

Network Design and Availability Analysis for Large-Scale Mesh Networks

by

Wenjing Wang

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Engineering Management

Department of Mechanical Engineering
University of Alberta

© Wenjing Wang, 2018

ii

ABSTRACT

Communication systems have cemented their position in many fields of our daily

lives, such as governance, banking, correspondence, and traffic. Such systems often take

the form of mesh networks in their topology. With ever-increasing data transmission rate

in mesh networks and our growing reliance on continued network services, network

availability has become increasingly important than ever before. Since survivable mesh

networks are only designed to be 100% restorable under all single-failure scenarios, there

is still chances for current networks to be failed, which usually leads to huge data rand

revenue loss. In order to improve network availability while maintaining desirable

investment cost of network design, the aim of this thesis is investigation on network design

strategies and availability optimization algorithms based on the condition that the network

has been designed to be fully restorable to all potential single failures.

The main contributions of this thesis comprise five parts. First, we provide thorough

analysis of existing availability analysis methods for span-restorable networks. Based on

this, we propose a more accurate method to evaluate network overall availability for span-

restorable mesh networks. Moreover, comparisons between the existing and the new

analysis methods are made. Second, we perform detailed investigation on traditional

single-flow integer linear programming (ILP) and multi-flow ILP models of shared backup

path protection mesh networks, and propose a new multi-flow ILP model. Experiments

show that the new model solves 51% faster in terms of runtime than the traditional multi-

flow ILP model. Meanwhile, we present an algorithm to analyze network overall

availability for shared backup path protection networks. Results show that the new ILP

iii

model works better in terms of overall availability in higher connected networks. Third,

we present an algorithm to optimize availability for shared backup path protection

networks. The core of this algorithm is an ILP model that is used to minimize the total lost

flow caused by the second failure in a specified dual-failure scenario. The relationship

between network overall availability and spare capacity is studied based on this

optimization algorithm. Fourth, similar to the shared backup path protection networks, we

also propose an algorithm to optimize network overall availability for path-restorable

networks. At the meantime, the relationship between network overall availability and spare

capacity is investigated. Fifth, we compare performance of the span-restorable, path-

restorable, and shared backup path protection networks in terms of network overall

availability. Results show that span-restorable networks have the highest overall network

availability among the three above-mentioned types of networks, and that path-restorable

networks have a slight advantage over shared backup path protection networks on average.

The theoretical analysis of this thesis provide insights in some degree in the

understanding of mesh networks, and the algorithms proposed in this thesis is enlightening

in the filed of network design and availability analysis. Implementation of the work in this

thesis can help to design mesh networks faster with reasonable investment costs.

iv

To my father, Zengfu Wang, my mother, Xixia Zong, my husband, Zhen Xu, my daughter,

Arabella Xu, and my brother, Dongxiao Wang.

v

Acknowledgments

Seeing my name on the title page of this thesis, many memories from the past have been

conjured, with lots of beautiful faces came into view. If it weren’t for these remarkable

people I have met, the work herein would not have been possible.

First of all, I would like to give my sincere thanks to China Scholarship Council (CSC)

for their generous financial support. Without their help, I could not have had the

opportunity to pursuit my Ph.D. degree in Canada.

The first person I would like to thank is my supervisor Dr. John Doucette. He is so

knowledgeable, patient, and intelligent that he is always full of genius ideas. If it weren’t

for his guidance and encouragement, it would not have been possible for me to complete

my Ph.D. program. I know even so many thanks still cannot repay what I owe him. I cherish

our professor-student relationship as well as friendship forever.

The next person that I owe a lot is Dr. Yongsheng Ma. During the first two years of my

PhD program, he had always believed in me and trusted my capability. Moreover, he

assigned me important tasks with considerable payment. He is a nice, smart, resourceful,

and broad-minded man full of energy, wisdom, and experience. I believe his guidance will

be helpful in my future life and professional development.

I am also grateful to other doctors in my PhD candidacy exam and defense exam: Dr.

Christopher Dennison, Dr. Donald Raboud, Dr. Hao Liang, Dr. Jacek Rak, Dr. Ming Zuo,

Dr. Pedram Mousavi, and Dr. Zhigang Tian (alphabetical order). Thanks for their useful

and valuable comments on my thesis work.

Next, I would like to give thanks to my family. More than anyone, it is my dad, Zengfu

Wang, and my mum, Xixia Zong, to whom I owe the most and who I appreciate the most.

It is their selfless love that gives me the courage, confidence, and power to face every

challenge in my life. I will forever indebt to my husband, Zhen Xu, who has always stood

by my side and gave me support whenever I felt exhausted and frustrated. My special

thanks go to my daughter, Arabella Xu. Although she is just a baby girl right now, it is her

that lights up my sky and gives my life more meaning and love. Meanwhile, I would like

vi

to say thank you to my younger brother, Dongxiao Wang. Although one year younger than

me, he always finds a way to encourage and support me like an older brother.

In the following, I would like to express my millions of thanks to my friends who have

helped me in a variety of ways. First, I am thankful of Mustafa Babadagli for his help

regarding Gurobi basics, because it is him that recommends me to switch from CPLEX to

Gurobi (and the latter is much more powerful); I am thankful of Yali Wang, for her support

in my topic switching, because without her patient introduction to my current research area,

I would not have made up my mind to switch from my previous research group to my

current one; and I am also very thankful of Guanghan Bai, for his help regarding reliability

and availability basics. In addition, I would like to thank Cuiying Jian, Yanan Xie,

Zhengrong Cheng, Jikai Liu, Lei Li, and Xihui Liang for helping me in proofreading of my

publications, and Andres Castillo Lugo for his advice on my defense presentation.

Meanwhile, I thank the tutors from the Center for Writers office for their help in grammar

checkups of my thesis.

Last but not least, I would like to thank myself. Thank myself for choosing the right

group even when some people thought it was late and crazy; thank myself for persisting on

PhD program in the event of various difficulties; thank myself for working hard and never

gave up; and thank myself for being optimistic all the time. I always believe that time will

tell the truth and that time will let you know people around you and yourself. Always be

an upright, optimistic, and obliging person. Only in this way, will you find peace, success,

and happiness during your whole life!

vii

Table of Contents

Chapter 1 Introduction ... 1

1.1 Motivation and Goals .. 4

1.2 Thesis Outline .. 5

Chapter 2 Mathematical Basics and Tools .. 8

2.1 Graph Theory .. 8

2.1.1 Edges and Vertices ... 8

2.1.2 Paths ... 9

2.1.3 Graphs .. 11

2.2 Searching Algorithms .. 12

2.2.1 Depth First Search .. 12

2.2.2 Dijkstra’s Algorithm ... 14

2.2.3 K Shortest Path ... 16

2.3 Linear Programming .. 18

2.3.1 Mathematical Terminology .. 18

2.3.2 Integer Linear Programming .. 20

2.4 Programming and Solving Tools ... 21

Chapter 3 Background ... 22

3.1 Network Classifications... 22

3.2 Transport Networks ... 24

3.3 Mesh Network Survivability ... 25

3.3.1 Span Restoration ... 26

3.3.2 Shared Backup Path Protection .. 28

3.3.3 Path Restoration.. 30

3.4 Related Work ... 31

Chapter 4 Network Availability Basics ... 36

4.1 Unavailability of Spans ... 36

viii

4.2 Span-Oriented Mesh Networks ... 37

4.2.1 Dual-Failure Restorability .. 38

4.2.2 Dual-Failure Availability .. 39

4.3 Path-Oriented Mesh Networks .. 40

4.3.1 Dual-Failure Restorability .. 40

4.3.2 Dual-Failure Availability .. 41

Chapter 5 Experimental Networks and Setup ... 43

5.1 Concepts of Network Family... 43

5.2 Topologies of Master Networks .. 45

5.3 Assumptions .. 47

5.4 Experiment Setup .. 47

Chapter 6 Design and Availability Optimization of Span-Restorable Networks 49

6.1 Motivations and Goals ... 49

6.2 Specific Number of Lost Paths .. 52

6.3 New Dual-failure Service Path Unavailability .. 54

6.4 MNDF-ml Model .. 55

6.4.1 Assumptions ... 55

6.4.2 Notations .. 55

6.4.3 MNDF-sl Formulation .. 57

6.4.4 Assistant ILP Models ... 59

6.4.5 MNDF-ml Model Framework .. 60

6.5 MNDF-ml Model Implementation .. 61

6.5.1 Iterative MNDF-ml Approach .. 61

6.5.2 Implementation of Current Methods .. 63

6.5.3 Implementation of New Method... 66

6.6 Experiments ... 69

6.6.1 Experimental Networks .. 69

6.6.2 Experimental Results .. 71

ix

6.7 Conclusion ... 84

Chapter 7 Design and Availability Analysis of Shared Backup Path Protection Networks 86

7.1 Traditional SBPP ILP Models ... 86

7.1.1 Notation .. 86

7.1.2 Traditional SBPP Single-Flow ILP Model ... 88

7.1.3 Traditional SBPP Multi-Flow ILP Model .. 89

7.2 Motivations and Goals ... 91

7.3 New Multi-Flow SBPP ILP Design Model ... 92

7.3.1 Notation .. 92

7.3.2 ILP Formulation ... 92

7.4 Network Availability Analysis .. 94

7.5 Experiments and Discussion .. 99

7.5.1 Network Design Results ... 99

7.5.2 Availability Analysis .. 111

7.6 Conclusions ... 124

Chapter 8 Availability Optimization and Impact of Spare Capacity on Network Availability for

Shared Backup Path Protection Networks ... 126

8.1 Motivations and Goals ... 126

8.2 Availability Optimization Algorithm .. 127

8.2.1 Notations .. 127

8.2.2 Availability Optimization Algorithm ... 127

8.3 Minimizing Lost Working Lightpaths via ILP .. 131

8.3.1 ILP Notations.. 132

8.3.2 ILP Formulation ... 133

8.4 Experiments ... 134

8.4.1 Experimental Networks and Setup ... 134

8.4.2 Integration of Gurobi and Python ... 135

8.4.3 Validation of Proposed Algorithm ... 135

8.4.4 Complexity and Solution Time .. 138

x

8.4.5 Impact of Spare Capacity on Network Availability ... 140

8.5 Conclusions ... 143

Chapter 9 Design and Availability Optimization of Path-Restorable Networks 145

9.1 Motivations and Goals ... 145

9.2 Design of Path-Restoration Networks ... 146

9.2.1 Notation .. 146

9.2.2 ILP Formulation ... 147

9.3 Availability Optimization Algorithm .. 148

9.4 Total Lost Working Flow Optimization .. 153

9.4.1 Annotations... 154

9.4.2 ILP Formulation ... 156

9.4.3 Integration of Gurobi and Python ... 158

9.5 Experiments ... 158

9.5.1 Experimental Networks and Setup ... 158

9.5.2 Impact of Network Average Nodal Degree on Network Availability 158

9.5.3 Impact of Spare Capacity on Network Availability ... 161

9.6 Conclusions ... 166

Chapter 10 Performance Comparison of Various Mesh Networks ... 167

10.1 Motivations and Goals ... 167

10.2 Methodology ... 167

10.3 Experiments ... 170

Chapter 11 Closing Discussion ... 180

11.1 Summary of Thesis .. 180

11.1.1 Main Contributions ... 183

11.2 Publications of Ph.D. Work associated with thesis ... 186

11.3 Reports of Ph.D. Work not associated with thesis .. 187

Reference ... 189

Appendix A Stub-release Data .. 196

xi

Appendix A.1 – Stub-release in design process for 30-node 45-span network 196

Appendix A.2 – Stub-release in optimization process for 30-node 45-span network 200

Appendix B –Network Topology Files ... 204

Appendix C –Network Demand Files ... 205

Appendix D The MCSF Model ... 206

Appendix D.1 – AMPL codes of MCSF Model for Span Restoration Mechanism 206

Appendix D.2 – An Example of *.Dat Files of MCSF Model for Span Restoration Mechanism

 ... 207

Appendix E The MDNF Model ... 210

Appendix E.1 – AMPL codes of MDNF Model for Span Restoration Mechanism 210

Appendix E.2 – An Example of *.Dat Files of MDNF Model for Span Restoration Mechanism

 ... 212

Appendix F The MDNF-ml Model ... 215

Appendix F.1 – AMPL codes of MDNF-ml Model for Span Restoration Mechanism........... 215

Appendix F.2 – An Example of *.Dat File of MDNF-ml Model for Span Restoration

Mechanism .. 217

Appendix G Path Restoration .. 220

Appendix G.1 – AMPL codes of Path Restoration Mechanism .. 220

Appendix G.2 – An Example of *.Data Files for Path Restoration Model 222

Appendix H Multi-flow SBPP... 224

Appendix H.1 – AMPL codes of New Multi-flow SBPP Mechanism 224

Appendix H.2 – An Example of *.Dat Files for New SBPP Model .. 226

Appendix I – Selection of Span’s Failure Rate ... 228

xii

List of Tables

Table 4.1 – The values of span’s failure rate from literature .. 37

Table 7.1– Summary on capacity design results of networks three 10-node test case

networks .. 120

Table 7.2– Spare capacities in the 10-node 15-span network, 10-node 20-span network,

and 10-node 25-span network ... 120

Table 7.3 – Capacity design results in the 10-node 15-span network, 10-node 20-span

network, and 10-node 25-span network .. 122

Table 8.1– Numbers of Variables and Constraints in Availability Optimization ILP

Model for Master Networks .. 139

Table 10.1 – Spare capacity for 30-node 45-span network .. 176

Table 10.2 – Hidden spare capacity due to stub-release for 30-node 45-span network in

design process under single failure S01 .. 177

Table 10.3 – Hidden spare capacity due to stub-release for 30-node 45-span network in

availability optimization process under dual-failure (S01, S02) 178

xiii

List of Figures

Figure 1.1 – Illustrations of thesis structure ... 6

Figure 2.1 – Illustrations of edges .. 9

Figure 2.2 – Illustrations of paths ... 10

Figure 2.3 – An example of the DFS algorithm ... 13

Figure 2.4 – An example of Dijkstra’s algorithm ... 16

Figure 2.5 – An example of the KSP algorithm ... 17

Figure 3.1 – The graphical structure of public networks [50] .. 24

Figure 3.2 – Topology of a real backbone network [50] .. 25

Figure 3.3 – An example of span restoration .. 27

Figure 3.4 – An example of backhaul ... 28

Figure 3.5 – An example of shared backup path protection ... 29

Figure 3.6 – An example of path restoration with stub-release .. 31

Figure 5.1 – Network members in 10-node network family .. 45

Figure 5.2 – Topologies of master networks .. 46

Figure 6.1 – Illustrating different distribution circumstances of non-restored working capacity. 51

Figure 6.2 – The best-case and worst-case distribution of non-restored working capacity 53

Figure 6.3 – The framework of MNDF-ml model .. 60

Figure 6.4 – The flowchart of calculating MNDF-ml model ... 62

Figure 6.5 – Implementation for current availability methods ... 65

Figure 6.6 – Pseudo code for calculating shared service paths .. 66

Figure 6.7 – Implementation for new dual-failure unavailability ... 68

Figure 6.8 – The topology of experimental networks ... 70

Figure 6.9 – Dual failure restorability and service path unavailability for 20-node 35-span

network .. 72

Figure 6.10 – New dual failure restorability for 20-node 35-span network 72

Figure 6.11 – Dual failure restorability and service path unavailability for 20-node 35-span

network (zoom-in version) .. 73

Figure 6.12 – New dual failure restorability for 20-node 35-span network (zoom-in version) 73

Figure 6.13 – Dual failure restorability and service path unavailability for 30-node 55-span

network .. 74

Figure 6.14 – New dual failure restorability for 30-node 55-span network 74

xiv

Figure 6.15 – Dual failure restorability and service path unavailability for 30-node 55-span

network (zoom-in version) .. 75

Figure 6.16 – New dual failure restorability for 30-node 55-span network (zoom-in version) 75

Figure 6.17 – Dual failure restorability and service path unavailability for 40-node 68-span

network .. 76

Figure 6.18 – New dual failure restorability for 40-node 68-span network 76

Figure 6.19 – Dual failure restorability and service path unavailability for 40-node 68-span

network (zoom-in version) .. 77

Figure 6.20 – New dual failure restorability for 40-node 68-span network (zoom-in version) 77

Figure 6.21 – Dual failure restorability and service path unavailability for 50-node 75-span

network .. 78

Figure 6.22 – New dual failure restorability for 50-node 75-span network 78

Figure 6.23 – Dual failure restorability and service path unavailability for 50-node 75-span

network (zoom-in version) .. 79

Figure 6.24 – New dual failure restorability for 50-node 75-span network (zoom-in version) 79

Figure 6.25 – Dual failure restorability and service path unavailability for 60-node 96-span

network .. 80

Figure 6.26 – New dual failure restorability for 60-node 96-span network 80

Figure 6.27 – Dual failure restorability and service path unavailability for 60-node 96-span

network (zoom-in version) .. 81

Figure 6.28 – New dual failure restorability for 60-node 96-span network (zoom-in version) 81

Figure 6.29 – Dual failure restorability and service path unavailability for 70-node 105-span

network .. 82

Figure 6.30 – New dual failure restorability for 70-node 105-span network 82

Figure 6.31 – Dual failure restorability and service path unavailability for 70-node 105-span

network (zoom-in version) .. 83

Figure 6.32 – New dual failure restorability for 70-node 105-span network (zoom-in version) .. 83

Figure 7.1 – Algorithm for calculating dual-failure availability .. 98

Figure 7.2 – Normalized cost of the 10-node network family ... 100

Figure 7.3 – Normalized cost of the 20-node network family ... 101

Figure 7.4 – Normalized cost of the 30-node network family ... 101

Figure 7.5 – Normalized cost of the 40-node network family ... 101

Figure 7.6 – Normalized cost of the 50-node network family ... 102

Figure 7.7 – Normalized cost of the 60-node network family ... 102

xv

Figure 7.8 – Normalized cost of the 70-node network family ... 102

Figure 7.9 – Normalized cost of the 80-node network family ... 103

Figure 7.10 – Normalized cost of the 90-node network family ... 103

Figure 7.11 – Normalized cost of the 100-node network family ... 103

Figure 7.12 – Normalized cost of the 110-node network family ... 104

Figure 7.13 – Normalized cost of the 120-node network family ... 104

Figure 7.14 – Normalized cost of the 130-node network family ... 104

Figure 7.15 – Normalized cost of the 140-node network family ... 105

Figure 7.16 – Normalized cost of the 150-node network family ... 105

Figure 7.17 – Runtime of the 10-node network family .. 105

Figure 7.18 – Runtime of the 20-node network family .. 106

Figure 7.19 – Runtime of the 30-node network family .. 106

Figure 7.20 – Runtime of the 40-node network family .. 106

Figure 7.21 – Runtime of the 50-node network family .. 107

Figure 7.22 – Runtime of the 60-node network family .. 107

Figure 7.23 – Runtime of the 70-node network family .. 107

Figure 7.24 – Runtime of the 80-node network family .. 108

Figure 7.25 – Runtime of the 90-node network family .. 108

Figure 7.26 – Runtime of the 100-node network family .. 108

Figure 7.27 – Runtime of the 110-node network family .. 109

Figure 7.28 – Runtime of the 120-node network family .. 109

Figure 7.29 – Runtime of the 130-node network family .. 109

Figure 7.30 – Runtime of the 140-node network family .. 110

Figure 7.31 – Runtime of the 150-node network family .. 110

Figure 7.32 – Average runtime improvement ratio with regard to network scale 110

Figure 7.33 – Availability analysis of the 10-node network family ... 112

Figure 7.34 – Availability analysis of the 20-node network family ... 112

Figure 7.35 – Availability analysis of the 30-node network family ... 113

Figure 7.36 – Availability analysis of the 40-node network family ... 113

Figure 7.37 – Availability analysis of the 50-node network family ... 113

Figure 7.38 – Availability analysis of the 60-node network family ... 114

Figure 7.39 – Availability analysis of the 70-node network family ... 114

Figure 7.40 – Availability analysis of the 80-node network family ... 114

Figure 7.41 – Availability analysis of the 90-node network family ... 115

xvi

Figure 7.42 – Availability analysis of the 100-node network family ... 115

Figure 7.43 – Availability analysis of the 110-node network family ... 115

Figure 7.44 – Availability analysis of the 120-node network family ... 116

Figure 7.45 – Availability analysis of the 130-node network family ... 116

Figure 7.46 – Availability analysis of the 140-node network family ... 116

Figure 7.47 – Availability analysis of the 150-node network family ... 117

Figure 7.48 – Average availability difference with respect to network scale 117

Figure 7.49 – Topologies of the 10-node 15-span network, 10-node 20-span network, and 10-

node 25-span network ... 119

Figure 7.50 – Average values of lost flow and affected flow in 10-node network family 124

Figure 8.1 – Pseudocode for availability analysis algorithm for SBPP networks 131

Figure 8.2 – Maximized network availability via the new algorithm for all 165 networks 136

Figure 8.3 – Maximized network availability via the new algorithm for master networks only 137

Figure 8.4 – Solution time for master networks ... 140

Figure 8.5 – Maximized network availability for test case networks with average nodal degree of

4.0, provided with additional spare capacity increases beyond the min-cost single-failure

survivable design. .. 141

Figure 8.6 – Improvement in maximized network availability via the new algorithm for test case

networks with average nodal degree of 4.0, provided with additional spare capacity increases

beyond the minimum cost single-failure survivable design. ... 143

Figure 9.1 – Pseudocode of availability optimization algorithm for path restoration 152

Figure 9.2 – Network availability for 30-node network family .. 159

Figure 9.3 – Network availability for 50-node network family .. 159

Figure 9.4 – Network availability for 60-node network family .. 160

Figure 9.5 – Network availability for 70-node network family .. 160

Figure 9.6 – Network availability for experimental networks .. 162

Figure 9.7 – Network availability increment for 30-node 60-span network 164

Figure 9.8 – Network availability increment for 50-node 100-span network 164

Figure 9.9 – Network availability increment for 60-node 120-span network 165

Figure 9.10 – Network availability increment for 70-node 140-span network 165

Figure 10.1 – Flowchart of methodology ... 169

Figure 10.2 – Network availability for 30-node network family .. 170

Figure 10.3 – Network availability for 40-node network family .. 171

Figure 10.4 – Network availability for 50-node network family .. 171

xvii

Figure 10.5 – Network availability for 60-node network family .. 172

Figure 10.6 – Network availability for 30-node network family with two y-axes 173

Figure 10.7 – Network availability for 40-node network family with two y-axes 174

Figure 10.8 – Network availability for 50-node network family with two y-axes 174

Figure 10.9 – Network availability for 60-node network family with two y-axes 175

1

CHAPTER 1 INTRODUCTION

We now live in a progressively connected world where communication systems have

cemented their position in almost every field of our daily lives, including agriculture,

commerce, governance, healthcare, banking, industry, traffic, correspondence, etc. [1]-[3].

Although communication systems serve a wide variety of applications, at the core is a

backbone network. Wavelength division multiplexing (WDM) is a technology that has

proliferated across the globe in backbone networks [4]-[6]. At the physical level, such a

network is composed of equipment (e.g., add/drop multiplexers (ADMs), optical cross

connects (OXCs), amplifiers, switches, etc.) and transmission links (i.e., the physical fiber

cables that are used to route the data traffic across different node equipment) [7]. At the

logical level, node equipment and transmission links in the transport networks are

abstracted respectively as nodes and spans within a network graph topology. Network

design is typically established on this logical level. From an availability standpoint,

network systems are susceptible to node and span failures. Nodes are more complicated

than spans in terms of structures and functions; therefore, they get more physical protection

and redundancy [8]. In addition, node failures are reducible to multiple span failures [9].

Since nodes are commonly assumed to be perfect, network designers are mainly concerned

about span failures [9]. Determining the capacity on spans is a complex task and affects

the service quality of millions of network users. Apart from that, outages may occur on

spans. Potential causes for failures on spans can be categorized into three types: natural

disasters (e.g., typhoon, flood, landslides, etc.), engineering activities (e.g., dig-ups

resulting from repairs, maintenance, constructions, etc.), and willful deeds (e.g., deliberate

sabotage, terrorism activities, etc.) [10]-[12].

2

Due to the large amount of traffic carried by a single optical fiber in WDM networks,

network outages can be quite disruptive, leading to significant impacts, both economically

and socially [13]-[17]. Guaranteeing some level of service availability is a vital task for

designers. Generally, designers adopt redundancy in capacity of spans (i.e., through

addition of spare capacity) to improve network resilience against span failures. Mesh

network survivability is a class of mechanism used to guarantee some level of network

survivability under specified failure scenarios. With such a mechanism, working routes

usually follow the shortest path and backup routes are allowed to make use of spare

capacity throughout the entire network [18]. Spare capacity is generally allocated across

the network to accommodate one or more survivability mechanisms, such as span

restoration [19], path restoration [20], demand-wise shared protection (DSP) [21], shared

backup path protection (SBPP) [22], p-cycles [23], etc. The application of survivability

mechanisms is by no means a complete solution to network failures. Near-perfect

availability is extremely costly and impractical to achieve, and any particular level of

network availability cannot be strictly guaranteed. Properly evaluating a network’s

robustness under failures, therefore, becomes indispensable to a network operator. In

general, network robustness against failures can be measured by network’s restorability

(which focuses on the lost working capacity on the spans) or availability (which focuses

on the lost working units on the working routes) [24],[26]. More formally, restorability is

“the average fraction of failed working span capacity that can be restored by a specified

mechanism within the spare capacity that is provided in a network” [26]. Availability is

the average fraction of failed working units on working routes that can be restored with the

survivability mechanisms applied [24]. Because it more generally considers complex

3

interactions amongst links on various routes, availability is a more realistic reflection of a

network’s robustness. The requirement of network service availability is specified in

service level agreements (SLA) between network service providers and customers [27],

[28]. Typically, survivable mesh networks have been designed to be 100% single-failure

restorable, i.e., survivable networks can withstand any single span failures [25], [29]-[30].

Given that single-failure restoration is generally guaranteed in networks designed using

conventional survivable network design approaches (and assuming restoration time is

negligible [8]), single failure scenarios will not contribute to network outages in such

situations. Herein, we focus on dual-failure scenarios, which dominate network outages

(and unavailability) in single-failure survivable networks [31]. Other higher order failures,

including node failures, are also considered to contribute a negligible amount to

unavailability, owing to their extremely small probability compared with dual failures [8].

Correspondingly, we only consider dual-failure scenarios in this thesis. We will therefore

use the term “dual-failure availability” or “dual-failure unavailability” when referring to

availability that arises from only dual-failure scenarios.

In network problem context, the flow demand between a pair of nodes is referred to

as a commodity [32]. The multi-commodity network flow (MCNF) problem is a network

flow problem where multiple commodities are to be routed between different pairs of nodes

[32]. When each pair of nodes is associated with a commodity, the problem is referred to

as a full-mesh MCNF problem. All the problems in this thesis are full-mesh MCNF

problems. The major task of network design for MCNF problems in mesh-survivable

networks is to allocate capacity on each link so as to satisfy demand requirements on each

commodity. Capacity design approaches can be further divided into spare capacity

4

allocation (SCA) [33]-[43] and joint capacity allocation (JCA) [44]. SCA assumes that the

working capacity of each span has been assigned ahead of the design already, whereas JCA

allocates both working capacity and spare capacity for each span. Since JCA can be simply

transformed into SCA by assigning fixed values to each span’s working capacity before

design, we mainly perform JCA in the present thesis.

1.1 MOTIVATION AND GOALS

Although extensive work has been done already regarding network design and

availability analysis, there is still room for enhancement. For instance, most previous work

has focused on relatively small sized and less sparse networks. Furthermore, few work has

studied the relationship between network availability and increased spare capacity on spans.

In this thesis, we will focus on three major network survivability mechanisms (i.e., span

restoration, path restoration, and SBPP). The primary contribution of this thesis is to

provide a deep insight into network availability analysis and a way for obtaining the

maximum network availability. The second contribution is to present an alternative and

time-efficient method for allocating both working and spare capacity throughout the entire

network. We also aim to compare the availability performance of networks with different

survivability mechanisms. More specifically, our goals can be divided into the following

five aspects:

Goal 1: Availability optimization for span restoration networks

We will propose a method to obtain optimal network availability for span-restorable

networks, and then compare the performance of the new method with the existing methods.

Goal 2: Design and availability analysis for shared backup path protection networks

5

We will propose a new design model for networks protected by shared backup path

protection mechanism. The design results are then served as the input for availability

analysis. We will develop an algorithm to analyze network availability for such networks.

Goal 3: Availability optimization for shared backup path protection networks

Based on Goal2, we will attempt to propose a method to obtain optimal network

availability instead of just simply analyzing availability that arises from the previous design

using the new design approach. In the following, we will investigate the impact of spare

capacity on network availability.

Goal 4: Availability optimization for path restoration networks

Similarly to the previous goal, we will try to propose an algorithm to obtain optimal

network availability for path-restorable networks. Again, we will investigate the impact of

spare capacity on network availability.

Goal 5: Comparison among various types of networks

After completing the four goals mentioned above, we now have better design models

and optimal availability analysis algorithms for span restoration, path restoration, and

shared backup path restoration, respectively. As such, our last goal will be set to compare

network performances in terms of optimal availability for those various networks.

1.2 THESIS OUTLINE

The reminder of this thesis includes a thorough introduction to relevant background,

a detailed discussion of methodology, capacity design and availability analysis of various

survivability mechanisms (i.e., span restoration, path restoration, and SBPP), and

6

availability performance comparison of these mechanisms. Generally, the thesis structure

is illustrated in Figure 1.1.

Figure 1.1 – Illustrations of thesis structure

Chapter 2

Mathematical

basics and tools

Chapter 3
Background

knowledge

Chapter 4
Network

availability basics

Chapter 5
Experimental

networks and setup

Chapter 6
Design and availability optimization for span-

restorable networks

Chapter 7
Design and availability analysis for SBPP

networks

Chapter 8
Availability optimization and impact of spare

capacity for SBPP networks

Chapter 9
Availability optimization and impact of spare

capacity for path-oriented networks

Chapter 10
Performance comparison of span-restorable,

path-restorable, and SBPP networks

Chapter 11
Closing discussion

Preparation Five topics

7

As can be seen in Figure 1.1. In Chapter 2, we present the mathematical basics and

tools used in the thesis work, including graph theory, searching algorithms, linear

programming, and solving algorithms and tools. In Chapter 3, we introduce the concept of

transport networks, the categories of mesh survivability mechanisms, and comparison

between restoration and protection mechanisms. We also present the related research work

in this chapter. In Chapter 4, we present the basics on network survivability and availability

analysis. Additionally, we investigate the methods for analyzing the overall network

availability for mesh networks that apply certain survivability mechanisms. In Chapter 5,

we present the experimental networks, the assumptions, and the experimental setup used

in the thesis work. In Chapter 6, we construct ILP design model for span-restorable mesh

networks. Based on the design results, we look at the algorithm to optimize the overall

network availability for such networks. In Chapter 7, we present a new multi-flow ILP

design model for SBPP mesh networks and compare its performance with the traditional

multi-flow ILP design model. Additionally, we investigate availability analysis method for

SBPP mesh networks and propose an algorithm for evaluating the overall network

availability for such networks. In Chapter 8, we seek to optimize network overall

availability for SBPP mesh networks. The availability analysis algorithm proposed in

Chapter 7 is used as the benchmark for validation of this new algorithm. We also look at

the impact of increased spare capacity on network availability. In Chapter 9, we construct

ILP design model for path-restorable mesh networks. Likewise, based on the design results,

we propose an algorithm to optimize the overall network availability. In Chapter 10, we

compare the performance of survivability mechanisms discussed in the previous chapters.

In the last chapter, we summarize the PhD work and make conclusions for the thesis.

8

CHAPTER 2 MATHEMATICAL BASICS AND TOOLS

In order to suit the needs of readers with different levels of basic knowledge, we

introduce the mathematic basics in this section, including graph theory, searching

algorithms, linear programming, and solving algorithms and tools.

2.1 GRAPH THEORY

2.1.1 EDGES AND VERTICES

The two vertices that an edge connecting directly are known as its end vertices [84].

An edge is said to be incident on its end vertices, which are referred to as adjacent vertices

[84]. If the end vertices of an edge have orders, then it is said to be directed, and undirected

otherwise [84]. The vertex from which an edge starts is its origin, and the vertex at which

an edge ends is its destination [84]. An edge can also be classified as weighted and

unweighted [84]. If there is a value associated with an edge, then it is said to be weighted,

and unweighted otherwise. The value associated with a weighted edge is referred to as its

weight [84]. Self-loop edges (i.e., the two end vertices are the same) and parallel edges (i.e.,

a pair of edges with the same end vertices) are two special types of edges [84], [85].

Figure 2.1 shows examples of different edges. As shown in the figure, Figure 2.1 (a)

is an undirected edge with end nodes of 𝑣1 and 𝑣2. Figure 2.1 (b) is a directed edge pointing

from the origin 𝑣3 to the destination 𝑣4. Figure 2.1 (c) is a weighted edge with the length

𝐿 as its weight. Figure 2.1 (d) describes a loop edge with the two end nodes both being 𝑣7.

Figure 2.1 (e) depicts a pair of parallel edges whose end nodes are both 𝑣8 and 𝑣9.

9

An edge can be labelled either by a single letter or by a pair of end vertices. For an

undirected edge, the order of its end vertices is arbitrary, but for directed ones, the order is

fixed. The number of edges incident on a vertex is referred to as its degree [84]. The

average degree of all the vertices in a graph is termed as its average degree or average

nodal degree.

Figure 2.1 – Illustrations of edges

2.1.2 PATHS

A path is a sequence of connected distinct edges [84]. A path can be directed and

undirected based on the property of its edges. The two end nodes of a directed path are

named its origin and destination accordingly. The vertices of a path can be repetitive,

whereas the edges should be different from each other. If all the edges and vertices are not

repetitive except for its end vertices, the path is said to be a simple path [84]. Once the two

end vertices of a path are the same, it is termed as a cycle. A simple cycle closes on itself

only once [85]. A Hamiltonian cycle traverses all its nodes only once, whereas an Eulerian

cycle crosses over all its edges only once [84]-[86]. The paths can be denoted either by a

set of vertices or a set of edges.

Figure 2.2 shows examples of different paths. Figure 2.2 (a) is a general path with

five vertices and six edges, among which there is one loop edge (i.e., 𝑒2) and a pair of

(a) (b) (c) (d) (e)

𝑣1 𝑣2

𝑣3 𝑣4 𝑣5
𝑣6

𝑣7 𝑣8

𝑣9 𝐿 𝑒2 𝑒1

10

parallel edges (i.e., 𝑒4 and 𝑒5). Figure 2.2 (b) is a directed path where its origin and

destination are 𝑣1 and 𝑣5, respectively. Figure 2.2 (c) is a loop which closes itself twice.

Figure 2.2 (d) is a simple loop. Figure 2.2 (e) is a Hamiltonian cycle (i.e., the blue arrowed

lines), which can be denoted as {𝑣1, 𝑣2, 𝑣5,𝑣4, 𝑣3, 𝑣6, 𝑣1}. The blue lines with arrows in

Figure 2.2 (f) form an Eulerian cycle, which can be represented as {(𝑣5,𝑣2), (𝑣2, 𝑣1),

(𝑣1, 𝑣5), (𝑣5,𝑣3), (𝑣3, 𝑣4), (𝑣4, 𝑣5)}.

Figure 2.2 – Illustrations of paths

𝑣1

𝑣2

𝑣3
𝑣4

𝑣5

𝑒1

𝑒2

𝑒3
𝑒4

𝑒5

𝑒6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑒1

𝑒2

𝑒3
𝑒4

𝑣1

𝑣2
𝑣3

𝑣4

𝑣5 𝑣6

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5

𝑣4

𝑣1
𝑣2

𝑣3

𝑣5

𝑣6

𝑣7

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

(a) (b)

(c) (d)

(e) (f)

11

2.1.3 GRAPHS

A graph is a mathematical entity composed of vertices and edges connecting these

vertices [84]-[85]. Mathematically, a graph is represented by a set of vertices (denoted by

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚} where 𝑚 is the number of vertices and 𝑣𝑖 (𝑖 = 1,2, … , 𝑚) is the

individual vertex), and a set of edges (denoted by 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} where 𝑛 is the

number of edges and 𝑒𝑗 (𝑗 = 1,2, … , 𝑛) is the individual edge). The order of a graph is the

number of vertices in the graph [84].

According to the properties of vertices and edges, graphs fall into a variety of

categories as follows [84]-[86]. A general graph has at least one self-loop. A simple graph

has no self-loops or parallel edges. A multigraph has at least one pair of parallel edges. If

each distinct pair of vertices forms an edge, the graph is said to be complete. If there is a

number associated with each edge, the graph is weighted and unweighted otherwise. If the

weight represent capacity, the graph is also called a capacitated graph. Graphs can be split

into directed graphs (with at least one directed edge) and undirected graphs (with no

directed edges) as well. For a directed graph, if a vertex is the origin of all the edges incident

on it, then it is called the source of that graph. Similarly, if a vertex is the destination of all

the edges incident on it, then it is referred to as the sink of that graph.

In terms of connecting characteristics, graphs are broken down into the following

categories. A connected graph is one with no unreachable vertices, i.e., there is always a

path from any point to any other point in the graph. A graph is disconnected if it is not a

connected graph. If a graph has at least two vertex-disjoint paths between every pair of

vertices, it is called a bi-connected or two-vertex connected graph. If a graph processes at

12

least two edge-disjoint paths between every pair of vertices, it is dubbed a two-connected

or two-edge connected graph.

Additionally, there are two special types of graph. A tree is a connected graph with

no cycles; in comparison, a forest is a disconnected graph with no cycles [84].

In the field of transport networking, a network is typically represented and described

as a simple graph. As mentioned in Chapter 1, the vertices and edges in the transport

networks are called nodes and spans, respectively. Nodes are often expressed with 𝑁 =

{𝑁1, 𝑁2, … , 𝑁𝑛} where 𝑛 is the number of node, and spans are typically denoted by 𝑆 =

{𝑆1, 𝑆2, … , 𝑆𝑚} where 𝑚 is the number of nodes.

2.2 SEARCHING ALGORITHMS

2.2.1 DEPTH FIRST SEARCH

Depth first search (DFS) is an algorithm that searches for a specified node or

traverses all the nodes in a graph starting with a root node and exploring as deep as possible

before backtracking [87]. Since DFS is capable of exploring all the paths in the graph, we

can obtain the kth shortest paths by sorting all the paths. Nevertheless, DFS is not well

scalable for large-scale graphs. The general procedure for DFS to traverse all the nodes is

described in the following three steps.

Step 1: Start from the root (pick one if it is not specified), and determine the traverse

direction (either from left to right or from right to left).

Step 2: Explore from current node as deep as possible until you reach the bottom

before backtracking to the upper layer.

13

Step 3: Repeat Step 2 until all the nodes are traversed.

An example of the DFS algorithm is illustrated in Figure 2.3 where the graph is

searched from left to right. Figure 2.3 (a) is the original graph and Figure 2.3 (b) marks the

detailed searching procedure explicitly.

Figure 2.3 – An example of the DFS algorithm

(a)

J

A

B C

D E

H I

L

F G

K

(b)

J

A

B C

D E

H I

L

F G

K

1

2

3

4

5
6

7

8

9

10
11 12

13

14

15

16

17 18

19
20

14

2.2.2 DIJKSTRA’S ALGORITHM

Dijkstra’s algorithm, also known as the shortest path algorithm, is an algorithm

searching a given graph for the shortest path between node pairs [87]-[88]. The general

procedure of Dijkstra’s algorithm is described as follows.

Step 1: Starting at the source, scan all its neighbors (i.e., the adjacent nodes), and

assign a temporary label to them with the format of {T, total distance to the source,

predecessor/previous nodes}. Here, the letter “T” means temporary.

Step 2: Pick the node with the smallest total distance from the temporarily labeled

nodes, and switch its label from temporary to permanent with the format of {P, total

distance to the source, predecessor/previous nodes}. Likewise, the letter “P” represents

permanent. When selecting the temporary labeled node with the smallest total distance, if

there is a tie, it means more than one shortest path exists. As long as we can find one

shortest path, it suffices, so we can pick one randomly. If a permanently labeled node has

no neighbors, simply skip it and go to the next permanently labeled node.

Step 3: Scan the neighbors of the newly permanently labeled node, skipping the

nodes that have permanent labels (the permanently labeled nodes have already been

selected to appear on the path, so we skip them to avoid repetitiveness), assign a temporary

label to the nodes that are not labeled. Then update the temporary label of the nodes that

are labeled already if the new total distance is smaller.

Step 4: Repeat Step 2 and Step 3 until the sink is permanently labeled. By tracing

back the predecessors among the permanently labeled nodes starting from the sink, we can

obtain the shortest path from the source to the sink in a reverse order.

15

After the sink is permanently labeled, if we continue to scan until all the nodes in the

graph are permanently labeled, we will end up with a shortest path tree with each node

associated with a permanent label. The root of the tree is the specified source, and there is

only one path from the source to each of the other nodes. This unique path is the shortest

path and the total distance associated with it is the corresponding shortest distance.

Figure 2.4 displays an example of Dijkstra’s algorithm. Figure 2.4 (a) depicts a graph

with the length of each span on the edge, Figure 2.4 (b) explains each scan process in the

above described procedures, and Figure 2.4 (c) portrays the complete shortest path tree.

The value close to each node in the shortest path tree is the total distance between the

source and that node. For example, the shortest path from Node 1 to Node 5 is {1 → 2 →

5} with the shortest distance of 7.

16

Figure 2.4 – An example of Dijkstra’s algorithm

2.2.3 K SHORTEST PATH

K shortest path (KSP), an extension of the shortest path algorithm, is an algorithm to

seek the first kth disjoint shortest paths between node pairs in a graph [89], [90]. This

algorithm has important application because on some occasions, more than one path is

required between a pair of nodes. The KSP algorithm is implemented though iterative

1
2

3

4

5

6 7

8

9

7

3 5

5

4

2

10

7

8

4

7

6
3

8

1

2 4

3 5

7 6

9

3 7

8 7

15 10 11

18

(a) (c)

(b)

17

operations of the shortest path algorithm. More specifically, it finds the first shortest path

with the shortest path algorithm, then removes the first shortest path from the graph before

it continues to find the next shortest path. This process is repeated until all the kth shortest

paths are found.

