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Abstract

The energy exchange between the electric field and the magnetic field is the foundation for

electromagnetic equipment in power systems such as transformers and transmission lines.

However, not all exchange is desirable. Some sudden exchanges with a large amount of

energy involved such as overvoltages and overcurrents may have an adverse impact on the

equipment’s operation and reliability. The electromagnetic transient (EMT) simulation was

traditionally utilized to study the effects of these troublesome energy exchanges. Lumped

models such as admittance matrix-based models have been widely used in EMT simula-

tion, however, conventional lumped models are incapable of capturing transient behaviors

accurately especially for devices with nonlinear materials and frequency-dependent effects

such as eddy currents and hysteresis. As the most prevalent numerical method to solve

field-oriented Maxwell’s equations to describe the electromagnetic problem accurately, the

finite element method (FEM) has attracted increasing attention in EMT simulation. FEM

is a powerful tool to provide the capability of modeling irregular geometries, the ability of

handling complex material properties, and superior accuracy.

Regardless of the outstanding accuracy and detailed insight provided, the finite el-

ement method leads to a significant increase in computational burden for a simulation

program. The essential point of the FEM is to discretize a problem domain into many in-

terconnected nodes and elements wherein the value of one field quantity is associated with

nodes. Then elemental equations within each element and a global matrix equation built

by assembling all elemental equations are generated. With the solution of this global ma-

trix equation, the field quantity distribution within the problem domain is also obtained.

On the other hand, the repetitive computation of composing and factorizing a large ma-

trix system is involved to solve nonlinear problems because of the traditional Newton-

Raphson method. The fast advancement of parallel computing with high-performance

computing hardware provides a path forward. The parallel computing hardware includ-

ing graphics processing units (GPUs) and field-programmable gate arrays (FPGAs) pro-

vides the inherent parallel architecture to execute a program in parallel and thus has the
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potential to shorten execution time. To accelerate FEM computation with parallel com-

puting hardware, an algorithm design to modify the traditional FEM process to fit in par-

allelism is required. In this thesis, parallel algorithms are designed to solve EMT in both

ionized field and power transformer efficiently on the appropriate parallel computing plat-

form.

First, a massively parallel algorithm to solve a hybrid ionized field around AC/DC

transmission lines is proposed. A fine-grained nodal domain decomposition scheme, which

enables each sub-domain with only one unknown to be solved independently in a mas-

sively parallel fashion, was employed to solve Poisson’s equation. Meanwhile, an upwind

nodal charge conservation method is applied to solve the current continuity equation with-

out numerical oscillation at each finite element nodal level. The computation of nodal do-

main decomposition and upwind nodal charge conservation can both be vectorized and

mapped to massive computational cores and utilize the computing power of GPUs. The in-

teraction between HVAC and HVDC was solved without Deutsch’s assumption to guaran-

tee the accuracy, and the wind influence can be considered. With the node-level massively

parallelism of the proposed algorithm, both Poisson’s equation and the current continuity

equation were solved at each time-step on GPUs to obtain the transient details of the hy-

brid ionized field. The performance of the proposed method is tested and compared with

commercial software showing a significant speedup with guaranteed accuracy.

Second, the transmission-line modeling (TLM) technique is integrated into a paral-

lel and deeply pipelined algorithm to decouple the nonlinear finite elements caused by

nonlinear material in a power transformer. The transmission line is utilized to separate

the nonlinear finite elements from the linear network and then these decoupled elements

can be solved individually in a parallel manner. Without losing the merit of traditional

transmission-line modeling, an adaptive transmission-line modeling method is employed

to reduce TLM iteration number. The other component of this algorithm is the precondi-

tioned conjugate gradient method, which can be deployed on FPGA to achieve high par-

allelism. The accuracy of the transformer solver under both current-excited and voltage-

excited conditions was validated against the commercial FE simulation tool. In addition, a

field-circuit coupling approach to interface the FE model for the transformer and external

circuits is also discussed and implemented on FPGAs. The accuracy for the combination

between the field-circuit coupling and the above finite element model is also verified.
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1
Introduction

Electromagnetic transient (EMT) study has become an essential step for the design of effi-
cient power systems, planning of power grids, performance evaluation of power devices,
and many other situations. As the name states, EMT primarily relates to the energy ex-
change between the electric fields of capacitances and the magnetic fields of inductances
in a system while electromechanical transients, as another type of transient in power sys-
tems, is caused by the interaction between the electrical energy in the power grid and the
mechanical energy in a rotating machine [1]. However, when a huge amount of energy
transfer between two fields happens in a quite short time, an overvoltage or overcurrent
may be produced by EMTs. This large amplitude on voltage or current generally lasts
for a very short time but the impact on the power system and the power devices may be
catastrophic. The typical phenomena in EMTs contain lightning strokes on transmission
lines, energization of transformer-terminated lines, load rejection, and input surge current
in transformers and the result of EMTs might be destroyed component insulation, acti-
vated control systems, or interrupted system [2]. EMTs can be caused by various types of
disturbances, including the switching actions between devices, the lightning strike, and
the short circuit in the system meanwhile the power systems are always subject to these
disturbances. Thus, it is important to analyze and investigate the detailed process of the
EMTs to diminish its impact on the power system and equipment. EMTs can happen at any
chunk of the power system and the EMTs for transmission lines and power transformers
have been investigated as two portions in this work.

This chapter will introduce the background first and then the motivation carrying out
the research topic of efficient parallel computing algorithm design for finite element mod-
els. For the ionized field problem, the importance of analyzing ionized fields, the built-
up process of ionized field, and the discussion about existed methods and finite element
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method (FEM) are presented. The importance of the transformer and the summary of
transformer models are also explained. A brief introduction of the general process of FEM
is discussed later. At last, the motivation, objectives of this thesis, and thesis outline are
summarized.

1.1 FEM for Hybrid Ionized Field Computation

High-voltage direct current (HVDC) transmission provides advantages over high-voltage
alternating current (HVAC) transmission because of not only higher power transmission
capacity but also less line loss [3]. These benefits and also the growing demand for electric
power motivate the development of HVDC-related projects. Moreover, hybrid HVAC/HVDC
configuration is selected as a favored choice to apply into projects due to the limited ac-
cess to new right-of-way and fewer costs at network infrastructure [4]. However, series
of associated problems come along as well. An experiment showed that the concentration
of ions can still be detected eight hundred meters away from an HVDC transmission line
and thus the environmental effect of the ions’ generation and migration due to the high
voltages stressed on transmission lines is important to investigate [5]. In addition, the ex-
posure of new ions disturbing the natural balance between existed ions in the air, together
with audio noise and radio noise around the transmission line may lead to biological ef-
fects [6]. To assess all these impacts and design the configuration for HVDC, a detailed
analysis of the ionized field around hybrid HVAC/HVDC transmission lines becomes a
critical part.

The process of ionized field builds up around transmission lines is briefly introduced
here. The ionized field is closely tied with the corona phenomenon. The HVDC transmis-
sion lines are generally operated at the voltage of 500kV or above, leading to an intensive
electric field near the conductor which exceeds the corona onset field (a critical value of
the electric field to start a corona). With the strong electric field, the electrons surrounding
the conductor can obtain so high kinetic energy that the air molecules can be ionized by
collision. These collisions create an abundance of positive and negative ions and then the
corona discharge begins to happen. As a result, an ionization layer around the conduc-
tor as a source of ions and an interelectrode space full of ions are formed around HVDC
transmission lines. The ions in the space are forced to migrate by the electric field and the
moving ions change the electric field in turn. After a while, a continuous steady state of the
electric field in this space will eventually arrive either the transmission line is configured
as a unipolar HVDC (only positive or negative voltage applied to transmission line) or a
bipolar HVDC (one positive and one negative voltage applied to two conductors). And,
this electric field affected by the corona is the ionized field. However, when the HVAC
transmission lines share the right-of-way with HVDC transmission lines, the ionized field
in the space will not reach a static state and become much more complex because of the
proximity of the time-varying HVAC. It is important to conduct a transient study for this
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ionized field around hybrid transmission lines in advance of the project implementation.
Moreover, the weather conditions, such as wind, rain, fog, and snow, should also be con-
sidered since the ionized field is influenced by them.

Studies about the ionized field have been conducted over the past century. Some clas-
sical line models such as the serial π models and traveling wave model hardly simulate
the coronas around transmission lines. At the beginning of the last century, researchers
intuitively started to find out the analytical solutions for ionized field [7]. However, ana-
lytical analysis is only valid for the voltage-current characteristic of the ionized field due
to the inherent complexity of the ionized field problem. With the development of the com-
puter, numerical analysis commences being a feasible approach. But the famous Deutsch’s
assumption was still a critical step to simplify the ionized field before applying the nu-
merical method before 1970 [8, 9]. At the end of the 1970s, an iterative algorithm to solve
Poisson’s equation and the current continuity equations together with the FEM was pro-
posed to solve ionized field by Janischewskyj [10]. Following this iterative scheme, dif-
ferent techniques were used to solve the abovementioned governing equations leading to
various approaches to studying the ionized field.

Investigations on the ionized field around hybrid transmission lines commenced at the
beginning of the 1980s [11]. Different from the HVDC-only configurations, the interaction
between AC and DC conductors plays an important role on the resultant ionized field
which is not time-invariant but time-varying. To study this ionized field, a FEM-based
iterative method [12] and an AC-cycle-decomposition-based method [13] were utilized but
they were either too computationally costly or losing the dynamics of this time-varying
ionized field.

FEM has been employed to solve ionized fields since the numerical methods appeared.
It has proved to be a detailed and accurate numerical method to calculate the electric po-
tential distribution and the space charge distribution of the ionized field. With the granu-
lar mesh, the high accuracy for the distribution solutions can be provided to analyze the
ionized field. However, a small granularity brings about not only a much more detailed
solution but also a fairly heavier computation burden. Though the demand for detailed
solutions for ionized field problems with a large domain, obtaining a detailed solution effi-
ciently has been studied in few reports. An efficient algorithm using FEM and an upwind
technique is proposed in this work to accelerate the computation speed for the ionized field
around hybrid transmission lines. Besides, the speedup compared to commercial software
is provided.

1.2 FEM for Power Transformer EMT

In a power system, power transmission is no less important than electricity generation.
In terms of power distribution, the transformer plays an important role in stepping up
and stepping down the voltages and thus it is critical equipment to deliver power success-
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fully and efficiently. Transformers can transfer energy between circuits and mitigate grid
congestion caused by more renewable installations with a proper control system. How-
ever, transformers may be under too much stress to be damaged when they are exposed
to EMTs. Moreover, the costly bill of replacement and suspectable power system reliabil-
ity will follow behind. Both the potential risk of severe damage and the expensive bill
make it more important to implement a detailed transient study on the transformer before
manufacture.

Transformer representation is not easy because of the complicated behavior of the
transformer caused by the nonlinearity and frequency-dependent characteristics of ma-
terials. Several different transformer models have been proposed and applied with the
development of technology. There are mainly five groups of transformer models in the
literature [14]:

1. Matrix representation is based on steady-state equations for one multiphase multi-
winding transformer. To analyze the transient-state model, the discrete steady-state
equations will be developed. Either branch impedance matrix or admittance matrix
can be used to form the equations. But branch impedance matrix is prone to glitches
when injecting small exciting currents. Both phase-to-phase coupling and models
terminal characteristics are considered in this model while different core or wind-
ing topologies cannot be distinguished [15]. Though this model is linear, connecting
an external circuit is used to include nonlinearity such as saturation and hysteresis
effect. This model needs less computation power because of the fixed admittance
matrix for linear components. However, the accuracy is limited in this model.

2. Saturable transformer component is developed according to the star-circuit repre-
sentation. This transformer model consists of resistors, inductors, and two-winding
transformer, and an external nonlinear inductor that models the saturation effect.
This model has three main restrictions: 1) this model is incapable of transformers
with more than three windings due to the invalidity of the star circuit when the
number of winding is larger than three; 2) it is not always topologically correct that
the nonlinear inductor is connected to the star point [16]; 3)numerical instability for
the three-winding case has been unveiled and some modifications are required on
the traditional model to solve this issue [17, 18].

