
Noname manuscript No.
(will be inserted by the editor)

A Contextual Approach towards More Accurate
Duplicate Bug Report Detection and Ranking

Abram Hindle · Anahita Alipour · Eleni
Stroulia

Received: date / Accepted: date

Abstract The issue-tracking systems used by software projects contain issues,
bugs, or tickets written by a wide variety of bug reporters, with different levels
of training and knowledge about the system under development. Typically,
reporters lack the skills and/or time to search the issue-tracking system for
similar issues already reported. As a result, many reports end up referring to
the same issue, which effectively makes the bug-report triaging process time
consuming and error prone.

Many researchers have approached the bug-deduplication problem using
off-the-shelf information-retrieval (IR) tools. In this work, we extend the state
of the art by investigating how contextual information about software-quality
attributes, software-architecture terms, and system-development topics can
be exploited to improve bug deduplication. We demonstrate the effectiveness
of our contextual bug-deduplication method at ranking duplicates on the bug
repositories of the Android, Eclipse, Mozilla, and OpenOffice software systems.
Based on this experience, we conclude that taking into account domain-specific
context can improve IR methods for bug deduplication.

Keywords Issue-tracking systems · Bug-tracing systems · Duplicate bug
reports · Triaging · Bug deduplication · Information retrieval · Software
context

A. Hindle
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
E-mail: abram.hindle@ualberta.ca

A. Alipour
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
E-mail: alipour1@ualberta.ca

E. Stroulia
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
E-mail: stroulia@ualberta.ca

2 Abram Hindle et al.

1 Introduction

As new software systems are getting larger and more complex every day, soft-
ware bugs are an inevitable phenomenon. Software development is an evo-
lutionary process where, after the first release, users and testers submit bug
reports that will drive the next software release. Bugs arise during different
phases of software development, from inception to deployment. They occur for
a variety of reasons, ranging from ill-defined specifications, to developers’ mis-
understanding of the problem, to careless coding practices, to the complexity
of technical issues, etc. [14, 24].

Recognizing bugs as a “fact of life”, many software projects provide ser-
vices for users to report bugs, and to store these reports in a bug-tracker
(or issue-tracking) system. Bug-tracking systems, such as Bugzilla [29] and
Google’s issue tracker [5], enable users and testers to report their findings in
a central repository with a short description and a longer summary, akin to a
message subject line and body, as well as tool-specific additional information.
The system uses this information to categorize and, possibly, further annotate
the bug report. This enables developers to query for bug reports based on a
combination of textual and categorical (attribute-based) queries.

Bug reporting is an uncoordinated process, with multiple system stake-
holders reporting issues as they experience them. As a result, an incoming
report may refer to a bug that has already been reported in the bug-tracking
system. These bug reports are called “duplicates”. Researchers have posited
several reasons for duplicate bug reports [6], including user inexperience, poor
search functionality of bug trackers, and intentional/accidental re-submissions
of the same bug report. It is therefore necessary to inspect new bug reports
and decide whether they refer to bugs that have already been reported. If the
incoming report is about a new bug, then it should be assigned to an devel-
oper with the knowledge and skills necessary to fix it. If, on the other hand,
the bug report is a duplicate, it should simply be attached to the original
“master” report to provide additional information to the developer assigned
to it. This process is referred to as triaging. Triaging has important economic
implications. As duplicate bugs are associated to a master bug, they are exam-
ined together and fixed together, thus avoiding duplication of the developers’
debugging effort [6].

Duplicate-report detection and bug triaging have been mostly manual pro-
cedures carried out by the triagers. Considering the typical number of bugs
reported daily for popular software systems, manual triaging requires a signif-
icant amount of effort and time. For instance, Mozilla reported in 2005 that
“everyday, almost 300 bugs appear that need triaging” [3], two person-hours
are daily being spent on bug triaging in Eclipse [4]. Even then, the results of
the triaging process are unlikely to be completely accurate. This problem has
recently motivated a line of bug-deduplication research that has explored mul-
tiple variants of information-retrieval methods, which, given a bug description,
recognize similar bugs in the bug-tracking system and order them in decreas-
ing rank of similarity. The intent is to focus the attention of the triager on a

Title Suppressed Due to Excessive Length 3

few duplicate candidates in order to reduce the triaging effort while, at the
same, improving the de-duplication accuracy.

The work described in this paper advances the state-of-the-art in bug-
deduplication by demonstrating how the accuracy of the process can be im-
proved by taking into account the “software-system context” in analyzing the
bug reports. Intuitively, the thesis of our work is that bug reports should not
be viewed as “documents” to be compared against each other with out-of-the-
box IR methods; instead, any similarity analysis should be aware of the fact
that domain-specific terms in the bug reports are essential in assessing the
likelihood that two reports are duplicates. Bug reports are likely to refer to
software qualities when, for example, end users experience poor performance
below their expectations, including phrases such as “slow system response”.
They may also refer to software functionalities associated with the architec-
tural components responsible for implementing them, when testers identify
undesired behaviors with phrases such as “notification system failure”. By
making deduplication techniques aware of these contexts, we can improve their
performance. To that end, we have developed and utilized several software vo-
cabularies representing functional and non-functional requirements contexts,
to extract the context implicit in each bug report, which can then be used as
an additional feature of the bug report.

To evaluate the usefulness of our approach we experiment with four large
bug repositories from the Android, Eclipse, Mozilla, and OpenOffice projects,
taking advantage of five different contextual word lists including architectural
words [12], software non-functional requirements words [16], topic words ex-
tracted applying the Latent Dirichlet Allocation (LDA) method [13], topic
words extracted by the Labeled-LDA method [13], and random English dic-
tionary words (as a control). We comparatively analyzed the degree to which
these contexts could improve the deduplication accuracy of several well-known
machine-learning classifiers. Our results demonstrate that our method offers
up to 11.5% and 41/% relative improvements in accuracy and Kappa measures
respectively, over the current state-of-the-art as exemplified by the work of Sun
et al. [30]). From a methodological perspective, our work argues that the Mean
Average Precision (MAP) measure is a very useful quality indicator for bug-
deduplication methods. Since triagers are less likely to examine items later in
a ranked list, any arbitrary threshold for how many duplicate candidates to
present to triagers is difficult to rationalize. Therefore, the MAP measure that
captures average precision at different thresholds is a better indicator than
measuring precision-at-a-threshold.

This work makes the following contributions:

1. We propose the use of domain knowledge about the software development
process and products to improve the bug-deduplication performance. We
systematically investigate the effect of considering different contextual fea-
tures on the accuracy of bug-report deduplication.

2. We posit a new evaluation methodology for bug-report deduplication (by
applying machine learning classifiers), that improves the methodology of

4 Abram Hindle et al.

Sun et al. [30] by considering true-negative duplicate cases as well true-
positive ones.

3. We demonstrate that our contextual approach is able to improve the accu-
racy of duplicate bug-report detection by up to 11.5%, the Kappa measure
by up to 41%, and the AUC measure by up to 16.8% over the Sun et al.’s
method [30].

4. We improve the quality of the list of candidate duplicates and consequently
the MAP measure by 7.8-9.5% over Sun et al.’s approach [30].

5. We describe a concrete disk-friendly indexing approach to answer multiple
deduplication queries quickly called FastREP.

This paper extends our Mining Software Repositories 2013 paper [2] in
two important ways. First, we evaluate our approach in the context of the
candidate-duplicate ranking, as opposed to the duplicate-or-not decision. Sec-
ond, in order to be able to do a more direct comparison with the work of Sun
et al. [30], we apply our method to the same repositories, in addition to our
original Android repository.

The rest of this paper is organized as follows. Section 2 presents an overview
of the related work. Section 3 provides detailed information about the data-
sets exploited in our experiments. In Section 4 we discuss our approach for
detecting duplicate bug reports. In Section 5, we report the results of our
experiments on four different real world bug repositories including Android,
Eclipse, Mozilla, and OpenOffice bug reports. Finally, we conclude in Section
6, summarizing the substantial points and contributions made in this work
and propose some potential future work.

2 Related Work

Several researchers have studied duplicate bug-report detection. A number of
these approaches exclusively exploit the IR techniques and the textual features
of bug reports to identify duplicate bug reports. Some convert the textual
features of the bug reports to word count vectors and compare them using
textual comparison functions like the cosine similarity metric [15, 23, 28]. Yet
others consider the difference in time, milestone or version [28, 30].

Sureka et al. [32] proposed a method that relies exclusively on the textual
features of the bug reports to recognize duplicates. The main novelty of this
approach is exploiting the character-level representations versus word-level
ones, to gain robustness in the face of typos commonly found in bug-reports.
The overall similarity score between the reports is calculated based on the
following parameters: number of shared character n-grams between the two
bug reports; and number of the character n-grams extracted from the title
of one bug report present in the description of the other one. Applied against
some Mozilla and Eclipse bug reports, this technique achieved up to 0.34 recall.

Sun et al. [31] proposed a novel text-based similarity measurement method
in which the duplicate bug reports are organized in buckets, where every bucket
includes a single master bug report and zero or more duplicate bug reports.

Title Suppressed Due to Excessive Length 5

In this method, a Support Vector Machine (SVM) is exploited to predict the
duplicate reports based on their textual features.

Some approaches take into account the stack-trace and execution informa-
tion when comparing the bug reports. Wang et al. [36] reported a study in
which two both are calculated for a pair of bug reports: the first is based on
natural-language content, and the second is based on execution-information
content. This method was able to detect 67%-93% of duplicate bug reports
within the Firefox bug repository.

A third style of duplicate-detection approaches involves similarity assess-
ment of the bug-reports categorical (non-textual) features. Jalbert et al. [18]
proposed a duplicate-or-not classifier that combines the categorical features of
the bug reports (features such as severity, operating system, and number of
associated patches), textual similarity measurements, and graph clustering al-
gorithms to identify duplicate bug reports. They evaluated against the Mozilla
bug repository and were able to detect and filter 8% of duplicate bug reports
automatically.

In this paper, we replicate the work of Sun et al. [30] that uses both tex-
tual and categorical features (including product, component, type, priority,
and version) to compare bug reports. They proposed using a textual simi-
larity metric called BM25F, to compare long queries such as bug reports de-
scriptions. Moreover, they developed seven comparison metrics illustrated in
Figure 2 to compare two bug reports in terms of their textual and categorical
characteristics. To combine these comparisons, they proposed a linear function
called REP:

REP (d, q) =

7∑
i=1

ωi × comparisoni (1)

Where d and q are two bug reports being compared; comparisonis are the
comparisons indicated in Figure 2; and ωi are the weights for each comparison.
In this method, every single incoming duplicate bug report is compared against
all the existing buckets using the REP function in order to produce a sorted list
of candidate masters. For evaluation the authors utilized two measures: recall
and Mean Reciprocal Rank (MRR). The MRR measure is the average of the
reciprocal ranks of the results for a sample of queries, where the reciprocal rank
of a query response is the multiplicative inverse of the rank of the first correct
answer. They [30] reported 10-27% improvement in recall rate@k (1 ≤ K ≤ 20)
and 17-23% in MRR over the state-of-the-art.

More recently, Nguyen et al. [25] proposed a novel technique called Du-
plicate Bug report Topic Model (DBTM) that uses topic models to detect
duplicate bug reports. They employ a LDA-based technique called T-Model
to extract the topics from the bug reports. To measure the textual similarity
between the bug reports, they use the BM25F method [30] and apply Ensemble
Averaging, a machine-learning technique, to combine topic-based and textual
metrics. This approach provides a list of top-k similar bug reports for every
new report. The authors performed their experiments on OpenOffice, Eclipse,

6 Abram Hindle et al.

and Mozilla bug repositories and reported up to a 20% relative improvement
in top-k accuracy over their prior work on REP [30]. Top-k accuracy is the
percentage of queries where the duplicate report appears in the top-k results.
They did not compare against REP in terms of MRR or MAP, but trained
DBTM using a measure equal to MRR.

2.1 Contextual Bug Report Deduplication

In this paper, we extend our recent work published in (Mining Software Repos-
itories) MSR 2013. In our MSR paper [2], we developed a method to identify
duplicate bug reports based on their contextual features, in addition to their
textual and categorical fields. To implement this method, we exploited software
contextual vocabularies, each consisting of a set of contextual word lists about
software architectural words, software non-functional requirement words, topic
words extracted by LDA, topic words extracted by Labeled-LDA, and random
English words (as a control). Given these contextual words, we proposed sev-
eral new features for the bug reports by comparing each contextual word list
to the textual features of the bug reports (description and title) using the
BM25F metric employed by Sun et al. [30].