Figure 2.5 gives an example of the KSP algorithm. The objective is to find the first

two shortest paths from Node 1 to Node 7. Figure 2.5 (b) finds the shortest path 1→2→3→7

with Dijkstra’s algorithm, and it is then removed from the graph, as shown in Figure 2.5

(c). Figure 2.5 (d) shows the process for searching for the second shortest path 1→4→5→

6 →9→7.

Figure 2.5 – An example of the KSP algorithm

1
2

3

4

5

6 7

8

9

7

3 5

5

4

2

10

7

8

4

7

6
3

(a) (b)

(c) (d)

1
2

3

4

5

6 7

8

9

7

3 5

5

4

2

10

7

8

4

7

6
3

18

2.3 LINEAR PROGRAMMING

2.3.1 MATHEMATICAL TERMINOLOGY

The operations research (OR), also known as management science, is a scientific

decision making approach that aims to seek for the best way to design and operate the

system [91]. The term optimization represents the process in search of the best solutions

for OR problems. This process begins with simplifying the real problems by a

mathematical model, and then designs a mathematical programming model based on it. A

mathematical programming model is a mathematical decision model that optimizes (i.e.,

maximize or minimize) the objective function while satisfying a series of constraints by

choosing the values of decision variables [91], [92]. The terms regarding a mathematical

programming model are defined as follows.

The decision variables of a mathematical programming model are the quantity whose

values are varied (i.e., can be controlled). For simplicity, all the decision variables in a

model are denoted collectively by the column vector of 𝒙 = [𝑥1 𝑥2 … 𝑥𝑚]T. The objective

function of a mathematical programming model, denoted by 𝑓(𝒙), is a function represented

by the decision variables. The constraints of a mathematical programming model are the

conditions that are required to be followed in search of solutions. They are usually

expressed as equalities or inequalities, such as 𝑓1(𝒙) = 𝑏1 and 𝑓2(𝒙) ≤ 𝑏2.

If the objective function and the constraints are all linear combinations of the decision

variables, the mathematical programming is called linear programming (LP) [92], [93].

Any combination of the values for all the decision variables in the decision variable vector

is dubbed a solution. If a solution satisfies all the constraints, it is referred to as a feasible

19

solution. If a feasible solution optimizes the value of the objective function, it is named an

optimal solution. We use “an optimal solution” here because it is possible that more than

one optimal solution exists for an LP problem. All the constraints form a constraint set,

and all the feasible solutions form a set of feasible solutions. Thus, the objective of an LP

can be interrelated as finding out the best solution from the set of feasible solutions. For

two-dimensional LPs, the set of feasible solutions is also known as the feasible region on

the two-dimensional coordinate systems.

A given LP is in the standard format if it complies with the following rules [92]:

(1) The objective function is a minimization.

(2) All the variables are non-negative.

(3) All the constraints except the non-negativity constraints are equalities.

(4) All the values of the right hand side of the constraints are non-negative.

The algebraic form of the standard LP is expressed as follows:

Minimize 𝑧 = ∑ 𝑐𝑗
𝑛
𝑗=1 𝑥𝑗 (2-1)

Subject to ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑥𝑗 = 𝑏𝑖 ∀𝑖 = 1,2, … , 𝑚 (2-2)

 𝑥𝑗 ≥ 0 ∀𝑗 = 1,2, … , 𝑛 (2-3)

where 𝑐𝑗 (𝑗 = 1,2, … , 𝑛) is the coefficient of the decision variable 𝑥𝑗 in the objective

function, which is also referred to as the cost coefficient, and 𝑎𝑖𝑗 (𝑖 = 1,2, … , 𝑚, 𝑗 =

1,2, … , 𝑛) is the coefficient of the decision variable 𝑥𝑗 in the 𝑖th constraint.

20

The simplex method [92], developed by George Dantzig, is an algorithm for solving

non-integer LP problems. This algorithm involves a series of matrix operations on the

standard form of the LP and arrives at a better solution after each operation.

2.3.2 INTEGER LINEAR PROGRAMMING

Integer linear programming (ILP) is an LP in which at least one of its decision

variables is restricted to be an integer [96]. ILP has a standard form similar to that of LP,

except that all decision variables are restricted to be integers.

Due to the variables being integers, the continuous variables-based Simplex

algorithm is not applicable for ILP problems. However, Simplex algorithm still can

enlighten us in solving ILP problems, because if we allow the integer constraints to be

violated, then we can use Simplex algorithm to solve the problem. We can later add integer

constraints back to obtain integer solutions. Generally, the ILP problems are relaxed first,

i.e., the integer variables are allowed to take a real value. The relaxed version of the original

ILP problem is known as its LP relaxation. It is obvious that in solving an LP relaxation,

we can obtain either of the two results: (1) all the variables happen to be integers, and (2)

some of the variables that are integers in the original ILP problems take on non-integer

values. If it is the first case, we are lucky because the solution of the LP relaxation is also

the solution of the original ILP problems. That being said, we cannot guarantee to have

integer solutions for an LP relaxation. The branch and bound algorithm [97]-[99] was

originally designed for solving discrete optimization problems. It enumerates over the

candidate solutions based on a systematic rule. The candidate solutions take the form of a

rooted tree. The root node denotes the full set of the candidate solutions, and the branches

21

of the tree (the nodes other than the root node) represent the subsets of the candidate

solution set. To improve solving efficiency, the branch and bound algorithm enumerates

the set of candidate solutions by applying terminating conditions instead of enumerating

all the candidate solutions in order to searching for the optimal solution.

2.4 PROGRAMMING AND SOLVING TOOLS

In the thesis work, we use two languages to model the proposed problems. One is a

mathematical programming language (AMPL) [100], developed by Robert Fourer, David

M. Gay, and Brian W. Kernighan in around 1985. The other one is Python, developed by

Guido van Rossum and first released in 1991 [102]-[103].

Gurobi, [101], developed by Zonghau Gu, Ed Rothberg, and Bob Bixby in 2008, is

a mathematical programming solver for solving a variety of optimization problems,

including LP, mixed integer linear programming (MILP), quadratic programming (QP),

mixed integer quadratic programming (MIQP), quadratic constrained programming

(QCP), and mixed integer quadratic constrained programming (MIQCP). More

importantly, Gurobi optimizer offers interactive interface with Python. This allows us to

insert the optimization process into Python by calling Gurobi repetitively wherever

applicable in some of the availability optimization topics.

22

CHAPTER 3 BACKGROUND

In order to prepare the readers in a different field with adequate background

knowledge, we provide an overview of transport networks and associated survivability

mechanisms in this section.

3.1 NETWORK CLASSIFICATIONS

A telecommunication network is a collection of terminals that are connected by links

where terminals can communicate through those links [45]. Fundamentally, a

telecommunication network falls into two categories: private networks and public networks

[50]. The private networks are owned and operated by private corporations for internal use

[50]. These networks can be partitioned into three tiers according to their geographical

boundaries: local area networks (LAN), metropolitan area networks (MAN), and wide

area networks (WAN) [50]. LAN usually covers a small area such as a building and a

residence; MAN covers a wider area, which is usually a few blocks of a city; and WAN

usually spans over hundreds to thousands of kilometers in area [8]. The corporations

owning the private networks do not necessarily own the land that their networks cross over,

especially in the case of WAN. In fact, many companies of private networks lease

transmission capacity from the owners of the public networks [50]. The owners of the

public networks are also known as carriers or service providers, and the owners of the

private networks are referred to as private users or clients [8].

As explained in the above paragraph, public networks offer services to private

networks. Beside that, public networks are capable of providing much higher transmission

23

capacity than private networks [8]. The architecture of a public network is illustrated in

Figure 3.1 [50]. As shown in the figure, a public network consists of the metropolitan

access network (or access network), the metropolitan inter-office network (or inter-office

network), and the inter-exchange network (or long-haul network) [50]. Among them, the

access network and the inter-office network are referred to as metropolitan (or metro)

networks collectively. The access network usually spans over a few kilometers and it

connects the clients to nearby central offices (COs). The inter-office network typically

ranges from up to tens of kilometers, and it connects multiple COs within the same city or

region. The long-haul network’s reach is usually hundreds to thousands of kilometers, and

it connects a group of different cities or regions. The traffic going out of the metropolitan

area is finally routed into the long-haul network through the big hubs of the metropolitan

inter-office network. Apart from the covering area differences, access networks tend to be

very sparse in terms of topology, and is not necessarily survivable [18]. Metro networks

connect regional COs together and their cost is dominated by nodal equipment costs [18].

24

Figure 3.1 – The graphical structure of public networks [50]

3.2 TRANSPORT NETWORKS

As explained in Section 3.1, the public networks offer services to the private

networks, i.e., they are in a service provider and client relation. Based on such a relation,

public networks are referred to as transport networks and private networks are referred to

as client networks [8]. Formally, a transport network, which is also known as a

transportation network or a backbone network, is the core part of a telecommunication

network that provides bulk carriage for various communication services such as vehicular

movement and commodity flow [18], [50]. The transport network is a point-to-point

transmission system with multiple channels multiplexing different services together and

route them from origin to destination. With the development of technology, the realization

of transport networks has undergone great changes. The earliest transport network was

designed to transmit voice data, which was named public switched telephone network

(PSTN).The modern network, which is composed of fibre optic cables that are connected

Access network Inter-office network Long-haul network

City A

City B City C

City D

City E

CO 1

CO 2
CO 3

CO 4

Home 1

Home 2

Business 1

Business 2

Business 3

25

to nodal switching devices, is able to route a variety of communication services including

voice data, video data, and other data [18]. The backbone networks, which carry a vast

amount of data, are typically composed of high-speed and high-capacity links. Due to their

complexity, it usually takes several years to design and build a backbone network. The

structure of a typical backbone network is illustrated in Figure 3.2 [46]. This is a US

backbone network from AT&T with the nodes representing various cities and the spans

representing fibers connecting them. The backbone network takes the form of mesh-like

structure and connects many major cities.

Figure 3.2 – Topology of a real backbone network [50]

3.3 MESH NETWORK SURVIVABILITY

As stated in Chapter 1, we adopt network survivability mechanisms to ensure a

certain level of survivability under specified failure scenarios. Mesh network survivability

mechanisms are further divided into two categories: localized mechanism and end-to-end

26

mechanism [18]. Localized mechanism restores affected demands with a set of backup

routes between the end nodes of the failure itself. End-to-end mechanism establishes the

replacement routes between origin and destination of the demands. The replacement routes

of end-to-end mechanism can be completely disjoint with the original working routes. They

can also reuse the surviving portion of the original working routes. End-to-end mechanism

is more capacity efficient compared to localized mechanism. Mesh survivability

mechanism can be classified in more detail as mentioned in Chapter 1. In this section, we

only focus on those employed in this thesis.

3.3.1 SPAN RESTORATION

Span restoration is the most common form of localized mechanism where a set of

local replacement routes between the end nodes of the failed span is used to restore the

demands [47]-[48]. A mesh network designed with span restoration is referred to as a span-

restorable network. Since span restoration acts in the vicinity of the failure, we only need

to know the status of this failed span and we do not need to be concerned about the status

of other spans on the failed working route. This makes it simple to implement in reality

[24]. Additionally, the set of local preplacement routes can be defined ahead of failures,

which makes if fast to take effect upon failures [24]. However, since it works locally, more

spare capacity is usually required for establishing replacement routes.

Figure 3.3 shows an example of span restoration. As shown in the figure, a least one

backup route is established for each working channel on the failed span between the end

nodes of that failed span. More backup routes can be established as long as there is enough

27

spare capacity to accommodate the routes. We do not to have the knowledge of or consider

for origin and destination of involved demands.

Figure 3.3 – An example of span restoration

The end nodes associated with the involved failure act to initiate the restoration

response between them, so they are referred to as the custodial nodes with respect to the

involved span failure [24]. Unlike rings, the replacement routes in span restoration do not

need to be via a single route, rather, they can follow any available routes [18]. This enables

us to adopt any potential replacement routes more flexibly. A factor that affects capacity

efficiency of span restoration is backhaul (or loopback), which occurs when a backup route

traverses any span on the corresponding working route, as the red line shown in Figure 3.4.

The solid blue line represents a working route between node pair A-B. The dotted line

denotes a backup route of failed span CD. The backup route traverses span BD and

produces a backhaul BD on the replacement route of node pair AB. This backhaul creates

redundant spare capacity on span BD and thus reduces spare capacity efficiency of span

restoration.

28

Figure 3.4 – An example of backhaul

3.3.2 SHARED BACKUP PATH PROTECTION

Shared backup path protection (SBPP), also known as failure independent path

protection (FIPP) and shared path protection (SPP), is a promising member of end-to-end

mesh survivability mechanism [24], [51]-[54]. Demands routed through disjoint working

routes will not claim the backup capacity simultaneously. Thus, SBPP allows sharing of

spare capacity on backup routes by various disjoint working routes. SBPP is failure

independent in that the same backup route is adopted regardless of where the actual failure

occurs on the working route [18]. This simplifies the activation process of backup routes,

but abandons the reuse opportunity of the surviving portion on the failed working routes.

Besides, when a failure occurs, we need to know the state of each node including the spare

capacity sharing relationships throughout the entire network. If we make the backup routes

node-disjoint with their corresponding working routes, SBPP is capable of protecting the

network against node failures.

Figure 3.5 illustrates examples of SBPP. As shown Figure 3.5 (a), two pairs of nodes

(node pair A-B and node pair C-D) are routed through disjoint working routes (solid lines)

separately. Their backup routes (dotted lines) are disjoint with their corresponding working

A

B

C

D

E

29

routes. Since the working routes are disjoint for these two node pairs, they will not be hit

by the same span failure simultaneously. As such, the two backup routes can share spare

capacity on their common span EF. In Figure 3.5 (b), node pair G-H and node pair H-I are

routed through their respective working routes (solid lines) separately, but they have one

common span HK. Their corresponding backup routes are shown with dotted lines. That

being the case, the two backup routes cannot share spare capacity on their common span

HJ. In other words, the spare capacity on span HJ should be enough to accommodate the

flow on both backup routes.

Figure 3.5 – An example of shared backup path protection

The term “protection” in SBPP is derived from automatic protection switching (APS)

protection mechanisms [55]. At first glance, SBPP is very similar to 1+1 APS where the

signal is dual-fed onto two mutually disjoint routes, and the best signal is selected at the

end node [56], [57]. This is because in both cases, the failed working flow between origin

and destination of a demand can be rerouted via a predefined backup route that is distinct

with the original working route. However, with SBPP, the capacity for establishing the

backup routes can be shared by failure-disjoint working routes [24]. This reduces spare

capacity redundancy greatly and makes SBPP more cost-effective.

A

B

C
D

E

F

(a) (b)

H

G
D I

J
K

30

3.3.3 PATH RESTORATION

Similar to SBPP, path restoration belongs to the family of end-to-end mechanism

and it replaces the failed working route with a set of backup routes from the end-nodes of

the failed span [14]-[15], [32]. The end-to-end backup routes in path restoration depend on

where the failure occurs on the corresponding working route, so path restoration is also

called failure-dependent path protection (FDPP) [18]. Typically, path restoration allows

stub-release where the surviving portion of the failed working route is allowed to be reused

for establishing backup routes of the corresponding demands or for any other demands, as

needed [24]. Compared to span restoration, the replacement backup routes are distributed

throughout a much wider range. In addition, path restoration avoids backhauls in its backup

routes, so it is more capacity efficient than span restoration [50].

Two situations of path restoration are illustrated in Figure 3.6. Two working routes

(solid lines) and their corresponding backup routes (dotted lines) under the specified failure

are shown in Figure 3.6 (a). Since the specified failure affects the two working routes

simultaneously, the two backup routes have a common span but they cannot share spare

capacity on this common span. Note that both backup routes have common span with their

corresponding working routes. With stub-release allowed, working capacity on the

common span can be reused as backup capacity on corresponding backup routes. In Figure

3.6 (b), a different failure occurs, and the red working route employs a different backup

route as shown in the figure. This time, the backup route can share spare capacity with the

blue dotted backup route on their common span.

31

Figure 3.6 – An example of path restoration with stub-release

As illustrated above, the backup routes for the same demand in path restoration are

not necessarily to be the same under different failure scenarios, which makes it more

flexible than SBPP. With stub-release, path restoration is more capacity efficient than

SBPP and span restoration [18]. When the backup routes are designed to be node-disjoint

with the corresponding working route, node failures can be protected with path restoration.

3.4 RELATED WORK

Extensive research has been completed in the areas of network design. Since the

value of capacity (both working capacity and backup capacity) is integer, the involved LP

design models are all ILP, which has been prove to be NP-hard [24], [58]. As a result, the

associated design problem is extremely difficult to solve for large-scale networks. To tackle

this issue, a variety of approaches have been proposed and investigated towards network

design in the form of deterministic (exact) or heuristic approaches [59]. Heuristic

approaches (e.g., genetic algorithms, simulated annealing, tabu search, etc.) are generally

faster but are not guaranteed to arrive at a strictly optimal solution (or even a good solution

(a) (b)

32

if used improperly), while deterministic approaches (e.g., linear programming, mixed

integer programming, etc.) are likely to reach a satisfactory optimality gap at the cost of

runtime [59]. Considering their respective advantages, both approaches are employed

widely in network design.

Heuristic approaches lend themselves well to finding disjoint routes for SBPP

networks and have a widespread application [60]-[71]. Earlier work by Józsa, and Orincsay

combined on-line and off-line optimizations to achieve a faster routing scheme [62] via

three algorithms: cut down maximums (CDM), adaptive method (AM), and iterative

method (IM). Shen and Grover studied dynamic provisioning methods for SBPP survivable

networks [63]. They considered two provisioning approaches: sharing with partial routing

information (SPI) and sharing with complete routing information (SCI). Qu et al.

conducted similar work through developing a heuristic algorithm called CAFES to

provision capacity for dynamic SBBP networks [65]. They focused on the challenges of

finding two disjoint routes in trap topology situations. Nguyen et al. used a set of disjoint

candidate routes to assign one working route and one backup route for each given demand

to achieve full single-failure restorability [66]. This model treated working and backup

routes collectively as candidate route pairs. Józsa et al. proposed a heuristic algorithm to

design a network so it can sustain two simultaneous failures [67]. They combined the

Dijkstra algorithm and the Edmonds-Karp algorithm to find three disjoint paths for each

demand, and used them as the working route, the primary backup path, and the secondary

backup path. To improve efficiency, they attempted to find paths for each connection one

by one. Haahr et al. made a comparison between various heuristic algorithms (i.e., a naive

two-step algorithm, simulated annealing, and an adaptive large neighborhood search) and

33

a lower bound algorithm [68]. Walkowiak and Klinkowski described six heuristic

algorithms to solve SBPP problems and employed a traditional ILP single-flow model as

the benchmark for evaluating the heuristic algorithms [69]. Wang et al. argued that

lightpath physical distance should be considered when assigning frequency slot (FS) to the

working route and backup route pair [70]. More recent research on dynamic routing of

SBPP-based optical networks can be found in [70]-[71]. Lau and Jha developed a heuristic

algorithm, which was referred to as service path local optimization (SPLO) for the online

path restoration problems [72]. Ruepp et al. compared the Ford and Fulkerson algorithm

and the Dijkstra algorithm in path restoration networks [73]. They concluded that the

Dijkstra algorithm performs better in terms of capacity usage.

Deterministic approaches mainly take the form of ILP models in solving network

designs, and are also well documented in the literature, although not as common as

heuristic approaches. The arc-flow (also referred to as node-arc or transshipment) and arc-

path approaches are two different paradigms for formulating an ILP model [24], with their

major difference being whether routes are explicitly enumerated (in the arc-path approach

they are, but not in the arc-flow approach). Most ILP models are based on an arc-path

approach. Numerous examples of network design ILP models can be found in the literature

[24], [74]-[76]. A common objective is the total cost of capacity on each span in the

network, and the model is subjected to a number of constraints based on various

assumptions. Work in [77] pointed out that for SBPP networks if the numbers of working

and backup routes per demand are both restricted to one, an extensive number of binary

variables are produced, which eventually increases computing complexity of the model.

Allowing multiple working routes and backup routes for each demand has the potential to

34

enhance solving efficiency and reduce runtime by eliminating the associate binary

variables (and replacing them with simple integer variables). This brings us a new

perspective to look at the application of SBPP mechanisms. To avoid confusion, the

original SBPP model is referred to as traditional single-flow model, and the model

proposed in [77] is referred to as traditional multi-flow model. Kodialam et al. studied the

path restoration routing problems and proposed an LP-based algorithm using two-phase

routing scheme [78]. They provided resiliency against link failures for the end-to-end

backup paths.

Network availability has been investigated by a number of works as well with the

help of physical experiments or mathematical models. This thesis only focuses on the

methods through mathematical models. With mathematical methods, researchers either

aim to obtain the value of network availability or seek to guarantee a specified level of

availability. As for the latter, some researchers embed availability requirements as one of

the constraints, and other researchers employ network availability as the objective function.

Clouqueur and Grover [26] analyzed service availability in span-restorable mesh networks

with both theoretical framework and computational routing trials. They first determined

the network average dual-failure restorability by the ratio of total non-restored working

capacity to total affected working capacity over all the dual-failure scenarios, then

interpreted the results in terms of end-to-end service path availability based on a series

system availability. They concluded that the level of dual-failure restorability is relatively

high for a mesh network designed to be fully restorable for all single-failure scenarios.

Doucette et al. [55] provide a method to investigate the relationships between service

availability and total capacity in the SBPP survivability scheme. They gave the definition

35

of dual-failure restorability for SBPP and built an ILP model to limit the number of working

routes that allow sharing the same backup link explicitly. Zhou and Held [79] developed

an ILP model to improve average path availability for span-restorable networks under dual-

failure scenarios. This model minimizes the total non-restored working capacity over all

dual-failure combinations. The major contribution of this model is that the restoration

sequence is considered explicitly. Li et al. [80] designed a p-cycle network with an ILP

model to minimize dual-failure restorability. They found that involving dual-failure

restorability explicitly in the constraints would result in lower cost in richly connected

networks. Herker et al. [81] embedded availability constraints into their model to guarantee

expected service availability. Azim and Kabir [54] propose a mathematical model to

investigate service availability for WDM networks under multiple link failures. This model

only requires part of the shared backup paths, leading to a lower computational complexity.

Alashaikh et al. [82] provided spine as a new concept to enhance network availability. The

idea is to divide the links in the network into two types, those with low physical availability,

and those with high physical availability. The working routes are all routed on the high-

availability links. The spine of a network in nature is a spanning tree of the network. They

also developed a heuristic to select a proper spanning tree to form the spine of that network.

Conway combined the path rerouting algorithm and the dynamic path failure importance

sampling (DPFS) scheme, and then developed a scheme to evaluate service availability in

mesh networks with dynamic path restoration [83]

36

CHAPTER 4 NETWORK AVAILABILITY BASICS

The analysis of network availability is based on the basics regarding restorability and

availability. In this section, we provide an overview of basics regarding restorability and

availability. We combine the characteristics of mesh networks to investigate these basics,

in terms of different types of survivability mechanisms.

4.1 UNAVAILABILITY OF SPANS

In reality, we are usually provided with unavailability of a product rather than

availability [24]. From an availability standpoint, the life of a network span effectively

alternates between uptime (i.e., the working state) and downtime (i.e., the failed state) [108].

When one span fails, repair actions are performed to return it to operation until a subsequent

failure occurs, and the cycle repeats. The probability that a working span will be failed in

a unit of time is referred to as failure rate (denoted by 𝜆); and the probability that a failed

span will be fixed in a unit of time is repair rate (denoted by 𝜇) [108]. The unavailability

of a span 𝑘, accordingly, can be calculated as in Eq. (4-1) [24].

 𝑈span
𝑘 =

𝜆

𝜇+𝜆
 (4-1)

For optical networks, a typical timeframe for repairing a failed span is in the order of

12 hours [77], and so we use a repair rate, 𝜇, equal to the reciprocal of 12 hours. The failure

rate of a span is proportional to its length (denoted by 𝑙span
𝑘) [24]. We define the failure

rate per unit length as a unit-length failure rate (denoted by 𝜆unit). The values of span’s

failure rate are listed in Table 4.1. Note that some of the values are directly obtained from

37

the corresponding literature, and some are calculated via the information provided by the

corresponding literature.

Table 4.1 – The values of span’s failure rate from literature

Sources Unit failure rates (# of failures per hour per 1 km)

X. Wang, G. Shen, et al. [109] 2.0×10-7

B. Todd, J. Doucette [77] 3.4×10-7

A. J. Vernon, J. D. Portier [110] 3.4×10-7

S. Verbrugge, D. Colle, et al. [111] 3.8×10-7

W. Ni, J. Wu, et al. [112] 2.0×10-7~8.0×10-7

From the table, we can see that the order of magnitude for span’s failure rate is 10-7

per hour in transport networks. It does not matter which specific value we pick as long as

we choose the same order of magnitude1. In Appendix I, we tested the unit failure rate

ranging from 2.0×10-7 to 8.0×10-7 as shown in Table 4.1. From the results, we can tell that

the trends of the figures for those experimental results are the same. In other words, the

failure rate selection within this failure rate range will not affect the experimental results.

In this thesis, we adopt the unit failure rate as documented in [77]. As such, the value of

unavailability of a span 𝑘 can be obtained as in

 𝜆 = 𝑙span
𝑘 ∙ 𝜆unit (4-2)

4.2 SPAN-ORIENTED MESH NETWORKS

Span-oriented mesh networks are the mesh networks that protect or restore a failed

working route with backup routes that share the same end nodes of the failed span. In this

thesis, we only focus on one type of span-oriented mesh networks, i.e., span restoration

1 This will be demonstrated in Appendix I.

38

networks.

4.2.1 DUAL-FAILURE RESTORABILITY

Although the network has been designed for full single-failure restorability by default,

dual-failure scenarios can still strike the network and cause service breakdowns. In other

words, some working capacity on these failed working routes cannot be restored during

dual-failure scenarios. In span-oriented mesh networks, the amount of the non-restored

working capacity on both failed spans under each dual-failure scenario (𝑖, 𝑗) is denoted by

𝑁𝑊𝐶2(𝑖, 𝑗). The sum of 𝑁𝑊𝐶2(𝑖, 𝑗) over all the dual-failure scenarios is then defined as

dual-failure non-restored working capacity (𝑁𝑊𝐶2) [24], in Eq. (4-3), where 𝑆 is the set

of spans in the network.

 𝑁𝑊𝐶2 = ∑ 𝑁𝑊𝐶2(𝑖, 𝑗)𝑖,𝑗∈𝑆|𝑖≠𝑗 (4-3)

Due to the existence of non-restored working capacity, the overall restorability under

dual-failure scenarios is less than unity. In span-oriented networks, dual-failure

restorability for a specific failure scenario (𝑖, 𝑗) refers to specific dual failure restorability,

denoted by 𝑅2(𝑖, 𝑗), which is the ratio of the amount of the restored working capacity to

that of the total originally affected working capacity. It can be calculated by Eq. (4-4) [113].

 𝑅2(𝑖, 𝑗) = 1 −
𝑁𝑊𝐶2(𝑖,𝑗)

𝑤𝑖+𝑤𝑗
, 𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗 (4-4)

Here, 𝑤𝑖 is the amount of working capacity on span 𝑖 , and 𝑤𝑗 is the amount of

working capacity on span 𝑗.

39

In span-oriented networks, the weighted average of 𝑅2(𝑖, 𝑗) over all the dual-failure

combinations is referred to as dual-failure restorability, denoted by 𝑅2 and calculated

through Eq. (4-5) [24].

 𝑅2 = 1 −
𝑁𝑊𝐶2

2(|𝑆|−1) ∑ 𝑤𝑖𝑖∈𝑆
 (4-5)

In that calculation, |𝑆| is the number of spans in the network.

4.2.2 DUAL-FAILURE AVAILABILITY

Network availability is commonly calculated by considering each service path

individually, as this will provide a picture of the availability (or unavailability) experienced

by individual customers [8]. If calculated on the network as an average, the service

availability for a specific customer might be very low even if the availability for the entire

network is relatively high [8]. We therefore consider it to be more meaningful to investigate

the availability of each service path than that of the overall network. The most common

way for calculating availability of a specific service path is from series system reliability

theory [114]. More specifically, for an un-survivable network, a service path is available

only if all of its components (spans) are available. For a span-oriented survivable network,

the failure rate of each span is reduced, owing to the effect of survivability schemes, which

decreases the unavailability of the span. This decreased unavailability for a specific span 𝑖

is dubbed equivalent channel unavailability of span 𝑖, denoted by 𝑈𝑖
∗ and estimated with

Eq. (4-6) in span-oriented networks [24].

𝑈𝑖
∗ = 𝑈𝑖

phy ∑ 𝑈𝑗
phy

(2 − 𝑅2(𝑖, 𝑗) − 𝑅2(𝑗, 𝑖)), 𝑖 ∈ 𝑆𝑗∈𝑆|𝑗≠𝑖 (4-6)

Here, 𝑈𝑖
phy

 and 𝑈𝑗
phy

 are the unavailability of span 𝑖 and span 𝑗, respectively.

40

Moreover, because the unavailability of each span is extremely small, the

unavailability of a specific service path 𝑝 is approximately Eq. (4-7) [115].

 𝑈𝑝 = ∑ 𝑈𝑖
∗

𝑖∈𝑆𝑝
, 𝑝 ∈ 𝑃 (4-7)

Here, 𝑃 is the set of working routes in the network and 𝑆𝑝 is the set of spans on

service path 𝑝.

Dual-failure service paths unavailability (𝑆𝑃𝑈2) for span-oriented networks is the

average of service path unavailability over all dual-failure scenarios [24], calculated by

 𝑆𝑃𝑈2 =
∑ 𝑈𝑝𝑝∈𝑃

|𝑃|
 (4-8)

In this calculation, |𝑃| is the number of service paths in the network.

4.3 PATH-ORIENTED MESH NETWORKS

Path-oriented mesh networks protect or restore a failed working route with backup

routes that share the end nodes with corresponding demand. We focus on two types of path-

oriented mesh networks in this thesis, i.e., path restoration mesh networks and SBPP mesh

networks.

4.3.1 DUAL-FAILURE RESTORABILITY

Since the backup routes in span-oriented networks are designed on a per demand

basis, whereas the backup routes in path-oriented networks are designed on a per span basis,

the definition of 𝑅2(𝑖, 𝑗) and 𝑅2 for span-oriented networks is not suitable any more for

path-oriented networks. To address this issue, we redefine specific dual-failure

41

restorability 𝑅2(𝑖, 𝑗) for path-oriented networks under dual-failure scenario (𝑖, 𝑗) , as

follows in

 𝑅2(𝑖, 𝑗) = 1 −
𝑤𝑓lost(𝑖,𝑗)

𝑤𝑓aff(𝑖,𝑗)
 (4-9)

In this equation, 𝑤𝑓lost is the total working flow that is not restorable after the failures

of span 𝑖 and span 𝑗, in that order. The order matters here. Working routes that are affected

by the first failure can be fully restored, but routes affected by the second failure will

generally incur some amount of outage, owing to the fact that available backup resources

may no longer be sufficient. The variable 𝑤𝑓aff(𝑖, 𝑗) represents the total working traffic that

is affected by either or both of the two span failures. This definition is route-oriented, rather

than span-oriented, and reflects the real lost service in the network.

For SBPP networks, this is theoretically applicable in both single-flow and multi-

flow models, but the practical implementation is slightly different in the two. In the single-

flow model, a working route is protected by a single pre-defined backup route, so when a

second failure occurs, we can know for certain whether this working route is restored or

failed simply by checking the status of its backup route. That is, if the backup route crosses

the second failed span, then this working route cannot be restored; otherwise it is restored.

In the multi-flow model, multiple backup routes protect a working route, so the protected

working route is more likely to be partially restored.

4.3.2 DUAL-FAILURE AVAILABILITY

For path-oriented mesh networks, based on dual-failure restorability, we define the

dual-failure availability of a working route 𝑝 (denoted by 𝐴2(𝑝)) as the availability of the

42

working route that arises when only dual-failure scenarios are considered, which can be

calculated as per the equation

𝐴2(𝑝) = 1 − ∑ 𝑈span
𝑖

𝑖,𝑗∈𝑆|(𝑖∪𝑗)∈𝑝 ∙ 𝑈span
𝑗

∙ [1 − 𝑅2(𝑖, 𝑗)] (4-10)

To calculate 𝐴2(𝑝), we do not need to consider all the dual-failure scenarios, but only

need to consider all the dual failures affecting working route 𝑝, as suggested in the lower

bound index of the summation, i.e., 𝑖, 𝑗 ∈ 𝑆|(𝑖 ∪ 𝑗) ∈ 𝑝. This is because only those dual

failures that affect the working route 𝑝 will contribute to the dual-failure availability of that

specific route.

The network dual-failure availability (denoted by 𝐴2) is subsequently defined as the

average of the dual-failure availability for all the working routes in the network with dual-

failure scenarios being the only contributor to failures, as shown in

 𝐴2 =
∑ 𝐴2(𝑝)𝑝∈𝑃

|𝑃|
 (4-11)

43

CHAPTER 5 EXPERIMENTAL NETWORKS AND

SETUP

5.1 CONCEPTS OF LARGE NETWORKS

There is no specific definition regarding large networks. In this thesis, the keyword

“large” in the title means two aspects. On one hand, it represents network scale, which is

represented by the number of nodes in the network. From the literature, many researchers

focus on networks with less than 40 nodes networks, so we refer to networks with more

than 40 nodes as large networks. On the other hand, it represents network connectivity. The

higher connectivity is, the more intensive a network is. In this thesis, we refer to networks

with connectivity more than 3.0 as large networks.

5.2 CONCEPTS OF NETWORK FAMILY

There have been a number of experimental networks available in the literature [8],

[31], [38], [104]-[107], but most of them are separate real networks and not in any

systematic manner. The work in [11] propose the concept of network family to create a

series of related networks in a systematic manner. In order to obtain a series of experimental

networks to better suit our needs, we follow their rules to create new experimental networks.

The tools we applied are Inkscape software and SVG script. We use Inkscape

software to create the draft for mesh networks. For example, in order to create a mesh

network with specified number of nodes and spans, we randomly draw the specified

number of dots and lines as required with Inkscape. After that, we obtain its SVG script

44

from Inkscape and fine tune the shape of the dots and lines we created to finish the network.

Finally, we use Python to create *.top files and *.dem files by obtaining the information

from the created networks.

Each network family consists of 11 test case networks sharing a common set of nodes.

To create each family, we start with a network of average nodal degree 5.0 (which we refer

to as a master network), remove several spans to create a new but related network with

average nodal degree 4.8, remove several more spans to create another new but related

network with average nodal degree 4.6, and so on until we have a network with average

nodal degree 3.0. We apply a uniform random demand between 1 and 10 to each node pair

in a network, and the demands applied to each network within a family are the same within

that family. Figure 5.1 shows the members in the 10-node network family.

Note that these 15 network families are our pool of networks, and it is not necessarily

for us to use them all for each topic. We will specify the employed networks where

applicable explicitly.

45

Figure 5.1 – Network members in 10-node network family

5.3 TOPOLOGIES OF MASTER NETWORKS

Finally, we have created a total of 165 test case networks, divided into 15 network

families. The topologies of the 15 master networks are shown in Figure 5.2.

𝑑 = 3.0 𝑑 = 3.2 𝑑 = 3.4 𝑑 = 3.6

𝑑 = 3.8 𝑑 = 4.0 𝑑 = 4.2 𝑑 = 4.4

𝑑 = 4.6 𝑑 = 4.8 𝑑 = 5.0

46

Figure 5.2 – Topologies of master networks

47

5.4 ASSUMPTIONS

The ILP models we formulate in this thesis makes the following assumptions:

(1) We assume a full mesh of demands between each O-D pair in the network.

(2) We assume a linear relationship between capacity and cost (i.e., no economy-of-

scale considerations [2]).

(3) We assume that the amount of capacity on each span is equal to the number of

wavelengths routed on it (i.e., no modularity considerations [2]).

(4) We assume a static design situation where the demands are stable and fixed over

the design; there is no existing demand release or new demand arrival.

(5) The network topology is known and fixed in advance of the design process.

(6) The order of two failures in a specified dual-failure scenario is considered. We

follow “first come first served” rule when dealing with two failures. That is, the restoration

of the first failure has priority over the second failure.

(7) The network is designed to be fully single-failure restorable.

(8) Only working capacity can be restored upon failure; spare capacity cannot.

Other than the above common assumptions for all ILP models, if there are others

required, we will discuss them where applicable.

5.5 EXPERIMENT SETUP

All ILP models are implemented in AMPL [100] solved with Gurobi 6.5.0 [101] and

availability analysis is implemented in Python 2.7 [103] on a computer with 128 GB RAM

and Intel(R) Xeon(R) E5-2650 v3 CPU running at 2.3 GHz. In some topics, we call Gurobi

48

within Python in each loop where an ILP model is involved. This will be specified

explicitly where applicable.

49

CHAPTER 6 DESIGN AND AVAILABILITY

OPTIMIZATION OF SPAN-RESTORABLE NETWORKS2

As shown in the literature, network availability can be calculated both directly and

indirectly. For span-restorable networks, in the direct calculation, network service path

unavailability is calculated explicitly using a number of means (unavailability is preferred

to availability for calculation simplicity), while in the indirection calculation, availability

metrics are calculated to evaluate network availability [31]. In this chapter, we investigate

the conventional methods (i.e., both direct and indirect methods) and propose a new way

to evaluate network availability for span-restorable networks.

6.1 MOTIVATIONS AND GOALS

There are two major drawbacks of the conventional methods and we elaborate each

of them in this following.

(1) One drawback of the conventional methods is that the calculation stems from an

understanding of the behavior of the survivability scheme under single-failure scenarios,

where one failed span corresponds to one failed service path. In general, only one failed

span is involved, and there is no explicit concern about the interaction mechanism among

various dually failed spans.

Equations (4-3) through (4-7) show that current methods are all closely related to

2 This chapter is adapted from our journal paper: W. Wang, J. Doucette, “Dual-Failure Availability Analysis

of Span-Restorable Mesh Networks,” Journal of Network and Systems Management, vol. 24, no. 3, pp. 534–

556, July 2016.

50

𝑁𝑊𝐶(𝑖, 𝑗) . Nevertheless, for a given value of 𝑁𝑊𝐶(𝑖, 𝑗) , different connection

circumstances among channels may arise, as demonstrated in Figure 6.1. The solid lines in

the figure indicate a direct link between adjacent nodes, while the dashed lines represent

an indirect or multi-hop link (i.e., there are some other nodes between them). In either case,

whether connected by a solid line or a dashed line, each represents a service path between

the two nodes. Figure 6.1(a) shows a three-node and three-span network with explicit

working channels, and Figure 6.1(b), 6.1(c), and 6.1(d) display three distribution

circumstances of 𝑁𝑊𝐶(1,2), the value of which is 2. Under the circumstances shown in

Figure 6.1(b), the two non-restored working capacities are distributed on two different

service paths of the two failed spans. Thus, the number of non-restored service paths is

two. Under the circumstances in Figure 6.1(c), the two non-restored working capacities are

distributed on the same service path, i.e., the service path crosses both failed spans. Hence,

the number of non-restored service paths becomes one. Finally, in Figure 6.1(d), the two

units of non-restored working capacity are both on one failed span, leading to a single failed

service path. That is, with the same design of working capacity on each span and the same

value of 𝑁𝑊𝐶(𝑖, 𝑗) under each dual-failure scenario, the actual number of non-restored

service paths in the network can differ according to different distributions of 𝑁𝑊𝐶(𝑖, 𝑗) on

each failed span. This is because the number of units of non-restored working capacity

does not necessarily correspond to the same number of units of non-restored service paths

for dual-failure scenarios. Instead, the actual number of non-restored service paths is

determined by the distribution of each non-restored working capacity on the failed spans.

Note that the failed spans in Figure 6.1(b) and 6.1(c) are shown to be adjacent here merely

to simplify showing the shared service paths on the involved failed spans explicitly. In the

51

general case, this example can be extended to non-adjacent failed spans and similar

observations would be made. Also note that Figure 6.1 depicts only working channels.

More specifically, the working channels marked with an “X” are not restored, while the

others are restored using spare channels not shown.

Figure 6.1 – Illustrating different distribution circumstances of non-restored working capacity

(2) Another drawback of the conventional methods is that the order of the two span

failures in a specified dual-failure scenario is ignored. For example, the variable 𝑁𝑊𝐶(𝑖, 𝑗)

is usually calculated as the summation of 𝑁𝑊𝐶(𝑖) + 𝑁𝑊𝐶(𝑗), in which case, the value of

𝑁𝑊𝐶(𝑖, 𝑗) and 𝑁𝑊𝐶(𝑗, 𝑖) are assumed to be the same. As a matter of fact, the order of the

span failures is of great consequence in terms of dual-failure availability. This is because

Span 1 Span 2

Span 3

(a)

Span 1 Span 2

Span 3

(b)

Span 1 Span 2

Span 3

(c)

Span 1 Span 2

Span 3

(d)

52

the restoration of the first failure is our priority in a specified dual-failure scenario, as

discussed in Section 3.6.

Current methods, therefore, cannot reflect the accurate service path unavailability.

As such, we will present a new method in order to obtain more accurate network

availability.

6.2 SPECIFIC NUMBER OF LOST PATHS

The number of service paths that traverse both span 𝑖 and span 𝑗 is defined as the

number of shared service paths and denoted by 𝑆𝑃(𝑖, 𝑗). The best-case and worst-case

distributions are illustrated in terms of 𝑆𝑃(𝑖, 𝑗) in Figure 6.2. The dashed line represents

the shared service path by span 𝑖 and span 𝑗. In the best case (Figure 6.2 a), two of the four

non-restored units of working capacity are on one shared service path, and the other two

are on the other shared service path. That is, the 𝑖 and 𝑗 segments of the two shared service

paths are all occupied by the non-restored working capacity, resulting in the smallest

number of non-restored service paths. Conversely, in the worst case, neither of two non-

restored units of working capacity are on the 𝑖 and 𝑗 segments of the same service path,

leading to the maximum number of non-restored service paths.