3. Topology-based models contain two subgroups: geometric models and duality-
based models. Geometric models are constructed with previous mathematical de-
scription while duality-based models are not. The coupling between magnetic equa-
tions and electrical equations is utilized to derive the formulation with consideration
of core topology. Though this model is not as detailed as finite element (FE) models,
it is more precise than the simpler transformer models. The duality-based models are
developed from an equivalent circuit model, which results from a magnetic circuit
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model by the principle of duality [19]. The equivalent magnetic circuit is composed
of magnetomotive-force sources standing for windings, linear reluctances standing
for leakage paths, and saturable reluctances standing for magnetic cores. This model
includes the saturation effects in the individual leg of the core, the leakage effects,
and interphase magnetic coupling meanwhile it can decouple the core equivalent
functions and winding configuration. Both models can guarantee considering the
topology and include the winding resistance, core losses, and the capacitive cou-
pling effects by attaching extra circuits. The topology-based models may lead to a
larger computational burden with their detailed nature.

4. Hybrid transformer model combines matrix representation and topology-based mod-
els to achieve improvement of correctness. This model can be partitioned into four
parts by function: leakage representation, topologically correct core representation,
winding resistances, and capacitive effects [20]. This model has both the strength
of matrix representation and also duality methods. Together with more details, the
computational burden is a lot for this model.

5. Finite element model is derived based on the field-oriented Maxwell’s equations
which can describe the physical parameters and material properties in detail and
thus provide the most accurate results [21]. By meshing the geometries of the trans-
former, no matter how irregular the geometries are, the solution of the transformer is
described by values at hundreds to thousands of nodes. With so many nodes to solve
for each transformer, the computation efficiency becomes a concern though more ac-
curacy can be obtained. With the development of parallel computing, computation
efficiency can be improved.

1.3 General Procedure of FEM

Compared to simplified lumped models, the FEM is capable of obtaining more accurate
transient behaviors for electromagnetic equipment such as transformers. In addition, FEM
is well-known for its superb accuracy and ability to analyze irregular geometries and com-
plex material properties for both 2-D and 3-D problems. Solving Maxwell’s equations
directly by FEM, the electromagnetic field distribution inside and around the equipment is
acquired. Then, the relation between voltage and current on devices can be investigated.
Although FEM is capable of solving different problems, the general process for FEM is
universal. FEM generally follows the five steps listed here [22]:

• Meshing: The problem domain is discretized by interconnected nodes and elements
with selected shapes, triangular or quadrangular shapes are popular for 2-D and
tetrahedral is popular for 3-D. The continuous electromagnetic field distribution is
expressed by values at vertices.
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• Deriving elemental equations: Corresponding elemental equations can be gener-
ated for each element based on the element shape selection. There are different ap-
proaches to obtaining the elemental equations, such as variational principle, Galerkin
method, Ritz method.

• Assembling the global matrix system: A global matrix system can be obtained by
assembling all the elemental equations within the problem domain with the mesh
information. A large sparse matrix is involved for the global system and the size of
the global matrix depends on the number of the nodes within the problem domain.
For a large problem domain, the size of the matrix may be hundreds to thousands.

• Solving global matrix system: Impose the boundary conditions and solve this global
matrix system by sparse matrix solver. Newton-Raphson iteration may be required
for nonlinear problems.

• Post-processing: Obtain the results and restore the electromagnetic field distribution,
plot, and display.

Amongst the five steps introduced above, this thesis will focus on the algorithm de-
sign to improve the efficiency of finite element computing (step two to step four). The
meshing and the post-processing will not be discussed in this thesis. Any information
relevant to the mesh will be assumed given and Matlab™ will be utilized to complete post-
processing. Problems in this thesis will be solved by proposed algorithms with pre-known
mesh information. A commonplace concern of solving the ionized field problem is the
large problem domain and irregular geometry but FEM can handle the irregularity of ge-
ometry by discretizing the whole domain into small elements. With parallel computing
for all the elements within the domain, a large domain can be solved very fast. In terms of
transformers, the nonlinear material properties increase the difficulty of modeling trans-
formers precisely. However, the FE model for a transformer can discretize the transformer
into very small elements and solve the domain inside and outside of the transformer. Be-
sides, the development of high-performance computing hardware reveals opportunities
for researchers to improve the computation efficiency of FEM, and this will be discussed
in chapter 2.

1.4 Motivation and Objectives of This Thesis

EMT study is extremely important when planning a power system or designing a power
equipment because not only phenomena in EMTs are commonplace in power systems,
but also these phenomena might lead to disastrous effects such as damaged components
and economic loss. Many approaches for different power equipment have been developed
over many decades. FEM, as a precise numerical method, together with Maxwell’s equa-
tions has been investigated to model and analyze electromagnetic problems relevant to
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transmission lines, transformers, etc. Along with the high accuracy in FEM, the increased
computational burden is an expensive cost for detailed analysis, resulting in a much longer
design cycle for both power system planning and apparatus prototyping. The demand for
detailed but also fast algorithm has greatly increased.

Here are the main objectives of this thesis:

• The retrofitting of existing multi-circuit AC transmission towers with DC lines to
fulfill an HVDC project is an economic and efficient approach. However, this hybrid
ionized field around the transmission lines becomes more complex because of the
proximity of AC circuits and DC circuits. Due to the large problem domain and the
time-marching nature of the hybrid ionized field causing a much longer computation
time, an efficient numerical computation is desired for prototyping. Few materials
have investigated the computational efficiency of the hybrid ionized field. Making
progress on improving computation efficiency becomes feasible nowadays, with the
development of high-performance computing hardware. Proposing an efficient al-
gorithm to analyze the hybrid ionized field is one of the objectives of this thesis.

• Detailed analysis of the transformer’s behavior under EMTs is always an essential
step for transformer design. With the help of FEM along with Maxwell’s equations,
very accurate analysis for a transformer is achievable, but at a cost of the heavy
computational burden. In order to deliver detailed results while maintaining pre-
cise real-time simulation, an appropriate platform is the important first step. FPGA,
known for its inherent parallel architecture and special pipelining technique, has
been chosen as the development platform. A suitable real-time algorithm on FPGA
for transformer modeling is expected.

1.5 Thesis Outline

This thesis consists of five chapters and is organized as follows:

• Chapter 1: Introduction - This chapter introduces the EMTs in the power system, the
background for ionized field analysis, and the background for transformer modeling.
Besides the motivation of the thesis and the outline are summarized.

• Chapter 2: FEM and Parallel Computing - Three critical components to accelerate
FEM computation are listed in this chapter: parallel computing hardware, parallel al-
gorithms for FEM computation, and development tools for parallel computing. Both
the architecture of GPU and the architecture of FPGA are described here. Prevalent
parallel algorithms such as preconditioned conjugate gradient method which can
be employed in massively parallel and nodal domain decomposition scheme which
follows the divide and conquer algorithm are explained as well. At last, advanced
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development tools, CUDA APIs for GPU programming and HLS for FPGA design
tools, are briefly introduced.

• Chapter 3: Parallel Finite Element Computation of Time-Varying Ionized Field
Around Hybrid AC/DC Lines - This chapter proposes an algorithm with nodal do-
main decomposition approach and nodal charge conservation method to solve the
hybrid ionized field caused by the proximity of HVDC and HVAC transmission lines.
The ionized field is first modeled by finite elements and then the field quantities such
as electric potential and charge densities are solved by FEM. The proposed algorithm
is utilized to accelerate FEM computation in a massively parallel manner on GPU.

• Chapter 4: Time-Stepped Finite-Element Modeling of Three-Phase Transformer
for Electromagnetic Transient Emulation on FPGA - In this chapter, a real-time
adaptive TLM with PCG solver is explained to solve electromagnetic transients on
transformers. This solver is implemented on FPGAs and the comparison between
the solver results and the commercial software results demonstrates high accuracy.
Besides, an indirect field-circuit coupling technique is discussed to interface the FE
model and drive circuits.

• Chapter 5: Conclusions and Future Works - The research conclusions are provided
and suggestions for future research are discussed in this chapter.
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2
FEM and Parallel Computing

The computer hardware manufacturing industry faced a great challenge in the past decade.
The golden way to increase the computing power started to show deficiencies – an incre-
ment of single-core clock frequency started to demonstrate its limitations in improving
computing performance. However, this is not the end of high-performance computing
hardware. A new trend, the integration of many computing cores to collaborate, started to
make progress in this field. Parallel computing is the most prevalent collaboration strat-
egy. As the name indicated, parallel computing enables the cores to work simultaneously
for the same program, which means the computation power is expected to enhance signif-
icantly with more cores involved (see Fig. 2.1). For instance, the most powerful supercom-
puter Fugaku, sponsored by the Japanese government, has over eight million processing
cores providing a throughput of over 480P floating-point operations per second [23]. On
the other hand, NVIDIA® company supplied high-quality GPUs with over five thousand
CUDA cores to step up high-performance computing stations in the laboratory [24], as
shown in Fig. 2.2.

Besides, field-programmable gate arrays (FPGAs) are integrating millions of gates and
high bandwidth memory to meet the increasing demand for high-performance scientific
computation due to Moore’s law which states the size of the transistor will shrink expo-
nentially. Take Xilinx® Virtex® UltraScale+ HBM VCU128-ES1 board with the XCVU37P
FPGA as an example, it has 9024 DSP48E slices, 2607360 flip-flops, and 1303680 look-up
tables to deploy a design in a massively parallel processing manner. FPGA can also deal
with data in a pipelining manner to accelerate computing speed.

The parallel computing resource only is not enough to improve the finite element com-
putation efficiency. Based on Amdahl’s law, the speedup of a program is limited by the
fraction of the program that can be parallelized, meaning that a highly parallelized al-
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Figure 2.1: The same program is executed sequentially and in parallel. (a) The program
is divided into sequential tasks. (b) The program is broken into discrete tasks that can be
executed concurrently.

gorithm for finite element computation is required to accelerate the computing speed. To-
gether with the parallel computing resources, a suitable parallel algorithm to use resources
wisely will increase computation efficiency.

To design a new parallel algorithm in the parallel computing environment, developer-
friendly development tools will be necessary. Different from sequential programs, a paral-
lel algorithm needs to provide commands for many computing cores to make them work
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Figure 2.2: Specifications of NVIDIA® Tesla V100 series GPU.

simultaneously. Also, making configuration to store shared data in shared memory is
required sometimes. Besides, the communication between the host and the peripherals
which perform the parallel computing is also essential. To achieve these goals, dedicated
APIs will be required. For FPGAs, a tool is also required to mitigate the common concern
about hardware development difficulties which might imply a longer development cycle.

2.1 High-Performance Computing Hardware

2.1.1 Advanced GPU Architecture Used in This Thesis

The parallel computing hardware is capable of supporting concurrent execution of multi-
ple processors or cores to achieve computation speedup. To utilize the parallel computing
hardware for computation acceleration, it is important to understand the hardware archi-
tecture for the program deployment.

In this thesis, NVIDIA® Tesla® V100 will be used along with the compatible program-
ming API to execute the proposed algorithm in order to accelerate the finite element com-
putation of power system models. The Tesla V100 GPU incorporating Volta™ GV100 GPU
architecture, is a cutting-edge parallel computing processor. The Tesla V100 is composed
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Figure 2.3: Hardware resources within one streaming multiprocessor in NVIDIA® Tesla
V100 GPU.

of 80 streaming multiprocessors (SMs) and each SM has 64 FP32 cores, 64 INT32 cores, 32
FP64 cores, 8 Tenson cores, and 4 texture units, resulting in the capability of running 5120
single-precision operations, 5120 integer operations, and 2560 double-precision operations
concurrently. An inner view of one streaming multiprocessor is shown in Fig. 2.3. Besides,
a shared memory whose capacity can be configured up to 96KB per SM enables instant
communication between SMs [25]. Furthermore, the NVIDIA NVLink™ high-speed inter-
connect and 16GB HBM2 high-bandwidth memory are included in Tesla V100 to obtain
more efficient inter-SM and inter-GPU communications. The flexibility to switch between
maximum performance mode and maximum efficiency mode is also provided by Tesla
V100.

Since there is no instruction dispatcher for each arithmetic logic unit (CUDA core) in
Fig. 2.3, the GPU is designed with single instruction multiple data (SIMD) paradigm. SIMD
is one type of parallel architecture and all cores in the computer execute the same instruc-
tions at any moment but calculating on different data streams. However, for the execution
of each core, the data stream can be operated in sequential manner. If we consider the ele-
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ments at least one of whose edges is at the boundary as boundary elements. Generally, all
the elements except boundary elements in one FEM model can be calculated in the same
procedure. Due to the consistency of operations within any non-boundary element for one
FEM model, the FEM computation can be paralleled to fit this SIMD architecture to benefit
from the power of the advanced GPUs.

