

volatility and vapour pressure of the molecule, which affect its mobility. However, 

musk is a molecule with very low volatility, but human sensitivity to very small 

quantities of this molecule are very high (Moncrieff, 1970).

Murphy et at. (2002) and Ohloff (1994) indicated that olfactory impairment was more 

prevalent as people age. They also found that being a current smoker, and illnesses 

such as epilepsy and nasal and respiratory tract infections affected olfactory abilities. 

Ohloff (1994) also indicated that females are more sensitive to odours than males.

The individual’s previous exposure to an odour also has an effect on current 

perception. Adaptation is the phenomenon in which a person’s response to an odour 

is affected by previous exposure. Adaptation can cause a decrease in sensitivity to 

the odour (specific anosmia) or increased sensitivity (Smeets and Dalton, 2002).

Odorous compounds have been found to range between 30 and 300 g per mole 

(Bauer, et at., 1990). Heavier compounds tend to not be volatile enough to be 

inhaled and carried high up into the nose to encounter the olfactory epithelium. 

Compounds that are lighter than 30 g per mole are usually non-polar, and thus not 

reactive enough with the epithelial lining to be detected as odours. Odourous 

compounds also tend not to have more than 2 polar functional groups. A larger 

number of functional groups would reduce the volatility of the molecules, which 

makes them non-detectable (Gardner and Bartlett, 1999).

Chemical structures can impart general odour characteristics (Bauer et at., 1990). 

Aliphatic esters are the characteristic odours of fruits and flowers. Ketones are nutty 

in tone, and unsaturated alcohols are associated with “intensely green” odours.

8
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However, the relationship between odour and chemical structure is not always 

straightforward, and small changes in structure can cause very different odours. 

Enantiomers are molecules which are chemically identical, except that the molecules 

are non-superimposable mirror images of each other. The enantiomers of limonene 

smell like turpentine and oranges, while enantiomers of carvone have odours of 

caraway and spearmint (Ohloff, 1990). Some ammonia-containing compounds such 

as amines and amides have a slight ammonia-like odour, while others in these 

groups do not, or have other, more overwhelming odour characteristics (Dravnieks, 

1985). Thus, chemical structure alone cannot be used as a method of determining 

an odour’s potential effect on the receptor.

2.2.2 Odour Mixtures

While individual chemicals have their characteristic odours, in nature we encounter 

many odorous mixtures. Le Guen et at (2000) detected 42 odour-active compounds 

in cooked mussels using Gas Chromatography-Olfactometry (GC-O) to separate the 

compounds for detection by trained odour panellists. Although 42 odour-causing 

compounds were detected by the trained odour panellists, only 28 were identified 

using Mass Spectroscopy in a separate output stream -  the others were in 

concentrations too low to be properly identified by the instrument. Schiffman et ai 

(2001) conducted a literature search and identified 411 different compounds 

associated with swine facility odours, but were able to identify only 311 in their own 

samples by instrumental methods.

Without the use of Gas Chromatography (GC) to separate the odorous compounds, 

outside of the laboratory situation, exposure to odours is generally exposure to a 

mixture of chemicals. However, it is not necessarily a mixture of all the present 

component compounds, and the proportions of each of the chemicals in the odour 

would change over the exposure period. In aroma research (generally for the 

manufacture of pleasant odour-active compounds), fragrances are described as 

having three notes -  a top note, consisting of the first chemicals to be detected by 

the observer, a middle note which is perceived next, and an end-note or dry-out, 

perceived last (Bauer et at, 1990). The top note tends to contain the more volatile 

components of the aroma, but not exclusively. The bottom note also consists of 

those odorous compounds with the greatest persistence -  decreasing the actual
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concentration of the odourant does not produce a noticeable decline in the perceived 

concentration.

The perception of an odorous compound is related to its concentration. For single 

compound odours, the relationship tends to be linear, as illustrated in the graph 

below, adapted from Cain and Moskowitz (1974). As illustrated in Figure 3, the 

relationship is not the same for all compounds. The different slopes of the two 

compounds indicate the differences in their odour persistence. For the compounds 

described as top notes in perfumery (represented by 1-propanol in Figure 3), the 

slope of this graph is steep, where a small increase in concentration leads to a large 

perceived increase or response to stimulus. For bottom notes, or less volatile 

compounds, the increase is slower, with a large increase in concentration leading to 

a somewhat smaller increase in perceived concentration (represented by 1-octanol). 

Top note compounds include citrus oils, and bottom notes include musk (Gardner 

and Bartlett, 1999).

1-octanol

Actual Concentration (mole fraction)

Figure 3: Perceived and Actual Concentrations of Odour Sources

(adapted from Cain and Moskowitz, 1974)
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The relationship may not be as clear for mixtures of compounds, as they will contain 

both top and bottom note components. Schiffman et al. (2001) used GC/MS,

GC/FID and GC/FPD to identify 331 odorous compounds in hog manure. However, 

the researchers found that most of the compounds were well below their published 

odour detection thresholds. It was considered that in a mixture of compounds such 

as in manure, there may be additive, synergistic and cumulative interactions among 

the chemicals, affecting their perception by human subjects, although Gardner and 

Bartlett (1999) stated that synergistic effects are probably rare, and are related to low 

concentrations and competition for non-specific odour receptors. Additionally, 

among this chemical mixture are other, non-odorous compounds, such as methane, 

which may act as earner gases and increase the mobility of other compounds in the 

mixture.

The sense of taste and the sense of smell are linked (Rothe, 1988). Additionally, a 

person’s perception of a taste or odour may also be affected by visual clues such as 

food colouring (Rothe, 1988), and, by extension, the sight of a large livestock 

housing facility or manure lagoon. Powers et al (2000) stated that removal of odour 

panels from the source of the odour reduces bias in odour detection (due to 

influences such as wind speed, and visual effects), but that this makes the process 

of odour measurement slower and reduces the possible applicability of a response.

Most exposures to animal odours occurring outside the laboratory also include 

particulate matter, such as dust, dried fecal matter and dried feed. Schiffman et al. 

(2000) found that many odorous compounds were adsorbed onto the sampling bags 

and dust that would be filtered out of collected samples. In un-controlled exposures 

to odour, these would be present to contribute to the subject’s experience of the 

odour source.

The standard method for measuring an odour is by olfactometry. This method is 

accepted by the European Union (CEN 13725:2003) and standardised by ASTM (E 

679-91). Other methods are often used as surrogates for this time and resource 

intensive method, including different methods that depend on human detectors.
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2.3 Odour Measurement Methods

As odour detection is an organic response to varied stimuli, the standard methods of 

odour measurement make use of human subjects in olfactometry. The human nose 

has been found to be able to detect many odorous compounds at levels below 

instrumental detection limits (Le Guen et a/., 2000; Schiffman et al., 2001). Human 

panels are not always easily available, however, and so several instrumental 

methods are often used as a surrogate for the panels.

2.3.1 Olfactometry

Olfactometry consists of the instrument that delivers the odour sample to the human 

observer, and the observers or panellists. Standards for olfactometry govern the 

instrument and the qualifications of a person to be a panellist. The word 

“olfactometer* is used at times to refer to the instrument, and at times to the entire 

system consisting of the instrument and the panellists using it.

The olfactometer must be constructed of materials that do not retain odours. 

Stainless steel and Teflon are the materials of choice for most instrument parts that 

come into contact with the odours. The instrument is designed to provide the odour 

to the panellists at pre-determined dilutions in fresh air, and for the dilution to be 

controlled by an operator.

Cain and Moskowitz (1974) stated that odour concentration cannot be separated 

from hedonic tone in reporting, as a substance that is pleasant at a low concentration 

may be very unpleasant at a higher concentration. This is somewhat accounted for 

by determining the odour’s hedonic tone at or slightly above its detection threshold, 

the minimum concentration at which it is distinguishable from background. The 

substance’s concentration in the odour sample above this threshold can then be 

taken into account in further examination of the odour.

As there is variation among humans in odour detecting-capability, olfactometry 

makes use of the observations of a panel, or group of individuals, rather than a 

single odour observer. In the European Union odour measurement standard (CEN, 

2003) panellists must also be able to consistently detect n-butanol at a concentration
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between 20 ppb-v and 80 ppb-v -  usually expressed as 40 ppb (the geometric mean 

of the two concentrations). A concentration of 40 ppb-v of n-butanol is equivalent to 

123 pg of n-butanol evaporated in 1m3 of a neutral gas. This mass of n-butanol is 

considered 1 European Reference Odour Mass, or EROM. A European Odour Unit 

(OUE) is the amount of an odourant that when evaporated into 1 m3 of a neutral gas 

at standard conditions elicits a physiological response from a panel equivalent to that 

elicited by 1 EROM. Thus, when the odour detection threshold of a substance is 

identified by a panel selected to detect n-butanol at 1 EROM, the two can be 

compared.

Olfactometry is used to determine the detection threshold for an odour as a measure 

of its strength. If the odour can be detected when it is very dilute, it has a low 

detection threshold and is considered a strong odour. Odours that can only be 

detected when not diluted or with a low number of dilutions have a high detection 

threshold and are considered weak.

Odour samples that are collected for analysis in a laboratory, either by olfactometry 

or by other instrumental methods, are generally filtered to remove particulate matter. 

Filtering the sample alters the humidity of the sample, as well as removing some 

nuclei on which odourous molecules may be adsorbed (Schiffman e ta i, 2001). 

Although this is the standard practice, it must be acknowledged that this further 

removes the odour measurement from the experience in the environment.

Rothe (1988) and Powers et al. (2000) noted the influence of visual cues such as 

sample colour on perception of odour and taste. Odour measurement in 

olfactometry seeks to remove these other cues by removing the different visual 

stimulations provided by the different sources, and make the measurement as 

objective as something based on human perception can be.

The instrument delivers the odorous sample to the panellist at a predetermined low 

concentration (very diluted), and the panellist reports if the odour was detected or 

not. The concentration of the odorant is then increased by a factor of two and 

presented to the panellist again. In this stepwise manner, the threshold 

concentration of detection of the odour is determined.
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Drawbacks of using olfactometry include the difficulty of finding qualified panellists, 

time constraints of this systematic and therefore slow exposure of the sample to 

panellists. Qu et al. (2001) found that only approximately 30% of the population met 

the CEN (2003) (at the time in draft form) standard for being able to detect n-butanol 

at 40ppb. Most olfactometers test one panellist at a time, using the results of all the 

people to whom the odour was exposed to determine the odour concentration. The 

University of Alberta’s olfactometer has been developed to reduce the time 

constraints by making it possible to test up to eight panellists at a time.

2.3.2 Gas Chromatography and associated methods

Chromatography is a method of separating mixtures into their different components. 

Gas chromatography (GC) is conducted using either helium, hydrogen or nitrogen 

gas to separate the compounds in a gas mixture. The different components of the 

gas have different affinities for the carrier or solvent phase, and so are eluted from 

the mixture and sent to the detection system at different times. The individual 

compounds may then be identified or further characterised by using Mass 

Spectrometry (MS), Photoinisation Detection (PID), Flame Ionisation Detection (FID), 

Flame Potentiometric Detection (FPD) or whatever method is appropriate for the 

particular mixture.

Gas Chromatography-Olfactometry (GC-O) is a method whereby a portion of the 

eluted gas is sent to a port for detection by odour panellists. This presents the 

compounds to the panellists in a purer form, so that the odour character of a mixture 

can be broken down into its distinctive notes. Another stream of the eluted 

chemicals is sent to a Mass Spectrometer (MS) for identification of the compounds. 

Using this method, LeGuen et al (2000) were able to determine that the 

characteristic odour of cooked mussels comes from the presence of 6 specific 

compounds. GC-0 has been found to be useful if analysis of a particular odourous 

component of a mixture is desired. Ferriera et al (2001) used GC-0 to determine 

which of over 60 identifiable odourous compounds were most responsible for the 

characteristic odours of high-quality aged red wines.
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These methods of using chemical identification to identify odours have their 

limitations. As stated in the section on odours, small differences in chemical 

structure can cause great differences in the perceived odour’s intensity and 

characteristics. Additionally, in the use of GC, the chosen detection method may not 

identify odorous but inorganic substances such as ammonia and hydrogen sulphide, 

which are important components of livestock odours (Bockreis and Jager, 1999, 

Hobbs et al., 2000). Schiffman et al. (2000) hypothesised that synergistic and 

additive reactions among the numerous chemicals in odourous manure samples 

could account for the disparity among detection by instrument and by humans. MS 

and other instrumental detection methods require that each individual compound is in 

a quantity great enough and is eluted sufficiently distantly in time from compounds 

with a similar measurement profile for confident identification. However, for example, 

many ammonia-containing compounds (such as amines, amides, skatole, indole, 

pyridines) have an ammonia-like odour to some degree (Dravnieks, 1985) but would 

be eluted at different times from the GC. Some may be at levels that are too low to 

be identified by MS. Although all would contribute to the perception of ammonia in 

the sample, the recipient of the data would then have to examine the data and 

attempt to come up with relationships among the different compounds that contribute 

to the character of the odour. This is an approach that is being used by several 

researchers (Powers, 2003).

While instrumentation may provide an objective measure of the odour, it is the 

reaction of human receptors that is of interest in odour research. Instrumentation 

methods of measuring odours need to be correlated with human perception of those 

odours in order to be of value.

2.3.3 Electronic Noses

An electronic nose is a device containing an array of sensors which react to the 

presence of the odorant in a consistent manner. Odour sensing devices can be 

created which react by changes in mass, heat generation, changes in optical 

properties (adsorption, reflectivity, fluorescence), and, most commonly, by changes 

in electrical properties (capacitance, resistance, voltage) (Gardner and Bartlett,

1999). The commercially available electronic noses of most interest here are those
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which react to odorous compounds by a change in the electrical resistance of the 

different sensors.

Whatever the response method of the sensor array, the change is measured, and 

the variety of changes in the different sensors can be used to create a profile for the 

specific odour. The responses of the different sensors are characteristic to and 

depend on the specific properties of each sensor, and how they react to the different 

components of an odour.

The sensors in an electronic nose are usually metal oxide or conducting polymers. 

Metal oxide sensors are usually of tin oxide doped with catalytic metals and metal 

oxides such as platinum, palladium, zinc oxide, titanium oxide, or tungsten oxide. 

Metal oxide sensors are effective at 300°C to 550°C, requiring lots of power to 

operate (Gardner and Bartlett, 1999). Conducting polymer sensors, however, can 

operate at room temperature, although they may not be as sensitive as are metal 

oxide sensors (Gardner and Bartlett, 1999). Because of the difference in operating 

temperatures, electronic noses are not currently made to take advantage of the 

properties of both polymer and metal oxide sensors.

The different sensors in an array have different specificities. For repeated uses in an 

environment that is not expected to vary greatly, sensors and operating temperatures 

can be chosen to maximise the value of the information they provide. Wilson et al. 

(2000) used 3 different metal oxide sensors operating at 10 different temperatures to 

create a model that was adequate for discriminating among 7 different chemical 

odours.

The pattern of response of an electronic nose can be added to a library of odours 

detected, and used to discriminate among odours. Electronic noses have been used 

to measure fruit ripeness (Brezmes e ta i, 2001; Brezmes et al., 2000), dairy produce 

freshness (Capone et al., 2001; Goodner et al., 2001), to discriminate among 

different types of cheeses, coffees and alcohols (Gardner and Bartlett, 1999) and for 

identifying pesticide residues (Baby e ta i, 2000).
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Wilson et al. (2000) and Hudon et al. (2000) found that a longer sample time 

improved the results of the electronic nose sampling. Wilson et al. (2000) especially 

found that the data clusters were better (more similarity within, more differences 

among clusters) when the sample time was longer.

Brezmes, et al. (2000, 2001), in their experiments on fruit ripeness measurement 

found that the use of electronic nose data was enhanced by the use of other data 

that could be gathered about the samples, such as fruit weight and average surface 

characteristic. In their work, electronic nose data were compared with traditional 

fruit-ripeness measurement techniques in a successful attempt to determine if the 

electronic nose data could be used in place of destructive methods.

Misselbrook et al. (1997) found that an AromaScan electronic nose’s sensor 

response could be transformed to a linear relationship with odour concentration with 

approximately 60% variance.

The response of the electronic nose alone is not significant unless it can be related 

to other data. Olfactometry produces a measure of at what concentration an odour 

can be detected. GC and associated measures identify the concentrations of 

individual constituents in an odour. An electronic nose produces a response to the 

complex mixtures of odours so that the presence of more than 300 odorous 

compounds in a swine odour sample is reduced to 32 numbers indicating the change 

in resistance of 32 sensors. The value of those numbers produced must be 

determined by the instrument’s user.

The AromaScan electronic nose contains built-in software that can be used to create 

an odour library, so that one can identify if the odour source is manure, cheese or 

fruit. However, more information can be obtained if the electronic nose is dedicated 

to a specific type of sample for producing more refined data.

Work on an electronic nose often deals with a specific sample type -  fruit at different 

stages of ripeness (Brezmes etai., 2001; Brezmes etai., 2000), to discriminate 

among different types of cheeses (Gardner and Bartlett, 1999), or to estimate the 

strength of odours of different livestock operations (Qu, 2001). The instrument’s
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output is usually analysed and a model created to relate the sensor responses to a 

specific piece of information in which the user is interested about the type of samples 

being analysed. An electronic nose’s use can be made simple or complex as 

desired.

