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ABSTRACT
Top-k queries form an important class of aggregation queries
in wireless sensor networks. Unlike previous proposals we
consider the exact top-k values query problem, i.e., where
one seeks to find exactly all k highest unique values in the
network regardless of how many nodes report it. Previous
proposals also did not pay due attention to the underlying
logical tree topology used for data aggregation and forward-
ing. In this context, this paper presents two main contribu-
tions: (1) we propose the use of a particular tree topology,
based on Dominating Sets, which is well suited to explore
the network’s physical topology for processing top-k queries
efficiently; and (2) we propose EXTOK, a filtering-based al-
gorithm for processing the exact top-k values query, we also
prove its correctness and investigate its performance with
respect to a number of parameters, including network link
failures. In all examined cases, EXTOK performs consis-
tently well while effectively exploiting the proposed logical
tree topology and it is also resilient to link failures.

1. INTRODUCTION
A wireless sensor network (WSN) is a collection of sensor

nodes that are equipped with one or more sensors, slow mi-
croprocessor, small memory, and radio transceiver. A WSN
node’s energy supply is limited and usually provided by bat-
teries, making energy conservation a major issue, especially
when batteries cannot be replaced or their energy cannot
be replenished. There exist situations, e.g., querying for ex-
treme behavior in an environment, where only the data of a
few sensors are relevant to answering the query. For exam-
ple, consider the example of sensors deployed for monitoring
temperature in a forest. Clearly, the highest temperatures
observed in the forest could be useful to determine risk of
forest fires. Ideally, we would like to query only the nodes
that observed the highest temperatures. A query relevant
to this problem is the top-k query.

The precise semantics of the top-k query as considered in
this paper satisfies the following requirements: (a) k is not
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restricted (but naturally cannot be more than the number
of sensors in the network), (b) the query determines the ex-
act k highest values (i.e., no approximations), (c) the query
determines the full set of sensors that reported the k highest
values, and (d) the query is executed periodically starting at
some point in time and reporting values for an unbounded
number of subsequent rounds (i.e., until the user wishes to
terminate it). Existing proposals, discussed shortly, do not,
at the same time, satisfy the requirements (a), (b), and (c).

We note that requirement (c) is important because there
might be more than k nodes reporting the k highest values
due to possible ties in their observed values. A query provid-
ing all sensors whose temperature measurements are in the k
highest values could be important for, e.g., setting priorities
to manage fire-fighting resources. Ties are to be expected
for a number of reasons. For example, the measured values
may be coarsely quantized in order to save in terms of bits
required for their representation, and hence for lowering the
volume, and the energy cost, of transmitted data. More-
over, sensors located in close proximity to each other could
frequently be measuring the exact same value. Finally, we
expect that the larger the network, the more likely that two
or more sensors report the same value.

Sensor Sensor Value

s1 10
s2 15
s3 20
s4 23
s5 20
s6 15
s7 18
s8 16

Table 1: An example of 8 sensor values.

Consider a WSN consisting of a set of sensors, S = {si :
i = 1, 2, ...N}. Time is discrete and counted in rounds. Each
sensor produces only one value per round. Let Sp,j be the
set of sensors that produced the pth highest value, v(Sp,j),
during the jth round. The exact top-k-values monitoring
problem then is to find the set of k highest values, Dj =
{v(Sp,j) : p = 1, 2, ..., k}, for each round, j. later, We also
obtain the set of sensors, ∪kp=1Sp,j , that observed the k high-
est values. An example of 8 sensors and their corresponding
values during a given round consider the data presented in
Table 1. A top-2 query would return Dj = {23, 20}. Note
that k unique values are produced, and because of ties, the
number of nodes reporting the top-k values may be larger



than k, e.g., {s4, s3, s5} in this case. Solutions not concerned
with dealing with ties might return the top-k sensors, i.e.,
either set {s4, s3} or set {s4, s5}, but not {s4, s3, s5}.

A particular node in the network acts as the, so-called,
root or sink node, which is responsible for disseminating the
queries issued by a user into the network, and to return the
results of such queries back to the user. A trivial solution
to top-k queries is a centralized approach whereby, in ev-
ery round, all sensors send their measurements to the sink
which then locally calculates the top-k values. This solution
is of little practical interest because it introduces large com-
munication overhead, and hence energy consumption. An
alternative approach is to construct a spanning tree rooted
at the sink, and impose some form of aggregation and coor-
dination to save on communication overhead. An example
of such a logical tree is the Shortest Path Tree (SPT) which
is used by several existing solutions, e.g., [9, 17].

Earlier solutions, e.g., TAG [9] require every node to send
an update (containing its own value or aggregated values)
during every round irrespective of the fact that only k such
values will eventually become part of the actual answer. In
an ideal solution only the sensors that have values in the top-
k should send their values to the sink. Unfortunately, these
nodes do not know of their own “special” status a-priori.
Filtering based solutions e.g., FILA [17], have been proposed
recently for suppressing updates from nodes that are unlikely
to become part of the solution to the top-k query. The
intuition behind using filters is that nodes that reported the
top-k values during a round are more likely to produce the
top-k values again in the next round. It also means that the
updates from the sensors, which had not produced the top-k
values are potentially not required to compute the result in
the next round.

In this paper we present two contributions. We first ex-
plore the fact that the underlying logical tree structure plays
an important role in the query processing cost. Next, we de-
sign an efficient filtering-based solution that exploits the un-
derlying logical tree topology effectively to answer the top-k
queries, while carefully adhering to the query semantics as
defined above.

When designing a logical structure to process the top-k
queries our intuition is that by exploiting the spatial proxim-
ity of sensors one can create a logical tree in which messages
between nodes of a tree can be exchanged efficiently, and lo-
cal decisions can be made to suppress sensors updates more
effectively. We use clusters for efficient dissemination of mes-
sages and local decision making before routing intermediate
results further up the tree. In particular we propose the use
of a Dominating Set [16] to exploit the physical topology of
a given network and assemble a logical tree that allows more
efficient processing of the top-k queries. Through the use of
Dominating Set nodes we essentially form clusters in which
dominating nodes play the role of cluster-heads. Local pro-
cessing can then be performed in these clusters avoiding un-
necessary data communication further up in the tree, hence
decreasing the query processing cost and increasing the net-
work lifetime. Cluster-heads can communicate with the root
via multi-hop shortest paths. We call this structure a Domi-
nating Set Tree (DST). Towards the second part of our goal
we present a new filtering based algorithm, which we name
EXTOK—for EXact TOp-K (values). To the best of our
knowledge, EXTOK is the first algorithm for top-k queries
in WSN that satisfies all four requirements (a)-(d) presented

above simultaneously. We implement EXTOK on SPT as
well as on DST, and the results confirm that the underlying
logical tree does play a non-negligible role on the query per-
formance. Furthermore, we examine EXTOK’s performance
extensively, using both real and synthetic datasets, and we
find that EXTOK is an overall very efficient solution.

The remainder of the paper is organized as follows. Next
we review related work noting that several versions of the
so-called top-k query has been researched. In Section 3 we
elaborate on the construction of a DST and the reasoning for
the same. Section 4 details EXTOK, the new filtering based
solutions we propose, it also presents a proof of EXTOK’s
correctness. Next, in Section 5 we evaluate, and compare
with previous proposal, the performance of EXTOK both
on SPT and DST while using real and synthetic datasets.
Finally, Section 6 concludes the paper.