2.1.2 FPGA Primer

The greatest innovation on FPGA is that its functionality and wiring are controlled by con-
figurable logic blocks (CLBs), programmable interconnect pattern via switch matrix, and
the user-controlled input/output bank (IOBs). Besides, these components are all repro-
grammable, which results in instant availability and improved visibility of a failure [26].
A CLB generally includes multiple logic cells, each of which typically contains one four-
input look-up table (LUT), one D-type flip flop (DFF), and a multiplexer. The number of
logic cells varies with utilized fabrication process technology. The CLB as repeating logic
resources can provide operational elements that can implement complex logic functions
and execute memory functions for building desired logic. The LUT, which is synthesis
friendly despite the size of problem design after the dedicated LUT mapper adopted the
simplicity of mapping any functions into LUTs, can implement any of the combinations
of its four inputs [27]. The DFF works as a fundamental memory component to register
“data”. The multiplexer, also known as the data selector, often shares one output port
between several input signals by choosing from these inputs and passing the chosen in-
put to a single output line. The IOB can be designed to be input, output, or bidirectional
ports in order to define the interface between the peripherals and the internal logic. The
interconnect established the routing path between CLBs and IOBs.

The most appealing attribute of FPGA is its intrinsic parallel hardware architecture,
which enables FPGA to be configured as multiple parallel execution units that compute
data simultaneously. On contrary, the sequential processing applied to CPUs executes in-
structions sequentially, leading to low computation efficiency. The multi-thread technique
has been explored to offer parallelism on CPUs. However, interference may occur between
multiple threads when cache, buffers, and other hardware resources are shared, resulting
in impaired execution time. Nowadays, multi-core CPUs are exploited in parallel comput-
ing to provide parallelism and therefore improve computation performance at the expense
of sophisticated strategy and higher power consumption. The corporation between sev-
eral cores including but not limited to data sharing, tasks scheduling, and synchronization
are generally costly. Plenty of memory blocks are available on FPGAs and they can operate
as single-port random-access memory (RAM), dual-port RAM, read-only memory (ROM),
or First-In-First-Out (FIFO) depending on the configuration. Besides, lots of independent
memory blocks on FPGA can be accessed in a parallel manner.

The pipelining is a valuable design mechanism to boost FPGA’s performance. In terms
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Figure 2.4: An example to illustrate the pipelining on FPGA [28].

of hardware configuration, two main steps are implemented to utilize the pipelining tech-
nique. The first step is dividing the process of achieving a function into several stages,
such as N stages while the second step is that several registers are inserted between every
two stages. As data march through the process, the immediate output of a previous stage
will be stored in the register and will be read by the next stage as an input. After these
two steps, one function is pipelined and at most N groups of inputs are being processed
concurrently at the same cost of hardware utilization as running only one process of the
function. Besides, although the latency of this pipeline may be high, the throughput of
this pipeline can reach one result per clock cycle except for the first (N − 1) clocks. The
strong point of a pipeline is the promising throughput. Assume we have an array of six
data and each data needs to go through four stages to get the result (N = 4). In Fig. 2.4,
the pipelining is illustrated.

With the more-than-30-year development driven by process technology and also ap-
plication demand, the number of transistors or gates is not the message FPGA vendors
deliver to imply its powerful performance anymore. After entering the new millennium,
it was not hard to design an FPGA capable of solving a problem with typical size due to
the inescapable pace of Moore’s law. It was the right time to think about customer expe-
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rience and the ease-of-use of FPGA. Predefined targeted logic blocks such as high-speed
transceivers, communication, and networking blocks were integrated into FPGA, libraries
of soft logic functions were constructed and provided, and FPGA toolsets for example
High-Level Synthesis (HLS) compiler simplifying the process of program optimization
from high-level programming languages were rendered [29]. As a result, FPGA has be-
come more user-friendly than it was.

2.2 Parallel Algorithms for FEM Computation

Parallel computing can be considered as using multiple computing resources simultane-
ously in order to achieve concurrent calculations. A large problem is broken up into small
pieces and each piece is calculated simultaneously with different computing resources.
With the state-of-art parallel computing hardware, a remaining challenge is how to design
an algorithm to utilize these resources efficiently to accelerate FEM computation.

2.2.1 Preconditioned Conjugate Gradient Method

As described in Section 1.3, a large matrix equation to model an FE problem in the whole
analysis domain can be obtained after the assembly step and this matrix equation can be
notated as KX = b. K is the stiffness matrix, whose size is determined by the number
of finite element nodes and whose entries are determined by the material properties and
also the mesh. K is always a sparse matrix, in which a multitude of entries is zero since
one finite element node is directly connected to its neighboring nodes only (as shown in
Fig. 2.5). One FE problem is solved when the large matrix equation is resolved and thus
the efficiency of the finite element computation relies heavily on the applied sparse matrix
solver.

There are two groups of approaches to solving a sparse matrix system: direct methods
which obtain solutions with a single application of one numerical technique, and iterative
methods which use the numerical technique repetitively until convergence or user-defined
error threshold [30, 31]. The popular direct methods, such as Gaussian elimination, lower-
upper (LU) decomposition, and Cholesky decomposition solve a matrix equation in a se-
quential manner which is not suitable to the parallel computing architecture very well.
However, some iterative methods, Gauss-Seidel method, Jacobi method, and Conjugate
Gradient (CG) were explored to implement on parallel platforms recently [32–35]. Due
to a large amount of matrix-vector multiplication in CG algorithm and the trend that a
high volume of dedicated blocks for matrix-vector multiplication operations are included
in FPGAs, CG algorithm can be used to solve FE problems efficiently. To move further, a
preconditioned conjugate gradient (PCG) algorithm can be applied to converge faster with
a featured matrix.
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Figure 2.5: Distribution of nonzero entries in a sparse matrix.

2.2.2 Nodal Domain Decomposition Scheme

Solving the large matrix equation after assembly, which follows the traditional steps to
solve FEM problems (in Section 1.3), demonstrates the centralized thinking in the tradi-
tional solving process, resulting in the difficulties of solving a FEM problem in a massively
parallel manner. Following the decentralized divide-and-conquer thinking pattern, one
type of strategies to fractionate a finite element problem is the domain decomposition ap-
proach. A large problem domain is broken down into multiple small and manageable
subdomains, a large matrix is divided into multiple smaller matrices, and then each sub-
domain or smaller matrix can be conquered individually [36, 37]. According to the above-
mentioned Amdahl’s law, a method to fractionate the problem domain into subdomains as
small as possible will maximize the speedup for FEM problem computation. In the nodal
domain decomposition method, there is only one unknown in each subdomain, which is
sufficiently small to provide a satisfying speedup.

Take the linear problem domain in Fig. 2.6 (a) as an example to introduce the nodal do-
main decomposition method. For this 2-D finite element problem, the mesh is generated
and consists of multiple small triangular elements. Each element is composed of three
nodes, each of which is associated with a value for the field variable to be resolved. A sub-
domain in the mesh can be formed by all the triangles around one node and one example
subdomain system is shown in Fig. 2.6 (b). The subdomains in the mesh are overlapped.
According to the subdomain in Fig. 2.6 (b), one linear equation with only one unknown
(the value at the blue node) and the values at neighboring nodes (the values at the red
nodes) can be obtained. The values at neighboring nodes can be considered as known
boundary conditions. Iterations are required for subdomains to exchange information in
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Figure 2.6: An example for NDD scheme illustration.

order to reach a convergent solution at all nodes. Initial values are assigned to all the nodes
at the beginning of each iteration. Then, the subdomains in the entire problem domain are
calculated simultaneously in a massively parallel manner since they are independent. The
same pattern of the linear equations for all the subdomains (in Fig. 2.6 (b)) implying the
consistency of operations for all the subdomains, makes the nodal domain decomposition
method perfectly suitable for SIMD GPU architectures.

2.3 Development Tools Used in This Thesis

2.3.1 CUDA

Both parallel computing hardware and parallel algorithm have been introduced so far,
however, in the programmer’s view, one remaining question is how to map the concurrent
calculations onto parallel computing devices. The compute unified device architecture
(CUDA) is an application programming interface (API) model and parallel computing
platform developed by NVIDIA® to enable engineers and developers to solve complex
computational problems using GPUs. The CUDA platform provides an access to GPU’s
virtual instruction set and parallel computing cores via a software layer. To access to
CUDA platform, developers can use CUDA-accelerated libraries, compiler directives, and
extensions to industry-standard programming languages including C, C++, and Python.
After writing a CUDA kernel using industry-standard programming languages extended
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with keywords such as CUDA C and then invoking the CUDA kernel with kernel’s exe-
cution configuration inside triple-angle-brackets, the same function defined by the kernel
is executed on multiple different parallel computing cores to apply the same operations to
different data streams. Since the instructions in one kernel are applied to multiple datasets
by making one CUDA kernel call, the SIMD program can be developed on GPUs with
the help of CUDA. To achieve high performance, the CUDA also provides a fast-shared
memory region to share data between threads. CUDA provides support for researchers to
develop SIMD programs on GPUs to take full advantage of the GPU architecture.

2.3.2 HLS

With the growing recognition of hardware acceleration, the FPGA prototyping board in-
cludes more resources to support the demand for high-performance computing. Although
the capacity expansion on FPGA and its increasing complexity and capability results in an
increment in design efforts, FPGA vendors have taken efforts to ease this stress from the
designers. They developed multiple modern design tools not only for automatic place-
ment, routing, synthesis but also to help improve productivity for hardware designers
without the loss of high performance on hardware design [38]. The HLS has proved to be
such a tool to save development time while providing a similar performance on latency
and resource utilization to hand-written hardware description language (HDL) codes [39].
HLS enables developers to design at a high level of abstraction since it can transform the
sequential C and C++ codes into formats compatible with FPGA. Developers can use op-
timization directives to alter the default behavior of the internal logic and thus optimize
the hardware functions, structures for performance and also to modify data access pat-
terns. The HLS tool yields reports with plenty of metrics to analyze the performance such
as resource utilization, latency, initiation intervals, and IP cores in HDL format which can
synthesis into FPGA. HLS is a very useful tool to provide a large-scale complex hardware
design with a short development cycle.
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3
Parallel Finite Element Computation of

Time-Varying Ionized Field Around Hybrid
AC/DC Lines

3.1 Introduction

This chapter proposes a massively parallel algorithm to solve time-varying ionized fields
around hybrid AC/DC lines. The performance of this algorithm has been investigated in
terms of computation speed and accuracy.

The advantages of high-voltage direct current (HVDC) over high-voltage alternating
current (HVAC) are presented in many perspectives: higher power transmission capacity,
lower net cost for long-distance transmission, no skin effect, lower line loss, and easier
system design [3]. Because of these benefits, numerous HVDC-related projects have arisen
in recent years [40]. Among these projects, some are retrofitting of existing multi-circuit
AC transmission towers with DC lines to increase power transfer because of the high cost
of building new HVDC transmission towers, restrictive access to new right-of-way, and
long duration transmission planning.

The proximity of AC circuits and DC circuits on the same transmission towers has an
appreciable influence on the ionized field around them due to corona interactions between
two circuits [41]. An efficient numerical computation for the ionized field is therefore
desired by engineers for designing the conductor configuration and tower geometries, and
assessing environmental impact. The computational efficiency is important for a hybrid
ionized field because this is a time-marching problem with a large problem domain that
requires repeated FEM computation to handle multiple degrees of freedom (DoF).

Research in the ionized field has been carried on for more than a century. However,
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computation efficiency wasn’t a major focus. In 1914, the first analytical solution for coax-
ial cylindrical geometry was developed in [7], but it had very limited applications. In 1933,
Deutsch laid the cornerstone for numerical analysis by proposing an assumption that the
space charges affect the magnitude but not the direction of the corresponding charge-free
field. Although Deutsch’s assumption simplified the calculation, the validity of this as-
sumption was questioned [42]. Researchers began to explore methods independent of
Deutsch’s assumption. The first FEM-based iterative method was proposed in 1979 in
which the space charge was tuned until convergence using Poisson’s equation and current
continuity equation [10]. Different methods for solving Poisson’s equation and current
continuity equation and updating space charge were developed later [43–45], but the basic
iterative algorithm remained, and computation efficiency has not been improved. More-
over, these methods were only applicable to HVDC scenarios because the steady-state re-
sult did not fit the hybrid situation.