2.3.4 Other Surrogates for Olfactometry

Stuetz et al (1999) attempted to see if H2S data or an electronic nose would produce 

a better surrogate of the odour concentrations at different wastewater treatment 

plants. They found that the relationships that could be derived were best for data 

points within an individual wastewater treatment plant, but that the different plants 

had such different source waters that comparison among them was useless. In 

particular, the H2S was too greatly affected by oxidation and the presence of metals 

in the water to be of use in the data analysis.

Powers et al (2000) used GC/MS and olfactometry data to train an electronic nose. 

They found that regression analysis and the GC/MS data were enough to predict 

panellist response only to an accuracy with an R2 value of 0.23. Twenty-two different 

odourous compounds were identified in the GC/MS. The poor success of the data 

analysis was attributed to the presence of un-quantified compounds and the variation 

among panellists. Between the two instrumental measures -  the GC/MS and the 

electronic nose, the R2 value was as good as 0.81. However, only 8 samples were 

used for this experiment, and the compounds which can be detected by GC/MS do 

not include important manure compounds such as ammonia and hydrogen sulphide.

2.4 Data Analysis Methods

Electronic noses have been known to respond to different odorous samples in 

measurable ways. Attempts are being made to use the response of an electronic 

nose to sample properties, such as fruit ripeness (Brezmes et al., 2001; Brezmes et 

al., 2000), dairy product freshness (Capone etai., 2001) and swine odour 

concentrations (Powers, 2003; Qu etai., 2001).
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Different experimenters have used different data analysis methods to predict odour 

concentrations using electronic nose data. The value of the responses of different 

sensors, data pre-processing methods, and additional data that can be used along 

with electronic nose data need to be determined for each particular application.

Brezmes et al. (2001) found that fruit ripeness could be predicted using the electronic 

nose and additional data, such as surface character and fruit weight. However, the 

data analysis methods that gave the best predictions of the fruit ripeness depended 

on the particular fruit, and the sensors used. It was also found that only two sensors, 

if they were the right ones, could be used for predicting the fruit ripeness to within 

93% success. Data analysis methods that were successful included Partial Least 

Squares with an unsupervised neural network. These researchers found that 

Principal Component Analysis of electronic nose data was useful for predicting the 

ripeness of peaches and pears, but not useful for predicting the ripeness of pinklady 

apples.

Qu et al. (2001) found success pre-processing electronic nose data by use of 

Principal Component Analysis (PCA) before using a supervised artificial neural 

network program. PCA reduced the 32 inputs (from each of the sensors) to 3 inputs, 

accounting for 99% of the sample variation. Using this method, the researcher was 

able to predict the olfactometry results with a Mean Absolute Percentage Error 

(MAPE) of less than 20%. Goodner et al. (2001), however, caution against the use 

of PCA. They found that PCA, as a measure of the variability of the data, was not 

useful in their experiment with simple concoctions and artificially derived electronic 

nose data. However, Goodner’s experiment used six simple artificial odour mixtures, 

which may be far from representative of natural complex odours such as those of 

manure.

Hanumantharaya et al.(1999) used 524 data points to create an ANN using an 

AromaScan™ electronic nose and olfactometry data. They found that using PCA to 

reduce the size of the dataset reduced the time required for training of the 

backpropagation network, and gave a better prediction of the output that did the ANN 

created using raw data. Their experiment reduced 32 sensor inputs to 10 Principal 

Components, discarding eigenvalues that were less than 1% of the variation.
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Stuetz et al. (1999) felt that the response of no individual sensor in the array was 

significant -  rather, it was the pattern of response of all the sensors that was 

important. Canonical discriminant analysis was conducted in order to maximise the 

correlations among the sensors, rather than the variance.

Polikar et al.(2001) also felt that PCA was not particularly useful for analysis of the 

electronic nose data and identifying the most useful sensors. They found that it 

would reduce the dimensionality of the data but not identify which sensors were most 

relevant. The authors used two different approaches to identify which of the 20 

sensors used would provide the most relevant information, and eliminated those 

sensors which did not appear to provide additional information. In an experiment in 

which they used 12 different volatile organic compounds at 7 different 

concentrations, they noted that each sensor’s response was linear within the range 

tested, so that an increase in the concentration of the odorant produced an increase 

in the response of the sensor that could be described in a linear fashion. The 

authors used this linear relationship to interpolate the responses of the sensors to 

increase the number of concentrations to which the model was applied, without 

actually testing it at each concentration. Again, however, this may not be quite 

applicable to complex odours such as manure, which are mixtures of chemicals, 

unlike Polikar’s single chemical system.

From the literature reviewed, the method of analysing electronic nose data cannot be 

pre-determined based on the sample type. Brezmes et al. (2000, 2001) found that a 

single approach did not work for similar types of fruit (apples and pears). Several 

researchers (Goodner et al., 2001) discount PCA, while Qu (2001) and 

Hanumantharaya et al. (1999) found it was a useful tool. Polikar ef al. (2001) and 

Brezmes et al. (2000, 2001) found value in selecting specific sensors for use in data 

analysis, while Stuetz et al. (1999) and Qu et al. (2001) found that the pattern of 

response was more important than any specific sensor. As each electronic nose 

needs to be calibrated for the odour source, the optimal data analysis methods may 

need to be determined for different odour sources.
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2.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is a method of reducing large numbers of 

variables (such as the output of each of the electronic nose’s 32 sensors) to a 

smaller number of broader concepts, or factors (Cody and Smith, 1997). The first 

new variable is a combination of all the others that is highly correlated with the 

original. The second new variable is created after the correlations of the first have 

been accounted for (Cody and Smith, 1997), and is correlated with the remainder of 

the dataset. Each of these new variables is called a Principal Component, and is the 

sum of each of the variables multiplied by the eigenvector. The value of the 

eigenvectors indicates the importance of that particular input variable in creating the 

first Principal Component. In a dataset with 32 variables, the sum of all the 

eigenvalues is 32, and the magnitude of each eigenvalue explains the proportion of 

the sample set’s variance that is explained by that factor or Principal Component.

2.4.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are software programs for creating models of 

complex processes. ANNs are useful when the relationships among inputs and 

outputs are not well understood, and some relevant data are unavailable for 

developing a model (Hopgood, 2001). ANNs are also useful when it is not known if 

the data are related in a linear fashion or a nonlinear fashion (such as logarithmic, or 

trigonometric relationships).

In unsupervised networks, outputs are categories which the network identifies. The 

method is described as unsupervised or self-organising, and the network is trained to 

recognise patterns in the dataset (Zahner and Micheli-Tzanakou, 2000). The 

AromaScan AS32 (Osmetech, Crewe, UK) (AromaScan™) electronic nose has an 

internal ANN software package that is an example of an unsupervised ANN. The 

patterns of response of the 32 sensors in the AromaScan are called odour 

fingerprints, and they are used to build up a library of odours. The AromaScan™ can 

then be used to identify different odours. In the work of Brezmes et al. (2000, 2001), 

unsupervised networks were used to put the fruit into different classes of ripeness.

In supervised ANNs, output data are numerical values. Supervised ANNs have been 

used successfully to predict treated water quality (Baxter et al., 2002) and odour
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concentrations (Qu et al., 2001). Hanumantharaya et al. (1999) used an 

AromaScan™ electronic nose and a backpropagation neural network to correlate 

swine odour concentrations to the electronic nose output.

Artificial Neural Networks are simple imitations of biological nervous systems in their 

organisation (Zahner and Micheli-Tzanakou, 2000). In the “hidden layer” of an ANN, 

which is where calculations occur, each neuron, processes all the inputs it receives 

and sums them to create an output which it passes on to the next hidden layer 

neuron, or the output layer (as determined by the user). Each neuron processes the 

inputs it receives by applying a weighting factor to each and summing them. The 

neuron then applies a mathematical activation or transfer function to the sum of its 

inputs (Hopgood, 2001). Successive training iterations are used to adjust the 

weights applied to each connection to produce the desired outcome of the network. 

The transfer functions applied may be chosen by the user depending on the ANN 

software used. Transfer functions are usually non-linear, and among the most 

commonly applied transfer functions are tangent hyperbolic and logistic 

(Diamantaras, 2002; Hanumantharaya et al., 1999; Hopgood, 2001; Zahner and 

Micheli-Tzanakou, 2000).

In supervised learning, the data are commonly divided into three groups -  learning, 

production and testing data sets (Baxter et al., 2002). The ratios of the sets can be 

selected by the user. The majority of the data is the learning or training set, which is 

used to create the model. The production set is used to modify the models created 

by the training set by back-propagation. Some papers describe the data set only in 

terms of what data were used to train the network, meaning both production and 

training sets. At a specified number of iterations, the calibration interval, the model is 

tested against the production set, and the results used to modify the model, which 

remains based on the training set. Training is usually run until a specified condition 

has been reached -  the test set error reaches a minimum, or a number of training 

eras has passed, or the number of training errors since the minimum error has been 

reached. The testing set is the last set, and is used to test the model but does not 

influence its formation. The success of the model can be estimated by the results of 

applying it to the test dataset. Tests of the predictive ability of a ANN include

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



determination of the value of the coefficient of determination (R2), Mean Squared 

Error (MSE), and Mean Absolute Percentage Error (MAPE).

According to Baxter et al. (2002), it is best to use a simple model. The best model 

for water treatment plants was found by experience to be a 3 layer multilayer 

perceptron, with a linear scaling input layer, logistic functions in the hidden layer, and 

a logistic output layer. The experimenters then changed the number of neurons in 

the hidden layer to optimise the predictive ability of the network. In their experiment, 

with a dataset of 80 cases, with 8 input parameters, it was found that 32 hidden layer 

neurons produced the best model. Zahner and Micheli-Tzanakou (2000), however, 

state that the number of neurons in the hidden layer should number no more than 

one less than the number of elements in the dataset, which would have limited the 

number of hidden layer neurons used by Baxter et al. (2002) to 7.

When a model has been found that yields predictions that are satisfactory, the model 

must be tested to ensure that it has not over-leamed the data. This can be done 

using the same dataset. The dataset is re-sorted so that the training, production and 

test data sets are not the same. When the model is run using this reassigned data, a 

robust model will continue to give acceptable predictions. If the model’s predictive 

capability declines significantly, the model is not stable and cannot be applied.

Some reduction of the inputs may be considered necessary. Goodner etai. (2001) 

proposed that the ratio of data cases to input variables should be no less than 6 to 

avoid over-fitting of noisy data in ANN. For a data set that includes electronic nose 

data and the input of 32 sensors, this would mean that the data set should contain at 

least 192 cases. In some cases, however, this size of data set is not attainable. 

Instead, the number of the input variables can be reduced. Hanumantharaya et al. 

(1999) and Diamantaras (2002) recommend doing this by PCA.

Hanumantharaya et al. (1999) found that a feed-forward backpropagation ANN to 

analyse the output of an AromaScan™ could successfully predict odour 

concentrations. These experimenters used 90% of the data for training, and 10% for 

validation (or testing) of the network. In determining the best network architecture for 

the dataset, simulations were carried out for at least 50000 iterations on the dataset
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of 524 cases. Simulations using hyperbolic tangent and logistic activation functions 

in the hidden layers were found to give the lowest value of mean squared error.

Hopgood (2001) also cautioned that neural networks can be used reliably for 

interpolation, but are poor at extrapolating beyond the range of data on which they 

have been trained.

The extent to which an experiment refines an ANN depends on the dataset. El-Din 

et al. (2004) refined their network by systematically determining the best network 

transfer functions, the minimum number of training epochs and hidden-layer neurons 

required. The selections were based on the minimum number of training epochs and 

hidden-layer neurons that produced a satisfactory prediction. R2 values that are 

close to 1 are considered evidence of good predictions. The lower the value of R2, 

(the coefficient of determination) the poorer the predictive ability of the model. This 

is explained further in Section 4.6.
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3.0 OBJECTIVES

The objective of this experiment is to determine if swine odour concentrations can be 

predicted using other methods. The methods to be tested are hydrogen sulphide 

concentrations, ammonia gas concentrations, and the response of an AromaScan 

electronic nose. This experiment will seek to determine if alone, or used together, 

these measures can be used for predicting the response of an odour panel. The 

hypotheses to be tested are stated below:

1. Odour concentration can be predicted from ammonia data.

2. Odour concentration can be predicted from hydrogen sulphide data.

3. Odour concentration can be predicted from hydrogen sulphide and ammonia 

data.

4. Odour concentration can be predicted from electronic nose data.

5. Odour concentration can be predicted from electronic nose data with 

ammonia and hydrogen sulphide data
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4.0 METHOD

4.1 Sample Collection

The samples used in this experiment are the swine odour samples analysed at the 

University of Alberta’s Odour Laboratory. Their sources were different, although the 

method of sample collection is essentially the same.

Samples are collected in a bag made of Tedlar, which is a material that will not retain 

or alter the odours of the sample. The bag is placed in a chamber such as the one 

below so that the outlet is exposed to the atmosphere via a particulate filter (Figure 

4). The bag is sealed in the chamber, and a vacuum is applied to the chamber. This 

creates a negative pressure that causes the outside air sample to be drawn into the 

sample bag. Air samples collected in Tedlar bags were presented within 24 hours of 

collection to odour panels at the University of Alberta’s Odour Laboratory. Within 48 

hours of collection, samples were analysed using an electronic nose, a hydrogen

sulphide gas meter, and an ammonia gas meter.

Figure 4: Odour Sample Lung
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4.2 The University o f Alberta’s Olfactometer

The University of Alberta’s olfactometer was designed using the European Union 

Standard (CEN, 1998), and modified and upgraded to allow for eight panellists to be 

exposed to the odour simultaneously (Feddes et al., 2001). Panellists are recruited 

each year in September or as needed, and are generally students at the University of 

Alberta. They are compensated for their time, and are also reimbursed for parking 

costs to attend sessions. Panellists must be able to detect n-butanol at a 

concentration of 40 ppb (by volume) to be qualified under the European Union 

standard (CEN, 1998). At the University of Alberta, panellists are tested before each 

session to ensure that they consistently detect n-butanol at a concentration between 

20 ppb and 80 ppb. The panellists are assigned to different ports at random for each 

panel session in which they participate to allow for some slight variations in the 

instrument’s odour delivery. The instrument is operated with a minimum of 5 

panellists at a time.

Figure 5 shows a typical panel station at the University of Alberta’s olfactometer.

The panellists are able to listen to music using the headphones provided, and are 

also permitted to read during the panel. They must not smoke, eat or drink during a 

panel session.

The sample in a Tedlar bag is placed in a sealed chamber and connected to an 

outlet that leads to the olfactometer’s intake valve. Pressure is applied to the 

chamber to compress the sample bag and push the sample out at a rate determined 

by the desired dilution range.

At the individual stations, control valves deliver a mixture of the odour sample and 

fresh air to the panellists. The fresh air is provided by the building air supply 

(pumped directly to the laboratory). The unit is considered a dynamic unit, meaning 

that the air is flowing constantly to the panellist area. An indicator light at each panel 

station indicates to the panellist that the sample presentation period has begun. The 

panellist has 15 seconds from presentation of the sample to identify which selector 

presents the sample.
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Figure 5: Odour Panellist Station at the University of Alberta’s Olfactometer

At the first exposure, a low dose of the sample (diluted 16,000 times) is delivered to 

panellists with a larger quantity of air. The airflow of the air/odour mixture is kept 

constant (20L per minute) as the proportion of the odorous sample is increased 

stepwise throughout the experiment. The panellist sniffs at a single outlet port, but 

must rotate the dial among three selectors supplying air to that port. Two of the 

selectors will provide fresh air, while the third provides air diluted with the sample (or 

n-butanol during panellist calibration). The panellist must state which of the three 

choices is the odour sample. It is a forced-choice method of panellist reporting, 

meaning that the panellist must choose in accordance with ASTM standards (ASTM, 

1991). If the panellist is certain, they select the button marked “Detect”. If they are 

uncertain, they can select the button marked “Guess”. If no choice is made after 15 

seconds, a non-response is recorded. The light to the left of the panellist’s controls 

flashes to indicate that sample presentation has begun (Figure 6).
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When all panellists have made their choice, the concentration of the odorant is 

doubled in the next sample, and panellists must again choose among the three 

possible streams. The location of the odorous sample in the panellists’ selection is 

changed with each successive concentration presented. When a panellist has 

correctly identified the odorous sample twice in a row, the panellist is considered to 

have detected the sample. The next highest concentration is then presented for the 

panellist to determine the sample’s hedonic tone. The square knob labelled 

“Hedonic Tone” in Figure 6 lights up to indicate to the panellist that the sample has 

been identified and that hedonic tone is to be selected. Hedonic tones were not 

used for this current experiment, although the data were collected.

IfSiP

Figure 6: Odour Panellist Selection Controls

Between samples, the ports are flushed with fresh air for 130 to 300 seconds to 

remove residual odours. The system is then “primed” for 90 seconds so that the 

odour sample is present at the correct concentration at each port when panellists are
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asked to make their selections. The machine is pre-set with 12 dilution levels, from 

16000 to 8, with the concentration of the odourant being doubled with each 

successive presentation to the panel.

The instrument is tested and the fittings and valves checked frequently to ensure that 

the instrument continues to operated as designed. A panel’s results are as shown in 

Table 1.

Each panellist’s individual detection threshold (IDT) is calculated as the geometric 

mean of the concentration at which the sample was first correctly identified and the 

panellist was certain (D+) and the concentration immediately preceding it. The level 

of correct identification is validated by a successive correct identification at the next 

highest concentration. In the example, panellist CR correctly detected the sample at 

dilutions of 1000 and 500. The IDT is calculated as follows:

IDT = (2000 * 1000)1/2 

IDT = 1414 OU/m3

It can also be seen from the table that panellist MB correctly identified the sample at 

500 dilutions, but was unable to validate that detection at the succeeding dilution 

level of 250. This panellist was presented with the sample again, until two 

successively correct identifications had been made. This panellist’s IDT is therefore 

higher than that of the others, although the first correct detection was the same as for 

panellists SO, RG and OF.