To compare the bug reports in terms of both their textual and categorical
features, we applied Sun et al.’s [30] comparison metrics illustrated in Figure 2.
We then created a data-set including pairs of bug reports, including their
textual, categorical, and contextual features, and provided this data-set to
a number of machine-learning classifiers (using the 10-fold cross-validation
experiment design) to decide whether the two bug reports in each record are
duplicates or not. We conducted our experiments on bug reports from Android
bug repository and succeeded in improving the accuracy of duplicate bug-
report identification by 11.5% over the approach of Sun et al. [30]. We also
investigated the influence of the number of added features on accuracy of the
bug report deduplication by applying the random English words context which
resulted in a poor performance. These results led us to the conclusion that,
indeed, it is context that improves the deduplication performance, and not
simply the number of added features to the bug reports.

In this study, we extended this prior work [2] by evaluating our method
more broadly, against the Eclipse, Mozilla, and OpenOffice bug repositories,
in addition to the Android bug repository we used in our original study. For
these new repositories, our results show an improvement to the deduplication
accuracy by up to 0.7% in accuracy, 2% in Kappa and 0.5% in AUC, which
is not as significant as the improvement achieved for Android repository. In
addition, we extended our duplicate retrieval method with three different bug-
report similarity criteria, i.e. i.e., cosine similarity, Euclidean distance, and
logistic regression. As a result, for every incoming bug report, a sorted list
of candidate duplicates (based on a specific similarity criterion) is provided
to the triager to make the final decision about the actual duplicates of the

Title Suppressed Due to Excessive Length 7

incoming report. We evaluate our bug-report retrieval method using the Mean
Average Precision (MAP) metric.

3 The Data Set

As we mentioned earlier, in this study we examine four large bug repositories
are: Android, Eclipse, Mozilla, and OpenOffice. Android is a Linux-based op-
erating system with several sub-projects. The Eclipse, Mozilla, and OpenOf-
fice bug repositories are adapted from Sun et al.’s paper [30]. Eclipse is a
popular open source integrated development environment for Java develop-
ment primarily (although more languages are also supported). OpenOffice is a
well-known open source office suite, with several sub-projects including a word
processor (Writer), a spreadsheet (Calc), a presentation application (Impress),
a drawing application (Draw), a formula editor (Math), and a database man-
agement application. Mozilla is a company that develops free software, best
known for producing the Firefox web browser, Thunderbird, Firefox Mobile,
and Bugzilla.

Table 1 Size of Repositories

Dataset #Bugs #Duplicates Period #Duplicate
Including

From To Buckets
Android 37536 1361 2007-11 2012-09 737
Eclipse 43729 2834 2008-01 2008-12 2045
Mozilla 71292 6049 2010-01 2010-12 3790
OpenOffice 29455 2779 2008-01 2010-12 1642

Table 1 reports some interesting properties of each bug repository we stud-
ied. The last column in the table reports the number of bug buckets in each
repository. As described in section 2, a bucket is a data structure proposed by
Sun et al. [30] in which all the reports that are duplicates of each other are
stored in one bucket and the one submitted earlier than others is called the
“master” report. Also, Figure 1 illustrates the distribution of duplicate bug
reports in the buckets for Android, Eclipse, Mozilla, and OpenOffice reposito-
ries.

Although each bug repository has distinct categorical and textual fields,
many of these fields are analogous or shared with most bug-tracker repositories
(e.g., description, severity, milestone). The fields of interest that we consider
in our experiments are described in Table 2.

As indicated in Table 2, in our study the bug reports include the follow-
ing fields: description, summary, status, component, priority, type, version,
product and Merge ID. The status feature can have different category values
including “Duplicate”, which means the bug report is recognized as a duplicate
report by a triager or another user. For example, assume that bug report A is

8 Abram Hindle et al.

Android Eclipse Mozilla OpenOffice

1
2

5
10

20
50

10
0

20
0

S
iz

e
of

 B
uc

ke
ts

 (l
og

 s
ca

le
)

Fig. 1 Distribution of Android, Eclipse, Mozilla, and OpenOffice duplicate bug reports into
buckets.

Table 2 Fields of Interest in Our Research

Feature Feature Type Description

Summary Text A brief description of the problem.
Description Text A detailed declaration of the problem which may in-

clude reproduction steps and stack traces.
Product Category The product the report is about.
Component Category The component the report is about.
Version Category The version of the product the bug report is about.
Priority Category The priority of the report to be fixed.
Type Category The type of the report: defect, enhancement, task, fea-

ture.
Status Category The current status of the bug report: Fixed, Closed,

Resolved, Duplicate, etc.
Merge ID Identifier If the report is a duplicate report, this field shows the

ID of the report which the bug report is duplicating.

recognized as a duplicate of bug report B by a triager, the Merge ID of bug
report A will be set to the ID of bug report B, and B will be the immediate
master of A. Table 3 describes some examples of duplicate bug reports with
their immediate master reports in Android bug-tracking system.

Table 3 shows examples of pairs of duplicate bug reports from Android and
their categorical features. The Product field does not have any values in this
table since Android bug reports do not have the Product field. Inconsistent
use of fields, or differing fields across products are common challenges when
addressing multiple bug repositories. The Summary and Description fields are
not shown in this table.

Title Suppressed Due to Excessive Length 9

Table 3 Examples of duplicate bug reports from Android bug-tracking system.

Pair ID Component Product Priority Type Version Status Merge ID
1 13321 GfxMedia Medium Defect New

13323 GfxMedia Medium Defect Duplicate 13321
2 2282 Applications Medium Defect 1.5 Released

3462 Applications Medium Defect Duplicate 2282
3 14516 Tools Critical Defect 4 Released

14518 Tools Critical Defect 4 Duplicate 14516

3.1 Software-Engineering Context in Bug Descriptions

To study the effect of leveraging software-engineering contexts on detecting
duplicate bug reports, we represent context as textual similarity to a word list
labelled with a context, such as maintainability or an architectural compo-
nent. We have taken advantage of different existing software-related contex-
tual data-sets represented as lists of contextual words. These contextual word
lists are compared with the textual features of the bug reports to indicate the
contextual characteristics of the bug reports, relating the bug-report words
to existing contexts and thus annotate bug reports with context. Next, we
describe the contextual word lists that we used.

– Architecture words: We manually created a set of architecture words for
each bug repository. Each set is organized into a few word lists representing
an architectural layer. All of our projects had some kind of architectural
layering. Architectural words are often extracted from project documenta-
tion.
For the Android bug repository, we utilized the word lists provided by
Guana et al. [12]. They produced a set of Android architecture words to
categorize Android bug reports based on the Android layered architec-
ture. These words were extracted from Android architecture documents
and are organized in five word lists (one word list per Android architec-
tural layer [9]): Applications, Framework, Libraries, Runtime, and Kernel.
Guana et al. spent less than 1 hour extracting these word lists.
For the Eclipse bug repository, we manually created a set of architecture
words [7], organized in three word lists (one word list per Eclipse architec-
tural layer) with the following labels: IDE, Plugins, and Workbench. We
spent less than 2 hours extracting these word lists.
For the OpenOffice bug repository, the architectural words [21] were man-
ually extracted and organized into four word lists: Abstract layer, Applica-
tions layer, Framework layer, and Infrastructure layer. We spent less than
2 hours extracting these word lists.
The architectural words related to Mozilla Firefox software system were
also manually extracted [11] and organized into five lists that describe
architectural components and layers: Extensions, UI, Script, XPCOM, and
Gecko. We spent less than 2 hours extracting these word lists.

– Non-Functional Requirement (NFR) words: Hindle et al. [16] pro-
posed a method to automate labeled topic extraction, built upon LDA,

10 Abram Hindle et al.

from commit-log comments in source-control systems. They labeled the
topics from a generalizable cross-project taxonomy, consisting of non-functional
requirements such as portability, maintainability, efficiency, etc. Their data-
set of software NFR words is organized in six word lists with the following
labels: Efficiency, Functionality, Maintainability, Portability, Reliability,
and Usability. Some of the wordlists were automatically extracted from
Wordnet, one set came from another study [10]. These word lists were
used as the NFR context words in this work.

– LDA topic words: LDA represents the topic structure and topic relations
among the bug reports. Two duplicate bug reports must address the same
technical topics. The topic selection of a bug report is affected by the buggy
topics for which the report is intended.
Han et al. [13] applied both LDA and Labeled-LDA [26] topic analysis mod-
els to Android bug reports. We are using their Android HTC LDA topics,
organized in 35 word-lists, Topici where i ranges from 0 to 34. These la-
belled topics took Han et al. 60 person-hours to extract. We also use their
Android HTC topics extracted by Labeled-LDA, organized in 72 lists of
words labeled as follows: 3G, alarm, android market, app, audio, battery,
Bluetooth, browser, calculator, calendar, calling, camera, car, compass,
contact, CPU, date, dialing, display, download, email, facebook, flash, font,
google earth, google latitude, google map, google navigation, google translate,
google voice, GPS, gtalk, image, input, IPV6, keyboard, language, location,
lock, memory, message, network, notification, picassa, proxy, radio, region,
ringtone, rSAP, screen shot, SD card, search, setting, signal, SIM card,
synchronize, system, time, touchscreen, twitter, UI, upgrade, USB, video,
voicedialing, voicemail, voice call, voice recognition, VPN, wifi, and youtube.
For Mozilla, Eclipse, and OpenOffice, we utilized the Vowpal Wabbit on-
line learning tool [20] to extract the topics using LDA. For each of these
repositories 20 topics were extracted (with parameters α = 0.1, β = 0.1
and N = 20) then each topic’s top 25 words were used as the word list
for representing the corresponding topic. These word lists are labeled as
Topici where i ∈ 0...19. LDA extraction took the authors 0.5 person-hours
per product. Nguyen et al. [25] recommend choosing more than 100 topics
and to explore different various topic settings.

– Random English words: To investigate the influence of contextual word
lists on the accuracy of detecting duplicate bug reports, we created a col-
lection of randomly selected English dictionary words. We created this
“artificial context” to study if adding noise data to the features of the bug
reports can improve or hamper deduplication even though the added data
does not represent a valid context. This collection is organized in 26 word
lists, labeled “a” through “z”. In each of these word lists there are 100
random English words that start with the same English letter as the label
of the word list. Random word lists took the authors 0.5 person-hours to
automate.

Title Suppressed Due to Excessive Length 11

Software engineering contexts can be built automatically or manually. In
this work we present using LDA to generate contexts automatically, but many
of our datasets are manually created and come from other studies. Effectively
a reuse of existing contexts. Prior work [10, 19] describes in detail how to
build contexts effectively. Nonetheless certain contexts, such as architectural
contexts, can be constructed manually quite easily. If a product is split into
packages, file names can and the package name itself can be put together
into package contexts. Modules listed by within project documentation can
be extracted as well. Currently the methodology for building contexts ranges
from ad-hoc to more process oriented as suggested by Kayed et al. [19].

4 Methodology

In this Section, we describe our approach of duplicate bug-report identifica-
tion. First, we explain our bug-report preprocessing approach. Next, we de-
scribe our similarity measurement method to compare the bug reports in terms
of their textual, categorical and contextual characteristics. Then, we describe
our duplicate bug report retrieval method based on our bug report similar-
ity measurements. Finally, we present our evaluation approach to assess our
duplicate bug report retrieval method.

4.1 Preprocessing

After extracting the bug reports, we apply a preprocessing method consisting
of the following two steps.

1. The first step involves tokenizing the textual fields (description and title)
of the bug reports and removing the stop words.

2. The second step involves the organization of the bug reports into a list
of buckets. All the bug reports are inserted in the same bucket with their
master bug report (specified by their Merge ID). The bug report with the
earliest open time becomes the master report of the bucket.

At the end of this process, the bug reports are converted into a collection
of bug-report objects with the following properties: Bug ID, description, title,
status, component, priority, type, product, version, open date, close date, and
optional master id, the ID of the bug report which is the master report of the
bucket including the current bug report. Table 4 illustrates some examples of
titles of Android bug reports before and after preprocessing.

4.2 Textual and Categorical Similarity Measurement

To compare the textual and categorical features of two bug reports, we mea-
sure their similarity based on their basic fields (component, type, priority,

12 Abram Hindle et al.

Table 4 Examples of Android bug reports before and after preprocessing

Bug ID Primitive Title Processed Title
3063 Bluetooth does not work with Voice

Dialer
bluetooth work voice dialer

8152 Need the ability to use voice dial over
bluetooth

ability voice dial bluetooth

3029 support for Indian Regional Languages support indian regional languages
31989 [ICS] Question of Google Maps’ loca-

tion pointer
ics question google maps location
pointer

product and version) shown in Table 2. Table 3 shows that duplicate bug re-
ports frequently have similar categorical features, which motivates the use of
categorical features in bug-deduplication. Figure 2 indicates the textual and
categorical-similarity measurement formulas that we apply, adapted from Sun
et al. [30].