2. RELATED WORK
Top-k queries in distributed systems is a widely stud-

ied problem. Olston et. al. addressed the problem of
caching approximate values with an appropriate precision
[11]. Their work lead to the idea of implanting filters in
a distributed environment to suppress communication mes-
sages. Babcock and Olston [1] extended that and applied
the idea of cached values for the top-k monitoring problem.
The key idea is to use the cached values as range-based arith-
metic filters. Filters are adjusted dynamically when they are
violated. A coordinator node monitors the filter constraints
of the rest of the nodes and also maintains the top-k result.

This fundamental idea of installing filters for suppressing
unnecessary updates has turned out to be especially use-
ful with WSNs. A number of algorithms proposed in the
literature [13, 15, 17] rely on this idea for continuous moni-
toring of sensor values, a problem that is closely related to
the problem that we investigate in this paper. The difference
among the previously proposed algorithms lies in the various
strategies being used for maintaining the filters at successive
periods. Our work is different from [13, 15, 17] in the sense
that we adhere to the precise semantics set forth in Section 1.
Recall that we seek the exact top-k unique values and the
full set of sensors that observed them in the WSN. FILA [17]
tracks the top-k sensors, i.e., a subset of k sensors that has
observed the highest values within the WSN, and as we illus-
trated in Section 1 (using data from Table 1) FILA does not
guarantee to find the complete and correct set of k values
within the WSN. Furthermore, while it makes the typical
assumption that a multi-hop path has be to be traversed by
messages towards the sink, it assumes that messages from
the sink can reach all nodes in a single-hop. In [13], Sil-
berstein et. al. propose solutions that combine the idea of
temporal and spatial suppression for continuously collecting
“all” sensor values from the WSN. Clearly this problem is
different than the problem that we consider. In yet another
study, Silberstein et. al. carried out a detailed investigation
of MAX queries in [15]. An important conclusion of their
study is that threshold based filtering solutions are more ef-
fective than the range based filtering solutions proposed in
[1]. We note that while in our work we also use the notion
of threshold values for suppressing updates, unlike Silber-
stein et. al. we do consider the case of tied sensor values,
which impacts their filtering based solution. In fact, as we
shall see shortly, handling ties in a provably correct man-
ner, which EXTOK does, is important and non-trivial. In



our previous work [10] we already made use of the DST for
processing MAX (top-1) queries, where only the value it-
self was of importance and the corresponding node ids were
irrelevant. That solution cannot be simply generalized for
the exact top-k values query that we now consider. Finally,
none of the solutions proposed in [13, 15, 17] pay due atten-
tion to the underlying logical topology, which is part of our
solution.

Not surprisingly, several other versions of the top-k prob-
lem exist. For instance, a variation of the top-k query is
to rank the objects based on the aggregated scores on a set
of attributes stored at distributed locations. The Threshold
Algorithm [4] is the best known solution for this problem.
The main constraint of this algorithm is that it assumes
single-hop communication. Zeinalipour-Yazti et. al. pro-
pose a solution to a similarly defined problem but which
is developed in the context of a multi-hop WSN [18]. This
exemplifies the observation that solutions proposed for a dis-
tributed, albeit wired, system which is also rich in resources
are not directly applicable to WSNs.

Similar, yet different problems have been investigated else-
where. In [14] the authors use a model-based optimization
technique for answering the approximate top-k queries; the
goal is to minimize the number of true answers missed in
the approximate answer. More recently the authors of [3]
propose exploiting the spatially correlated sensor data to
build partial order trees (POT) to answer the top-k queries.
Their main idea is to select “hot spots” (sensors with high-
est readings) in a network to build a logical topology to re-
duce unnecessary sensor updates. While it works well for
highly non-uniform data distribution its performance de-
grades rapidly when there are very few or no hot spots.
In this paper we make no assumptions with respect to the
distribution of data values in the WSN.

There are also solutions that only apply aggregation and
do not use any filtering mechanism. TAG [8] is a classical
example of such non-filtering based approach that can be
used for the top-k query problem. In TAG an underlying
logical tree topology is used in which, before forwarding the
data to its parent, a node aggregates the data received from
all of its children.

3. DOMINATING SET TREE
A common characteristic among most of the previous work,

e.g., [1, 3, 13, 15, 17, 18] is that while they exploit the un-
derlying logical tree structure for performance gains, they
do not seem to devote the necessary attention on how to
assemble such a tree. Consider a WSN with the physical
topology depicted in Figure 1(a), where edges represent the
ability of a pair of nodes to communicate directly, i.e., they
are within each other’s communication range. Assume that
node A is the sink node. To start the top-k query process-
ing, the first step is to disseminate the query in the network
to all sensors. An obvious solution is for A to broadcast the
query in its neighborhood, and request all of its neighbors to
do the same. This is repeated until all nodes in the network
have received the query, i.e., query dissemination by means
of flooding.

In this example we note that several nodes can be reached
by one single transmission, due to the broadcast nature of
wireless transmissions. Therefore, a sensible alternative to
flooding is to use a logical topology, e.g., a SPT built on
top of the physical topology to disseminate the query. For
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Figure 1: A network of eight nodes. Solid lines rep-
resent edges, and arrowed lines represent messages
with the distinction that all arrowed dashed lines
coming out from a node represent a single broad-
cast message from that node.

our specific network shown in Figure1(a), a SPT is shown
in Figure1(b). Using a logical tree topology a query can be
received by all nodes if every node except the leaves of the
tree broadcasts the query. The specific SPT requires a total
8 messages (transmitted by nodes A, B, C, D, E, F, G, I) to
disseminate the query.

A better alternative to SPT is to ensure that only the
smallest possible subset of nodes relay the query, as long as
the transmissions from this particular subset of nodes en-
sures that all nodes receive the query. The equivalent graph
problem is that of determining a Minimum Connected Dom-
inating Set (MCDS) [2]. Given a graph G(V,E), a Domi-
nating Set (DS) is a subset of node V ′ from G such that all
nodes from the set {V -V ′} are connected to (are neighbors
of) at-least one of the nodes in V ′. If the nodes in V ′ are
connected, then they form a Connected DS (CDS). The CDS
serves as the basis for ad-hoc network routing, e.g., to form
the Multi-Point Relays (MPR) [19]. Frequently, the CDS
is seen as a structure of interconnected clusters [7] where
the dominating nodes are called cluster-heads in recognition
of the fact that they “represent” collectively, neighboring
(dominated) nodes. Naturally, we are interested in the Min-
imum CDS (MCDS), as it represents the minimum number
of transmissions to reach all nodes in a network. For the net-
work shown in Figure 1(a), nodes C, F, and I constitute an
MCDS. Unfortunately, finding an MCDS is known to be an
NP-hard problem, and the quest for a tight approximation
remains an area of active research [2]. Nevertheless there
exist distributed algorithms that approximate the MCDS to
within a constant factor, at the cost of O(|V |) time complex-
ity and O(|V | log |V |) message complexity. A distributed
approximation algorithm presented in [16] is based on the
concept of Maximal Independent Set (MIS), which is closely
related to DS. The MIS is a subset of vertices characterized
by the property that no two vertices are adjacent, and the
set of vertices is maximal (no further vertex can be added
without breaking the property). It is trivial to show that
an MIS is also a DS (but the converse is not necessarily
true). We use a similar approach, whereby through an ini-
tial MIS construction, we eventually build a tree, i.e., a con-
nected subgraph, rooted at the sink node. We will call it a



Dominating Set Tree (DST). An obvious problem then is to
construct a minimum cost DST (MDST), which is equiva-
lent to finding a constrained MCDS such that the sink node
must be part of the solution, i.e., the sink node is included
in the MCDS. The proof that finding the solution for this
constrained-MCDS problem is also NP-hard in included in
the Appendix.