The panel’s detection threshold (General Detection Threshold, or GDT) is the 

geometric mean of the response of all the panellists:

GDT = (1414 * 707 * 177 * 707 * 707)1/5 

GDT = 616 OU/m3
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Table 1: Example of an Odour Panel’s Response to One Sample

Port Dilution
Panellist""-^

16000 8000 4000 2000 1000 600 250 125 63 IDT

1 CR * G- G+ G- D+ D+ * * * ★ 1414

2 SO * C- C- C+ G+ D+ D+ * * * 707

3 MB * C+ G+ C+ G+ D+ D- D+ D+ * 177

4 RG * C- G- C+ C- D+ D+ * * * 707

5 OF * C- C- C- C- D+ D+ * * * 707
■o
3

OU/m3 = 616

Sample M167 date 9 September, 2003

D =certain, G =guess, + =correct, - = incorrect, C = no response within 15 seconds (computer guess), * = panellist not tested at this level, 

IDT = Individual Detection Threshold. Panellists’ initials are changed for their privacy.



The panel leader’s experience with the particular sample is used to reduce the 

sampling time by not always beginning the procedure at 16,000 dilutions, as shown 

in the example. For this particular odour sample, the panel’s detection threshold was 

616 OU/m3

4.3 The University of Alberta’s Electronic Nose

The University of Alberta’s Olfactometry Laboratory contains an AromaScan A32S 

electronic nose (Osmetech, Crewe, UK). The AromaScan A32S electronic nose 

(AromaScan™) has 32 conducting polymer sensors which are housed inside the unit 

for controlled air-flow, and each connected to a computer output system. When the 

sensors are exposed to an odorous samples, the polymers adsorb and desorb 

different molecular components, altering the resistance of the sensors. It is this 

change in resistance which is measured by the instrument’s internal computers and 

reported. As the polymers are different, their responses differ, and the pattern of 

response of all the sensors is characteristic of the odour sample. Additionally, some 

work has shown that changing the concentration of the odour sample can increase or 

decrease the magnitude of the response of the sensors, although this change is not 

necessarily linear (Misselbrook, 1997).

The sample is connected to the AromaScan™ as shown in Figure 7. The sample is 

drawn into the instrument at a rate of 726mL/minute. The sample passes through a 

solution of 2% isopropanol and then to the chamber housing the sensors. This 

isopropanol stage adjusts the moisture content so that it is similar for each sample. 

The response of polymer sensors can be affected by changes in humidity, and air of 

low humidity can damage the sensors.

The sensor output is sent to a computer, where AromaScan™ software displays the 

measured change in resistance for each sensor, along with the temperature and 

humidity of the sample. The response of the sensors for the entire sampling period 

is recorded at intervals as determined by the operator. In this case, data were saved 

every second during sampling period.
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Figure 7: Setup of the Electronic Nose, Single Gas Meter, Sample and Computer

After each sample was run, the AromaScan™ was run through a cleaning cycle by 

passing air containing the isopropanol solution over the samples. The length of 

cleaning cycle found to be effective ranged from 10 minutes to 2 minutes, depending 

on the samples. The efficacy of the cleaning cycle was verified by running a 

reference cycle after each wash. In the reference cycle, fresh air is passed across 

the sensors, and they do not register a change. Each sampling cycle began with a 

20 second reference, then a 20 second wash, followed by the 600 second sampling 

phase. A typical response is shown below, using sensors 1,10, 20 and 30 (sample 

JP193, September 2003). These sensors were chosen in order to illustrate the 

similarity of response of the sensors, as well as the differing magnitudes of the 

response.
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Figure 8: Response of Typical Electronic Nose Sensors to an Odour

At the end of the sampling period another wash cycle is begun, appearing as a peak 

on the chart above after 640 seconds.

The sample period for the electronic nose was chosen to be 600 seconds. From the 

literature review it was felt that a longer period of sampling would provide a better 

data set for this calibration exercise. Initial sampling in June of 2003 found that the 

change in resistance of the sensors continued to increase beyond the initially chosen 

period of 120 seconds. The sampling period was increased to 300 s, then to 600 s 

when it was seen that the resistance continued to increase. It was seen that the 

meter response in a few cases was continuing to increase at 600 s of sampling. 

However, the rate of increase by that time was slow, and it was felt that 

approximately 90% of the total increase may have been reached by that time. Some 

researchers (Qu, 2002) have used periods as short as 120 seconds and achieved 

satisfactory relationships with olfactometry data. The 600 s sampling period chosen 

was a compromise between getting the absolute value of the change and an 

acknowledgement that in field samples would probably not provide a steady air 

concentration for such a period.
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The AromaScan™’s sensors are known to have different sensitivities to different 

compounds. From the manufacturer’s information, sensor 17 is known to be very 

sensitive to long chained esters, sensor 18 is known to be strongly sensitive to 

aromatics, long-chained alcohols and carboxylic acids. Various other sensors exhibit 

other sensitivities. If an odour source has been characterised so that it is known that 

these components may be significant, future use of the electronic nose could specify 

that the input of these sensors is not agglomerated with other sensors’ responses if 

data pre-processing is conducted.

The AromaScan™ contains software for Artificial Neural Networks. However, this is 

an example of unsupervised networks, which are most useful for categorising data. 

The AromaScan™’s internal library can be built up so that the instrument can 

distinguish among different odour sources, such as manures, foods and perfumes. 

Other data, such as odour concentrations and the concentrations of gases like 

hydrogen sulphide, cannot be added to the network. In the current situation, 

supervised artificial neural networks will be used to predict odour concentration as 

currently measured by olfactometry, using gas meter and electronic nose data as 

inputs.

4.4 Other Instruments

The hydrogen sulphide (H2S) was measured using a Toxi Ultra® Single Gas 

Detector (Biosystems Inc., Middletown, Connecticut, USA). The instrument 

measures H2S in concentrations from 0 ppm to 10 ppm, and records values in its 

internal data logger every 10 seconds. Alarms on the instrument were disabled.

Ammonia (NH3) was measured using a Drager PAC III® Single Gas Ammonia Meter 

(Draeger Safety Inc., Mississauga, Ontario, Canada). The instrument was set to 

alarm when ammonia concentrations are greater than 150 ppm. It has a range of 0 

to 200 ppm, and indicates when the concentration is greater than 200 ppm by 

showing three plus signs (+ + + ).
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The data results from these instruments were recorded manually as the maximum 

reading obtained during a 120 s sampling period, where the value displayed did not 

change for at least 20 seconds.

The electronic nose was connected to the meters as illustrated in Figure 7 above.

For hydrogen sulphide, the readings obtained by the Toxi Ultra® detector were 

observed for the first 180 s of the sampling period during which the electronic nose 

measurements were also being taken.

For each sample, the AromaScan™ was run a second time, with the ammonia 

measuring Drager® unit replacing the Toxi Ultra®. A 120 s sampling cycle was run 

on the AromaScan. The ammonia meter’s alarm was not disabled, and would sound 

at 150 ppm. Sampling was halted if the ammonia reading reached 200 ppm during 

that time period, as this is the meter’s maximum. At a reading of 200 ppm, the meter 

would show three plus signs rather than a value (+ + +). In such cases, the 

ammonia concentration was recorded as 250 ppm, as it is known to be greater than 

the maximum 200 ppm.

The electronic nose readings collected during the ammonia measurement period 

were discarded -  the AromaScan™ was used merely to obtain consistent air-flow 

through the gas meter.

4.5 Data Set

The samples used for this analysis are the swine odour samples that were analysed 

by the University of Alberta’s olfactometry laboratory in the period June 2003 to July 

2004. The laboratory analyses samples from municipal solid waste, wastewater 

treatment plants, and animal rearing operations. Swine odours are the bulk of the 

samples analysed by the laboratory. As each odour type gives a characteristic 

profile, it was felt best that only one type of odour should be used for this experiment 

-  different types of odour are easily identified by electronic noses, but it is difficult to 

compare them.
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The swine odour samples came from two different farms in Alberta, one farm in 

Saskatchewan and one farm in Quebec. Air samples were taken from the 

headspace of barrels in which manure was stored, manure storages, swine housing 

exhausts, and within the housing. Housing unit samples were collected from 

farrowing sows, weiner piglets, growers, finishers, and the nursery. This provided a 

wide range of swine odour sources.

As olfactometry was conducted first, and the leftover material used for electronic 

nose analysis, there is a slight bias in the data set towards the stronger samples. If a 

sample could be identified by the panellists with a great deal of dilution, only a few 

runs would be required to determine the detection threshold and hedonic tone, and 

very little of the sample would be used. With samples that had a higher detection 

threshold, too much of the sample may be consumed to leave an adequate sample 

for use in the electronic nose. When the sample bag appeared small (less than 2L 

remaining), the sample was not put through the electronic nose.

Initial data collection did not include ammonia and hydrogen sulphide data. Thus, 

the first 3 months of data are only useable for analyses that do not include these gas 

measurements.

4.6 Hypotheses and Statistical Analysis

The hypotheses to be tested are listed in Section 3.0 Objectives. In order to 

determine the value of the data collected, the hypotheses are tested in a systematic 

fashion.

The hypotheses to be tested are restated below:

1. Odour concentration can be predicted using ammonia data only.

2. Odour concentration can be predicted using hydrogen sulphide data only.

3. Odour concentration can be predicted from hydrogen sulphide and ammonia

data.

4. Odour concentration can be predicted from electronic nose data.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. Odour concentration can be predicted from electronic nose data with 

ammonia and hydrogen sulphide data

6. Odour concentration can not be predicted using electronic nose, ammonia 

and/or hydrogen sulphide data.

Each of the data sets represented by hypotheses was analysed as presented in 

Figure 9.

HYPOTHESIS 3

HYPOTHESIS 5

HYPOTHESIS 4

HYPOTHESES 

1 and 2
Data analysed by 

Regression

Raw data analysed by 
Artificial Neural Network

Pre-processed data 
(Principle Components) 

analysed by Artificial 
Neural Network

Figure 9: Analysis Methods for the Different Input Data
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Data analysis methods A, B and C are the three methods of processing the data 

used to determine the relationships.

• Method A is linear regression, which can be determined by charting the data 

on Microsoft Excel and finding the equation and multiple coefficient of 

regression (R2) value this way.

• Method B is to enter the raw data into Artificial Neural Network software. The 

value of R2 is calculated, and the output of the Network (predictions) can be 

compared to the actual values of the odour concentrations measured.

• Method C is to pre-process the raw data by Principal Component Analysis 

(PCA), and then process as for Method B.

Hypotheses 1 and 2, using only the gas meter data, are tested using linear 

regression only. Hypothesis 3 uses the data of 2 gas meters. An Artificial Neural 

Network is used for the raw data here, Analysis method B. With only 2 inputs, no 

pre-processing of the data is needed. The small number of different inputs and the 

large dataset would help give the user confidence that a valid relationship can be 

determined.

For Method C, the data from the electronic nose is pre-processed for input into an 

ANN. This is to reduce the number of inputs into the network. This option was 

considered because of the size of the dataset (less than 100 cases) and the large 

number of inputs provided by the electronic nose (32). For future research, attempts 

could be made to make use of only the responses of specific sensors, identified to 

provide the most information, or known (by the AromaScan™’s manufacturer) to 

have affinities to specific components of the odour source.

When the electronic nose data are analysed using linear regression (Method A), 

some pre-processing is also conducted. This is done systematically as follows:

a) Each sensor’s response is plotted against the odour concentration;

b) The average response of all the sensors is plotted against the odour 

concentration; and

c) Principal Components 1, 2, 3 and 4 are plotted against the odour 

concentration.
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The use of this stepped approach is an attempt to determine the minimum amount of 

data required to predict odour concentrations, and the relative value of increased 

data collection and more complicated data analysis methods.

For Hypothesis 5 which uses electronic nose data and the gas meter data, the 

different combinations of data input into ANN are as follows:

a) Raw sensor and gas meter data are entered into ANN;

b) 5 Principal Components are determined using the data set from a) and the 5 

Principal Components form the ANN input data; and

c) the first 3 Principal Components from electronic nose data and the raw data 

from the single gas meters form 5 inputs into the ANN.

Each method of data analysis listed above provides a prediction of the odour 

concentration based on the inputs. Linear regression is an attempt to create a 

straight-line model relating input data to odour concentration. Linear Regression 

using Microsoft Excel to find the equation of the line and predict the R2 value was 

conducted for Method A. Principal Component Analysis was conducted using SAS 

for Method B. ANN using NeuroShell™ was used for methods B and C. ANN also 

produces a model of the output and a value of R2.

For multiple regression determined using Microsoft Excel, the following applies:

R — SSRegressionl f SSjotal 

Where R2 is the coefficient of multiple determination, SSRegression is the Sum of the 

squared residuals from the model and SSTotai is the sum of the squared residuals 

from the data set’s mean. R2 is the proportion of the variance that is explained by 

the model. When the model is perfect, R2 is one.
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When ANN is used to determine the relationships, the value of R2 is given by the 

following equation:

R2 = 1- (SSE / SSyy)

Where

SSE = I ( y - y ) 2

sSyy=  Z  (y ■ y)2

And

y is the actual value of y; 

y is the predicted value of y; and 

y is the mean of the values of y.

NeuroShell 2™’s help file advocates that this is the best value for determining the fit 

of the model for supervised networks. As with linear regression, a value of R2 close 

to 1 indicates a good model fit. In this calculation of the value of R2, negative values 

can be obtained. These indicate a very poor fit of the model, and are shown as 

“error” in the results sections of this work. The dataset and model with the value of 

R2 closest to 1 are selected as the best for predicting odour concentrations.

In using ANN, the model can be refined further. After determining the best data set 

from initial testing, the best network design can be determined through further 

refinement, by systematically testing the different network types, transfer functions, 

and number of hidden layer neurons.

4.7 Artificial Neural Networks Using NeuroShell 2™

The software used for Artificial Neural Networks is NeuroShell 2™ (NeuroShell™), 

created by Ward Systems Group Inc. NeuroShell™ permits the user to apply 

supervised or unsupervised learning models, choose the network architecture, the 

number of neurons in the hidden layers, their activation functions, and the output 

activation type.
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Unsupervised learning is used for outputs that are categories. In this experiment, the 

desired output was a numeric value, so supervised networks were used. The default 

network type for the data was a Ward 2 network, containing 3 slabs in the hidden 

layer, each containing 4 neurons. The activation functions of the slabs were left at 

their defaults: Gaussian, Gaussian Complement and Tangent-hyperbolic functions.

The three datasets to be tested using ANN were made into different spreadsheet 

files for entry into NeuroShell™. Each file was entered into the NeuroShell™ Batch 

Processor. The number of input slabs was determined by the dataset. If the dataset 

to be used contained only 2 inputs (example, hydrogen sulphide and ammonia 

measurements), there were 2 neurons in the input slab. When the raw data from all 

measurements were used, there were 35 neurons in the input slab. NeuroShell™’s 

test set extraction module was used to set up the training, testing and production 

files, which split the datasets in the ratio 3:1:1. The software was also used to create 

the maximum/minimum files, and the data scaled so that data from outside the 

training range can be scaled into the model and will not be set to one of the 

extremes.

The network was set so that the training dataset was checked against the testing 

dataset after every 200 events (the calibration interval was set at 200, which worked 

out to approximately every 2 to 3 epochs, depending on the input dataset), and this 

used to update the weights applied to the training. At the end of the 100 epoch, or 

full runs of the entire training dataset, the network would stop training, and the model 

it created was applied to the production set. The value of R2 for the production set 

was used to determine the best input dataset.

ANNs can be refined to determine the optimal architecture, number of hidden layer 

neurons, their activation functions, and the optimal number of training epochs. This 

first round of ANN was used to determine the optimal dataset. Section 7.0, ANN 

Refinement describes the further refinements conducted to create a more optimal 

network.
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5.0 DATA COLLECTION

Over one hundred samples were collected over period of approximately 1 year. For 

the first 3 months, ammonia and hydrogen sulphide data were not collected. The 

data collected from these first few months are still used in the analyses that do not 

use the gas measurement data (hypothesis 4). Additionally, some scheduled sample 

measurement was lost due to operating problems with the electronic nose -  a blown 

fuse in December, and difficulty in scheduling the gas analysis in January. The raw 

sample data are presented in Appendix A.

Outlier analysis was conducted on the dataset to determine if any values should be 

discarded. This was done for hydrogen sulphide data and olfactometry 

measurements. The mean and standard deviation of these values was determined 

for the entire dataset. Values that were more than twice the standard deviation away 

from the mean were considered outliers and the data were discarded.

Odour concentrations for the experiment ranged from 96 OU / m3 to 11313 OU/ m3. 

This largest value is more than twice the next nearest value (5040 OU/m3). Outlier 

analysis identified it to be an outlier, and so it was discarded from further data 

analysis.

For samples collected after the first three months of the experiment, the complete 

data set consists of 36 items -  olfactometry results, 2 gas measurements (NH3 and 

H2S) and 33 sensors after discarding the data from 2 sensors. The two discarded 

measures (temperature and base temperature) were found to not vary significantly 

among the samples. This approach was also used by Qu (2002). For samples 

collected before October of 2003, the data set contains only electronic nose data. 