53

Figure 6.2 – The best-case and worst-case distribution of non-restored working capacity

Based on the best-case distribution of each non-restored working capacity, i.e., the

distribution designed towards the smallest number of non-restored service paths, the

specific number of lost paths, denoted by 𝑁𝐿𝑃(𝑖, 𝑗), can be used to represent the number

of lost service paths (i.e., non-restored service paths), under dual failure (𝑖, 𝑗). Therefore,

qualitatively, 𝑁𝐿𝑃(𝑖, 𝑗) is based on the best-case distribution of non-restored working

capacity. Quantitatively, however, this best case needs parameterizing to calculate

𝑁𝐿𝑃(𝑖, 𝑗). The service paths that cross both failed spans simultaneously are employed as

an intermediate parameter for quantifying 𝑁𝐿𝑃(𝑖, 𝑗). Consequently, the specific number of

shared service paths, denoted by 𝑆𝑃(𝑖, 𝑗), is defined to represent the number of service

paths that traverse span 𝑖 and span 𝑗 simultaneously under dual-failure scenario (𝑖, 𝑗) .

Through simple derivation, the value of 𝑁𝐿𝑃(𝑖, 𝑗) can be acquired by

𝑁𝐿𝑃(𝑖, 𝑗) = {
max(𝑁𝑖,𝑗

𝑖 , 𝑁𝑖,𝑗
𝑗

) , 𝑆𝑃(𝑖, 𝑗) ≥ min(𝑁𝑖,𝑗
𝑖 , 𝑁𝑖,𝑗

𝑗
)

𝑁𝑖,𝑗
𝑖 + 𝑁𝑖,𝑗

𝑗
− 𝑆𝑃(𝑖, 𝑗), otherwise

 (6-1)

Span j

Span i

(a)

Span j

Span i

(b)

54

Here, 𝑁𝑖,𝑗
𝑖 , 𝑁𝑖,𝑗

𝑗
 are the number of units of non-restored working capacity on span 𝑖

and span 𝑗 under dual-failure scenario (𝑖, 𝑗), respectively. The definition and calculation of

𝑁𝐿𝑃(𝑖, 𝑗) manifests in such a way that 𝑁𝐿𝑃(𝑖, 𝑗) is closely related to individual 𝑁𝑖,𝑗
𝑖 and

𝑁𝑖,𝑗
𝑗

, rather than their sum. In this regard, we are able to take into account the order of two

span failures in a specified dual-failure scenario.

6.3 NEW DUAL-FAILURE SERVICE PATH UNAVAILABILITY

From previous discussion, current methods are span-based due to that 𝑁𝑊𝐶2, 𝑅2,

and 𝑆𝑃𝑈2 all concern the non-restored working capacity on each span. This is also the

reason for their inaccuracy in measuring dual-failure availability. In our proposed method,

the focal point is the individual service path, rather than spans. Due to its relationship with

𝑁𝐿𝑃(𝑖, 𝑗) and to avoid confusion with the original dual-failure service path 𝑆𝑃𝑈2, we refer

to this new dual-failure unavailability as the specific-number-of-lost-paths-based dual-

failure service path unavailability (𝑆𝐷𝑈). Under this definition, the conditions that a

service path is unavailable under a specific dual-failure scenario (𝑖, 𝑗) are:

(1) span 𝑖 and span 𝑗 are failed physically, and

(2) the lost number of service paths cannot be fully restored.

Hence, 𝑆𝐷𝑈(𝑖, 𝑗) , or, 𝑆𝐷𝑈 under a specific dual-failure scenario (𝑖, 𝑗) , can be

obtained through Eq. (6-2).

 𝑆𝐷𝑈(𝑖, 𝑗) = 𝑈𝑖
phy

∙ 𝑈𝑗
phy

∙
𝑁𝐿𝑃(𝑖,𝑗)

𝑤𝑖+𝑤𝑗−𝑆𝑃(𝑖,𝑗)
 (6-2)

𝑆𝐷𝑈 is thus the average of each specific 𝑆𝐷𝑈(𝑖, 𝑗), as shown in

55

 𝑆𝐷𝑈 =
∑ 𝑆𝐷𝑈(𝑖,𝑗)𝑖,𝑗∈𝑆|𝑖≠𝑗

|𝑃|
 (6-3)

6.4 MNDF-ML MODEL

In this section, we present our model framework to analyze and evaluate the various

availability metrics. This model framework is designed specifically for our purpose in this

chapter and has not been reported in the literature. For clarity and simplicity in the coming

discussion, (𝑁𝑊𝐶2, 𝑅2, 𝑆𝑃𝑈2, 𝑆𝐷𝑈) will be referred to tuples, and individually is tuple

elements. Before introducing this model framework, we will first state the assumptions,

notations, and ILP models related to it.

6.4.1 ASSUMPTIONS

Our interest is to investigate the relationships between tuple elements, so whether or

not the design itself is optimal with respect to capacity is not our concern. In fact, the design

suffices as long as it is feasible, i.e., the restoration scheme works in restoring the failed

spans with the reserved network designed for full single-failure restorability. We simply

wish to show the relative values of the availability indicators for some network as designed,

optimal or otherwise. Except the assumptions specified in Section 3.6, we assume all the

spans have the same physical failure rate, i.e., we make use of an average physical failure

rate for all spans.

6.4.2 NOTATIONS

Sets, parameters, and variables used in this model are illustrated as follows:

Sets:

56

𝑆 is the set of spans in the network.

𝐵𝑖 is the set of eligible backup routs for span 𝑖 under single-failure scenario 𝑖.

Parameters:

𝑤𝑖 is the amount of working capacity on span 𝑖.

𝑐𝑘 is the cost per unit capacity on span 𝑘.

𝛿𝑖,𝑘
𝑏 is a binary variable and takes 1 if backup route 𝑏 of span 𝑖 crosses span 𝑘.

𝐶∞ is a positive large constant.

𝐵 is the minimum cost to guarantee full single-failure restorability.

𝑁𝑊𝐶tar is the target value of the objective function at the first level.

𝐿(𝑚) is the level of each model in the iterations.

𝑠𝑡𝑒𝑝 is the difference of the lower bound of 𝑁𝑊𝐶2 between adjacent levels.

Variables:

𝑠𝑘 is the amount of spare capacity on span 𝑘.

𝑓𝑖
𝑏 is the amount of flow routed on backup route 𝑏 for restoration of span 𝑖 under

single-failure 𝑖.

𝑓𝑖,𝑗
𝑏,𝑖

 is the amount of flow routed on backup route 𝑏 for restoration of span 𝑖 under

dual-failure (𝑖, 𝑗).

57

6.4.3 MNDF-SL FORMULATION

The core ILP model in this chapter is the single level minimum non-restored working

capacity under dual-failure scenarios (MNDF-sl) ILP model. The objective function of

this new model is to minimize the total non-restored working capacity towards the target

value under dual-failure scenarios, with the available resources tailored for full single-

failure restorability. The ILP model itself proceeds as follows:

Minimize:

𝑁𝑊𝐶2 = ∑ 𝑁𝑊𝐶2(𝑖, 𝑗)𝑖,𝑗∈𝑆|𝑖≠𝑗 (6-4)

Subject to:

𝑁𝑊𝐶2 ≥ 𝑁𝑊𝐶tar + 𝑠𝑡𝑒𝑝 ∙ (𝐿(𝑚) − 1) (6-5)

𝑁𝑊𝐶2(𝑖, 𝑗) = 𝑤𝑖 + 𝑤𝑗 − ∑ 𝑓𝑖,𝑗
𝑏,𝑖

𝑏∈𝐵𝑖
− ∑ 𝑓𝑖,𝑗

𝑏,𝑗
𝑏∈𝐵𝑗

 ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗 (6-6)

∑ 𝑓𝑖
𝑏

𝑏∈𝐵𝑖
≥ 𝑤𝑖 ∀𝑖 ∈ 𝑆 (6-7)

𝑠𝑘 ≥ ∑ 𝑓𝑖
𝑏 ∙ 𝛿𝑖,𝑘

𝑏
𝑏∈𝐵𝑖

 ∀𝑖, 𝑘 ∈ 𝑆|𝑖 ≠ 𝑘 (6-8)

∑ 𝑓𝑖,𝑗
𝑏,𝑖

𝑏∈𝐵𝑖
≤ 𝑤𝑖 ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗 (6-9)

∑ 𝑓𝑖,𝑗
𝑏,𝑗

𝑏∈𝐵𝑗
≤ 𝑤𝑗 ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗 (6-10)

𝑠𝑘 ≥ ∑ 𝑓𝑖,𝑗
𝑏,𝑖

𝑏∈𝐵𝑖
∙ 𝛿𝑖,𝑘

𝑏 + ∑ 𝑓𝑖,𝑗
𝑏,𝑗

𝑏∈𝐵𝑗
∙ 𝛿𝑗,𝑘

𝑏 ∀𝑖, 𝑗, 𝑘 ∈ 𝑆|𝑖 ≠ 𝑗 ≠ 𝑘 (6-11)

𝑓𝑖,𝑗
𝑏,𝑖 ≤ 𝐶∞ ∙ (1 − 𝛿𝑖,𝑗

𝑏) ∀𝑖, 𝑗 ∈ 𝑆, 𝑏 ∈ 𝐵𝑖|𝑖 ≠ 𝑗 (6-12)

𝑓𝑖,𝑗
𝑏,𝑗

≤ 𝐶∞ ∙ (1 − 𝛿𝑗,𝑖
𝑏) ∀𝑖, 𝑗 ∈ 𝑆, 𝑏 ∈ 𝐵𝑗|𝑖 ≠ 𝑗 (6-13)

58

∑ 𝑐𝑘∙𝑠𝑘 ≤ 𝐵𝑘∈𝑆 (6-14)

𝑅2(𝑖, 𝑗) = 1 −
𝑁𝑊𝐶(𝑖,𝑗)

𝑤𝑖+𝑤𝑗
 ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗 (6-15)

𝑁𝑖,𝑗
𝑖 = 𝑤𝑖 − ∑ 𝑓𝑖,𝑗

𝑏,𝑖
𝑏∈𝐵𝑖

 ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗 (6-16)

𝑁𝑖,𝑗
𝑗

= 𝑤𝑗 − ∑ 𝑓𝑖,𝑗
𝑏,𝑖

𝑏∈𝐵𝑗
 ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗 (6-17)

Constraint (6-4) confines the lower bound of the objective function so that the

network can be designed close to this value in each level. Constraint (6-6) calculates the

amount of non-restored working capacity under each dual-failure scenario (𝑖, 𝑗) , by

subtracting the restored working capacity from the original working capacity affected by

the dual-failure scenarios. Constraint (6-7) asserts sufficient flow for restoring single-

failure fully through enabling the sum of flow on all the restoration routes of each span to

be larger than its working capacity value. Constraint (6-8) translates the flow requirement

from the restoration routes to the amount of spare capacity of the corresponding span. This

guarantees enough amount of spare capacity on each span for full single-failure

restorability. Constraint (6-9) and (6-10) assign the restoration flow on the restoration

routes to each failed span in each specific dual-failure scenario. Similar to single-failure

scenario, Constraint (6-11) translates the flow requirements on the restoration routes from

Constraints (6-9) and (6-10) to the amount of spare capacity of each span. Constraints (6-

12) and (6-13) asserts that the flow on the two failed spans in a given dual-failure scenario

cannot be used to restore the failed working flow on each other, owing to their simultaneous

failure. Constraint (6-14) ensures that the sum of spare capacity on all the spans should not

excess the budgeted resources. In this chapter, the available budget is the capacity resources

59

that utilized to afford full single-failure restorability. Constraint (6-15) computes dual-

failure restorability for each dual-failure scenario, which will be used to calculate 𝑅2 at the

calculation model. Constraints (6-16) and (6-17) calculate non-restored working capacity

on each failed span under dual-failure scenario, which will be employed to calculate 𝑁𝐿𝑃

at calculation model. Additional constraints not shown, namely integer and non-negativity,

are included in the model as well.

6.4.4 ASSISTANT ILP MODELS

To obtain the values for 𝐵 and 𝑁𝑊𝐶tar, two subsidiary ILP models are used. The

minimum cost single-failure (MCSF) model from [24] is employed to obtain the value of

𝐵 and the minimum non-restored working capacity under dual-failure (MNDF) model

from [79] is applied to acquire the value of 𝑁𝑊𝐶tar. The MCSF model aims to minimize

total cost while satisfying full single-failure restorability [24]. Thus, its ILP objective

function is to minimize 𝐶𝑜𝑠𝑡 = ∑ 𝑐𝑘 ∙ 𝑠𝑘𝑖∈𝑆 , and it utilizes only constraints (5-7) and (5-8),

above. Its objective function value is used as the budget limit in the MNDF model and our

MNDF-sl ILP model. The MNDF model seeks to minimize the total non-restored working

capacity over all dual-failure combinations in the network [79]. Its objective function is to

minimize 𝑁𝑊𝐶2 = ∑ 𝑁𝑊𝐶2(𝑖, 𝑗)𝑖,𝑗∈𝑆|𝑖≠𝑗 , and it utilizes constraints (6-5) through (5-14).

The value of the objective function can herein be used as the value of 𝑁𝑊𝐶tar in our

MNDF-sl model.

60

6.4.5 MNDF-ML MODEL FRAMEWORK

We can present our new model framework, which we call the multiple level minimum

non-restored working capacity under dual-failure scenarios (MNDF-ml) model

framework. Figure 6.3 shows the framework of this model framework and the interactions

among its components.

Figure 6.3 – The framework of MNDF-ml model

As shown in Figure 6.3, the MNDF-ml model framework is made up of a series of

our MNDF-sl ILP model, the MCSF and MNDF ILP models, and two mathematical

calculating models (one for calculating 𝑆𝑃(𝑖, 𝑗) and one for calculating tuples). To obtain

a series of tuple values, 𝑁𝑊𝐶2 is chosen as the reference to calculate the remainder of the

tuple elements. More specifically, we use 𝑁𝑊𝐶2 as the objective to perform the network

MNDF-sl ILP models Assistant ILP models

Mathematical model

MCSF model

MNDF model

𝐵

𝑆𝑃(𝑖, 𝑗) model

Tuple model

MNDF-sl at Level 1

MNDF-sl at Level 2

MNDF-sl at Level 𝐾

…

𝐵

𝑁𝑊𝐶tar

Intermediate parameters

61

design, and then calculate the other tuple elements after the design. Each instance of our

MNDF-sl ILP model is used to obtain one 𝑁𝑊𝐶2 value and the values of corresponding

intermediate variables that are necessary to calculate the other tuple elements. However,

one tuple value cannot adequately reflect the relationships among its elements (i.e., their

relative trends), so multiple tuple values are needed. Let 𝐾 (𝐾 ≥ 3) be the number of tuples

for analyzing the relationships among the tuple elements. Each tuple corresponds to one

ILP model, so 𝐾 tuples corresponds to 𝐾 ILP models. To distinguish the various

constituent ILP models, each model is referred to as a level and denoted by 𝐿(𝑘) (𝑘 =

1,2, ⋯ , 𝐾). The MCSF model provides the value of budget 𝐵 to MNDF model, and the

MNDF model produces the value of 𝑁𝑊𝐶tar to each instance of our MNDF-sl ILP model.

𝐾 groups of intermediate data are generated by 𝐾 MNDF-sl ILP models and passed to the

mathematical models to calculate the final tuple value.

6.5 MNDF-ML MODEL IMPLEMENTATION

6.5.1 ITERATIVE MNDF-ML APPROACH

As previously stated, the MNDF-ml model consists of three major components. The

first is a series of MNDF-sl implementations. Each instance of the MNDF-sl model obtains

the value of 𝐵 from the MCSF model and the value of 𝑁𝑊𝐶tar from the MNDF model.

After solving each instance of MNDF-sl, the results are used to calculate the value of the

tuple at each iteration. The MNDF-ml model is illustrated in Figure 6.4.

62

Figure 6.4 – The flowchart of calculating MNDF-ml model

Solve MNDF with CPLEX under AMPL

Determine the value of 𝑁𝑊𝐶tar

Solve MCSF with CPLEX under AMPL

Input topology and demand information

Determine the value of 𝐵

Obtain the value of objective function (𝑁𝑊𝐶2) and

intermediate variables

(𝑅2(𝑖, 𝑗), 𝑁𝑖,𝑗
𝑖 , and 𝑁𝑖,𝑗

𝑗
, ∀ 𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗)

𝑘 = 𝑘 + 1

𝐿(𝑘) > 𝐾?

No

Yes

Determine the value of 𝐾

Solve MNDF-sl model with CPLEX under AMPL

Initialize 𝑘 = 1

Python calculation model

Obtain the value of the tuple

Obtain MNDF-sl model

Start

End

Output the value of tuple at 𝑙𝑒𝑣𝑒𝑙 = 𝐿(𝑘)

63

First, the MCSF model is solved using a known network topology and traffic

demands, and solved for minimum cost under full single-failure restorability. The

minimized cost obtained is the value subsequently used for 𝐵.

Second, the MNDF model is solved using the previously obtained value of 𝐵 to

determine the minimum non-restored working capacity. The value obtained here is used as

𝑁𝑊𝐶tar.

Then we determine the values of 𝐾 and 𝑠𝑡𝑒𝑝, initialize the value of 𝑘, and cycle

through 𝑘 to solve each subsequent MNDF-sl model. We solve for 𝑅2(𝑖, 𝑗), 𝑁𝑖,𝑗
𝑖 , and 𝑁𝑖,𝑗

𝑗

under each dual-failure scenario (𝑖, 𝑗). Once the loop index 𝑘 is larger than that of the target

loop size 𝐾, we exit to calculate the value of the tuple.

The MCSF and MNDF models are implemented in AMPL and solved with CPLEX

12.6.2 on a 12-core ACPI multiprocessor X64-based PC with Intel Xeon® CPU E5-2430

running at 2.2 GHz with 95 GB RAM. The iterative tuple calculations are implemented in

Python 2.7.

6.5.2 IMPLEMENTATION OF CURRENT METHODS

Because the value of 𝑁𝑊𝐶2 can be obtained from the objective function value of

MNDF-sl model, only 𝑅2 and 𝑆𝑃𝑈2 remain to be calculated. The calculation procedure for

𝑅2 and 𝑆𝑃𝑈2 is illustrated in Figure 6.5. As in Figure 6.4 previously, 𝐾 groups of data are

obtained from 𝐾 instances of the MNDF-sl model and used to produce tuple values. Within

each group of data, the values of 𝑁𝑊𝐶2, |𝑆| and 𝑤𝑖 (𝑖 ∈ 𝑆) are required to calculate 𝑅2.

64

The value of 𝑁𝑊𝐶2 can be obtained from the MNDF-sl model, and the values of |𝑆| and

𝑤𝑖 (𝑖 ∈ 𝑆) can be obtained from the topology and demand inputs.

65

Figure 6.5 – Implementation for current availability methods

Calculate 𝑈𝑖
∗ = 𝑈𝑖

phy ∑ 𝑈𝑗
phy

(2 − 𝑅2(𝑖, 𝑗) − 𝑅2(𝑗, 𝑖)), ∀𝑖 ∈ 𝑆𝑗∈𝑆|𝑗≠𝑖

Calculate 𝑈𝑝 = ∑ 𝑈𝑖
∗

𝑖∈𝑆𝑝
∀ 𝑝 ∈ 𝑃

Calculate 𝑆𝑃𝑈2 =
∑ 𝑈𝑝𝑝∈𝑃

|𝑃|

Input data from each MNDF-sl model:

𝑁𝑊𝐶2, 𝑅2(𝑖, 𝑗), 𝑁𝑖,𝑗
𝑖 , 𝑁𝑖,𝑗

𝑗
, ∀ 𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗)

Start

For each level 𝑘 (𝑘 = 1, 2, …, 𝐾)

Input topology and demand data:

𝑆, |𝑆|, 𝑤𝑖, 𝑖 ∈ 𝑆,𝑈𝑖
phy

, 𝑈𝑗
phy

, P, |𝑃|, 𝑆𝑝

Calculate 𝑅2 = 1 −
𝑁𝑊𝐶2

2(|𝑆|−1) ∑ 𝑤𝑖𝑖∈𝑆

All 𝑘 (𝑘 = 1, 2, …, 𝐾) are

considered?

End

No

Yes

Output data for all levels: 𝑁𝑊𝐶2, 𝑅2, 𝑆𝑃𝑈2

66

6.5.3 IMPLEMENTATION OF NEW METHOD

According to the calculation formulas for 𝑅2 and 𝑆𝑃𝑈2 , all the variables and

parameters can be obtained through the MNDF-sl model directly. 𝑆𝐷𝑈, however, cannot

be obtained simply, as one of its intermediate calculations, 𝑆𝑃(𝑖, 𝑗), is not known explicitly

from the MNDF-sl model. Herein 𝑆𝐷𝑈 cannot be calculated with direct iteration without

the value of 𝑆𝑃(𝑖, 𝑗). For two arbitrary distinct spans 𝑖, 𝑗 in the network, 𝑆𝑃(𝑖, 𝑗) can be

obtained by adding up the demands of all the working routes that cross over 𝑖, 𝑗

simultaneously. Figure 6.6 depicts the pseudo code for calculating 𝑆𝑃(𝑖, 𝑗) in detail, where

getSP() is the function for calculating 𝑆𝑃(𝑖, 𝑗) for span 𝑖, 𝑗. 𝑆𝑃(𝑖, 𝑗) is represented by sp,

and we use three input arguments: i and j, which are the two unique spans in question,

and routes, which is the set of working routes for each demand. For simplification, we

assume all working traffic between any origin-destination node pair is routed through a

single working route. Each working route is acquired through Dijkstra’s algorithm [116]

and expressed by a set of ordered spans. Thus, route indicates the individual working

route composed by an ordered set of spans. The theory is to iterate through all the working

routes in the network in search of the service routes crossing 𝑖 and 𝑗 . This process is

implemented in Python 2.7.

01 function getSP(i, j, routes)

02 sp ← 0

03 for route in routes

04 if i in route and j in route

05 sp ← sp + route.demands

06 end if

07 end for

08 end function

Figure 6.6 – Pseudo code for calculating shared service paths

67

After obtaining 𝑆𝑃(𝑖, 𝑗) for (𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗) in each level, 𝑆𝐷𝑈 can be calculated

through the procedure described in Figure 6.7. The values of 𝑁𝑖,𝑗
𝑖 and 𝑁𝑖,𝑗

𝑗
 for (𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗)

are obtained from the corresponding MNDF-sl model, and the values of 𝑆𝑃(𝑖, 𝑗) for (𝑖, 𝑗 ∈

𝑆|𝑖 ≠ 𝑗) are obtained from the above-mentioned mathematical calculations. As shown in

the figure, if at any level the value of 𝑆𝑃(𝑖, 𝑗) for (𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗) is larger than the smaller

of 𝑁𝑖,𝑗
𝑖 and 𝑁𝑖,𝑗

𝑗
, then the value of 𝑁𝐿𝑃(𝑖, 𝑗) is set to the larger of 𝑁𝑖,𝑗

𝑖 and 𝑁𝑖,𝑗
𝑗

; otherwise,

𝑁𝐿𝑃(𝑖, 𝑗) is set to the sum of 𝑁𝑖,𝑗
𝑖 and 𝑁𝑖,𝑗

𝑗
 subtracting 𝑆𝑃(𝑖, 𝑗). 𝑆𝐷𝑈(𝑖, 𝑗) is then calculated

for (𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗), and overall 𝑆𝐷𝑈 is calculated as the average of 𝑆𝐷𝑈(𝑖, 𝑗) over (𝑖, 𝑗 ∈

𝑆|𝑖 ≠ 𝑗). This calculation process is also implemented in Python 2.7.

68

Figure 6.7 – Implementation for new dual-failure unavailability

Output data: 𝑆𝐷𝑈(𝑘), ∀𝑘 ∈ 𝐾

Calculate 𝑆𝐷𝑈(𝑖, 𝑗) = 𝑈𝑖
phy

∙ 𝑈𝑗
phy

∙
𝑁𝐿𝑃(𝑖,𝑗)

𝑤𝑖+𝑤𝑗−𝑆𝑃(𝑖,𝑗)

Is (𝑖, 𝑗) ≥ min(𝑁𝑖,𝑗
𝑖 , 𝑁𝑖,𝑗

𝑗
) ?

Calculate 𝑁𝐿𝑃(𝑖, 𝑗) = max(𝑁𝑖,𝑗
𝑖 , 𝑁𝑖,𝑗

𝑗
)

Calculate 𝑁𝐿𝑃(𝑖, 𝑗) = 𝑁𝑖,𝑗
𝑖 + 𝑁𝑖,𝑗

𝑗
− 𝑆𝑃(𝑖, 𝑗)

Yes

No

Calculate 𝑆𝐷𝑈(𝑘) =
∑ 𝑆𝐷𝑈(𝑖,𝑗)𝑖,𝑗

|𝑃|

Start

For each level k (k = 1, 2, …, K)

Obtain data for calculating 𝑁𝐿𝑃:

𝑁𝑖,𝑗
𝑖 , 𝑁𝑖,𝑗

𝑗
, 𝑆𝑃(𝑖, 𝑗), ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗

For ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗

All 𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗 considered?

Yes

All 𝑘 ∈ 𝐾 considered?

Input data from each MNDF-sl model:

𝑁𝑖,𝑗
𝑖 , 𝑁𝑖,𝑗

𝑗
, ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗

Input data from Python program:

𝑆𝑃(𝑖, 𝑗), ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗

Input data from topology and demand

No

Yes

No

End

69

6.6 EXPERIMENTS

6.6.1 EXPERIMENTAL NETWORKS

To evaluate the relationships among the aforementioned availability metrics,

experiments were conducted using six networks with a variety of topologies and sizes.

Networks (a) and (b) are reported in [18], and Networks (c) through (f) are created by

ourselves. The topology of all the experimental networks are depicted in Figure 6.8. We

assume the physical unavailability of each span is 3×10-4 [26], and the value of 𝐾 is 20.

The 𝑠𝑡𝑒𝑝 is 10 and 100 for the detailed range and general range (which will be explained

in the results), respectively.

70

Figure 6.8 – The topology of experimental networks

20-node 35-span network 30-node 55-span network

40-node 68-span network 50-node 75-span network

60-node 96-span network 70-node 105-span network

71

6.6.2 EXPERIMENTAL RESULTS

Experimental results are shown from Figure 6.9 through Figure 6.32. Within each

figure, the x-axis represents the number of non-restored working capacity in the event of

dual-failures. The y-axis represents dual-failure restorability and dual-failure service path

unavailability, or new dual-failures unavailability, respectively, with increasing non-

restored spare capacity in the network. With respect to each experimental network, the first

figure shows the variation trend of 𝑅2 and 𝑆𝑃𝑈2 with the changing values of 𝑁𝑊𝐶2; the

second figure shows the changing trend of 𝑆𝐷𝑈 with the changing values of 𝑁𝑊𝐶2; the

third figure zooms in the first figure to display details; the fourth figure zooms in the second

figure to describe its details. We are doing this zoom-in is because in the original figures,

the span of the number of non-restored working capacity in the x-axis is very large if we

want to look at the relationship between the total non-restored working capacity and the

other indicators closely.

72

Figure 6.9 – Dual failure restorability and service path unavailability for 20-node 35-span

network

Figure 6.10 – New dual failure restorability for 20-node 35-span network

2.360E-06

2.380E-06

2.400E-06

2.420E-06

2.440E-06

2.460E-06

2.480E-06

2.500E-06

2.520E-06

2.540E-06

2.560E-06

0.8460

0.8470

0.8480

0.8490

0.8500

0.8510

0.8520

0.8530

0.8540

0.8550

0.8560

0.8570

0.8580

27000 27500 28000 28500 29000 29500

D
u

al
 F

ai
lu

re
 S

er
v
ic

e
P

at
h

s
U

n
av

ai
la

b
il

it
y
,

S
P

U
2

D
u

al
 F

ai
lu

re
 R

es
to

ra
b

il
it

y
,
R

2

Total Number of Non-Restored Working Capacity, NWC2

R2 SPU2

1.25E-05

1.26E-05

1.27E-05

1.28E-05

1.29E-05

1.30E-05

1.31E-05

1.32E-05

1.33E-05

1.34E-05

27000 27500 28000 28500 29000 29500

N
ew

 D
u
al

-f
ai

lu
re

 U
n
av

ai
la

b
il

it
y
,
S

D
U

Total Number of Non-Restored Working Capacity, NWC2

73

Figure 6.11 – Dual failure restorability and service path unavailability for 20-node 35-span

network (zoom-in version)

Figure 6.12 – New dual failure restorability for 20-node 35-span network (zoom-in version)

2.360E-06

2.380E-06

2.400E-06

2.420E-06

2.440E-06

2.460E-06

2.480E-06

2.500E-06

2.520E-06

2.540E-06

2.560E-06

0.8460

0.8470

0.8480

0.8490

0.8500

0.8510

0.8520

0.8530

0.8540

0.8550

0.8560

0.8570

0.8580

27200 27250 27300 27350 27400 27450

D
u

al
 F

ai
lu

re
 S

er
v
ic

e
P

at
h

s
U

n
av

ai
la

b
il

it
y
,

S
P

U
2

D
u

al
 F

ai
lu

re
 R

es
to

ra
b

il
it

y
,
R

2

Total Number of Non-Restored Working Capacity, NWC2

R2 SPU2

1.25E-05

1.25E-05

1.26E-05

1.26E-05

1.26E-05

1.26E-05

1.27E-05

1.27E-05

1.27E-05

1.27E-05

1.28E-05

27200 27250 27300 27350 27400 27450

N
ew

 D
u
al

-f
ai

lu
re

 U
n
av

ai
la

b
il

it
y
,
S

D
U

Total Number of Non-Restored Working Capacity, NWC2

74

Figure 6.13 – Dual failure restorability and service path unavailability for 30-node 55-span

network

Figure 6.14 – New dual failure restorability for 30-node 55-span network

0.8855

0.8860

0.8865

0.8870

0.8875

0.8880

0.8885

94500 95000 95500 96000 96500 97000

D
u

al
 F

ai
lu

re
 S

er
v
ic

e
P

at
h

s
U

n
av

ai
la

b
il

it
y
,

S
P

U
2

D
u

al
 F

ai
lu

re
 R

es
to

ra
b

il
it

y
,
R

2

Total Number of Non-Restored Working Capacity, NWC2

R2 SPU2

2.36E-05

2.37E-05

2.38E-05

2.39E-05

2.40E-05

2.41E-05

2.42E-05

2.43E-05

94500 95000 95500 96000 96500 97000

N
ew

 D
u

al
-f

ai
lu

re
 U

n
av

ai
la

b
il

it
y
,
S

D
U

Total Number of Non-Restored Working Capacity, NWC2

75

Figure 6.15 – Dual failure restorability and service path unavailability for 30-node 55-span

network (zoom-in version)

Figure 6.16 – New dual failure restorability for 30-node 55-span network (zoom-in version)

3.458E-06

3.463E-06

3.468E-06

3.473E-06

3.478E-06

3.483E-06

3.488E-06

0.8530

0.8535

0.8540

0.8545

0.8550

0.8555

0.8560

0.8565

0.8570

94700 94750 94800 94850 94900 94950

D
u

al
 F

ai
lu

re
 S

er
v
ic

e
P

at
h

s
U

n
av

ai
la

b
il

it
y
,

S
P

U
2

D
u

al
 F

ai
lu

re
 R

es
to

ra
b

il
it

y
,
R

2

Total Number of Non-Restored Working Capacity, NWC2

R2 SPU2

2.37E-05

2.37E-05

2.37E-05

2.37E-05

2.38E-05

2.38E-05

2.38E-05

2.38E-05

2.39E-05

2.39E-05

2.39E-05

2.39E-05

2.40E-05

2.40E-05

94700 94750 94800 94850 94900 94950

N
ew

 D
u
al

-f
ai

lu
re

 U
n
av

ai
la

b
il

it
y
,
S

D
U

Total Number of Non-Restored Working Capacity, NWC2

76

Figure 6.17 – Dual failure restorability and service path unavailability for 40-node 68-span

network

Figure 6.18 – New dual failure restorability for 40-node 68-span network

4.570E-06

4.575E-06

4.580E-06

4.585E-06

4.590E-06

4.595E-06

4.600E-06

4.605E-06

4.610E-06

4.615E-06

4.620E-06

0.9001

0.9002

0.9003

0.9004

0.9005

0.9006

0.9007

0.9008

0.9009

0.9010

0.9011

0.9012

212000 212500 213000 213500 214000 214500

D
u

al
 F

ai
lu

re
 S

er
v
ic

e
P

at
h

s
U

n
av

ai
la

b
il

it
y
,

S
P

U
2

D
u

al
 F

ai
lu

re
 R

es
to

ra
b

il
it

y
,
R

2

Total Number of Non-Restored Working Capacity, NWC2

R2 SPU2

3.240E-05

3.245E-05

3.250E-05

3.255E-05

3.260E-05

3.265E-05

3.270E-05

3.275E-05

3.280E-05

3.285E-05

3.290E-05

212000 212500 213000 213500 214000 214500

N
ew

 D
u

al
-f

ai
lu

re
 U

n
av

ai
la

b
il

it
y
,
S

D
U

Total Number of Non-Restored Working Capacity, NWC2

77

Figure 6.19 – Dual failure restorability and service path unavailability for 40-node 68-span

network (zoom-in version)

Figure 6.20 – New dual failure restorability for 40-node 68-span network (zoom-in version)

4.5740E-06

4.5760E-06

4.5780E-06

4.5800E-06

4.5820E-06

4.5840E-06

4.5860E-06

4.5880E-06

4.5900E-06

0.90080

0.90085

0.90090

0.90095

0.90100

0.90105

0.90110

212450 212500 212550 212600 212650 212700

D
u

al
 F

ai
lu

re
 S

er
v
ic

e
P

at
h

s
U

n
av

ai
la

b
il

it
y
,

S
P

U
2

D
u

al
 F

ai
lu

re
 R

es
to

ra
b

il
it

y
,
R

2

Total Number of Non-Restored Working Capacity, NWC2

R2 SPU2

3.240E-05

3.245E-05

3.250E-05

3.255E-05

3.260E-05

3.265E-05

3.270E-05

3.275E-05

212450 212500 212550 212600 212650 212700

N
ew

 D
u
al

-f
ai

lu
re

 U
n
av

ai
la

b
il

it
y
,
S

D
U

Total Number of Non-Restored Working Capacity, NWC2

78

Figure 6.21 – Dual failure restorability and service path unavailability for 50-node 75-span

network

Figure 6.22 – New dual failure restorability for 50-node 75-span network

5.8400E-06

5.8450E-06

5.8500E-06

5.8550E-06

5.8600E-06

5.8650E-06

5.8700E-06

5.8750E-06

0.91490

0.91495

0.91500

0.91505

0.91510

0.91515

0.91520

0.91525

0.91530

0.91535

436000 436500 437000 437500 438000 438500

D
u

al
 F

ai
lu

re
 S

er
v
ic

e
P

at
h

s
U

n
av

ai
la

b
il

it
y
,

S
P

U
2

D
u

al
 F

ai
lu

re
 R

es
to

ra
b

il
it

y
,
R

2

Total Number of Non-Restored Working Capacity, NWC2

R2 SPU2

3.290E-05

3.295E-05

3.300E-05

3.305E-05

3.310E-05

3.315E-05

3.320E-05

436000 436500 437000 437500 438000 438500

N
ew

 D
u
al

-f
ai

lu
re

 U
n
av

ai
la

b
il

it
y
,
S

D
U

Total Number of Non-Restored Working Capacity, NWC2

79

Figure 6.23 – Dual failure restorability and service path unavailability for 50-node 75-span

network (zoom-in version)

Figure 6.24 – New dual failure restorability for 50-node 75-span network (zoom-in version)

5.841E-06

5.844E-06

5.847E-06

5.850E-06

5.853E-06

5.856E-06

5.859E-06

5.862E-06

5.865E-06

0.91520

0.91522

0.91523

0.91525

0.91526

0.91528

0.91529

0.91531

0.91532

436250 436300 436350 436400 436450 436500

D
u

al
 F

ai
lu

re
 S

er
v
ic

e
P

at
h

s
U

n
av

ai
la

b
il

it
y
,

S
P

U
2

D
u

al
 F

ai
lu

re
 R

es
to

ra
b

il
it

y
,
R

2

Total Number of Non-Restored Working Capacity, NWC2

R2 SPU2

3.292E-05

3.294E-05

3.296E-05

3.298E-05

3.300E-05

3.302E-05

3.304E-05

3.306E-05

3.308E-05

436250 436300 436350 436400 436450 436500

N
ew

 D
u

al
-f

ai
lu

re
 U

n
av

ai
la

b
il

it
y
,
S

D
U

Total Number of Non-Restored Working Capacity, NWC2

80

Figure 6.25 – Dual failure restorability and service path unavailability for 60-node 96-span

network

Figure 6.26 – New dual failure restorability for 60-node 96-span network

6.274E-06

6.276E-06

6.278E-06

6.280E-06

6.282E-06

6.284E-06

6.286E-06

6.288E-06

6.290E-06

6.292E-06

6.294E-06

0.93043

0.93045

0.93048

0.93050

0.93053

0.93055

0.93058

0.93060

0.93063

0.93065

676500 677000 677500 678000 678500 679000

D
u

al
 F

ai
lu

re
 S

er
v
ic

e
P

at
h

s
U

n
av

ai
la

b
il

it
y
,

S
P

U
2

D
u

al
 F

ai
lu

re
 R

es
to

ra
b

il
it

y
,
R

2

Total Number of Non-Restored Working Capacity, NWC2

R2 SPU2

4.508E-05

4.512E-05

4.516E-05

4.520E-05

4.524E-05

4.528E-05

4.532E-05

4.536E-05

676500 677000 677500 678000 678500 679000

N
ew

 D
u
al

-f
ai

lu
re

 U
n
av

ai
la

b
il

it
y
,
S

D
U

Total Number of Non-Restored Working Capacity, NWC2

81

Figure 6.27 – Dual failure restorability and service path unavailability for 60-node 96-span

network (zoom-in version)

Figure 6.28 – New dual failure restorability for 60-node 96-span network (zoom-in version)

6.2730E-06

6.2750E-06

6.2770E-06

6.2790E-06

6.2810E-06

6.2830E-06

6.2850E-06

0.930550

0.930560

0.930570

0.930580

0.930590

0.930600

0.930610

0.930620

0.930630

0.930640

0.930650

676750 676800 676850 676900 676950 677000 677050

D
u

al
 F

ai
lu

re
 S

er
v
ic

e
P

at
h

s
U

n
av

ai
la

b
il

it
y
,

S
P

U
2

D
u

al
 F

ai
lu

re
 R

es
to

ra
b

il
it

y
,
R

2

Total Number of Non-Restored Working Capacity, NWC2

R2 SPU2

4.492E-05

4.496E-05

4.500E-05

4.504E-05

4.508E-05

4.512E-05

4.516E-05

4.520E-05

4.524E-05

4.528E-05

4.532E-05

676750 676800 676850 676900 676950 677000 677050

N
ew

 D
u

al
-f

ai
lu

re
 U

n
av

ai
la

b
il

it
y
,
S

D
U

Total Number of Non-Restored Working Capacity, NWC2

82

Figure 6.29 – Dual failure restorability and service path unavailability for 70-node 105-span

network

Figure 6.30 – New dual failure restorability for 70-node 105-span network

7.4000E-06

7.4020E-06

7.4040E-06

7.4060E-06

7.4080E-06

7.4100E-06

7.4120E-06

7.4140E-06

7.4160E-06

0.93406

0.93408

0.93410

0.93412

0.93414

0.93416

0.93418

0.93420

1098500 1099000 1099500 1100000 1100500 1101000

D
u

al
 F

ai
lu

re
 S

er
v
ic

e
P

at
h

s
U

n
av

ai
la

b
il

it
y
,

S
P

U
2

D
u

al
 F

ai
lu

re
 R

es
to

ra
b

il
it

y
,
R

2

Total Number of Non-Restored Working Capacity, NWC2

R2 SPU2

5.150E-05

5.155E-05

5.160E-05

5.165E-05

5.170E-05

5.175E-05

5.180E-05

5.185E-05

5.190E-05

5.195E-05

5.200E-05

1098500 1099000 1099500 1100000 1100500 1101000

N
ew

 D
u
al

-f
ai

lu
re

 U
n
av

ai
la

b
il

it
y
,
S

D
U

Total Number of Non-Restored Working Capacity, NWC2

83

Figure 6.31 – Dual failure restorability and service path unavailability for 70-node 105-span

network (zoom-in version)

(d)

Figure 6.32 – New dual failure restorability for 70-node 105-span network (zoom-in version)

0.934150

0.934155

0.934160

0.934165

0.934170

0.934175

0.934180

0.934185

0.934190

0.934195

0.934200

7.4006E-06

7.4011E-06

7.4016E-06

7.4021E-06

7.4026E-06

7.4031E-06

7.4036E-06

7.4041E-06

7.4046E-06

1098750 1098800 1098850 1098900 1098950

u
al

 F
ai

lu
re

 S
er

v
ic

e
P

at
h

s
U

n
av

ai
la

b
il

it
y
,
 S

P
U

2

D
u

al
 F

ai
lu

re
 R

es
to

ra
b

il
it

y
,
R

2

Total Number of Non-Restored Working Capacity, NWC2

R2 SPU2

5.154E-05

5.156E-05

5.158E-05

5.160E-05

5.162E-05

5.164E-05

5.166E-05

5.168E-05

5.170E-05

5.172E-05

5.174E-05

5.176E-05

1098760 1098800 1098840 1098880 1098920

N
ew

 D
u

al
-f

ai
lu

re
 U

n
av

ai
la

b
il

it
y
,
S

D
U

Total Amount of Non-Restored Working Capacity, NWC2

84

In general, experimental results reveal similar patterns for corresponding methods in

the experimental networks, suggesting that our findings are neither related to network

topology nor size.