For the network shown in Figure 1(a) the corresponding
DST rooted at A is shown in Figure 1(c). The cluster-head
nodes C, F, and I that constitute the MCDS become the non-
leaf nodes of the DST. Furthermore, sets of nodes {B,D},
{E,G}, and {H,K,J} that are cluster members of nodes C,
F, and I, respectively, become the leaf nodes of the DST. In
this example a query can be disseminated using 4 messages
(transmitted by nodes A, C, F, I) using the DST compared
to 8 messages for the SPT.

3.1 DST Construction
We assume that the DST construction is a one-time cost,

performed at the beginning of a network’s lifetime. For
this reason, we assume it is acceptable to construct a DST
off-line. We consider fairly simple distributed construction
schemes that assume that each node is aware of its neigh-
bors and it can support reliable message transfers. In the
beginning of the network deployment first we construct an
MIS, and based on the MIS we construct a DST.

DST construction is a two phase process that is triggered
by the sink node by sending a construction request message.
In the first phase, each node that receives the construction
request, forwards the request while incrementing the dis-
tance metric (included in the message) that keeps track of
the number of hops from the sink (hop-count). In the same
message each node announces its weight to its neighbors.
As weight of a node we use the ratio of its degree over its
hop-count. Each node also selects a prospective parent (for
the DST to be constructed) that has a minimum hop count
to the sink, breaking ties using the node ID.

In the second phase, a node becomes a cluster-head if it
has the largest weight among its neighbors (node ID is used
to break ties). If it does not have the largest weight among
its neighbors, it waits until its neighbors with higher weights
have determined whether they will become cluster-heads or
not. If none of the higher weight neighbors has become a
cluster-head, the node assumes the role of the cluster-head,
and announces this fact to its neighbors. The cluster-heads
form an MIS, and the DST is formed by the union of the
shortest paths from all MIS (cluster-head) nodes to the root.
Cluster members that find themselves on the shortest paths
of the MIS nodes to the root become connectors. The rest
of the cluster members become leaf nodes of the DST by
choosing their corresponding cluster-head as their new par-
ent. Recall that all nodes had selected a parent having a
minimum hop count to the sink during the first phase it-
self. In the second phase, only cluster members that are
not connectors update that their cluster-head is their new
parent. In the rest of the paper we often use the term domi-
nating nodes to represent the non-leaf nodes (that are either
cluster-heads or connectors), and non-dominating nodes to
represent the leaf nodes (or cluster members) of a DST.

The MIS construction outlined here is essentially the same
as in [16]. Like above, [16] also builds a tree from the con-
structed MIS. Internal nodes of the constructed tree are
eventually chosen to represent the CDS. The basic differ-

ence from [16] is that in our DST construction, the root of
the tree should be the one given, i.e., in DST, the root of the
tree is part of the input. Recall that our DST construction
is triggered by a particular sink node that will eventually
become the root of the DST.

Throughout this paper we assume that an ideal transmis-
sion schedule is also constructed that dictates when nodes
should listen, transmit, or sleep. TDMA schemes for uni-
cast and broadcast communication proposed in the litera-
ture can be used for this purpose [12]. A näıve solution
to this problem is to allocate time slots for every task that
nodes need to perform in order to process the query, e.g.,
directing when a child (within a cluster) should transmit
to update its parent, and when a parent should be awake
to receive values from its children, and so on. This näıve
solution is likely not efficient for filtering based algorithms,
because the nodes that were scheduled to transmit in their
particular time slots may never use their time slots because
of their filtering constraints. A detailed investigation of the
scheduling problem is out of the scope of this study. For
the purpose of this paper it is sufficient to assume that a
schedule is in place for nodes to perform every task that is
required to process the top-k queries.

3.2 Failures and Recovery
The remaining of this paper assumes reliable communica-

tion. We are aware though that unreliable communication
is a fact of life, in particular in wireless communications. In
fact, in Section 5.3, we investigate the impact of unreliable
communication (specifically, link failures) on the correctness
of the produced top-k result. Due to space limitations, we
do not elaborate on protocols that could be used to deal
with failures. Nevertheless, for the sake of completeness,
we sketch in the following paragraphs the basic ideas be-
hind them. For a variety of reasons, energy depletion being
the main one, node failures are possible. Certain node fail-
ures could result in network partition, in which case noth-
ing (short of replacing them with new nodes) can be sen-
sibly done to reconnect the network. However, we expect
that a large number of node failures still leave the network
connected. Nevertheless, such failures can still disrupt the
logical topologies we consider here, i.e., the trees used for
query dissemination and execution/collection. More insidi-
ously, there could be temporary link failures, i.e., failures for
nodes to communicate due to the condition of the wireless
channel because of noise, interference, the movement of ob-
structions, etc. Such failures are quite common but should
not be treated the same way as node failures since they rep-
resent temporary disruptions. In this latter case, a node
that was supposed to report its value might not be able to
get its transmission across, leading even to incorrect query
result. Next, we discuss briefly some approaches to dealing
with failures. A näıve solution is to reconstruct the logi-
cal tree from scratch. Any perceived failures are reported
to the root, and the root re-initiates the distributed, albeit
costly, re-construction of the tree. Nevertheless, for par-
ticular kinds of failures, less costly alternatives exist that
attempt to fix the logical topology locally. For example,
children of a failed (unresponsive) parent node can initi-
ate a local reconstruction by choosing a new parent among
their neighbors. We note that any optimality (or bounds
to optimality) guaranteed by the complete re-construction
of the tree are typically absent from techniques that rely



on local repairs. Therefore, local repairs should be seen in
the light of providing a compromise that avoids costly (but
with possible optimality properties) global reconstruction,
by providing instead “inexpensive” (few messages) and fast
response to failure events. By the same token, the exclu-
sive reliance on local repairs may, after several failures have
been repaired, render the logical tree significantly distant
from the optimal one. Hence, the ability to, on occasion,
reconstruct the entire logical tree might still be useful even
when local repairs are employed.