The ionized field around hybrid transmission lines has been researched for almost four
decades. In 1981, Chartier et al. observed that the voltage gradients on the surfaces of AC
and DC conductors were time-varying for hybrid transmission lines, which was in oppo-
sition to HVDC where the voltage gradient was time-invariant [11]. Then, the significant
impact of the AC-DC circuit interaction on the electric field was discovered [41]. In 1992,
the FEM was used to iteratively calculate the space charge distribution [12] but the com-
putation was still costly. Deutsch’s assumption was used to reduce the cost, however, it
also reduced the accuracy of the result. A calculation method that decomposed one AC
cycle into several DC cases and solved these DC cases using the numerical method for the
steady-state ionized field was developed in [13], but the dynamics of the hybrid ionized
field were neglected.

However, few materials have been reported to handle the computational efficiency
problem encountered in the ionized field computation, especially for the time-varying
case. The goal of improving computation efficiency has become feasible with the devel-
opment of high-performance computing hardware, and a critical step is finding an algo-
rithm that can fully utilize this hardware. In this chapter, an algorithm based on FEM for
solving the hybrid ionized field is proposed. To obtain the solution for Poisson’s equa-
tion, a fine-grained nodal domain decomposition (NDD) methodology is implemented on
graphic processing units (GPUs) to obtain the massive parallelism and hence to improve
the computation efficiency. NDD methodology is chosen to provide sufficiently simple
sub-domains with only one unknown in each sub-domain so that each sub-domain can
be solved independently. The upwind nodal charge conservation (NCC) method is also a
part of the algorithm and it is applied to solve current continuity equations. Each finite
element node can be projected to a compute unified device architecture (CUDA) core since
both NDD and upwind NCC are methodologies based on nodes.

This chapter is organized as follows. The assumptions to simplify the problem are
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given at the beginning of Section 3.2. In the same section, the governing equations and
boundary conditions are introduced and explained. Then, in Section 3.3 the NDD method-
ology, upwind NCC method, and application of boundary conditions are described. Next,
the hybrid line configuration, the result comparison between the proposed algorithm and
COMSOL MultiphysicsTM, and the computation speed-up for a hybrid ionized field case
are provided in Section 3.4. At last, a summary is given in Section 3.5.

3.2 Problem Description

3.2.1 Assumptions for simplification

To reduce the complexity of corona phenomena around the transmission lines, some rea-
sonable assumptions are employed to build a solvable model [41, 46]:

1. The thickness of the ionization layer around the conductor is small enough to be
neglected.

2. Diffusion of positive and negative charge is neglected since it has a very slight effect
on the ionized field comparing to the convection.

3. The mobilities of positive ion and negative ion are assumed to be constant. The
coefficient of recombination is assumed to be constant.

4. Ions generated by AC conductors due to corona are all restricted in a thin layer
around the AC conductor, which is not a part of the analysis domain.

5. The Kaptzov’s condition will be guaranteed, which states that the gradient of electric
potential on the conductor will not exceed the onset initial gradient when corona
happens.

3.2.2 Governing Equations

Poisson’s equation and current continuity equations are governing equations for bipolar
ionized field [46].

∇2ϕ(t) = −ρ
+(t)− ρ−(t)

ε0
, (3.1)

∂ρ+(t)

∂t
+∇ · J+(t) = −Rρ

+(t)ρ−(t)

e
, (3.2)

∂ρ−(t)

∂t
−∇ · J−(t) = −Rρ

+(t)ρ−(t)

e
, (3.3)

where ϕ(t) is the total electric potential distribution (V). ρ+(t) and ρ−(t) represent
the absolute value of positive and negative space charge density distribution respectively
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(C/m3). ε0 is the vacuum permittivity, whose value is 8.854× 10−12F/m. J+(t) and J−(t)

are current density vectors for positive ions and negative ions respectively (A/m2). R rep-
resents the coefficient of recombination and it is approximated to 2.2× 10−12m3/s [46]. e is
the charge of one electron and its value is 1.602× 10−19C.

The current density vectors used above are defined by (3.4) and (3.5).

J+(t) = ρ+(t)v+(t)

= ρ+(t)
(
k+E(t) + W (t)

)
= ρ+(t)

(
− k+∇ϕ(t) + W (t)

)
,

(3.4)

J−(t) = ρ−(t)
(
− v−(t)

)
= ρ−(t)

(
−
(
k−
(
−E(t)

)
+ W (t)

))
= ρ−(t)

(
− k−∇ϕ(t)−W (t)

)
,

(3.5)

where v+(t) and v−(t) represent the velocity of the positive ions and velocity of the
negative ions, respectively (m/s). E(t) represents the electric field distribution (V/m).
Note that without other external forces or effects, the negative charges move in the op-
posite direction of the electric field. W (t) represents the wind velocity distribution of
the discussed domain (m/s) and it is a vector. k+ and k− are the positive ion mobility
1.4× 10−4m2/(V · s) and negative ion mobility 1.8× 10−4m2/(V · s) [46].

The origin and the derivation of the two current continuity equations (3.2) and (3.3)
are explained in [9]. One helpful note is that the left-hand side of the current continu-
ity equation for negative charges describes the change rate of negative charges while the
divergence of J−(t) represents the change of positive charge.

At last, the total current density vector J(t) will be the sum of two current density
vectors as shown below.

J(t) = J+(t) + J−(t). (3.6)

3.2.3 Boundary Conditions

Boundary conditions are necessary prerequisites to solve the three coupled governing
equations with parameters ϕ(t), ρ+(t) and ρ−(t). We will discuss the definitions of two
commonly-used boundary conditions in this section while how to apply them into the
proposed algorithm will be introduced in Section 3.3.3.

1. Dirichlet boundary condition is the most explicit boundary condition, which pro-
vides the values at the boundary. In this chapter, the Dirichlet boundary condition
may occur on the ground boundary, conductor surfaces of AC and DC lines, and also
other domain boundaries. Assume that the electrical potential at these boundaries is
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V0 and subscript Dirichlet boundary condition with D, the Dirichlet boundary con-
dition can be expressed using the following equation:

ϕ(t)|D = V0. (3.7)

2. Neumann boundary condition describes the normal gradient of the unknown func-
tion at the boundary. For this ionized field problem, the opposite of the gradient of
ϕ(t) is E(t) and so the Neumann boundary condition will provide the value of the
normal component of E(t). Assume the normal component of E(t) is E0 (E0 is a
known constant) and subscript Neumann boundary conditions with Γ, we will have
the equation below.

∂ϕ(t)

∂n

∣∣∣
Γ

= E0. (3.8)

3.3 Massively Parallel Simulation via Nodal Domain Decompo-
sition

The NDD and upwind NCC methodologies make it possible to fully utilize the computa-
tion capability of GPUs. In this section, the details of deploying NDD and applying up-
wind NCC on GPUs are introduced, followed by the explanation of applying the boundary
conditions for solving the Poisson’s and current continuity equations.

The main idea of this algorithm is to decompose the problem into as tiny sub-domains
as possible, so as to maximize the computing efficiency using GPUs’ parallel computation
ability. To begin, the mesh for the problem is generated by COMSOL MultiphysicsTM.
Then, the charge density distribution in the domain, including the charge density on the
conductor surfaces and the charge density in the air, is initialized. Because of the coupling
of governing equations, (3.1), (3.2), and (3.3) are solved alternatingly and iteratively. For
each time step, the boundary conditions are applied before using NDD to solve (3.1) and
therefore obtain ϕ(t). When solving Poisson’s equation, a massive amount of cores in
GPUs are executing simultaneously to solve independent sub-domains. By using GPUs,
the computation time for an 8184-node FEM problem can be decreased to 30 ms. The
upwind difference method is applied to calculate the gradient of positive charge density
and gradient of negative charge density. With the known ϕ(t) and gradients of positive
and negative charge density, (3.2) and (3.3) can be solved simultaneously and the positive
and negative charge density distribution for this time step can be calculated. To satisfy
Kaptzov’s condition, the charge density on conductor surfaces is updated according to
Eonset and the maximum magnitude of E in the domain. The flow chart of the proposed
algorithm is shown in Fig. 3.1.
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GPU computation 
using Kernels 

Figure 3.1: Flow chart of NDD and NCC schemes for parallel computation of ionized field.

3.3.1 Nodal Domain Decomposition

Domain decomposition is an efficient way to solve large-scale problems compared to solv-
ing these problems using multiple computational cores in a global system [47, 48]. Fol-
lowing this idea, the nodal domain decomposition (NDD) was proposed in [49]. In NDD,
there is only one unknown in each sub-domain and each sub-domain can be solved inde-
pendently and therefore NDD can be easily deployed in GPUs.

The Poisson’s equation (3.1) in Section 3.2.2 can be solved by Galerkin FEM, which
follows the steps: domain decomposition using FE, elemental formulation by appropriate
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Figure 3.2: Details of a sub-domain solver for the NDD methodology.

shape function, global system matrix formation by assembling, the imposition of boundary
conditions and solution of the linear system of equations. Same as Galerkin FEM, domain
decomposition and elemental formulation are required by NDD. However, NDD avoids
the assembly in Galerkin FEM and therefore no huge matrix is involved in NDD and it is
a matrix-free method. The system of equations for each element in NDD is generated
by integrating the product of the residual and weight function over each element and
setting the integral to zero. The elemental equations when linear interpolation (assume
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ϕ distribution in element (e) can be expressed by ϕ(e) = N1ϕ1,(e) + N2ϕ2,(e) + N3ϕ3,(e)

where N1, N2, and N3 are interpolation functions) is used are shown in (3.9).

K(e)

 ϕ1,(e)

ϕ2,(e)

ϕ3,(e)

 =
(ρ+

(e) − ρ
−
(e))∆(e)

3ε0

 1
1
1

 , (3.9)

where K(e) is the coefficient matrix and the calculation of matrix entries for the linear
element (triangle) is shown in (3.10). ∆(e) represents the area of the element (e).

kij,(e) = −
∫∫

Ω(e)

(∇Ni) · (∇Nj)dxdy (i, j = 1, 2, 3). (3.10)

Note that equation (3.9) can also be expressed by a system of equations although matrix
form is used here to keep neat. NDD is a matrix-free method because matrix manipulation
or calculation is not involved during the solution process. According to [49], one linear
equation including the to-be-updated inner node and all its neighboring nodes can be ob-
tained (in Fig. 3.2). The values for all the neighboring nodes can be considered as known
boundary conditions when updating the inner node. The linear equation for each node is
completely independent, which can be solved by GPUs at the same time. Massive paral-
lelism can be achieved by NDD to solve (3.1). It takes 30 ms to solve Poisson’s equation
(3.1) for a FEM problem with 8184 nodes by NDD.

3.3.2 Upwind Nodal Charge Conservation

The nodal charge conservation (NCC) guarantees charge conservation law at each finite
element node. Besides, each node can be projected to one CUDA core in GPUs to enable
solving current continuity equations at each node simultaneously. As a result, the compu-
tation efficiency can be improved.

Since the central difference-based iterative scheme usually brings undesired instability
[50], the upwind method is utilized. The scenario of the ions migrating in an electric field
is quite similar to the situation where a leaf is blown by the wind. The upwind can be
defined as the direction the leaf is coming from and so the wind forces the leaf to move
downwind. Similarly, in the electric field, we can define the upwind for positive charges
or negative charges as the direction the positive or negative charges are coming from. In
other words, the upwind is the opposite direction of the charges’ velocities.

Derived from the upwind concept, the gradient of positive or negative charge density
at one node is mainly determined by the gradient of the positive or negative charge den-
sity in the upwind direction. Then, for one specific node, we can define the element in
the upwind direction for positive charges (negative charges) as the upwind element for
positive charges (negative charges) (Fig. 3.3).

With∇·W (t) = 0 and equations (3.1) – (3.5), nodal charge conservation equations (3.11)
and (3.12) are obtained by the following three steps. One subscript i can be added to each
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Figure 3.3: Upwind element (e2 ) at node i for positive charge density with velocity V +
i

and upwind element (e4 ) at node i for negative charge density with velocity V −
i . (a) The

wind vector W is zero vector. (b) The wind vector W is nonzero vector.

parameter in (3.2) and (3.3) to represent the corresponding parameter for each node and the
validity of the equations remains. Then, the first-order discretized forms of the left-hand
side of (3.2) and (3.3) are used to approximate the partial differentials. At last, the upwind
difference method is applied to approximate the gradients of the positive and negative
charge densities. Subscript ue represents the upwind element for the corresponding node’s
positive charge or negative charge [51].