In detail, the plots regarding dual-failure restorability and dual-failure service path

unavailability are nearly linear, one with positive slope (𝑆𝑃𝑈2) and the other with negative

slope (𝑅2). That is to say, both 𝑆𝑃𝑈2 and 𝑅2 are approximately linearly correlated to

𝑁𝑊𝐶2, but in opposite directions and with differing scale. While in terms of 𝑆𝐷𝑈, each

curve shows a dramatic fluctuation as 𝑁𝑊𝐶2 climbs linearly in its selected range. In other

words, 𝑆𝐷𝑈 does not have an obvious pattern towards changing 𝑁𝑊𝐶2. On the other hand,

𝑆𝐷𝑈 is smaller than its counterpart, 𝑆𝑃𝑈2 . This is reasonable because 𝑆𝐷𝑈 is defined

towards the smallest number of lost service paths, while 𝑁𝑊𝐶2 takes into account each

non-restored working capacity regardless of the failed spans’ relationship.

6.7 CONCLUSION

Two overall approaches have been utilized to date for analyzing availability arising

from dual-failure scenarios. The indirect method uses availability metrics (e.g., 𝑁𝑊𝐶2, 𝑅2

and 𝑆𝑃𝑈2), and the direct approach explicitly calculates service path unavailability (𝑆𝑃𝑈2).

Moreover, both 𝑆𝑃𝑈2 and 𝑅2 have been treated as though they are proportional to 𝑁𝑊𝐶2,

or at least strong metrics for it; it is generally assumed in the literature that minimizing

𝑆𝑃𝑈2 is equivalent to maximizing 𝑅2, and that both minimal 𝑆𝑃𝑈2 and maximal 𝑅2 can be

achieved by minimizing 𝑁𝑊𝐶2 . Meanwhile, minimizing 𝑁𝑊𝐶2 is the most common

method for enhancing a network’s service availability. This chapter investigated the

correctness of those assumptions and current methods for determining service availability

85

and finds that this is not generally the case. 𝑆𝐷𝑈 was proposed as a surrogate of current

dual-failure unavailability to better assess network availability. To implement our

evaluation method, an MNDF-ml framework was developed to investigate the

relationships between the aforementioned metrics. Based on experiments conducted on

four span-restorable mesh networks, we make the following conclusions.

(1) From theoretical analysis, 𝑁𝑊𝐶2, 𝑅2 and 𝑆𝑃𝑈2 cannot directly lend themselves

to evaluate dual-failure service availability. Conversely, the proposed 𝑆𝐷𝑈 is a more

accurate expression of dual-failure unavailability.

(2) Experiments on six test-case networks suggest that 𝑅2 can be maximized by

minimizing 𝑁𝑊𝐶2 and 𝑆𝑃𝑈2can be minimized through minimizing 𝑁𝑊𝐶2, but there is no

obvious relationship between 𝑆𝐷𝑈 and 𝑁𝑊𝐶2.

The advent of this new metric is helpful in both a theoretical and a practical manner.

Theoretically, it helps to differentiate the concepts of total lost working capacity and total

lost working path. In fact, these two are not necessarily to equal in value, which is as in

most cases. And practically, we now have a more accurate metric to rely on when reporting

network availability or unavailability.

86

CHAPTER 7 DESIGN AND AVAILABILITY

ANALYSIS OF SHARED BACKUP PATH PROTECTION

NETWORKS3

In this chapter, we look at the SBPP survivable mesh networks. We start from the

capacity design of the network by investigating currently used ILP models, and then move

on to network availability analysis for a network designed to be full single-failure

restorable using SBPP mechanism.

7.1 TRADITIONAL SBPP ILP MODELS

7.1.1 NOTATION

We define sets, parameters, and variables in this section in the following:

Sets:

𝐷 is the set of all demands in the network.

𝑆 is the set of all spans in the network.

𝑆𝑏 is the set of spans on candidate backup route 𝑏.

𝑃𝑟 is the set of candidate primary routes for demand 𝑟.

𝑃𝑖
𝑟 is the set of candidate primary routes that cross span 𝑖 for demand 𝑟.

3 W. Wang, J. Doucette, “Optimized Design and Availability Analysis of Large-Scale Shared Backup Path

Protected Networks,” Telecommunication Systems, accepted on 12th September 2017, available online at:

https://doi.org/10.1007/s11235-017-0392-2.

87

𝐵𝑟 is the set of candidate backup routes for demand 𝑟.

𝐵𝑘
𝑟 is the set of candidate backup routes that cross span 𝑘 for demand 𝑟.

Parameters:

𝑐𝑘 is the cost of assigning one unit of working or backup capacity to span 𝑘.

𝑑𝑟 is the magnitude of demand 𝑟.

𝜁𝑘
𝑝,𝑟

 is the working route vector, binary, taking on a value of 1 if candidate working

route 𝑝 of demand 𝑟 crosses span 𝑘.

𝜉𝑘
𝑏,𝑟

 is the backup route vector, binary, taking on a value of 1 if candidate backup

route 𝑏 of demand 𝑟 crosses span 𝑘.

𝜉𝑘
𝑏,𝑝,𝑟

 is the backup route vector, taking on a value of 1 if candidate backup route 𝑏

for candidate primary route 𝑝 of demand 𝑟 crosses span 𝑘, and 0 otherwise.

Variables:

𝑤𝑘 is the amount of working capacity assigned to span 𝑘.

𝑠𝑘 is the amount of backup capacity assigned to span 𝑘.

𝑤𝑝
𝑟 is a binary variable in the single-flow design model, which equals 1 if the

candidate primary route 𝑝 of demand 𝑟 is assigned as the actual working route and 0

otherwise; an integer variable in multi-flow design model, which represents the number of

units allocated to candidate working route 𝑝 of demand 𝑟.

𝑓𝑏
𝑝,𝑟

 is an integer variable representing the amount of units allocated to candidate

88

backup route 𝑏 for candidate primary route 𝑝 of demand 𝑟.

𝑓𝑏
𝑟 is a binary variable indicating whether candidate backup route 𝑏 is assigned as

the actual backup route of demand 𝑟, with a value of 1 if assigned and 0 otherwise.

𝛿𝑏
𝑝,𝑟

 is a dummy binary variable denoting the multiplication of 𝑓𝑏
𝑟 and 𝑤𝑝

𝑟, taking a

value of 1 if and only if both 𝑓𝑏
𝑟 and 𝑤𝑝

𝑟 are equal to 1 and taking a value of 0 otherwise.

7.1.2 TRADITIONAL SBPP SINGLE-FLOW ILP MODEL

Traditional single-flow SBPP ILP models aim to minimize the total cost of allocating

working and backup capacity for each span in the network while satisfying full single-

failure restoration. Despite of the variety, they all follow common assumptions. First, the

cost of assigning one unit of working capacity or backup capacity on each span is constant.

Second, the demands are full mapping of nodes, i.e., there is always a demand between

each pair of nodes in the network. Third, the failure of each span in the network is

independently and identically distributed (i.i.d.). The ILP model for the single-flow SBPP

can be formulated as follows [77].

The objective function is:

𝐶𝑜𝑠𝑡 = ∑ 𝑐𝑘(𝑤𝑘 + 𝑠𝑘)𝑘∈𝑆 (7-1)

The constraints include:

∑ 𝑤𝑝
𝑟

𝑝∈𝑃𝑟 = 1 ∀𝑟 ∈ 𝐷 (7-2)

∑ 𝑓𝑏
𝑟

𝑏∈𝐵𝑟 = 1 ∀𝑟 ∈ 𝐷 (7-3)

𝑤𝑘 = ∑ ∑ 𝑤𝑝
𝑟

𝑝∈𝑃𝑖
𝑟𝑟∈𝐷 ∙ 𝑑𝑟 ∀𝑘 ∈ 𝑆 (7-4)

89

𝑠𝑘 ≥ ∑ ∑ ∑ 𝛿𝑏
𝑝,𝑟

∙ 𝑑𝑟
𝑏∈𝐵𝑘

𝑟𝑝∈𝑃𝑖
𝑟𝑟∈𝐷 ∀𝑖, 𝑘 ∈ 𝑆|𝑖 ≠ 𝑘 (7-5)

∑ 𝑓𝑏
𝑟

𝑏∈𝐵𝑟|𝑖∈𝑆𝑏
≥ 𝑤𝑝

𝑟 ∀𝑟 ∈ 𝐷, 𝑝 ∈ 𝑃𝑖
𝑟 , 𝑖 ∈ 𝑆 (7-6)

𝛿𝑏
𝑝,𝑟 ≥ 𝑓𝑏

𝑟 + 𝑤𝑝
𝑟 − 1 ∀𝑟 ∈ 𝐷, 𝑝 ∈ 𝑃𝑟 , 𝑏 ∈ 𝐵𝑟 (7-7)

∑ ∑ 𝛿𝑏
𝑝,𝑟

𝑏∈𝐵𝑟𝑝∈𝑃𝑟 = 1 ∀𝑟 ∈ 𝐷 (7-8)

The constraint sets in (7-2) and (7-3) limit the number of working and backup routes

for each demand. Constraints in (7-4) guarantee that the working capacity on each span 𝑘

can accommodate the working flow on each primary route 𝑝 of each demand 𝑟

simultaneously. The constraint set (7-5) ensures that the amount of backup capacity on

each span 𝑘 can hold all the concurrently incurred backup flow crossing it under single

failure 𝑖. The constraint set (7-6) ensures that the working route and its backup route are

disjoint. To guarantee each constraint is linear, a dummy variable 𝛿𝑏
𝑝,𝑟

 is exploited to

represent the multiplication of 𝑓𝑏
𝑟 and 𝑤𝑝

𝑟. Due to the binary property of 𝑓𝑏
𝑟 and 𝑤𝑝

𝑟, only

when them both take the value of 1, 𝛿𝑏
𝑝,𝑟

 is equal to 1, and 0 otherwise. Constraints in (7-

7) and (7-8) ensures this substitution equivalent such that 𝛿𝑏
𝑝,𝑟

 has exactly the same

function of 𝑓𝑏
𝑟 ∙ 𝑤𝑝

𝑟.

7.1.3 TRADITIONAL SBPP MULTI-FLOW ILP MODEL

The formulation of the traditional multi-flow SBPP ILP design model can be found

in [77]. This model adopts the general arc-path approaches whose major decisions are

allocation of flow onto candidate working and backup routes. Additionally, the candidate

working and backup routes are separated into different sets (as opposed to some approaches

where they are selected from a common pool). The formulated SBPP ILP model determines

90

the final set of working and backup routes that optimize the objective function and all the

constraints from all the input candidate working and backup routes. The benchmark model

aims to minimize the total cost of allocating working and backup capacity onto each span,

which is formulated as follows [77].

The objective is to minimize total cost:

Minimize:

𝐶𝑜𝑠𝑡 = ∑ 𝑐𝑘(𝑤𝑘 + 𝑠𝑘)𝑘∈𝑆 (7-9)

The constraints are:

∑ 𝑤𝑝
𝑟

𝑝∈𝑃𝑟 = 𝑑𝑟 ∀𝑟 ∈ 𝐷 (7-10)

𝑤𝑘 = ∑ ∑ 𝜁𝑘
𝑝,𝑟𝑤𝑝

𝑟
𝑝∈𝑃𝑟𝑟∈𝐷 ∀𝑘 ∈ 𝑆 (7-11)

∑ 𝑓𝑏
𝑝,𝑟

𝑏∈𝐵𝑟 = 𝑤𝑝
𝑟 ∀𝑟 ∈ 𝐷, 𝑝 ∈ 𝑃𝑟 (7-12)

𝑠𝑘 ≥ ∑ ∑ ∑ 𝜁𝑖
𝑝,𝑟𝜉𝑘

𝑏,𝑟𝑓𝑏
𝑝,𝑟

𝑏∈𝐵𝑘
𝑟𝑝∈𝑃𝑖

𝑟𝑟∈𝐷 ∀𝑖, 𝑘 ∈ 𝑆|𝑖 ≠ 𝑘 (7-13)

∑ ∑ 𝜁𝑖
𝑝,𝑟𝜉𝑖

𝑏,𝑟𝑓𝑏
𝑝,𝑟

𝑖∈𝑆𝑏∈𝐵𝑟 = 0 ∀𝑟 ∈ 𝐷, 𝑝 ∈ 𝑃𝑟 (7-14)

Constraints in (7-10) ensure enough working paths are assigned for each demand 𝑟.

Constraints in (7-11) provide sufficient working capacity on each span to accommodate all

the working paths that traverse it. The set of constraints in (7-12) assign sufficient backup

paths for each primary route 𝑝 of demand 𝑟. Constraints in (7-13) guarantee concurrent

backup paths are fully restored. The disjointedness of working routes and relevant backup

routes is enforced through the constraint set in (7-14).

Here, the model is formulated as a joint capacity allocation (JCA) model, where

91

working and backup routing is determined simultaneously. However, we can convert it to

a spare capacity allocation (SCA) model where working is routed via shortest path or some

other approach and only backup routing is optimized; this can be done by routing working

paths via shortest paths, converting the associated 𝑤𝑘 and 𝑤𝑝
𝑟 variables to input

parameters, and removing constraints (7-10) and (7-11).

7.2 MOTIVATIONS AND GOALS

In the single-flow SBPP ILP design model, the solver selects the best pair of working

and backup routes for each demand relation amongst a set of candidate working and backup

routes, with consideration of minimal total allocation cost. To achieve this, there is a binary

variable associated with each candidate working or backup route, representing whether or

not it is assigned as the actual working or backup route in the optimized design. The number

of binary variables increases substantially as network size increases, resulting in a rapid

increase in complexity and solution time. As a result, the single-flow SBPP ILP model is

not scalable.

In order to reduce solution time, the work in [77] showed that if we allow multiple

working and backup routes (instead of just one of each), we can effectively do away with

of all the binary variables associated with those variables. That work subsequently

proposed an SBPP formulation where multiple working and backup routes are permitted

for each demand pair in the network [77], which we will refer to as multi-flow SBPP. Each

candidate working or backup route in this model has an integer variable associated with it,

corresponding to the number of working or backup routes assigned to it, rather than a binary

variable as with the traditional single-flow SBPP approach. This chapter focuses on this

92

multi-flow SBPP approach and improve on the associated ILP formulation.

The traditional single-flow model has been studied extensively. With the introduction

of the multi-flow model in, we feel it is now time to investigate the availability implications

of that model. Furthermore, since the multi-flow model is still quite new, there is an

opportunity investigate its approach for improvement. Therefore, we will seek to address

the following two goals:

(1) We will propose a novel multi-flow model to enhance the performance of the

model relative to the benchmark and formulate a new multi-flow SBPP ILP model that is

faster to solve and convenient to operate.

(2) We will develop an algorithm to analyze the availability performance of the

multi-flow design, and compare its performance to the benchmark.

7.3 NEW MULTI-FLOW SBPP ILP DESIGN MODEL

7.3.1 NOTATION

New set used in this new model is 𝐵𝑝,𝑟, which is the set of available backup routes

for candidate primary route 𝑝 of demand 𝑟. Other symbols used in this new model have

been defined already in Section 7.1.1.

7.3.2 ILP FORMULATION

As previously discussed, the fundamental difference between the traditional multi-

flow SBPP model and the single-flow SBPP model is with regards to the nature of the

variables characterizing the working and backup routing (they are binary in the single-flow

93

model, and integer in the multi-flow model). We can regard the traditional multi-flow ILP

model as an integralization of the traditional single-flow ILP model. However, this leaves

us an opportunity for further improvement in other aspects; they both separate candidate

working routes and backup routes into distinct input sets separated only according to

demand [77].

In our new ILP model, we further split the candidate backup routes into subsets

according to the working routes they aim to protect. By doing so, the constraints for

enforcing disjointedness of working routing and relevant backup routes (i.e., the constraints

in Eq. (7-14)) become redundant. In addition, the sets 𝑃𝑖
𝑟 and 𝐵𝑘

𝑟 become redundant as

well. Accordingly, both the input data and constraints required to formulate the model

become smaller. The complete formulation of our new model is as follows.

The objective function is identical to that in the benchmark model, as shown in Eq.

(7-15):

Minimize:

𝐶𝑜𝑠𝑡 = ∑ 𝑐𝑘(𝑤𝑘 + 𝑠𝑘)𝑘∈𝑆 (7-15)

The constraints are simplified as follows:

∑ 𝑤𝑝
𝑟

𝑝∈𝑃𝑟 = 𝑑𝑟 ∀𝑟 ∈ 𝐷 (7-16)

𝑤𝑘 = ∑ ∑ 𝜁𝑘
𝑝,𝑟𝑤𝑝

𝑟
𝑝∈𝑃𝑟𝑟∈𝐷 ∀𝑘 ∈ 𝑆 (7-17)

∑ 𝑓𝑏
𝑝,𝑟

𝑏∈𝐵𝑝,𝑟 = 𝑤𝑝
𝑟 ∀𝑟 ∈ 𝐷, 𝑝 ∈ 𝑃𝑟 (7-18)

𝑠𝑘 ≥ ∑ ∑ ∑ 𝜁𝑖
𝑝,𝑟𝜉𝑘

𝑏,𝑝,𝑓𝑏
𝑝,𝑟

𝑏∈𝐵𝑝,𝑟𝑝∈𝑃𝑟𝑟∈𝐷 ∀𝑖, 𝑘 ∈ 𝑆|𝑖 ≠ 𝑘 (7-19)

94

The constraint sets in (7-16) and (7-17) are identical to those in (7-10) and (7-11),

respectively. The constraints in (7-18) are similar to those in (7-12), except that the set of

backup route is now specified for each potential working route 𝑝 of demand 𝑟. Here, we

specify the relationship between working routes and their backup routes explicitly in the

data pre-processing procedure. Constraints in (7-19) are equivalent to those in (7-13), but

they substitute the sets 𝑝 ∈ 𝑃𝑟 and 𝑏 ∈ 𝐵𝑝,𝑟 for 𝑝 ∈ 𝑃𝑖
𝑟 and 𝑏 ∈ 𝐵𝑘

𝑟. The changes in the

model not only simplify the formulation, but also enhance the solution process of the

model. The new model is simplified by reducing usage of notation, which makes the new

formulation more concise in format. The scale of the data file is greatly reduced in two

ways. First, without the sets of 𝑃𝑖
𝑟 and 𝐵𝑘

𝑟, it is not necessary to specify the set of candidate

working routes that traverse span 𝑖 for demand 𝑟 or the set of candidate backup routes that

cross span 𝑘 for demand 𝑟 . In fact, the sets of 𝑃𝑖
𝑟 and 𝐵𝑘

𝑟 are subsets of 𝑃𝑟 and 𝐵𝑟 ,

respectively, for ∀𝑖, 𝑗 ∈ 𝑆, so it is unnecessary to have both the sets and its subsets.

As stated, the major difference between the new model and the benchmark model is

that the relation between a specified working route and its backup routes are explicitly

specified in the new model. In practice, this is easily achieved in pre-processing by

temporarily removing a working route from the network topology when enumerating its

associated candidate backup routes. A by-product of this separation of candidate backup

routes according to the working route they aim to protect is that disjointedness of working

route and its backup routes is satisfied automatically.

7.4 NETWORK AVAILABILITY ANALYSIS

We now propose an algorithm to analyze the dual-failure availability for an SBPP

95

multi-flow network designed for full single-failure restoration. In developing this

algorithm, we make the following assumptions:

(1) Restoration rule: We restore failed working routes, but we do not restore the failed

backup routes; once a backup route is failed, it remains failed.

(2) Earmark rule: The surviving portions of backup capacity on a failed backup route

is released and can be used for restoration of other failed working routes (e.g., we use stub-

release [24]). On the contrary, the surviving portions of a failed working route are not

reused for restoring other failed working routes.

(3) Predefine rule: Upon failures of a span, only the predefined backup routes are

adopted and no new backup routes are sought. More specifically, the exact set of backup

routes and the exact amount of backup flow on them, which are predefined from the single-

failure design process, are adopted to restore the failed working routes regardless of the

failure scenario (single or dual).

(4) Maximum rule: Because of full restoration of single failures in the design, the

first failure in a dual-failure scenario is fully restored. Nevertheless, it is necessary to

examine whether sufficient backup flow is available for the second failure in that dual-

failure scenario. We restore the second failure by making the best of available backup

capacity.

(5) Priority rule: we do not take into account the priority of each demand; rather, we

treat them equally. This can be modified if the priority of demands is provided.

(6) Working path oriented rule: Unlike in the single-flow model, a backup route is

specified for an individual working route instead of a specific demand. Hence, it is more

96

reasonable to focus on each working route rather than each demand for the purpose of

analyzing dual-failure availability.

The algorithm is illustrated in Figure 7.1 based on the above-mentioned six

assumptions and rules. Step 1 calculates 𝑅2(𝑖, 𝑗) for ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗 , Step 2 computes

availability 𝐴2(𝑝) for ∀𝑝 ∈ 𝑃 , and Step 3 calculates network overall dual-failure

availability 𝐴2. In the first step, the outer loop iterates over each dual-failure scenario.

Within each loop, i.e., for a given dual-failure scenario (𝑖, 𝑗), we first obtain the design data

from design model, including span backup capacity 𝑠𝑘, the working routes 𝑃𝑟, the working

flow 𝑤𝑝
𝑟, the backup routes 𝐵𝑝,𝑟, and the backup flow 𝑓𝑏

𝑝,𝑟
. We initialize the values of 𝑤𝑓aff

and 𝑤𝑓lost to be zero. Next, we utilize the restoration scheme of dual failure (𝑖, 𝑗), which

is composed of two sub-steps, i.e., Major Sub-Step 1 and Major Sub-Step 2 as shown in

the figure. Major Sub-Step 1 deals with the first failure 𝑖, and cycles through each working

route, 𝑝, that is affected by failure 𝑗 (the set of such working routes is denoted by 𝑊𝑅𝑖)

until all the affected working routes are considered. Within each cycle, the working flow

on 𝑝 (i.e., 𝑤𝑝
𝑟) is added up to the value of 𝑤𝑓aff, 𝑝 is restored by its pre-defined backup

route(s), and the value of 𝑠𝑘 on each backup route 𝑏 of 𝑝 is updated by removing the used

backup capacity for restoration of failure 𝑖. Major Sub-Step 2 attempts to restore the second

failure 𝑗. It examines each working route, 𝑝, that is affected by failure 𝑗 but not by failure

𝑖 (the set of such working routes is denoted by 𝑊𝑅𝑗 and satisfies 𝑊𝑅𝑖 ∩ 𝑊𝑅𝑗 = ∅). For a

given 𝑝, the value of 𝑤𝑓aff is updated by adding up the working flow of 𝑝, and the available

backup flow on each of its backup routes is recalculated due to the update of 𝑠𝑘. To do so,

we iterate through each (𝑏 ∈ 𝐵𝑝,𝑟) and update its flow with the min (𝑠𝑘) where 𝑘 ∈ 𝑏. This

is because the largest flow that backup route 𝑏 can accommodate depends on the spans

97

with the smallest available spare capacity. If the sum of the backup flows on all its backup

routes is larger than its working flow (i.e., ∑ 𝑓𝑏
𝑝,𝑟

𝑏∈𝐵𝑝,𝑟 ≥ 𝑤𝑝
𝑟), 𝑝 can be fully restored and

the value of 𝑤𝑓lost remains unchanged. Otherwise, the value of 𝑤𝑓lost is increased by

(𝑤𝑝
𝑟 − ∑ 𝑓𝑏

𝑝,𝑟
𝑏∈𝐵𝑝,𝑟). Once each 𝑝 ∈ 𝑊𝑅𝑗 is considered, we calculate 𝑅2(𝑖, 𝑗) through (4-

9). Step 1 will be concluded when each dual failure (𝑖, 𝑗) is cycled through. We have now

obtained the values of 𝑅2(𝑖, 𝑗) for all dual-failure scenarios, and then in step 2 we calculate

the dual-failure availability for all the working routes (i.e., ∀𝑝 ∈ 𝑃), based on the

calculation method described in Eq. (4-10). Finally, in step 3, we calculate the dual-failure

availability for the entire network via the calculation method described in Eq. (4-11).

98

Figure 7.1 – Algorithm for calculating dual-failure availability

Update 𝑤𝑓aff = 𝑤𝑓aff + 𝑤𝑝
𝑟

Update 𝑠𝑘, ∀𝑘 ∈ 𝑏

Select 𝑏 from 𝐵𝑝,𝑟

Update 𝑓𝑏
𝑝,𝑟

= min
𝑘∈𝑏

(𝑠𝑘)

Obtain design data: 𝑠𝑘, 𝑤𝑝
𝑟, 𝑓𝑏

𝑝,𝑟
, 𝑃𝑟, 𝐵𝑝,𝑟

End

Start

Is ∑ 𝑓𝑏
𝑝,𝑟

∀𝑏∈𝐵𝑝,𝑟 ≥ 𝑤𝑝
𝑟?

Select dual failure (𝑖, 𝑗), ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗

Initiate 𝑤𝑓aff = 0 and 𝑤𝑓lost = 0

Restore 𝑝 and update 𝑤𝑓lost = 𝑤𝑓lost + 𝑓𝑏
𝑝,𝑟

Select 𝑝 from 𝑊𝑅𝑗|𝑊𝑅𝑗 ∩ 𝑊𝑅𝑖 = ∅ randomly

Update 𝑤𝑓lost = 𝑤𝑓lost + (𝑤𝑝
𝑟 − ∑ 𝑓𝑏

𝑝,𝑟
∀𝑏∈𝐵𝑝,𝑟)

All 𝑝 ∈ 𝑊𝑅𝑗 are considered?

Calculate 𝑅2(𝑖, 𝑗) = 1 − 𝑤𝑓lost 𝑤𝑓aff⁄

All (𝑖, 𝑗), ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗 are considered?

Calculate 𝐴2(𝑝) = 1 − ∑ 𝑈span
𝑖

𝑖,𝑗∈𝑆|(𝑖∪𝑗)∈𝑝 ∙

𝑈span
𝑗

∙ [1 − 𝑅2(𝑖, 𝑗)], ∀𝑝 ∈ 𝑃

Select 𝑝 from 𝑊𝑅𝑖

All 𝑏 ∈ 𝐵𝑝,𝑟 are considered?

All 𝑝 ∈ 𝑊𝑅𝑖 are considered?

Update 𝑤𝑓aff = 𝑤𝑓aff + 𝑤𝑝
𝑟

Select 𝑏 from 𝐵𝑝,𝑟

All 𝑏 ∈ 𝐵𝑝,𝑟 are considered?

Calculate 𝐴2 =
∑ 𝐴2(𝑝)∀𝑝∈𝑃

|𝑝|

St
e

p
 1

St

e
p

 2

St
e

p
 3

M

a
jo

r
 s

u
b

-s
te

p
 1

M
a

jo
r
 s

u
b

-s
te

p
 2

99

7.5 EXPERIMENTS AND DISCUSSION

7.5.1 NETWORK DESIGN RESULTS

The total network design costs of all networks in a family are normalized as per the

equation in (7-20):

𝐶𝑜𝑠𝑡norm =
𝐶𝑜𝑠𝑡actu

𝐶𝑜𝑠𝑡min
 (7-20)

Here, 𝐶𝑜𝑠𝑡actu is the actual total cost of assigning working and spare capacity to a

network, 𝐶𝑜𝑠𝑡min is the smallest actual total cost of the networks within its network family,

and 𝐶𝑜𝑠𝑡norm is the normalized total cost. This effectively scales all of the network design

costs such that the member of a family with the lowest-cost design is deemed to have a cost

of 1.0. The normalized total costs of the 15 network families for the new multi-flow model

and benchmark multi-flow model are shown in Figure 7.2 through Figure 7.16Figure 7.17.

Each panel of the figure corresponds to a single network family, where each data point

represents the normalized total working and spare capacity cost of the member of the

family with the average nodal degree indicated on the x-axis for the benchmark multi-flow

SBPP model and the new multi-flow SBPP model. We note that the normalized capacity

costs for both multi-flow models have a similar trend as network connectivity increases,

i.e., they both decrease rapidly with increasing network average nodal degree. This is

generally due to an increased ability to use shorter and more efficient working and backup

routes [18].

Figure 7.17 through Figure 7.31 show the total runtime values of the experimental

networks for both multi-flow models. Each panel of the figure corresponds to a single

100

network family, where each data point represents the runtime (in seconds) of the member

of the family with the average nodal degree indicated on the x-axis for the benchmark

multi-flow SBPP model and the new multi-flow SBPP model, respectively. As with costs

above, the runtime values decrease with network connectivity as well. As shown in the

figure, runtime values of the new model are well below that of the benchmark model. On

average, the new model is 51% faster approximately in comparison with the benchmark

model. This value may seem to be a small improvement for a single model, however, the

total time savings are substantial in terms of large number of models and repetitive

experiments that might be typical of a comprehensive network design process.

Furthermore, the runtime improvements ratio of the new model increases with the scale of

the network with respect to the number of nodes, as shown in Figure 7.32. The x-axis is

the network scale ranging from 10-node network family to 150-node network family, and

the y-axis is the average runtime improvement ratio for the network family size (i.e.,

number of nodes) indicated on the x-axis.

Figure 7.2 – Normalized cost of the 10-node network family

1.000

1.050

1.100

1.150

1.200

1.250

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o

rm
al

iz
ed

 t
o

ta
l

co
st

Network average nodal degree

10-node family

Benchmark

New model

101

Figure 7.3 – Normalized cost of the 20-node network family

Figure 7.4 – Normalized cost of the 30-node network family

Figure 7.5 – Normalized cost of the 40-node network family

1.000

1.200

1.400

1.600

1.800

2.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o

rm
al

iz
ed

 t
o

ta
l
co

st

Network average nodal degree

20-node family

Benchmark

New model

1.000

1.100

1.200

1.300

1.400

1.500

1.600

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o
rm

al
iz

ed
 t

o
ta

l
co

st

Network average nodal degree

30-node family

Benchmark

New model

1.000

1.100

1.200

1.300

1.400

1.500

1.600

1.700

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o

rm
al

iz
ed

 t
o

ta
l

co
st

Network average nodal degree

40-node family

Benchmark

New model

102

Figure 7.6 – Normalized cost of the 50-node network family

Figure 7.7 – Normalized cost of the 60-node network family

Figure 7.8 – Normalized cost of the 70-node network family

1.000

1.100

1.200

1.300

1.400

1.500

1.600

1.700

1.800

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o

rm
al

iz
ed

 t
o

ta
l
co

st

Network average nodal degree

50-node family

Benchmark

New model

1.000

1.100

1.200

1.300

1.400

1.500

1.600

1.700

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o
rm

al
iz

ed
 t

o
ta

l
co

st

Network average nodal degree

60-node family

Benchmark

New model

1.000

1.100

1.200

1.300

1.400

1.500

1.600

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o

rm
al

iz
ed

 t
o

ta
l

co
st

Network average nodal degree

70-node family

Benchmark

New model

103

Figure 7.9 – Normalized cost of the 80-node network family

Figure 7.10 – Normalized cost of the 90-node network family

Figure 7.11 – Normalized cost of the 100-node network family

1.000

1.100

1.200

1.300

1.400

1.500

1.600

1.700

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o

rm
al

iz
ed

 t
o

ta
l
co

st

Network average nodal degree

80-node family

Benchmark

New model

1.000

1.100

1.200

1.300

1.400

1.500

1.600

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o
rm

al
iz

ed
 t

o
ta

l
co

st

Network average nodal degree

90-node family

Benchmark

New model

1.000

1.100

1.200

1.300

1.400

1.500

1.600

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o

rm
al

iz
ed

 t
o

ta
l

co
st

Network average nodal degree

100-node family

Benchmark

New model

104

Figure 7.12 – Normalized cost of the 110-node network family

Figure 7.13 – Normalized cost of the 120-node network family

Figure 7.14 – Normalized cost of the 130-node network family

1.000

1.100

1.200

1.300

1.400

1.500

1.600

1.700

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o

rm
al

iz
ed

 t
o

ta
l
co

st

Network average nodal degree

110-node family

Benchmark

New model

1.000

1.100

1.200

1.300

1.400

1.500

1.600

1.700

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o
rm

al
iz

ed
 t

o
ta

l
co

st

Network average nodal degree

120-node family

Benchmark

New model

1.000

1.050

1.100

1.150

1.200

1.250

1.300

1.350

1.400

1.450

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o

rm
al

iz
ed

 t
o

ta
l

co
st

Network average nodal degree

130-node family

Benchmark

New model

105

Figure 7.15 – Normalized cost of the 140-node network family

Figure 7.16 – Normalized cost of the 150-node network family

Figure 7.17 – Runtime of the 10-node network family

1.000

1.100

1.200

1.300

1.400

1.500

1.600

1.700

1.800

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o

rm
al

iz
ed

 t
o

ta
l
co

st

Network average nodal degree

140-node family

Benchmark

New model

1.000

1.100

1.200

1.300

1.400

1.500

1.600

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
o
rm

al
iz

ed
 t

o
ta

l
co

st

Network average nodal degree

150-node family

Benchmark

New model

0.060

0.070

0.080

0.090

0.100

0.110

0.120

0.130

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u

n
ti

m
e

(s
)

Network average nodal degree

10-node family

Benchmark

New model

106

Figure 7.18 – Runtime of the 20-node network family

Figure 7.19 – Runtime of the 30-node network family

Figure 7.20 – Runtime of the 40-node network family

0.260

0.360

0.460

0.560

0.660

0.760

0.860

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u

n
ti

m
e

(s
)

Network average nodal degree

20-node family

Benchmark

New model

0.800

1.000

1.200

1.400

1.600

1.800

2.000

2.200

2.400

2.600

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u
n
ti

m
e

(s
)

Network average nodal degree

30-node family

Benchmark

New model

2.000

2.500

3.000

3.500

4.000

4.500

5.000

5.500

6.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u

n
ti

m
e

(s
)

Network average nodal degree

40-node family

Benchmark

New model

107

Figure 7.21 – Runtime of the 50-node network family

Figure 7.22 – Runtime of the 60-node network family

Figure 7.23 – Runtime of the 70-node network family

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u

n
ti

m
e

(s
)

Network average nodal degree

50-node family

Benchmark

New model

5.000
6.000
7.000
8.000
9.000

10.000
11.000
12.000
13.000
14.000
15.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u
n
ti

m
e

(s
)

Network average nodal degree

60-node family

Benchmark

New model

8.000

10.000

12.000

14.000

16.000

18.000

20.000

22.000

24.000

26.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u

n
ti

m
e

(s
)

Network average nodal degree

70-node family

Benchmark

New model

108

Figure 7.24 – Runtime of the 80-node network family

Figure 7.25 – Runtime of the 90-node network family

Figure 7.26 – Runtime of the 100-node network family

10.000

15.000

20.000

25.000

30.000

35.000

40.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u

n
ti

m
e

(s
)

Network average nodal degree

80-node family

Benchmark

New model

20.000

25.000

30.000

35.000

40.000

45.000

50.000

55.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u
n
ti

m
e

(s
)

Network average nodal degree

90-node family

Benchmark

New model

25.000

35.000

45.000

55.000

65.000

75.000

85.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u

n
ti

m
e

(s
)

Network average nodal degree

100-node family

Benchmark

New model

109

Figure 7.27 – Runtime of the 110-node network family

Figure 7.28 – Runtime of the 120-node network family

Figure 7.29 – Runtime of the 130-node network family

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

110.000

120.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u

n
ti

m
e

(s
)

Network average nodal degree

110-node family

Benchmark

New model

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u
n
ti

m
e

(s
)

Network average nodal degree

120-node family

Benchmark

New model

60.000

80.000

100.000

120.000

140.000

160.000

180.000

200.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u

n
ti

m
e

(s
)

Network average nodal degree

130-node family

Benchmark

New model

110

Figure 7.30 – Runtime of the 140-node network family

Figure 7.31 – Runtime of the 150-node network family

Figure 7.32 – Average runtime improvement ratio with regard to network scale

80.000

100.000

120.000

140.000

160.000

180.000

200.000

220.000

240.000

260.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u

n
ti

m
e

(s
)

Network average nodal degree

140-node family

Benchmark

New model

100.000

150.000

200.000

250.000

300.000

350.000

400.000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

R
u
n
ti

m
e

(s
)

Network average nodal degree

150-node family

Benchmark

New model

25%

30%

35%

40%

45%

50%

55%

60%

65%

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

A
v
er

ag
e

ru
n

ti
m

e
im

p
ro

v
em

en
t

ra
ti

o

Network family (# of nodes)

111

7.5.2 AVAILABILITY ANALYSIS

Our analysis of network availability for the benchmark multi-flow SBPP model and

our new multi-flow SBPP model is shown in Figure 7.33 through Figure 7.47. Each panel

of the figure corresponds to a single network family, where each data point represents the

overall availability of the member of the family with the average nodal degree indicated on

the x-axis for the benchmark multi-flow SBPP model and the new multi-flow SBPP model.

First, we note that availability of networks arising from both models are between three

nines and four nines, which meets the criteria presented in [117]. (i.e., both design models

produce networks whose availabilities are generally acceptable). The availability of a

network designed using the new multi-flow SBPP model is approximately 1.0×10-5 smaller

(in absolute terms) on average compared to the availability of a network designed using

the benchmark multi-flow SBPP model. However, we observe that as network scale grows

larger, the difference between the two models becomes smaller, and in some cases, the new

model has a larger availability. In order to find out how different the availability can be as

network scale grows, we define availability difference as simply the availability of the

network design arising from the new model minus the availability of the network design

arising from the benchmark model. The values of availability difference are shown in

Figure 7.48. Each point represents the availability difference for the network designs

arising from the two models for each of the 165 test case networks. The x-axis represents

an arbitrary “scale” of the network test case. We start with the leftmost data point

corresponding to the sparsest member of the 10-node network family, then each subsequent

data point corresponds to the next more highly connected member of the family, until we

reach the most richly connected member of that family, after which the next data point

112

corresponds to the sparsest member of the next larger network family, and so on. It is

observed that the availability difference generally increases from negative to positive as

network scale grows.

Figure 7.33 – Availability analysis of the 10-node network family

Figure 7.34 – Availability analysis of the 20-node network family

0.999960

0.999965

0.999970

0.999975

0.999980

0.999985

0.999990

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

10-node family

Benchmark

New model

0.999935

0.999940

0.999945

0.999950

0.999955

0.999960

0.999965

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

20-node family

Benchmark

New model

113

Figure 7.35 – Availability analysis of the 30-node network family

Figure 7.36 – Availability analysis of the 40-node network family

Figure 7.37 – Availability analysis of the 50-node network family

0.999895

0.999900

0.999905

0.999910

0.999915

0.999920

0.999925

0.999930

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

30-node family

Benchmark

New model

0.999895

0.999900

0.999905

0.999910

0.999915

0.999920

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b
il

it
y

Network average nodal degree

40-node family

Benchmark

New model

0.999825

0.999830

0.999835

0.999840

0.999845

0.999850

0.999855

0.999860

0.999865

0.999870

0.999875

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

50-node family

Benchmark

New model

114

Figure 7.38 – Availability analysis of the 60-node network family

Figure 7.39 – Availability analysis of the 70-node network family

Figure 7.40 – Availability analysis of the 80-node network family

0.999875

0.999880

0.999885

0.999890

0.999895

0.999900

0.999905

0.999910

0.999915

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

60-node family

Benchmark

New model

0.999835

0.999840

0.999845

0.999850

0.999855

0.999860

0.999865

0.999870

0.999875

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b
il

it
y

Network average nodal degree

70-node family

Benchmark

New model

0.999780

0.999790

0.999800

0.999810

0.999820

0.999830

0.999840

0.999850

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

80-node family

Benchmark

New model

115

Figure 7.41 – Availability analysis of the 90-node network family

Figure 7.42 – Availability analysis of the 100-node network family

Figure 7.43 – Availability analysis of the 110-node network family

0.999750

0.999760

0.999770

0.999780

0.999790

0.999800

0.999810

0.999820

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

90-node family

Benchmark

New model

0.999660

0.999680

0.999700

0.999720

0.999740

0.999760

0.999780

0.999800

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b
il

it
y

Network average nodal degree

100-node family

Benchmark

New model

0.999690

0.999700

0.999710

0.999720

0.999730

0.999740

0.999750

0.999760

0.999770

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

110-node family

Benchmark

New model

116

Figure 7.44 – Availability analysis of the 120-node network family

Figure 7.45 – Availability analysis of the 130-node network family

Figure 7.46 – Availability analysis of the 140-node network family

0.999670
0.999680
0.999690
0.999700
0.999710
0.999720
0.999730
0.999740
0.999750
0.999760
0.999770
0.999780

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

120-node family

Benchmark

New model

0.999660

0.999670

0.999680

0.999690

0.999700

0.999710

0.999720

0.999730

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b
il

it
y

Network average nodal degree

130-node family

Benchmark

New model

0.999600

0.999620

0.999640

0.999660

0.999680

0.999700

0.999720

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

140-node family

Benchmark

New model

117

Figure 7.47 – Availability analysis of the 150-node network family

Figure 7.48 – Average availability difference with respect to network scale

From the above analysis, we can observe the general trend of how network

availability reacts with increasing network connectivity and scale. Interestingly, network

availability appears to be higher in networks with intermediate connectivity, with this trend

becoming more apparent in large-scale networks (i.e., those with a greater number of

nodes). It is not surprising to us that networks with low connectivity will have relatively

0.999620

0.999640

0.999660

0.999680

0.999700

0.999720

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

150-node family

Benchmark

New model

-2.00E-05

-1.50E-05

-1.00E-05

-5.00E-06

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

0 15 30 45 60 75 90 105 120 135 150 165

A
v
ai

la
b
il

it
y
 d

if
fe

re
n
ce

Networks in the 15 families sorted by # of nodes and spans ascendingly

118

lower availability, as we expect that that arises from the poor diversity of backup routes by

which two working routes can be restored following two simultaneous failures (or more

generally, two failures overlapping in time). As network connectivity increases, the greater

diversity of routes permits routing that will generally result in a greater ability to provide

backup routing in the event of two failures. The decrease in availability as network

connectivity increases further is somewhat more difficult to explain, as one would expect

a more richly connected network to permit much more diverse routing such that two

simultaneous failures are less likely to result in outage. And this would be the case if the

network design approach produced backup routing assignments that specifically went out

of their way to accommodate survivability in the event of two failures. However, the

network designs considered only single-failure protection, and because the objective

function emphasized capacity efficiency, working and backup routes did not to take as

much advantage of the overall network route diversity as they could have. As a result, there

are relatively more dual-failure scenarios that cause outage. We believe that as network

connectivity increases, there are two major counteracting factors that will affect overall

network availability: (1) higher connectivity generates to a greater diversity of working

and backup routes and shorter routes, which results in fewer dual-failure scenarios

interacting in a manner that can result in outage, and (2) higher connectivity permits better

sharing of spare capacity, leading to more backup routes to be struck by a specified dual-

failure scenario. Our hypothesis is that when network connectivity is still relatively low,

the first factor dominates when connectivity increases, but as we move to higher and higher

connectivity, the second factor starts to dominate.