Fortunately, when it comes to locally repairing a logical
tree, several relevant techniques that were originally pro-
posed for the maintenance of multicast routing trees exist
[5]. Some of them can be used (with various modification)
to maintaining the trees, i.e., SPT and DST. As an exam-
ple of simple local repair strategies, consider first the case
of SPT. Children of a failed parent can broadcast a control
message to find their new parent. Nodes that receive this
message may reply back with their “tree level” (hop count
to the root). The disconnected children can choose a par-
ent from among the replying nodes with the smallest tree
level. Leaf node failures do not elicit any repairs. Simi-
larly, in a DST, when a leaf node fails no action is taken.
However, in a DST, when a dominating node fails, its chil-
dren can broadcast a message to find another dominating
node among their neighbors (i.e., either a cluster-head or a
connector). Suitable nodes reply back and the requesting
node selects as parent the one with the lowest hop count to
the root. If no reply is received, then the requesting node
was dominated by only one dominating node (the one that
failed) and subsequently the requesting node will connect
to a non-dominating node (from within its neighborhood)
that has the lowest hop count to the root. The chosen non-
dominating node will then become a dominating node. A
more detailed study on failures and recovery techniques in
DST is outside the scope of this paper and is subject of our
current research. Nonetheless, the impact of transient link
failures in the query results is investigated in Section 5.3.

4. PROCESSING EXACT TOP-K QUERIES
In the following we look into two ways in which the fil-

tering based methods for the top-k queries in particular can
benefit from the DST structure. We note that if the un-
derlying logical tree structure is an SPT, then the paths
followed from nodes to the root/sink are optimal in terms
of the number of hops, but the same is not true for a DST
(see, e.g., nodes B, D, E and G in Figure 1). This apparent
sub-optimality of a DST for routing data will be countered
by benefits from reducing the amount of traffic mainly by
installing filters and through efficient dissemination of mes-
sages in the tree.

Filtering based solutions require a “feedback” mechanism
between the root and the nodes, mainly to update the fil-
ters and to validate the top-k result [17]. In essence, this
filtering based solution employs two types of communication
messages that are exchanged between the nodes of a tree:
(i) nodes-to-root messages, i.e., updates triggered from the
nodes, and (ii) root-to-nodes messages, i.e., filter updates
and validation messages triggered from the root. A DST
structure is well suited for the second case because of its
clustering characteristics; messages from the root can be
broadcasted efficiently. DST also allows for efficient and
early aggregation. In the following we present EXTOK as-

suming a DST logical topology.
Before we detail how the algorithm works we present an

overview of the whole process. EXTOK’s execution can be
thought of as starting from the leaf (non-dominating) nodes
and progresses towards the root. Every node runs the al-
gorithm during every round according to its given schedule
and in accordance with the precedence constraints imposed
by the logical relationship. In the first round EXTOK works
similarly to TAG, in which all nodes send their updates, and
the root after collecting values finds the top-k values. The
root also calculates a threshold value, henceforth referred
to as τ which is the minimum value of the current top-k
values, and that will be sent to the nodes and installed as
their filter. At this point nodes enter in one of two opera-
tion modes. A node is said to be in a “temporal monitoring”
mode (TM-node for short) if it produced one of the current
top-k values. TM-nodes are required to report any changes
to their current value at every round as it may yield a change
in the current top-k answer set. Otherwise, a node is said
to be in a “filtering” mode (or a F-node) if its value did
not contribute to the current answer set. F-nodes are re-
quired to report their new values only when they observe a
value that could belong to the answer set, i.e., a value that
is greater than or equal to τ .

After the first round each subsequent round in EXTOK
consists of three stages. In the first stage nodes trigger their
update according to their operating mode. After receiving
values during the first stage, the root proceeds to validate
the current top-k results, and, if necessary, it initiates a
validation procedure at the end of the first stage. During
the second stage of the algorithm, some nodes may reply
back in response to the validation procedure invoked by the
root. At the end of the second stage the root determines the
correct answer to the query. During the third stage the root
adjusts the value of τ based on the newly computed result,
and informs all other nodes about it.

We illustrate the execution of EXTOK during the three
initial rounds for a top-2 query in Figure 2. Values ob-
served by the nodes during a particular round are depicted
within the respective nodes. In the first round all nodes are
TM-nodes (shaded in Figure 2) (except the root that is not
required to trigger its update during any of the rounds), and
τ = −∞1. In the first round (Figure 2(a)) every node sends
its update to the root. As the nodes push their values up
in the tree, aggregation is performed by parent nodes. For
instance, node I, after receiving values from its children H,
J and K, discards the values {10, 12} to forward its local
top-2 values only, i.e., {16, 15}, to its parent F. Note that
since EXTOK considers the unique top-k values, the local
top-2 result forwarded by node C consists of the three pairs
{〈C, 20〉, 〈D, 23〉, 〈E, 20〉} (2 unique values being observed
at 3 different nodes). Finally, the root finds the top-2 result
and also determines τ , which is the lower bound on the cur-
rent top-k values (20 in this particular example). The root
broadcasts τ after which only nodes C, D and E become
TM-nodes, i.e., if their values change, they must propagated
their updated value. The rest of the nodes will trigger an
update only if their value is greater than τ = 20 (i.e., they
become F-nodes). During the second round nodes C, D
and E change their values and trigger updates as shown in
Figure 2(b). In order to correctly compute the results the

1In general, this should be set to the application’s minimum
meaningful value.
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Figure 2: Initial rounds of a top-2 query on DST.

root always requires the current values of the TM-nodes that
changed during a given round, therefore, their values cannot
be aggregated en-route; note that E’s value is propagated all
the way to the root, by-passing the aggregation. Since the
top-2 values received by the root during the second round
(i.e., 21 and 20) do not invalidate τ = 20, and also the value
of every filtering node is less than 20 (otherwise they would
have triggered their own update) the root can correctly find
the top-2 values in the second round without taking further
action. Note that at the end of the current round E has not
received an update for τ and since its own value is smaller
than τ it becomes a F-node automatically.

Changes to the values in nodes C and D in the third round
(Figure 2(c)) trigger a propagation of their update. Node G
(which was a filtering node) also triggers its update because
its new value is above τ . At the end of the stage one in the
third round the root receives values {21, 18, 17} yielding
{21, 18} as the (temporary) answer set. At this point the
root finds that the current top-2’s lower bound (18) lower
than the current value of τ (20). This means that other un-
reported values from F-nodes may now be part of the answer
set. To determine the new correct result, the root sends a
validation query in the tree seeking values that are greater
than or equal to 18. In response to the validation query,
node E replies back with its value (Figure 2(d)). The root
finally determines the (guaranteed) correct top-2 values, i.e.,
{21, 19}, and also updates τ = 19, which is propagated down
in the tree to update the nodes’ filters. Thus after round 3,
E and G will become TM-nodes, and C and D will become
F-nodes. Pseudocode for EXTOK’s algorithms for the root
node and all other nodes is described in Algorithms 1 and 2
respectively in the Appendix.

4.1 EXTOK’s Algorithm

4.1.1 Initialization
In the first round every node but the root sends its update.

Aggregation is applied by the dominating nodes of the tree.
If the total number of values received by a dominating node
plus its own value is less than k then that node sends all
values to its parent; otherwise it sends the top-k values only.
After receiving values from its immediate children the root
can determine the top-k values and the corresponding nodes

that generated them.
The root computes an arithmetic filter for the non top-

k nodes to suppress unnecessary updates in the subsequent
rounds. For that the root uses a threshold value, τ set to
the minimum value of the current top-k values. (Line 35 in
Algorithm 2.) The root broadcasts τ so that all nodes can
update their filters. (Line 37 in Algorithm 2, and lines 28
and 35 in Algorithm 1.) (For the sake of efficiency we make
the assumption that if a new τ is not broadcast within a
round the nodes will behave as if the same current τ had
been broadcasted.) Let v(si,j) be the value of node si during
the jth round. After τ is updated, a node si becomes a
TM-node for round (j + 1) round if v(si,j) ≥ τ , otherwise
it becomes a F-node. After that EXTOK works in three
sequential stages detailed next.