Sun et al. [30] employed BM25F [37], a derivative of BM25 [27]. BM25 is
used in search engines as a ranking function to rank query results. BM25 is
much like TF-IDF except that it tunable and normalizable against average
document length. It is loosely calculated by multiplying the inverse document
frequency of a query term appearing in the underlying corpus by a document
frequency normalized by 2 tunable constants k1 and b, and document size.
BM25F extends BM25 and makes it field or feature aware. BM25F extends
BM25 with awareness of multiple textual fields of different sizes. Instead of
normalizing by average document length, BM25F will normalize term frequen-
cies per field by average field length. BM25F expands the BM25 b parameter
by the number of fields used (e.g. bf given field f), allowing one to optimize
against different fields. In Sun et al. [30] BM25F is only used against 1 field
at a time. Where as in Nguyen et al. [25] BM25F is used with multiple fields.

comparison1(d1, d2) = BM25F (d1, d2) The comparison unit is unigram.

comparison2(d1, d2) = BM25F (d1, d2) The comparison unit is bigram.

comparison3(d1, d2) =

{
1 if d1.prod = d2.prod
0 otherwise

comparison4(d1, d2) =

{
1 if d1.comp = d2.comp
0 otherwise

comparison5(d1, d2) =

{
1 if d1.type = d2.type
0 otherwise

comparison6(d1, d2) =
1

1 + |d1.prio− d2.prio|

comparison7(d1, d2) =
1

1 + |d1.vers− d2.vers|

Fig. 2 Categorical and textual measurements to compare a pair of bug reports [30].

Title Suppressed Due to Excessive Length 13

The first comparison defined in Figure 2 is the textual-similarity measure-
ment between two bug reports over the fields title and description, computed
by BM25F . The second comparison is similar to the first one, except that the
fields title and description are represented in bi-grams (a bi-gram consists of
two consecutive words). The remaining five comparisons are categorical com-
parisons between reports.

comparison3 compares the product of bug reports and does not apply to
the Android bug repository, since Android bug reports do not specify a product
feature. Therefore, we set the value of this feature to 0 for all Android bug
reports. Also, regarding Sun et al.’s [30] method, we are not considering the
version comparison for the bug reports of Eclipse, Mozilla, and OpenOffice
bug repositories.

Comparison4 compares the component features of the bug reports. The
component of a bug report may specify an architecture layer or a more specific
module within an architectural layer. The value of this measurement is 1 if
the two bug reports belong to the same component and 0 otherwise.

Comparison5 compares the type of two bug reports, for example in Android
bug-tracking system it shows whether they are both “defects” or “enhance-
ments”. This comparison has the value of 1 if the two bug reports are of the
same type and 0 otherwise.

Comparison6 and comparison7 compare the priority and version of the
bug reports. These measurements could have values between 0 and 1 (including
1). Priority is represented as the property d.prio of document d. This is the
priority set in the bug-tracking system. Thus |d1.prio− d2.prio| describes the
absolute difference in rank of priority values between 2 documents. And d.vers
describes the version number or rank of version of document d in the bug-
tracking system. |d1.vers−d2.vers| describes the absolute difference in version
number or rank [30]. If the two bug reports have similar priority or version this
value will be 1. The greater the difference between priority and version, the
higher the denominator and thus the closer to 0 the value for Comparison6

and comparison7.

The result of these comparisons establish a data-set including all the pairs
of bug reports with the seven comparisons, shown in Figure 2, and a classifica-
tion column, which reports whether the compared bug reports are duplicates
of each other. Table 5 shows a snapshot of this data-set with some examples
of pairs of Android bug reports. The value of class column is “dup” if the bug
reports are in the same bucket and “non” otherwise.

Table 5 Some examples of pairs of the bug reports from Android bug repository with
categorical and textual similarity measurements (“textual categorical” table).

ID1 ID2 BM25Fun BM25Fbi Prod cmp Comp cmp Type cmp Prio cmp Vers cmp Class
14518 14516 1.4841 0.0000 0 1 1 1.0000 1.0000 dup
29374 3462 0.6282 0.1203 0 0 1 1.0000 1.0000 non
27904 14518 0.1190 0.0000 0 0 1 0.3333 0.1667 non

14 Abram Hindle et al.

A huge number of pairs of bug reports is generated in this step. Thus, we
conducted the evaluation of our method on the decision problem on a sample
of the “textual categorical” tables. There are very few pairs of bug reports
marked as “dup” relative to the number of all the pairs (

(
size
2

)
, size = total

number of reports in the repository). Because we want to create a set of bug
report pairs including 20% “dup”s and 80% “non”s, we randomly selected
4000 “dup” and 16000 “non” pairs of reports. Thus, for each bug repository,
we produced 20000 sampled pairs of bug reports.

4.2.1 Undersampling

A short comment is worthwhile here to motivate our choice for testing with our
method of sampling. The large sizes of the original data-sets implies substantial
performance challenges in the training and evaluation of models. Furthermore
the original class imbalance between unique and duplicate bugs is amplified by
the pairing process. A class imbalance of 5% where 5% of bugs are duplicates
and 95% are unique will cause a 99.75% class imbalance in terms of pairs. This
means that any classifier who always returns the majority class will be 99.75%
accurate (but with 0.0 Kappa). In this work we engage in undersampling.

Undersampling, i.e., sampling the majority class at a lesser rate than the
minority class, for logistic regression has been shown to be effective, as Wallace
et al. [34] argue that, “For classification, this simple approach works well [33]
and is theoretically motivated [35].” Thus, for some classifiers, undersampling
during training results in a better classifier on the imbalanced dataset. Yet
other classifiers examined in this work, such as both Naive Bayes and C4.5,
are known to be insensitive to class imbalance [22].

80/20 undersampling enables us to train logistic-regression learners, and
similar learners realistically with available memory and time and apply those
trained models to larger datasets. Undersampling is the realistic training case
for many of these machine learners. Undersampling also lets us better evaluate
classification effectiveness, as the information gain from the learners becomes
more apparent with less skewness.

80/20 was chosen to address that class imbalance does exist and we wanted
to measure the effect of finding true-duplicates, thus we need lots of true-
duplicates to test against. If we chose 90/10 or 99/1 we would need to use
much larger samples to appropriately perceive changes in performance. In later
work by Karan et al. [1], different proportions are tested achieving a similar
effect.

In summary, our reasons for undersampling are for better logistic-regression
training, better training time performance, ease of interpreting gains (or lack
thereof) of learners under different treatments, and that the number of dupli-
cate pairs are quickly washed out by O(N2) comparisons.

Title Suppressed Due to Excessive Length 15

4.3 Contextual Similarity Measurement

As mentioned in Section 2, most of the previous research on detecting duplicate
bug reports has focused on textual similarity measurements and IR techniques.
Relatively few methods have also considered the categorical features of bug
reports, and code segments or stack traces included with the description. In
this section, we describe our approach for measuring the contextual similarity
between bug reports. Considering the context of a bug report as a feature
in the similarity-assessment process improves the accuracy of duplicate-bug
detection.

In our method, we take advantage of the software contextual word lists
described in Section 3. We explain the contribution of context in detail, using
the NFR context as an example. As pointed out earlier, this contextual word
collection includes six word lists (labeled as efficiency, functionality, maintain-
ability, portability, reliability, and usability). We consider each of these word
lists as a query, and calculate the similarity between each query and every bug
report textually (using BM25F). For the case of NFR context, there are six
BM25F comparisons for each bug report, which result in six new features for
the bug reports. Table 6 shows the contextual features resulting from the com-
parison of the NFR context against some Android bug reports. Each column
shows the contextual similarity between the bug report and each of the NFR
word lists. For example, the bug with the ID 29374 seems to be more related
to usability, reliability, and efficiency rather than the other NFR contexts.

The same measurement is done for the other contextual word collections
as well. At the end, there are five different contextual word collections for
the Android bug repository (Labeled-LDA, LDA, NFR, Android architecture,
and English random words). And, there are four contextual word collection for
each of the other bug repositories since they lack the Labeled-LDA contextual
words.

Table 6 Examples of the NFR contextual features for some of Android bug reports (“table
of contextual measures”)

Bug ID Efficiency Functionality Maintainability Portability Reliability Usability
3462 3.45 4.57 1.35 0.57 1.53 1.41
2282 2.88 2.51 1.07 3.37 4.53 4.91
29374 3.89 2.52 0.13 0.99 3.20 5.07
27904 2.93 1.03 0.50 0.00 3.36 4.55

4.4 Combining the Measurements

In this phase of the process, we have the “textual categorical” table for pairs of
bug reports (as shown in Table 5) and a number of tables reporting contextual-
similarity measurements, each one according to a different context for individ-

16 Abram Hindle et al.

ual bug reports, as described in Section 4.3. Here, we describe the combination
of the “textual categorical” table and the “tables of contextual measures”.

As our research objective is to understand the impact that contextual anal-
ysis may have on bug deduplication, in this phase, we aim to produce five dif-
ferent tables, each one including pairwise bug-report comparisons across (a)
textual features, (b) categorical features, and (c) one set of contextual features.
An example of features and comparison for the “NFR” context is shown in
Table 7 for the Android bug repository. In this table, the first seven columns
are the same as the ones in Table 5; they report the similarity measurements
between the two bug reports according to the textual and categorical features.
Next are two families of six columns each, reporting the NFR contextual fea-
tures for each of the two bug reports (with Bug ID1 and Bug ID2 respec-
tively). The second to last column of Table 7 reports the contextual similarity
of the two bug reports based on these two column families. We consider the
contextual features of the two bug reports as value vectors and measure the
distance between these two vectors using the cosine similarity measurement,
according to the formula shown below.

cosine sim =

∑n
i=1 C1i × C2i√∑n

i=1(C1i)2 ×
√∑n

i=1(C2i)2
(2)

In this formula, n is the number of word lists, i.e., contextual features, for
the particular context added to each bug report (in the case of NFR, n = 6).
C1i and C2i are the ith contextual features added to the first and second bug
reports respectively. The cosine similarity feature is demonstrated in Table 7.
This table reports the comparison of bug reports with IDs 3462 and 2282,
and bug reports with IDs 29374 and 3462, in terms of their NFR context.
The first pair belongs to the same bucket (with class value of “dup”). The
second pair of bug reports belong in different buckets (with the class value of
“non”). Table 7 includes textual, categorical, and the NFR contextual similar-
ity measurements, is called the “NFR all-features table”. Note that there are
five different such “all-features” tables, each one corresponding to a different
context.

Table 7 Examples of the records in the data-set containing categorical, textual, and con-
textual measurements for the pairs of Android bug reports.

ID1 ID2 cmp1 ... cmp7 Efficiency1 ... Usability1 Efficiency2 ... Usability2 Cosine Class
3462 2282 1.52 ... 0.29 3.45 ... 1.41 2.88 ... 4.91 0.73 dup
29374 3462 0.63 ... 1.00 3.89 ... 5.07 3.45 ... 1.41 0.79 non

The class value (the classification) in the “all-features” tables should be
predicted by the machine-learning classifiers in next phase. In other words,
these classifiers decide whether the two bug reports are duplicates of each
other.

Title Suppressed Due to Excessive Length 17

4.5 Prediction

In this Section, we discuss two use cases related to the general task of duplicate-
bug detection. The first use case refers to a basic decision problem, of whether
two specific bug reports are duplicates of each other (given their similarity mea-
surements). The second scenario reflects the general triaging scenario, where
the incoming bug report is compared against all reports in the repository and
a ranked list of candidate duplicates is presented to the triagers who can make
the final decision about the real duplicates.

Clearly the two scenarios are closely related, since at their core they both
make an assessment of how similar two bug reports are. Classification methods,
deciding whether a bug is a duplicate of another bug or not, can be combined
with ranked prediction, potentially to trim the ranked list. Classification is
a much simpler process and we use it in this work to investigate differences
between the different feature-sets and techniques. Ranked lists are not usu-
ally evaluated on bug reports without duplicates. One problem with both of
scenarios is that fundamentally there are O(N2) comparisons and with larger
values of N like say N > 80000 there are over 3 billion comparisons to be
made. As a result neither scenario scales well. Smart indexing can be used to
improve the ranked list problem but it might miss duplicates.