To test our hypothesis, we selected three individual networks from the 10-node

119

family, with 15, 20, and 25 spans, respectively. The detailed topologies of the three

networks are shown in Figure 7.49, where the nodes and spans of each network have been

labeled explicitly (in the prior figures, we omitted those labels). As shown in the figure,

the 20-span network consists of all spans in the 15-span network plus spans S9, S13, S16,

S18, and S23, and the 25-span network consists of the spans in the 20-span network plus

spans S4, S5, S15, S19, and S21. The demands are a full mesh of O-D pairs, as previously

described, and these demands are identical for all three networks.

Figure 7.49 – Topologies of the 10-node 15-span network, 10-node 20-span network, and 10-
node 25-span network

The capacity design results of the three networks are summarized in Table 7.1, while

the detailed routing is shown in Table 7.2. We can see that as the connectivity of the

network increases, demands are increasingly split onto multiple working and backup

routes, which allows more and more demands to utilize shorter working and backup routes.

More specifically, we note that moving from the 15-span network to the 20-span network

permitted a greater number of demands to use shorter routes than moving from the 20-span

network to the 25-span network, suggesting that this factor may be stronger at lower

connectivity.

120

The spare capacities allocated to each span in the three networks are shown in Table

7.3. It is evident that as network connectivity increases, the amount of spare capacity of a

span decrease in general, which reduces the capability of the network to route failed

working routes in the event of a dual-failure scenario. Furthermore, the decrease in spare

capacity is greater when moving from the 20-span network to the 25-span network than

moving from the 15-span network to the 20-span network, suggesting that this factor may

be stronger at higher connectivity.

Table 7.1– Summary on capacity design results of networks three 10-node test case networks

15-span

network

20-span

network

 25-span

network

Fraction of demand pairs using multiple

working routes
9/45 11/45 16/45

Fraction of demand pairs using multiple

backup routes
9/45 11/45 16/45

Fraction of demand pairs using shorter

routes than in the next lower connectivity

network

N/A 32/45 19/45

Table 7.2– Spare capacities in the 10-node 15-span network, 10-node 20-span network, and 10-

node 25-span network

 Spare capacity

Spans 15-span

network

20-span

network

25-span

network S01 11 5 9

S02 17 14 2

S03 18 19 9

S04 - - 3

S05 - - 1

S06 15 11 2

S07 14 11 5

S08 - - 10

S09 - 9 9

S10 11 5 2

S11 15 5 4

S12 9 9 8

S13 - 13 10

S14 19 14 9

S15 - - 8

S16 - 9 7

121

S17 12 8 8

S18 - 10 4

S19 - - 9

S20 9 11 8

S21 19 10 1

S22 19 10 10

S23 - 10 13

S24 15 13 10

S25 19 11 4

Sum 222 207 165

Average 14.8 10.35 6.6

122

Table 7.3 – Capacity design results in the 10-node 15-span network, 10-node 20-span network,

and 10-node 25-span network

Demands 10-node 15-span network 10-node 20-span network 10-node 25-span network

Working routes Backup routes Working routes Backup routes S? Working routes Backup routes S?

O-D Q Routes F Routes F Routes F Routes F Routes F Routes F

N01-N02 2 S01 2 S03-S12-S06 2 S01 2 S03-S12-S06 2 N S01 2 S04-S06 2 Y

N01-N03 9 S02 9 S01-S07-S10 9 S02 9 S03-S09 9 Y S02 9 S03-S09 9 N

N01-N04 4 S03 4 S01-S06-S12 4 S03 4 S02-S09 4 Y S03 3 S04-S12 3 N

 S04-S12 1 S03 1

N01-N05 1 S01-S06 1 S03-S12 1 S03-S12 1 S01-S06 1
N

S04 1 S03-S12 1 Y

N01-N06 3 S01-S07 3 S02-S10 3 S02-S10 3 S01-S07 3 S05 2 S02-S10 2 Y

 S02-S10 1 S05 1

N01-N07 10 S02-S11 10 S03-S14-S21 10 S03-S13 4 S02-S11 4 Y S03-S13 1 S05-S18 1 N

 S02-S11 6 S03-S13 6 S05-S18 9 S03-S13 9

N01-N08 1 S03-S14 1 S02-S11-S21 1 S03-S14 1 S02-S11-S21 1 N S04-S16 1 S03-S14 1 Y

N01-N09 6 S02-S10-S20 6 S03-S14-S21-S22 6 S03-S13-S22 2 S02-S10-S20 2 Y S05-S20 6 S01-S08 6 Y

 S02-S11-S22 4 S03-S14-S23 4

N01-N10 6 S03-S12-S17 6 S02-S11-S22-S25 6 S01-S06-S17 3 S03-S14-S24 3 Y S04-S17 3 S03-S15 3 Y

 S03-S12-S17 3 S02-S10-S20-S25 3 S04-S16-S24 3 S03-S15 3

N02-N03 5
S07-S10 3 S01-S02 3 S01-S02 5 S07-S10 5

N
S01-S02 2 S07-S10 2

N
S01-S02 2 S07-S10 2 S07-S10 2 S01-S02 2

 S06-S12-S09 1 S07-S10 1

N02-N04 7 S01-S03 5 S06-S12 5 S01-S03 7 S06-S12 7 N S06-S12 7 S01-S03 7 N

S06-S12 2 S01-S03 2

N02-N05 2 S06 2 S01-S03-S12 2 S06 2 S01-S03-S12 2 N S06 2 S01-S04 2 Y

N02-N06 8 S07 8 S01-S02-S10 8 S07 5 S01-S02-S10 5 N S07 8 S08-S20 8 Y

 S01-S02-S10 3 S07 3

N02-N07 9
S07-S10-S11 6 S06-S17-S25-S22 6 S07-S18 9 S06-S12-S13 9

Y
S07-S18 2 S08-S22 2

Y
S01-S02-S11 3 S07-S20-S22 3 S06-S16-S21 4 S07-S18 4

 S01-S03-S13 3 S07-S18 3

N02-N08 10
S06-S12-S14 4 S07-S20-S22-S21 4 S06-S16 10 S07-S18-S21 10

Y
S06-S16 10 S08-S23 10

Y
S01-S03-S14 4 S06-S17-S24 4

S06-S17-S24 2 S01-S03-S14 2

N02-N09 2 S07-S20 2 S06-S17-S25 2 S07-S20 2 S06-S17-S25 2 N S08 2 S07-S20 2 Y

N02-N10 1 S06-S17 1 S07-S20-S25 1 S06-S17 1 S07-S20-S25 1 N S08-S25 1 S06-S17 1 Y

N03-N04 2 S02-S03 2 S11-S21-S14 2 S09 2 S11-S13 2 Y S09 2 S11-S13 2 N

N03-N05 1 S02-S01-S06 1 S11-S21-S14-S12 1 S11-S21-S16 1 S09-S12 1 Y S09-S12 1 S02-S04 1 Y

N03-N06 4 S10 4 S11-S22-S20 4 S10 4 S11-S18 4 Y S10 4 S11-S18 4 N

N03-N07 3 S11 3 S10-S20-S22 3 S11 3 S09-S13 3 Y S11 3 S09-S13 3 N

N03-N08 8
S11-S21 8 S02-S03-S14 8 S11-S21 5 S09-S14 5

Y
S11-S21 6 S09-S14 6

N
 S09-S14 3 S11-S21 3 S10-S19 1 S09-S14 1

 S09-S14 1 S11-S21 1

N03-N09 2 S11-S22 2 S10-S20 2 S11-S22 2 S10-S20 2 N S11-S22 2 S10-S20 2 N

N03-N10 1 S10-S20-S25 1 S11-S21-S24 1 S09-S12-S17 1 S10-S20-S25 1 Y S09-S15 1 S11-S22-S25 1 Y

N04-N05 9 S12 9 S03-S01-S06 9 S12 9 S14-S16 9 Y S14-S16 1 S12 1 Y

 S12 8 S15-S17 8

N04-N06 1 S03-S01-S07 1 S14-S21-S22-S20 1 S13-S18 1 S09-S10 1 Y S09-S10 1 S14-S19 1 N

N04-N07 9 S14-S21 9 S03-S02-S11 9 S13 9 S14-S21 9 Y S14-S21 2 S13 2 N

 S09-S11 7 S13 7

N04-N08 5 S14 5 S12-S17-S24 5 S14 5 S12-S16 5 Y S14 5 S15-S24 5 N

N04-N09 9
S12-S17-S25 1 S14-S21-S22 1 S13-S22 5 S14-S23 5

Y
S13-S22 9 S14-S23 9

N
S14-S24-S25 5 S03-S02-S11-S22 5 S14-S23 4 S13-S22 4

S12-S06-S07-S20 3 S14-S21-S22 3 S01 2 S03-S12-S06

N04-N10 10
S12-S17 10 S14-S24 10 S12-S17 5 S14-S24 5

N
S14-S24 2 S15 2

Y
 S12-S16-S24 3 S13-S22-S25 3 S15 8 S12-S17 8

 S13-S22-S25 2 S12-S17 2

N05-N06 4 S06-S07 4 S17-S25-S20 4 S12-S13-S18 2 S06-S07 2 Y S16-S19 1 S04-S05 1 Y

 S12-S09-S10 2 S06-S07 2 S12-S13-S18 3 S16-S19 3

N05-N07 7 S17-S24-S21 5 S06-S07-S20-S22 5 S16-S21 4 S12-S13 4 Y S12-S13 1 S16-S21 1 N

S12-S03-S02-S11 2 S17-S25-S22 2 S12-S14-S21 3 S17-S25-S22 3 S16-S21 6 S12-S13 6

N05-N08 4 S12-S14 3 S17-S24 3 S16 4 S12-S14 4 Y S16 4 S17-S24 4 N

S17-S24 1 S12-S14 1

N05-N09 3 S17-S25 3 S06-S07-S20 3 S16-S23 2 S17-S25 2 Y S17-S25 3 S16-S23 3 N

 S12-S13-S22 1 S17-S25 1

N05-N10 5 S17 5 S12-S14-S24 5 S17 5 S16-S24 5 Y S17 5 S12-S15 5 N

N06-N07 1 S10-S11 1 S20-S22 1 S18 1 S20-S22 1 Y S18 1 S20-S22 1 N

N06-N08 10 S20-S25-S24 1 S10-S11-S21 1 S18-S21 10 S20-S23 10 Y S19 4 S20-S23 4 Y

S20-S22-S21 9 S07-S06-S12-S14 9 S18-S21 6 S19 6

N06-N09 10 S20 10 S10-S11-S22 10 S20 10 S18-S22 10 Y S20 9 S19-S23 9 N

 S18-S22 1 S20 1

N06-N10 4 S20-S25 4 S07-S06-S17 4 S20-S25 4 S07-S06-S17 4 N S19-S24 4 S20-S25 4 Y

123

Table 7.3– Capacity design results in the 10-node 15-span network, 10-node 20-span network,

and 10-node 25-span network (cont.)

Demands (10-node, 15-span) (10-node, 20-span) (10-node, 25-span)

Working routes Backup routes Working routes Backup routes S? Working routes Backup routes S?

O-D Q Routes F Routes F Routes F Routes F Routes F Routes F

N07-N08 10 S21 10 S22-S25-S24 10 S21 9 S13-S14 9 Y S21 10 S22-S23 10 N

 S13-S14 1 S21 1 S22 1 S21-S23 1

N07-N09 7 S22 7 S21-S24-S25 7 S22 7 S18-S20 7 Y S18-S20 6 S22 6 N

N07-N10 7 S22-S25 3 S21-S24 3 S21-S24 7 S22-S25 7 N S22-S25 5 S13-S15 5 N

 S21-S24 4 S22-S25 4 S21-S24 2 S13-S15 2

N08-N09
8 S21-S22 5 S24-S25 5 S23 8 S24-S25 8

Y
S23 4 S24-S25 4

N
 S24-S25 3 S21-S22 3 S21-S22 3 S23 3

 S19-S20 1 S23 1

N08-N10 8 S24 8 S14-S12-S17 8 S24 8 S16-S17 8 Y S24 7 S16-S17 7 N

 S16-S17 1 S24 1

N09-N10 10 S25 10 S22-S21-S24 10 S25 10 S23-S24 10 Y S25 10 S23-S24 10 N

Note

The demands for the three networks are fixed with the same O-D pairs (column “O-D”) and demands quantity (column “Q”). Both working routes and backup

routes are shown with routes (columns “Routes”) and flow values (columns “F”). Meanwhile, for networks (10-node, 20-span) and (10-node, 25-span), there is a

column “S”, which denotes whether the working or backup routes are shorter compared with the previous network. Note that if there are more than one working or

backup route for a specified demand, as long as one of the routes is shorter, we assume “S” is a Yes (i.e., “Y” as denoted in the table).

We can also investigate further. As discussed previously, network availability is a

function of the values of 𝑤𝑓aff and 𝑤𝑓lost. Using the 10-node network family described

above as a test case, we can investigate how these two characteristics change with network

connectivity. While each dual-failure scenario will produce their own of 𝑤𝑓aff and 𝑤𝑓lost

values, for simplicity, we will examine only the average values over all dual-failure

scenarios, with the results shown in Figure 7.50. Each data point in the figure represents

the average of the 𝑤𝑓aff values (“Average affected flow”) and the average of the 𝑤𝑓lost

(“Average lost flow) values in the 10-node test case network of the indicated connectivity,

with the lost flow associated with the left y-axis and the affected flow associated with the

right y-axis. As network connectivity increases, the working traffic affected by a dual-

failure scenario increases quite steadily, while there is a corresponding decrease in the

amount of working traffic that is failed but not restored. The result is an overall general

decrease in the ratio of lost-to-affected working traffic, thereby generally driving

availability down.

124

Figure 7.50 – Average values of lost flow and affected flow in 10-node network family

7.6 CONCLUSIONS

We have proposed a new multi-flow SBPP ILP design model and developed an

algorithm to analyze network overall availability for multi-flow SBPP networks. Our key

findings are as follows:

(1) The runtime of the new multi-flow SBPP model is 51% faster on average than

the runtime of the benchmark model, with larger speed improvements for higher

connectivity networks.

(2) Both models generally meet published network availability standards. Our new

model results in a slight decrease in availability (1.0×10-5 in absolute terms on average in

the 165 networks tested). However, the new model provides better availability than the

benchmark model in the larger networks with higher connectivity, topping out at

approximately 1.5×10-5 better in one of the 150-node networks.

250

270

290

310

330

350

370

390

410

430

80

85

90

95

100

105

110

115

120

125

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

V
al

u
es

 o
f

fl
o

w

Network average nodal degree

Average lost flow Average affected flow

Left y-axis

Right y-axis

125

(3) Network availability tends to be highest for networks of moderate connectivity,

and there is no obvious difference between the two models in this regard.

(4) Network availability decreases with increasing network scale (i.e., number of

nodes), and there is no obvious difference between the two models in this regard.

126

CHAPTER 8 AVAILABILITY OPTIMIZATION AND

IMPACT OF SPARE CAPACITY ON NETWORK

AVAILABILITY FOR SHARED BACKUP PATH

PROTECTION NETWORKS4

8.1 MOTIVATIONS AND GOALS

The previous chapter proposes an approach to calculate network availability for

SBPP networks. However, the proposed algorithm cannot guarantee an optimal network

availability. In addition, the relationship between network availability and extra spare

capacity for multi-flow SBPP has not been involved in the literature. Therefore, in this

chapter, we seek to achieve the following goals:

(1) Develop an algorithm that determines the backup routing required in dual-failure

scenarios to maximize SBPP network availability, given an existing capacity plan.

(2) Determine how increases in backup capacity within an SBPP network will impact

its availability.

4 This chapter is adapted from our journal paper: W. Wang, J. Doucette, “Availability Optimization and

Spare Capacity Impact Analysis for Shared Backup Path Protection Networks,” Journal of Optical

Communications and Networking (JOCN), in review; first submitted on July 26 2017; revised and

resubmitted on November 17 2017.

127

8.2 AVAILABILITY OPTIMIZATION ALGORITHM

8.2.1 NOTATIONS

The following symbols are utilized in this section.

Sets:

𝑆 is the set of all spans in the network.

𝑃 is the set of all the working routes.

𝐵𝑝 is the set of all backup routes of the specified primary route 𝑝.

Parameters:

𝑠𝑘 is an integer parameter, representing the amount of backup capacity designed for

the specified span 𝑘.

𝑤𝑓𝑝 is an integer parameter, representing the amount of working flow designed for

the primary route 𝑝.

Variables:

𝑏𝑓𝑏,𝑝 is an integer variable, representing the amount of backup flows on the specified

backup route 𝑏 for restoration of primary route 𝑝.

8.2.2 AVAILABILITY OPTIMIZATION ALGORITHM

As stated above, our first goal is to develop an algorithm to maximize a network’s

availability. We assume an existing network design that is at least fully single-failure

survivable. As such, we already have complete working lightpath routing as well as a

128

corresponding set of eligible backup routes and the specific backup lightpath routing in use

for single failures. More specifically, this includes the set of all the spans in the network

(i.e., the set 𝑆), the set of all working routes (i.e., the set 𝑃), the set of all eligible backup

routes that can be used by each working route 𝑝 (i.e., the set 𝐵𝑝, ∀ 𝑝 ∈ 𝑃), the number of

working lightpaths on each working route (i.e., 𝑤𝑓𝑝, ∀𝑝 ∈ 𝑃), the number of backup

lightpaths on each backup route (i.e., 𝑏𝑓𝑏,𝑝, ∀𝑏 ∈ 𝐵𝑝, 𝑝 ∈ 𝑃), and the amount of backup

capacity on each span (i.e., 𝑠𝑘, ∀𝑘 ∈ 𝑆).

For convenience, we obtain this initial network design by solving the optimal single-

failure SBPP design model from [77] (i.e., it is the minimum capacity possible for full

single-failure survivability). However, any pre-existing network design will suffice,

irrespective of whether the design is a capacity-efficient one or not. We will use this to our

advantage later when we test the impact of providing extra backup capacity to the network.

As discussed earlier, calculating an SBPP network’s availability (or more specifically,

what we call dual-failure availability [25]) is difficult, with no closed form solution. As

such, there is no straightforward method for incorporating an availability calculation in the

objective function of an SBPP network design ILP model. Consequently, determining the

maximum availability of an SBPP network requires some form of heuristic or algorithmic

approach. We illustrate our approach in the form of the pseudocode in Figure 8.1. It is an

iterative approach, which iterates over each dual-failure scenario (𝑖, 𝑗), ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗, in

order to calculate the value of 𝑅2(𝑖, 𝑗), ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗.

Recall from Chapter 4 that 𝑤𝑓aff(𝑖, 𝑗) represents the number of working lightpaths

affected by dual failure of spans 𝑖 and 𝑗 , and that 𝑤𝑓lost(𝑖, 𝑗) indicates the number of

129

working lightpaths lost in that scenario. At the beginning of each iteration, we initialize

𝑤𝑓aff(𝑖, 𝑗) and 𝑤𝑓lost(𝑖, 𝑗) to zero in row 04, and set about to calculate those two quantities.

As we assumed that we start with a network that is fully single-failure survivable, the

protection response for the first failure 𝑖 is known from the pre-existing design.

Accordingly, for each selected working route 𝑝 that is affected by failure 𝑖, we calculate

the variable 𝑤𝑓aff(𝑖, 𝑗) by adding the number of working lightpaths routed on 𝑝 in row 06,

and then recalculate the available backup capacity on its backup routes by removing the

occupied backup capacity in rows 07 through 10. Next, in rows 11 through 14, we cycle

through each backup route 𝑏 of the primary route 𝑝 to check whether it is affected by the

second failure 𝑗. If 𝑏 is affected by 𝑗, it cannot be exploited to restore the working route 𝑝.

That is, the working lightpaths restored by this backup route 𝑏 is lost. Thus, the value of

𝑏𝑓𝑏,𝑝 is added up to the value of 𝑤𝑓lost(𝑖, 𝑗) in row 12. Once all of the 𝑗-affected backup

routes in 𝐵𝑝 are considered, we will go to the next working route 𝑝 until all the 𝑖-affected

working routes are considered. The subsequent step in rows 16 through 18 is to deal with

the working routes that are affected by the second failure 𝑗 excluding those that have been

affected by the first failure 𝑖.

Next in row 19, we need to determine how many working lightpaths crossing span j

but not 𝑖 are lost. Unlike the response when span 𝑖 fails, the order in which the working

lightpaths are considered when span 𝑗 fails will influence the calculation of network

availability, given that their backup lightpaths will compete for the available backup

capacity (since there is generally not enough for restoring this second failure). If we want

to investigate the impact of the increased spare capacity on network availability, it is a must

to keep the assignment of the previous spare capacity (i.e., the spare capacity excluding the

130

newly increased) exactly the same in both the previous availability analysis process (i.e.,

before spare capacity increase) and the new availability analysis process (i.e., after spare

capacity increase). It is not scalable in terms of memory and runtime to store all the

assignment schemes of capacity for all the working routes, backup routes, working capacity,

and backup capacity under the second failure in all dual-failure scenarios. To solve this

issue, we develop a custom ILP model (described in the next subsection) to minimize the

total lost lightpaths 𝑤𝑓lost on the working routes affected only by the second failure in a

specified dual-failure scenario. In this regard, the ILP model saves us the trouble of

considering the sequence of affected working routes and other assignment details as well.

The minimal total lost working lightpaths is then added to the variable of 𝑤𝑓lost(𝑖, 𝑗) in

row 20, and 𝑅2(𝑖, 𝑗) is calculated as per Eq. (4-9) in row 21. The same procedure is repeated

until all the dual-failure scenarios are covered. Finally, we can calculate network

availability as per Eq. (4-10) and (4-11) in row 23.

131

Figure 8.1 – Pseudocode for availability analysis algorithm for SBPP networks

8.3 MINIMIZING LOST WORKING LIGHTPATHS VIA ILP

While the restoration response to the first failure is known (it was a part of the inputs

to the algorithm) and therefore easy to deal with in the algorithm, the restoration response

to the second failure is not known, and could take many different configurations. As

132

described above, we utilize a custom ILP model to determine the specific response to the

second failure (i.e., the routing of the backup lightpaths) that will minimize the working

lightpaths lost due to the dual failure scenario in question.

8.3.1 ILP NOTATIONS

The ILP model makes use of the following sets, parameters, and variables.

Sets:

𝑃′ is the set of all primary routes affected by the second failure but not affected by

the first failure.

𝐵𝑝 is the set of all backup routes for working lightpath 𝑝.

𝑆𝑏 is the set of all spans on backup route 𝑏.

𝐶𝐵𝑘 is the set of all backup routes that traverse span 𝑘.

𝑆′ is the set of all spans on all the backup routes in 𝐶𝐵𝑘 ∩ 𝐵𝑝.

Parameters:

𝑤𝑓𝑝 is the number of working lightpaths on primary route 𝑝 for the failed span in

question (the second failure).

𝑠𝑘 is an integer parameter that represents the amount of backup capacity on span 𝑘.

Variables:

𝑤𝑓lost
𝑝 ≥ 0 is the number of lost working lightpaths on the specified primary route 𝑝

due to the second failure in a dual-failure scenario.

133

𝑏𝑓𝑏,𝑝 ≥ 0 is the number of backup lightpaths on backup route 𝑏 for restoration of

primary route 𝑝. This is defined the same here as it is in the algorithm above, but p here

refers only to the second of the dual failures.

8.3.2 ILP FORMULATION

The ILP model is comprised of equations (8-1) through (8-4), below.

Minimize:

𝑤𝑓lost = ∑ 𝑤𝑓lost
𝑝

𝑝∈𝑃′ (8-1)

Subject to:

𝑤𝑓lost
𝑝 ≥ 𝑤𝑓𝑝 − ∑ 𝑏𝑓𝑏,𝑝′

𝑏∈𝐵𝑝 ∀𝑝 ∈ 𝑃′ (8-2)

𝑏𝑓𝑏,𝑝′
≤ 𝑠𝑘 ∀𝑝 ∈ 𝑃′, 𝑏 ∈ 𝐵𝑝, 𝑘 ∈ 𝑆𝑏 (8-3)

∑ ∑ 𝑏𝑓𝑏,𝑝′
𝑏∈𝐶𝐵𝑘∩𝐵𝑝𝑝∈𝑃′ ≤ 𝑠𝑘 ∀𝑘 ∈ 𝑆′ (8-4)

As described above, the ILP model seeks to find the backup lightpath routing in

response to a second failure such that the availability is maximized. This is effectively

accomplished by maximizing the value of 𝑅2(𝑖, 𝑗) as per Eq. (4-10), which in turn is

accomplished by minimizing 𝑤𝑓lost(𝑖, 𝑗) as per Eq. (4-9). The ILP functions within each

dual failure (𝑖, 𝑗) independently, so for clarity and convenience, we omit the subscript (𝑖, 𝑗)

of each relevant variable in the formulation. The objective function of this ILP model is

expressed in Eq. (8-1), where each 𝑤𝑓lost
𝑝

 represents the amount of lost working lightpaths

on working route 𝑝 under the current dual-failure scenario.

134

If the sum of the available backup lightpaths on all backup routes available to restore

lightpaths on working route p is no less than the number of working lightpaths originally

assigned to it, then the lost working lightpaths can be accommodated fully. That is, the

number of lost working lightpaths on primary route 𝑝, due to the second failure in the

current dual-failure scenario, is equal to zero. Otherwise, the number of lost working

lightpaths on primary route 𝑝 is the difference between its working lightpaths and the sum

of all its backup lightpaths. Equation (8-2) ensures that the number of lost working

lightpaths on a specified working route 𝑝 is no less than the difference between its working

lightpaths and the sum of all its backup lightpaths (i.e., 𝑤𝑓𝑝 − ∑ 𝑏𝑓𝑏,𝑝′
𝑏∈𝐵𝑝).

Eq. (8-3) and (8-4) ensure that the backup lightpaths selected do not exceed the spare

capacity available on all spans they cross, either individually for all backup lightpaths in

response to the second failure only, as in Eq. (8-3), or concurrently with all other backup

lightpaths in use by the first failure, as in Eq. (8-4).

8.4 EXPERIMENTS

8.4.1 EXPERIMENTAL NETWORKS AND SETUP

We test our approach on a total of 165 test case networks comprised of 15 network

families with 11 networks in each family. Please refer to Chapter 5 for details of

experimental networks and experimental setup. Note that Gurobi is called through Python

in each loop wherever an ILP model is involved.

135

8.4.2 INTEGRATION OF GUROBI AND PYTHON

The Gurobi manual, which can be found on Gurobi official website [101], has

covered the approach to call Gurobi within Python. Overall, two ways can be used to

achieve this: one is to deploy the Gurobi Python Interface through Gurobi Interactive Shell,

the other is to apply Gurobi within the existing Python environment (in which case, you

need to install Gurobi module into Python). In this chapter, we adopt the second approach.

After setup of the programming environment, the next step is to implement the ILP

formulation following the grammar specified in the manual. It should be noted that all

Gurobi Python applications always start with importing Gurobi functions and classes into

Python, using the sentence [101]:

From gurobipy import *

Meanwhile, Gurobi offers various methods to simplify the programming process. For

example, the method Model() is used to create a new optimization model, and the method

addVar() is for adding variables to the model. Additionally, arithmetic operators and

comparison operations are overloaded in Python in order to ease the process of building

objective functions and constraints. The implementation of our optimization model in

Python is more complicated, considering Gurobi needed to be called in each iteration of

dual-failure scenario (𝑖, 𝑗).

8.4.3 VALIDATION OF PROPOSED ALGORITHM

In evaluating the proposed SBPP network availability optimization algorithm, we use

as a prior SBPP network availability algorithm already in the literature [119] as a

136

benchmark. That prior algorithm did not seek to optimize availability, rather, it simply

provided a passive availability calculation. The present algorithm herein, however,

specifically determines the response to a second failure so as to maximize the resultant

network availability. The data in Figure 8.2 shows the results from solving our new

algorithm from this section with the benchmark. Each data point in the figure represents

the SBPP network availability calculated by the new algorithm or the benchmark, as

indicated, for the various test case networks increasing in scale as we move to the right on

the x-axis. More specifically, the leftmost data point corresponds to the sparsest member

in the 10-node network family, each subsequent data point corresponds to the next more

richly connected member in that family, and up to the 10-node master network, after which

the next data point corresponds to the sparsest member of the 15-node network family, then

its sequentially more richly connected members, and so on. Figure 8.3 shows similar data,

but only for the master networks.

Figure 8.2 – Maximized network availability via the new algorithm for all 165 networks

0.99960

0.99965

0.99970

0.99975

0.99980

0.99985

0.99990

0.99995

1.00000

10 30 50 70 90 110 130 150

N
et

w
o

rk
 a

v
ai

la
b
il

it
y

Networks (# of nodes)

New algorithm

Benchmark

137

Figure 8.3 – Maximized network availability via the new algorithm for master networks only

First, it is clear that the network availability corresponding to our new algorithm are

higher than those corresponding to the benchmark algorithm for each test case network.

This is reasonable since our new algorithm seeks the optimal network availability. In

contrast, the benchmark algorithm is purely passive in nature; when assessing the

restoration of a second failure, the failed working routes in a specified dual-failure scenario

is selected and restored randomly without regard for optimum availability. As a

consequence, there is no guarantee that the selection of backup lightpaths is a particularly

good one, let alone an optimum one, and so the network availability that arises is not

necessarily optimal.

We can observe from the figure that optimal network availability is not only much

higher when the proposed algorithm is applied, but is also relatively stable with increasing

network scale for the new algorithm. In contrast availability that arises when the

0.99960

0.99965

0.99970

0.99975

0.99980

0.99985

0.99990

0.99995

1.00000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
et

w
o

rk
 a

v
ai

la
b

il
it

y

Master networks (# of nodes)

New algorithm

Benchmark

138

benchmark algorithm is applied decreases when network scale grows. This reveals that

network scale has little impact on optimal network availability using our new approach;

the fact that optimal network availability tends to be stable with increasing network scale

is the result of two factors that work in opposite directions in terms of the impact on optimal

network availability. On one hand, higher network scale means more nodes and spans are

involved, which can generate a greater diversity of available backup routes for a specified

O-D pair and results in higher optimal network availability. On the other hand, higher

network scale represents more demands and more requirements for available spare capacity,

which leads to higher sharing of spare capacity and lower optimal network capacity. These

two factors interact and their effects towards optimal network availability offset each other.

As such, we end up with relatively stable optimal network availability when increasing

network scales.

8.4.4 COMPLEXITY AND SOLUTION TIME

Problem complexity and scalability is of general concern with new ILP models and

algorithms. The ILP model developed in Section 8.3 has the numbers of variable and

constraints as shown in Table 8.1, and the solution time of the algorithm is as shown in

Figure 8.4.

139

Table 8.1– Numbers of Variables and Constraints in Availability Optimization ILP Model for

Master Networks

Nodes Spans Instances
Mean Variables

per Instance

Mean

Constraints

per Instance

10 25 600 9 18

20 50 2,450 23 60

30 75 5,550 39 112

40 100 9,900 53 164

50 125 15,500 71 233

60 150 22,350 94 330

70 175 30,450 117 430

80 200 39,800 130 469

90 225 50,400 177 740

100 250 62,250 194 803

110 275 75,350 201 779

120 300 89,700 241 1,013

130 325 105,300 278 1,254

140 350 122,150 336 1,664

150 375 140,250 361 1,789

Note that the numbers in Table 8.1 represent the average numbers of variables and

constraints in each instance of the ILP for the master network indicated. The ILP is called

once per dual-failure scenario (i.e., twice per span pair, since failure order matters), which

is shown in the “Instances” column in the table. So for instance, for the 100-node master

network (with 250 spans), the algorithm would need to call the ILP |S| × (|𝑆| − 1) =

62,250 time, with an average of 194 variables and 803 constraints in the ILP each time it

is called. The precise numbers of variables and constraints will vary somewhat from

instance to instance because the specific backup routes impacted by the dual failure in

question will differ from one dual failure to the next, and similarly for the other variables

and for the constraints.

140

Figure 8.4 – Solution time for master networks

While a part of the scalability picture is painted by this data, solution time may be of

more interest to some readers, as this will more directly address the model’s performance

directly. Figure 8.4 shows the total solution time of the algorithm on the master networks

(i.e., the test case networks with average nodal degree of 5.0). As expected, solution time

increases in an exponential-like manner with the increasing number of nodes in the network.

Using the Least Squares approach [120], the best-fit third order polynomial approximation

for solution time in seconds is shown in Eq. (8-5), where 𝑛 is the number of nodes in the

master network; the 𝑅2 value is 0.9926.

𝑡 = 0.007𝑛3 − 0.9993𝑛2 + 46.609𝑛 − 538.86 (8-5)

8.4.5 IMPACT OF SPARE CAPACITY ON NETWORK AVAILABILITY

We now investigate how increasing spare capacity influences network availability.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

S
o

lu
ti

o
n

 t
im

e
(s

)

Master networks (# of nodes)

141

Rather than provide the algorithm with the minimum-cost SBPP network designs that are

fully single-failure survivable, we provide it with network designs that have a slightly

greater amount of additional capacity. We produce these network designs by first using the

minimum-capacity SBPP network design model from [77] and then increasing the spare

capacity on each span by a specified percentage, rounding up to integer values. The

experimental results are shown in Figure 8.5, where the x-axis represents the percentage

increase in spare capacity, and the y-axis represents the associated network availability.

The pattern is visually indistinguishable for test case networks with all connectivities we

tested, so we show data for only the networks with average nodal degree of 4.0.

Figure 8.5 – Maximized network availability for test case networks with average nodal degree of

4.0, provided with additional spare capacity increases beyond the min-cost single-failure

survivable design.

0.999964

0.999969

0.999974

0.999979

0.999984

0.999989

0.999994

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

A
v
ai

la
b

il
it

y

Increase percentages

10-node 20-span network

20-node 40-span network

40-node 80-span network

120-node 240-span network

60-node 120-span network

130-node 260-span network

100-node 200-span network

150-node 300-span network

80-node 160-span network

140-node 280-span network

70-node 140-span network

90-node 180-span network

110-node 220-span network

30-node 60-span network

50-node 100-span network

142

As the figure shows, all 15 test case networks reveal the same pattern on network

availability as we increase network spare capacity by the percentages from 5% to 100%.

Evidently, as network spare capacity increases, network availability increases accordingly.

However, the declining slope of each line suggests that the availability improvements

decline as the amount of spare capacity continues to increase. 100% dual-failure

restorability is achievable, however, this will cost a disproportionate amount of additional

spare capacity.

This data can be summarized more succinctly by calculating the average availability

increment at each incremental percentage spare capacity increase (i.e., the average

improvement in availability when increasing spare capacity from one specified percentage

to the next higher percentage in 5% intervals), as in Figure 8.6. To be more precise, each

data point represents the average amount (over all test case networks with average nodal

degree of 4.0) that availability improves when increasing spare capacity in the network by

an additional 5% to the total percentage increase indicated on the x-axis.

From Figure 8.6, it is evident that the average improvement in availability is high

when the network is provided with small amounts of additional spare capacity (i.e., relative

to that of the minimum cost design), but these improvements drop quickly as the spare

capacity increases continue. For instance, if we increase the total amount of spare capacity

by 5%, network availability can be enhanced by 5.0×10-6, but if we increase spare capacity

from 15% above the minimum capacity to 20% above the minimum capacity, we can only

get an additional 2.0×10-6 increase. Our goal is to seek a balance point between availability

increment and total cost, i.e., we want to achieve a desirable availability improvement at

143

an acceptable cost. There is no standard for such a balance point, but we observe an

interesting behavior from the figure; when the percentage increase in spare capacity is

greater than 40%, the average availability increment is lower by an order of magnitude than

the previous 35% capacity increase. Therefore, we can suggest that in the test cases herein,

a 35% increase in spare capacity provides a good tradeoff between capacity cost and

availability improvement.

Figure 8.6 – Improvement in maximized network availability via the new algorithm for test case

networks with average nodal degree of 4.0, provided with additional spare capacity increases

beyond the minimum cost single-failure survivable design.

8.5 CONCLUSIONS

The SBPP survivable mechanism has received some attention in the literature in

recent years, but there is limited prior work related to its relationship to network

availability. Previous approaches rely on random selection of failed working routes when

0.0E+00

5.0E-07

1.0E-06

1.5E-06

2.0E-06

2.5E-06

3.0E-06

3.5E-06

4.0E-06

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
v
er

ag
e

av
ai

la
b
il

it
y
 i
n
cr

em
en

t

Spare capacity increase percentage

144

dealing with dual-failures, which leads to sub-optimal (with respect to availability) designs.

The algorithm proposed herein is designed to achieve an optimal SBPP network

availability design. We demonstrate its scalability by applying it to test case networks as

large as 150 nodes and 375 spans. We also show that as additional spare capacity is placed

in a network (above and beyond that needed to provide single-failure survivability), overall

network-wide availability initially improves considerably, but those improvements

diminish as spare capacity increases continue. In the test case networks herein, increasing

spare capacity by 35% balances capacity increases and availability improvements.

The approach we developed specifically addresses dual failures, as it is those

scenarios that contribute the majority of a network’s unavailability. However, higher order

failures certainly occur, and so the reader may wish to extend our approach for such

failures. In order to extend our algorithm to triple-failure scenarios, one further layer of

iteration would be added (i.e., the appropriate for loop would be added within the loop on

lines 11 through 14 of Figure 8.1), and the algorithm would need to cycle through all triple-

failure scenarios (i.e., all span triplets). Although extending the algorithm would be fairly

straightforward, we expect scalability to be an issue, particularly with larger networks, as

the numbers of variables and constraints per instance of the ILP will increase (a great

number of backup routes will be impacted by a triple-failure scenario) and the number of

instances of the ILP increases from |S| × (|𝑆| − 1), to |S| × (|𝑆| − 1)(|𝑆| − 2).

145

CHAPTER 9 DESIGN AND AVAILABILITY

OPTIMIZATION OF PATH-RESTORABLE NETWORKS

9.1 MOTIVATIONS AND GOALS

In path restoration, end-to-end restoration routes for a failed lightpath will be specific

to the location of the failed span along the lightpath, so path restoration is also called

failure-dependent path protection (FDPP) [18]. In addition, path restoration typically also

allows stub-release, where the surviving portions of the failed lightpath are released and

the associated working capacity along the route is made available to use as spare capacity

for restoration of any of the simultaneously failed lightpaths (in general, a failed span might

carry lightpaths between a number of different end-to-end node pairs) [24]. As compared

to span restoration, the replacement backup routes are distributed throughout a much wider

range [24]. Path restoration is guaranteed to be at least as efficient as SBPP, and it receives

a lot of attention as well [18].

Prior work addressing path-restorable network availability is limited, which we seek

to address herein. More precisely, we will (1) propose and develop an algorithm to obtain

the optimal network dual-failure availability for path-restorable networks, and (2) attempt

to determine the nature of the relationship between network dual-failure availability and

spare capacity.

146

9.2 DESIGN OF PATH-RESTORATION NETWORKS

9.2.1 NOTATION

The path-restorable network capacity allocation ILP model is a well-understood

design model, which we will reproduce here from [18] for completeness and for ease of

understanding of a new but related ILP network design model we will propose and develop

later. The notation used in the model is defined as follows:

Sets:

𝑆 is the set of spans.

𝐷 is the set of demands.

𝑃𝑟 is the set of candidate primary routes for demand 𝑟.

𝐵𝑖
𝑟 is the set of candidate backup routes for demand r under single failure 𝑖.

Parameters:

𝐶𝑘 is the cost of placing one unit of capacity on span 𝑘.

𝑑𝑟 is the quantity of demand 𝑟.

𝜁𝑘
𝑝,𝑟

 equals 1 if the working route 𝑝 of demand 𝑟 crosses over span 𝑘, and equals 0

otherwise.

𝛿𝑘
𝑏,𝑟

 equals 1 if the backup route 𝑏 of demand 𝑟 crosses over span 𝑘, and equals 0

otherwise.

Variables:

𝑤𝑘 is the amount of working capacity placed on span 𝑘.

147

𝑠𝑘 is the amount of backup capacity placed on span 𝑘.

𝑤𝑓𝑝
𝑟 is the amount of working flow on working route 𝑝 of demand 𝑟.

𝑏𝑓𝑖
𝑏,𝑝,𝑟

 is the amount of backup flow on backup route 𝑏 for the restoration of working

route 𝑝 of demand 𝑟 under single failure 𝑖.

𝑠𝑘,𝑖
0 is the units of spare capacity assigned to span 𝑘 under single failure 𝑖 due to stub-

release.