4.1.2 Stage 1
During this stage a TM-node, si, triggers its update only

if v(si,j) 6= v(si,j−1), while a F-node, si′ , triggers its update
only if v(si′,j) ≥ τ . (Refer to line 4 in Algorithm 1.) The
root requires the new values of all triggering TM-nodes in
a given round, therefore their values cannot be aggregated
en-route. However, the values of the filtering nodes can and
indeed are aggregated en-route. After the root has received
values from all of its children, it determines the correctness
of the current top-k result. As represented in Figure 3 there
are a few cases that the root needs to consider and which we
discuss next. For the sake of explanation we use Figure 3(a)
to illustrate the set of top-k and the non-top-k values sepa-
rated by the current threshold (τ) value, further we refer to
the former as “top-k-space”.

S1a: In this case we consider updates triggered by changes
in TM-nodes only, in particular changes that happen
within the top-k-space (Figure 3(b)). The only inter-
esting event is when there is a new and higher value
for the lower bound of the current top-k values. In
this case a new τ is computed and broadcast to all
nodes. Consequently some TM-nodes may now be-
come F-nodes. This scenario has no effect on current
F-nodes.

S1b: Next we consider changes triggered by updates from
F-nodes only, i.e., changes that happen outside the
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Figure 3: Various scenarios of changing values that
can impact the top-k result and the threshold set-
ting. The dark-color filled circles represent the top-k
values and the circles with a filled pattern represent
the non top-k values. A non-filled circle represents
a “space” created by a moving top-k or non top-
k value. Solid (dashed) vertical lines represent the
new (previous) threshold values.

top-k-space (Figure 3(c)). By definition this means
that the new values of these nodes are greater than
or equal to τ , and also that those nodes may become
TM-nodes. It is also possible that a new τ exists and
needs to be broadcast, and again depending on that
value, TM-nodes may need to switch to F-nodes and
vice-versa. (Refer to lines 15∼17 in Algorithm 2.)

S1c: The last case of interest is more general; values are
coming in or leaving the top-k-space (Figure 3(d)).
The first situation can be triggered by certain updates
from either TM- or F-nodes, while the second happens
when a TM-node’s value that is unique falls below the
current τ . When the root receives all updates it will
have k′ values that are equal or above the current τ
value and m values that are below τ . If k′ ≥ k, the root
computes the current lower bound τ and, if there is a
change, broadcasts it. As before, nodes may then need
to switch their operating modes accordingly. Even if
τ does not change, and therefore is not broadcasted,
nodes may still switch their mode since they know their
own values and can presume that τ did not change. A
more interesting scenario however, is when the root
ends up with k′ < k values greater than τ . (Refer to
lines 18∼25 in Algorithm 2.) Then there are two cases
to consider depending on the relation between k − k′

and m, in both cases the root determines a suitable
probe value to be sent in a validation query to all F-
nodes; their responses are considered in Stage 2 (which
we discuss shortly.). The purpose of the probe is to re-
strict the subset of the nodes that need to respond to
the validation query.

– If k− k′ ≤ m the root has enough values to com-
plete the answer set, but it is possible that F-
nodes that did not trigger an update, and there-
fore whose values are not known to the root, should
be part of the answer. (Refer to lines 20∼22 in
Algorithm 2.) To solve that potential problem the

probe value is set equal to the (k − k′)th highest
value from the set of m values of sensors that have
dropped below τ .

– On the other hand if k − k′ > m the root does
not have enough values to complete the answer
set and is unable to set a sensible bound for the
probe value therefore it operates similar to the
first “TAG-like” round over the F-nodes (TM-
nodes need not be queried as they would have
already sent useful updates by themselves), and
the probe value is set to −∞. (Refer to lines
23∼25 in Algorithm 2.)

To illustrate the situations above consider an example
where τ = 30, k′ = 8 and the set of m values below
τ at the root is {25, 22, 19, 18, 15}. If k = 10, then
the root needs k−k′ = 2 values to complete its answer
set. Only values greater than or equal to 22 need be
considered since the root already has values above it
to complete the answer set, thus the probe value in the

validation message is set to 22, i.e., the 2nd ((k − k′)th)
highest value among the m values available. If k = 15
then the root has no means to set a bound on the probe
value as it has less values than it needs, thus it sets the
probe to −∞ in order to guarantee a correct answer.

4.1.3 Stage 2
In the second stage all F-nodes, which had not triggered

their update in the current round, reply back in response
to the validation query only if their value is greater than or
equal to the probed value. (Refer to lines 14∼25 in Algo-
rithm 1 and line 28 in Algorithm 2.) Aggregation is applied
en-route and can actually be “tightened”. Note that the
node needs no more than k − k′ values, thus if a node re-
ceives more than k − k′ values, then it forwards only top
k−k′ values to its parent. The root may or may not receive
any values in response to the validation query. In any case
the root can correctly determine the top-k result from the
values it has received from the TM-nodes during the first
stage, plus the F-nodes that have replied back in response
to the validation query, if any, during the second stage, in
addition to the k′ values above τ it already has. At this
point the root can recompute a new value for τ from the
newly computed top-k values, and if it changes, broadcast
it.

4.1.4 Stage 3
In this “concluding” stage the root updates the nodes

about the new threshold τ , and the nodes can set their
mode accordingly. In the absence of a threshold update



message during a given round nodes can safely assume that
the threshold value has not changed and they set their (pos-
sibly) new mode for the next round based on their current
value alone. (Refer to lines 28∼35 in Algorithm 1 and line
29∼38 in Algorithm 2.)

4.2 EXTOK’s Correctness
The correctness of EXTOK’s algorithm in the first round

is straightforward to establish, as its behavior is very much
similar to TAG’s. The following theorem asserts and proves
its correctness for subsequent rounds. We assume the avail-
ability of two functions: V (S) that returns the number of
unique values within a given set of sensors S, and v(si,j)
that returns the value of a given sensor node si at round j.

Theorem 1. In any given round j ≥ 2, EXTOK pro-
duces a correct top-k result.

Proof. Given a set S of nodes si,j , i = 1, 2, . . . N , dur-
ing a round j, let St,j and Sf,j be the sets of TM-nodes
and F-nodes from which the root received values in the jth

round and let Sc,j = St,j ∪ Sf,j . Further, let Sτ+,j =
{si,j ∈ Sc,j , s.t. v(si,j) ≥ τ} and similarly Sτ−,j = {si,j ∈
Sc,j , s.t. v(si,j) < τ}. τ is set to the minimum value in
the current answer set, i.e., it is the smallest of the current
top-k values. Finally, let k′ = |Sτ+,j |, and m = |Sτ−,j |. We
distinguish two cases: k′ ≥ k and k′ < k.