Odour panels also report hedonic tone for each sample. Hedonic tone was reported 

as verbal descriptors or as a number from -4 to +4 during different parts of the 

experiment. Hedonic tone data were not retained for this current data analysis, 

although in future work it could be used. The hedonic tone values noted for manure 

samples when the -4  to +4 scale was used were all negative values. The data 

collection results are summarised in Table 2.
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Table 2: Data Collection Results Summary

Variable Odour

Concentration

Ammonia

concentration

Hydrogen

Sulphide

Concentration

Electronic 

nose change 

in resistance

Number of 

Measurements

119 95 95 119 for 35 

sensors

Minimum 96 0 0.2 -5.5

Maximum 11313 >200* 8.3 56.8

Mean 1563 69 0.9 Not

applicable

Number discarded 1 none 2 none

New maximum 5040 Not

applicable

3.7 Not

applicable

* ammonia concentrations that appeared to be greater than 200 ppm were assumed 

to be 250 ppm for further calculations.

Sixty of the samples were from manure storage barrels and 2 from earthen manure 

storages. The remainder of the samples were collected from housing units 

containing swine of different developmental.

5.1 Sensor and Meter Response

Visual analysis of the data as they were collected showed that the samples did differ 

from each other. Ammonia concentrations ranged from undetectable to over 200 

ppm (the upper limit of the instrument). Samples that had ammonia readings that 

were higher than 200 ppm were recorded as having concentrations of 250 ppm to 

distinguish them from those that were close to 200 ppm. As there are several values 

of ammonia concentration that are listed at 250 ppm, it was decided that removing 

these would be un-representative of the data-set. Removing these high values 

would have reduced the dataset by 26 data points. Outlier analysis was conducted 

by determining the distance of each data point from the mean of all the data. Data
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that were beyond 2 standard deviations of the mean were determined to be outliers. 

For ammonia measurements, no outliers were detected.

Hydrogen sulphide concentrations ranged from 0.2 to 8.2 ppm (the instrument had 

an upper limit of 10.0 ppm). This upper value, and the second highest concentration 

of hydrogen sulphide (6.0 ppm) were both identified to be outliers (beyond 2 

standard deviations away from the mean of the data), and were removed from further 

data analysis. Once these two values were removed, the maximum concentration of 

hydrogen sulphide used was 3.7 ppm.

The AromaScan gives a continuous display of the sensor response. In this 

experiment, sample detection commenced after 40 seconds (20 s reference period 

and 20 s wash). For the different samples, the magnitude of the sensor response 

could be seen to vary, as did the time it took for the sensor responses to stabilise at 

their maximum. No electronic nose data were discarded prior to data analysis.

Removal of all outliers reduced the dataset so that for analyses requiring ammonia 

and hydrogen sulphide data there were 94 samples. For analyses not using the gas 

meter data, there were 119 samples.

5.2 Principal Component Analysis
Principal Component Analysis (PCA) is used to reduce the number of variables used 

to a smaller number for ease of further analysis and manipulation. PCA was 

conducted on the different datasets used in the different hypotheses. The tables of 

eigenvalues and the principal components are in Appendix B.

The first step in conducting Principal Component Analysis to determine the 

eigenvalues is to analyse the data and determine correlation coefficients. It was 

found that the electronic nose sensors were highly correlated with eachother (r>0.8). 

When ammonia and hydrogen sulphide measurements were added to the dataset, it 

was seen that some sensors were positively correlated with ammonia while most 

were negatively correlated with it. Sensors 15,16,21 and 32 were most strongly

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



correlated with ammonia, but even this correlations were poor (r<0.4). All sensors 

were positively and weakly correlated with hydrogen sulphide (r=0.1).

It was found that when PCA was conducted on all the electronic nose data, the first 

eigenvalue would account for 94% of the variation, and that this eigenvalue was 

almost an average of the responses of all the different sensors (except relative 

humidity). This indicates that there were no sensors that were ineffective for this 

data analysis, and, conversely, that a few sensors could not be isolated and used for 

this data analysis (with data from the others discarded). The second eigenvalue, 

accounting for 5% of the sample variance, was positively related to the response of 

some sensors, and negatively to that of others. The third eigenvalue accounted for 

1% of the variance, and was largely related to the sample humidity.

When PCA was conducted using gas meters as well as electronic nose sensor data, 

it was found that 88% of the variance could be explained by the first eigenvalue, 

which again appeared to be the average sensor response. The second eigenvalue 

accounted for 7% of the variance, and appeared to be largely related to ammonia 

measurements, and the sensors which were somewhat correlated with ammonia. 

The third eigenvalue was related to hydrogen sulphide concentrations, and 

accounted for 3% of the sample variance. Eigenvalue 4 accounted for 1% of the 

sample variance, and was related to relative humidity. Only eigenvalues accounting 

for 99% of the sample variance were used in further data analysis.
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6.0 RESULTS AND DISCUSSION

Data analysis in this experiment was systematically conducted to find the simplest 

relationships among the data collected (using the hydrogen sulphide and ammonia 

meters and the electronic nose) and the olfactometry results.

The data were analysed according to the 5 tested hypotheses presented in section

4.6 Hypotheses and Statistical Analysis. The first hypotheses to be tested are 

hypotheses 1, 2 and 3, using gas measurement data to attempt to predict 

olfactometry results / odour concentration by linear regression.

The next hypotheses to be tested are hypotheses 3, 4 and 5 using regression.

When the electronic nose data are used in regression, there was some pre­

processing of the data, which is also described in Section 4.6.

When ANN is used to process the data (Methods B and C), the data are sorted into 

three sets for training, production and testing. The ratios of the three sets are 

chosen to be 3:1:1 (most of the data are used for training). NeuroShell’s Test Set 

Extraction module was used to sort the data into the different groups, by assigning 

20% of the data to each of the Production and Testing sets.

6.1 Hypothesis 1

When the samples were connected to the Drager meter for ammonia measurement, 

it was clear that there were large variations among the samples. Some samples 

caused the alarm on the meter to sound within seconds, as they had ammonia 

concentrations in excess of 150 ppm. Other samples had ammonia readings of zero 

It was hoped that simple linear regression would indicate clear relationships among 

the data.
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Hypothesis 1 is restated as follows:

1. Odour concentration can be predicted from ammonia data.

This was tested by using simple data plots and linear regression. The odour 

concentrations were plotted against the Drager meter readings and the coefficient of 

determination (R2) value found.

When the ammonia data are plotted against the odour concentrations, no 

relationship could be determined, and the value of R2 was found to be 0.04. This is 

illustrated in Figure 10, which indicates that ammonia concentrations cannot be used 

to predict odour concentration.
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Figure 10: Odour Concentration versus Ammonia Concentrations

Powers et al. (2000) also found that ammonia concentrations were a poor predictor 

of manure odour concentrations. This may be in part because a high measured 

concentration of ammonia may indicate that the manure is slightly aged, so that the 

ammonia-containing compounds (amines, amides) may have degraded into 

ammonia and less reactive carbon-containing compounds. The relationship between
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ammonia concentrations and manure odour concentrations is difficult to predict 

because along with the degradation of ammonia-containing compounds, will also be 

the degradation of other (non-ammonia-containing) odourous compounds in the 

sample. The human nose, however, will often detect compounds with ammonia as a 

functional group as smelling “ammonia-like” (Dravnieks, 1985; Schiffman eta i, 

2001). Ammonia-containing compounds in manure samples include skatoles, 

amines, amides, pyridines. Hobbs et al. (2000) also stated that the detection of 

some compounds by olfactometry can be suppressed by the presence of other 

compounds. This may also in part explain the lack of a relationship between 

ammonia concentrations and odour concentrations.

6.2 Hypothesis 2

Hypothesis 2 is as restated below:

2. Odour concentration can be predicted from hydrogen sulphide data.

Hypothesis 2 uses hydrogen sulphide data only to predict the odour concentration. 

This yielded a positive relationship and a better R2 value (0.51) than did use of 

ammonia as a measure, as shown in Figure 11.
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Figure 11: Odour Concentrations versus Hydrogen Sulphide Concentrations
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It can be seen from the graph that the hydrogen sulphide concentrations are 

positively related to odour concentrations. The value of R2, and the spread of the 

data about the trend line show that hydrogen sulphide concentrations are somewhat 

useful as a predictor of odour concentrations, but more data may be needed to better 

define the relationship. Hobbs et al. (2000) found that hydrogen sulphide is a 

compound whose detection is not suppressed by the presence of other odorous 

compounds.

6.3 Hypothesis 3

Neither of the gas meters when used alone provides a satisfactory measure of odour 

concentration, but hydrogen sulphide appears to provide a significantly better 

measure than does ammonia.

Hypothesis 3 attempts to make use of the data of both measurements, and is 

restated below.

3. Odour concentration can be predicted from hydrogen sulphide and ammonia 

data.

Attempts to use data from both gas meters to predict odour concentration are 

hampered by the fact that they are in different ranges. Ammonia concentrations go 

higher than 200 ppm while hydrogen sulphide values only up to 3.7 ppm are retained 

for this dataset.

The gas meter data were entered into NeuroShell2™’s ANN. A Ward 2 network is 

the default network chosen for this experiment. This network produced a prediction 

of odour concentrations as shown in Figure 12.
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Figure 12: Odour Concentration Prediction Using Ammonia and Hydrogen Sulphide 
Gas Meters and ANN

The straight line on Figure 12 represents a perfect relationship between predicted 

and measured odour concentrations. The better the ANN predictions, the closer the 

values would be to the line. Figure 12 shows that when ANN is used to determine a 

relationship between measured ammonia and hydrogen sulphide concentrations and 

odour concentrations as determined by olfactometry, the predictive ability of the 

network is poor. The value of R2 determined for this outcome is 0.58.

Visual examination of the output data also show that the predictive capability of the 

network was poor for the upper, middle and lower ranges of odour concentrations, 

with a tendency to over-predict odour concentrations towards the upper end of the 

range of data provided.

6.4 Hypothesis 4

Hypothesis 4 is restated below:

4. Odour concentration can be predicted from electronic nose data.
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The response of the electronic nose to samples varied, with some samples 

producing high peaks that appeared to continue climbing even after 10 minutes of 

sampling, and others peaking within 2 minutes, or climbing very slowly.

In order to relate the odour concentration to the electronic nose data, several 

approaches were taken. They are restated below:

a) Each sensor’s response is plotted against the odour concentration;

b) The average response of all the sensors is plotted against the odour 

concentration; and

c) Principal Component 1 is plotted against the odour concentration.

After these approaches are explored, the data are systematically tested using ANN 

to determine if this will produce a better predictor of odour concentration than would 

simple linear methods.

For using ANN, the data are tested as follows:

a) Raw sensor data are entered into the ANN; and

b) The data are analysed using PCA, and Principal Components 1, 2, and 3 

are entered into the ANN (accounting for over 99% of the dataset 

variance).

6.4.1 Linear Regression

When the responses of the individual sensors were plotted against the odour 

concentration, the results were similar to that seen in Figure 13 -  no discernible 

relationship. The value of R2 for a trend line for this graph was 0.01.
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Figure 13: Electronic Nose Sensor #1 Response with Odour Concentrations

The second approach is to take the average sensor response and compare it to the 

odour concentrations. The average sensor response was also plotted against odour 

concentrations (Figure 14). The value of R2 was found to be less than 0.01.
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Figure 14: Odour Concentrations and Average of Electronic Nose Sensor Responses
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Qu (2002) took the logarithm of the olfactometry data before plotting it against the 

electronic nose data. Taking the log of the olfactometry results in this resulted in an 

R2 value of 0.01, which was not a significant improvement over the previous case. 

The results of this transformation are shown in Figure 15.
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Figure 15: Log of Odour Concentrations and Average Sensor Response

The value of the data from sensor averages is not expected to be high as the 

sensors vary in their ranges of response. The data were normalised, by converting 

each sensor’s response to a ratio of that sensor’s response for the particular sample, 

and its response for all the samples. The resultant data are plotted in Figure 16, 

which indicates no linear relationship (the value of R2 was 0.004).
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Figure 16: Odour Concentrations and Normalised Sensor Response

6.4.2 Principal Component Analysis

When electronic nose data are analysed by Principal Component Analysis (PCA), 

the first three eigenvalues account for more than 99% of the variation in the data. 

Table 3 shows the first 15 eigenvalues calculated using SAS -  a software program 

for statistical analysis.

The AromaScan gathers 35 measures for each sample -  the odour responses of 32 

different polymer sensors, the relative humidity of the sample, the sample 

temperature and the sensor temperature. The last two measures are found to be 

fairly constant for the duration of each sampling period, and do not vary among 

samples. The relative humidity of the samples does vary, and is added to the output 

of the 32 sensors so that PCA makes use of 33 inputs.

Table 3 shows the eigenvalues used in determining the Principal Components for 

further analysis. Only the first three Principal Components are used in further 

analysis, accounting for 99.6% of the variation. The full tables of eigenvalues and 

the eigenvectors (used to calculate the value of each principle component) are in 

Appendix B.
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Table 3: Eigenvalues of Correlation Matrix for Electronic Nose Data

Eigenvalue Difference Proportion Cumulative

1 29.94 28.33 0.94 0.936

2 1.60 1.29 0.05 0.986

3 0.31 0.24 0.01 0.996

4 0.08 0.06 0.00 0.998

5 0.02 0.00 0.00 0.999

6 0.02 0.01 0.00 0.999

7 0.01 0.01 0.00 1.000

8 5.57E-03 2.19E-03 2.00E-04 1.000

Each sensor’s input into the Principal Components is determined by the 

eigenvectors, which are also calculated by SAS. The table showing the eigenvectors 

for each sensor (contributing to Principal Components 1 to 3) are in Appendix B. For 

each sensor, the value of the eigenvector is multiplied by the value of the resistance 

when the particular sample is connected to the electronic nose. For each sample, 

instead of 33 inputs from the electronic nose, the input into the ANN is 3 Principal 

Components, each consisting of the 33 values compressed according to the 

eigenvectors.

Principal Component 1 can be plotted against the odour concentration. Principal 

Component 1 appeared to be an average sensor response, with approximately equal 

inputs from each sensor. This accounts for 93% of the variation in the data, and so 

may be able to provide a simple measure of how the electronic nose data relate to 

the odour concentrations. From Figure 17, however, it can be seen that this is not 

quite a useful linear measure, yielding an R2 value of 0.04. This indicates that 

variation among the sensors is not the best linear measure of odour concentration, 

although this may be a good measure for use in ANN. Summing the first 3 Principal 

Components produced a similarly poor relationship.
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Figure 17: Odour Concentration and Principal Component #1 for Electronic Nose Data

6.4.3 Artificial Neural Networks

The electronic nose data were entered into NeuroShell using the Ward 2 network 

with 9 neurons in the hidden layer. The 9 neurons and their activations are:

• 3 tanh

• 3 Gaussian

• 3 Gaussian Complement

The network was run for 100 epochs (complete tests of the training dataset). The 

network prediction was then plotted against the actual data (Figure 18).

In Figure 18, the straight line represents a perfect relationship between predicted and 

measured odour concentrations. The scatter plot shows the predictions from the 

ANN. From Figure 18 it can be seen that the electronic nose produced a worse 

prediction than did the use of gas meter data in ANN. The network predictions all 

seemed to be in the mid-range of odour concentrations, not capturing either higher or 

lower values, and with a great deal of scatter about the mid-range. This measure did
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not produce a good prediction of odour concentration. The value of R2 for this 

network prediction was 0.45.
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Figure 18: ANN Prediction of Odour Concentrations Using Electronic Nose Data

Principal Components were then used as input data for the ANN. The same network 

type was run. The results are shown in Figure 19, and did not improve significantly 

from the un-processed data entered into the ANN. The value of R2 for this prediction 

is 0.46.

In Figure 19 the straight line again represents a perfect relationship between 

predicted and measured data. The scatter of data around that line shows the ANN’S 

tendency to predict odour concentrations above or below the measured values.
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Figure 19: ANN Prediction of Odour Concentration Using Pre-Processed Electronic 
Nose Data

Principal Component Analysis did not significantly improve the performance of the 

network. Hanumantharaya et al. (1999) found that PCA was useful, but mostly for 

reducing the time to train the network, not for improving predictive ability. With this 

current data set, training time was not a significant factor. Qu et al. (2001), using the 

same electronic nose and input data type (swine manure odours) found that pre­

processing data by PCA was essential in improving the performance of the ANN. 

This disparity may be due to the different software package used by Qu et al. (2001), 

(Adaptive Logic Network) and activation functions of the neurons in the network. 

Those researchers also used an un-trained olfactometry panel whose results were 

then normalised. This dataset may have contained more noise, which PCA helped 

to reduce.
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6.5 Hypothesis 5

Hypothesis 5 is restated below:

5. Odour concentration can be predicted from electronic nose data with 

ammonia and hydrogen sulphide data

In order to test this hypothesis, ANN must be used. The dataset to be entered into 

ANN consists of 35 values -  the two gas measurements and the 33 electronic nose 

sensor responses. The data analysis follows a similar pattern to testing of 

Hypothesis 4, except that no linear regression is used.

The raw data as received were processed by ANN, as was the dataset reduced to 5 

Principal Components using PCA. A third dataset type was also created. This 

consisted of the ammonia and hydrogen sulphide data and the first 3 Principal 

Components from the electronic nose sensor responses as calculated for Hypothesis

4.

6.5.1 Principal Component Analysis

This data set contains 94 cases, each with 35 input variables. According to Goodner 

et al. (2001), with 35 input variables there should be a dataset containing at least 210 

cases (or six times the number of input variables). Because the data set contains 

only 94 cases, it could be considered preferable to reduce the number of input 

variables, by a method such as PCA, before entering the information into the 

network.