ρ+
i (tn+1)− ρ+

i (tn)

∆t
=−∇ ·

(
ρ+
i (tn)v+

i (tn)
)
−
Rρ+

i (tn)ρ−i (tn)

e

=−∇ρ+
i,ue(tn)v+

i (tn)− k+

ε0
(ρ+

i (tn))2 + (
k+

ε0
− R

e
)ρ+

i (tn)ρ−i (tn),

(3.11)

ρ−i (tn+1)− ρ−i (tn)

∆t
=∇ ·

(
ρ−i (tn)

(
− v−

i (tn)
))
−
Rρ+

i (tn)ρ−i (tn)

e

=−∇ρ−i,ue(tn)v−
i (tn)− k−

ε0
(ρ−i (tn))2 + (

k−

ε0
− R

e
)ρ+

i (tn)ρ−i (tn).

(3.12)

In (3.11) and (3.12), the first term of the right-hand sides consists of the gradient of
the positive charges or gradient of negative charges and this is where the upwind concept
is applied. Note that the upwind element for positive charges or negative charges are
determined by the direction of the charges’ velocities, which means knowing the charges’
velocities is the prerequisite to figuring out the upwind element. In (3.4) and (3.5), it is
obvious that the charges’ velocity has two components: the velocity caused by the electric
field and the velocity provided by the wind. The wind vector will be a predefined wind
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distribution. However, the electric field at each node may be discontinuous because of the
fact that electric field E(t) is the gradient of ϕ(t) which is numerically estimated by the
linear interpolation.

To provide a reasonable electric field E(t) value at each node, the different averaging
scheme has been examined, including the angle-weighted scheme, area-weighted scheme,
and unweighted-average scheme. It turns out that the unweighted-average scheme gives
the best match with the COMSOL MultiphysicsTM result.

From (3.11) and (3.12), the computation of charge density for all the nodes in the do-
main is independent, which makes upwind NCC achievable. With upwind NCC, the oscil-
lation is removed and the parallelism is guaranteed. Solving current continuity equations
for each node at the same time significantly improves the computation efficiency.

3.3.3 Applying Boundary Conditions

This algorithm is suitable to solve the ionized field with both Dirichlet conditions and
Neumann conditions. The Dirichlet conditions can be applied by assigning the known
desired value to ϕ at the corresponding nodes but not updating the values at these nodes
in the computation process.

However, Neumann conditions cannot be applied directly. Generally, Neumann con-
ditions are described as in (3.8) with the projection of ϕ in the normal direction. To apply
these conditions to the proposed algorithm, the partial differential equation (3.8) is ex-
panded as a product of two vectors in (3.13): one of the vectors is the gradient of parameter
ϕ at the boundary and the other is the outward unit normal vector of the boundary. On the
other hand, according to the Galerkin approach to the method of weighted residual, (3.14)
can be obtained from (3.1) for each element [52]. In (3.14), it is obvious that the second
term on the right-hand side is related to the boundary conditions. When only Dirichlet
conditions are applied on the boundary, the integral of the second term is always zero.
However, this integral is nonzero when the Neumann condition is applied and the inte-
grated element (e) is a boundary element. The boundary element here means the element
that has at least one side coinciding with boundary Γ (the global boundary for the entire
problem domain). Assuming boundary condition in (3.13) is applied and a boundary ele-
ment (e1) has only one side between local node 1 and local node 2 coinciding with global
boundary Γ, then the integral relevant to boundary conditions in (3.14) can be simplified
as (3.15).

∂ϕ

∂n

∣∣∣
Γ

=(
∂ϕ

∂x
âx +

∂ϕ

∂y
ây) · ân

=
∂ϕ

∂x
nx +

∂ϕ

∂y
ny

=E0,

(3.13)

where âx and ây are a set of base vectors in the problem domain and they are in the
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direction of x-axis and y-axis respectively. ân is the outward vector with unit length which
is normal to the boundary and ân = nxâx + nyây.

ε0

∫∫
Ω(e)

∂Ni

∂x

( 3∑
j=1

ϕj,(e)
∂Nj

∂x

)
+
∂Ni

∂y

( 3∑
j=1

ϕj,(e)
∂Nj

∂y

)
dxdy

=

∫∫
Ω(e)

Ni(ρ
+
(e) − ρ

−
(e))dxdy + ε0

∮
Γ(e)

Ni(
∂ϕ

∂x
nx +

∂ϕ

∂y
ny)dl (i = 1, 2, 3),

(3.14)

where Ni and Nj are the interpolation functions. Since linear interpolation is used,
there are three interpolation functions for each element. Γ(e) represents the boundary of
element (e). nx and ny are the projections of vector ân normal to the boundary in x and y
directions.

∮
Γ(e1)

Ni(
∂ϕ

∂x
nx +

∂ϕ

∂y
ny)dl =


−E0l12

2 (i = 1)

−E0l12
2 (i = 2)

0 (i = 3)

, (3.15)

where l12 is the length of the side between local node 1 and local node 2 for element
(e1). Γ(e1) is the boundary of element (e1).

3.4 Case Study and Results

The hybrid ionized field around HVDC and HVAC transmission lines whose transmis-
sion tower is configured as in Fig. 3.4 is analyzed. The three-phase 380 kV AC lines are
on the left of the tower ordered by phase A, phase B, and phase C from top level down-
wards. ABC phase sequence is applied and therefore time-varying AC voltages are vA =

310.269cos(ωt) kV , vB = 310.269cos(ωt−120◦) kV and vC = 310.269cos(ωt+120◦) kV . The
bipolar 500 kV DC lines are on the right of the tower ordered by positive polarity, neutral
polarity and negative polarity from top level downwards. The voltages of these polarities
are VP = +500 kV , VNeutral = 0 kV and VN = −500 kV .

Because of the gravity, conductors will sag between transmission towers, which means
the distance between the conductors and ground may change – specifically shorten – in the
pathway of transmission lines. Short distance signifies a stronger electric field when the
stressed voltage is the same. In this perspective, transmission lines where the largest sag
happens have the most severe influence on the environment and thus analyzing the ion-
ized field in this location will be more valuable and instructive. Occupational Safety and
Health Administration (OSHA), the minimum clearance distance for transmission lines up
to 500 kV is 35 feet (around 10.668 m) [53]. In this case, assuming that 10.8 m above the
ground is the height of the lowest-level transmission lines with the largest sag. Then, the
heights of the three levels of transmission lines after sag are 10.8 m, 18.8 m, and 26.8 m
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Figure 3.4: Geometry of hybrid AC/DC transmission tower.

(as shown in Fig. 3.5). The area of 100 m * 80 m (W * H) is chosen as problem domain in
Fig. 3.5 [54].

To solve the hybrid ionized field in the problem domain, the mesh grid was generated
by COMSOL MultiphysicsTM v5.4. By importing the mesh information into the proposed
algorithm which was deployed into GPUs with the CUDA Toolkit 9.1 [55], the case can
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Figure 3.5: Problem domain and line configurations.

be solved. A parallel workstation composed of multicore CPUs and many-core GPUs was
utilized to solve this case. The CPUs are dual Intel Xeon E5-2698 v4 CPUs@2.2 GHz, 20
cores each with 128 GB RAM. The GPU is NVIDIA® Tesla® V100-PCIE-16 GB with 5120
CUDA cores [25]. In this case, the time-step ∆t is set to 5 µs in order to assure the stability
of the algorithm. The stability condition of this algorithm is that the time-step must not
exceed the traveling time for both positive and negative ions in one element [51]. In ad-
dition, (3.16) is applied to update the charge density on the conductor surfaces [56] and
E+

onset (onset electric field on the positive conductor) and E−
onset (onset electric field on the

negative conductor) are calculated based on (3.17) [57]. The parameter r in the equations
is the radius of the conductor.

ρ+
c (tn+1) =ρ+

i (tn)
(

1 + µ
Emax − E+

onset

Emax + E+
onset

)
,

ρ−c (tn+1) =ρ−i (tn)
(

1 + µ
Emax − E−

onset

Emax + E−
onset

)
,

(3.16)

E+
onset =30(1 +

√
(9.06/r) ∗ 10−2) ∗ 102 [kV/m],

E−
onset =(31 + 0.813/

√
r) ∗ 102 [kV/m].

(3.17)

To measure the accuracy and efficiency of the proposed algorithm, the performance of
solving Poisson’s equation with known charge density distribution by COMSOL MultiphysicsTM

MUMPS solver and the proposed algorithm is compared. The result comparison of ϕ dis-
tribution at each node is demonstrated in Fig. 3.6 and the mean relative error for all nodes
is 0.07%. It turns out that the proposed algorithm is able to provide sufficient accuracy
when solving Poisson’s equation. In view of speed, the proposed algorithm is 17 times
faster than COMSOL MultiphysicsTM MUMPS solver when using 40 cores. It is worth
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mentioning that COMSOL MultiphysicsTM MUMPS solver is state-of-the-art [58]. For this
8184-node FE problem, the proposed algorithm achieves to take 30 ms to solve Poisson’s
equation because of the massive parallelism.

(a) ϕ distribution calculated by the proposed method (b) Error map between result from COMSOLTM and re-
sult from the proposed method

Figure 3.6: Result comparison between COMSOLTM and the proposed method

Fig. 3.7 shows the magnitude of the electric field at one node on the DC positive po-
larity conductor surface and that of another node on the DC negative polarity conductor
surface with respect to time, which can be valuable information when selecting transmis-
sion line conductors and designing protection schemes. Obviously, Kaptzov’s condition is
guaranteed because either of the magnitudes of E does not exceed the corresponding on-
set value. Fig. 3.7 also illustrates the multiple occurrences of corona on the DC conductors.
Each time the magnitude of E reaches the onset value, the corona will happen and charges
will be generated around the conductors. These charges have a strong effect on weaken-
ing the E around conductors because of the proximity and repellency of like charges and
therefore a steep drop of E occurs. Due to the diffusion effect, the charges around the con-
ductors go farther away from the conductors and thus the effect of weakening E becomes
weaker, then the E on conductors increases slowly. The corona will not happen until the E

reaches the onset value for the next time. Fig. 3.8 demonstrates the same process. We can
see two yellow rings in almost all the subplots. One is close to the conductors and the other
is far away from the conductors. The second yellow ring is due to the second occurrence
of the corona. Besides, Fig. 3.7 demonstrates that the E strength at DC conductor surfaces
is composed of DC component and AC component, which is consistent with the statement
in [13].

To test the condition with the existence of wind, vector W in equations (3.4) and (3.5)
is set to 5 m/s and 10 m/s upward to get the charge density distribution in Fig. 3.8. Refer
to (3.4) and (3.5), the wind vector will have the same effect on the speed of the charges no
matter it is positive or negative. When the wind with 5 m/s upward speed is applied, the
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Figure 3.7: Magnitude of E on DC positive and negative polarity

charge distributions for both positive and negative charges are not symmetric anymore.
The speed of charges moving upward is enhanced while the speed of charges moving
downward is restrained. This effect is more significant when the speed increases to 10
m/s. Based on (3.2) – (3.5), if the speed of charges changes after applying wind, the current
density vectors (J+ and J−) will vary and further the space charge density distributions
will be influenced as well.

3.5 Summary

In this chapter, the massively parallel processing algorithm consisting of fine-grained NDD
and upwind NCC successfully improves the efficiency of solving the time-varying hybrid
ionized field which is computationally burdened with the coupling of the Poisson’s equa-
tion and current continuity equations and repetitive FEM computation. Time-varying dis-
tributions of ϕ(t), positive charge density ρ+(t) and negative charge density ρ−(t) can be
obtained at each time-step to describe the hybrid ionized field around transmission lines
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Figure 3.8: Space charge density distribution with different wind velocity W .

under different wind conditions. With the intrinsic attribute of NDD and NCC to cal-
culate ϕ and ρ for each node independently, the computing power of GPUs can be fully
explored to accelerate computation speed. It turns out that the Poisson’s equation with
8184-node in the case study can be solved in 30 ms, which is 17 times faster than solver in
COMSOL MultiphysicsTM, implying the execution time for 105 time-steps is reduced to 50
mins instead of 14 hours. Besides, the accuracy of the proposed method is also validated
against the commercial software with a mean relative error of 0.07%. This efficient algo-
rithm will be helpful to evaluate both the environmental effect and biological effect of the
hybrid ionized field even within a short development cycle. Also, the detailed results from
this algorithm is valuable for designing conductor selection, tower configuration, and ap-
propriate protection schemes. The wind will impel or suppress the movement of charges
when the wind is blowing towards the same direction as the movement of charges or wind
is blowing towards the opposite direction of the movement of charges. This algorithm is
also capable of performing simulation under different weather conditions to guarantee the
robustness of the design.