More generally, classification is appropriate:

– when the question asked is “are these two bug reports duplicates?”;
– when the bug repository is small;
– when one is interested in duplicates of a single bug only and can spend
O(n) time searching for them;

– when one is exploring the effect of new information when searching for
duplicate reports; and

– when one wants to explore false negatives, true negatives and false posi-
tives.

On the other hand, a ranked list is preferable:

– when the question is “give me a list of possible duplicate bug reports ranked
by potential duplicate status?”;

– when a human triager is manually searching for candidate duplicate bugs;
and

– when order or efficiency of evaluation (reading bugs) matters.

4.5.1 Classification

In this Section, we discuss the application of classifiers on different sets of our
comparison metrics for deciding whether a pair of bug reports are duplicates
or not. The idea is to use machine learning to amplify the impact of the work
of the triager; as the triager identifies duplicate bugs, the classifier learns how
to better recognize duplicates and may suggest candidates to the triager and
thus simplify his/her task.

18 Abram Hindle et al.

To retrieve the duplicate bug reports we take advantage of several well-
known machine-learning classification algorithms. In each experiment, a ta-
ble including pairs of bug reports with a particular combination of similarity
metrics (i.e., textual, categorical, and contextual features) is passed to the
classifiers. Each “all-features” table (described earlier) includes all the inputs
necessary for the classifiers to classify each pair of bug reports as duplicate or
not. To avoid over fitting during training and evaluation, we use the 10-fold
cross validation technique.

The classifiers we use are implemented by Weka (Weikato Environment
for Knowledge Analysis) [17]. Weka is a well-known machine learning tool
implemented in Java. This tool supports numerous data mining tasks such as
preprocessing, clustering, classification, regression, visualization, and feature
selection. Weka accepts data in a flat file in which each instance has a fixed
number of attributes. More specifically, we use the 0-R algorithm to establish
the baseline, C4.5, K-NN (K Nearest Neighbours), Logistic Regression, and
Naive Bayes. K-NN tends to perform well with many features, and when it
works we can infer that the input data has a fundamentally simple structure
that is exploitable by distance measures.

Evaluation Metrics

To evaluate the performance of the classifiers to classify bug-report pairs
as duplicates or not, we use the following metrics: accuracy, kappa, and Area
Under the Curve (AUC).

Accuracy is the proportion of true results (truly classified “dup”s and
“non”s) among all pairs being classified. The formula for accuracy is indicated
below.

acc =
|true dup|+ |true non|

|true dup|+ |false dup|+ |true non|+ |false non|
(3)

True “dup” and false “dup” are the pairs of bug reports truly and wrongly
recognized as “dup” respectively by classifiers. True “non” and false “non”
have the same definition but for the “non” class value.

Kappa is a statistical measure for inter-rater agreement. For example,
kappa demonstrates how much homogeneity there is in the rating given by
raters. The equation for kappa is

kappa =
Pr(a)− Pr(e)

1− Pr(e)
(4)

Pr(a) is the relative observed agreement among the raters. Pr(e) is the hypo-
thetical probability of chance agreement, using the observed data, to calculate
the probabilities of each observer randomly saying each category. If the judges
are in complete agreement, then kappa = 1. If there is no agreement among
them other than what would be expected by chance, then kappa = 0. We use
Kappa to assess the agreement between our gold standard and the machine
learning classifier.

Title Suppressed Due to Excessive Length 19

AUC is the area under the Receiver Operation Characteristic (ROC) curve.
The ROC curve is created by plotting the fraction of truly recognized “dup”s
out of all the recognized “dup”s (True Positive Rate) versus the fraction of
wrongly recognized “dup”s out of all the recognized “non”s (False Positive
Rate) by the classifiers. AUC is the probability that a classifier will rank a
randomly chosen “dup” instance higher than a randomly chosen “non” one
(assuming that “dup” class has a higher rank than “non” class).

4.5.2 Retrieving the List of the Most Similar Candidates

In this Section we discuss the application of our method to the second duplicate-
bug detection scenario, namely that of selecting a ranked list of candidate
duplicates for the triager to inspect more closely. Figure 3 demonstrates the
method of retrieving top-k similar bug reports to a specific incoming report.
As indicated in this figure, there is a similarity criterion, which compares the
incoming bug report against the existing reports in the repository and re-
turns a sorted list of candidate duplicate reports. To compare the bug reports
contextually, we have proposed three similarity criteria: (1) Cosine similarity
based metric; (2) Euclidean distance based metric; and (3) Logistic regression
based metric.

As discussed in Section 3, Sun et al. [30] applied a linear function called
REP to sort the candidate masters, which indicated promising results in de-
tecting correct masters for duplicate reports. Therefore, we decided to combine
our contextual comparison metrics with REP so that we can take advantage
of all the textual, categorical, and contextual features when comparing bug
reports.

Bug Reports

Bug report 1

Bug report 2

...

Bug report m

Sorted List of Candidates

First similar bug report

Second similar bug report

...

Kth similar bug report

New bug

report
Similarity

Criterion
Query

Query

Query

Output

Fig. 3 Overall workflow to retrieve duplicate bug reports

To implement this method, we have constructed a data-set including all
the pairs of bug reports for each bug repository. This data-set includes all the

20 Abram Hindle et al.

pairs with the similarity criteria we would like to study in the experiment at
hand (the “similarity criteria” data-set). For instance, if the only similarity
criterion is the REP function (Sun et al.’s method [30]), the data-set includes
the IDs of the bug reports, the label for each pair (“dup” or “non”) , and
the REP result for each pair. Table 8 indicates some sample records from the
“similarity criteria” data-set with the REP criterion for Mozilla bug reports.

Table 8 Examples of pairs of bug reports from Mozilla bug repository with their REP
comparisons result and their class (the “similarity criteria” table)

Bug ID 1 Bug ID 2 REP Class
563260 576854 2.617 dup
563250 596269 3.388 non
563325 612618 0.095 non
563308 582608 1.928 non
563276 602852 0.576 non

Cosine Similarity The first similarity metric is the cosine similarity for a spe-
cific context, shown in Equation (2). In this formula, the contextual weight
vectors of the two bug reports are compared. If two bug reports were exactly
similar in terms of a particular context, their contextual cosine similarity is
equal to 1. And, if the two bug reports were completely different in terms of
that context, this value is 0.

Since we expect this similarity criterion to assign a higher score to the
more similar reports in comparison to the non-similar ones, we utilize it as a
duplicate report retrieval criterion. This metric returns higher values when it
compares more similar vectors. To combine the cosine similarity and REP we
normalize REP to scale it in the range of 0 to 1 and we then calculate their
average as indicated below:

combined cosine metric(B1, B2) =
norm(REP (B1, B2)) + cosine sim(C1, C2)

2
(5)

In this function C1 and C2 represent the contextual features of the bug
reportsB1 andB2 respectively. As an example, for the NFR context, C1 and C2

contain six dimensions each. Equation (5) combines all the textual, categorical,
and contextual similarity metrics to compare a pair of bug reports. In some
experiments only the cosine sim(C1, C2) formula is applied to compare the
bug reports only contextually.

To apply this criterion, and its combination with the REP function, we
have added some new comparison metrics to the “similarity criteria” data-
set. Table 9 shows some sample records from the “similarity criteria” data-set
with the REP , and cosine sim criteria (for different contexts) from Mozilla
bug reports. So, if we want to combine the REP and cosine sim functions, we
exploit two columns from this table, otherwise we only utilize one of them to
compare the bug reports.

Title Suppressed Due to Excessive Length 21

Table 9 Examples of pairs of bug report from Mozilla repository with their REP and
cosine sim comparisons for different contexts and their class

Bug ID1 Bug ID2 REP Architecture cosine NFR cosine Random cosine LDA cosine Class
563260 576854 2.617 0.622 0.625 0.000 0.807 dup
563250 596269 3.388 0.955 0.877 0.000 0.392 non
563325 612618 0.095 0.000 0.854 0.474 0.076 non
563308 582608 1.928 0.256 0.916 0.000 0.077 non
563276 602852 0.576 0.000 0.802 0.000 0.000 non

Euclidean Distance

The second similarity metric is established based on the Euclidean dis-
tance between two context vectors corresponding to the two bug reports being
compared, as shown in the following formula.

contextual distance(B1, B2) =

n∑
i=1

1

1 + |C1i − C2i|
(6)

In this function, n is the number of the word lists of the context at hand
(such as 6 for NFR context). C1 and C2 are the contextual features for the
bug reports B1 and B2 respectively. This similarity metric is analogous to the
priority and version comparison metrics illustrated in Figure 2. In this func-
tion, as the distance between the two context vectors increases, the resulting
value approaches to 0. And, when this distance decreases, the resulting value
approaches to 1. Therefore, this function results in higher scores for the bug
reports contextually close to each other.

To compare the bug reports textually, categorically, and contextually (uti-
lizing the above contextual similarity metric) we have combined Equation (6)
and the REP linear function. To that end, we simply added the contextual-
distance function to REP, which could be considered as adding a few more
features like priority and version to the REP function. The formula is shown
below:

combined euclidean metric(B1, B2) = REP (B1, B2) + contextual distance(B1, B2) (7)

In the above formula, B1 and B2 are the two bug reports being compared.
To apply this criterion, we have added some new comparison metrics to the
“similarity criteria” data-set (demonstrated in Table 8). Table 10 indicates
some sample records from this data-set with the REP, and contextual distance
criteria (for different contexts) from Mozilla bug reports.

Logistic Regression

We chose logistic regression to combine REP and contextual comparison
metrics, because of its reasonable performance and because it is straightfor-
ward to configure with appropriate coefficients using a probabilistic model.
Logistic regression effectively provides us with a ranking function for pairs.

22 Abram Hindle et al.

Table 10 Examples of pairs of bug reports from Mozilla repository with their REP and
contextual-distance comparisons for different contexts and their class

Bug ID1 Bug ID2 REP Arch dist. NFR dist. Random dist. LDA dist. Class
563260 576854 2.6170 2.2987 3.3549 0.9741 10.8501 dup
563250 596269 3.3880 1.6458 3.1567 1.1871 09.6204 non
563325 612618 0.0950 0.5789 1.9480 1.4071 10.3120 non
563308 582608 1.9280 1.3722 3.4686 1.1337 05.3772 non
563276 602852 0.5760 0.8739 2.5228 2.5519 02.5027 non

This similarity criterion works based on the logistic-regression classifier.
This classifier is applied in cases where the observed outcome (dependent vari-
able) can accept only two possible values (in our case “dup” or “non”). In this
classifier, the probability function (of the bug being a duplicate) is modeled as
a linear function which includes a linear combination of the independent vari-
ables and a set of estimated coefficients. The predictor function for a particular
data point i is written as follows:

f(i) = β0 + β1xi1 + β2x2i + ...+ βmxmi (8)

in which β0 − βm are regression coefficients indicating the impact of each
particular descriptive variable on the outcome.

In our approach, we have taken advantage of the prediction function (8)
to establish a similarity criterion based to sort the candidate duplicates with.
Considering the REP and the cosine sim (Equation (2)) functions as the
descriptive variables, we are interested in distinguishing the appropriate co-
efficients for them in the similarity criterion. In other words, we would like
to discover improved coefficients for the cosine sim and REP measures to
combine them, rather than simply calculating their average (such as what is
done in Equation (5)). To that end, we have sampled the “similarity criteria”
data-set including the REP and cosine sim similarity functions (illustrated in
Table 9). The sampled data-set includes 10000 records with 20% of records
labeled as “dup” and 80% of records labeled as “non”. Then, the logistic re-
gression classifier is applied on this sampled data-set. If we intend to exploit
the REP function exclusively in our similarity criterion, we apply the logistic
regression on the sampled data-set including only the REP similarity metric;
the resulting similarity criterion, with coefficients are estimated by the logistic
regression classifier, is as follows:

criterion = β0 + β1(REP) (9)

Furthermore, when we aim to combine two different metrics such as REP
and cosine sim for the NFR context to sort the candidate duplicates, we apply
the logistic regression on the sampled data-set including the REP and the co-
sine sim for NFR to predict the coefficients. The similarity criterion is defined
as follows:

criterion = β0 + β1(REP) + β2(cosine simNFR) (10)

Title Suppressed Due to Excessive Length 23

Also, if we aim to investigate the effect of contextual comparison (for a
specific context such as NFR) on duplicate bug report retrieval, the similarity
criterion changes as follows:

criterion = β0 + β1(cosine simNFR) (11)

These criteria are in fact the prediction function described in Equation (8)
that are exploited as the bug report comparison function.