PCA yielded the results in Table 4, which shows eigenvalues for the first 5 Scores as 

calculated using SAS. The full table of eigenvalues is found in Appendix C. The first 

5 eigenvalues, accounting for 99.7% of the variation are used in the analyses for this 

dataset. The full set eigenvectors is in Appendix C.
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Table 4: Eigenvalues of Correlation Matrix Using Electronic Nose Data and Ammonia 
and Hydrogen Sulphide Measures

Eigenvalue Difference Proportion Cumulative

1 30 28 0.88 0.88

2 2.31 1.35 0.07 0.95

3 0.95 0.58 0.03 0.98

4 0.37 0.20 0.01 0.99

5 0.18 0.11 0.01 1.00

6.5.2 Artificial Neural Networks

The method of using ANN is the same as for Hypothesis 4. A Ward 2 network with 9 

neurons in the hidden layer was used to determine the general value of each data 

set in predicting the odour concentration. The activation functions used were Tanh, 

Gaussian and Gaussian Complement (three of each). The network was run for 100 

epochs.

When the data set without pre-processing are entered into the ANN, the value of R2 

was calculated to be 0.45 when the network was applied to the production dataset.

In Figure 20, the straight line represents perfect predictions of odour concentration 

by the ANN. The scatter of the data around the line show the ANN’S predictive ability 

when applied to the dataset.
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Figure 20: ANN Prediction of Odour Concentration Using Electronic Nose and Gas 
Meter Data

When PCA was done on the data set and Principal Components calculated based on 

the responses of the gas meters and the electronic nose, 5 Principal Components 

were used as input data to the ANN. Figure 21 indicates a poor prediction, which is 

confirmed by an R2 value of 0.47. This indicates that pre-processing the data using 

PCA did not improve the predictive ability of the network significantly.
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Figure 21: ANN Prediction of Odour Concentrations Using Pre-Processed Electronic 
Nose and Ammonia and Hydrogen Sulphide Measurements

The third method of entering the data for this set used the values from both gas 

meters and the PCA processed data from the electronic nose. The prediction is 

plotted against the actual values in Figure 22. The value of R2 was calculated to be 

0.75, which is a better value than calculated for previous networks using the same 

data.
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Figure 22: ANN Prediction of Odour Concentration Using Ammonia and Hydrogen 
Sulphide Measurements and Pre-Processed Electronic Nose Data

6.6 Summary o f Results

For the different hypotheses and analyses, the values of R2 for the predictions are as 

shown in Table 4. The values of R2 range from 0.04 to 0.75 for the different methods 

of predicting odour concentrations.

Table 5 shows that data from the electronic nose and from the single gas meters are 

useful in predicting the odour concentrations of samples. Using measurements of 

ammonia and hydrogen sulphide alone provided better predictions of odour 

concentrations than did the use of the electronic nose alone. In combination, the 

three measures produced a network with a predictive ability of 0.75. The use of 

Principal Component Analysis to pre-process the data actually decreased the 

predictive ability of the networks used for the above datasets if ammonia and 

hydrogen sulphide measurements were included in the PCA. Using the ammonia 

and hydrogen sulphide measurements with PCA-processed electronic nose data 

produced the best prediction of odour concentrations.
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Table 5: Summary of Results

Hypothesis Input Data Pre-Processing Method R2

1 n h3 None Linear

Regression

0.04

2 h2s None Linear

Regression

0.51

3 NH3 and H2S None ANN 0.58

4 Electronic nose None Linear

Regression

0.01

4 Electronic Nose None ANN 0.45

4 Electronic nose PCA ANN 0.46

5 Electronic 

Nose, H2S and

n h3

None ANN 0.67

5 Electronic 

Nose, H2S and

n h 3

PCA of all input data ANN 0.47

5 Electronic 

Nose, H2S and

n h 3

PCA of electronic 

nose data, no pre­

processing of H2S and 

NH3 inputs

ANN 0.75

Once the best dataset has been determined, the network may be refined in order to 

determine the optimal network architecture, activation and output functions, the 

number of neurons in the hidden layers, and the number of training epochs (El-Din et 

ai, 2004).

In this experiment, over one third of the ammonia values were assumed -  the 

ammonia meter could only read values up to 200 ppm, but some samples were 

clearly above this level, and were set at 250 ppm in further analyses. Data analysis 

later showed that ammonia measurements were valuable in predicting odour
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concentrations when combined with hydrogen sulphide measurements, or with 

hydrogen sulphide measurements and electronic nose data. It is possible that with 

more accurate measurements of ammonia concentrations even better relationships 

could have been derived. Keeping the ammonia concentrations at the instrument’s 

maximum would have reduced the sensitivity possible for this dataset.

The samples collected for this experiment were from a variety of sources, 

encompassing different ages of swine in their housing, and stored manure (in barrels 

and in earthen manure storages). Swine housing is associated with ammonia 

odours (Harper et al., 2004) while lagoons are more associated with hydrogen 

sulphide and sulphide odours

Electronic nose measurements were analysed using PCA for the best prediction of 

odour concentrations. PCA of the sensor data yielded eigenvectors that showed that 

the first Principal Component was essentially an average of the responses of all 

sensors. Ammonia and hydrogen sulphide measurements were the second and third 

most important input variables in PCA of data that contained those measurements. 

The relative humidity of the samples was another significant contributor to the 

variance among measurements. This indicates that the entire range of sensors in 

the electronic nose responded to the different samples to which it was exposed in 

this experiment.

The weakness of PCA as a method of reducing the dataset can be seen in the fact 

that when ammonia and hydrogen sulphide measurements are included in the PCA, 

the predictive value of the dataset decreases. PCA for the dataset found that the 

most important inputs constituted an average of the electronic nose sensor 

responses, with ammonia and hydrogen sulphide accounting for less than 20% of the 

variance. However, this input dataset gave a prediction with an R2 value of only 

0.47, which is less than that achievable using ammonia and hydrogen sulphide data 

alone (R2=0.67). PCA was useful in reducing data that were already highly 

correlated with each other, such as the readings of the 32 different sensors of the 

electronic nose.
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7.0 ANN REFINEMENT

Artificial Neural Network data analysis proceeds in several stages. The different data 

sets as described in Hypotheses and Statistical Analysis (Section 4.6) are entered 

into the network. The network is run with different architectures and different input 

and output types to determine which data set provides the best values of R2. When 

the best architecture and activation functions have been found, the network is again 

run in order to optimise the number of hidden neurons and number of training 

epochs. In Section 6 it was determined that the optimal input data was a 

combination of ammonia and hydrogen sulphide measurements along with PCA pre- 

processed electronic nose data. Section 7 discusses the steps taken to optimise the 

network, and the results of these steps.

The maximum/minimum, training, testing and production files from network trials of 

Hypothesis 5 in Section 6 were used in the continued testing of the network to 

determine the optimal architecture, activation functions, number of training epochs, 

and number of neurons in the hidden layers. The network uses the training files to 

create a model, which is updated at user-specified intervals using the testing files. At 

the end, the model is applied to the production dataset, to which the network has not 

yet been exposed. The prediction (value of R2) determined using the production 

dataset is a measure of the model’s success.

When the best architecture was determined, the network was further optimised by 

determining the activation and output functions. This is done by first, systematically 

varying the output type and hidden-layer activation functions. Then, the number of 

hidden layer neurons and training epochs were determined by changing those in a 

systematic manner as well.

7.1 Network Architecture Choice

NeuroShell™ allows the three different supervised network architectures illustrated in 

Figure 23. A Ward 2 network was used in Section 6 to determine the optimal data 

set for predicting odour concentrations.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In Figure 23, each “box” represents a slab. The input slabs contain the number of 

input neurons. In the data set where there are 4 parameters in the model (4 

Principal Components), the input slab has 4 neurons. In the data set where 35 

inputs are used (33 electronic nose inputs and 2 single gas meters), there are 35 

neurons in the input slab. In this experiment, a single output is required -  the value 

of the Odour Concentration (OU/m3). This is represented by a single neuron in the 

output layer. Each hidden layer slab contains a number of neurons that can be 

selected by the software, or determined by the user. The number and arrangement 

of the hidden layer slabs can be selected by the user, within the software’s 

boundaries.

In a Ward network, data from different areas of the dataset can be processed by 

different hidden layer slabs, using different activation functions. The user can specify 

whether 2 or 3 hidden layer slabs are used. For Section 6, 3 hidden layer slabs are 

used, meaning that the high, low and medium values of the data set can be 

processed using different activation functions. In the standard feed-forward network, 

each slab is connected to the one immediately preceding it and the one immediately 

following it, and no other. NeuroShell™ allows 1, 2 or 3 slabs in the hidden layer of 

standard networks. The network’s speed can be increased or decreased by 

changing the number of neurons in each hidden layer slab. In recurrent networks, 

the response of the network to a given data pattern is affected by the inputs to which 

it has been previously exposed. The user is allowed to specify whether the update in 

processing is determined by the output of the input layer, by the activity in the hidden 

layer, or by the output layer. At this stage of testing, for each architecture type, the 

default activation and output functions were retained and not altered by the user.
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Figure 23: Different Types of Networks Available in NeuroShell 2™



The different architectures were tested with the user-selected number of 12 neurons 

in the hidden layer. Each network was run until 2000 events after the test set error 

minimum had been reached. The calibration interval was set to 200, and the data 

were saved on the best test set. The results are as shown in Table 6.

Table 6: Results for Different ANN Network Types

Network Type R2 Value

Feed-forward type 1 0.19

Feed-forward type 2 0.26

Feed-forward type 3 0.01

Recurrent type 1 0.60

Recurrent type 2 0.69

Recurrent type 3 0.74

Ward 1 0.19

Ward 2 0.30

Ward 3 0.32

From the results shown in Table 5, the best network was a Recurrent Network. The 

arrangement of the neurons is illustrated in Figure 24, which shows an output layer 

with dampened feedback. The input layer contains 5 neurons as there are 5 input 

items. The recurrent layer contains 1 neuron. There were 12 neurons in the hidden 

layer, as set by the user (in a single slab), although the number of hidden layer 

neurons was to be refined in a subsequent stage. The immediate stage of 

refinement, however, is to determine the optimal activation and output functions.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Numbers represent number of neurons in each slab 

Figure 24: Chosen Artificial Neural Network Architecture

7.2 Activation and Output Function Choice

The architecture chosen for future analysis of the dataset was a Recurrent network 

as illustrated in Figure 24. For this network, the default input is scaled linearly, and 

the hidden layer and output neurons are scaled logistically. In order to optimise the 

network, it is required to determine which of the possible activation function was best 

for the dataset.

The possible activation functions in the hidden layer are Linear, Logistic, Gaussian, 

Gaussian Complement, Symmetric Logistic, Tan-Hyperbolic, Tan-Hyperbolic 150, 

and Sine. Each requires a specific input type, ranging from 0 to 1 (Logistic, 

Gaussian, Symmetric Logistic and Gaussian Complement functions) or from -1 to +1 

(other possible functions). For each network run, the input was scaled according to 

the requirements of the hidden layer’s activation function. The number of hidden 

layer neurons was kept at 12.
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The training was kept at 100 epochs with a calibration interval of 200 events for 

determining the optimal activation functions. The Batch Processor was then set up 

to use the same maximum/minimum, training, testing and production files as used in 

previous sections with this dataset, with different hidden layer and output layer 

activation functions. The completed networks were then applied to the production 

files, which are not used for training, and the values of R2 recorded. These values 

are shown in Table 7.

Table 7: R2 Values Using Different Activation and Output Functions

N . Activation 
Outpbt

Logistic Tanh Gaussian Sine Tanh15 Symmetric
Logistic

Gaussian
Complement

Logistic 0.74 0.69 0.32 error 0.78 0.85 0.16

Linear 0.38 error 0.32 error 0.09 error error

Tanh 0.45 error 0.31 error 0.28 0.56 0.07

Gaussian 0.81 0.59 0.81 error error 0.27 error

Sine 0.43 error 0.26 error error error 0.03

Tanh15 0.47 error 0.48 error 0.60 error 0.11

Symmetric
Logistic

0.18 error error error error 0.44 error

Gaussian
Complement

0.60 error 0.23 0.32 0.83 0.14 0.26

The best value of R2 was obtained by using a Symmetric Logistic activation function 

with a Logistic output function. These activation functions will be used in the further 

refinement of the network.

7.3 Hidden Layer Neurons and Training Epochs.

The optimal activation function and output function were selected in Section 7.2. The 

next stage of network optimisation is to determine the number of hidden layer 

neurons and training epochs. Previous runs of the network had been set at 200 

epochs with 12 hidden layer neurons. Twelve hidden layer neurons were selected
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initially because in testing of all the different networks, this was a common multiple of 

1, 2 and 3, the number of hidden layer slabs permitted by the different network 

architectures. Preliminary testing had found that 6 hidden layer neurons provided 

poor predictions for all network types, so 12 was chosen as the interim standard. As 

the selected architecture has only 1 slab in the hidden layer, the distribution of 

hidden layer neurons is not a concern, and any number of hidden layer neurons can 

be selected. The number of hidden layer neurons selected is shown in Table 8, 

along with the results of running the network with these numbers of hidden layer 

neurons for different numbers of training epochs.

Table 8: Value of R2 Using Different Numbers of Hidden Layer Neurons and Training 
Epochs

'"'■'Training Epochs 
Hiddert^-^
Layer Neurons*^

20 50 75 100 200 300

5 0.41 0.41 0.41 error 0.38 0.55

8 error 0.34 0.79 0.71 0.57 0.46

10 0.47 0.59 0.49 0.52 0.51 0.52

12 0.09 0.79 0.49 0.51 0.22 error

15 0.31 0.34 0.34 0.41 0.27 0.27

20 0.17 0.55 0.74 0.71 0.60 0.43

25 0.19 0.43 0.37 0.68 0.55 0.43

It was found that the best value of R2 was obtained using 8 hidden layer neurons and 

75 training epochs, or 12 hidden layer neurons and 50 training epochs. It is only with 

these training criteria that the value of R2 reached 0.79, while the next highest value 

of R2 was 0.74, attained with 20 hidden layer neurons and 75 training epochs. The 

results in Table 8 are reproduced in Figure 25, where the shaded areas show the 

different values of R2.
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Figure 25: Optimal Number of Hidden Layer Neurons and Training Epochs

As the purpose of the network refinement is to determine the minimum number of 

hidden layer neurons and training epochs required to produce a reasonable value of 

R2, the final choice is to use 8 hidden layer neurons, trained for 75 epochs.

The final network selected is a Recurrent Network with a dampened feedback link, 8 

neurons in the hidden layer, and a single neuron in the feedback layer. The hidden 

layer activation function is Symmetric Logistic, and the output function is Logistic. 

The network should be trained for 75 epochs before being applied to the new data.

When new data are collected, the network can be trained again, using the optimal 

architecture and functions determined from this experiment. As this dataset 

contained less than 100 values, a longer training time (because of a higher number 

of training epochs) is acceptable. For larger datasets, a smaller number of training 

epochs may be preferable, in which case the operator should choose the 

architecture with 12 hidden layer neurons and 50 training epochs.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.0 CONCLUSIONS

This experiment has shown that the use of ammonia and hydrogen sulphide gas 

measurements with an electronic nose and supervised Artificial Neural Networks can 

be used to predict swine odour concentrations. This model is improved by pre­

processing the electronic nose data using Principal Component Analysis.

Using NeuroShell 2™ ANN software, the best network architecture for Artificial 

Neural Networks for predicting the odour concentrations using these measures was 

found to be a Recurrent Network with a dampened feedback. The optimal activation 

functions were found to be Symmetric Logistic activation in the hidden layer and 

Logistic activation of the output layer. The optimal number of hidden-layer neurons 

was found to be 8 when the network was run for 75 training epochs. This produced 

an R2 value of 0.79. With a larger dataset, where training time may become an 

issue, the same architecture can produce good results with 12 hidden layer neurons 

and 50 training epochs.
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9.0 RECOMMENDATIONS

It was shown in this experiment that Artificial Neural Networks and the inputs 

described above can be used to predict odour concentrations. It is possible that a 

larger dataset would provide a better prediction. Ammonia data used in this 

experiment contained a large number of values that were assumed, because the 

upper limit of the instrument was below the concentrations of ammonia in several 

samples. An instrument with a larger detection range could also assist in producing 

better predictions.

Future work could use the same data, analysed differently -  by being selective about 

which of the AromaScan™’s sensors’ responses are used as inputs into the models, 

or by using different methods of reducing the data set (using Cannonical 

Discriminant Analysis or other factor analysis methods in place of Principal 

Component Analysis). For some of the samples, ammonia and hydrogen sulphide 

were also measured in the field, and could provide better input data than laboratory 

measurements taken hours later. Methane concentrations were also collected for 

some samples, and could potentially be a good input into odour models. Hedonic 

tone information was recorded but not used in this experiment. The sample source 

(housing or manure storage) was recorded, but not taken into account in the models. 

As a model input, sample source could alter the relative value of ammonia and 

hydrogen sulphide measurements. The measure of the model’s success in this 

experiment was the value of R2, which compares the predictions to the mean of all 

samples. Other researchers have used Mean Absolute Percentage Error (MAPE), 

Mean Squared Error (MSE) and other statistics to measure the predictive ability of a 

model, and it is possible that using these other measures would provide a different 

evaluation of the dataset and the model’s predictive ability. There is a great deal of 

work that can be done with the data already collected, and different statistical 

analysis methods may be all that are required to determine the value of the data in 

predicting swine odour concentrations as measured using olfactometry.