In the future, this algorithm can be tuned to model other configurations in power sys-
tems. In addition, this algorithm can be applied to improve the efficiency of solving similar
equations in the semiconductor simulation field [59]. Furthermore, the transient finite-
element analysis of semiconductors can be solved by the proposed algorithm efficiently.
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4
Time-Stepped Finite-Element Modeling of

Three-Phase Transformer for Electromagnetic
Transient Emulation on FPGA

4.1 Introduction

In this chapter, a solver which can achieve real-time emulation for a three-phase trans-
former modeled by finite elements with a time step 70µs is proposed. An integration
between this FE model solver and a field-circuit coupling is also discussed. The accuracy
of the transformer solver is validated against the commercial FE simulation tool.

Real-time digital simulation of transformers is essential in order to design an energy-
efficient transformer, appropriate protection scheme, and a better control system. The elec-
tromagnetic transient study as one of the major perspectives to demonstrate power trans-
formers’ performance [60] is mandatory to analyze, otherwise, severe damage might occur
to the transformer parts because of inrush current, unexpected harmonics, and overvolt-
ages. Finite elements (FEs) in appropriate element type are generally utilized to discretize
a large analysis domain, which helps resolve the geometric irregularity of a transformer
and provide a detailed and precise study for the magneto dynamic field [61].

Field-programmable gate arrays (FPGAs) have been investigated and employed in the
electrical and electronics field for about three decades since its inception. FPGA was pri-
marily used for prototyping application-specific integrated circuits (ASICs) in the com-
mercial market because of its reprogrammability with no recurring expense and due to its
flexibility for fast prototyping with less cost resulted from mistakes. In academia, scholars
have successfully explored the potential of FPGA in many fields, such as industrial control
systems, power equipment modeling, and so on [62–64]. Benefitting from Moore’s law
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which states that the size of the transistor will shrink exponentially, the FPGA has become
much more compact so that it contains millions of gates and high bandwidth memory,
which enlarge its capacity by more than a factor of 10000 since its introduction [65]. With
the increasing demand for high-speed computation and the growing recognition of hard-
ware acceleration, FPGA becomes favored in real-time simulation [66–68] nowadays due
to its huge potential in hardware parallelism and pipelining of user designs.

The conventional lumped models, such as topology-based models and admittance
matrix-based models [69, 70], have been widely used in the electromagnetic transient sim-
ulation. However, these models are not able to provide information about eddy current
distribution and field distribution. Combining Maxwell’s equations with the FE model
for the transformer, a very detailed analysis can be conducted. But the increased com-
putational burden is non-negligible. Because of its inherent parallel architecture which
can implement multiple tasks simultaneously leading to strong computing power, FPGA
demonstrates the potential to achieve a real-time simulation for transformer modeled by
FEs. Although graphical processing units (GPUs) also have parallel architecture, FPGA
outperforms GPUs in the real-time simulation since the developers have access to work
much closer to silicon and thus achieve more flexibility and less latency on the FPGA plat-
form. Detailed real-time simulation for a transformer promotes the design and testing of
the control system without the need for actual prototyping, leading to cost reduction and
higher design reliability.

To simulate the behaviors of the transformer efficiently and accurately, an algorithm
taking full advantage of FPGA architecture is required. In this paper, the adaptive transmission-
line modeling (TLM) method which decouples the nonlinearity from the linear network
and requires fewer iterations to alleviate computation cost, and, the preconditioned con-
jugate gradient (PCG) which solves a matrix equation in a parallel manner will work to-
gether to offer a real-time solution for the FE model of a three-phase transformer and ana-
lyze the magneto dynamic field around the transformer with a small time step (70 µs). In
addition, high-level synthesis (HLS) technology is employed to mitigate the common con-
cern about hardware difficulties when developing on FPGA which may insinuate a longer
development cycle [64].

This chapter is organized as follows: the problem is described, and the governing equa-
tions are generated in Section 4.2.1. The proposed adaptive TLM with PCG solver is ex-
plained in detail in Section 4.2.2. In Section 4.3, the hardware emulation with deep data
pipelining on FPGA is presented. The case studies of the emulation of a three-phase power
transformer with and without field-circuit coupling are conducted in Section 4.4. At last,
Section 4.5 gives a summary.
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Figure 4.1: 2-D FE model of a three-phase transformer.

4.2 Finite Element Formulation and Solver

4.2.1 Problem Formulation

Consider a magnetic dynamic problem defined on a 2-D domain shown in Fig. 4.1, which
is filled by air and a three-phase transformer model. By applying Ampere-Maxell law to
obtain the magnetic vector potential distribution at any time in this domain, the following
diffusion equation is adopted, in which magnetic vector potential A and impressed current
density Jz only have z-component in a 2-D problem:

∇ · (ν∇A) = σ
∂A

∂t
− Jz, (4.1)

where ν is the field-dependent magnetic reluctivity, σ is the electrical conductivity, Jz is im-
pressed current density and is zero except in the winding zones. The windings in the trans-
former are modeled by winding zones with constant impressed current density through
them.

The FEM is generally utilized to analyze the magneto dynamic field around transform-
ers. Due to greater versatility and ease of implementation, the Galerkin approach becomes
popular when deriving finite element equations. First, we subdivide the domain into tri-
angular elements as shown in Fig. 4.1. Ae, the magnetic vector potential over element Ωe,
can be written as:

Ae = N1A
e
1 +N2A

e
2 +N3A

e
3, (4.2)
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where N1, N2, N3 are shape functions and Ae
1, Ae

2, Ae
3 are nodal values of magnetic

vector potential at vertices of element Ωe (see Fig. 4.2). Since the Galerkin approach is a
special case of the method of weighted residual, we formulate the residual R by moving
all terms of the differential equation on one side:

R = ∇ · (ν∇A)− σ∂A

∂t
+ Jz. (4.3)

To seek a satisfying numeric solution in a weighted-integral sense, the integral of the
product of the residual and the weighting function over one element is forced to be zero.
After simplifying this integral by partial integral and applying natural boundary condi-
tions, the integral of weighted residual over element Ωe can be expressed as [71]:∫

Ωe

νe∇We · ∇AedΩ +

∫
Ωe

σe
∂Ae

∂t
WedΩ =

∫
Ωe

JzW
edΩ. (4.4)

According to the Galerkin method, Ae is substituted by (4.2) and the weighting func-
tions are set to be the same as shape functions, respectively. As a result, three equations
with three unknown magnetic vector potentials at vertices of element Ωe as elemental
equations are obtained [72]:

νe

4∆e

k11 k12 k13

k21 k22 k23

k31 k32 k33

 Ae
1

Ae
2

Ae
3

 +
σe∆e

12

2 1 1
1 2 1
1 1 2




∂Ae
1

∂t
∂Ae

2
∂t
∂Ae

3
∂t

 =
Je
z∆e

3

 1
1
1

 , (4.5)

where
k11 = b1b1 + c1c1, k12 = k21 = b1b2 + c1c2,

k22 = b2b2 + c2c2, k23 = k32 = b2b3 + c2c3,

k33 = b3b3 + c3c3, k31 = k13 = b1b3 + c1c3.

(4.6)

4.2.2 Adaptive TLM with PCG Solver

4.2.2.1 Adaptive Transmission-Line Modeling Method

To deal with the nonlinear relationship between the permeability of the core material and
the magnetic flux density, an iterative method such as Newton-Raphson method was tra-
ditionally integrated with FEM to solve matrix equations for each time step. Due to the
observation that the nonlinearity causes a varying coefficient matrix on the left-hand side
of (4.5), a new linear system of equation is formed in each iteration and needs to be solved
with the updated Jacobian matrix. The process of calculating new entries in this varying
coefficient matrix, assembling this matrix, and solving each new linear system in each iter-
ation makes this integration time-consuming and resource-consuming. Due to the analogy
between the node-admittance matrix relative to the equivalent TLM network and finite el-
ement matrix, the TLM method is able to solve nonlinear magneto dynamic problems by
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Figure 4.2: FE and the interpolation functions for the Galerkin FEM.

decoupling the nonlinear elements from linear system [73]. With the application of TLM
method, the equation (4.5) can be solved without changing coefficient matrices which can
be significantly easier to implement.

TLM method was a popular technique to analyze and simulate wave propagation with
Huygens’ principle as a foundation at first [74]. In 1980, the TLM method was introduced
as a new, accurate, and efficient approach to solving nonlinear lumped electrical networks
[75]. Decoupling of linear components and nonlinear components was achieved by TLM
technique in this chapter and thus the computation cost was reduced. The TLM method
was employed by three steps:

1. Create a linear network with all linear components inside and connected externally
to nonlinear components via ports;

2. Replace capacitors and inductors by TLM stubs and connecting nonlinear resistors
to the linear network by TLM links;

3. Connect a Thevenin equivalent circuit composed of a voltage generator whose volt-
age equals to twice the value of the incident pulses on the transmission line and a
resistor with the characteristic resistance of the corresponding transmission line to
each port after removing TLM links and stubs.

After this modeling, a nodal admittance matrix Y, a current vector of independent
current generators Js, a voltage vector of voltage generators Es, and a vector of incident
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pulses at time t is Vi(t) in (4.7) can be obtained and then the vector of the nodal voltages
Vd(t) in the whole network can be solved. Because of the fact that the nodal voltage must
be equal to the sum of incident pulse and reflected pulse at the node, and the known rela-
tionship that the incident pulse in the next time step is the product of reflection coefficient
Kc and the reflected pulse in this time step, the incident pulse at one node can be updated
according to (4.8). Note that the incident pulses are injected into the linear network and
thus propagate towards the ports. By injecting new incident pulses and solving (4.7), nodal
voltages at the next time step can be obtained. Due to the extraction of the nonlinearity in
this network, computing the inversion of the admittance matrix once is sufficient when the
algorithm advances to the next time step, and the computation burden can be significantly
diminished.

YVd(t) = Js −YEs − 2YVi(t), (4.7)

Vi(t+ ∆t) = Kc(Vd(t)− Vi(t)). (4.8)

After unveiling the analogy between the nodal admittance matrix and a finite element
matrix, Deblecker and Lobry successfully applied the conventional TLM method into FEM
for nonlinear eddy-current problems [73]. Comparing (4.5) with (4.7), it appears that the
elemental equation (4.5) defines an electrical network with nonlinear resistors, capacitors,
and the same topology as a triangle when magnetic vector potential is modeled as electric
potential in Fig. 4.3 (a). Following the process of using the TLM method, these nonlinear
resistors and capacitors are separated from linear components by transmission lines shown
in Fig. 4.3 (b) and then the Norton equivalent circuit can be derived in Fig. 4.3 (c). For ease-
of-use and consistency, Norton equivalent circuit instead of Thevenin equivalent circuit is
used in FEM problem. The values of all these components in Fig. 4.3 are described in (4.9).

G12 = − νe

4∆e
(b1b2 + c1c2), YG12 = −

νeg
4∆e

(b1b2 + c1c2),

G13 = − νe

4∆e
(b1b3 + c1c3), YG13 = −

νeg
4∆e

(b1b3 + c1c3),

G23 = − νe

4∆e
(b2b3 + c2c3), YG23 = −

νeg
4∆e

(b2b3 + c2c3),

C12 = C13 = C23 = −σ
e∆e

12
,

YC12 = YC13 = YC23 = −σ
e∆e

6∆t
,

C10 = C20 = C30 =
4σe∆e

12
,

YC10 = YC20 = YC30 =
4σe∆e

6∆t
,

(4.9)

where νe is not priori known for nonlinear resistors. νeg is a guess value for the reluctiv-
ity for element e, which should be as close as possible to the values taken by the nonlinear
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Figure 4.3: Process of applying TLM method to one finite element.

resistor. νeg , the guess value for νe is used to assembly the global matrix on the left-hand
side of (4.5). The characteristic impedance of transmission line for a capacitor with ca-
pacitance C is ∆t

2C with ∆t for simulation time step [75]. The characteristic impedance of
transmission line for a nonlinear resistor is an arbitrary guess value and the closer the
guess value is, the fewer the required TLM iteration is [75].