C1: If k′ ≥ k the root has at least k values that are greater
than or equal to τ . By construction, the values that
root does not know must be less than τ , therefore the
root must have the exact top-k values.

C2: If k′ < k, then the root requires additional k − k′

values to find the top-k result. Further Sτ−,j 6= ∅
(otherwise we would necessarily have k′ ≥ k) and it
contains only those TM-nodes whose values have fallen
below τ ; F-nodes will only send updates if their values
become greater than or equal to τ . Recall that in Stage
S1c of the algorithm the root sends a validation query
containing a proper probe value v(sq,j) leading to the
following two sub-cases.

C2a: If k−k′ ≤ m, then the probe value, v(sq,j), is the

(k − k′)th highest value from the set, V (Sτ−,j).
Assume the root receives k′′ values in response
to the validation query. By construction all k′′

values that the root receives are greater than or
equal to v(sq,j) but smaller than τ otherwise they
would have triggered an update and be known to
the root already. The root now has k′ values that
are greater than or equal to τ , and k − k′ values
that are less than τ but greater than or equal
to v(sq,j), and additional k′′ values (received in
response to the validation query) that are also less
than τ but greater than or equal to v(sq,j). The
root now is guaranteed to have at least k values
that are greater than or equal to v(sq,j) and all
other values in the tree are, again, by construction
smaller than v(sq,j). Thus the root must be able
to find the correct top-k values.

C2b: If k − k′ > m, then v(sq,j) = −∞, which means
that the root will receive answers, possibly aggre-
gated en-route from every F-node that had not

triggered its update during the first stage, and
clearly there will be enough values (current plus
newly received ones) at the root for the correct
top-k values to be found.

5. PERFORMANCE EVALUATION
In order to evaluate our proposal we used both synthetic

and real datasets. The synthetic dataset was generated by
simulating a network of sensors deployed in a 200m×200m
area. Using this dataset we performed experiments by vary-
ing five parameters: number of sensor nodes (N), number
of top values sought (k), wireless/radio range (ω), probabil-
ity that a sensor’s value changes between two consecutive
rounds (γ) and percentage of change in sensor’s value (δ).
Table 5 shows the values used for each such parameter. For
the placement of the sensors, the monitored area was divided
into smaller cells, in particular 4 cells of equal size. Sensors
were then placed randomly in each of these cells. Dividing
the area into smaller cells helped ensuring that randomly
placed sensors were able to form a connected network. To
investigate the impact of randomly changing values (sensors
measurements) on the performance of the algorithms we gen-
erated “temperature” values for sensors. The initial value of
sensors was randomly set between 10 and 50 and could vary
between rounds according to parameter δ (equally likely to
be a negative or positive change).

Parameter Values

N (# of sensors) 100, 200, 300, 400, 500
k (# of top values) 1, 5, 10, 15, 20
ω (radio range [m]) 25, 30, 35, 40, 45 (synthetic data)

and 8, 10, 12, 14, 16 (Intel data)
γ (prob. of change) 0.1, 0.2, 0.3, 0.4, 0.5
δ (change [%]) 2, 4, 6, 8, 10

Table 2: Parameter values used in the experiments
(default values are shown in bold face).

Results using the synthetic dataset are based on an aver-
age of 10 simulation runs in which each run consists of 200
rounds. In each of the simulation runs the root node was
chosen randomly. Also, in each of these runs the placement
of sensors was also random within the layout detailed above.

The experiments with real data was performed using the
Intel Berkeley dataset2, which consists of approximately 3.5
million readings from 54 sensors deployed in the Intel Berke-
ley Research lab. A few sensors for which the location was
not know were removed from the dataset, and missing values
in the data were replaced by using linear interpolation. Sen-
sor readings were originally maintained by epochs, a mono-
tonically increasing number for each of the sensors. We or-
ganized these sensor readings in such a way that the dataset
has 60,000 rounds, each one containing one value for each
of the 54 sensors. Note that in the case of this dataset
only parameters k and ω are investigated using the original
placement of the sensors, and having one such node ran-
domly chosen as the root node for each run. As before the
reported results are an average of 10 runs.

2http://db.csail.mit.edu/labdata/labdata.html



As discussed in Section 2, there are previously proposed
approaches that deal with similar but yet different versions
of the top-k monitoring problem, hence a direct compari-
son to those is not applicable. Nonetheless, TAG can be
used to solve the same problem we solve, therefore, in or-
der to have a baseline to evaluate our proposal, we imple-
mented TAG as well. Our experiments have clearly shown
that DST is consistently a better alternative than SPT for
both EXTOK and SPT. Nonetheless, for the sake of com-
pleteness we show results obtained by using both TAG and
EXTOK implemented on top of both SPT and DST topolo-
gies. Henceforth the notation X-Y means algorithm X im-
plemented over logical topology Y. Unless otherwise noted,
in the performance figures that follow we compute the trans-
mission cost of TAG-DST, EXTOK-SPT and EXTOK-DST
and present their performance results as a percentage (%) of
improvement (positive gain) or deterioration (negative gain)
over the transmission cost of TAG-SPT.

5.1 Transmission Cost
Results from our experiments using the synthetic dataset

are summarized in Figures 4–8. In the first experiment we
evaluate the impact of varying k on the EXTOK’s perfor-
mance (Figure 4). The foremost trend that we can see is
that EXTOK-DST outperformed TAG-SPT by at least 70%.
DST provides an efficient backbone for root-to-node com-
munication which occurs often in EXTOK. Updates from
nodes-to-root (which are more costly in DST) are signifi-
cantly suppressed due to installed filters thus yielding an
overall advantage to the use of DST for EXTOK.
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Figure 4: Relative transmission cost vs. k. Syn-
thetic dataset.

In the second experiment we evaluate the impact of vary-
ing the nodes’ radio range (Figure 5). Note that changing ω
is bound to change the node degree (number of neighbors)
of the sensors as well thus we also show the average node
degree of the sensors. Clearly EXTOK-DST is the best op-
tion. The reason for the improved performance with the in-
creased ω is that as ω increases the underlying tree becomes
shorter, decreasing the number of hops to the root. Specific
to the DST the size of the clusters increases, which results
in a more “leafy” structure. It also means that there are
increased number of non-dominating nodes (leaves) at the
cost of decreasing the number of dominating nodes (non-
leaves) in the tree, which are mainly responsible for relaying
messages in the tree. That results in efficient root-to-nodes
communication (for threshold updates and validation query
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Figure 5: Relative transmission cost vs. ω. Syn-
thetic dataset.
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Figure 6: Relative transmission cost vs. γ. Syn-
thetic dataset.

dissemination).
Varying γ and δ create a scenario that allows observing

how the dynamics of the observed values affect the algo-
rithms’ performance. Naturally, the more dynamic the ob-
served values, the more updates will be required. In essence
this situation creates more communication traffic in the tree
for EXTOK. Our experiments in this regard are summa-
rized in Figures 6 and 7. Again EXTOK using both DST or
SPT clearly outperforms TAG by a substantial margin. It is
clear that the increase in communication traffic impacts EX-
TOK performance, while TAG is virtually oblivious to the
same. The reason for EXTOK’s behavior is that when values
are changed more dynamically filters are violated more fre-
quently, and more communication takes place between the
root and nodes. That results in overall increase in the trans-
mission cost of EXTOK. Nonetheless both implementations
of EXTOK saved at least 60% over TAG.