Evaluating the List of Candidates

So far, we have presented our contextual methods for duplicate-bug de-
tection. In this Section, we focus on the technique we exploit to assess the
retrieval approach, which compares every incoming bug report against all the
existing reports in the repository and sorts the existing bug reports based
on their similarity to the incoming report. The list of retrieved candidates is
sorted in descending order of similarity, with the more similar reports ranked
higher.

The quality of the retrieval process is measured by studying the indices
of the true duplicates (of the incoming report) in the list. The higher in the
list these true duplicates are, the better we conclude the similarity criterion
of the retrieval process to be. In our study, we evaluate the sorted list of
similar reports using the Mean Average Precision (MAP) measure. MAP is
a scalar-valued measure of ranked retrieval results, designed to evaluate the
performance of queries that can have multiple relevant answers. In our dupli-
cate bug-report retrieval method, each bug report can have several duplicates
since there may be several bug reports in a bucket. Given Q duplicate bug
reports, for each of them, the system retrieves potential duplicates in descend-
ing order of similarity (until all the duplicates of the bug report are retrieved)
and records their indexes in the sorted list. The MAP measure is calculated
as follows:

MAP =

∑Q
q=1AvgP (q)

Q
(12)

Buckley et al. [8] define average precision as “The mean of the precision
scores obtained after each relevant document is retrieved, using zero as the
precision for relevant documents that are not retrieved.” AvgP (q) where the
number of relevant documents is 0 is equal to 0, otherwise AvgP (q) is defined
as:

AvgP (q) =

∑n
k=1 P (k)× (Rel(K))

number of relevant documents
(13)

In the above functions, relevant documents are the actual duplicates;Rel(K) =
1 when the documents are duplicates of each other and Rel(K) = 0 otherwise;
n is the number of bug reports in the repository; and p(k) is the precision at
the cut-off k. The precision function is provided below:

precision =
|{relevant docs}

⋂
{retrieved docs}|

|retrieved docs|
(14)

24 Abram Hindle et al.

Since in our experiments we want to evaluate the retrieved list of candi-
dates, we should know the actual duplicates of an incoming report. Therefore,
in our experiments, the incoming reports consist of all the reports marked
as duplicate in the repository (that have specific masters). This approach is
similar to the work of Sun et al. [30], who, however, have simplified MAP to
an MRR-like measure discussed in Section 2. We believe that MAP is more
appropriate than MRR for the candidate-duplicates retrieval task, since it is
a proxy for the positions of all the true duplicates retrieved in the list and not
only the position of the first true duplicate.

Sun et al. suggest that the first case that is in the same duplicate bucket
is the right answer. But this assumes that the answers are all correct and
that duplicate buckets have already been established and observed. A more
realistic use of ranked lists is to read down the list and look for duplicate
candidates and evaluate them. We should try to return a coherent list of bugs
with duplicates in that list. A list with the correct duplicate deep down in
the list is not as helpful. Thus MAP is an appropriate measure because when
querying for a duplicate bug there is often more than 1 right answer, and
furthermore the right answers to duplicate bugs might not have been marked
or observed yet. MRR assumes we were capable of marking all of such bugs
which is not realistic. Furthermore MRR has a positive bias where poorly
ranked dupes are ignored at the expense of the top ranked duplicate. MAP
does not have this bias and punishes search results that do not discover the
majority of duplicate issues earlier. Both MRR and MAP suffer as performance
measure when a user does not evaluate all returned candidates. In both cases
MAP and MRR are still positive because they are not evaluated on negative
queries: non-duplicates.

The FastREP Algorithm

In order to implement the logistic-regression based retrieval function and
evaluate it with the MAP measure, we propose the “FastREP” algorithm.
“FastREP” is designed to enable the calculation of one or many queries rela-
tively quickly using a single linear scan of a table of comparisons. It involves
the following steps.

1. As we discussed in Section 4.5.2, we sample the “similarity criteria” data-
set including the REP and cosine sim similarity criteria (illustrated in
Table 9). The sampled data-set includes 10000 records with 20% of records
labeled as “dup” and 80% of records labeled as “non”. Then, we apply
the logistic-regression classifier on this sampled data-set. Depending on
the experiment, the features involved in this classification may vary (the
features may be only REP, only the contextual feature(s), or a combination
of both).

2. Based on the coefficients returned by the logistic-regression classifier, the
criterion function is built and the value of this function for each record in
the entire “similarity criteria” data-set (not the sampled data-set) is cal-

Title Suppressed Due to Excessive Length 25

culated (applying a criterion function similar to either one of Equation (9),
(10). This value is added as a new column in the table.

3. The resulting table that includes the criterion column is then sorted based
on the values of the criterion column in descending order.

4. Next, a map data-structure is constructed that maps a bug report to a
tuple of 3 numbers: (seen, hits, sum). seen is the number of pairs of bug
report that have been observed. hits is the number of duplicates of this
specific bug report that have been observed. sum is the sum of precision at
k calculations (meant to calculate average precision later) made each time
a duplicate bug report is seen where k is seen.

5. The sorted table of pairs is scanned. Each row is used to populate the map
data-structure. For each row, if the pair references a known “dup”/duplicate
bug report then seen is incremented in the map for each of the bug reports
in the pair. If the row represents a duplicate bug report pair (marked as
“dup”) then hits is incremented and precision at k, hits/seen, is added to
sum.

6. Next, the average precision (indicated in Equation (13)), AvgP , can be
calculated for each “dup” bug report by dividing the sum of each bug
report by their hits.

7. Finally, the mean of all the AvgP s can be calculated to report the MAP
result.

This method is fast because we can answer many queries in parallel and
only a single sort step is required. The run-time is O(NlogN) as we use a
merge sort (GNU sort) to sort the large tables where N is the number of
comparisons.

5 Case Studies

We applied our method on bug reports from the Android, Eclipse, Mozilla,
and OpenOffice bug-tracking systems. To study the effect of contextual data
on the accuracy of duplicate bug-report detection, we applied the classification
algorithms (mentioned in Section 4) on the Android bug repository in our re-
cent work [2]. In this paper, we applied the same approach on Eclipse, Mozilla,
and OpenOffice bug repositories as well. We applied classification algorithms
on three different data-sets extracted from each bug-tracker:

1. the data-set including all of the similarity measurements illustrated in the
“all-features” tables (such as Table 7, the NFR “all-features” table);

2. the data-set including only the textual and categorical similarity measure-
ments of the bug reports; and

3. the data-set including only the contextual similarity measurement features.

As mentioned before, these data-sets include 20000 pairs of randomly selected
bug reports with 20% “dup”s and 80% “non”s.

In addition to the experiments in our recent work [2], we have also con-
ducted some experiments to provide the list of candidate duplicates benefiting

26 Abram Hindle et al.

from the REP function presented by Sun et al. [30]. We have extended the
REP function (in section 4.5.2) to apply our contextual approach when pro-
viding the list of candidates by three different methods: (1) cosine similarity
based metric, (2) euclidean distance based metric, (3) logistic regression based
metric. We discuss the experiments applying these retrieval methods in Sec-
tion 5.4.

5.1 Evaluating the Classification-based Retrieval Method

In this Section we analyze the effect of context on detecting duplicate bug
reports based on the results reported by the machine-learning classifiers while
applying them on the “all features” data-sets (described in Section 4) with
and without contextual features. Here, we are eager to know the answer to the
following question: Does the software context improve the duplicate bug reports
retrieval using the machine learning classifiers?

Tables 11, 12, 13, and 14 show the statistical evaluation measurement
values without considering the context of bug reports at the top. This part
of the tables demonstrates the resulting evaluation measures of the machine
learners with the input data created by Sun et al.’s method [30]. The maximum
values are shown in bold. These tables demonstrate that Sun et al.’s method
definitely finds duplicates.

Tables 11, 12, 13, and 14 also report the statistical measurement results,
using the contextual data-sets in bug-report similarity measurements. The
highest value in each column is again shown in bold.

As demonstrated in our previous work [2], classification algorithms can
effectively identify the duplicate bug reports of the Android bug repository.
Table 11 reports the results of applying these algorithms on this repository.
As shown in this table, the highest improvements are achieved by utilizing the
LDA and Labeled-LDA contextual data.

Tables 12 and 13 report the results for the Eclipse and Mozilla bug repos-
itories respectively. As demonstrated in these tables, the LDA context result
again in the highest improvement, however this improvement is trivial. Ac-
cording to tables 12 and 13, the contextual features exclusively improve the
accuracy of detecting duplicate bug reports by around 6% over the baseline.
This result is promising because LDA is an automatic method and not that
expensive to run, and, if its topics can help boost deduplication performance,
then we have an automatic method of improving duplicate detection. For the
OpenOffice bug repository, as indicated in Table 14, the highest improvement
(which is still trivial) is achieved by using the NFR context. The NFR contex-
tual word lists are project independent so it can be considered as an automatic
method of bug-report deduplication as well.

Table 15 shows some examples of predictions made by the K-NN algorithm
for the Android bug repository, including textual, categorical, and Labeled-
LDA context data. The first pair of bug reports is correctly recognized as
duplicates, given that both of the reports are about “Bluetooth” (which is an

Title Suppressed Due to Excessive Length 27

Table 11 Statistical measures resulted by the experiments on Android bug repository in-
cluding textual, categorical, and contextual data

Context Algorithm Textual, Categorical, & Contextual Contextual only
Accuracy Kappa AUC Accuracy Kappa AUC

0-R 80.000% 0.0000 0.500
Logistic

No Regression 82.830% 0.3216 0.814
Context Naive Bayes 78.625% -0.0081 0.778

C4.5 84.525% 0.4324 0.716
K-NN 82.380% 0.4616 0.737
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

Architecture Regression 83.060% 0.3562 0.829 79.965% 0.0005 0.618
Naive Bayes 77.950% 0.2185 0.732 75.255% 0.0825 0.603
C4.5 87.990% 0.5947 0.880 91.690% 0.7083 0.916
K-NN 85.580% 0.5632 0.794 86.330% 0.5553 0.843
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

NFR Regression 83.325% 0.3615 0.833 79.995% 0.0014 0.617
Naive Bayes 78.735% 0.1106 0.758 77.880% 0.0509 0.619
C4.5 89.450% 0.6661 0.856 96.145% 0.8792 0.952
K-NN 85.295% 0.5766 0.813 83.165% 0.5222 0.788
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500

Random Logistic
English Regression 83.730% 0.3854 0.844 80.200% 0.0543 0.661
Words Naive Bayes 51.845% 0.1341 0.665 39.260% 0.0515 0.606

C4.5 89.995% 0.6673 0.901 91.590% 0.7101 0.917
K-NN 87.955% 0.6384 0.834 87.620% 0.6119 0.863
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

LDA Regression 86.780% 0.5382 0.886 80.590% 0.1447 0.732
Naive Bayes 77.290% 0.3179 0.767 73.565% 0.2523 0.712
C4.5 91.245% 0.7284 0.866 96.070% 0.8759 0.946
K-NN 88.615% 0.6854 0.887 89.345% 0.7034 0.894
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

Labeled Regression 88.125% 0.5967 0.904 82.605% 0.3151 0.798
LDA Naive Bayes 79.655% 0.3508 0.788 77.560% 0.3082 0.747

C4.5 92.105% 0.7553 0.888 95.430% 0.8574 0.939
K-NN 91.500% 0.7561 0.911 92.405% 0.7801 0.921

Android Labeled-LDA topic). For the same reason the fourth pair is recog-
nized as a duplicate, while the reports in this pair are not duplicates of each
other. In the second pair, the bug reports are categorically different and also
textually not similar in terms of the Android Labeled-LDA topics, but they
are wrongly classified as non-duplicates by the machine learner. In the third
pair, the reports are categorically similar but they are correctly recognized as
non-duplicates as they are about two different Android Labeled-LDA topics.