With initial incident pulses and components with values in (4.9), the nodal voltages can
be solved by (4.5) using the conventional TLM method. However, multiple TLM iterations
are generally required before convergence due to the mismatch of νe and νeg . It is also
worth mentioning that (4.8) is not applicable here since the reflection coefficient cannot
be determined without known resistance of the nonlinear resistor. Another equation is
utilized to discover the incident pulses for the next time step. For a nonlinear resistor
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governed by the equation: I = f(U). The following relationship is guaranteed based on
the transmission line theory:

Vr(t)− Vi(t+ ∆t)

Z0
= f(Vr(t) + Vi(t+ ∆t)), (4.10)

where Vr and Vi represents the reflected pulses and injected pulses for the network,
respectively.

Therefore, three coupled equations need to be solved to update incident pulses in each
element in FEM:

YG12(x0 − x) = G12(x+ x0),

YG13(y0 − y) = G13(y + y0),

YG23(z0 − z) = G23(z + z0),

(4.11)

where x, y, z represents the incident pulses and x0, y0, z0 are reflected pulses.
Taking a closer look at (4.5) and (4.7), it is obvious that the coefficient matrix on the left-

hand side in (4.5) remains unchanged in (4.7) after utilizing this conventional TLM method;
meanwhile, there is one more term determined by the incident pulses on the right-hand
side of (4.7). Instead of updating the Jacobian matrix in the Newton-Raphson method, the
term related to the incident pulses will vary during each TLM iteration, which requires a
much simpler operation.

Two main advantages can be gained with the application of TLM method: the non-
linear elements are decoupled from a linear system and solved individually; the equation
(4.5) can be solved without changing admittance matrices. Please note that computing the
inverse of admittance matrices once is sufficient with the unchanged admittance matri-
ces. However, too many times of TLM iteration and the unguaranteed stability are com-
monplace concerns about the conventional TLM method. To overcome this bottleneck, an
adaptive TLM method is considered [76]. The main idea of the adaptive TLM method is to
use a closer guess value for the unknown to alleviate the number of TLM iteration.

In this transformer model, νe is time-varying, since the time-varying excitation current
in the transformer produces a time-varying field and the νe of the nonlinear material in
the transformer is field-dependent. Therefore, the difference between νe(t) and constant
initial guess νeg will fluctuate and the number of TLM iteration before convergence will
vary from tens to hundreds (see Fig. 4.4).To follow the adaptive TLM method and make a
closer guess, the value of νe at time t, which can be extracted from the solution at time t,
is utilized to guess the real value of νe at time (t + ∆t). In Fig. 4.4, the required number
of TLM iterations is significantly decreased because the real value of νe at time t is a much
closer guess for νe at time (t + ∆t) than the constant initial guess. This adaptive TLM
method is successfully utilized in this work to diminish the number of TLM iterations.

The adaptive TLM method not only possesses the merit of a simplified solving process
and less intensive computation caused by decoupling nonlinear components from the net-
work, but also requires fewer TLM iterations. But it is worth mentioning that the fewer
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Figure 4.4: By injecting the same magnetizing current, the required number of TLM iter-
ations with unchanged admittance matrix, and required number of TLM iterations with
updated adaptive admittance matrix.

TLM iterations are at the cost of reassembling the admittance matrix before the first TLM
iteration for each timestep. As a result, one inverse operation will be required before each
timestep if the matrix equation (4.5) is solved by direct methods. The computation burden
because of matrix reassembly and multiple inverse operation may jeopardize the efficiency
of the adaptive TLM method. To guarantee the efficiency of the adaptive TLM method, a
comprehensive selection of matrix equation solver is important.

4.2.2.2 Preconditioned Conjugate Gradient Algorithm

While achieving space discretization by FEs, backward Euler method is also exploited in
(4.5) in order to discretize time. Then, (4.12) in element Ωe with only three unknowns
(Ae

1(t+ ∆t), Ae
2(t+ ∆t), and Ae

3(t+ ∆t)) at time (t+ ∆t) is obtained. Note that the values
of Ae

1(t), Ae
2(t), and Ae

3(t) in this equation are acquired from the solution at time t and they
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are known before computing (4.12):

νe

4∆e

k11 k12 k13

k21 k22 k23

k31 k32 k33

 Ae
1(t+ ∆t)

Ae
2(t+ ∆t)

Ae
3(t+ ∆t)


+
σe∆e

12

2 1 1
1 2 1
1 1 2

 Ae
1(t+ ∆t)

Ae
2(t+ ∆t)

Ae
3(t+ ∆t)


=
Je
z (t+ ∆t)∆e

3

 1
1
1

+
σe∆e

12

2 1 1
1 2 1
1 1 2

 Ae
1(t)

Ae
2(t)

Ae
3(t)

 . (4.12)

With (4.12) for each element in a discretized subdomain, a global matrix system with
the size of the number of nodes in the whole domain is formed after the assembly. So far,
this whole domain is modeled as a matrix system and the solution for this problem can be
solved by matrix equation solvers.

The approaches to solving matrix equations can be categorized into two groups: di-
rect methods and iterative methods [77]. The direct methods such as Gaussian elimination
and LU decomposition solve one matrix equation by a set of sequential operations, which
makes it unsuitable to be implemented on FPGA. On the contrary, the Conjugate Gradi-
ent (CG) algorithm which is one of the iterative methods can be highly parallel processed
because of the potential of parallelly implementing matrix-vector multiplication, the core
operation in the CG algorithm. The research in [33] demonstrates that a notable speedup
can be achieved after implementing CG on FPGA. Besides, a high volume of digital signal
processing blocks (DSPs) capable of efficiently processing the multiplier-accumulator op-
eration that constitutes a great proportion of computation operations in CG algorithm are
integrated into many modern FPGA. Without losing the high parallelism of the CG algo-
rithm, a PCG algorithm with a featured matrix to increase the convergence rate is utilized
to optimize the simulation process.

4.3 Hardware Implementation on Multiple FPGAs

Although the increasing complexity and capability result in an increment in design efforts,
FPGA vendors have taken efforts to ease this stress from the designers. Developers can
use optimization directives to alter the default behavior of the internal logic and modify
data access patterns by HLS. The optimized hardware implementation is deployed on the
Xilinx® Virtex® UltraScale+ HBM VCU128-ES1 board with the XCVU37P-fsvh2892-2L-e
FPGA.

Based on the adaptive TLM method and PCG algorithm, a solver is designed and im-
plemented on FPGAs. The detailed real-time hardware emulation is demonstrated in Fig.
4.5 and Fig. 4.6 with a state diagram for this finite state machine and block connections.
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Figure 4.5: Finite state machine of the adaptive TLM with PCG solver.

In Fig. 4.6, there are eight hardware blocks optimized by directives such as loop unrolling,
pipelining, and array partitioning. One more note about Fig. 4.6 is that four blocks includ-
ing TLM Current Term, Excitation Current Term, Eddy Current Term, and Admittance
Matrix Updater are started and processed simultaneously due to the data independence.
Further details about these blocks are given as follows. The parallelism and pipelining
of FPGA are fully utilized with the consideration of the available hardware resources and
problem size.

1. TLM Current Term: The current caused by the incident pulses in the TLM method
for each nonlinear element are assembled to each node. The inputs and the static
matrices based on mesh information in the block are partitioned to improve access to
the data. The loop unrolling and pipelining are applied to different levels of loops to
achieve hardware parallelism and balance between computation time and resource
allocation.

2. Excitation Current Term: This block is used to calculate the first vector on the right-
hand side of (4.12). With the known excitation current in three primary windings,
the projected excitation current on each node is obtained in this block as the output.
The loop unroll is utilized to create multiple collections of operations to compute
with greater hardware parallelism and the static arrays in the block are partitioned
to support the unrolled loop.

3. Eddy Current Term: This block generates the result of the second term in (4.12), which
is the product of the magnetic vector potentials solved at the last time step and the
prior known matrix stored as a static array. A matrix-vector multiplication is imple-
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mented, and the sum is acquired by using the tree adder algorithm with a complex-
ity of O(log2N). Besides, high-speed but low-resource utilization is guaranteed by
pipelining.

4. RHS Generator: The right-hand side (RHS) of the matrix equation is determined by
the current generated by incident pulses in the TLM method, the excitation current,
and the eddy current. By summing up all the aforementioned currents for each node,
the RHS can be calculated. The sum for each node is computed by an unrolled loop.

5. Admittance Matrix Updater: This is one of the critical blocks to implement the adaptive
TLM method. Based on the calculated field-dependent magnetic reluctivity νe for
each element at the previous time step, a new admittance matrix, and an updated
preconditioned matrix are generated from this block and the matrices are transmitted
in a sparse manner.

6. PCG Solver: This is a block to realize an efficient and high-performance PCG algo-
rithm. The inputs are from the Admittance Matrix Updater block and the RHS Gen-
erator block. The static arrays containing the mesh information are partitioned to
supply more efficient read operation. A block that accomplishes an efficient summa-
tion using the tree structure is built for and reused in this PCG Solver block. Besides,
the loop unrolling and pipelining are the main optimization directives in this block.
The magnetic vector potentials at the current time step are calculated by this block.

7. Impulse Generator: According to the updated magnetic vector potentials and the inci-
dent pulses, the reflected pulses from the linear network to each nonlinear element
can be developed. They are calculated in parallel in an unrolled loop.

8. TLM Newton Solver: The matched νe at the current time step and the incident pulses
for the next time step can both be calculated in this block. For each nonlinear element,
a 3× 3 matrix equation is solved by Newton-Raphson method. Pipelining technique
and unroll loops are exploited to treat multiple nonlinear elements efficiently.

Though an FPGA is very powerful nowadays, the resources on one FPGA may still be
a restriction for a complex design. For this solver, the bottleneck is the available number of
DSPs on one board due to the huge demand for addition and multiplication operations. To
use the minimum number of boards while not jeopardizing the performance of the solvers,
this solver is deployed on two Xilinx® Virtex® UltraScale+ HBM VCU128-ES1 boards con-
nected via QSFP interfaces which provide high-speed transmission. To utilize two boards
efficiently and in balance, the resource utilization on each board, the amount of transmis-
sion data, and communication process are all considered to decide how to allocate blocks
on these two boards.
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Figure 4.6: Paralleled and pipelined Hardware architecture for adaptive TLM with PCG
solver.

4.4 Hardware Emulation Scenarios

4.4.1 Scenario I: Current-Excited Emulation

A three-phase power transformer rated at 40 kV/200 kV was modeled to verify the pro-
posed solver. The geometrical parameters are given in Appendix A. The FE mesh con-
sisting of 385 nodes and 728 elements for this transformer is shown in Fig. 4.1. The
time-varying impressed current on the primary windings from left to right are Ia(t) =

1000sin(120πt)A, Ib(t) = 1000sin(120πt − 120◦)A, and Ic(t) = 1000sin(120πt + 120◦)A

respectively. The B-H curve of iron core expressed as equation (4.13) is employed and
∆t = 1s/60/238 ≈ 70µs is used, implying a 238*60 = 14280 sampling frequency and har-
monics in frequency as high as 7.14 kHz could be captured:

H =

{
800B if 0 < B < 0.6,

800B + 105(B − 0.6)3 if B > 0.6.
(4.13)

The hardware emulation of this transformer is performed on two Xilinx® Virtex® Ul-
traScale+ HBM VCU128-ES1 boards connected by two QSFP interfaces (see Fig. 4.7), each
of which has four channels. The main hardware resources of the Xilinx® XCVU37P FPGA
are as follows: 9024 DSP48E slices, 2607360 flip-flops, 1303680 look-up tables, and 4032
BRAMs. The hardware utilization and the latency for each block are shown in Table 4.1.
By fitting the available hardware on each board, balancing computation workload, and
minimizing the amount of transmitted data, the blocks RHS Generator, PCG Solver, and
Impulse Generator are allocated on Board1 and the other blocks are allocated on Board2.
The subtotals of resource utilization and execution time for each board are also given in Ta-
ble 4.1. As a small time step 70µs is utilized, one TLM iteration is sufficient for reasonable
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multiple FPGAs.

accuracy. To make sure the design works after all these hardware blocks are intercon-
nected, 100 MHz is selected as the clock frequency. The data transmission delay between
two boards has been measured and it is about 17µs. According to Table 4.1, the execution
time for one time step is (616 + 3 + 2820 + 112 + 1185)/100M + 17µs = 64.36µs which
is smaller than one time step and therefore, a real-time execution is achieved. Compar-
isons between Comsol® results and real-time solver results are shown in Fig. 4.8 for field
quantities.