In this experiment, a model was created for swine odours using an electronic nose 

and ammonia and hydrogen sulphide gas concentrations. For other odour sources, 

different model may need to be created. The value of ammonia and hydrogen

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sulphide measurements in for other odour sources may be lower than they are for 

swine odour. It is expected that the ability of the model to predict odour 

concentrations from other types of livestock operations will be less than for swine 

odours. One potential use of this dataset may be to add the odour source type as a 

model input, and expand the dataset and improve the model using other livestock 

operations. As it exists at this point, however, the model is best applied to swine 

operations, and its utility for other types of operations would need to be investigated 

before this can be applied.

Ammonia and hydrogen sulphide data were found to be the most valuable 

contributors to the model, with the electronic nose providing less information on its 

own than the use of these two together. Ammonia and hydrogen sulphide are simple 

measures to obtain, with widely available and inexpensive meters. The value of the 

electronic nose for predicting swine odour concentrations in this case is potentially 

not worth the expense. However, for other odour types, which are not as heavily 

characterised by these two easily measured gases, the electronic nose’s usefulness 

may be increased. It is also worth noting that ammonia and hydrogen sulphide 

gases were not above health criteria in the odours with the greatest concentrations. 

Odour-derived concentrations limits will not necessarily be the same as those 

devised based on health criteria for the individual gases.
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APPENDIX A -  Raw Data from Olfactometry, Gas Measurements and Electronic Nose

Table 9A: Raw Data from Gas Meters and Electronic Nose Measurements (sensors 1 -18)
date otfact 1 
baa number

sample
info

H2S NH3 OU n 1 tt 2 n 3 UA #5 #6 #7 #6 #9 » 10 n 11 n 12 # 13 » 14 # 15 U 16 U 17 # 18

2003-07-
30JH141

lagoon
15min

126 1103 1039 1308 1325 992 838 1052 10 26 6 10 799 884 906 884 1061 7 13 7.44 9.17 7.12

28-NovJP251 inlet
fresh

0 3 0 203 2 35 2 46 243 2 45 1 88 1.89 1.95 2 15 2 32 2 22 236 248 2 20 1 89 274 2 88 2.94 3.60

2004-04*
21CH5-2

Quebec 0 5 0 221 650 6 92 7.99 773 506 380 589 546 4 51 445 430 446 468 589 230 243 4.99 458

2004-04-
21CH5-2

Quebec 0 3 0 221 2 59 265 304 2 94 205 168 226 2.12 1 72 1 68 1 72 1 77 1 82 2 26 1.44 1 46 192 1 82

2004-04-
21CH9

Quebec 0 3 3 221 5 75 655 696 685 450 367 562 544 505 4 98 464 483 4.96 571 2 94 308 5.58 522

06-NovCO#2 control 1 0 2 5 315 8.49 980 11 11 11 34 7 11 5.72 897 8 35 7 76 763 676 705 736 901 450 4.78 8.86 8.98
O6-NovCO02 Control 2 0 2 5 315 849 980 1111 11 34 7 11 5.72 697 6 35 776 763 676 705 736 901 4.50 478 8.66 8.98
2004-04-
15SCH87

barrel 0 4 250 323 397 332 493 545 4 89 556 4 93 493 405 3 92 4 63 464 4 21 490 7 58 7.39 429 400

2004-04*
21CH7

Quebec 0 3 5 328 5 14 5 78 608 601 4 10 346 494 4 87 469 4 62 434 451 4 55 501 3 02 3 15 5 25 5.09

2003-08-
22JP333

grower 354 7 29 7 22 918 9 33 660 543 738 6 69 556 5 51 5 51 566 5 76 7 28 400 4 16 607 5.34

2004-04-
01SCH142

barrel 0 6 250 406 443 366 541 599 5 47 634 5 25 5 32 4 28 4.12 504 504 450 5.16 696 8.70 4.38 3.74

2004-04-
01SCH142

barrel 0 6 250 406 443 366 541 599 547 634 5 25 532 4 28 4 12 504 504 450 516 896 8 70 4.38 374

2004-03-
31SCH110

barrel 0 5 110 416 5 07 4 55 602 654 5 72 642 5 54 569 4 95 476 5 73 581 5 14 5 47 9 77 9 70 528 488

2004-03-
31SCH110

barrel 0 5 110 416 507 4.55 602 654 5 72 6.42 554 569 4 95 476 573 581 5 14 5 47 977 9 70 5.28 468

2004-03-
31SCH251

barrel 1.5 250 512 1548 16 35 19.80 20 88 15 26 1484 16.96 1609 1441 1424 1458 14 94 1497 1757 15 57 15 57 15.78 12.72

2004-03-
31SCH251

barrel 15 250 512 1548 1635 1980 2088 1526 1484 1696 1609 1441 14 24 1458 1494 14.97 17.57 15 57 15 57 15.78 12.72

2004-03-
31SCH94

barrel 0 8 198 512 7 16 672 835 890 746 813 746 764 687 664 783 793 709 7.38 1208 1220 7.25 6.41

2004-03-
31SCH94

barrel 0 8 198 512 7.16 6 72 8 35 890 746 8 13 746 7 64 6 87 664 783 793 7.09 7.38 1208 1220 7.25 6.41

2003-08-
06JH175

finisher 561 850 7.95 1030 1040 7.83 657 838 806 6 18 6.09 673 690 682 8 41 5.44 563 6.97 531

2003-06-
08J27

grower 562 9 19 843 MOO M 20 8 73 749 926 892 680 669 7.57 7.76 765 926 626 644 7.81 5.76

16-JanM130 finisher 0 3 11 575 9.05 1104 1329 1373 758 576 978 876 795 783 682 7.14 7.62 970 369 3.96 8.90 8.24
2004-03-
31SCH165

barrel 07 250 575 22 99 2351 26 53 27 62 21.40 2039 24 02 2382 22 60 22 27 2290 2352 2273 24 17 2252 23.02 2495 24.02

2004-03-
31SCH165

barrel 07 250 575 22 99 2351 26 53 27 62 21 40 20 39 24 02 23 82 22 60 22 27 22 90 23 52 22 73 24 17 22 52 23 02 24.95 24.02

2004-03- barrel 0 8 250 575 6 20 566 765 8 37 694 7.80 698 697 591 5 74 675 678 624 698 1026 10.05 619 4.53
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Table 10A: Raw Data from Gas and Electronic Nose Measurements (sensors 19 onwards)
date otfact / 
bag number

sample
info

H2S NH3 OU # 19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30 #31 #32 Base
Temp.

Relative
Humidity

Base
sensor
Temp.

2003-07-
30JH141

lagoon 
15 mm

126 11 27 916 899 7.14 6 25 484 9 32 954 10 69 11 04 1012 11 77 13 23 678 25 23 37 21 35 16

28-NovJP251 inlet
fresh

0 3 0 203 1 89 2 23 2 91 285 264 1 69 284 1 75 1 83 2.89 204 208 1.96 1.98 2636 375 35.13

2004-04-
21CH5-2

Quebec 0 5 0 221 660 5 53 3 13 405 331 1 81 4 03 561 6 13 563 496 7.44 784 277 2357 3308 35.16

2004-04-
21CH5-2

Quebec 0 3 0 221 254 2 10 175 1.71 1 56 107 174 2 18 236 2 26 200 2 78 288 1 57 24 19 31 85 35.16

2004-04-
21CH9

Quebec 0 3 3 221 6 36 618 3 70 454 3 69 2 19 4 48 5 29 5 46 561 448 6 03 630 285 26 05 26 66 35.13

06-NovCO#2 control! 0 2 5 315 994 8 61 5 81 7 26 6 03 3 74 692 843 885 876 682 990 1065 4.14 29.00 4.11 35.12
06-NovCO#2 control! 02 5 315 994 8 61 581 726 603 374 6 92 8 43 885 876 682 990 1065 4.14 29 00 4.11 35.12
2004-04-
15SCH87

barrel 04 250 323 5 53 434 7 75 464 544 7 10 535 480 4 98 509 474 471 570 534 26 68 2332 35.13

2004-04-
21CH7

Quebec 0 3 5 326 547 565 375 4 39 364 2 37 4 26 4 62 476 512 4.11 5 31 5.47 293 2560 27.90 35 13

2003-08-
22JP333

grower 354 7 93 645 551 494 4 33 3 25 5 57 677 745 690 6 35 638 949 364 2420 3980 35 20

2004-04-
01SCH142

barrel 06 250 406 563 4 23 9 10 4 57 574 8 11 605 506 534 564 5 39 515 602 685 25.70 22 66 3514

2004-04-
01SCH142

barrel 0 6 250 406 563 4 23 9 10 4 57 5 74 811 605 506 534 564 539 5 15 6 02 685 2570 2266 35.14

2004-03-
31SCH110

barrel 0 5 110 416 6 07 5 07 984 548 6 15 745 709 5 47 571 660 5 79 563 6 31 754 27 05 23 54 35.14

2004-03-
31SCH110

barrel 0 5 110 416 6 07 5 07 984 5.48 615 7 45 7.09 5 47 571 660 5 79 5 63 631 7.54 27 05 2354 35.14

2004-03-
31SCH251

barrel 15 250 512 1946 15 52 1807 1305 14 43 17 07 16 34 17 34 18 33 10 22 1580 1968 21 47 14 55 2498 33 98 3515

2004-03-
31SCH251

barrel 15 250 512 19 46 1552 18 07 13 05 14 43 1707 16 34 1734 18 33 1822 1580 1968 21 47 1455 24.98 3398 35.15

2004-03-
31SCH94

barrel 06 198 512 799 6 83 1216 689 770 901 9 25 726 742 6.59 7 42 7 47 818 8 81 2642 27 52 35.13

2004-03-
31SCH94

barrel 0 8 198 512 799 6 83 12.16 689 770 9 01 9 25 726 7.42 8 59 742 747 818 881 2642 27.52 35.13

2003-08-
06JH175

finisher 561 9 16 724 6 85 536 467 367 695 7 65 861 832 783 961 10.90 465 26 20 38 90 35.10

2003-08-
08J27

grower 562 10 20 794 7.92 594 5 18 4 25 783 655 9.70 9 23 874 1060 12 10 5 22 25 60 47 00 35.10

16-JanM130 finisher 0 3 11 575 11.18 9 35 504 6.52 496 273 698 956 1034 937 727 11 80 1260 323 27 61 27.58 35.12
2004-03*
31SCH165

barrel 0.7 250 575 2543 2297 2509 21 21 1901 16 07 2433 22 53 2378 25 86 21.85 24 72 26 32 17.94 2671 27.55 35.14

2004-03-
31SCH165

barrel 0 7 250 575 2543 2297 2509 21 21 19.01 1607 2433 22 53 23.78 25 86 21 85 24 72 26 32 17.94 2671 27 55 35.14

2004-03-
31SCH250

barrel 0 8 250 575 7 49 566 1099 5.36 7 20 10.60 812 680 7.12 7.75 690 706 790 830 25.77 31 20 35.13

2004-03-
31SCH250

barrel 0 8 250 575 7.49 566 1099 536 720 1060 8 12 660 7.12 775 690 706 7.90 830 2577 31 20 35.13

2003-08-
08JH182

pregrowe
r

630 941 730 675 513 439 342 696 782 891 8.48 806 999 11.40 4.62 25.60 43 80 35.10

2003-08- grower 630 9 44 7 39 790 5.85 5 15 4 18 7 76 800 9 03 9.05 8 51 1000 11 30 546 25.90 37.40 3510



to V CO O ©
CM

V o o
CM

P O to o CM p P CO fO CO CO to fs CM CM O’ O’ a to to to p O o
CM

Lft
CO

ID
co

(A
co

p
CO

in
CO

m
CO

m
co

in
CO

in
CO

in
CO

m
CO

P
CO

p
CO

P
CO

p
co

P
CO

p
CO

p
to

p
CO

p
CO

p
CO

p
co

P
CO

P
CO

p
CO

P
co

p
CO

P
CO

p
co

p
CO

p
CO

P
CO

P
CO

Ois o 0>
o
CM

o
CM

osis. OSrs o pts to 3
P
CD 8

IS.
CO 3 s

p
O'

p
O'

p
OS

p
os

8
o

CO
p

IS
P

p p CO
to o p

p
p

fs
P 8 8

CM CM o CM CM m O’ O CM CM CO CM 3 a CM CM CM CM CM £ O’ O' CM CM

8 s 5
ofs s

m
o

m
o 8 8

rs IS. rs
O) p CO

CM
fs.
fs.

fs.
IS. a a

p
O

p
O’

fs P
CM ST

P CM
CM

CM
CM p s 8

o
CM

O
CM 8

OCM

S CM CM CM CM CM CM CM CM CM K CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM

CO P 8 CM m CM CM CM
8

S CO
s

CO P CM CM CM CM fs
s

P
s $

CM CM O’ P CO
fs
CM

rs
CM CM fs

CM in cb is - p cb rs cb as a* p in P P cb © in cb P P p CD |si CM CM P

5
.3

7 OS
CM
CO

1 
W

Z
Z

 
1

11
 

7
0

8
CM

6
3

4 a
cb 7

2
8

3 
5

2

6 
2

9

6
0

7

1
4

3
7

1
3

0
0

1
2

5
3

8 
2

6

8 
2

6

6 
16

6 
1

8

5 
8

9

5 
8

9

os
p
O1’ 1

4
7

8

1 
15

33
 

I
17 

5
6

5
9

9

6
6

9

1
1

.3
6

8
P

1 
8.

46
 

I
I 

36
 

.15
 

I
1 

38
15

 
I

1
1

.1
0 to

to
p

CO 0>
Pfs s s a s 5 8

o e
p
o;

o
O

coIs. os OS O’ O' p p
CM
to

CO
a p CM CM

a P
o

p
p

p
p p p

b - CM *- m m p CO is o - - - IS fs in P o O’ P P p CO co a p

s 8
p
co o rs m m CM

a 8
CO P

8
P p p CM CM P

o
s r CM

fs
CO P © co P p 8 8 O’ p

V Oi CO os m m O’ CM N. p P OS fs S s p P O’ ■V P 0> P P fs Is CM CM © CO

CM fs
CO
o OS

OCM fs rs fs
8 $

CO p St CO CO CO CM CM p P
Pfs

CO
0> s $ CM CM CM S S

P
P

P
P CM a

O’ CO CM cb CO p o cb OS p - OS p (D P P p P - P P P co CO O cb

in co s $
o
CM o o OS CO CM CM 8

o
o-

os
CM to to

P CM p
8 o> OS o s o

CM
O’

CM
O’ P

O’ cd Os in m in CM P - fs. fs. P P p p p p p p CO co P O’

4
4

5 o
r -
co

1 
18

16
 

|
8 

31

9 
2

2

5
3

8 s
P 4

8
6 <ofs

CM 7
2

0 P
CM
P 1

1
.0

2 9
1

6

9
5

0

7
0

6

7
0

6

5
2

1 CM
P 4 

8
3 CO

p
Pfs

11
 

2
9

I 
11

86
 

I
1

3
6

7 9
0

9

5
0

6

8
5

3

1 
13

.3
2 

I

8
IS

! 
31

.9
1 

1
I 

31
88

 
I

7
8

0

3
6

0

o o
p

CO
o>
cb

7
.4

8

9
0

4

6
6

4 S
P 3

1
7 rs

p
CM 1

0
2

1

5
8

3 f s
o
qs 6 

9
2

7
0

6

8
7

8

6
7

6

5
5

4 a
p 5 

2
4 ■O'

CM
P 1

0
1

6

1
0

3
6 o

O'
o> 1

1
.4

7

5
7

0

5
7

0

7
.5

9

I 
91

'21 
I i 

10
32

 
|

! 
35

 
29

 
1

1 
35

 
29

 
I

7
3

1

2
.4

0

CO co
CO r - OS C> P s a CM

8 8
O’

ST
X

CO CO p fs
3 p © o

8
CM O’

fs
CM

fs
CM CO p

<o CM o* in OS P - CD P cb CM CM P p p p p fs p fs IS O1 <6 p CO CO

o 8
O'

1 
15

.9
5 

1
4

.9
7

7
.1

4

7
.1

6

7
.1

6

1
.9

2 in
<o
CM 1

1
0

3 0
0

9

7
.3

7

5
7

5

5
2

3

1
4

5
0

0
S

M

6
3

6

6 3
6

6 
01

1
0

9

p

6
9

6

p
CM
fs 1

1
.1

4

5
0

8

8
0

9

6
7

9

1 
12 

22 
I

f s
o

1 
LVW

 
1

1 
IVW

 
1

s
o : 1

.6
0

o 1

1 
56

8 
1

i 
17

.7
0 

|

CMfs
in

I
I

I

5
6

2 CM
P
in 2

4
1

2
5

7

6
6

6

4
6

1

8 
7

4

6
5

0

6
6

7

8
9

5

8 
9

5

5 
0

3

5
0

3

4 
91 Os
•V 13 

2
9 CM

O’
©

I 
8 

84
 

|
1

3
.1

3

3
9

5

3
9

5

7 
5

3

1 
13 

58
 

1

p
p

! 
43

 
91

 
1

i 
43

.9
1 

|

5
6

1

2
0

0

V
rs
o CM

o
CM

O’
CM

O
CM CM

2
9

4

CM
P CM CO CO

fs.
CO CO fs fs a

f«s

O’ Os
©

Is CO CO p o
- - pfs p

fs p

CO CO
co fs

o o o
CM

CO
p N os p

o o
p p P fs p p co fsi -

o aa fs

3
9

7 r -
o

I 
18

76
 

1

L
L

L

8
4

2

4
.7

2

4
7

2 CO
O’
O' 2 

8
1

7
6

2

4
4

3

9
9

0
1

8
4

3

9
2

3

6 
3

2

6
3

2

4
5

0

4
5

0

4
.1

3

4
.1

3

fs
to
CM 1

0
7

7

s
p
CM

4
3

0

4
3

0

8
0

4

o
Is
cb

1 
9 

30 
I

1 
3

3
2

7
 

I
I 

33
 

27
 

|

7
4

2

3
6

0

5
.1

3 CM
o>
fs

I 
21.