9.2.2 ILP FORMULATION

Similarly to span restoration and SBPP networks, our capacity design model for path

restoration networks is also based on ILP and the objective remains to produce a minimal

capacity design. For research purpose, a practical way is to assume a static demand matrix

[55]. Again, we adopt a JCA method. The basic approach is to assign both working and

restoration flow to their respective set of eligible routes over the network. The objective

function is:

Minimize:

𝐶𝑜𝑠𝑡 = ∑ 𝐶𝑘(𝑤𝑘 + 𝑠𝑘)𝑘∈𝑆 (9-1)

The constraints are:

∑ 𝑤𝑓𝑝
𝑟

𝑝∈𝑃𝑟 = 𝑑𝑟 ∀𝑟 ∈ 𝐷 (9-2)

𝑤𝑘 = ∑ ∑ 𝜁𝑘
𝑝,𝑟 ∙ 𝑤𝑓𝑝

𝑟
𝑝∈𝑃𝑟𝑟∈𝐷 ∀𝑘 ∈ 𝑆 (9-3)

∑ 𝑏𝑓𝑖
𝑏,𝑝,𝑟

𝑏∈𝐵𝑖
𝑟 ≥ 𝜁𝑖

𝑝,𝑟 ∙ 𝑤𝑓𝑝
𝑟 ∀𝑖 ∈ 𝑆, ∀𝑟 ∈ 𝐷, ∀𝑝 ∈ 𝑃𝑟(9-4)

𝑠𝑘 ≥ ∑ ∑ 𝛿𝑘
𝑏,𝑟 ∙ 𝑏𝑓𝑖

𝑏,𝑟
𝑏∈𝐵𝑖

𝑟𝑟∈𝐷 − 𝑠𝑘,𝑖
0 ∀𝑖, 𝑘 ∈ 𝑆|𝑖 ≠ 𝑘 (9-5)

148

𝑠𝑘,𝑖
0 = ∑ ∑ 𝜁𝑘

𝑝,𝑟
∙ 𝜁𝑖

𝑝,𝑟
∙ 𝑤𝑓𝑝

𝑟
𝑝∈𝑃𝑟𝑟∈𝐷 ∀𝑖, 𝑘 ∈ 𝑆|𝑖 ≠ 𝑘 (9-6)

The objective function in (9-1) seeks to minimize the total cost of working and spare

capacity in the network. The constraints defined in (9-2) through (9-6) aim to deploy both

working and spare capacity throughout the network in order to satisfy the required demands

as well as guarantee full single-failure restorability. The constraints set in (9-2) guarantees

that each demand 𝑟 is satisfied by providing enough working lightpaths from all the

candidate working routes. Constraints in (9-3) then calculate the number of working

lightpaths on each span to determine each span’s working capacity. Note that wavelength

continuity is not modelled here, so although we use the term “lightpath”, we assume opaque

nodes, where full wavelength conversion is allowed (which is still the norm in many core

transport networks). The set of constraints in (9-4) ensures that sufficient restoration paths

are formed between any pair of end nodes to accommodate all lightpaths impacted by

failure of span 𝑖 . In much the same manner as in (9-3) for working lightpaths, the

constraints in (9-4) calculate the maximum number of restored lightpaths simultaneously

crossing each span in order to ensure sufficient spare capacity on each span. The constraints

set in (9-6) calculates the stub-released capacity on each span 𝑘 in the event of failure of

span 𝑖, which are utilized on the right-hand side of the constraints in (9-5).

9.3 AVAILABILITY OPTIMIZATION ALGORITHM

As discussed, the ILP model above will produce a minimum-cost path-restorable

network design that is fully survivable in the event of any single span failure. Although

prior work has shown that such networks will have some inherent dual-failure restorability

[105], there is no guarantee of any specific level of dual-failure restorability, and it most

149

certainly will fall short of full dual-failure restorability. As a consequence, there will

inevitably be some level of unavailability in such a network arising from dual-failure

scenarios, which have been shown to be the source of most unavailability in a network [26].

Precisely how much unavailability is still an open question.

In order to answer this question, we develop an algorithm to obtain optimal network

dual-failure availability in a path-restorable network. Here, we define dual-failure

availability as the availability of the network if we consider only outages arising from dual

failures. We assert that this is a reasonable approximation of network availability where

single-failure survivability is assured and where higher order failures (i.e., those involving

simultaneous failure of three or more spans) are so exceedingly rare that their contribution

to a network’s unavailability is many orders of magnitude smaller than the contribution

from dual-failure scenarios [119].

The input of this algorithm, illustrated in Figure 9.1, is essentially the design data

from the path-restorable network capacity allocation model above, including the set of all

the spans in the network (denoted by 𝑆), the set of all the eligible working routes (denoted

by 𝑃), the set of all eligible backup routes (denoted by 𝐵𝑝, ∀ 𝑝 ∈ 𝑃), the amount of backup

capacity allocated to each span (denoted by 𝑠𝑘, ∀𝑘 ∈ 𝑆), the number of working lightpaths

on each eligible working route (denoted by 𝑤𝑓𝑝, ∀𝑝 ∈ 𝑃), the number of backup lightpaths

on each eligible backup route (denoted by 𝑏𝑓𝑏,𝑝, ∀𝑏 ∈ 𝐵𝑝, 𝑝 ∈ 𝑃), and the vector that

indicates whether a specified working route 𝑝 traverses span 𝑘 (denoted by 𝜁𝑘,𝑝, ∀𝑘 ∈

𝑆, 𝑝 ∈ 𝑃).

150

In the first step, we cycle through all the dual-failure scenarios (i.e., dual-failure

(𝑖, 𝑗), ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗) to obtain the dual-failure restorability for each dual-failure scenario

(i.e., 𝑅2(𝑖, 𝑗), ∀𝑖, 𝑗 ∈ 𝑆|𝑖 ≠ 𝑗). Recall that 𝑤𝑓aff(𝑖, 𝑗) and 𝑤𝑓lost(𝑖, 𝑗) represent the number

of working lightpaths affected and lost due to this dual-failure, respectively. Apparently,

at the beginning of each iteration, both of their values are initialized at zero. We then

examine each working route that is affected by the first failure 𝑖, add its working lightpaths

to the value of 𝑤𝑓aff(𝑖, 𝑗), and update the spare capacity for the spans on the backup routes

of working route 𝑝. Meanwhile, for the surviving lightpaths on working route 𝑝, we update

the spare capacity for the corresponding spans by allowing stub-release. In the following

step, we examine each backup route 𝑏 of the primary route 𝑝 to check whether this backup

route is affected by the second failure 𝑗. If it is affected by the second failure 𝑗, the value

of 𝑤𝑓lost(𝑖, 𝑗) will be updated by adding up the backup lightpaths on this examined backup

route. The procedure is continued until all the working routes affected by the first failure,

𝑖, are considered. Subsequently, we examine all the working routes that are affected only

by the second failure, 𝑗, i.e., we will exclude those that were already affected by the first

failure, 𝑖. All such working routes are denoted by the set of 𝑃′ as indicated in the figure.

Likewise, we add all the working lightpaths to the value of 𝑤𝑓aff(𝑖, 𝑗) to update the count

of affected working lightpaths. The number of lost working lightpaths is difficult to

determine, because the input design results considered only single-failure scenarios, and

so we do not have any specific restoration strategy for the second failure. For this reason,

we develop an ILP model to do this for us.

For now, we will simply state that the ILP seeks to minimize the wflost in the network,

but will describe it in full in the following section. After solving the ILP model, we

151

calculate the value of 𝑅2(𝑖, 𝑗) for the current dual-failure scenario. Once all the dual-failure

scenarios have been addressed, we calculate 𝐴2
𝑝

 for each working route. Finally, the

network dual-failure availability 𝐴2 is obtained via the relevant equations as in (4-10) and

(4-11) from Chapter 4.

152

Figure 9.1 – Pseudocode of availability optimization algorithm for path restoration

153

9.4 TOTAL LOST WORKING FLOW OPTIMIZATION

Since the first failure of any dual-failure scenario is fully restored, the dual-failure

availability is essentially determined by the amount of restoration realized by the second

failure (though there will often be some loss of the first failure’s restoration lightpaths in

the event that some of them crossed the second failed span). Accordingly, in order to

optimize dual-failure availability, we can minimize the total number of lost working

lightpaths on the working routes that are affected by the second failure, excluding those

already affected by the first failure. Since failed working routes will compete for available

spare capacity during the ensuing restoration process, the restoration sequence of the failed

working routes important to consider; in order to obtain the optimal dual-failure availability,

we cannot restore the failed working routes randomly. As a consequence, we needed to

develop a new ILP model to determine the optimal sequence for the restoration process, as

stated above in the discussion of the algorithm in Figure 9.1. The assumptions we apply in

this optimization process include:

(1) The restoration of the first failure is completed before this optimization. That is,

we only consider the second failure in this process. Since only one failure is involved, we

can remove the failure subscript 𝑗 of the second failure from related sets, parameters, and

variables in the model, although the optimization process is designed for a specified dual-

failure scenario. We will still specify the second failure using the parameter 𝑗 where

applicable. In this case, 𝑗 is a parameter rather than an index variable.

(2) After obtaining input data from the design process, the optimization process is

independent from the design process. Therefore, we redefine symbols in this process. In

154

some cases, even though we use the same symbol as the design process, we may refer to

different meanings.

(3) Once the second failure occurs, the pre-defined backup routes, which are designed

originally for the restoration of the first failure, are activated to restore the failed working

flow caused by the second failure. It should be noted that the amount of backup flow and

the backup capacity on each span are not known for the restoration of the second failure,

which is different from the restoration of the first failure. We will get these values by

maximizing the network availability in order to make the best of available backup capacity

already assigned to each span.

9.4.1 ANNOTATIONS

The new ILP model utilizes the following new notation.

Sets:

𝑃′ is the set of all working routes that only affected by the second failure in a

specified dual-failure scenario.

𝐵𝑝 is the set of all backup routes of the working route 𝑝.

𝐴𝐵 is the set of all backup routes for the restoration of all working routes specified

in the set of 𝑃′.

𝑆𝑏 is the set of all spans on the backup route 𝑏.

𝑆′ is the set of all spans on all the backup routes in 𝐴𝐵.

155

𝐶𝐵𝑘 the concurrent backup routes, i.e., it is the set of all backup routes that traverse

span 𝑘 simultaneously.

Parameters:

𝑖 is the parameter denoting the first failure in a specified dual failure scenario.

𝑗 is the parameter denoting the second failure in a specified dual failure scenario.

𝑤𝑓𝑝 is the amount of working flow on the working route 𝑝.

𝑠𝑘 is the amount of backup capacity on the span 𝑘 obtained from the design.

𝑠𝑘′ is the amount of backup capacity on the span 𝑘 considering stub-release due to

the second failure.

𝜁𝑘,𝑝 is a binary parameter, being 1 if the working route 𝑝 crosses span 𝑘 and 0

otherwise.

Variables:

𝑤𝑓lost
𝑝

 is an integer variable, representing the amount of lost working flow on the

working route 𝑝 caused by the second failure in a specified dual-failure scenario.

𝑏𝑓𝑏,𝑝 is an integer variable, representing the amount of backup flows on the backup

route 𝑏 for restoration of the working route 𝑝 under the second failure in a specified dual-

failure scenario.

156

9.4.2 ILP FORMULATION

The objective is to minimize the total lost working flow on the working routes that

are affected by the second failure excluding those affected by the first failure in a specified

dual failure scenario.

Minimize:

𝑤𝑓𝑙𝑜𝑠𝑡 = ∑ 𝑤𝑓𝑙𝑜𝑠𝑡
𝑝

𝑝∈𝑃′ (9-7)

The constraints are:

𝑤𝑓𝑙𝑜𝑠𝑡
𝑝 ≥ 0 ∀𝑝 ∈ 𝑃′ (9-8)

𝑤𝑓𝑙𝑜𝑠𝑡
𝑝 ≥ 𝑤𝑓𝑝 − ∑ 𝑏𝑓𝑏

𝑝
𝑏∈𝐵𝑝|𝑖∉𝑆𝑏,𝑗∉𝑆𝑏 ′ ∀𝑝 ∈ 𝑃′ (9-9)

𝑏𝑓𝑏
𝑝 ≤ 𝑠𝑘′, ∀𝑝 ∈ 𝑃′, 𝑏 ∈ 𝐵𝑝|𝑖 ∉ 𝑆𝑏, 𝑗 ∉ 𝑆𝑏 , 𝑘 ∈ 𝑆𝑏 (9-10)

∑ ∑ 𝑏𝑓𝑏
𝑝

𝑏∈𝐶𝐵𝑘∩𝐵𝑝|𝑖∉𝑆𝑏,𝑗∉𝑆𝑏𝑝∈𝑃′ ≤ 𝑠𝑘′ ∀𝑘 ∈ 𝑆′ (9-11)

𝑠𝑘
′ = 𝑠𝑘 + ∑ 𝜁𝑘,𝑝 ∙ 𝜁𝑗

𝑝 ∙ 𝑤𝑓𝑝
𝑝∈𝑃′ ∀𝑘 ∈ 𝑆′|𝑘 ≠ 𝑗 (9-12)

The objective function in (9-7) seeks to minimize the total lost working lightpaths on

the working routes that are affected by the second failure, excluding those affected by the

first failure in a specified dual-failure scenario.

For a given working route 𝑝, the total backup flow that can be used to restore it once

the second failure occurs is the sum of the available backup flow on all its backup routes.

This sum is either less than the failed working flow, as per equation (9-8), or no less than

the failed working flow, as per equation (9-9). If the sum is less than the failed working

157

flow, then the lost working flow on the working route is the difference between the failed

working flow and the sum; while if the sum is no less than the failed working flow, then

the lost working flow is zero, i.e., there is no lost working flow.

The constraints in (9-10) ensure that the maximum backup flow on a specified

backup route 𝑏 cannot exceed the minimum actual spare capacity of the spans on it. We

guarantee this condition by forcing the backup flow to be less than the actual spare capacity

of each span on it.

Regarding the constraints in equation (9-11), first recall that the set 𝑃′ represents all

the primary routes that are only affected by the second failure in a specified dual-failure

scenario. In order to restore the working flow interrupted by the second failure, all the

backup routes, which are defined in the set 𝐴𝐵, of all the primary routes defined in 𝑃′ are

activated simultaneously. For any span k in the set 𝑆′, if all the backup routes in any subset

of the set 𝐴𝐵 traverse span 𝑘, we call them concurrent backup routes with respect to span

𝑘, and denote this subset with 𝐶𝐵𝑘. The sum of backup flow on the concurrent backup

routes cannot surpass the amount of available backup capacity on span 𝑘 as shown in

equation (9-11).

The constraints in (9-12) accounts for the stub-release effect. As a result of stub-

release, the amount of actual spare capacity on a specified span 𝑘 varies under different

failure scenarios. More specifically, if the failed working route does not cross over span 𝑘,

its available spare capacity is the same as obtained from the design process, while if the

failed working route traverses span 𝑘 and span 𝑘 is not the failed span, then the working

capacity on span 𝑘 can be released and used as the backup capacity.

158

9.4.3 INTEGRATION OF GUROBI AND PYTHON

The method of calling Gurobi within Python is the same as sated in Section 7.3.3.

We will not discuss it here to avoid repetitiveness. Please refer to Section 7.3.3 for details

if needed.

9.5 EXPERIMENTS

9.5.1 EXPERIMENTAL NETWORKS AND SETUP

In this section, we seek to investigate (1) how network availability of span-restorable

networks responses as network average nodal degree increases, (2) how spare capacity

increases influences span-restorable network’s availability. From previous studies, we

observe that patterns among different network families are similar, so in order to save time,

we use 30-node family, 50-node family, 60-node family, and 70-node family, instead of all

the network families. We use the experimental setup as indicated in Section 3.5.3 as well

and call Gurobi through Python in each loop wherever an ILP model is involved.

9.5.2 IMPACT OF NETWORK AVERAGE NODAL DEGREE ON

NETWORK AVAILABILITY

Figure 9.2 through Figure 9.5 show the changing trend of network availability with

increasing network average nodal degree for 30-node family, 50-node family, 60-node

family, and 70-node family, respectively. Each data point represents the dual-failure

availability of the network of the indicated average nodal degree in the indicated network

family, as calculated by our algorithm described above.

159

Figure 9.2 – Network availability for 30-node network family

Figure 9.3 – Network availability for 50-node network family

0.999962

0.999964

0.999966

0.999968

0.999970

0.999972

0.999974

0.999976

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
et

w
o

rk
 a

v
ai

la
b

il
it

y

Network average nodal degree

30-node network family

0.999960

0.999965

0.999970

0.999975

0.999980

0.999985

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
et

w
o

rk
 a

v
ai

la
b

il
it

y

Network average nodal degree

50-node network family

160

Figure 9.4 – Network availability for 60-node network family

Figure 9.5 – Network availability for 70-node network family

0.999978

0.999980

0.999982

0.999984

0.999986

0.999988

0.999990

0.999992

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
et

w
o
rk

 a
v
ai

la
b
il

it
y

Network average nodal degree

60-node family

0.999974

0.999976

0.999978

0.999980

0.999982

0.999984

0.999986

0.999988

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
et

w
o
rk

 a
v
ai

la
b
il

it
y

Network average nodal degree

70-node network family

161

From these figures, we observe counter intuitively that although network availability

initially increases when moving to higher network connectivity, it then generally decreases

with further increases in connectivity, though not monotonically. One may expect that as

the network connectivity increases, creating a greater diversity of eligible routes for both

working and restoration routing, availability would only ever increase. However, recall that

availability has been calculated for networks that have been designed to be of minimum

cost, which can have an unpredictable effect on the subsequent availability. More precisely,

the networks were designed for minimum cost, not maximum availability.

Two factors appear to work together to drive the observations we’ve noted. On one

hand, a higher connectivity produces a greater diversity of shorter eligible routes, which in

turn reduces the total number of dual-failure scenarios. In this regard, the likelihood of

network outage becomes smaller, increasing availability. But on the other hand, shorter

working routes will lead to a much smaller amount of spare capacity in the network, as

well as a smaller amount of reused working capacity during the stub-release process. This

has a negative effect in terms of network availability. In most cases in our test case

networks, the impact of the second factor prevails over the first when moving to the next

more richly connected network, thereby resulting in a decrease in dual-failure availability.

9.5.3 IMPACT OF SPARE CAPACITY ON NETWORK AVAILABILITY

Also of interest is how network availability will respond to increases of the total

amount of spare capacity placed on the network. Each data point in Figure 9.6 represents

the dual-failure availability of the network with the indicated spare capacity increase. Here,

the initial network design is determined via the path-restorable network capacity allocation

162

ILP model above, and then the spare capacity on each span is increased by the percentage

specified (and rounded up to the nearest integer). We provide data for the test case networks

with average nodal degree of 4.0 (i.e., the 60-span member from the 30-node network

family, the 100-span member from the 50-node network family, the 120-span member from

the 60-node network family, and the 140-span member from the 70-node network family),

and provide spare capacity increases in 5% increments up to 100%. We can observe that

network availability generally improves with additional spare capacity, but improvements

become smaller as the spare capacity increases become larger. The declining slope of each

curve suggests that the network availability improvements have a downward trend with the

continuously increase of spare capacity. Inexpensive improvements in availability can be

had, but become increasingly costly. And although 100% dual-failure restorability might

be achievable, this will cost a disproportionate amount of additional spare capacity.

Figure 9.6 – Network availability for experimental networks

0.999965

0.999970

0.999975

0.999980

0.999985

0.999990

0.999995

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
et

w
o

rk
 a

v
ai

la
b

il
it

y

Spare capacity increase percentage

60-node 120-span network

70-node 140-span network

30-node 60-span network

50-node 100-span network

163

If we wish to look strictly at the improvements in availability, we can plot those

improvements a well, as shown in Figure 9.7 through Figure 9.10. As these figures

illustrate, the availability increment declines quickly with initial increases in spare

capacity, and levels off near zero as the spare capacity increases continue, particularly in

the larger network.

For example, if the total amount of spare capacity is increased by 5%, network

availability is improved by 5.2×10-6 in the 30-node 60-span network and 6.1×10-6 in the

50-node 100-span network. However, as spare capacity continues to increase, say, when

moving from 35% to 40% above the optimal single-failure design, we can only get an

additional 6.3×10-7 increase for the 30-node 60-span network and a 7.5×10-7 increase for

the 50-node 100-span network. In order to achieve a desirable availability improvement at

an acceptable cost, it is important to seek some kind of balance point. While we could

easily suggest some target, there is no clear inflection point observed, and each operator

will have their own interpretation of the tradeoff between improving availability and

increasing cost.

164

Figure 9.7 – Network availability increment for 30-node 60-span network

Figure 9.8 – Network availability increment for 50-node 100-span network

0.0E+00

5.0E-07

1.0E-06

1.5E-06

2.0E-06

2.5E-06

3.0E-06

3.5E-06

4.0E-06

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
et

w
o

rk
 a

v
ai

la
b

il
it

y
 i

n
cr

em
en

t

Spare capacity increase percentage

30-node 60-span network

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
et

w
o

rk
 a

v
ai

la
b

il
it

y
 i

n
cr

em
en

t

Spare capacity increase percentage

50-node 100-span network

165

Figure 9.9 – Network availability increment for 60-node 120-span network

Figure 9.10 – Network availability increment for 70-node 140-span network

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
et

w
o

rk
 a

v
ai

la
b

il
it

y
 i

n
cr

em
en

t

Spare capacity increase percentage

60-node 120-span network

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
et

w
o

rk
 a

v
ai

la
b

il
it

y
 i

n
cr

em
en

t

Spare capacity increase percentage

70-node 140-span network

166

9.6 CONCLUSIONS

We have proposed and developed a new algorithmic approach and constituent ILP

model to calculate dual-failure availability in path-restorable networks. Experiments show

that counter intuitively, network availability generally decreases as network connectivity

increases. Furthermore, substantial improvements in network availability can be obtained

by adding small amounts of additional spare capacity in a network.

167

CHAPTER 10 PERFORMANCE COMPARISON OF

VARIOUS MESH NETWORKS

From Section 6 through Section 9, we have investigated various survivability

mechanisms individually. In this section, we will combine the above algorithms and

compare the performance of these mechanisms in terms of network availability.

10.1 MOTIVATIONS AND GOALS

As stated in the previous sections, the study regarding network availability

optimization is very few, and to the best of our knowledge, there is no comparison of

network optimal availability among various survivability mechanism. In order to fill this

research gap, we seek to compare network optimal availability for span restorable networks,

path restorable networks, and SBPP networks.

10.2 METHODOLOGY

Although the optimal network availability for these three types of networks have

been investigated in the previous sections, respectively, the results from previous sections

cannot be used directly for comparison, due to two reasons.

(1) Experimental assumptions are not exactly the same. Specifically, we assume the

physical failure rate is the same for each span in span restorable networks, but we utilize

span-specific failure rate for each span in path restorable and SBPP networks. In this

section in order to keep consistency, we use span-specific failure rate for each span for all

types of networks.

168

(2) Experimental networks are not exactly the same. In span restorable networks, we

use both existing networks and the newly created networks for experiments, while in path

restorable and SBPP networks, we only use the newly created networks for experiments.

(3) we focus on how network availability indicators behave with increasing non-

restored working capacity in the network for span restorable networks, and we do not

investigate how optimal network availability responses in terms of network average nodal

degree, as we do for path restorable and SBPP networks. As such, we will design

experiments to obtain the same type of data for span restorable networks such that we can

compare them with path restorable and SBPP networks.

The basic theory behind each algorithm is that we minimize the total lost working

flow to maximize the value of network overall dual-failure availability under the condition

that the network has been designed for full single-failure restorability already. Although

the detailed procedures for span restorable, path restorable, and SBPP networks are

different, the general procedure of the algorithm can be summarized in Figure 10.1. More

specifically, for starters, we create network family (i.e., creation of *.top files and *.dem

files for each network in the created network families) with the help of Inkscape and Python

programs. Next, we build ILP design model for networks with a specified survivability

mechanism using AMPL program (i.e., the buildup of AMPL *.mod file). Then the input

data file (i.e., the *.dat file) is prepared through programming with Python program. After

that, the ILP design model is solved within AMPL by calling Gurobi as the solver. In the

next step, the total lost working flow under dual-failure scenarios is minimized by using

AMPL (for span restorable networks) or Gurobi, and Python (for path restorable and SBPP

networks). As such, dual-failure availability is maximized and we end up with optimal

169

dual-failure availability for the entire network. Results are analyzed and comparisons are

made among different types of networks.

Figure 10.1 – Flowchart of methodology

Start

Create network family

Build network ILP design model

Prepare data for ILP design model

Solve design model

Minimize total lost working flow

Obtain optimal dual-failure availability

Results management and comparison

F
o
r

sp
an

 r
es

to
ra

b
le

,
p
at

h
 r

es
to

ra
b
le

 o
r

S
B

P
P

 n
et

w
o

rk
s

End

Procedures Tools

Inkscape + Python

AMPL

Python

AMPL + Gurobi

AMPL / Gurobi + Python

Python

170

10.3 EXPERIMENTS

We employ 30-node, 40-node, 50-node, and 60-node network families for

experiments. See Chapter 5 for details regarding experimental networks and setup. The

results for each network family are shown in Figure 10.2 through Figure 10.5.

Figure 10.2 – Network availability for 30-node network family

0.99996000

0.99996500

0.99997000

0.99997500

0.99998000

0.99998500

0.99999000

0.99999500

1.00000000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
et

w
o
rk

 a
v
ai

la
b
il

it
y

Network average nodal degree

30-node network family

Span restoration Path restoration SBPP

171

Figure 10.3 – Network availability for 40-node network family

Figure 10.4 – Network availability for 50-node network family

0.99996000

0.99996500

0.99997000

0.99997500

0.99998000

0.99998500

0.99999000

0.99999500

1.00000000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
et

w
o

rk
 a

v
ai

la
b

il
it

y

Network average nodal degree

40-node network family

Span restoration Path restoration SBPP

0.99996000

0.99996500

0.99997000

0.99997500

0.99998000

0.99998500

0.99999000

0.99999500

1.00000000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
et

w
o
rk

 a
v
ai

la
b
il

it
y

Network average nodal degree

50-node network family

Span restoration Path restoration SBPP

172

Figure 10.5 – Network availability for 60-node network family

Three observations from the figures are: (1) span-restorable networks have higher

overall availability compared to path-restorable networks and SBPP networks in terms of

the number of nines, (2) path-restorable networks and SBPP networks have similar overall

network availability in terms of the number of nines, and (3) as network average nodal

degree increases, the values of network overall availability of path-restorable networks and

SBPP networks have similar changing trend. The third observation has been discussed

thoroughly in the previous chapters. With regard to the first two observations, our

hypothesis is that under the design of full single-failure restorability, span-restorable

networks have the largest amount of spare capacity, while path-restorable networks and

SBPP networks have a smaller but similar amount of spare capacity. As a result, span-

restorable networks tend to have largest overall network availability, whereas path-

0.99996500

0.99997000

0.99997500

0.99998000

0.99998500

0.99999000

0.99999500

1.00000000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

N
et

w
o

rk
 a

v
ai

la
b

il
it

y

Network average nodal degree

60-node network family

Span restoration Path restoration SBPP

173

restorable networks and SBPP networks tend to have smaller and similar overall network

availability generally.

In order to investigate the trend of overall network availability under the three

survivability mechanisms on the same figure, we plot network availability for path-

restorable and SBPP networks on the left axis and span-restorable networks on the right

axis, as shown in Figure 10.6 through Figure 10.9.

Figure 10.6 – Network availability for 30-node network family with two y-axes

0.99999885

0.99999890

0.99999895

0.99999900

0.99999905

0.99999910

0.99999915

0.99999920

0.99999925

0.99999930

0.999960

0.999965

0.999970

0.999975

0.999980

0.999985

0.999990

0.999995

1.000000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

Network average nodal degree

Availability for 30-node network family

Path restoration SBPP Span restoration

Right axisLeft axis

174

Figure 10.7 – Network availability for 40-node network family with two y-axes

Figure 10.8 – Network availability for 50-node network family with two y-axes

0.99999910

0.99999920

0.99999930

0.99999940

0.99999950

0.99999960

0.99999970

0.99999980

0.99999990

1.00000000

1.00000010

0.999960

0.999965

0.999970

0.999975

0.999980

0.999985

0.999990

0.999995

1.000000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

Network average nodal degree

Availability for 40-node network family

Path restoration SBPP Span restoration

Left axis Right axis

0.99999860

0.99999870

0.99999880

0.99999890

0.99999900

0.99999910

0.99999920

0.99999930

0.999960

0.999965

0.999970

0.999975

0.999980

0.999985

0.999990

0.999995

1.000000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

Network average nodal degree

Availability for 50-node network family

Path restoration SBPP Span restoration

Left axis Right axis

175

Figure 10.9 – Network availability for 60-node network family with two y-axes

It reveals from the figures that overall network availability under the three types of

survivability mechanisms has similar pattern with increasing network availability, i.e.,

overall network availability tends to increase at the very beginning and then decreases later

on. The reasons have been discussed and explained in the previous chapters, so we will not

go with details here.

In order to prove our hypothesis regarding Observation (3), we use 30-node 45-span

network to perform a case study as follows.

For span restoration and SBPP, the total spare capacity listed in Table 10.1 is the

actual available spare capacity on each span to protect network from dual failures. However,

for path-restorable networks, hidden spare capacity exists due to stub-release. As

previously stated in Chapter 9, stub-release is allowed in both network design and

0.99999942

0.99999943

0.99999944

0.99999945

0.99999946

0.99999947

0.99999948

0.99999949

0.99999950

0.99999951

0.99999952

0.99999953

0.999965

0.999970

0.999975

0.999980

0.999985

0.999990

0.999995

1.000000

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

Network average nodal degree

Availability for 60-node network family

Path restoration SBPP Span restoration

Left axis Right axis

176

availability optimization processes. Accordingly, an amount of working capacity on failed

working routes is reused as spare capacity in these two processes. The amount of hidden

spare capacity due to stub-release under single-failure scenario S01 in design process is

listed in Table 10.2 and the full set of values under all single-failure scenarios is listed in

Appendix A.1.

Table 10.1 – Spare capacity for 30-node 45-span network

spans
Amount of spare capacity

spans
Amount of spare capacity

SR PR SBPP SR PR SBPP

S01 81 73 107 S24 53 78 130

S02 47 52 83 S25 177 45 79

S03 47 11 38 S26 299 119 93

S04 152 172 136 S27 291 103 104

S05 144 23 56 S28 253 100 88

S06 112 0 34 S29 255 17 40

S07 16 52 75 S30 302 46 80

S08 88 143 224 S31 257 64 72

S09 144 51 79 S32 160 38 74

S10 474 122 171 S33 174 74 87

S11 330 133 186 S34 291 104 91

S12 427 57 126 S35 85 19 62

S13 458 69 102 S36 291 81 84

S14 296 24 122 S37 81 14 31

S15 85 119 163 S38 79 24 67

S16 474 222 187 S39 85 134 140

S17 410 155 160 S40 291 107 71

S18 474 213 156 S41 119 32 45

S19 296 140 186 S42 255 21 52

S20 246 9 27 S43 255 44 72

S21 50 15 75 S44 79 97 153

S22 476 95 106 S45 334 68 142

S23 476 164 144
Total 10269 3543 4600

177

Table 10.2 – Hidden spare capacity due to stub-release for 30-node 45-span network in design

process under single failure S01

Single failure Span Stub-release

S01 S02 99

S01 S04 119

S01 S07 45

S01 S08 94

S01 S14 38

S01 S15 41

S01 S17 22

S01 S20 30

S01 S24 11

S01 S28 13

S01 S29 4

S01 S30 4

S01 S36 6

S01 S39 15

S01 S41 3

S01 S44 4

Each row in the table represents the amount of working capacity that is reused as

spare capacity on the specified span when the span S01 fails. For example, the first row

indicates that when single-failure S01 occurs, 99 units of working capacity are assigned to

span S02 as its spare capacity. As such, the value of spare capacity for span S02 is increased

by 99. From Appendix A.1 we observe that the total value of stub-release in design process

is 34920. However, it should be noted that the total amount of spare capacity is not

increased by 34920 in design process, because we only consider one single failure each

time. Here, we use the average amount of spare capacity due to stub-release as the total

hidden spare capacity in design process, which is 776 (34920/45). Apart from design

process, availability optimization process allows stub-release as well. The units of spare

capacity due to stub-release in availability optimization process under dual-failure scenario

178

(S01, S02) is listed in Table 10.3, and the full set of values under all dual-failure scenarios

is listed in Appendix A.2.

Table 10.3 – Hidden spare capacity due to stub-release for 30-node 45-span network in

availability optimization process under dual-failure (S01, S02)

First failure Second failure Span Stub-release

S01 S02 S03 2

S01 S02 S04 75

S01 S02 S06 7

S01 S02 S07 99

S01 S02 S08 57

S01 S02 S10 2

S01 S02 S11 2

S01 S02 S14 22

S01 S02 S15 27

S01 S02 S16 2

S01 S02 S17 66

S01 S02 S19 2

S01 S02 S20 16

S01 S02 S22 9

S01 S02 S23 9

S01 S02 S24 42

S01 S02 S26 9

S01 S02 S28 2

S01 S02 S29 12

S01 S02 S30 20

S01 S02 S33 9

S01 S02 S37 3

S01 S02 S39 10

S01 S02 S41 3

S01 S02 S43 2

Each row in Table 10.3 represents the amount of original working capacity that is reused as

spare capacity on the specified span under the specified dual-failure scenario (i.e., dual-failure (S01,

S02)). Take the first row as an example, it reveals that 2 units of the original working capacity on

failed working routes have been reused as spare capacity on span S03 upon arrival of dual-failure

(S01, S02). Calculated from Appendix A.2, the sum of hidden spare capacity due to stub-release is

1497939, and the average stub-release over all dual-failure scenarios is 757 (i.e., 1497939/ (44×45)).

179

As a result, the total amount of available spare capacity for network 30-node 45-span with path

restoration is the sum of: (1) the amount of spare capacity directly from design process (i.e., 3543),

(2) the amount of average hidden spare capacity due to stub-release from design process (i.e., 776),

and (3) the amount of hidden spare capacity due to stub-release from optimization process (i.e.,

757). As such, the total amount of this available spare capacity is 5076. Recall from Table 10.1 that

the total amount of available spare capacity with span restoration and SBPP is 10269 and 4600,

respectively. Since 10269 is much larger than 5076 and 4600, it is reasonable that span-restorable

networks have much higher overall availability than path-restorable and SBPP networks, and that

path-restorable and SBPP networks have similar level of overall availability with overall

availability of path-restorable networks being slightly larger than SBPP networks on average.

180

CHAPTER 11 CLOSING DISCUSSION

11.1 SUMMARY OF THESIS

The major objective of this thesis is to provide network researchers with sufficient

fundamentals regarding network designs and availability analysis, and to present

algorithms for network availability optimization under span restoration, path restoration,

and SBPP survivability mechanisms.

We opened this thesis in Chapter 1 with introduction to motivation and goals, and

thesis outline. Chapter 2 presents mathematical basics and tools, including graph theory,

searching algorithms, linear programming, and programming and solving tools. We

documented background in this thesis in Chapter 3, including network classifications,

transport networks, mesh network survivability, and related work. In Chapter 4, we

presented network availability basics, which includes unavailability of spans, span-

oriented mesh networks, and path-oriented networks. In Chapter 5, we presented

experimental networks and setup including concepts of network family, topologies of

master networks, assumptions, and experimental setup.

In Chapter 6, we investigated the issues of current availability analysis methods for

span-restorable mesh networks, and proposed a new algorithm in order to obtain optimal

overall network availability for span-restorable mesh networks. We provided thorough

analyses of the existing availability analysis methods (i.e., 𝑅2 , 𝑁𝑊𝐶2 , and 𝑆𝑃𝑈2) and

pointed out why they cannot evaluate network overall optimal availability exactly and

correctly. Meanwhile, we proposed SDU as a new expression for evaluating network

181

overall availability. Based on this new indicator, we came up with a framework for

comparing the current and new availability analysis methods. Two major findings were (1)

SDU is a more accurate expression of network overall availability, and (2) there is a linear

relationship between 𝑅2, 𝑆𝑃𝑈2, and 𝑁𝑊𝐶2, but there is no fixed relationship between 𝑆𝐷𝑈

and 𝑁𝑊𝐶2.

In Chapter 7, we developed a new ILP design model and an algorithm for analyzing

network overall availability for large-scale SBPP networks. We analyzed traditional single-

flow and multi-flow ILP design models thoroughly, based on which, we built a new multi-

flow ILP design model. The new ILP design model specifies available backup routes for

each single working route and is more concise in format, compared to the traditional multi-

flow ILP model. The availability analysis algorithm is based on random selection of failed

working routes when dealing with the second failure. Key findings of node were (1) the

new multi-flow ILP model is 51% faster on average than the traditional multi-flow ILP

model, with larger speed improvements for higher connected networks, (2) the new multi-

flow ILP model leads to a slight decrease in network overall availability, but provides better

overall availability for higher connected networks, and (3) moderate connected networks

tend to have higher overall availability and larger scale networks (in terms of number of

nodes) tend to have lower overall availability for both new and traditional multi-flow ILP

models.

Chapter 8 seeks to optimize overall availability for SBPP mesh networks and

investigate relationship between overall availability and spare capacity usage on top of that

used for achieving full single-failure restorability. The entire availability optimization

algorithm considers failure orders and deals with the two failed failures in order. The core

182

of the algorithm is an ILP model which is utilized to minimize the total lost flow under

each dual-failure scenario. To implement the algorithm, Gurobi is called by Python where

an ILP is involved. The availability optimization algorithm is validated with the benchmark

algorithm as proposed in Chapter 6. In order to find out the efficient way of increasing

network spare capacity in terms of improving overall availability, EIM, GAM, and SSM

methods are proposed. Key findings in this chapter included (1) SSM method is the most

efficient way to increase network overall availability, and (2) increasing network spare

capacity is able to improve network overall availability but the increase extend becomes

smaller with more spare capacity is added to the network.

In Chapter 9, we developed an algorithm to optimize network availability for large-

scale path-restorable networks and investigate how network average nodal degree and

spare capacity increase influence network overall availability for such networks. The basic

theory is similar to that for SBPP networks as discussed in Chapter 8, but the details are

different. Apart from the ILP model differences between SBPP and path-restorable

networks, the major difference for evaluating overall availability is that the latter has a

stub-release feature. The working capacity related to this stub-release feature was reused

as backup capacity where applicable. This feature added difficulty to the availability

optimization of path-restorable networks in comparison with SBPP networks. Key findings

in this chapter included (1) as network average nodal degree grows, network overall

availability of path-restorable networks has an increase trend at the very beginning and

then drops gradually with slight fluctuations, and (2) as we increase network spare capacity,

network overall availability increases accordingly, but the increase speed slows with more

spare capacity is invested.

183

Chapter 10 compares performances of networks designed with span restoration, path

restoration, and SBPP survivability mechanisms, in terms of network overall availability.

Although the algorithm of network availability optimization for these networks has been

covered in the previous chapters already, it is not always the key point of these chapters

and the settings are not always the same for these three types of networks. As such, in order

to compare the performance of these three types of networks, Chapter 10 focuses on

network overall availability optimization of these networks by using the same settings and

set of experimental networks. In this chapter, we first summarized the methodology for

comparison and then run a series of experiments to obtain the performance results. A case

study was applied to explain the experimental results. The key points of the findings were

(1) span-restorable networks have the highest overall availability among these three types

of networks, (2) path-restorable networks have a slight advantage over SBPP networks on

average, and (3) the trend of network overall availability is similar for these three types of

networks, i.e., the overall availability has a slight increase at the very beginning and then

decreases with small fluctuations later on as network average nodal degree climbs up.

11.1.1 MAIN CONTRIBUTIONS

This thesis includes six main contributions:

(1) Availability optimization for span-restorable networks

 analyzed issues of existing availability analysis methods

 proposed a new method to evaluate network optimal availability

 compared performances of existing and new network availability analysis

methods

184

(2) ILP model design for SBPP survivable networks

 performed theoretical analyses of traditional ILP models including traditional

single-flow ILP model and traditional multi-flow ILP model

 built new multi-flow ILP model

 compared traditional and new multi-flow ILP models in terms of normalized

total cost

 performed analyses of normalized total cost for new and traditional multi-flow

models under varying network connectivity

(3) Availability analysis for SBPP survivable networks

 proposed an algorithm to evaluate network overall availability

 compared network overall availability for networks designed with traditional

and new ILP design models

 performed analyses of network overall availability under varying network

connectivity

 performed analyses of network overall availability under varying network scales

(4) Availability optimization for SBPP networks

 built an ILP model to minimize network total lost flow due to the second failure

in a specified dual-failure scenario

 proposed an algorithm to optimize network overall availability

 performed analyses of network overall availability under varying network

connectivity

 designed three methods to investigate network spare capacity

185

 investigated the relationship between network overall availability and network

spare capacity increase

(5) Availability optimization for path-restorable networks

 built an ILP model to minimize network total lost flow due to the second failure

in a specified dual-failure scenario

 proposed an algorithm to optimize network overall availability

 performed analyses of network overall availability under varying network

connectivity

 investigated the relationship between network overall availability and spare

capacity increase

(6) Availability performance comparison of span-restorable, path-restorable, and

SBPP networks

 presented an availability performance comparison algorithm

 compared network overall availability of the three types of networks

 performed analyses under varying network connectivity

 analyzed reasons behind availability performances

11.2 FUTURE WORK

The work presented in this thesis focuses on the dual-failure scenarios. However, the

methodology behind this is not limited to dual-failure scenarios. The algorithm behind each

type of networks (i.e., span-restorable networks, path-restorable networks, and SBPP

networks) can be extended to multiple failures as well by relevant modifications.

186

Take the SBPP networks as an example. Please refer to Figure 7.1 to recall the

availability analysis algorithm for SBPP networks. Basically, what we do is we loop

through each dual-failure scenario to examine the first span failure and the second span

failure in order. First, we examine the working routes affected by the first span failure, and

then we check the backup routes for each failed working route to see whether they are

affected by the second span failure. Later, we examine the working routes affected by the

second span failure excluding those already affected by the first span failure. We do this

for all the dual failure scenarios and then we are able to obtain network availability

eventually.

In the event of triple failures, in order to deal with the third span failure, we can add

one more step after Major sub-step 2. In this new step, we remove the exhausted spare

capacity on each span before we move on to restore the third failed span. By doing so, we

are able to obtain the actual available spare capacity on each span for the restoration of the

third failed span. Similar to the way we dealt with the second failed span, we calculate the

available backup flow on each backup route for each failed working route based on the

updated available spare capacity on each span. After all the triple-failure scenarios are

considered, network availability is calcualted eventually.

11.3 PUBLICATIONS OF PH.D. WORK ASSOCIATED WITH

THESIS

Apart from the contributions mentioned above, other Ph.D. work associated with this

thesis mainly included two peer-reviewed conference papers and three journal papers (one

published and two submitted).