As a critical block to achieve the adaptive TLM method, the Admittance Matrix Up-
dater block uses up almost half of DSP resources on FPGA Board2, which is the third-most
DSP-consuming block in this solver. Considering the DSP resource is very precious in this
solver, how does the adaptive TLM method better than the conventional TLM method?
The advantage of using the adaptive TLM method will be obvious after the following cal-
culation. In Fig. 4.4, the average TLM iteration number is about 20 while the average
adaptive TLM iteration number is about 7, which leads to 3× speedup on average. As-
sume we use the conventional TLM method, the execution time for one TLM iteration will
be about 5 µs less, but with the increased number of TLM iterations, the execution time of
conventional TLM is still significantly longer than the proposed adaptive TLM method. As
a result, the conventional TLM method will be unable to achieve real-time simulation. The
trade-off between resource utilization and execution time has been carefully considered in
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Figure 4.8: Magnetic vector potential distributions, magnetic flux density distributions,
and magnetic field strength distributions at time t = 37.82ms are shown respectively. All
the distributions on the left are the results from Comsol® and all the distributions on the
right are the real-time emulation results.
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Table 4.1: Hardware resource utilization and timing report
FPGA Module Resource Utilization Latency

Device BRAM DSP FF LUT
(clock
cycles)

TLM Current
Term

0 41 70965 119984 616

Xilinx Virtex
UltraScale+

Eddy Current
Term

0 43 42686 102223 401

xcvu37p-
fsvh2892-2L-e

Excitation Current
Term

0 128 9685 9668 5

(Board2)
Admittance

Matrix Updater
0 4052 581950 507265 416

TLM Newton
Solver

76 4123 677572 407419 1185

Subtotal 2% 94% 53% 88% 2623
RHS Generator 0 770 80469 98587 3

Xilinx Virtex
UltraScale+

PCG Solver 0 7312 1075172 768384 2820

xcvu37p-
fsvh2892-2L-e

Impulse
Generator

0 24 3613 11413 112

(Board1) Subtotal 0 90% 45% 68% 2935

this work.

4.4.2 Scenario II: Voltage-Excited Emulation

To interface the current-excited three-phase transformer FE model with the external cir-
cuit, a field-circuit coupling is required. The coupling approaches have been categorized
into two groups and they are direct coupling methods and indirect coupling methods [78].
The direct coupling methods intuitively solve a large matrix combined by the drive circuit
and the FE model of the device. However, the symmetry of the FE matrix may be bro-
ken, resulting in increased computation workload. On the contrary, the indirect coupling
methods solve the circuit and the FE model individually. One indirect coupling method
proposed in [79] which can guarantee accurate results even under a strong eddy current is
adopted in this work.

To begin with, the relationship between the magnetic vector potential and the electro-
motive force (EMF) generated by coils can be established. As stated by Faraday’s law, the
EMF is proportional to the rate of change of the magnetic flux and the number of turns
of coil. Besides, the magnetic flux is determined by the integral of magnetic flux density
over the surface and the magnetic flux density is the curl of the magnetic vector potential.
With the Kelvin-Stokes theorem, the integral of magnetic flux density over a surface can
be rewritten as the line integral around the surface. As a result, an equation linking the
discretized magnetic vector potential and the EMF in each FE is generated as follows:
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V e =

3∑
i=1

∂Ai

∂t

∮
Γe

(Nw ·Ni · n̂)dl = Aw ·
∂A

∂t
, (4.14)

where Ae
1, Ae

2, and Ae
3 are the values at vertices of element Ωe, Nw is the number of

turns in a winding, and n̂ is the unit vector of the wire direction. The row vector Aw can
be considered as the weight vector for A at each node.

The EMF generated at each FE is connected in series, and the sum of these EMFs pro-
vides the total EMF created by the transformer. Gathering (4.5) and (4.14) together, the
connection between the EMF over the transformer and the current through the windings
can be discovered after replacing the vector of derivative of A with the product of the in-
verse of Aw and the EMF over the transformer. Note that the current also occurs on the
right-hand side of (4.5).

Six equations for six circuits with six windings can be written according to Kirchhoff’s
voltage circuit law as follows:

Vex + Vcoil = 0, (4.15)

where Vex represents the external voltages and Vcoil represents the voltages across
the coils. Both of them are 6×1 vectors. Note that each entry in Vex only depends on the
current in its own circuit. For instance, entries in Vex are denoted by Vex[1− 6], likewise,
the currents through circuits are I[1−6]. The derivative of Vex[1] with respect to I[1] is non-
zero while the derivative of Vex[1] with respect to other currents are all zero. However,
each entry in Vcoil is the function of all six currents through the coils due to the energy
exchange by the transformer between the electric field and the magnetic field. Based on
the aforementioned relationship between the EMF and the current, the Jacobian matrix can
be calculated by solving the same FEM equation as (4.5) with different excitation current
vector on the right-hand side and making a weighted sum with (4.14) as explained in [79].

With (4.14) and the determined relationship between the EMF and the current, these six
coupled equations can be solved by Newton-Raphson method after two to four iterations
[79]. Even though the number of iterations for the field-circuit coupling is not large, the
involved computation workload at each iteration is quite heavy. At the beginning of each
iteration, the magnetic vector potentials need to be solved by adaptive TLM with PCG
solver. Then, the weighted summations of EMF at each winding, the solution of matrix
equations which has the size of the number of nodes and is used to generate the Jacobian
matrix, and the process of generating the right-hand side of Jacobian matrix equations will
all be implemented six times. Besides, twenty-one entries need to be resolved to compose
the symmetric Jacobian matrix. At the end of each iteration, the updated 6× 6 matrix will
be computed to obtain the current increments. A data flow for this field-circuit coupling
technique is presented in Fig. 4.9.

Each phase of the three-phase transformer was connected to an external circuit as
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Figure 4.9: Dataflow for field-circuit coupling technique.
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Figure 4.10: Schematic of the external circuit for one phase of the transformer.

shown in Fig. 4.10. The parameters of the external circuit are given in Appendix A. At
the time t = 0, switch S1 is turned on to energize the transformer meanwhile the sec-
ondary windings are open-circuited. After 100ms, switch S2 and S3 are turned on and a
load is added to each phase. After another 100ms, the third and the fifth harmonics are
injected into the voltage source Vs for each phase. The currents and voltages for the coil of
the transformer phase A are shown in Fig. 4.11. The harmonic waveforms in the dashed
box emulated by the FPGAs can also be seen displayed on the oscilloscope in Fig. 4.7. In
addition, an analysis in the frequency domain was also compared in Fig. 4.12.
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Figure 4.11: Comparison of results from emulation on FPGA and Comsol® off-line simu-
lation.
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Figure 4.12: Emulation results on FPGA analyzed in frequency-domain and compared
with Comsol® off-line simulation results.
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Research on this field-circuit coupling technique on FPGA has been investigated and
the approximate execution time for the process of applying this field-circuit coupling tech-
nique to solve a circuit and a FE system is 539.55µs. With such a heavy computation work-
load, it is obvious that this circuit and the FE system has not be simulated in real-time in
this work, especially because of the limited resources on FPGAs. To be specific, the solution
of matrix equations to prepare for the Jacobian matrix has to be calculated in series to ac-
commodate the limited resources, which raises the execution time dramatically. However,
the more available resource on FPGA will still be beneficial to the execution time; should
enough resources become available in the future, it is even possible to achieve real-time
emulation of this circuit and FE system.

4.5 Summary

In this chapter, a real-time emulation of the nonlinear eddy current problem with finite-
elements is proposed for a three-phase transformer with guaranteed accuracy. The adap-
tive TLM method and PCG algorithm are integrated to construct the solver for the matrix
equations that describes this problem. In this algorithm, the TLM method isolated the non-
linearity from the network successfully and the adaptive TLM method as a modified TLM
is chosen to balance the resource utilization and the execution time. The PCG algorithm
is implemented with deep data pipelining on FPGA to outperform other matrix equation
solvers. The hardware design of this algorithm employs two FPGA boards because the
limited resource on one single board is not sufficient to satisfy the demand. Furthermore,
the combination between this adaptive TLM with PCG solver and a precise field-circuit
coupling is discussed. With the growth of capability on FPGAs, a simulation of this com-
bination will be accomplished efficiently in the future.
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5
Conclusions and Future Works

The catastrophic impact and the prevalence of EMTs in a power system make EMT study
a crucial step to design a reliable power system. Nevertheless, a detailed analysis such
as FEM insinuates a longer design cycle because of the complexity of the model and the
inefficient algorithm. This thesis has explored efficient algorithms to analyze EMTs in both
ionized field problems, as an example of transmission tower configuration, and power
transformer, as an example of power equipment. As the importance of high-performance
computing, the computing power is improved by integrating more and more computing
cores and utilizing them as many as possible concurrently. Following this hardware de-
velopment trend, an algorithm which solves a large-scale FE model at the node-level in a
massively parallel manner is proposed for ionized field problem around hybrid AC/DC
lines. This algorithm can be intuitively accommodated for parallel architecture such as
GPU. It is worth mentioning that no nonlinearity is involved in this ionized field problem
because this model is filled by air only. However, nonlinearity is an inevitable difficulty for
detailed EMT analysis about a power transformer. An algorithm that decouples the non-
linearity in a power transformer and can be calculated in a parallel fashion is implemented
on FPGAs whose intrinsic parallelism and pipeline architecture enable more efficient com-
putation. A real-time simulation is obtained as well. Besides, the field-circuit interface to
link the finite element model with the external network for EMT studies is discussed.

5.1 Contributions of Thesis

The main contributions of this thesis are summarized as follows:

• An algorithm with node-level parallelism and without any computation burden for
large global matrix assembly is proposed to compute a hybrid ionized field with-
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out the restriction of Deutsch’s assumption. Each sub-domain solver is a module
with the perfect size to showcase single instruction multiple data programming and
hence deployed on many-core GPU to obtain massive parallelism and computation
efficiency improvement. This is also a time-marching algorithm to obtain the dy-
namics of many quantities such as electric potential, positive space charge density,
and negative space charge density. The dynamics for ion immigration are consistent
with the corona phenomenon around HVDC transmission lines. The ion immigra-
tion under different wind conditions is also discussed and illustrated. The results of
the comparison between this algorithm and commercial software Comsol™ demon-
strate a speedup of 17 times retaining a high accuracy (mean relative error is about
0.07%).

• The transmission line decoupling technique is applied to deal with the nonlinear
finite elements in a transformer modeled by FEs. This technique uses transmission
lines to separate nonlinear components from a linear network and then the nonlinear
components can be solved individually. By integrating the adaptive transmission-
line modeling method, which is an example of the transmission line decoupling
technique, with the preconditioned conjugate gradient method, a real-time solver
is achieved on FPGAs. This solver is implemented on two FPGAs in a parallel and
deeply pipelined fashion. High accuracy and computational efficiency are provided
based on the comparison between these real-time solver results and the commercial
software results.

• Integration between an indirect field-circuit coupling scheme and the real-time finite
element model is proposed to a system of transformer and drive circuits. With this
field-circuit coupling technique, the FE model and circuit are solved individually and
thus the symmetry of the FEM matrix is not lost. Also, this technique can reuse the
hardware design for preconditioned conjugate gradient method, which diminishes
the stress caused by resource limitation on FPGA.

5.2 Future Research Topics

The proposed research topics for future work include but are not limited to the following:

• Homogenization approach was used to model windings in the transformer model.
Some other models of a coil such as distributed modeling can be used to obtain more
details in the future.

• The analysis domain in the ionized field problem was considered as air-filled space,
which generates a linear FE model. In the future, the research can focus on other
complicated configurations which may inset nonlinear materials into the analysis
domain.
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• A transformer model with 728 elements was simulated by two FPGAs in this work.
To model a transformer with a finer-grained mesh, more FPGAs can be connected in
a dedicated topology for more detailed simulation.

• In this work, a system to solve FE problems was built up by either GPU or FPGAs.
A hybrid system consisting of different parallel computing platforms and hardware
can be explored to acquire the advantages of different architecture.
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A
A.1 Simulation Parameters in Chapter 4

• Transformer parameters: The limb length is 2.6 m, yoke length is 5.2 m, and the coil
size is 0.25 m * 2 m, power rating is 85 MVA, 40kV/200kV. The number of coil turns
is 40 for the primary side and 200 for the secondary side. The σe is 1000.

• Case study parameters: Va = 40
√

2sin(120πt)kV , Vb = 40
√

2sin(120πt − 120◦)kV ,
Vc = 40

√
2sin(120πt + 120◦)kV , R1 = R2 = 10Ω, L1 = L2 = 46mH , and C1 = C2 =

93µF . The magnitude of the injected third and fifth harmonics are 6.67kV and 4kV
respectively.
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