21 
I

9
9

1

0
8

0
1 s

cb 6
0

4

5
8

0

3
1

2 s
to 5

9
7

p
CM

1
0

7
0

11
.0

1

8
0

5

8
0

5

5
8

4

5
8

4 p
O’
ih

p

p 1
3

8
1

1
2

9
8

cb 1
6

1
3

5
6

6

5
6

6

9
6

6

1 
15

61
 

j

pfs
p 37

 
20 

I
I 

37
.2

0 
I

p

d

CM
P
Ô
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APPENDIX B -  Principal Component Analysis Of Electronic Nose Data

Table 11B: Eigenvalues of Correlation Matrix for Electronic Nose Sensor Data
Eigenvalue Difference Proportion Cumulative

1 29.94 28.33 0.94 0.936

2 1.60 1.29 0.05 0.986

3 0.31 0.24 0.01 0.996

4 0.08 0.06 0.00 0.998

5 0.02 0.00 0.00 0.999

6 0.02 0.01 0.00 0.999
7 0.01 0.01 0.00 1.000

8 5.57E-03 2.19E-03 2.00E-04 1.000

9 3.38E-03 1.75E-03 1.00E-04 1.000

10 1.63E-03 3.86E-04 1.00E-04 1.000

11 1.24E-03 4.04E-04 0.00E+00 1.000

12 8.40E-04 2.46E-04 0.00E+00 1.000

13 5.94E-04 9.97E-05 0.00E+00 1.000

14 4.94E-04 1.74E-04 0.00E+00 1.000

15 3.20E-04 9.19E-05 0.00E+00 1.000

16 2.28E-04 4.17E-05 0.00E+00 1.000

17 1.86E-04 2.61 E-05 0.00E+00 1.000

18 1.60E-04 8.48E-05 0.00E+00 1.000

19 7.54E-05 1.30E-05 0.00E+00 1.000

20 6.25E-05 1.13E-05 0.00E+00 1.000

21 5.12E-05 1.05E-05 0.00E+00 1.000

22 4.07E-05 1.69E-05 0.00E+00 1.000

23 2.38E-05 4.20E-06 0.00E+00 1.000
24 1.97E-05 3.10E-06 O.OOE+OO 1.000

25 1.65E-05 4.40E-06 0.00E+00 1.000

26 1.22E-05 2.20E-06 0.00E+00 1.000

27 1.00E-05 2.50E-06 0.00E+00 1.000

28 7.50E-06 3.40E-06 0.00E+00 1.000

29 4.10E-06 1.10E-06 0.00E+00 1.000

30 2.90E-06 8.00E-07 0.00E+00 1.000

31 2.10E-06 9.00E-07 0.00E+00 1.000

32 1.20E-06 0.00E+00 1.000
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Table 12B: Eigenvectors of Sensor Data
Sensor # Principal Component 

1
Principal Component 

2
Principal Component 

3
sensor 1 0.1806 -0.11 -0.061
sensor 2 0.1773 -0.175 0.1645
sensor 3 0.1778 -0.175 0.0155
sensor 4 0.1785 -0.16 0.0049
sensor 5 0.1814 -0.013 -0.204
sensor 6 0.1779 0.1509 -0.214
sensor 7 0.1808 -0.111 -0.08
sensor 8 0.1819 -0.069 -0.097
sensor 9 0.1816 -0.068 0.0957
sensor 10 0.1815 -0.074 0.0882
sensor 11 0.1824 0.0172 -0.087
sensor 12 0.1825 0.0062 -0.065
sensor 13 0.1824 -0.048 -0.026
sensor 14 0.181 -0.108 -0.068
sensor 15 0.1555 0.3982 -0.168
sensor 16 0.1592 0.3719 -0.156
sensor 17 0.181 -0.06 0.1976
sensor 18 0.1761 -0.037 0.4443
sensor 19 0.1801 -0.131 -0.04
sensor 20 0.1796 -0.134 0.0808
sensor 21 0.1671 0.3072 -0.154
sensor 22 0.1781 0.0519 0.3717
sensor 23 0.1721 0.1854 0.4092
sensor 24 0.1488 0.4061 0.3
sensor 25 0.1817 0.0816 -0.026
sensor 26 0.1807 -0.115 -0.052
sensor 27 0.18 -0.125 -0.109
sensor 28 0.1827 -0.035 0.0179
sensor 29 0.1807 -0.008 -0.259
sensor 30 0.1777 -0.172 -0.089
sensor 31 0.1778 -0.159 -0.142
sensor 32 0.1643 0.3343 -0.064
Relative Humidity -0.01765 -0.192535 0.902323
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Table 13B: Input Data for ANN of Electronic Nose Data

date olfact bag number olfact OU PC1 PC2 PC3
2003-07-30 JH141 126 52.87652 -13.2442 35.28366
28-Nov JP251 203 13.12174 0.356435 3.234423
2004-04-21 CH5-2 221 28.12061 -13.2468 29.60439
2004-04-21 CH5-2 221 11.06578 -7.74837 28.87139
2004-04-21 CH9 221 27.94773 -10.0895 23.51035
06-Nov CO#2 315 44.3576 -8.67238 2.695148
06-Nov CO#2 315 44.3576 -8.67238 2.695148
2004-04-15 SCH87 323 28.10813 1.155568 23.27456
2004-04-21 CH7 328 25.56399 -8.85291 24.7013
2003-08-22 JP333 354 35.0873 -13.4033 36.45768
2004-04-01 SCH142 406 30.77015 3.186326 23.53653
2004-04-01 SCH142 406 30.77015 3.186326 23.53653
2004-03-31 SCH110 416 34.05704 3.003127 24.12866
2004-03-31 SCH110 416 34.05704 3.003127 24.12866
2004-03-31 SCH251 512 92.11801 -6.59644 34.22277
2004-03-31 SCH251 512 92.11801 -6.59644 34.22277
2004-03-31 SCH94 512 44.79162 2.624557 28.15612
2004-03-31 SCH94 512 44.79162 2.624557 28.15612
2003-08-06 JH175 561 40.90232 -12.9762 36.493
2003-08-08 J27 562 45.30391 -14.529 44.17366
16-Jan M130 575 46.28452 -17.4315 23.87693
2004-03-31 SCH165 575 130.4998 -7.68754 27.30497
2004-03-31 SCH165 575 130.4998 -7.68754 27.30497
2004-03-31 SCH250 575 40.24477 1.577721 31.66983
2004-03-31 SCH250 575 40.24477 1.577721 31.66983
2003-08-08 JH182 630 41.14988 -14.7008 41.01911
2003-08-06 J14 630 43.87194 -11.646 35.55459
2004-04-15 TD7 645 25.73995 0.333856 22.53682
05-Nov J71 707 33.92065 -9.29108 2.78137
06-Nov JP262 707 101.7587 -9.53327 1.57591
2003-08-08 JH184 707 43.7543 -14.4452 43.31817
2003-08-22 JP244 707 51.51802 -11.4428 40.8023
2004-04-01 J91 724 34.05982 5.452475 21.87706
2004-04-01 J91 724 34.05982 5.452475 21.87706
2003-08-08 JH147 794 22.29269 -16.2723 47.51026
2003-08-22 JP205 794 15.05744 -9.09044 37.85636
28-Nov SCH15 813 50.45144 10.79117 6.452685
2004-04-15 GRANT2 813 30.46091 1.437107 25.22195
16-Jan SCH96 832 56.59143 -15.8093 26.25652
2003-08-15 JP316 891 50.88708 -11.0505 31.64817
16-Jan SCH93 912 46.44133 -17.0599 25.54827
2004-03-31 SCH256 912 46.50376 4.494268 34.71865
2004-03-31 SCH256 912 46.50376 4.494268 34.71865
2004-04-01 SCH151 912 30.61103 2.33862 19.83375
2004-04-01 SCH151 912 30.61103 2.33862 19.83375
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2004-04-01 SCH163 912 28.86228 2.335684 19.3026
2004-04-01 SCH163 912 28.86228 2.335684 19.3026
09-Dec SCH44 952 65.06569 -8.29522 -1.29179
2003-09-19 JP205 1000 62.95899 -10.0734 25.95483
16-Jan JH146 1024 59.58235 -17.7581 25.10862
16-Jan SCH76 1024 72.91825 -19.3091 23.74834
2004-03-31 SCH174 1024 29.53896 1.07536 24.62649
2004-03-31 SCH174 1024 29.53896 1.07536 24.62649
2003-09-19 JH106 1051 46.39123 -12.0798 29.20469
05-Nov J67 1051 73.86058 -8.97671 2.038616
06-Nov J67S 1051 52.13444 0.836863 2.287592
05-Nov JP371 1072 197.1363 -0.91258 4.287801
06-Nov JP731 1072 197.1094 -0.90232 4.276742
2003-08-15 JP331 1122 43.06293 -9.74801 24.86989
2003-08-15 JP330 1123 18.3539 -10.6588 23.56337
16-Jan SCH92 1149 79.75216 -20.4746 23.25336
17-OctSCH18 1160 55.65774 -14.7498 24.36028
09-Dec #34 1160 63.45733 -8.4604 -0.5445
09-Dec SCH72 1160 77.59166 -6.38762 2.061138
2003-08-08 J21 1260 39.1985 -14.7934 44.83711
2003-08-08 JH183 1260 50.12143 -14.5651 53.97386
2003-09-19 JP217 1281 63.91298 -10.1117 21.74427
16-Jan CA09 1290 70.38819 -19.4361 22.5348
2003-09-19 JP211 1414 62.09228 -10.9122 22.93503
05-Nov JP219 1414 66.54788 -9.56261 1.710733
06-Nov JP219E 1414 43.969 0.37032 2.236713
06-Nov JP219S 1414 43.969 0.37032 2.236713
09-Dec JP369 1414 34.04217 -8.64848 6.012679
09-Dec SCH73 1414 62.91878 -8.60367 -1.74076
16-Jan SCH108 1448 77.40223 -20.744 24.05912
2004-04-01 SCH13 1448 29.07593 1.951143 20.04615
2004-04-01 SCH13 1448 29.07593 1.951143 20.04615
2004-04-15 SCH254 1448 27.91768 2.85456 23.51709
2003-09-19 J12 1561 66.20601 -10.1728 21.77477
09-Dec CA02 1561 48.41564 -8.01478 1.167576
09-Dec J90 1561 54.31538 -7.69401 -1.42586
09-Dec JH98 1561 46.71206 -7.55275 -0.43734
2003-08-08 J51 1587 35.69877 -15.1715 43.84172
16-Jan SCH87 1625 40.44463 -18.9543 24.62724
2003-08-08 JH171 1782 44.00047 -14.9222 46.08885
2004-04-01 JP304 1824 45.39587 -5.37841 23.5746
2004-04-01 JP304 1824 45.39587 -5.37841 23.5746
28-Nov J25 1866 27.42338 4.530496 4.557759
28-Nov N121 1866 32.90152 5.047336 5.25214
28-Nov N33 2143 12.37859 4.724612 23.09631
21-Jan SCH45 2152 72.30623 -13.7944 21.68885
2004-04-01 SCH244 2152 26.29091 1.667667 19.4596
2004-04-01 SCH244 2152 26.29091 1.667667 19.4596
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16-Jan J91 2195 0.865946 -11.3106 33.67107
2003-08-06 JH96 2245 59.54667 -6.48738 41.9386
2004-04-15 SCH145 2299 61.60336 16.76618 27.8132
17-Oct JH97 2320 125.6576 -11.0235 24.34669
21-Jan SCH118 2376 50.93023 -15.0601 23.63502
28-Nov JH154 2462 31.11431 5.080009 4.697299
2004-04-15 SCH163/193 2580 28.86228 2.335684 19.3026
21-Jan SCH116 2623 28.68759 -14.1973 20.64593
21-Jan SCH 123 2623 58.74938 -16.869 22.38845
21-Jan SCH48 2623 61.71687 -15.3271 20.69119
2004-04-01 SCH 148 2623 45.32101 12.25766 26.58499
2004-04-01 SCH 148 2623 45.32101 12.25766 26.58499
28-Nov N120 2828 30.77976 5.709599 9.479843
28-Nov N68 2828 22.44978 3.462103 4.681343
16-Jan SCH94 2896 96.6013 -25.7366 24.70513
21-Jan SCH124 2896 44.07905 -14.357 20.05895
21-Jan SCH114 3198 2.975107 -12.7944 20.86436
21-Jan SCH119 3198 78.54676 -15.8636 21.34291
21-Jan SCH 125 3530 81.94867 -16.4922 21.63209
21-Jan SCH34 3531 24.26549 -11.0881 21.24341
28-Nov JH116 3732 53.67958 14.41701 13.64737
21-Jan SCH117 3898 154.554 -13.6534 23.68839
21-Jan SCH121 4304 73.06439 -15.6511 20.52644
17-Oct J25 4641 -0.42279 -7.46987 30.70953
05-Nov SCH7 4925 132.7813 -10.534 3.193932
28-Nov N61 4925 27.35835 3.309521 6.566942
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APPENDIX C -  Principal Component Analysis Of Electronic Nose, Ammonia 
And Hydrogen Sulphide Data

Table 14C: Eigenvalues of Correlation Matrix for Electronic Nose and Gas Meter Data
Eigenvalue Difference Proportion Cumulative

1 30.08 27.77 0.88 0.885
2 2.31 1.35 0.07 0.953
3 0.95 0.58 0.03 0.981
4 0.37 0.20 0.01 0.992
5 0.18 0.11 0.01 0.997
6 7.09E-02 5.65E-02 2.10E-03 0.999
7 1.44E-02 5.74E-03 4.00E-04 0.999
8 8.64E-03 3.69E-03 3.00E-04 1.000
9 4.94E-03 1.96E-03 1.00E-04 1.000

10 2.99E-03 7.79E-04 1.00E-04 1.000
11 2.21 E-03 9.17E-04 1.00E-04 1.000
12 1.29E-03 5.42E-04 0.00E+00 1.000
13 7.48E-04 1.10E-04 0.00E+00 1.000
14 6.38E-04 2.60E-04 0.00E+00 1.000
15 3.79E-04 6.48E-05 0.00E+00 1.000
16 3.14E-04 7.91 E-05 0.00E+00 1.000
17 2.35E-04 1.28E-04 0.00E+00 1.000
18 1.07E-04 3.79E-05 0.00E+00 1.000
19 6.88E-05 1.32E-05 0.00E+00 1.000
20 5.56E-05 1.41 E-05 0.00E+00 1.000
21 4.15E-05 1.53E-05 O.OOE+OO 1.000
22 2.62E-05 3.20E-06 0.00E+00 1.000
23 2.30E-05 7.30E-06 0.00E+00 1.000
24 1.57E-05 4.70E-06 0.00E+00 1.000
25 1.10E-05 1.20E-06 0.00E+00 1.000
26 9.80E-06 2.20E-06 0.00E+00 1.000
27 7.70E-06 4.00E-07 0.00E+00 1.000
28 7.20E-06 3.80E-06 0.00E+00 1.000
29 3.40E-06 1.00E-07 0.00E+00 1.000
30 3.30E-06 1.10E-06 0.00E+00 1.000
31 2.20E-06 7.00E-07 0.00E+00 1.000
32 1.50E-06 6.00E-07 0.00E+00 1.000
33 9.00E-07 2.00E-07 0.00E+00 1.000
34 7.00E-07 0.00E+00 1.000
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Table 15C: Eigenvectors of Sensor and Gas Meter Data
Sensor # Principal Component 