In the next experiment we vary the number of nodes de-
ployed (Figure 8). As the number of nodes are increased
the relative performance of EXTOK, particularly on DST,
improved. Increasing the number of nodes allows for a more
effective DST structure as it implicitly increases the den-
sity of the nodes, thus increasing the relative performance
of EXTOK-DST even further.

Results from our experiments using the Intel dataset are
discussed next. The impact of varying k is summarized in
Figure 9. As before EXTOK outperforms TAG regardless
of the topology used. However, as the value of k increases
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Figure 7: Relative transmission cost vs. δ. Synthetic
dataset.
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Figure 8: Relative transmission cost vs. N . Syn-
thetic dataset.

the performance gain with EXTOK decreases rather quickly.
The reason is that with an increased k, the transmission cost
in EXTOK increases more rapidly, because a larger k rep-
resents a larger fraction of the total number of nodes (54)
are forced to perform temporal monitoring. It also means
that threshold updates and query messages are used more
frequently resulting in the increase of the transmission cost.
In the second experiment with the Intel dataset we evalu-
ate the impact of varying ω (Figure 10). The qualitative
behavior is not very different from the case where synthetic
data is used (Figure 5). Quantitatively though, there is no-
ticeable difference, which can be explained by following two
observations and their compounded effect. First, the aver-
age node degree is now smaller, which makes it harder to the
DST to exhibit its advantages. Seconds, the Intel data set is
more dynamic, naturally triggering more updates and con-
sequently more nodes-to-root transmissions which are typi-
cally more expensive on the DST topology.

5.2 Energy Cost
Each bit received by a wireless transceiver incurs an en-

ergy cost, Erx. It is also typical of transceivers used in
wireless sensor platforms that receiving one bit requires less
than the energy for transmitting one bit (Etx). We will
assume an ideal transmission schedule is constructed that
dictates when nodes should listen, transmit, or sleep. One
can readily see that a DST requires that many nodes need
to receive the same transmission (a form of local multicast).
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Figure 9: Relative transmission cost vs. k. Intel
dataset.
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Figure 10: Relative transmission cost vs. ω. Intel
dataset.

Thus, while a DST may offer savings in terms of number
of messages being sent, each message usually results in a
higher reception cost than in the case of a SPT, because
it is received by more than one node. To appreciate DST’s
energy cost versus that of SPT, we have performed extra ex-
periments accounting for transmission and reception energy
costs (we also assume an ideal, i.e., collision-free, schedule
for medium access for both DST and SPT).

Models capturing the energy consumption have been pro-
posed and used in various previous studies [8, 15], In order
to make the presented results as technology neutral as pos-
sible, we assume that the unit of energy cost is the energy
required for the transmission of a single bit, Etx, and we use
a parameter, Rc, to link transmission and reception cost via
Rc = Erx/Etx. In our experiments Rc assumes values from
the set {0.10, 0.25, 0.50, 0.75, 0.95}, and all other parame-
ters are kept at their default values. The results capture the
cost of DST’s strategy which requires that multiple nodes
receive the transmissions of dominating nodes.

In the case of EXTOK as the cost of reception increases
the overall energy cost increases for both topologies. The
reason is that while transmission cost is reduced by sup-
pressing updates due to installed filters, the reception cost
is higher as the root sends threshold updates and validation
queries that are received by a large number of nodes. This
can be verified from the results shown in Figure 11 in which
the relative performance of EXTOK is decreasing as Rc
value increases. Qualitatively similar results were obtained
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Figure 12: Relative energy cost. Intel dataset.

when using the Intel dataset (Figure 12). With respect to
TAG the interesting observation is that, besides being im-
mune to changes in Rc, using DST instead of SPT again
yields some gain in a random uniform topology; though ad-
mittedly small it comes at virtually no cost as the only dif-
ference is the underlying topology.

5.3 Robustness to Failures
In this section we evaluate the effectiveness of EXTOK

in the presence of link failures which may cause the root to
report an incorrect result. We assume the top-k result to
be incorrect if one or more of the sensor ids is missing or its
value is not correct in the reported top-k result set. Recall
that Sp,j is the set of sensors actually producing the pth

highest value, and let us denote S′p,j as the set of sensors that

were reported as producing the pth highest correct value;
both with respect to the jth round. Then we can define the
error accuracy ratio, εa = |∪kp=1Sp,j \∪kp=1S

′
p,j |/|∪kp=1Sp,j |.

To better understand the effect of failures we also compute
the error frequency, εf , which is the fraction of rounds that
produced an incorrect top-k outcome.

In the following experiments we set different values for
the probability that a node, during a round, cannot com-
municate with a specific neighbor, i.e., a bidirectional link
failure. We restrict our attention of course only to pairs
of nodes (i.e., edges/links) that belong to the underlying
logical tree structure. Each link fails independently of all
the other links. Moreover, link failures are assumed to be
independent from one round to the next. The link failure
rate, ρ, impact on εa and εf is studied. (Note that, unlike
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Figure 13: εf vs. ρ. Synthetic dataset.
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Figure 14: εa vs. ρ. Synthetic dataset.

before, all combinations algorithms-topologies are presented
and also that lower values now denote better results.)

Results using synthetic data show that EXTOK is not
only less prone to errors (Figure 13) but when they occur
they do not affect the accuracy of the result as much as in
TAG (Figure 14). This is explained by the smaller number
of nodes that are actually sending data towards the root in
EXTOK compared to TAG. Therefore a failure is less likely
to affect a “sending node” and consequently less likely to af-
fect EXTOK’s results. Interestingly, for the first time in our
experiments, SPT becomes a better alternative than DST
for both algorithms. This is because when a failure affects a
node which also happens to be a dominating node, more val-
ues are not transmitted, thus increasing the error accuracy
with the increase of ρ. This is also true when messages are
to be received by dominating nodes. In a sense, DST’s ad-
vantage of reaching many nodes with a single transmission
may become a liability for fairly large failure rates.

Results from our experiments on Intel dataset are sum-
marized in Figures 15 and 16. Even though the TAG’s error
frequency decreased compared to the case of synthetic data,
EXTOK’s error frequency remains at least comparable with
the important note that, energy-wise, it is always much less
expensive as per the results discussed in previous sections.
Again, and for similar reasons as before, SPT becomes a bet-
ter alternative to DST. One interesting trend that can now
be seen in Figure 16 is that as ρ increases εa increases a little
faster than in the case of synthetic dataset. The reason for
this behavior is that Intel data is relatively more dynamic.
Frequent changes in sensors’ value cause the sensors to vio-



4 6 8 10 12 14
x 10−3

0.05

0.1

0.15

0.2

0.25

0.3

!

er
ro

r f
re

qu
en

cy
 ("

f)

 

 
TAG−SPT TAG−DST EXTOK−SPT EXTOK−DST

Figure 15: εf vs. ρ. Intel dataset.
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Figure 16: εa vs. ρ. Intel dataset.

late their filters more often and hence force the root to use
EXTOK’s Stage 2 more frequently. Recall the results from
synthetic dataset where we observed the impact of the dy-
namism of the sensors’ value on the communication traffic,
which was evident from the increase in the transmission cost
of EXTOK (decrease in its relative performance) as shown
in Figures 6 and 7. The increased communication traffic also
makes EXTOK more prone to failures not only for nodes-
to-root messages, but also for root-to-node messages (which
are absent in TAG). In particular when the root sends a val-
idation query in Stage 2 F-nodes may not receive it due to
failures, thus causing F-nodes that were supposed to reply
back not to propagate their update, increasing EXTOK’s
error sensitivity more rapidly with increased ρ as shown in
Figure 16.