187

1. W. Wang, J. Doucette, “Dual-Failure Availability Analysis of Span-Restorable Mesh

Networks,” Journal of Network and Systems Management, vol. 24, no. 3, pp. 534–556,

July 2016.

2. W. Wang, J. Doucette, “On the Indicators of Service Availability in Span-Restorable

Networks,” 7th International Workshop on Reliable Networks Design and Modeling

(RNDM 2015), pp. 21-26, Munich, Germany, October 2015.

3. W. Wang, J. Doucette, "Dual-Failure Availability Analysis for Multi-Flow Shared

Backup Path Protected Mesh Networks," 8th International Workshop on Resilient

Networks Design and Modeling (RNDM 2016), pp. 127-133, Halmstad, Sweden,

October 2016.

4. W. Wang, J. Doucette, “Optimized Design and Availability Analysis of Large-Scale

Shared Backup Path Protected Networks,” Telecommunication Systems (TELS),

https://doi.org/10.1007/s11235-017-0392-2.

5. W. Wang, J. Doucette, “Availability Optimization and Spare Capacity Impact Analysis

for Shared Backup Path Protection Networks,” Journal of Optical Communications and

Networking (JOCN), in review; first submitted on July 26 2017; revised and

resubmitted on November 17 2017.

11.4 REPORTS OF PH.D. WORK NOT ASSOCIATED WITH

THESIS

Because I transferred from another research group to my current research group at

the beginning of my third year of my Ph.D. study, I have also made some contributions at

188

the first two years. These contributions included four technical reports, two oral

presentations, and one poster.

1. Wenjing Wang, Yongsheng Ma, “Simulation of Force for Circular Saw Blades Based

on MATLAB,” technical report, University of Alberta, Edmonton, Alberta, Canada,

June 18, 2014.

2. Wenjing Wang, Yongsheng Ma, “Geometric Modeling and Cutting Force Simulation

for Circular Saw Blades,” Oral presentation, University of Alberta, Edmonton, Alberta,

Canada, April 23, 2014.

3. Wenjing Wang, Yongsheng Ma, “Feature-Based Modeling for Circular Saw Blades,”

Poster, University of Alberta, Edmonton, Alberta, Canada, April 23, 2014.

4. Wenjing Wang, Yongsheng Ma, “Optimization of Slotted Liner Manufacturing,” Oral

presentation, University of Alberta, Edmonton, Alberta, Canada, July 31, 2013.

5. Wenjing Wang, Jonhansel Ng, Yongsheng Ma, “Manufacturing Processes of Slotted

Liners Used In SAGD Process,” technical report, University of Alberta, Edmonton,

Alberta, Canada, August 2013.

6. Jonhansel Ng, Wenjing Wang, Yongsheng Ma, “Steam Control Application in SAGD

Process,” technical report, University of Alberta, Edmonton, Alberta, Canada, August

2013.

7. Jonhansel Ng, Wenjing Wang, Yongsheng Ma, “Produce Development in SAGD

Process,” technical report, University of Alberta, Edmonton, Alberta, Canada, August

2013.

189

Reference

[1] J. Chugh, “Resilience, Survivability and Availability in WDM Optical Mesh Network,”

Computing for Sustainable Global Development (INDIACom), New Delhi, India, pp. 222-

227, March 2015.

[2] J. Doucette, W. D. Grover, “Influence of Modularity and Economy-Of-Scale Effects on

Design of Mesh-Restorable DWDM Networks,” IEEE Journal on Selected Areas in

Communications, vol. 18, no. 10, pp. 1912-1923, 2000.

[3] M. Noor-E-Alam, A. Zaky Kasem, J. Doucette, “ILP Model and Relaxation-Based

Decomposition Approach for Incremental Topology Optimization in P-Cycle Networks,”

Journal of Computer Networks and Communications, pp. 1-10, 2012.

[4] A. K. Pradhan, K. Das, T. De, “Multicast Traffic Grooming with Survivability in WDM

Mesh Networks,” International Conference on Signal Processing and Integrated Networks

(SPIN 2015), pp. 1020-1025, Noida, India, February 2015.

[5] A. Bhattacharya, M. Agarwal, S. Tabassum, M. Chatterjeee, “Resource Aware Traffic

Grooming with Shared Protection at Connection in WDM Mesh Networks,” International

Conference on Advances in Computing, Communications and Informatics (ICACCI 2015),

pp. 110-115, Kochi, India, August 2015.

[6] H. Alazemi, S. Sebbah, M. Nurujjaman, “Fast and Efficient Network Protection Method

Using Path Pre-Cross-Connected Trails,” Journal of Optical Communications and

Networking, vol. 5, no. 12, pp. 1343-1352, 2013.

[7] D. A. A. Mello, D. A. Schupke, M. Scheffel, H. Waldman, “Availability Maps for

Connections in WDM Optical Networks,” 5th International Workshop on Design of Reliable

Communication Networks (DRCN 2005), pp. 77-84, Island of Ischia, Naples, Italy, October

2005.

[8] M. A. H. Clouqueur, Availability of Service in Mesh-Restorable Transport Networks,

University of Alberta Ph.D. Thesis, Edmonton, AB, Canada, 2004.

[9] D. A. Schupke, “Guaranteeing Service Availability in Optical Network Design,” 2007 ITG

Symposium on Photonic Networks, pp. 1-3, Leipzig, Germany, May 2007.

[10] F. Dikbiyik, B. Mukherjee, M. Tornatore, “Adaptive Time- and Location-Aware Routing in

Telecom Mesh Networks,” Networks, IET, vol. 2, no. 1, pp. 19-29, 2013.

[11] B. Todd, J. Doucette, “Use of Network Families in Survivable Network Design and

Optimization,” 2008 IEEE International Conference on Communications (ICC 2008), pp.

151-157, Beijing, China, May 2008.

[12] J. Doucette, W. D. Grover, “Shared-Risk Logical Span Groups in Span-Restorable Optical

Networks: Analysis and Capacity Planning Model,” Photonic Network Communications, vol.

9, no. 1, pp. 35-53, 2005.

[13] W. Fawaz, F. Martignon, K. Chen, G. Pujolle, “A Novel Protection Scheme for Quality of

Service Aware WDM Networks,” 2005 IEEE International Conference on Communications

(ICC 2005), vol. 3, pp. 1720-1725, Seoul, Korean, May 2005.

[14] C. J. Bastos-Filho, R. C. Freitas, D. A. Chaves, R. C. Silva, M. L. Freire, H. A. Pereira, J. F.

Martins-Filho, “An Adaptive Path Restoration Algorithm Based on Power Series Routing

for All-Optical Networks,” 15th International Conference on Transparent Optical Networks

(ICTON 2013), pp. 1-4, Cartagena, Spain, June 2013.

[15] M. Wang, M. Furdek, L. Wosinska, P. Monti, “Wavelength Overprovisioning Strategies for

Enhanced Optical Path Restoration,” 18th International Conference on Transparent Optical

Networks (ICTON 2016), pp. 1-5, Trento, Italy, July 2016.

[16] G. Conte, M. Listanti, M. Settembre, R. Sabella, “Strategy for Protection and Restoration Of

Optical Paths in WDM Backbone Networks for Next-Generation Internet Infrastructures,”

Journal of lightwave technology, vol. 20, no. 8, pp. 1264-1276, 2002.

190

[17] L. Song, B. Mukherjee, “On the Study of Multiple Backups and Primary-Backup Link

Sharing for Dynamic Service Provisioning in Survivable WDM Mesh Networks,” IEEE

Journal on Selected Areas in Communications, vol. 26, no. 6, pp. 84-91, 2008.

[18] J. Doucette, Advances on Design and Analysis of Mesh-Restorable Networks, University of

Alberta Ph.D. Thesis, Edmonton, Alberta, Canada, 2005.

[19] M. Herzberg, S. J. Bye, A. Utano, “The Hop-Limit Approach for Spare-Capacity Assignment

in Survivable Networks,” IEEE/ACM Transactions on Networking, vol. 3, no. 6, pp. 775-

784, December 1995.

[20] R. R. Iraschko, M. H. MacGregor, W. D. Grover, “Optimal Capacity Placement for Path

Restoration in STM or ATM Mesh-Survivable Networks,” IEEE/ACM Transactions on

Networking, vol. 6, no. 3, pp. 325-336, June 1998.

[21] A. M. C. A. Koster and A. Zymolka, “Demand-wise shared protection for meshed optical

networks,” Fourth International Workshop on Design of Reliable Communication Networks

(DRCN 2003), pp. 85–92, 2003.

[22] S. Sengupta, R. Ramamurthy, “Capacity Efficient Distributed Routing of Mesh-Restored

Lightpaths in Optical Networks,” IEEE Global Telecommunications Conference (GlobeCom

2001), San Antonio, TX, pp. 2129-2133, November 2001.

[23] D. Stamatelakis, W.D. Grover, “Theoretical Underpinnings for the Efficiency of Restorable

Networks Using Pre-configured Cycles (“p-cycles”),” IEEE Transactions on

Communications, vol.48, no.8, pp. 1262-1265, August 2000.

[24] W. D. Grover, Mesh-Based Survivable Networks: Options and Strategies for Optical, MPLS,

SONET, and ATM Networking, Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[25] W. Wang, J. Doucette, “Dual-Failure Availability Analysis of Span-Restorable Mesh

Networks,” Journal of Network and Systems Management, vol. 24, no. 3, pp. 534–556, July

2016.

[26] M. Clouqueur, W. D. Grover, “Availability Analysis of Span-Restorable Mesh Networks,”

IEEE Journal on Selected Areas in Communications, vol. 20, no. 4, pp. 810-821, May 2002.

[27] A. Nafarieh, S. C. Sivakumar, W. Phillips, W. Robertson, “Memory-Aware SLA-Based

Mechanism for Shared-Mesh WDM Networks,” 3rd International Congress on Ultra

Modern Telecommunications and Control Systems and Workshops (ICUMT 2011), pp. 1-8,

Budapest, Hungary, October 2011.

[28] L. Song, B. Mukherjee, “New Approaches for Dynamic Routing with Availability Guarantee

for Differentiated Services in Survivable Mesh Networks: The Roles of Primary-Backup

Link Sharing and Multiple Backup Paths,” Global Telecommunications Conference, pp. 1-

5, San Francisco, CA, USA, November-December 2006.

[29] M. Clouqueur, W. D. Grover, “Mesh-Restorable Networks with Complete Dual Failure

Restorability and with Selectively Enhanced Dual-Failure Restorability Properties,” The

Convergence of Information Technologies and Communications (ITCom 2002), pp. 1-12,

Boston, MA, USA, July-August 2002.

[30] D. A. Schupke, W. D. Grover, M. Clouqueur, “Strategies for Enhanced Dual Failure

Restorability with Static or Reconfigurable p-Cycle Networks,” IEEE International

Conference on Communications, vol. 3, pp. 1628-1633, Paris, France, June 2004.

[31] W. Wang, J. Doucette, “On The Indicators of Service Availability in Span-Restorable

Networks,” 7th International Workshop on Reliable Networks Design and Modeling (RNDM

2015), pp. 21-26, Munich, Germany, October 2015.

[32] S. Venkatesan, M. Patel, N. Mittal, “A Distributed Algorithm for Path Restoration in Circuit

Switched Communication Networks,” 24th IEEE Symposium on Reliable Distributed

Systems (SRDS 2005), pp. 226-235, Orlando, FL, USA, October 2005.

[33] H. T. Mouftah, P. H. Ho, Optical Networks, pp. 149-210. Springer, USA, 2003.

191

[34] Y. Xiong, L. G. Mason, “Restoration Strategies and Spare Capacity Requirements in Self-

Healing ATM Networks,” IEEE/ACM Transactions on networking, vol. 7, no. 1, pp. 98-110,

1999.

[35] Y. Liu, D. Tipper, K. Vajanapoom, “Spare Capacity Allocation in Two-Layer Networks,”

IEEE Journal on Selected Areas in Communications, vol. 25, no. 5, pp. 974-986, 2007.

[36] Y. Liu, D. Tipper, “Spare Capacity Allocation for Non-Linear Link Cost And Failure-

Dependent Path Restoration,” 3rd International Workshop on Design of Reliable

Communication Networks (DRCN 2001), Budapest, Hungary, October 2001.

[37] Y. Liu, “Spare Capacity Allocation: Model, Analysis And Algorithm,” Doctoral dissertation,

University of Pittsburgh, 2001.

[38] V. Y. Liu, D. Tipper, “Spare Capacity Allocation Using Shared Backup Path Protection For

Dual Link Failures,” Computer Communications, vol. 36, no.6, pp. 666-677, 2013.

[39] P. H. Ho, H. T. Mouftah, “Spare Capacity Allocation for WDM Mesh Networks with Partial

Wavelength Conversion Capacity,” 2003 High Performance Switching and Routing (HPSR

2003). pp. 195-199, Torino, Italy, June 2003.

[40] S. Chen, S. Cheng, B. Chen, J. Chen, “An Efficient Spare Capacity Allocation Strategy for

ATM Survivable Networks,” 1996 Global Telecommunications Conference (GLOBECOM

1996).vol. 1, pp. 442-446, London, UK, November 1996.

[41] Q. Guo, P. H. Ho, A. Haque, H. T. Mouftah, “Availability-Constrained Shared Backup Path

Protection (SBPP) for GMPLS-Based Spare Capacity Reprovisioning,” 2007 IEEE

International Conference on Communications, pp. 2186-2191, Glasgow, Scotland, June

2007.

[42] A. Al-Rumaih, D. Tipper, Y. Liu, B. A. Norman, “Spare Capacity Planning for Survivable

Mesh Networks,” International Conference On Research in Networking, pp. 957-968. Paris,

France, May 2000.

[43] B. Zhou, H. T. Mouftah, “Spare Capacity Planning Using Survivable Alternate Routing for

Long-Haul WDM Networks,” 7th International Symposium on Computers and

Communications (ISCC 2002), pp. 732-738, Taormina-Giardini Naxos, Italy, July 2002.

[44] D. Ardagna, C. Ghezzi, B. Panicucci, M. Trubian, “Service Provisioning on the Cloud:

Distributed Algorithms for Joint Capacity Allocation and Admission Control,” European

Conference on a Service-Based Internet, pp. 1-12, Ghent, Belgium, December 2010.

[45] H. Wang, Telecommunications Network Management, McGraw-Hill, New York City, USA,

1999.

[46] Nwtwork Maps: USA Longhaul, available online: :

http://www.telecomramblings.com/network-maps/usa-fiber-backbone-map-resources/,

retrieved on November 9 2016.

[47] S. Ruepp, J. Buron, N. Andriolli, H. Wessing, “Span Restoration in Optical Networks with

Limited Wavelength Conversion,” Second International Conference on Communications

and Networking (CHINACOM 2007), pp. 479-483, Shanghai, China, August 2007.

[48] W. Yue, G. Shen, S. K. Bose, “Span-Restorable Elastic Optical Networks under Different

Spectrum Conversion Capabilities,” IEEE Transactions on Reliability, vol. 63, no. 2, pp.

401-411, June 2014.

[49] W. D. Grover, “Self-Organizing Broad-Band Transport Networks,” Proceedings of the IEEE,

vol. 85, no. 10, pp. 1582-1611, 1997.

[50] R. Ramaswami, K. N. Sivarajan, G. H. Sasaki, Optical Networks: A Practical Perspective,

Morgan Kaufmann Publishers, Burlington, Massachusetts, USA, 2010.

[51] T. Stidsen, B. Petersen, S. Spoorendonk, M. Zachariasen, K. B. Rasmussen, “Optimal

Routing with Failure Independent Path Protection,” Networks, vol. 55, no. 2, pp. 125-137,

2010.

[52] D. Lucerna, M. Tornatore, B. Mukherjee, A. Pattavina, “Availability Target Redefinition for

Dynamic Connections in WDM Networks with Shared Path Protection,” 7th International

192

Workshop on Design of Reliable Communication Networks (DRCN 2009), pp. 235-242,

Washington, DC, USA, October 2009.

[53] M. Furdek, N. Skorin-Kapov, L. Wosinska, “Shared Path Protection under the Risk of High-

Power Jamming,” 19th European Conference on Networks and Optical Communications

(NOC 2014), pp. 23-28, Milano, Italy, June 2014.

[54] M. M. A. Azim, M. N. Kabir, “Availability Analysis of Shared Backup Path Protection

Under Multiple-Link Failure Scenario in WDM Networks,” Annals of Telecommunications,

vol. 70, no. 5-6, pp. 249-262, June 2015.

[55] J. Doucette, M. Clouqueur, W. D. Grover, “On the Availability and Capacity Requirements

of Shared Backup Path-Protected Mesh Networks,” Optical Networks Magazine, vol. 4, no.

6, pp. 29-44, 2003.

[56] C. M. Delgado, H. P. Silva, M. M. Mosso, “A Novel Approach to Automatic Protection

Switching for Ethernet Optical Networks,” SBMO/IEEE MTT-S International Microwave &

Optoelectronics Conference (IMOC), pp. 1-5, Rio de Janeiro, RJ, Brazil, August 2013.

[57] W. Grover, J. Doucette, M. Clouqueur, D. Leung, D. Stamatelakis, “New Options and

Insights for Survivable Transport Networks,” IEEE Communications Magazine, vol. 40, no.

1, pp. 34-41, 2002.

[58] J. Akpuh, J. Doucette, “Sizing Eligible Route Sets for Restorable Network Design and

Optimization,” IEEE International Conference on Communications, pp. 5292-5299, Beijing,

China, May 2008.

[59] M. Tornatore, G. Maier, A. Pattavina, “Variable Aggregation in The ILP Design of WDM

Networks with Dedicated Protection,” Journal of Communications and Networks, vol. 9, no.

4, pp. 419-427, 2007.

[60] A. J. Gonzalez, B. E. Helvik, “Dynamic Sharing Mechanism for Guaranteed Availability in

MPLS Based Networks,” 2010 IEEE International Workshop Technical Committee on

Communications Quality and Reliability (CQR 2010), pp. 1-6, Vancouver, BC, Canada, June

2010.

[61] B. Kantarci, H. T. Mouftah, S. Oktug, “Arranging Shareability Dynamically for The

Availability-Constrained Design of Optical Transport Networks,” IEEE Symposium on

Computers and Communications (ISCC 2008), pp. 68-73, Marrakech, Morocco, July 2008.

[62] B. G. Józsa, D. Orincsay, “Shared Backup Path Optimization in Telecommunication

Networks,” 3rd Design of Reliable Communication Networks Workshop (DRCN 2001), pp.

251-257, Budapest, Hungary, October, 2001.

[63] G. Shen, W. D. Grover, “Survey and Performance Comparison of Dynamic Provisioning

Methods for Optical Shared Backup Path Protection,” 2nd International Conference on

Broadband Networks, pp. 1310-1319, Boston, MA, USA, October 2005.

[64] C. Ou, K. Zhu, H. Zang, L. H. Sahasrabuddhe, B. Mukherjee, “Traffic Grooming for

Survivable WDM Networks-Shared Protection,” IEEE Journal on Selected Areas in

Communications, vol. 21, no. 9, pp. 1367-1383, 2003.

[65] C. Ou, J. Zhang, H. Zang, L. H. Sahasrabuddhe, B. Mukherjee, “Near-Optimal Approaches

for Shared-Path Protection in WDM Mesh Networks,” 2003 IEEE International Conference

on Communications (ICC2003), vol. 2, pp. 1320-1324, Anchorage, Alaska, USA, May 2003.

[66] H. N. Nguyen, D. Habibi, Q. V. Phung, K. Lo, “A Shared Backup Path Protection Scheme

for Optical Mesh Networks,” 2005 Asia-Pacific Conference on Communications, pp. 309-

313, Perth, WA, Australia, October 2005.

[67] B. G. Józsa, D. Orincsay, A. Kern, “Surviving Multiple Network Failures Using Shared

Backup Path Protection,” 8th IEEE International Symposium on Computers and

Communication (ISCC 2003), pp. 1333-1340, Kemer-Antalya, Turkey, June-July 2003.

[68] J. T. Haahr, T. Stidsen, M. Zachariasen, “Heuristic Methods for Shared Backup Path

Protection Planning,” 4th International Congress on Ultra Modern Telecommunications and

193

Control Systems and Workshops (ICUMT 2012), pp. 712-718, St. Petersburg, Russia,

October 2012.

[69] K. Walkowiak, M. Klinkowski, “Shared Backup Path Protection in Elastic Optical Networks:

Modeling and Optimization,” 9th International Conference on the Design of Reliable

Communication Networks (DRCN 2013), pp. 187-194, Budapest, Hungary, March 2013.

[70] C. Wang, G. Shen, S. K. Bose, “Distance Adaptive Dynamic Routing and Spectrum

Allocation in Elastic Optical Networks with Shared Backup Path Protection,” Journal of

Lightwave Technology, vol. 33, no. 14, 2015.

[71] P. Ho, J. Tapolcai, A. Haque, “A Study On Dynamic Survivable Routing with Availability

Constraint for GMPLS-Based Recovery,” 3rd International Conference on Broadband

Communications, Networks and Systems (BROADNETS 2006), pp. 1-10, San Jose, CA, USA,

October 2006.

[72] W. Lau, S. Jha, “Failure-Oriented Path Restoration Algorithm for Survivable Networks,”

IEEE Transactions on Network and Service Management, vol. 1, no. 1, pp. 11-20, 2004.

[73] S. Ruepp, L. Dittman, L. Ellegard, “Simulation and Comparison Of Path Restoration

Techniques in SDH Mesh Networks,” 5th International Workshop on Design of Reliable

Communication Networks (DRCN 2005), pp. 47-53, Brugge, Belgium, October 2005.

[74] P. Ho, J. Tapolcai, A. Haque, “Spare Capacity Reprovisioning for Shared Backup Path

Protection in Dynamic Generalized Multi-Protocol Label Switched Networks,” IEEE

Transactions on Reliability, vol. 57, no. 4, pp. 551-563, 2008.

[75] B. Kantarci, H. T. Mouftah, S. Oktug, “Connection Provisioning with Feasible Shareability

Determination for Availability-Aware Design of Optical Networks,” 10th Anniversary

International Conference on Transparent Optical Networks (ICTON 2008), vol. 3, pp. 19-

22, Athens, Greece, June 2008.

[76] W. Ni, E. Patzak, M. Schlosser, H. Zhang, “Availability Evaluation in Shared-Path-Protected

WDM Networks with Startup-Failure-Driven Backup Path Reprovisioning,” 2010 IEEE

International Conference on Communications, pp. 1-6, Cape Town, South Africa, May 2010.

[77] B. Todd, J. Doucette, “Fast Efficient Design of Shared Backup Path Protected Networks

Using a Multi-Flow Optimization Model,” IEEE Transactions on Reliability, vol. 60, no. 4,

pp. 788-800, 2011.

[78] M. Kodialam, T. V. Lakshman, S. Sengupta, “Guaranteed Performance Routing of

Unpredictable Traffic with Fast Path Restoration,” IEEE/ACM Transactions on Networking

(TON), vol. 17, no. 5, pp. 1427-1438, 2009.

[79] L. Zhou, M. Held, “Optimization of Path Availability of Span-Restorable Optical Networks,”

Photonics Europe, Reliability of Optical Fiber Components, Devices, Systems, and Networks,

Strasbourg, France, May 2006.

[80] W. Li, J. Doucette, M. Zuo, “p-Cycle Network Design for Specified Minimum Dual-Failure

Restorability,” IEEE International Conference on Communications (ICC 2007), pp. 2204-

2210, Glasgow, Scotland, June 2007.

[81] S. Herker, X. An, W. Kiess, A. Kirstadter, “Path Protection with Explicit Availability

Constraints for Virtual Network Embedding,” Personal Indoor and Mobile Radio

Communications (PIMRC), pp. 2978-2983, London, UK, September 2013.

[82] A. Alashaikh, T. Gomes, D. Tipper, “The Spine Concept for Improving Network

Availability,” Computer Networks, vol. 82, pp. 4-19, May 2015.

[83] A. E. Conway, “Fast Simulation of Service Availability in Mesh Networks with Dynamic

Path Restoration,” IEEE/ACM Transactions on Networking, vol. 19, no. 1, 92-101, 2011.

[84] G. Agnarsson, R. Greenlaw, Graph Theory: Modeling, Applications, and Algorithms,

Pearson/Prentice Hall, Upper Saddle River, NJ, USA, 2007.

[85] J. A. Bondy, U. S. R. Murty, Graph theory, Springer, New York, USA, 2008.

[86] V. I. Voloshin, Introduction to Graph Theory, Nova Science Publishers, New York, USA,

2009.

194

[87] S. R. Santanu, Graph Theory with Algorithms and Its Applications: in Applied Science and

Technology, Springer, New Delhi, India, 2013.

[88] D. Jungnickel, Graphs, Networks, and Algorithms, Springer, Berlin, Germany, 2008.

[89] D. Eppstein, “Finding the K Shortest Paths,” SIAM Journal on computing, vol. 28, no. 2, pp.

652-673, 1998.

[90] J. Hershberger, M. Maxel, S. Suri, “Finding the K Shortest Simple Paths: A New Algorithm

and Its Implementation,” ACM Transactions on Algorithms (TALG), vol. 3, no. 4, pp. 45,

2007.

[91] L. W. Wayne, J. B. Goldberg, Operations Research: Applications and Algorithms,

Thomson/Brooks/Cole, Belmont, CA, USA, 2004.

[92] L. S. Lasdon, Optimization Theory for Large Systems, Dover Publications, Inc., Mineola,

New York, USA, 2002.

[93] X. Yang, Introduction to Mathematical Optimization: from Linear Programming to

Metaheuristics, Cambridge International Science Publishing, Cambridge, UK, 2008.

[94] G. Baumann, Mathematics for Engineers II: Calculus and Linear Algebra, Berlin ;Boston:

Oldenbourg Wissenschaftsverlag, München, Germany, 2010.

[95] Tongji University, Engineering Math: Linear Algebra (in Chinese), Higher Education Press,

Beijing, China, 2003.

[96] S. Zionts, Linear and Integer Programming, Prentice-Hall, Englewood Cliffs, NJ, USA,

1974.

[97] A. H. Land, A. G. Doig, “An Automatic Method of Solving Discrete Programming Problems,”

Econometrica: Journal of the Econometric Society, pp. 497-520, 1960.

[98] J. Clausen, “Branch and Bound Algorithms-Principles and Examples,” Department of

Computer Science, University of Copenhagen, pp. 1-30, 1999.

[99] D. Scholz, Deterministic Global Optimization: Geometric Branch-and-Bound Methods and

Their Applications, Springer, New York, USA, 2012.

[100] R. Fourer, D. M. Gay, B. W. Kernighan, AMPL: A Modeling Language for Mathematical

Programming, Cengage Learning, Boston, MA, USA, 2003.

[101] Gurobi Optimization Inc., Gurobi Optimizer Reference Manual, 2015, available online:

http://www.gurobi.com, retrieved on 5 April 2016.

[102] K. A. Lambert, Fundamentals of Python: First Programs, Cengage Learning, Boston, MA,

USA, 2011.

[103] Python website, available online: https://www.python.org/, retrieved 10 April 2016.

[104] X. Jie, H. Wen, B. Wu, X. Jiang, P. Ho, L. Zhang, “Joint Design on DCN Placement and

Survivable Cloud Service Provision over All-Optical Mesh Networks,” IEEE Transactions

on Communications, vol. 62, no. 1, pp. 235-245, 2014.

[105] J. Doucette, W. Li, M. Zuo, “Failure-specific p-cycle network dual-failure restorability

design,” 6th International Workshop on Design and Reliable Communication Networks

(DRCN 2007), pp. 1-9, La Rochelle, France, October 2007.

[106] B. Todd, J. Doucette, “DSP Survivable Network Capacity Allocation and Topology Design

Using Multi-Period Network Augmentation,” 11th International Conference on the Design

of Reliable Communication Networks (DRCN 2015), pp. 41-48, Kansas City, MO, USA,

2015.

[107] W. D. Grover, J. Doucette, “Design of a Meta-Mesh of Chain Subnetworks: Enhancing the

Attractiveness of Mesh-Restorable WDM Networking on Low Connectivity Graphs,” IEEE

Journal on Selected Areas in Communications, vol. 20, no. 1, pp. 47-61, 2002.

[108] M. Ben-Daya, S.O. Duffuaa, A. Raouf, J. Knezevic, D. Ait-Kadi, Handbook of Maintenance

Management and Engineering. Springer Dordrecht Heidelberg London New York, 2009.

[109] X. Wang, G. Shen, Z. Zhu, X. Fu, “Benefits of Sub-band Virtual Concatenation for

Enhancing Availability of Elastic Optical Networks,” Journal of Lightwave Technology, vol.

34, no. 4, pp. 1098-1110, 2016.

195

[110] A. J. Vernon, J. D. Portier, “Protection of Optical Channels in All-Optical Net-Works,”

National Fiber Optic Engineers Conference (NFOEC 2002), pp. 1695–1706, Dallas, TX,

September 2002.

[111] S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, M. Jaeger, “General Availability

Model for Multilayer Transport Networks,” 5th International Workshop on Design of

Reliable Communication Networks (DRCN 2005), pp. 85-92, Brugge, Belgium, October

2005.

[112] W. Ni, J. Wu, C. Huang, M. Savoie, “Analytical Models of Flow Availability in Two-Layer

Networks with Dedicated Path Protection,” Optical Switching and Networking, vol. 10, no.

1, pp. 62-76, 2013.

[113] D. A. Schupke, “Multiple Failure Survivability in WDM Networks with p-Cycles,” IEEE

International Symposium on Circuits and Systems (ISCAS 2003), vol. 3, pp. 866-869,

Bangkok, Thailand, May 2003.

[114] C. Singh, R. Billinton, System Reliability, Modelling and Evaluation. Hutchinson, London,

UK, 1977.

[115] L. Zhou, M. Held, U. Sennhauser, “Connection Availability Analysis of Shared Backup

Path-Protected Mesh Networks,” Journal of Lightwave Technology, vol. 25, no. 5, pp. 1111-

1119, 2007.

[116] S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph Theory with

Mathematica, Addison-Wesley, Reading, MA, USA, 1990.

[117] M. Held, L. Zhou, “Redundancy, Restorability and Path Availability in Optical Mesh

Networks,” 2006 International Conference on Transparent Optical Networks, vol. 3, pp.

120-125, Nottingham, United Kingdom, June 2006.

[118] G. Shen, W. D. Grover, “Exploiting forcer structure to serve uncertain demands and

minimize redundancy of p-cycle networks,” Proceedings of SPIE, vol. 5285, pp. 59-70,

October 2003.

[119] W. Wang, J. Doucette, “Optimized Design and Availability Analysis of Large-Scale Shared

Backup Path Protected Networks,” Submitted to Telecommunication Systems (TELS) on

August 29 2016.

[120] A. Charnes, E. L. Frome, P. L. Yu, “The Equivalence of Generalized Least Squares and

Maximum Likelihood Estimates in the Exponential Family,” Journal of the American

Statistical Association, vol. 71, no. 353, pp. 169-171, 1976.