1
Principal Component 

2
Principal Component 

3
H2S 0.0061 0.1457 -0.107
NH3 -0.014 0.554 0.1447
sensor 1 0.1817 -0.084 0.0147
sensor 2 0.1775 -0.151 0.0012
sensor 3 0.1781 -0.138 0.0518
sensor 4 0.1788 -0.124 0.0598
sensor 5 0.183 0.0075 0.0395
sensor 6 0.1779 0.1448 0.0244
sensor 7 0.1815 -0.078 0.044
sensor 8 0.1827 -0.045 0.0317
sensor 9 0.1824 -0.062 -0.011
sensor 10 0.1823 -0.065 -0.007
sensor 11 0.1829 0.0213 0.0118
sensor 12 0.1831 0.0097 0.0076
sensor 13 0.183 -0.035 0.0134
sensor 14 0.1817 -0.075 0.0418
sensor 15 0.1505 0.3342 -0.044
sensor 16 0.1551 0.31 -0.045
sensor 17 0.1816 -0.068 -0.053
sensor 18 0.1773 -0.078 -0.141
sensor 19 0.1807 -0.094 0.0521
sensor 20 0.1804 -0.109 0.0086
sensor 21 0.1645 0.2626 -0.029
sensor22 0.179 0.0028 -0.137
sensor 23 0.172 0.1209 -0.145
sensor 24 0.1406 0.3343 -0.074
sensor 25 0.1822 0.0652 -0.007
sensor 26 0.1812 -0.08 0.0585
sensor 27 0.1807 -0.085 0.0711
sensor 28 0.1833 -0.032 0.0031
sensor 29 0.1824 0.016 0.0559
sensor 30 0.1784 -0.125 0.0731
sensor 31 0.1789 -0.112 0.0767
sensor 32 0.1613 0.2761 -0.048
Relative Humidity -0.006 0.0716 0.9235
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Table 16C: Input Data for ANN Using PCA of Gas Meters and Electronic Nose Data

date olfact / bag number olfact OU PC1 PC2 PC3 PC4 PC5
28-Nov JP251 203 13.16557 1.172014 2.891401 0.068443 -2.17011
2004-04-21 CH5-2 221 11.43436 1.213248 29.96796 2.285654 -9.8898
2004-04-21 CH5-2 221 28.50776 -2.79346 32.58809 3.152144 -8.14006
2004-04-21 CH9 221 28.21725 -0.19771 26.25673 2.390707 -5.35227
06-Nov CO#2 315 44.34579 -3.00775 6.382912 1.712838 3.916363
06-Nov CO#2 315 44.34579 -3.00775 6.382912 1.712838 3.916363
2004-04-15 SCH87 323 24.97593 145.4099 57.38603 2.972399 130.4931
2004-04-21 CH7 328 25.81943 2.143618 27.24149 2.156116 -5.37275
2004-04-01 SCH 142 406 27.62839 147.1192 56.72483 2.831715 130.4789
2004-04-01 SCH 142 406 27.62839 147.1192 56.72483 2.831715 130.4789
2004-03-31 SCH110 416 32.82436 69.54601 37.10189 1.243026 52.00923
2004-03-31 SCH110 416 32.82436 69.54601 37.10189 1.243026 52.00923
2004-03-31 SCH251 512 89.11868 142.7222 70.07607 5.554542 129.3971
2004-03-31 SCH251 512 89.11868 142.7222 70.07607 5.554542 129.3971
2004-03-31 SCH94 512 42.40926 119.1119 53.64787 2.555558 100.1125
2004-03-31 SCH 94 512 42.40926 119.1119 53.64787 2.555558 100.1125
16-Jan M130 575 46.46259 -1.24729 30.41406 3.969421 1.795899
2004-03-31 SCH 165 575 127.4196 140.1969 63.73531 4.505963 133.7504
2004-03-31 SCH 165 575 127.4196 140.1969 63.73531 4.505963 133.7504
2004-03-31 SCH250 575 37.201 147.9737 64.94484 3.41114 127.5769
2004-03-31 SCH250 575 37.201 147.9737 64.94484 3.41114 127.5769
2004-04-15 TD7 645 22.60375 144.6008 56.99535 3.335645 130.9593
05-Nov J71 707 33.8926 -2.41327 7.143423 2.055885 4.482103
06-Nov JP262 707 100.9233 29.75279 14.12087 2.725743 37.20933
2004-04-01 J91 724 30.89569 148.4778 54.4114 2.165226 129.7252
2004-04-01 J91 724 30.89569 148.4778 54.4114 2.165226 129.7252
28-Nov SCH15 813 48.64318 85.70593 21.4817 -0.76179 69.45472
2004-04-15 GRANT2 813 27.38292 146.9558 58.4856 8.416832 129.0986
16-Jan SCH96 832 56.87627 -2.63366 31.16583 3.6905 -3.73362
16-Jan SCH93 912 46.6956 -2.71967 31.27257 4.141953 -1.61906
2004-03-31 SCH256 912 43.53555 150.9828 67.80595 1.960408 116.8671
2004-03-31 SCH256 912 43.53555 150.9828 67.80595 1.960408 116.8671
2004-04-01 SCH151 912 27.43602 145.5152 53.75055 2.6581 131.0264
2004-04-01 SCH 151 912 27.43602 145.5152 53.75055 2.6581 131.0264
2004-04-01 SCH 163 912 25.68216 145.3787 53.23569 2.758537 131.2517
2004-04-01 SCH 163 912 25.68216 145.3787 53.23569 2.758537 131.2517
09-Dec SCH44 952 64.89827 1.97739 4.360263 1.570494 6.894845
16-Jan JH146 1024 59.71056 1.746101 32.33615 4.586023 3.833249
16-Jan SCH76 1024 73.101 -1.47042 31.7468 4.193839 -0.82112
2004-03-31 SCH174 1024 26.41858 145.7951 58.50965 3.678065 130.7096
2004-03-31 SCH 174 1024 26.41858 145.7951 58.50965 3.678065 130.7096
05-Nov J67 1051 73.76143 0.717315 7.016237 2.025655 5.799143
06-Nov J67S 1051 52.02505 8.172091 3.840868 -0.34875 1.305831
05-Nov JP371 1072 195.7957 62.42121 21.64679 -0.88596 41.41509
06-Nov JP731 1072 195.7687 62.42605 21.63408 -0.88877 41.40767
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16-Jan SCH92 1149 79.96899 -4.11918 31.20263 4.386712 -1.38657
17-Oct SCH 18 1160 55.94074 -2.33469 29.34361 3.145083 -5.81537
09-Dec #34 1160 63.31465 1.434783 5.0622 1.382296 5.707568
09-Dec SCH72 1160 77.45098 5.451192 7.374698 0.974635 2.86838
16-Jan CA09 1290 70.63003 -5.18428 29.59863 4.374658 -2.16754
05-Nov JP219E 1414 66.45676 -0.45793 6.802923 1.924457 6.058005
06-Nov JP219S 1414 43.86902 7.206473 3.750525 -0.12395 1.733657
06-Nov JP219S 1414 43.86902 7.206473 3.750525 -0.12395 1.733657
09-Dec JP369 1414 34.1246 -3.27685 9.555745 2.295202 -1.64432
09-Dec SCH73 1414 62.75798 1.047883 3.894064 1.56454 6.984078
16-Jan SCH 108 1448 77.59264 -3.01197 32.17306 4.622843 0.80317
2004-04-01 SCH13 1448 28.07392 56.62125 30.79516 1.30273 42.50804
2004-04-01 SCH13 1448 28.07392 56.62125 30.79516 1.30273 42.50804
2004-04-15 SCH254 1448 25.5296 116.3689 48.93358 2.371479 99.38243
09-Dec CA02 1561 48.34512 -0.03984 5.83374 1.835654 3.461795
09-Dec J90 1561 54.13638 2.348332 3.898718 1.540738 8.060042
09-Dec JH98 1561 46.61521 -0.09024 4.073143 1.70878 4.739243
16-Jan SCH87 1625 40.8014 -8.24576 30.18443 5.177849 -5.41189
2004-04-01 JP304 1824 42.30736 140.4733 60.28147 4.377585 130.5426
2004-04-01 JP304 1824 42.30736 140.4733 60.28147 4.377585 130.5426
28-Nov J25 1866 25.3005 92.98143 25.39489 1.03667 85.5523
28-Nov N121 1866 31.6614 58.20453 16.56329 0.752377 48.80438
28-Nov N33 2143 11.70326 47.74214 29.80368 0.486396 27.17579
21-Jan SCH45 2152 72.18106 11.84247 29.3261 3.910944 13.47436
2004-04-01 SCH244 2152 23.99612 108.9231 44.11245 2.664691 95.6886
2004-04-01 SCH244 2152 23.99612 108.9231 44.11245 2.664691 95.6886
16-Jan J91 2195 1.255108 1.729103 36.64658 2.903322 -9.51759
2004-04-15 SCH 145 2299 59.61928 112.5558 43.3911 -0.1013 76.18694
17-Oct JH97 2320 125.6557 12.63155 30.99156 2.045787 1.262498
21-Jan SCH118 2376 51.20479 -3.78611 27.91634 3.907794 -2.55732
28-Nov JH154 2462 29.80671 61.06042 16.57602 2.195617 51.91311
21-Jan SCH116 2623 28.91953 -3.3675 25.00242 4.321787 -1.38286
21-Jan SCH 123 2623 58.92811 -1.56605 28.56637 4.36827 1.20154
21-Jan SCH48 2623 61.86188 -0.76536 26.22648 4.016065 2.635617
2004-04-01 SCH148 2623 42.19092 155.1103 56.2394 1.266161 125.2022
2004-04-01 SCH 148 2623 42.19092 155.1103 56.2394 1.266161 125.2022
28-Nov N120 2828 27.49407 146.051 42.39039 5.042677 133.4912
28-Nov N68 2828 19.10219 142.846 38.82574 4.088866 137.1669
16-Jan SCH94 2896 96.9739 -13.192 32.7023 6.022576 -4.09858
21-Jan SCH 124 2896 44.30156 -3.52778 24.41495 4.351026 -0.89684
21-Jan SCH114 3198 3.187557 -1.29047 25.15839 4.163134 -1.43404
21-Jan SCH119 3198 78.34595 13.54518 30.68449 4.607539 17.11157
21-Jan SCH125 3530 81.78305 12.06406 30.9195 4.862437 15.74077
21-Jan SCH34 3531 24.37476 4.129491 25.7616 3.590268 2.058021
28-Nov JH116 3732 51.43156 112.7836 32.74095 0.915772 84.70005
21-Jan SCH117 3898 154.4168 15.67164 32.36506 3.110481 8.51108
21-Jan SCH121 4304 73.10015 3.492099 27.27522 4.379286 7.128113
17-Oct J25 4641 -0.31741 14.23605 34.71866 4.186531 1.138655

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



05-Nov SCH7 4925 131.8102 38.18773 18.4551 4.982737 39.80615
28-Nov N61 4925 25.95917 65.16138 20.2723 3.089559 56.67246
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Table 17C: ANN Input Data for Using Gas Measurements and PCA of Electronic Nose
Data
date olfact / bag 
number olfact OU H2S NH3 PC1 PC2 PC3
28-Nov JP251 203 0.3 0 13.12174 0.356435 3.234423
2004-04-21
CH5-2 221 0.5 0 11.06578 -7.74837 28.87139
2004-04-21
CH5-2 221 0.3 0 28.12061 -13.2468 29.60439
2004-04-21
CH9 221 0.3 3 27.94773 -10.0895 23.51035
06-Nov CO#2 315 0.2 5 44.3576 -8.67238 2.695148
06-Nov CO#2 315 0.2 5 44.3576 -8.67238 2.695148
2004-04-15
SCH87 323 0.4 250 28.10813 1.155568 23.27456
2004-04-21
CH7 328 0.3 5 25.56399 -8.85291 24.7013
2004-04-01 
SCH 142 406 0.6 250 30.77015 3.186326 23.53653
2004-04-01
SCH142 406 0.6 250 30.77015 3.186326 23.53653
2004-03-31
SCH110 416 0.5 110 34.05704 3.003127 24.12866
2004-03-31
SCH110 416 0.5 110 34.05704 3.003127 24.12866
2004-03-31
SCH251 512 1.5 250 92.11801 -6.59644 34.22277
2004-03-31
SCH251 512 1.5 250 92.11801 -6.59644 34.22277
2004-03-31
SCH94 512 0.8 198 44.79162 2.624557 28.15612
2004-03-31
SCH94 512 0.8 198 44.79162 2.624557 28.15612
16-Jan M130 575 0.3 11 46.28452 -17.4315 23.87693
2004-03-31
SCH165 575 0.7 250 130.4998 -7.68754 27.30497
2004-03-31
SCH165 575 0.7 250 130.4998 -7.68754 27.30497
2004-03-31
SCH250 575 0.8 250 40.24477 1.577721 31.66983
2004-03-31
SCH250 575 0.8 250 40.24477 1.577721 31.66983
2004-04-15 TD7 645 0.6 250 25.73995 0.333856 22.53682
05-Nov J71 707 0.4 7 33.92065 -9.29108 2.78137
06-Nov JP262 707 0.9 65 101.7587 -9.53327 1.57591
2004-04-01 J91 724 0.5 250 34.05982 5.452475 21.87706
2004-04-01 J91 724 0.5 250 34.05982 5.452475 21.87706
28-Nov SCH 15 813 0.3 136 50.45144 10.79117 6.452685
2004-04-15
GRANT2 813 6 250 30.46091 1.437107 25.22195
16-Jan SCH96 832 0.5 5 56.59143 -15.8093 26.25652
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16-Jan SCH93 912 0.6 7 46.44133 -17.0599 25.54827
2004-03-31
SCH256 912 0.6 250 46.50376 4.494268 34.71865
2004-03-31
SCH256 912 0.6 250 46.50376 4.494268 34.71865
2004-04-01
SCH151 912 0.4 250 30.61103 2.33862 19.83375
2004-04-01
SCH151 912 0.4 250 30.61103 2.33862 19.83375
2004-04-01 
SCH 163 912 0.5 250 28.86228 2.335684 19.3026
2004-04-01
SCH163 912 0.5 250 28.86228 2.335684 19.3026
09-Dec SCH44 952 0.6 15 65.06569 -8.29522 -1.29179
16-Jan JH146 1024 0.9 16 59.58235 -17.7581 25.10862
16-Jan SCH76 1024 0.7 13 72.91825 -19.3091 23.74834
2004-03-31
SCH174 1024 1 250 29.53896 1.07536 24.62649
2004-03-31
SCH174 1024 1 250 29.53896 1.07536 24.62649
05-Nov J67 1051 0.8 12 73.86058 -8.97671 2.038616
06-Nov J67S 1051 0.5 12 52.13444 0.836863 2.287592
05-Nov JP371 1072 0.7 110 197.1363 -0.91258 4.287801
06-Nov JP731 1072 0.7 110 197.1094 -0.90232 4.276742
16-Jan SCH92 1149 0.7 10 79.75216 -20.4746 23.25336
17-Oct SCH 18 1160 0.5 5 55.65774 -14.7498 24.36028
09-Dec #34 1160 0.4 14 63.45733 -8.4604 -0.5445
09-Dec SCH72 1160 0.7 17 77.59166 -6.38762 2.061138
16-Jan CA09 1290 0.8 7 70.38819 -19.4361 22.5348
05-Nov JP219E 1414 0.5 11 66.54788 -9.56261 1.710733
06-Nov JP219S 1414 0.5 11 43.969 0.37032 2.236713
06-Nov JP219S 1414 0.5 11 43.969 0.37032 2.236713
09-Dec JP369 1414 1 3 34.04217 -8.64848 6.012679
09-Dec SCH73 1414 0.5 14 62.91878 -8.60367 -1.74076
16-Jan SCH 108 1448 0.7 12 77.40223 -20.744 24.05912
2004-04-01
SCH13 1448 0.6 90 29.07593 1.951143 20.04615
2004-04-01 
SCH 13 1448 0.6 90 29.07593 1.951143 20.04615
2004-04-15
SCH254 1448 0.7 195 27.91768 2.85456 23.51709
09-Dec CA02 1561 0.8 10 48.41564 -8.01478 1.167576
09-Dec J90 1561 0.5 15 54.31538 -7.69401 -1.42586
09-Dec JH98 1561 0.7 10 46.71206 -7.55275 -0.43734
16-Jan SCH87 1625 1.4 0 40.44463 -18.9543 24.62724
2004-04-01
JP304 1824 0.9 250 45.39587 -5.37841 23.5746
2004-04-01
JP304 1824 0.9 250 45.39587 -5.37841 23.5746
28-Nov J25 1866 0.4 159 27.42338 4.530496 4.557759
28-Nov N121 1866 1 95 32.90152 5.047336 5.25214
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28-Nov N33 2143 0.6 69 12.37859 4.724612 23.09631
21-Jan SCH45 2152 0.9 30 72.30623 -13.7944 21.68885
2004-04-01
SCH244 2152 0.9 185 26.29091 1.667667 19.4596
2004-04-01
SCH244 2152 0.9 185 26.29091 1.667667 19.4596
16-Jan J91 2195 0.3 4 0.865946 -11.3106 33.67107
2004-04-15 
SCH 145 2299 1.6 166 61.60336 16.76618 27.8132
17-Oct JH97 2320 0.7 26 125.6576 -11.0235 24.34669
21-Jan SCH118 2376 0.8 3 50.93023 -15.0601 23.63502
28-Nov JH154 2462 2.4 100 31.11431 5.080009 4.697299
21-Jan SCH116 2623 1.3 4 28.68759 -14.1973 20.64593
21-Jan SCH 123 2623 1 10 58.74938 -16.869 22.38845
21-Jan SCH48 2623 0.9 10 61.71687 -15.3271 20.69119
2004-04-01 
SCH 148 2623 1 250 45.32101 12.25766 26.58499
2004-04-01 
SCH 148 2623 1 250 45.32101 12.25766 26.58499
28-Nov N120 2828 3.7 250 30.77976 5.709599 9.479843
28-Nov N68 2828 2.2 250 22.44978 3.462103 4.681343
16-Jan SCH94 2896 1.3 0 96.6013 -25.7366 24.70513
21-Jan SCH 124 2896 1.4 4 44.07905 -14.357 20.05895
21-Jan SCH114 3198 1.3 6 2.975107 -12.7944 20.86436
21-Jan SCH119 3198 1.2 36 78.54676 -15.8636 21.34291
21-Jan SCH 125 3530 1.4 34 81.94867 -16.4922 21.63209
21-Jan SCH34 3531 1.1 13 24.26549 -11.0881 21.24341
28-Nov JH116 3732 2.5 176 53.67958 14.41701 13.64737
21-Jan SCH117 3898 1.2 35 154.554 -13.6534 23.68839
21-Jan SCH121 4304 1.2 18 73.06439 -15.6511 20.52644
17-Oct J25 4641 2.2 22 -0.42279 -7.46987 30.70953
05-Nov SCH7 4925 3.5 80 132.7813 -10.534 3.193932
28-Nov N61 4925 2.8 109 27.35835 3.309521 6.566942

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