6. CONCLUSIONS
The top-k query is important in sensor networks. Unlike

previous work, we address the case where the exact set of
top-k values are requested (along with respective node ids),
regardless of how many nodes reported it. Existing solu-
tions apply aggregation and filtering techniques for reducing
communication costs. These solutions use underlying logi-
cal structures for performance gains without paying much
attention to the quality of such structures. In this paper we
discussed the importance of such underlying structure and
proposed the use a new logical structure, DST, for process-
ing the top-k queries in energy constrained sensor networks.
Leveraging on the properties of a DST we proposed a new

algorithm, EXTOK and proved its correctness. Our experi-
ments, using real and synthetic datasets, revealed the effec-
tiveness and superior efficiency of the combination EXTOK-
DST for processing the top-k queries in sensor networks with
respect to a variety of parameters.

We are currently working on exploring alternative paths
on the physical topology when links failures occurs in the
logical topology in order to further increase EXTOK’s ro-
bustness. Another venue for further work is on whether
DST can be used beneficially when processing other types
of aggregate queries.
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APPENDIX
NP-hardiness proof
Finding a Minimum Connected Dominating Set (MCDS) of
a given graph is a known NP-hard problem [6]. Formally
this problem is defined as following:

Definition 1. Given an undirected graph G(V,E), its
MCDS is a set of vertices V ′ ⊂ V such that (i) V ′ is con-
nected, (ii) ∀v ∈ V −V ′: v′ is connected to one of the vertices
in V ′, and (iii) |V ′| is minimum.

Next we examine the problem of finding a MCDS of a
graph with the constraint that a given vertex must be is
part of it. We call this the constrained-MCDS of a graph
and define it as follows.

Definition 2. Given an undirected graph G(V,E) and a
particular vertex, r ∈ V , its constrained-MCDS is a set of
vertices V ′ ⊂ V such that (i) V ′ is connected, (ii) r ∈ V ′,
(iii) ∀v ∈ V − V ′: v is connected to one of the vertices in
V ′ and (iv) |V ′| is minimum.

Theorem 2. The constrained-MCDS problem as defined
above is NP-hard.

Proof. Assume there exists an algorithm that takes two
inputs G(V,E) and vi ∈ V to solve the constrained-MCDS
problem, and outputs the solution, Vi containing vi. We can
execute this algorithm, |V | times, to find every solution with
respect to every input vertex vi ∈ V . Clearly we can check
the cardinality of each output set, Vi (from the possible |V |
solutions) in polynomial time. If Vk is the set with the min-
imum cardinality, then Vk must also be the solution of the
(unconstrained) MCDS problem since it does not restrict
which set of vertices are selected. It means that a feasible
solution of constrained-MCDS problem is also a feasible so-
lution of the MCDS problem, which is NP-Hard. It also
means that the constrained-MCDS problem is not polyno-
mial time solvable unless P = NP, hence it is NP-Hard.

Pseudocode for EXTOK

Algorithm 1: EXTOK-Node(i : Node ID)

Input: C(si), v(si,j), τj , k
Repeat for every round begin

/* Stage 1 : Trigger updates according to filter1

constraints */
Q = ∅;2

Flag = 0;3

if (State(si) = TN and v(si,j) 6= v(si,j−1)) or4

(State(si) = FN and v(si,j) ≥ τj) then
Flag = 1;5

Q = {〈v(si,j), si〉};6

if C(si) 6= ∅ then7

for all si′ ∈ C(si) do8

if Receive(Q′, si′) then9

Q = Q ∪Q′;10

if Q 6= ∅ then11

/* Apply aggregation appropriately before12

sending */
Send(Q,P (si));13

/* Stage 2 : If receive validation query, take14

appropriate action */
begin

if15

Receive(V alidationQuery(v(sq,j), ReqV al), P (si))
then

Send(V alidationQuery(v(sq,j), ReqV al), C(si));16

Q = ∅;17

if State(si) = FN and v(si,j) ≥ v(sq,j) and18

Flag = 0 then
Q = {〈v(si,j), si〉};19

if C(si) 6= ∅ then20

for all si′ ∈ C(si) do21

if Receive(Q′, si′) then22

Q = Q ∪Q′;23

if Q 6= ∅ then24

Send(Q,P (si));2526

end
/* Stage 3 : Update filter setting */27

begin
if not Receive(τj+1, P (si)); then Set τj+1 = τj ;28

if v(si,j) ≥ τj+1 then29

State(si) = TN ;30

else31

State(si) = FN ;32

/* Update children about the new threshold */33

if (Receive(τj+1, P (si)) and C(si) 6= ∅) then34

Send(τj+1, C(si));35

end

end



Algorithm 2: EXTOK-Root(i : Node ID)

Input: C(si), Q, St,j , τj , k
Repeat for every round begin

/* Stage 1 : Validate the received results */1

Sl = ExtractIDs(Q);2

for all si′ ∈ St,j − Sl; do3

Q = {〈v(si′,j−1), si′〉} ∪Q;4

Sl = ExtractIDs(Q);5

Sτ+,j = ∅;6

Sτ−,j = ∅;7

for all si′ ∈ Sl do8

if v(si′,j) ≥ τj then9

Sτ+,j = si′ ∪ Sτ+,j ;10

else11

Sτ−,j = si′ ∪ Sτ−,j ;12

k′ = |V (Sτ+,j)|;13

m = |V (Sτ−,j)|;14

/* Case 1 and Case 2 : Root has enough values that15

are above threshold */
if k′ ≥ k then16

[V (St,j), St,j ] = FindTopK(V (Sτ+,j), Sτ+,j);17

/* Case 3 : Select a probe value to inquire filtering18

nodes */
else19

/* Sub-case 3.1 : Select an appropriate value20

from the given set of values */
if k − k′ ≤ m then21

v(sq,j) ←− (k − k′)th highest value of22

V (Sτ−,j);

/* Sub-case 3.2 : Set the probe value to be23

minimum */
else24

v(sq,j) = −∞;25

/* Stage 2 : Send query and receive updates to26

validate the results */
ReqV al = k − k′;27

Send(V alidationQuery(v(sq,j), ReqV al), C(si));28

Receive(Q′); /* Received in response to the29

ValidationQuery */
Sl = ExtractIDs(Q′);30

for all si′ ∈ Sτ+,j ∪ Sτ−,j do31

Sl = si′ ∪ Sl;32

[V (St,j), St,j ] = FindTopK(V (Sl), Sl);33

/* Stage 3 : Update threshold for new filter setting34

*/
τj+1 = FindMin (V (St,j)) ;35

if τj+1 6= τj then36

Send(τj+1, C(si));37

Dj = V (St,j);38

end