Figure 4 shows the ROC curves for results of applying K-NN algorithm on
various “all-features” tables (such as Table 7) for the Android bug repository.
It also displays the ROC curve for the “textual categorical” table (such as
Table 5). The figure shows that the Labeled-LDA context outweighs the other

28 Abram Hindle et al.

Table 12 Statistical measures resulted by the experiments on Eclipse bug repository in-
cluding textual, categorical, and contextual

Context Algorithm Textual, Categorical, & Contextual Contextual only
Accuracy Kappa AUC Accuracy Kappa AUC

0-R 80.000% 0.0000 0.500
Logistic

No Regression 96.610% 0.8922 0.989
Context Naive Bayes 96.500% 0.8896 0.985

C4.5 96.650% 0.8947 0.975
K-NN 95.270% 0.8522 0.915
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

Architecture Regression 96.685% 0.8947 0.989 82.100% 0.2164 0.718
Naive Bayes 96.125% 0.8786 0.983 77.660% 0.2157 0.648
C4.5 96.700% 0.8961 0.966 83.720% 0.3462 0.700
K-NN 94.395% 0.8240 0.917 80.910% 0.3852 0.714
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

NFR Regression 96.680% 0.8943 0.989 79.960% 0.0337 0.665
Naive Bayes 96.350% 0.8848 0.980 79.960% 0.0269 0.643
C4.5 96.585% 0.893 0.955 83.130% 0.3495 0.705
K-NN 93.725% 0.8043 0.904 78.010% 0.3619 0.699
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500

Random Logistic
English Regression 96.605% 0.8921 0.989 80.720% 0.0983 0.661
Words Naive Bayes 92.095% 0.7714 0.949 41.870% 0.0702 0.610

C4.5 96.660% 0.8954 0.964 83.120% 0.3132 0.681
K-NN 94.920% 0.8417 0.930 80.600% 0.3459 0.710
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

LDA Regression 96.750% 0.8968 0.990 86.215% 0.4716 0.854
Naive Bayes 94.710% 0.8382 0.972 78.765% 0.3208 0.722
C4.5 96.640% 0.8945 0.954 85.120% 0.5174 0.747
K-NN 94.225% 0.8222 0.919 84.070% 0.5376 0.792

ones. The “No context” curve shows the performance of the K-NN algorithm
using the data generated by Sun et al.’s measurements (only textual and cat-
egorical measurements), which show poor performance in comparison to the
other curves. Thus, adding extra features with or without Sun et al.’s features
improves bug-deduplication performance.

Figure 5 demonstrates the ROC curves for results of applying the C4.5
algorithm on the “all-features” tables for the Android bug repository. It also
indicates the performance of C4.5 on the “textual categorical” table. This
diagram shows a tangible gap between the performance of C4.5 using different
contextual data-sets and its performance without using any context.

Figure 6 displays the ROC curves extracted by applying K-NN on “all-
features” and “textual categorical” tables for the Eclipse bug repository. In
this diagram, the LDA context shows the highest improvement in performance.
Figure 7 depicts the same curves extracted by applying the Logistic Regression
algorithm. This diagram indicates a very slight improvement when applying
the LDA context.

Title Suppressed Due to Excessive Length 29

Table 13 Statistical measures resulted by the experiments on Mozilla bug repository in-
cluding textual, categorical, and contextual data

Context Algorithm Textual, Categorical, & Contextual Contextual only
Accuracy Kappa AUC Accuracy Kappa AUC

0-R 80.000% 0.0000 0.500
Logistic

No Regression 94.065% 0.8075 0.971
Context Naive Bayes 92.670% 0.7679 0.961

C4.5 94.085% 0.8114 0.943
K-NN 92.810% 0.7432 0.857
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

Architecture Regression 94.340% 0.8169 0.973 80.450% 0.0980 0.719
Naive Bayes 91.105% 0.7326 0.950 74.775% 0.1248 0.646
C4.5 94.470% 0.8247 0.938 84.985% 0.4656 0.750
K-NN 91.895% 0.7451 0.879 82.395% 0.4290 0.728
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

NFR Regression 94.210% 0.8133 0.973 79.825% 0.0136 0.637
Naive Bayes 92.650% 0.7690 0.956 80.145% 0.0380 0.658
C4.5 93.630% 0.7968 0.914 80.285% 0.1740 0.650
K-NN 88.260% 0.6343 0.818 73.465% 0.2263 0.621
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500

Random Logistic
English Regression 94.390% 0.8188 0.973 82.110% 0.1994 0.684
Words Naive Bayes 78.075% 0.4870 0.893 35.880% 0.0461 0.638

C4.5 94.170% 0.8151 0.941 82.635% 0.2829 0.640
K-NN 90.440% 0.7020 0.859 79.620% 0.3473 0.694
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

LDA Regression 94.775% 0.8318 0.975 84.280% 0.4049 0.823
Naive Bayes 91.265% 0.7331 0.947 78.855% 0.3333 0.753
C4.5 94.135% 0.8138 0.900 85.980% 0.5257 0.747
K-NN 89.505% 0.6796 0.849 83.415% 0.5133 0.775

Figure 8 displays the ROC curves extracted by applying C4.5 on “all-
features” and “textual categorical” tables for the Mozilla bug repository. As
indicated in this diagram, the LDA context shows the highest improvement.
Figure 9 reveals the same curves extracted by applying the K-NN algorithm.
As illustrated in this diagram, the highest improvement is achieved by the
architecture context.

Figure 10 displays the ROC curves extracted by by applying C4.5 on “all-
features” and “textual categorical” tables for the OpenOffice bug repository.
As this diagram shows, the highest performance is achieved by applying the
LDA context. Figure 11 reveals the same curves extracted by applying the
Logistic Regression algorithm. This diagram indicates a slight improvement
when applying the NFR context.

30 Abram Hindle et al.

Table 14 Statistical measures resulted by the experiments on OpenOffice bug repository
including textual, categorical, and contextual data

Context Algorithm Textual, Categorical, & Contextual Contextual only
Accuracy Kappa AUC Accuracy Kappa AUC

0-R 80.000% 0.0000 0.500
Logistic

No Regression 93.125% 0.7729 0.961
Context Naive Bayes 91.415% 0.6960 0.951

C4.5 93.210% 0.7789 0.932
K-NN 90.580% 0.7042 0.812
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

Architecture Regression 93.210% 0.7761 0.961 80.000% 0.0000 0.600
Naive Bayes 91.545% 0.7039 0.938 80.000% 0.0000 0.604
C4.5 92.975% 0.7734 0.920 79.995% 0.0565 0.573
K-NN 88.400% 0.6332 0.821 77.180% 0.1926 0.647
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

NFR Regression 93.670% 0.7925 0.966 80.010% 0.0011 0.624
Naive Bayes 91.470% 0.6988 0.947 80.000% 0.0000 0.604
C4.5 92.380% 0.7562 0.893 80.325% 0.1775 0.645
K-NN 84.105% 0.5130 0.762 73.605% 0.2114 0.611
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500

Random Logistic
English Regression 93.275% 0.7803 0.961 80.550% 0.1045 0.631
Words Naive Bayes 83.460% 0.5669 0.880 31.860% 0.0296 0.591

C4.5 93.120% 0.7762 0.935 81.215% 0.1657 0.586
K-NN 88.015% 0.6266 0.809 78.605% 0.2808 0.692
0-R 80.000% 0.0000 0.500 80.000% 0.0000 0.500
Logistic

LDA Regression 93.385% 0.7825 0.964 81.030% 0.1435 0.699
Naive Bayes 89.090% 0.6402 0.911 74.870% 0.1551 0.630
C4.5 92.505% 0.7618 0.890 79.350% 0.2502 0.654
K-NN 84.130% 0.5111 0.760 77.935% 0.3507 0.688

Table 15 Examples of predictions made by K-NN algorithm for Android bug repository
including textual, categorical, and Labeled-LDA context’s data

Pair Title Comp. Prio. Type Vers. Act. Pred.

1
Bluetooth does not work with Voice Dialer Device Med Def.

dup dup
Need the ability to use voice dial over bluetooth Med Def.

2
support for Indian Regional Languages... Framework Med Enh.

dup non
Indic fonts render without correctly reordering.. GfxMedia Med Def.

3
Bluetooth Phonebook Access Profile ... Med Def. 2.2

non non
[ICS] Question of Google Maps’ location pointer Med Def.

4
enhanced low-level Bluetooth support Device Med Enh.

non dup
Bluetooth DUN/PAN Tethering support Device Med Enh.

5.2 Discussion of Findings

The results of our experimentation indicate that the contextual features im-
prove the identification of duplicate bug reports, in some cases by a remark-
able margin. Hence, we have established that the contextual information can

Title Suppressed Due to Excessive Length 31

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

No context
Architecture
NFR
Random English words
LDA
Labeled−LDA
Base line

No context

Base line

Labeled−LDA
LDA

Random English words
NFR

Architecture

Fig. 4 ROC curves of results from applying K-NN algorithm on Android reports.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

No context
Architecture
NFR
Random English words
LDA
Labeled−LDA
Base line

Architecture

NFR

Random English words

LDA
Labeled−LDA

Base line

No context

Fig. 5 ROC curves of results from applying C4.5 algorithm on Android reports.

be used to recognize duplicate bug reports. But, our experiments demonstrate
that there is a notable difference between the performance of our methods in
the Android and the other bug repositories. We believe that this difference is
due to an important difference in the structure of these bug repositories. As
indicated in Figure 1, there is a considerably large bucket of duplicate reports
in the Android bug repository (including 188 duplicate reports). We believe
that the pattern of association between contextual features of the duplicate
bug reports in the same bucket is what the machine-learners are leveraging
to improve performance. Also, based on the fact that larger buckets provide
more pairs marked as “dup”, they provide more training data for the classifiers.
Consequently, duplicate bug reports pertaining to the large buckets are easily

32 Abram Hindle et al.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
P

o
s
it
iv

e
R

a
te

False Positive Rate

No context

Architecture

NFR

Random English words

LDA

Base line

No context
NFR

Architecture
Random English words

LDA

Base line

Fig. 6 ROC curves of results from applying K-NN algorithm on Eclipse reports.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

o
s
it
iv

e
R

a
te

No context

Architecture

NFR

Random English words

LDA

Base line

Base line

LDA

No context
ArchitectureNFRRandom English words

Fig. 7 ROC curves of results from applying logistic regression algorithm on Eclipse reports.

recognized by the machine learners when they are provided with contextual
features.

To examine this idea, we removed all the bug reports belonging to the
largest bucket from Android bug repository and created a repository called
Android modified. Then, we conducted an experiment to trace the predic-
tions made by the machine learners for the data-sets including only the LDA
contextual features. In this experiment, the machine learner with the highest
prediction performance is taken into consideration for each bug repository.
We investigated some of the false negative predictions, i.e., the “dup” in-
stances not recognized by the machine learner. Also, we divided the buckets
of bug reports into two groups: the large buckets (buckets including 10 or
more duplicate bug reports) and the small buckets (the buckets including

Title Suppressed Due to Excessive Length 33

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
P

o
s
it
iv

e
R

a
te

False Positive Rate

No context

Architecture

NFR

Random English words

LDA

Base line

Random English words
NFR

No context
LDA Architecture

Fig. 8 ROC curves of results from applying C4.5 algorithm on Mozilla reports.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

o
s
it
iv

e
R

a
te

No context

Architecture

NFR

Random English words

LDA

Base line

NFR

No context

Architecture

LDA Random English words

Base line

Fig. 9 ROC curves of results from applying K-NN algorithm on Mozilla reports.

less than 10 duplicate reports). We found that 90% of the false negatives for
the android modified are from the small buckets while only 37% of all the
pairs marked as “dup” are from these buckets. For the Eclipse repository, 88%
of the false negatives belong to the small buckets while 75% of the “dup”s
are from these buckets. The same experiment on the Mozilla repository in-
dicated that 81% of the false negatives belong to small buckets while only
53% of the “dup”s are related to these buckets. Finally, for the OpenOffice
bug repository, 82% of the false negatives belong to the small buckets while
68% of the “dup” instances are from these buckets. These results constitute
evidence that machine learners can identify the duplicate reports belonging
to the larger buckets more effectively in comparison to the duplicate reports
from small buckets when applying contextual features. As a result, we realized

34 Abram Hindle et al.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
P

o
s
it
iv

e
R

a
te

False Positive Rate

No context

Architecture

NFR

Random English words

LDA

Base line

LDA
No context Architecture

NFR
Random English words

Base line

Fig. 10 ROC curves of results from applying C4.5 algorithm on OpenOffice reports.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
P

o
s
it
iv

e
R

a
te

False Positive Rate

No context

Architecture

NFR

Random English words

LDA

Base line

Base line

LDA
Random English words

NFR Architecture
No context

Fig. 11 ROC curves of results from applying logistic regression algorithm on OpenOffice
reports.

that classifiers identify the duplicate records belonging to large buckets more
effectively than the duplicates from small buckets (like buckets of size 2 that
are very common as demonstrated in Figure 1).

5.3 Effectiveness of Number of Features

As mentioned previously, each contextual data-set adds some new contextual
features to each bug report. The number of these contextual features is equal
to the number of word lists included in the contextual data-set. In this Section,
we analyze the influence of the number of added features (to the bug reports) to
the bug-deduplication process. Here we answer the following research question:

Title Suppressed Due to Excessive Length 35

Does adding more features (even junk) to the bug reports improve the accuracy
of duplicate bug report detection regardless of their context?

Figures 12, 14, 16, and 18 show the relationship between the kappa
measure and the number of added features to Android, Eclipse, Mozilla, and
OpenOffice bug reports respectively. Each box-plot in these figures represents
the distribution of kappa values for each context reported by the machine
learning classifiers (0-R, Naive Bayes, Logistic Regression, K-NN, and C4.5).
In Figure 12, there is a little difference between the performance of Random
English Word context and NFR context, but NFR adds 20 fewer features.
Consequently, context is more important than feature count. Figures 14, 16,
and 18 imply that although the English Random Words includes the maximum
number of features, it resulted in the weakest performance among the other
contexts. This result reveals that the number of added features is not effective
in improving the detection of duplicate bug reports. And, it is indeed the
context that impacts the prediction of duplicates.

The correlations between the number of added features and AUC are dis-
played in Figures 13, 15, 17, and 19. The AUC measure for Naive Bayes, Lo-
gistic Regression, K-NN, and C4.5 is demonstrated in these figures. Figure 13
shows the relation between the number of added features and AUC by fitting
a linear regression function (the slope of this line is 0.0012). The measured
correlation value for this figure is 0.46 which does not represent a high posi-
tive correlation. For Figures 15, 17, and 19 the slopes are −0.0002, −0.0006,
and −0.0008 respectively which imply a small correlation between the number
of added features and the efficiency of detecting duplicate reports. Taking into
account the points mentioned above, it is evident that simply adding more
features can not improve the performance of duplicate bug report detection.

5.4 Evaluating the List of Candidates

In this Section, we discuss the impact of context on filtering the bug reports
and providing a list of candidate duplicate reports to triagers, based on the
reported results of the MAP measure. This bug-report retrieval approach is
different from the method applied in our recent work [2], in which the machine-
learning classifiers are used to decide whether two bug reports are duplicates
or not. Here, we aim to address the following research question: Could the
software context improve the quality of the list of candidate duplicates to an
incoming bug report?

Tables 16, 17, 18, and 19 report the MAP results for the Android, Eclipse,
Mozilla, and OpenOffice bug reports respectively. In each one of these tables,
three different types of similarity criterion functions are assessed exploiting
the MAP measure. As addressed earlier in Section 4.5.2, these criteria are
cosine similarity based, Euclidean distance based, and logistic regression based
metrics.

Some of the conducted experiments exclusively make use of specific con-
textual information to retrieve the duplicate reports. Some other ones exploit

36 Abram Hindle et al.

00 05 06 26 35 72

0.
0

0.
2

0.
4

0.
6

Number of added features

K
ap
pa

Fig. 12 Kappa versus number of added features for the Android bug repository. The x axis
shows the number of features each context adds to the bug reports (which is equal to the
number of word lists of the contextual data). The contexts from left to right are no context,
architecture, NFR, Random words, LDA, and Labeled-LDA.

0 10 20 30 40 50 60 70

0.
70

0.
75

0.
80

0.
85

0.
90

Number of added contextual features

A
U
C

Fig. 13 AUC versus number of added features for the Android bug repository. The x axis
shows the number of features each context adds to the bug reports. The contexts from left
to right are no context, architecture, NFR, Random words, LDA, and Labeled-LDA.

both the REP function and the contextual information. Moreover, in some of

Title Suppressed Due to Excessive Length 37

00 03 06 20 26

0.
0

0.
2

0.
4

0.
6

0.
8

Number of added features

K
ap
pa

Fig. 14 Kappa versus number of added features for the Eclipse bug repository. The x axis
shows the number of features each context adds to the bug reports (which is equal to the
number of word lists of the contextual data). The contexts from left to right are no context,
architecture, NFR, Random words, and LDA.

0 5 10 15 20 25

0.
92

0.
94

0.
96

0.
98

Number of added contextual features

A
U
C

Fig. 15 AUC versus number of added features for the Eclipse bug repository. The x axis
shows the number of the features each context adds to the bug reports. The contexts from
left to right are no context, architecture, NFR, Random words, and LDA.

the experiments, all the contextual information (except the Random English

38 Abram Hindle et al.

00 05 06 20 26

0.
0

0.
2

0.
4

0.
6

0.
8

Number of added features

K
ap
pa

Fig. 16 Kappa versus number of added features for the Mozilla bug repository. The x axis
shows the number of features each context adds to the bug reports (which is equal to the
number of word lists of the contextual data). The contexts from left to right are no context,
architecture, NFR, Random words, and LDA.

words one) are applied without utilizing the REP function (all without REP)
and with exploiting the REP function (all). The highest MAP value achieved
for each repository is presented in bold in the tables.

As indicated in Tables 16, 17, 18, and 19, applying the logistic-regression
based technique could make considerable enhancement in identifying duplicate
reports. For instance, when the similarity criterion exclusively exploits the
REP function, the logistic regression based approach provides helpful coeffi-
cients that boost the MAP value 9.5%, 7.8%, 9.1%, and 8.3% for the Android,
Eclipse, Mozilla, and OpenOffice bug repositories respectively in comparison
to the case of normal REP being applied as the similarity criterion. The boost
in REP via logistic regression is probably similar to tuning REP as prescribed
by Sun et al. [30]. Regardless in the case of MAP context’s benefit is not al-
ways clear, but the re-weighting of REP with a logistic regression function is
clearly beneficial as it outperforms plain REP in every case.

5.5 Discussion of Context

According to the experiments we discussed above, the added contextual data
did not improve the duplicate report retrieval performance significantly and
consistently. As reported in the tables, two of the repositories (Android and
OpenOffice) showed that the combination of REP and contextual-similarity

Title Suppressed Due to Excessive Length 39

0 5 10 15 20 25

0.
85

0.
90

0.
95

Number of added contextual features

A
U
C

Fig. 17 AUC versus number of added features for the Mozilla bug repository. The x axis
shows the number of the features each context adds to the bug reports. The contexts from
left to right are no context, architecture, NFR, Random words, and LDA.

measure is able to improve the performance of duplicate bug-report detection
by up to 0.7%. However, two other repositories (Mozilla and Eclipse) did not
show any improvement after applying the software context. In these cases
REP did not do better than REP weighted by logistic regression. This implies
that there is much potential for tuning. Consequently, we could not elevate the
quality of the list of candidate duplicates greatly by considering the contextual
data for some of the projects.

The value of the contextual approach is that a small amount of effort can
often improve results or be combined with existing IR results. In Section 3.1
many of the architectural datasets took 2 person-hours or less to construct.
The most expensive data-set was the fully-supervised labelled-LDA dataset
taking 60 person-hours. Excluding labelled LDA, the effort is negligible. Often
this effort is only a one-time cost that can be reused across potentially multiple
systems.

When building contexts it seems one should try to be as close to the domain
of the project as possible to increase the possibility of relevant matches. Sparse
contexts can lead to sparse features that are not as reliable for deduplication.
If features are rare or often missing, learners might ignore those features.

Features whose 3rd quartile threshold was at 0.0, that is features who are
0 for more than 75% of bug reports tended not to do perform well, except for
LDA. Thus our recommendation is that a balance should be struck against
the number of features and the size of the contexts. Contexts that do not
intersect with the available bug reports will not be valuable features. The

40 Abram Hindle et al.

00 04 06 20 26

0.
0

0.
2

0.
4

0.
6

0.
8

Number of added features

K
ap
pa

Fig. 18 Kappa versus number of added features for the OpenOffice bug repository. The
x axis shows the number of features each context adds to the bug reports (which is equal
to the number of word lists of the contextual data). The contexts from left to right are no
context, architecture, NFR, Random words, and LDA.

0 5 10 15 20 25

0.
80

0.
85

0.
90

0.
95

Number of added contextual features

A
U
C

Fig. 19 AUC versus number of added features for the OpenOffice bug repository. The x
axis shows the number of the features each context adds to the bug reports. The contexts
from left to right are no context, architecture, NFR, Random words, and LDA.

intent of contexts is to allow learners and functions to observe similarity and
discriminate between differences.

Title Suppressed Due to Excessive Length 41

Table 16 MAP results for the list of candidates of Android bug repository

Criterion MAP
REP 0.410
Architecture context 0.020
NFR context 0.200
LDA context 0.293
LabeledLDA 0.298
REP and Architecture context (cosine similarity) 0.376
REP and NFR context (cosine similarity) 0.301
REP and LDA context (cosine similarity) 0.324
REP and LabeledLDA context (cosine similarity) 0.330
REP and Architecture context (Euclidean distance similarity) 0.383
REP and NFR context (Euclidean distance similarity) 0.414
REP and LDA context (Euclidean distance similarity) 0.318
REP and LabeledLDA context (Euclidean distance similarity) 0.412
REP (Logistic regression based) 0.505
all (Logistic regression based) 0.459
all without REP (Logistic regression based) 0.097
REP and architecture cosine (Logistic regression based) 0.499
REP and LDA cosine (Logistic regression based) 0.513
REP and Random English words cosine (Logistic regression based) 0.479
REP and NFR cosine (Logistic regression based) 0.468
REP and Labeled-LDA cosine (Logistic regression based) 0.501
Architecture context (Logistic regression based) 0.042
LDA context (Logistic regression based) 0.365
Random English words context (Logistic regression based) 0.101
NFR context (Logistic regression based) 0.003
Labeled-LDA context (Logistic regression based) 0.374

5.6 Threats to Validity

Construct validity is threatened by our word-lists, their construction process
and the degree to which their content actually represents “context” or just
important tokens. Our measurements rely on the status of bug reports in some
real-world bug-tracking systems that have a huge number of bug reports not
processed by the triagers (have the status value of “New” or “Unconfirmed”).
And, there may be many duplicate bug reports among them. Also, for the
Android, Eclipse, Mozilla, and OpenOffice bug repositories we exploited in
this study, there are only 2%, 6%, 8%, and 9% of the bug reports marked as
“duplicate”. There are likely many unlabeled duplicate bug reports.

We address internal validity by replicating past work (Sun et al.) but also
by evaluating both on true negatives (non-duplicates) and true positives (du-
plicates), where as Sun et al.’s methodology only tested for recommendations
on true positives. Furthermore internal validity is bolstered by searching for
rival explanations of increased performance by investigating the effect of extra
features. K-NN might not be appropriate to apply as the feature vectors are
not necessarily comparable as distances.

External validity is threatened by the fact that some particular character-
istics of a bug repository might lead to our experimental results. To reduce

42 Abram Hindle et al.

Table 17 MAP results for the list of candidates of Eclipse bug repository

Criterion MAP
REP 0.379
Architecture context 0.008
NFR context 0.069
LDA context 0.072
REP and Architecture context (cosine similarity) 0.306
REP and NFR context (cosine similarity) 0.280
REP and LDA context (cosine similarity) 0.209
REP and Architecture context (Euclidean distance similarity) 0.367
REP and NFR context (Euclidean distance similarity) 0.372
REP and LDA context (Euclidean distance similarity) 0.245
REP (Logistic regression based) 0.457
all (Logistic regression based) 0.453
all without REP (Logistic regression based) 0.135
REP and architecture cosine (Logistic regression based) 0.455
REP and LDA cosine (Logistic regression based) 0.455
REP and Random English words cosine (Logistic regression based) 0.455
REP and NFR cosine (Logistic regression based) 0.456
Architecture context (Logistic regression based) 0.021
LDA context (Logistic regression based) 0.095
Random English words context (Logistic regression based) 0.037
NFR context (Logistic regression based) 0.077

Table 18 MAP results for the list of candidates of Mozilla bug repository

Criterion MAP
REP 0.208
Architecture context 0.005
NFR context 0.008
LDA context 0.018
REP and Architecture context (cosine similarity) 0.208
REP and NFR context (cosine similarity) 0.207
REP and LDA context (cosine similarity) 0.208
REP and Architecture context (Euclidean distance similarity) 0.169
REP and NFR context (Euclidean distance similarity) 0.203
REP and LDA context (Euclidean distance similarity) 0.089
REP (Logistic regression based) 0.299
all (Logistic regression based) 0.294
all without REP (Logistic regression based) 0.042
REP and architecture cosine (Logistic regression based) 0.299
REP and LDA cosine (Logistic regression based) 0.296
REP and Random English words cosine (Logistic regression based) 0.299
REP and NFR cosine (Logistic regression based) 0.299
Architecture context (Logistic regression based) 0.013
LDA context (Logistic regression based) 0.029
Random English words context (Logistic regression based) 0.015
NFR context (Logistic regression based) 0.013

this risk, we have used four large bug repositories related to different software
projects in our experiments.

Title Suppressed Due to Excessive Length 43

Table 19 MAP results for the list of candidates of OpenOffice bug repository

Criterion MAP
REP 0.238
Architecture context 0.003
NFR context 0.041
LDA context 0.038
REP and Architecture context (cosine similarity) 0.180
REP and NFR context (cosine similarity) 0.136
REP and LDA context (cosine similarity) 0.105
REP and Architecture context (Euclidean distance similarity) 0.234
REP and NFR context (Euclidean distance similarity) 0.236
REP and LDA context (Euclidean distance similarity) 0.237
REP (Logistic regression based) 0.321
all (Logistic regression based) 0.322
all without REP (Logistic regression based) 0.078
REP and architecture cosine (Logistic regression based) 0.321
REP and LDA cosine (Logistic regression based) 0.321
REP and Random English words cosine (Logistic regression based) 0.318
REP and NFR cosine (Logistic regression based) 0.322
Architecture context (Logistic regression based) 0.010
LDA context (Logistic regression based) 0.051
Random English words context (Logistic regression based) 0.021
NFR context (Logistic regression based) 0.052

6 Conclusions and Future Work

In this study, we have taken advantage of software contexts in addition to
the textual and categorical similarity measurements to address the ambiguity
of synonymous software-related words within bug reports written by users,
who have different vocabularies. We assume that bug reports are likely to
refer to a non-functional requirement or some functionalities related to some
architectural components in the system. Thus, we have exploited the software
contexts of software non-functional requirements, software architecture, and
software topics extracted by LDA/Labeled LDA.

We replicated Sun et al.’s [30] method of textual and categorical compari-
son and extended it by adding contextual comparison, through the addition of
contextual features to the bug reports exploiting the above mentioned software
contexts. These features are taken into consideration in addition to the basic
properties (description, title, type, component, version, priority, and product)
of the bug reports while comparing the reports and measuring their similari-
ties. We have conducted our experiments on the Android, Eclipse, Mozilla, and
OpenOffice bug repositories. As a result, this contextual approach improved
the accuracy of bug report deduplication by 0.1%-11.5% over Sun et al.’s [30]
method.

Furthermore, we improved the quality of the list of candidate duplicates for
an incoming bug report by applying the REP function [30], our contextual mea-
sures, and the logistic-regression classifier’s probabilistic model. Consequently,
we achieved 7.8%-9.5% improvement in Mean Average Precision (MAP) mea-

44 Abram Hindle et al.

sure over Sun et al.’s [30] approach. Adding software context resulted in an
improvement of the quality of the list of candidate duplicates for Android
and OpenOffice bug repositories by up to 0.7%, but it did not improve the
candidate-duplicate lists for the Eclipse and Mozilla repositories.

Comparing our method against the work of Sun et al. is possible because
our experiment methodologies are quite “parallel”. Unfortunately, however,
in the absence of openly shared data sets and algorithm implementations an
accurate comparison of all relevant duplicate-bug detection and retrieval algo-
rithms is not practical. Nevertheless, our method favorably compares to the
reported performance of most related research studies, as it improves on REP
by adding context and with logistic REP.

Our experiments demonstrate that adding software contextual features to
the bug reports can improve the performance of bug-report deduplication while
retrieving the duplicates by the machine-learning classifiers. We feel that con-
textual features disambiguate bug reports and thus by adding the context,
the classifiers can decide more efficiently if two bug reports are duplicates or
not. On the other hand, adding the contextual features could not enhance the
quality of the list of candidate duplicates for the majority of software projects.

This document describes one scenario where context matters: bug-deduplication.
The value of software-development context was also demonstrated in prior
work [16]. This study provides more evidence that we can achieve gains in bug-
deduplication performance by including contextual features, prior information,
into our software engineering related IR tasks, whether it is bug deduplication
or LDA topic labelling and tagging. We hope this work motivates researchers
to build more corpora of software concepts in order to improve automated and
semi-automated software engineering tasks.

In the future, we plan to implement our method as an embedded tool in an
issue-tracker to empirically investigate the role that this method can actually
play in assisting the triagers and save their time and effort when looking for
the duplicates of an incoming bug report. Future plans include evaluating
what makes a good context. This way, we can take advantage of their helpful
feedback to enhance the effectiveness and usability of our approach. As we
have shown that context matters, we suspect that more modern, state-of-the-
art bug deduplication techniques such as those by Nguyen et al. [25] can be
further improved by integrating contextual features.

7 Acknowledgments

We would like to thank Sun et al. [30] for sharing their Eclipse, OpenOffice,
and Mozilla datasets with us. Abram Hindle and Eleni Stroulia were supported
by NSERC Discovery Grants.

Title Suppressed Due to Excessive Length 45

References

1. Karan Aggarwal, Tanner Rutgers, Finbarr Timbers, Abram Hindle, Russ
Greiner, and Eleni Stroulia. Detecting duplicate bug reports with software
engineering domain knowledge. In Yann-Gaël Guéhéneuc, Bram Adams,
and Alexander Serebrenik, editors, 22nd IEEE International Conference
on Software Analysis, Evolution, and Reengineering, SANER 2015, Mon-
treal, QC, Canada, March 2-6, 2015, pages 211–220. IEEE, 2015.

2. A. Alipour, A. Hindle, and E. Stroulia. A contextual approach towards
more accurate duplicate bug report detection. In Proceedings of the Tenth
International Workshop on Mining Software Repositories, pages 183–192.
IEEE Press, 2013.

3. J. Anvik, L. Hiew, and G. C. Murphy. Coping with an open bug reposi-
tory. In Proceedings of the 2005 OOPSLA workshop on Eclipse technology
eXchange, pages 35–39. ACM, 2005.

4. J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In
Proceedings of the 28th international conference on Software engineering,
pages 361–370. ACM, 2006.

5. N. Ayewah and W. Pugh. The google findbugs fixit. In Proceedings of
the 19th international symposium on Software testing and analysis, pages
241–252. ACM, 2010.

6. N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate bug
reports considered harmful really? In Software Maintenance, 2008. ICSM
2008. IEEE International Conference on, pages 337–345. IEEE, 2008.

7. Amy Brown and Greg Wilson. The Architecture Of Open Source Applica-
tions. lulu.com, June 2011.

8. Chris Buckley and Ellen M. Voorhees. Evaluating evaluation measure
stability. In Proceedings of the 23rd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
’00, pages 33–40, New York, NY, USA, 2000. ACM.

9. Android Community. Android Technical Information. http://source.

android.com/tech/security/, 2013.
10. NeilA. Ernst and John Mylopoulos. On the perception of software quality

requirements during the project lifecycle. In Roel Wieringa and Anne Pers-
son, editors, Requirements Engineering: Foundation for Software Qual-
ity, volume 6182 of Lecture Notes in Computer Science, pages 143–157.
Springer Berlin Heidelberg, 2010.

11. Alan Grosskurth and Michael W Godfrey. Architecture and evolution of
the modern web browser. Preprint submitted to Elsevier Science, 2006.

12. V. Guana, F. Rocha, A. Hindle, and E. Stroulia. Do the stars align?
Multidimensional analysis of Android’s layered architecture. In Mining
Software Repositories (MSR), 2012 9th IEEE Working Conference on,
pages 124–127. IEEE, 2012.

13. D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia. Un-
derstanding android fragmentation with topic analysis of vendor-specific
bugs. In Reverse Engineering (WCRE), 2012 19th Working Conference

46 Abram Hindle et al.

on, pages 83–92. IEEE, 2012.
14. S. Hangal and M. S. Lam. Tracking down software bugs using automatic

anomaly detection. In Proceedings of the 24th international conference on
Software engineering, pages 291–301. ACM, 2002.

15. L. Hiew. Assisted detection of duplicate bug reports. PhD thesis, The
University Of British Columbia, 2006.

16. A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos. Automated
topic naming to support cross-project analysis of software maintenance ac-
tivities. In Proceedings of the 8th Working Conference on Mining Software
Repositories, pages 163–172. ACM, 2011.

17. G. Holmes, A. Donkin, and I. H. Witten. Weka: A machine learning
workbench. In Intelligent Information Systems, 1994. Proceedings of the
1994 Second Australian and New Zealand Conference on, pages 357–361.
IEEE, 1994.

18. N. Jalbert and W. Weimer. Automated duplicate detection for bug track-
ing systems. In Dependable Systems and Networks With FTCS and DCC,
2008. DSN 2008. IEEE International Conference on, pages 52–61. IEEE,
2008.

19. Ahmad Kayed, Nael Hirzalla, Ahmad A Samhan, and Mohammed Alfay-
oumi. Towards an ontology for software product quality attributes. In
Internet and Web Applications and Services, 2009. ICIW’09. Fourth In-
ternational Conference on, pages 200–204. IEEE, 2009.

20. J. Langford, L. Li, and A. Strehl. Vowpal wabbit online learning project,
2007.

21. Sun Microsystems. The openoffice.org source project: Techni-
cal overview. http://www.immagic.com/eLibrary/ARCHIVES/GENERAL/

SUN/OPENOFCT.pdf, 2000.
22. Maria Carolina Monard and Gustavo EAPA Batista. Learning with skewed

class distrihutions. Advances in Logic, Artificial Intelligence, and Robotics:
LAPTEC 2002, 85:173, 2002.

23. N. K. Nagwani and P. Singh. Weight similarity measurement model based,
object oriented approach for bug databases mining to detect similar and
duplicate bugs. In Proceedings of the International Conference on Ad-
vances in Computing, Communication and Control, pages 202–207. ACM,
2009.

24. T. Nakashima, M. Oyama, H. Hisada, and N. Ishii. Analysis of soft-
ware bug causes and its prevention. Information and Software Technology,
41(15):1059–1068, 1999.

25. A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun. Duplicate
bug report detection with a combination of information retrieval and topic
modeling. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pages 70–79. ACM, 2012.

26. D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled LDA:
A supervised topic model for credit attribution in multi-labeled corpora.
In Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing: Volume 1-Volume 1, pages 248–256. Association for

Title Suppressed Due to Excessive Length 47

Computational Linguistics, 2009.
27. Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-

Beaulieu, Mike Gatford, et al. Okapi at trec-3. NIST SPECIAL PUBLI-
CATION SP, pages 109–109, 1995.

28. P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate
defect reports using natural language processing. In Software Engineering,
2007. ICSE 2007. 29th International Conference on, pages 499–510. IEEE,
2007.

29. N. Serrano and I. Ciordia. Bugzilla, ITracker, and other bug trackers.
Software, IEEE, 22(2):11–13, 2005.

30. C. Sun, D. Lo, S. C. Khoo, and J. Jiang. Towards more accurate retrieval
of duplicate bug reports. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, pages 253–
262. IEEE Computer Society, 2011.

31. C. Sun, D. Lo, X. Wang, J. Jiang, and S. C. Khoo. A discriminative model
approach for accurate duplicate bug report retrieval. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1, pages 45–54. ACM, 2010.

32. A. Sureka and P. Jalote. Detecting duplicate bug report using character n-
gram-based features. In Software Engineering Conference (APSEC), 2010
17th Asia Pacific, pages 366–374. IEEE, 2010.

33. Jason Van Hulse, Taghi M Khoshgoftaar, and Amri Napolitano. Exper-
imental perspectives on learning from imbalanced data. In Proceedings
of the 24th international conference on Machine learning, pages 935–942.
ACM, 2007.

34. Byron C Wallace and Issa J Dahabreh. Class probability estimates are
unreliable for imbalanced data (and how to fix them). In ICDM, pages
695–704, 2012.

35. Byron C Wallace, Kevin Small, Carla E Brodley, and Thomas A Trikali-
nos. Class imbalance, redux. In Data Mining (ICDM), 2011 IEEE 11th
International Conference on, pages 754–763. IEEE, 2011.

36. X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to detecting
duplicate bug reports using natural language and execution information.
In Proceedings of the 30th international conference on Software engineer-
ing, pages 461–470. ACM, 2008.

37. Hugo Zaragoza, Nick Craswell, Michael J Taylor, Suchi Saria, and
Stephen E Robertson. Microsoft cambridge at trec 13: Web and hard
tracks. In TREC, volume 4, pages 1–1. Citeseer, 2004.