196

Appendix A Stub-release Data

Appendix A.1 – Stub-release in design process for 30-node 45-span network

SF Spans Stub-release

S01 S02 99

S01 S04 119

S01 S07 45

S01 S08 94

S01 S14 38

S01 S15 41

S01 S17 22

S01 S20 30

S01 S24 11

S01 S28 13

S01 S29 4

S01 S30 4

S01 S36 6

S01 S39 15

S01 S41 3

S01 S44 4

S02 S01 99

S02 S03 2

S02 S04 75

S02 S06 7

S02 S07 99

S02 S08 57

S02 S10 2

S02 S11 2

S02 S14 22

S02 S15 27

S02 S16 2

S02 S17 66

S02 S19 2

S02 S20 16

S02 S22 9

S02 S23 9

S02 S24 42

S02 S26 9

S02 S28 2

S02 S29 12

S02 S30 20

S02 S33 9

S02 S34 9

S02 S37 3

S02 S39 10

S02 S41 3

S02 S43 2

S03 S02 2

S03 S10 36

S03 S11 26

S03 S16 17

S03 S18 11

S03 S19 5

S03 S23 7

S03 S26 1

S04 S01 119

S04 S02 75

S04 S05 104

S04 S07 28

S04 S08 251

S04 S10 54

S04 S12 31

S04 S13 3

S04 S14 81

S04 S15 133

S04 S17 9

S04 S20 50

S04 S21 4

S04 S24 4

S04 S28 25

S04 S36 10

S04 S38 3

S04 S39 81

S04 S40 9

S04 S41 12

S04 S44 33

S04 S45 16

S05 S04 104

S05 S08 87

S05 S10 86

S05 S11 20

S05 S12 62

S05 S13 28

S05 S14 15

S05 S15 54

S05 S16 18

S05 S17 25

S05 S18 12

S05 S23 8

S05 S24 25

S05 S26 4

S05 S30 8

S05 S31 3

S05 S33 12

S05 S37 6

S05 S39 38

S05 S44 17

S05 S45 6

S06 S02 7

S06 S10 15

S06 S11 7

S06 S12 20

S06 S16 5

S07 S01 45

S07 S02 99

S07 S04 28

S07 S08 18

S07 S14 9

S07 S15 8

S07 S17 131

S07 S20 5

S07 S22 26

S07 S23 19

S07 S24 86

S07 S26 15

S07 S29 20

S07 S30 31

S07 S31 14

S07 S33 33

S07 S34 15

S07 S37 11

S07 S43 13

S07 S45 9

S08 S01 94

S08 S02 57

S08 S04 251

S08 S05 87

S08 S07 18

S08 S09 45

S08 S10 42

S08 S11 1

S08 S12 22

S08 S13 3

S08 S14 145

S08 S15 185

S08 S16 5

S08 S18 16

S08 S19 18

S08 S20 78

S08 S21 29

S08 S22 5

S08 S23 3

S08 S28 51

S08 S34 4

S08 S36 25

S08 S38 7

S08 S39 120

S08 S40 16

S08 S41 16

S08 S43 8

S08 S44 58

S08 S45 39

S09 S08 45

S09 S11 1

S09 S14 16

S09 S15 20

S09 S16 21

S09 S18 21

S09 S20 6

S09 S22 5

S09 S23 16

S09 S25 9

S09 S26 7

S09 S28 6

S09 S31 5

S09 S36 5

S09 S39 10

S09 S44 3

S09 S45 3

S10 S02 2

S10 S03 36

S10 S04 54

S10 S05 86

S10 S06 15

S10 S08 42

S10 S11 176

S10 S12 188

S10 S13 92

S10 S14 10

S10 S15 22

S10 S16 128

S10 S17 63

S10 S18 42

S10 S19 62

S10 S23 28

S10 S24 56

S10 S25 5

S10 S26 7

S10 S27 36

S10 S28 18

S10 S30 13

S10 S31 1

S10 S33 29

S10 S36 8

S10 S37 9

S10 S39 16

S10 S44 4

S11 S02 2

S11 S03 26

S11 S05 20

S11 S06 7

S11 S08 1

S11 S09 1

S11 S10 176

S11 S12 90

S11 S13 44

S11 S14 1

S11 S16 212

S11 S17 21

S11 S18 79

S11 S19 93

S11 S20 1

S11 S23 59

S11 S24 17

S11 S25 7

S11 S26 26

S11 S27 60

S11 S28 34

S11 S31 15

S11 S32 6

S11 S33 9

S11 S34 1

S11 S36 18

S12 S04 31

S12 S05 62

S12 S06 20

S12 S08 22

S12 S10 188

197

S12 S11 90

S12 S13 129

S12 S14 6

S12 S15 10

S12 S16 57

S12 S17 90

S12 S18 6

S12 S19 37

S12 S22 6

S12 S23 10

S12 S24 70

S12 S26 6

S12 S27 20

S12 S28 10

S12 S30 13

S12 S33 42

S12 S34 6

S12 S36 1

S12 S37 11

S12 S39 5

S12 S43 10

S13 S04 3

S13 S05 28

S13 S08 3

S13 S10 92

S13 S11 44

S13 S12 129

S13 S16 17

S13 S17 150

S13 S19 15

S13 S22 6

S13 S23 6

S13 S24 121

S13 S26 6

S13 S27 5

S13 S29 23

S13 S30 41

S13 S31 16

S13 S33 64

S13 S34 16

S13 S37 20

S13 S43 13

S13 S45 1

S14 S01 38

S14 S02 22

S14 S04 81

S14 S05 15

S14 S07 9

S14 S08 145

S14 S09 16

S14 S10 10

S14 S11 1

S14 S12 6

S14 S16 5

S14 S18 29

S14 S19 42

S14 S20 101

S14 S21 63

S14 S23 16

S14 S25 7

S14 S28 73

S14 S31 8

S14 S34 10

S14 S36 43

S14 S40 17

S15 S01 41

S15 S02 27

S15 S04 133

S15 S05 54

S15 S07 8

S15 S08 185

S15 S09 20

S15 S10 22

S15 S12 10

S15 S33 4

S15 S34 4

S15 S38 17

S15 S39 158

S15 S40 13

S15 S41 16

S15 S43 17

S15 S44 90

S15 S45 64

S16 S02 2

S16 S03 17

S16 S05 18

S16 S06 5

S16 S08 5

S16 S09 21

S16 S10 128

S16 S11 212

S16 S12 57

S16 S13 17

S16 S14 5

S16 S18 142

S16 S19 118

S16 S21 5

S16 S22 5

S16 S23 112

S16 S25 17

S16 S26 64

S16 S27 76

S16 S28 45

S16 S31 32

S16 S32 15

S16 S34 13

S16 S36 21

S16 S42 7

S17 S01 22

S17 S02 66

S17 S04 9

S17 S05 25

S17 S07 131

S17 S10 63

S17 S11 21

S17 S12 90

S17 S13 150

S17 S18 1

S17 S19 1

S17 S22 50

S17 S23 38

S17 S24 271

S17 S26 31

S17 S27 1

S17 S28 1

S17 S29 58

S17 S30 92

S17 S31 55

S17 S33 134

S17 S34 41

S17 S37 40

S17 S40 6

S17 S43 45

S17 S44 10

S17 S45 24

S18 S03 11

S18 S05 12

S18 S08 16

S18 S09 21

S18 S10 42

S18 S11 79

S18 S12 6

S18 S14 29

S18 S16 142

S18 S17 1

S18 S19 133

S18 S21 55

S18 S22 62

S18 S23 194

S18 S24 26

S18 S25 51

S18 S26 95

S18 S27 34

S18 S28 14

S18 S30 19

S18 S31 59

S18 S32 31

S18 S33 20

S18 S34 16

S18 S35 5

S18 S42 10

S18 S43 10

S19 S02 2

S19 S03 5

S19 S08 18

S19 S10 62

S19 S11 93

S19 S12 37

S19 S13 15

S19 S14 42

S19 S16 118

S19 S17 1

S19 S18 133

S19 S21 76

S19 S22 48

S19 S23 42

S19 S24 23

S19 S25 22

S19 S26 8

S19 S27 153

S19 S28 95

S19 S30 9

S19 S31 8

S19 S32 6

S19 S33 9

S19 S35 13

S19 S36 43

S19 S40 6

S19 S41 8

S20 S01 30

S20 S02 16

S20 S04 50

S20 S07 5

S20 S08 78

S20 S09 6

S20 S11 1

S20 S14 101

S20 S26 1

S20 S28 139

S20 S29 4

S20 S31 22

S20 S32 6

S20 S34 27

S20 S35 10

S20 S36 98

S20 S39 1

S20 S40 42

S20 S41 20

S20 S43 6

S20 S44 18

S20 S45 13

S21 S04 4

S21 S08 29

S21 S14 63

S21 S16 5

S21 S18 55

S21 S19 76

S21 S22 16

S21 S23 16

S21 S24 6

S21 S25 7

S22 S02 9

S22 S07 26

S22 S08 5

S22 S09 5

S22 S12 6

S22 S13 6

S22 S16 5

S22 S17 50

S22 S18 62

S22 S19 48

S22 S21 16

S22 S23 40

S22 S24 38

S22 S26 31

S22 S27 9

S22 S28 5

S22 S31 16

S22 S33 15

S22 S34 15

S22 S43 3

S23 S02 9

S23 S03 7

S23 S05 8

S23 S07 19

S23 S08 3

S23 S09 16

S23 S10 28

S23 S11 59

S23 S12 10

S23 S13 6

S23 S14 16

198

S23 S16 112

S23 S17 38

S23 S18 194

S23 S19 42

S23 S21 16

S23 S22 40

S23 S25 69

S23 S26 167

S23 S27 9

S23 S29 6

S23 S30 23

S23 S31 88

S23 S32 40

S23 S33 12

S23 S34 51

S23 S36 3

S23 S38 6

S23 S40 13

S23 S41 2

S23 S42 12

S23 S43 11

S24 S01 11

S24 S02 42

S24 S04 4

S24 S05 25

S24 S07 86

S24 S10 56

S24 S11 17

S24 S12 70

S24 S13 121

S24 S17 271

S24 S18 26

S24 S19 23

S24 S21 6

S24 S22 38

S24 S29 92

S24 S30 133

S24 S31 66

S24 S33 174

S24 S34 45

S24 S37 47

S24 S39 2

S24 S40 16

S24 S43 62

S24 S44 20

S24 S45 37

S25 S09 9

S25 S10 5

S25 S11 7

S25 S14 7

S25 S16 17

S25 S18 51

S25 S19 22

S25 S21 7

S25 S23 69

S25 S27 9

S25 S29 6

S25 S30 33

S25 S32 6

S25 S33 21

S25 S38 6

S25 S43 11

S26 S02 9

S26 S03 1

S26 S05 4

S26 S07 15

S26 S09 7

S26 S10 7

S26 S11 26

S26 S12 6

S26 S13 6

S26 S16 64

S26 S17 31

S26 S18 95

S26 S19 8

S26 S20 1

S26 S22 31

S26 S23 167

S26 S28 8

S26 S31 107

S26 S32 47

S26 S34 78

S26 S36 14

S26 S38 10

S26 S39 5

S26 S40 32

S26 S41 9

S26 S42 18

S27 S10 36

S27 S11 60

S27 S12 20

S27 S13 5

S27 S16 76

S27 S17 1

S27 S18 34

S27 S19 153

S27 S22 9

S27 S23 9

S27 S25 9

S27 S28 142

S27 S30 9

S27 S34 9

S27 S35 18

S27 S36 78

S27 S40 32

S27 S41 11

S27 S42 16

S27 S45 6

S28 S01 13

S28 S02 2

S28 S04 25

S28 S08 51

S28 S09 6

S28 S10 18

S28 S11 34

S28 S12 10

S28 S14 73

S28 S16 45

S28 S17 1

S28 S18 14

S28 S19 95

S28 S20 139

S28 S22 5

S28 S26 8

S28 S27 142

S28 S29 14

S28 S31 43

S28 S32 10

S28 S34 73

S28 S35 39

S28 S36 238

S28 S39 3

S28 S40 118

S28 S41 45

S28 S42 16

S28 S43 9

S28 S44 32

S28 S45 27

S29 S01 4

S29 S02 12

S29 S07 20

S29 S13 23

S29 S17 58

S29 S20 4

S29 S23 6

S29 S24 92

S29 S25 6

S29 S28 14

S29 S30 108

S29 S31 119

S29 S32 27

S29 S34 84

S29 S36 23

S29 S38 17

S29 S40 46

S29 S45 3

S30 S01 4

S30 S02 20

S30 S05 8

S30 S07 31

S30 S10 13

S30 S12 13

S30 S13 41

S30 S17 92

S30 S18 19

S30 S19 9

S30 S23 23

S30 S24 133

S30 S25 33

S30 S27 9

S30 S29 108

S30 S31 77

S30 S33 32

S30 S34 47

S30 S39 2

S30 S40 16

S30 S43 19

S30 S44 3

S30 S45 8

S31 S05 3

S31 S07 14

S31 S09 5

S31 S10 1

S31 S11 15

S31 S13 16

S31 S14 8

S31 S16 32

S31 S17 55

S31 S18 59

S31 S19 8

S31 S20 22

S31 S22 16

S31 S23 88

S31 S24 66

S31 S26 107

S31 S28 43

S31 S29 119

S31 S30 77

S31 S32 83

S31 S34 152

S31 S36 61

S31 S37 2

S31 S38 15

S31 S39 3

S31 S40 107

S31 S41 5

S32 S11 6

S32 S16 15

S32 S18 31

S32 S19 6

S32 S20 6

S32 S23 40

S32 S25 6

S32 S26 47

S32 S28 10

S32 S29 27

S32 S31 83

S32 S34 22

S32 S36 11

S32 S37 9

S32 S38 39

S32 S40 20

S32 S45 4

S33 S02 9

S33 S05 12

S33 S07 33

S33 S10 29

S33 S11 9

S33 S12 42

S33 S13 64

S33 S15 4

S33 S17 134

S33 S18 20

S33 S19 9

S33 S22 15

S33 S23 12

S33 S24 174

S33 S25 21

S33 S30 32

S33 S36 3

S33 S37 54

S33 S39 14

S33 S41 4

S33 S43 107

S33 S44 44

S33 S45 70

S34 S02 9

S34 S07 15

S34 S08 4

S34 S11 1

S34 S12 6

S34 S13 16

199

S34 S14 10

S34 S15 4

S34 S16 13

S34 S17 41

S34 S18 16

S34 S20 27

S34 S22 15

S34 S23 51

S34 S24 45

S34 S26 78

S34 S27 9

S34 S28 73

S34 S29 84

S34 S30 47

S34 S31 152

S34 S32 22

S34 S36 107

S34 S39 21

S34 S40 195

S34 S41 31

S34 S42 26

S35 S18 5

S35 S19 13

S35 S20 10

S35 S27 18

S35 S28 39

S35 S39 10

S35 S44 3

S35 S45 2

S36 S01 6

S36 S04 10

S36 S08 25

S36 S09 5

S36 S10 8

S36 S11 18

S36 S12 1

S36 S14 43

S36 S16 21

S36 S19 43

S36 S20 98

S36 S23 3

S36 S26 14

S36 S27 78

S36 S28 238

S36 S29 23

S36 S31 61

S36 S32 11

S36 S33 3

S36 S34 107

S36 S40 178

S36 S41 48

S36 S42 38

S36 S43 22

S36 S44 34

S36 S45 47

S37 S02 3

S37 S05 6

S37 S07 11

S37 S10 9

S37 S12 11

S37 S13 20

S37 S17 40

S37 S24 47

S37 S31 2

S37 S32 9

S37 S33 54

S38 S04 3

S38 S08 7

S38 S15 17

S38 S23 6

S38 S25 6

S38 S26 10

S38 S29 17

S38 S31 15

S38 S32 39

S38 S39 25

S38 S44 32

S38 S45 43

S39 S01 15

S39 S02 10

S39 S04 81

S39 S05 38

S39 S08 120

S39 S09 10

S39 S10 16

S39 S12 5

S39 S15 158

S39 S20 1

S39 S24 2

S39 S26 5

S39 S28 3

S39 S30 2

S39 S31 3

S39 S33 14

S39 S34 21

S39 S35 10

S39 S38 25

S39 S40 36

S39 S41 43

S39 S43 36

S39 S44 129

S39 S45 96

S40 S04 9

S40 S08 16

S40 S14 17

S40 S15 13

S40 S17 6

S40 S19 6

S40 S20 42

S40 S23 13

S40 S24 16

S40 S26 32

S40 S27 32

S40 S28 118

S40 S29 46

S40 S30 16

S40 S31 107

S40 S32 20

S40 S34 195

S40 S36 178

S40 S39 36

S40 S41 51

S40 S42 51

S40 S43 14

S40 S45 27

S41 S01 3

S41 S02 3

S41 S04 12

S41 S08 16

S41 S15 16

S41 S19 8

S41 S20 20

S41 S23 2

S41 S26 9

S41 S27 11

S41 S28 45

S41 S31 5

S41 S33 4

S41 S34 31

S41 S36 48

S41 S39 43

S41 S40 51

S41 S43 13

S41 S44 38

S41 S45 28

S42 S16 7

S42 S18 10

S42 S23 12

S42 S26 18

S42 S27 16

S42 S28 16

S42 S34 26

S42 S36 38

S42 S40 51

S42 S43 23

S42 S45 44

S43 S02 2

S43 S07 13

S43 S08 8

S43 S12 10

S43 S13 13

S43 S15 17

S43 S17 45

S43 S18 10

S43 S20 6

S43 S22 3

S43 S23 11

S43 S24 62

S43 S25 11

S43 S28 9

S43 S30 19

S43 S33 107

S43 S36 22

S43 S39 36

S43 S40 14

S43 S41 13

S43 S42 23

S43 S44 79

S43 S45 132

S44 S01 4

S44 S04 33

S44 S05 17

S44 S08 58

S44 S09 3

S44 S10 4

S44 S15 90

S44 S17 10

S44 S20 18

S44 S24 20

S44 S28 32

S44 S30 3

S44 S33 44

S44 S35 3

S44 S36 34

S44 S38 32

S44 S39 129

S44 S41 38

S44 S43 79

S44 S45 169

S45 S04 16

S45 S05 6

S45 S07 9

S45 S08 39

S45 S09 3

S45 S13 1

S45 S15 64

S45 S17 24

S45 S20 13

S45 S24 37

S45 S27 6

S45 S28 27

S45 S29 3

S45 S30 8

S45 S32 4

S45 S33 70

S45 S35 2

S45 S36 47

S45 S38 43

S45 S39 96

S45 S40 27

S45 S41 28

S45 S42 44

S45 S43 132

S45 S44 169

200

Appendix A.2 – Stub-release in optimization process for 30-node 45-span network

Note: only the data for dual failures with S01 as the first failure is shown here. Full set of

data takes up almost 200 pages under current layout, so we decide not to show all of them

here. However, full seat of data is available upon request.

FF SF Spans Stub-release

S01 S02 S03 2

S01 S02 S04 75

S01 S02 S06 7

S01 S02 S07 99

S01 S02 S08 57

S01 S02 S10 2

S01 S02 S11 2

S01 S02 S14 22

S01 S02 S15 27

S01 S02 S16 2

S01 S02 S17 66

S01 S02 S19 2

S01 S02 S20 16

S01 S02 S22 9

S01 S02 S23 9

S01 S02 S24 42

S01 S02 S26 9

S01 S02 S28 2

S01 S02 S29 12

S01 S02 S30 20

S01 S02 S33 9

S01 S02 S37 3

S01 S02 S39 10

S01 S02 S41 3

S01 S02 S43 2

S01 S03 S02 2

S01 S03 S10 36

S01 S03 S11 26

S01 S03 S16 17

S01 S03 S18 11

S01 S03 S19 5

S01 S03 S23 7

S01 S03 S26 1

S01 S04 S02 75

S01 S04 S05 104

S01 S04 S07 28

S01 S04 S08 251

S01 S04 S10 54

S01 S04 S12 31

S01 S04 S13 3

S01 S04 S14 81

S01 S04 S15 133

S01 S04 S17 9

S01 S04 S20 50

S01 S04 S21 4

S01 S04 S24 4

S01 S04 S28 25

S01 S04 S36 10

S01 S04 S38 3

S01 S04 S39 81

S01 S04 S40 9

S01 S04 S41 12

S01 S04 S44 33

S01 S04 S45 16

S01 S05 S04 104

S01 S05 S08 87

S01 S05 S10 86

S01 S05 S11 20

S01 S05 S12 62

S01 S05 S13 28

S01 S05 S14 15

S01 S05 S15 54

S01 S05 S16 18

S01 S05 S17 25

S01 S05 S18 12

S01 S05 S23 8

S01 S05 S24 25

S01 S05 S26 4

S01 S05 S30 8

S01 S05 S31 3

S01 S05 S33 12

S01 S05 S37 6

S01 S05 S39 38

S01 S05 S44 17

S01 S05 S45 6

S01 S06 S02 7

S01 S06 S10 15

S01 S06 S11 7

S01 S06 S12 20

S01 S06 S16 5

S01 S07 S02 99

S01 S07 S04 28

S01 S07 S08 18

S01 S07 S14 9

S01 S07 S15 8

S01 S07 S17 131

S01 S07 S20 5

S01 S07 S22 26

S01 S07 S23 19

S01 S07 S24 86

S01 S07 S26 15

S01 S07 S29 20

S01 S07 S30 31

S01 S07 S31 14

S01 S07 S33 33

S01 S07 S34 15

S01 S07 S37 11

S01 S07 S43 13

S01 S07 S45 9

S01 S08 S02 57

S01 S08 S04 251

S01 S08 S05 87

S01 S08 S07 18

S01 S08 S09 45

S01 S08 S10 42

S01 S08 S11 1

S01 S08 S12 22

S01 S08 S13 3

S01 S08 S14 145

S01 S08 S15 185

S01 S08 S16 5

S01 S08 S18 16

S01 S08 S19 18

S01 S08 S20 78

S01 S08 S21 29

S01 S08 S22 5

S01 S08 S23 3

S01 S08 S28 51

S01 S08 S34 4

S01 S08 S36 25

S01 S08 S38 7

S01 S08 S39 120

S01 S08 S40 16

S01 S08 S41 16

S01 S08 S43 8

S01 S08 S44 58

S01 S08 S45 39

S01 S09 S08 45

S01 S09 S11 1

S01 S09 S14 16

S01 S09 S15 20

S01 S09 S16 21

S01 S09 S18 21

S01 S09 S20 6

S01 S09 S22 5

S01 S09 S23 16

S01 S09 S25 9

S01 S09 S26 7

S01 S09 S28 6

S01 S09 S31 5

S01 S09 S36 5

S01 S09 S39 10

S01 S09 S44 3

S01 S09 S45 3

S01 S10 S02 2

S01 S10 S03 36

S01 S10 S04 54

S01 S10 S05 86

S01 S10 S06 15

S01 S10 S08 42

S01 S10 S11 176

S01 S10 S12 188

S01 S10 S13 92

S01 S10 S14 10

S01 S10 S15 22

S01 S10 S16 128

S01 S10 S17 63

S01 S10 S18 42

S01 S10 S19 62

S01 S10 S23 28

S01 S10 S24 56

S01 S10 S25 5

S01 S10 S26 7

S01 S10 S27 36

S01 S10 S28 18

S01 S10 S30 13

S01 S10 S31 1

S01 S10 S33 29

S01 S10 S36 8

S01 S10 S37 9

S01 S10 S39 16

S01 S10 S44 4

S01 S11 S02 2

S01 S11 S03 26

S01 S11 S05 20

S01 S11 S06 7

S01 S11 S08 1

S01 S11 S09 1

S01 S11 S10 176

S01 S11 S12 90

S01 S11 S13 44

S01 S11 S14 1

S01 S11 S16 212

S01 S11 S17 21

S01 S11 S18 79

S01 S11 S19 93

S01 S11 S20 1

S01 S11 S23 59

S01 S11 S24 17

S01 S11 S25 7

S01 S11 S26 26

S01 S11 S27 60

S01 S11 S28 34

S01 S11 S31 15

S01 S11 S32 6

S01 S11 S33 9

S01 S11 S34 1

S01 S11 S36 18

S01 S12 S04 31

S01 S12 S05 62

S01 S12 S06 20

S01 S12 S08 22

S01 S12 S10 188

S01 S12 S11 90

S01 S12 S13 129

S01 S12 S14 6

S01 S12 S15 10

S01 S12 S16 57

S01 S12 S17 90

S01 S12 S18 6

S01 S12 S19 37

S01 S12 S22 6

201

S01 S12 S23 10

S01 S12 S24 70

S01 S12 S26 6

S01 S12 S27 20

S01 S12 S28 10

S01 S12 S30 13

S01 S12 S33 42

S01 S12 S34 6

S01 S12 S36 1

S01 S12 S37 11

S01 S12 S39 5

S01 S12 S43 10

S01 S13 S04 3

S01 S13 S05 28

S01 S13 S08 3

S01 S13 S10 92

S01 S13 S11 44

S01 S13 S12 129

S01 S13 S16 17

S01 S13 S17 150

S01 S13 S19 15

S01 S13 S22 6

S01 S13 S23 6

S01 S13 S24 121

S01 S13 S26 6

S01 S13 S27 5

S01 S13 S29 23

S01 S13 S30 41

S01 S13 S31 16

S01 S13 S33 64

S01 S13 S34 16

S01 S13 S37 20

S01 S13 S43 13

S01 S13 S45 1

S01 S14 S02 22

S01 S14 S04 81

S01 S14 S05 15

S01 S14 S07 9

S01 S14 S08 145

S01 S14 S09 16

S01 S14 S10 10

S01 S14 S11 1

S01 S14 S12 6

S01 S14 S16 5

S01 S14 S18 29

S01 S14 S19 42

S01 S14 S20 101

S01 S14 S21 63

S01 S14 S23 16

S01 S14 S25 7

S01 S14 S28 73

S01 S14 S31 8

S01 S14 S34 10

S01 S14 S36 43

S01 S14 S40 17

S01 S15 S02 27

S01 S15 S04 133

S01 S15 S05 54

S01 S15 S07 8

S01 S15 S08 185

S01 S15 S09 20

S01 S15 S10 22

S01 S15 S12 10

S01 S15 S33 4

S01 S15 S34 4

S01 S15 S38 17

S01 S15 S39 158

S01 S15 S40 13

S01 S15 S41 16

S01 S15 S43 17

S01 S15 S44 90

S01 S15 S45 64

S01 S16 S02 2

S01 S16 S03 17

S01 S16 S05 18

S01 S16 S06 5

S01 S16 S08 5

S01 S16 S09 21

S01 S16 S10 128

S01 S16 S11 212

S01 S16 S12 57

S01 S16 S13 17

S01 S16 S14 5

S01 S16 S18 142

S01 S16 S19 118

S01 S16 S21 5

S01 S16 S22 5

S01 S16 S23 112

S01 S16 S25 17

S01 S16 S26 64

S01 S16 S27 76

S01 S16 S28 45

S01 S16 S31 32

S01 S16 S32 15

S01 S16 S34 13

S01 S16 S36 21

S01 S16 S42 7

S01 S17 S02 66

S01 S17 S04 9

S01 S17 S05 25

S01 S17 S07 131

S01 S17 S10 63

S01 S17 S11 21

S01 S17 S12 90

S01 S17 S13 150

S01 S17 S18 1

S01 S17 S19 1

S01 S17 S22 50

S01 S17 S23 38

S01 S17 S24 271

S01 S17 S26 31

S01 S17 S27 1

S01 S17 S28 1

S01 S17 S29 58

S01 S17 S30 92

S01 S17 S31 55

S01 S17 S33 134

S01 S17 S34 41

S01 S17 S37 40

S01 S17 S40 6

S01 S17 S43 45

S01 S17 S44 10

S01 S17 S45 24

S01 S18 S03 11

S01 S18 S05 12

S01 S18 S08 16

S01 S18 S09 21

S01 S18 S10 42

S01 S18 S11 79

S01 S18 S12 6

S01 S18 S14 29

S01 S18 S16 142

S01 S18 S17 1

S01 S18 S19 133

S01 S18 S21 55

S01 S18 S22 62

S01 S18 S23 194

S01 S18 S24 26

S01 S18 S25 51

S01 S18 S26 95

S01 S18 S27 34

S01 S18 S28 14

S01 S18 S30 19

S01 S18 S31 59

S01 S18 S32 31

S01 S18 S33 20

S01 S18 S34 16

S01 S18 S35 5

S01 S18 S42 10

S01 S18 S43 10

S01 S19 S02 2

S01 S19 S03 5

S01 S19 S08 18

S01 S19 S10 62

S01 S19 S11 93

S01 S19 S12 37

S01 S19 S13 15

S01 S19 S14 42

S01 S19 S16 118

S01 S19 S17 1

S01 S19 S18 133

S01 S19 S21 76

S01 S19 S22 48

S01 S19 S23 42

S01 S19 S24 23

S01 S19 S25 22

S01 S19 S26 8

S01 S19 S27 153

S01 S19 S28 95

S01 S19 S30 9

S01 S19 S31 8

S01 S19 S32 6

S01 S19 S33 9

S01 S19 S35 13

S01 S19 S36 43

S01 S19 S40 6

S01 S19 S41 8

S01 S20 S04 50

S01 S20 S08 78

S01 S20 S09 6

S01 S20 S11 1

S01 S20 S14 101

S01 S20 S26 1

S01 S20 S28 139

S01 S20 S29 4

S01 S20 S31 22

S01 S20 S32 6

S01 S20 S34 27

S01 S20 S35 10

S01 S20 S36 98

S01 S20 S39 1

S01 S20 S40 42

S01 S20 S41 20

S01 S20 S43 6

S01 S20 S44 18

S01 S20 S45 13

S01 S21 S04 4

S01 S21 S08 29

S01 S21 S14 63

S01 S21 S16 5

S01 S21 S18 55

S01 S21 S19 76

S01 S21 S22 16

S01 S21 S23 16

S01 S21 S24 6

S01 S21 S25 7

S01 S22 S02 9

S01 S22 S07 26

S01 S22 S08 5

S01 S22 S09 5

S01 S22 S12 6

S01 S22 S13 6

S01 S22 S16 5

S01 S22 S17 50

S01 S22 S18 62

S01 S22 S19 48

S01 S22 S21 16

S01 S22 S23 40

S01 S22 S24 38

S01 S22 S26 31

S01 S22 S27 9

S01 S22 S28 5

S01 S22 S31 16

S01 S22 S33 15

S01 S22 S34 15

S01 S22 S43 3

S01 S23 S02 9

S01 S23 S03 7

S01 S23 S05 8

S01 S23 S07 19

S01 S23 S08 3

S01 S23 S09 16

S01 S23 S10 28

S01 S23 S11 59

S01 S23 S12 10

S01 S23 S13 6

S01 S23 S14 16

S01 S23 S16 112

S01 S23 S17 38

S01 S23 S18 194

202

S01 S23 S19 42

S01 S23 S21 16

S01 S23 S22 40

S01 S23 S25 69

S01 S23 S26 167

S01 S23 S27 9

S01 S23 S29 6

S01 S23 S30 23

S01 S23 S31 88

S01 S23 S32 40

S01 S23 S33 12

S01 S23 S34 51

S01 S23 S36 3

S01 S23 S38 6

S01 S23 S40 13

S01 S23 S41 2

S01 S23 S42 12

S01 S23 S43 11

S01 S24 S02 42

S01 S24 S04 4

S01 S24 S05 25

S01 S24 S07 86

S01 S24 S10 56

S01 S24 S11 17

S01 S24 S12 70

S01 S24 S13 121

S01 S24 S17 271

S01 S24 S18 26

S01 S24 S19 23

S01 S24 S21 6

S01 S24 S22 38

S01 S24 S29 92

S01 S24 S30 133

S01 S24 S31 66

S01 S24 S33 174

S01 S24 S34 45

S01 S24 S37 47

S01 S24 S39 2

S01 S24 S40 16

S01 S24 S43 62

S01 S24 S44 20

S01 S24 S45 37

S01 S25 S09 9

S01 S25 S10 5

S01 S25 S11 7

S01 S25 S14 7

S01 S25 S16 17

S01 S25 S18 51

S01 S25 S19 22

S01 S25 S21 7

S01 S25 S23 69

S01 S25 S27 9

S01 S25 S29 6

S01 S25 S30 33

S01 S25 S32 6

S01 S25 S33 21

S01 S25 S38 6

S01 S25 S43 11

S01 S26 S02 9

S01 S26 S03 1

S01 S26 S05 4

S01 S26 S07 15

S01 S26 S09 7

S01 S26 S10 7

S01 S26 S11 26

S01 S26 S12 6

S01 S26 S13 6

S01 S26 S16 64

S01 S26 S17 31

S01 S26 S18 95

S01 S26 S19 8

S01 S26 S20 1

S01 S26 S22 31

S01 S26 S23 167

S01 S26 S28 8

S01 S26 S31 107

S01 S26 S32 47

S01 S26 S34 78

S01 S26 S36 14

S01 S26 S38 10

S01 S26 S39 5

S01 S26 S40 32

S01 S26 S41 9

S01 S26 S42 18

S01 S27 S10 36

S01 S27 S11 60

S01 S27 S12 20

S01 S27 S13 5

S01 S27 S16 76

S01 S27 S17 1

S01 S27 S18 34

S01 S27 S19 153

S01 S27 S22 9

S01 S27 S23 9

S01 S27 S25 9

S01 S27 S28 142

S01 S27 S30 9

S01 S27 S34 9

S01 S27 S35 18

S01 S27 S36 78

S01 S27 S40 32

S01 S27 S41 11

S01 S27 S42 16

S01 S27 S45 6

S01 S28 S02 2

S01 S28 S04 25

S01 S28 S08 51

S01 S28 S09 6

S01 S28 S10 18

S01 S28 S11 34

S01 S28 S12 10

S01 S28 S14 73

S01 S28 S16 45

S01 S28 S17 1

S01 S28 S18 14

S01 S28 S19 95

S01 S28 S20 139

S01 S28 S22 5

S01 S28 S26 8

S01 S28 S27 142

S01 S28 S29 14

S01 S28 S31 43

S01 S28 S32 10

S01 S28 S34 73

S01 S28 S35 39

S01 S28 S36 238

S01 S28 S39 3

S01 S28 S40 118

S01 S28 S41 45

S01 S28 S42 16

S01 S28 S43 9

S01 S28 S44 32

S01 S28 S45 27

S01 S29 S02 12

S01 S29 S07 20

S01 S29 S13 23

S01 S29 S17 58

S01 S29 S20 4

S01 S29 S23 6

S01 S29 S24 92

S01 S29 S25 6

S01 S29 S28 14

S01 S29 S30 108

S01 S29 S31 119

S01 S29 S32 27

S01 S29 S34 84

S01 S29 S36 23

S01 S29 S38 17

S01 S29 S40 46

S01 S29 S45 3

S01 S30 S02 20

S01 S30 S05 8

S01 S30 S07 31

S01 S30 S10 13

S01 S30 S12 13

S01 S30 S13 41

S01 S30 S17 92

S01 S30 S18 19

S01 S30 S19 9

S01 S30 S23 23

S01 S30 S24 133

S01 S30 S25 33

S01 S30 S27 9

S01 S30 S29 108

S01 S30 S31 77

S01 S30 S33 32

S01 S30 S34 47

S01 S30 S39 2

S01 S30 S40 16

S01 S30 S43 19

S01 S30 S44 3

S01 S30 S45 8

S01 S31 S05 3

S01 S31 S07 14

S01 S31 S09 5

S01 S31 S10 1

S01 S31 S11 15

S01 S31 S13 16

S01 S31 S14 8

S01 S31 S16 32

S01 S31 S17 55

S01 S31 S18 59

S01 S31 S19 8

S01 S31 S20 22

S01 S31 S22 16

S01 S31 S23 88

S01 S31 S24 66

S01 S31 S26 107

S01 S31 S28 43

S01 S31 S29 119

S01 S31 S30 77

S01 S31 S32 83

S01 S31 S34 152

S01 S31 S36 61

S01 S31 S37 2

S01 S31 S38 15

S01 S31 S39 3

S01 S31 S40 107

S01 S31 S41 5

S01 S32 S11 6

S01 S32 S16 15

S01 S32 S18 31

S01 S32 S19 6

S01 S32 S20 6

S01 S32 S23 40

S01 S32 S25 6

S01 S32 S26 47

S01 S32 S28 10

S01 S32 S29 27

S01 S32 S31 83

S01 S32 S34 22

S01 S32 S36 11

S01 S32 S37 9

S01 S32 S38 39

S01 S32 S40 20

S01 S32 S45 4

S01 S33 S02 9

S01 S33 S05 12

S01 S33 S07 33

S01 S33 S10 29

S01 S33 S11 9

S01 S33 S12 42

S01 S33 S13 64

S01 S33 S15 4

S01 S33 S17 134

S01 S33 S18 20

S01 S33 S19 9

S01 S33 S22 15

S01 S33 S23 12

S01 S33 S24 174

S01 S33 S25 21

S01 S33 S30 32

S01 S33 S36 3

S01 S33 S37 54

S01 S33 S39 14

S01 S33 S41 4

S01 S33 S43 107

S01 S33 S44 44

S01 S33 S45 70

S01 S34 S02 9

203

S01 S34 S07 15

S01 S34 S08 4

S01 S34 S11 1

S01 S34 S12 6

S01 S34 S13 16

S01 S34 S14 10

S01 S34 S15 4

S01 S34 S16 13

S01 S34 S17 41

S01 S34 S18 16

S01 S34 S20 27

S01 S34 S22 15

S01 S34 S23 51

S01 S34 S24 45

S01 S34 S26 78

S01 S34 S27 9

S01 S34 S28 73

S01 S34 S29 84

S01 S34 S30 47

S01 S34 S31 152

S01 S34 S32 22

S01 S34 S36 107

S01 S34 S39 21

S01 S34 S40 195

S01 S34 S41 31

S01 S34 S42 26

S01 S35 S18 5

S01 S35 S19 13

S01 S35 S20 10

S01 S35 S27 18

S01 S35 S28 39

S01 S35 S39 10

S01 S35 S44 3

S01 S35 S45 2

S01 S36 S04 10

S01 S36 S08 25

S01 S36 S09 5

S01 S36 S10 8

S01 S36 S11 18

S01 S36 S12 1

S01 S36 S14 43

S01 S36 S16 21

S01 S36 S19 43

S01 S36 S20 98

S01 S36 S23 3

S01 S36 S26 14

S01 S36 S27 78

S01 S36 S28 238

S01 S36 S29 23

S01 S36 S31 61

S01 S36 S32 11

S01 S36 S33 3

S01 S36 S34 107

S01 S36 S40 178

S01 S36 S41 48

S01 S36 S42 38

S01 S36 S43 22

S01 S36 S44 34

S01 S36 S45 47

S01 S37 S02 3

S01 S37 S05 6

S01 S37 S07 11

S01 S37 S10 9

S01 S37 S12 11

S01 S37 S13 20

S01 S37 S17 40

S01 S37 S24 47

S01 S37 S31 2

S01 S37 S32 9

S01 S37 S33 54

S01 S38 S04 3

S01 S38 S08 7

S01 S38 S15 17

S01 S38 S23 6

S01 S38 S25 6

S01 S38 S26 10

S01 S38 S29 17

S01 S38 S31 15

S01 S38 S32 39

S01 S38 S39 25

S01 S38 S44 32

S01 S38 S45 43

S01 S39 S02 10

S01 S39 S04 81

S01 S39 S05 38

S01 S39 S08 120

S01 S39 S09 10

S01 S39 S10 16

S01 S39 S12 5

S01 S39 S15 158

S01 S39 S20 1

S01 S39 S24 2

S01 S39 S26 5

S01 S39 S28 3

S01 S39 S30 2

S01 S39 S31 3

S01 S39 S33 14

S01 S39 S34 21

S01 S39 S35 10

S01 S39 S38 25

S01 S39 S40 36

S01 S39 S41 43

S01 S39 S43 36

S01 S39 S44 129

S01 S39 S45 96

S01 S40 S04 9

S01 S40 S08 16

S01 S40 S14 17

S01 S40 S15 13

S01 S40 S17 6

S01 S40 S19 6

S01 S40 S20 42

S01 S40 S23 13

S01 S40 S24 16

S01 S40 S26 32

S01 S40 S27 32

S01 S40 S28 118

S01 S40 S29 46

S01 S40 S30 16

S01 S40 S31 107

S01 S40 S32 20

S01 S40 S34 195

S01 S40 S36 178

S01 S40 S39 36

S01 S40 S41 51

S01 S40 S42 51

S01 S40 S43 14

S01 S40 S45 27

S01 S41 S02 3

S01 S41 S04 12

S01 S41 S08 16

S01 S41 S15 16

S01 S41 S19 8

S01 S41 S20 20

S01 S41 S23 2

S01 S41 S26 9

S01 S41 S27 11

S01 S41 S28 45

S01 S41 S31 5

S01 S41 S33 4

S01 S41 S34 31

S01 S41 S36 48

S01 S41 S39 43

S01 S41 S40 51

S01 S41 S43 13

S01 S41 S44 38

S01 S41 S45 28

S01 S42 S16 7

S01 S42 S18 10

S01 S42 S23 12

S01 S42 S26 18

S01 S42 S27 16

S01 S42 S28 16

S01 S42 S34 26

S01 S42 S36 38

S01 S42 S40 51

S01 S42 S43 23

S01 S42 S45 44

S01 S43 S02 2

S01 S43 S07 13

S01 S43 S08 8

S01 S43 S12 10

S01 S43 S13 13

S01 S43 S15 17

S01 S43 S17 45

S01 S43 S18 10

S01 S43 S20 6

S01 S43 S22 3

S01 S43 S23 11

S01 S43 S24 62

S01 S43 S25 11

S01 S43 S28 9

S01 S43 S30 19

S01 S43 S33 107

S01 S43 S36 22

S01 S43 S39 36

S01 S43 S40 14

S01 S43 S41 13

S01 S43 S42 23

S01 S43 S44 79

S01 S43 S45 132

S01 S44 S04 33

S01 S44 S05 17

S01 S44 S08 58

S01 S44 S09 3

S01 S44 S10 4

S01 S44 S15 90

S01 S44 S17 10

S01 S44 S20 18

S01 S44 S24 20

S01 S44 S28 32

S01 S44 S30 3

S01 S44 S33 44

S01 S44 S35 3

S01 S44 S36 34

S01 S44 S38 32

S01 S44 S39 129

S01 S44 S41 38

S01 S44 S43 79

S01 S44 S45 169

S01 S45 S04 16

S01 S45 S05 6

S01 S45 S07 9

S01 S45 S08 39

S01 S45 S09 3

S01 S45 S13 1

S01 S45 S15 64

S01 S45 S17 24

S01 S45 S20 13

S01 S45 S24 37

S01 S45 S27 6

S01 S45 S28 27

S01 S45 S29 3

S01 S45 S30 8

S01 S45 S32 4

S01 S45 S33 70

S01 S45 S35 2

S01 S45 S36 47

S01 S45 S38 43

S01 S45 S39 96

S01 S45 S40 27

S01 S45 S41 28

S01 S45 S42 44

S01 S45 S43 132

S01 S45 S44 169

204

Appendix B –Network Topology Files

Topology file for 10-node 25-span network

NODE X Y

N01 315.00 133.00

N02 113.00 185.00

N03 523.00 258.00

N04 291.00 377.00

N05 103.00 474.00

N06 628.00 525.00

N07 440.00 529.00

N08 279.00 646.00

N09 537.00 818.00

N10 174.00 866.00

SPAN O D LENGTH MTTF(h) MTTR(h) UA

S01 N01 N02 208.5857 14008.6296 12 0.0009

S02 N01 N03 242.6706 12041.0157 12 0.0010

S03 N01 N04 245.1775 11917.8969 12 0.0010

S04 N01 N05 401.5283 7277.1951 12 0.0016

S05 N01 N06 501.6303 5825.0065 12 0.0021

S06 N02 N05 289.1730 10104.6793 12 0.0012

S07 N02 N06 617.1102 4734.9728 12 0.0025

S08 N02 N09 761.8825 3835.2369 12 0.0031

S09 N03 N04 260.7393 11206.5946 12 0.0011

S10 N03 N06 286.9042 10184.5855 12 0.0012

S11 N03 N07 283.4255 10309.5884 12 0.0012

S12 N04 N05 211.5490 13812.3996 12 0.0009

S13 N04 N07 212.8497 13727.9960 12 0.0009

S14 N04 N08 269.2675 10851.6614 12 0.0011

S15 N04 N10 502.8021 5811.4310 12 0.0021

S16 N05 N08 246.0894 11873.7330 12 0.0010

S17 N05 N10 398.3780 7334.7431 12 0.0016

S18 N06 N07 188.0425 15539.0364 12 0.0008

S19 N06 N08 369.3806 7910.5408 12 0.0015

S20 N06 N09 306.8061 9523.9297 12 0.0013

S21 N07 N08 199.0226 14681.7488 12 0.0008

S22 N07 N09 304.8442 9585.2235 12 0.0013

S23 N08 N09 310.0774 9423.4533 12 0.0013

S24 N08 N10 243.7724 11986.5891 12 0.0010

S25 N09 N10 366.1598 7980.1223 12 0.0015

205

Appendix C –Network Demand Files

Demand file for 10-node 25-span network

DEMAND O D NBUNITS

D01 N01 N02 2

D02 N01 N03 9

D03 N01 N04 4

D04 N01 N05 1

D05 N01 N06 3

D06 N01 N07 10

D07 N01 N08 1

D08 N01 N09 6

D09 N01 N10 6

D10 N02 N03 5

D11 N02 N04 7

D12 N02 N05 2

D13 N02 N06 8

D14 N02 N07 9

D15 N02 N08 10

D16 N02 N09 2

D17 N02 N10 1

D18 N03 N04 2

D19 N03 N05 1

D20 N03 N06 4

D21 N03 N07 3

D22 N03 N08 8

D23 N03 N09 2

D24 N03 N10 1

D25 N04 N05 9

D26 N04 N06 1

D27 N04 N07 9

D28 N04 N08 5

D29 N04 N09 9

D30 N04 N10 10

D31 N05 N06 4

D32 N05 N07 7

D33 N05 N08 4

D34 N05 N09 3

D35 N05 N10 5

D36 N06 N07 1

D37 N06 N08 10

D38 N06 N09 10

D39 N06 N10 4

D40 N07 N08 10

D41 N07 N09 7

D42 N07 N10 7

D43 N08 N09 8

D44 N08 N10 8

D45 N09 N10 10

206

Appendix D The MCSF Model

Appendix D.1 – AMPL codes of MCSF Model for Span Restoration Mechanism

Span-Restoration mechanism under dual failure scenario

March 2015 by Wenjing Wang

SETS

set SPANS;

set of all spans

set BACKUP_ROUTES{i in SPANS};

set of all backup routes for each span failure i

PARAMETERS

param Work{i in SPANS};

amount of working capacities placed on span i

param Cost{k in SPANS};

cost of each unit of capacity on span k

param Delta{i in SPANS, k in SPANS, b in BACKUP_ROUTES[i]} default 0;

binary, takes 1 if backup route b for failure of span i crosses span k

VIRAIABLES

var spare{k in SPANS} >=0 integer, <=10000;

amount of spare capacity place on span j

var flow_single{i in SPANS, b in BACKUP_ROUTES[i]} >=0 integer, <=10000;

flow through backup route b for failure of span i

OBJECTIVE FUNCTION

minimize tot_cost:

sum{k in SPANS} spare[k] * Cost[k];

minimize total cost under full single failure

CONSTRAINTS

subject to c_13{i in SPANS}: sum{b in BACKUP_ROUTES[i]} flow_single[i, b] >= Work[i];

guarantee enough restoration flow for full single failure restorability

subject to c_14{i in SPANS, k in SPANS: k <> i}:

 spare[k] >= sum{b in BACKUP_ROUTES[i]} (flow_single[i, b] * Delta[i, k, b]);

translate flow requirements in c_13 to each span

207

Appendix D.2 – An Example of *.Dat Files of MCSF Model for Span Restoration

Mechanism

*.dat file for 20-node 35-span network

MCSF model

Created in January 2015 by Wenjing

set SPANS := S01 S02 S03 S04 S05 S07 S08 S10 S11 S12 S13 S14 S15

 S16 S17 S18 S19 S21 S22 S23 S26 S27 S28 S29 S30 S31

 S32 S33 S34 S35 S36 S37 S38 S39 S40;

param Cost :=

S01 139.560

S02 179.360

S03 116.181

S04 167.601

S05 50.606

S07 134.302

S08 227.002

S10 136.356

S11 152.506

S12 127.475

S13 148.772

S14 260.923

S15 92.779

S16 86.822

S17 124.631

S18 145.055

S19 131.320

S21 99.705

S22 131.187

S23 173.118

S26 198.497

S27 82.970

S28 128.725

S29 166.066

S30 151.427

S31 130.173

S32 64.070

S33 204.924

S34 108.074

S35 104.805

S36 54.129

S37 121.037

S38 86.833

S39 156.984

S40 120.150;

param Work :=

S01 87

S02 69

S03 200

S04 26

S05 31

S07 2

S08 65

S10 63

S11 60

S12 154

S13 68

S14 20

S15 50

S16 85

S17 133

S18 36

S19 99

S21 236

S22 86

S23 73

S26 69

S27 52

S28 66

S29 71

S30 43

S31 22

S32 137

S33 37

S34 76

S35 126

S36 85

S37 47

S38 120

S39 85

S40 114;

set BACKUP_ROUTES[S01] := R1 R2 R3 R4 R5 R6 R7;

set BACKUP_ROUTES[S02] := R8 R9 R10 R11 R12 R13 R14;

set BACKUP_ROUTES[S03] := R15 R16 R17 R18 R19 R20 R21;

set BACKUP_ROUTES[S04] := R22 R23 R24 R25 R26 R27 R28;

set BACKUP_ROUTES[S05] := R29 R30 R31 R32 R33 R34 R35;

set BACKUP_ROUTES[S07] := R36 R37 R38 R39 R40 R41 R42;

set BACKUP_ROUTES[S08] := R43 R44 R45 R46 R47 R48 R49;

set BACKUP_ROUTES[S10] := R50 R51 R52 R53 R54 R55 R56;

set BACKUP_ROUTES[S11] := R57 R58 R59 R60 R61 R62 R63;

set BACKUP_ROUTES[S12] := R64 R65 R66 R67 R68 R69 R70;

set BACKUP_ROUTES[S13] := R71 R72 R73 R74 R75 R76 R77;

set BACKUP_ROUTES[S14] := R78 R79 R80 R81 R82 R83 R84;

set BACKUP_ROUTES[S15] := R85 R86 R87 R88 R89 R90 R91;

set BACKUP_ROUTES[S16] := R92 R93 R94 R95 R96 R97 R98;

set BACKUP_ROUTES[S17] := R99 R100 R101 R102 R103 R104 R105;

set BACKUP_ROUTES[S18] := R106 R107 R108 R109 R110 R111 R112;

set BACKUP_ROUTES[S19] := R113 R114 R115 R116 R117 R118 R119;

set BACKUP_ROUTES[S21] := R120 R121 R122 R123 R124 R125 R126;

set BACKUP_ROUTES[S22] := R127 R128 R129 R130 R131 R132 R133;

set BACKUP_ROUTES[S23] := R134 R135 R136 R137 R138 R139 R140;

set BACKUP_ROUTES[S26] := R141 R142 R143 R144 R145 R146 R147;

set BACKUP_ROUTES[S27] := R148 R149 R150 R151 R152 R153 R154;

set BACKUP_ROUTES[S28] := R155 R156 R157 R158 R159 R160 R161;

set BACKUP_ROUTES[S29] := R162 R163 R164 R165 R166 R167 R168;

set BACKUP_ROUTES[S30] := R169 R170 R171 R172 R173 R174 R175;

set BACKUP_ROUTES[S31] := R176 R177 R178 R179 R180 R181 R182;

set BACKUP_ROUTES[S32] := R183 R184 R185 R186 R187 R188 R189;

set BACKUP_ROUTES[S33] := R190 R191 R192 R193 R194 R195 R196;

set BACKUP_ROUTES[S34] := R197 R198 R199 R200 R201 R202 R203;

set BACKUP_ROUTES[S35] := R204 R205 R206 R207 R208 R209 R210;

set BACKUP_ROUTES[S36] := R211 R212 R213 R214 R215 R216 R217;

set BACKUP_ROUTES[S37] := R218 R219 R220 R221 R222 R223 R224;

set BACKUP_ROUTES[S38] := R225 R226 R227 R228 R229 R230 R231;

set BACKUP_ROUTES[S39] := R232 R233 R234 R235 R236 R237 R238;

set BACKUP_ROUTES[S40] := R239 R240 R241 R242 R243 R244 R245;

param Delta :=

[S01, *, R1] S02 1 S05 1

[S01, *, R2] S02 1 S04 1 S07 1

[S01, *, R3] S02 1 S04 1 S08 1 S10 1

[S01, *, R4] S03 1 S05 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S01, *, R5] S03 1 S04 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S01, *, R6] S03 1 S05 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S01, *, R7] S03 1 S05 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S02, *, R8] S01 1 S05 1

[S02, *, R9] S01 1 S04 1 S07 1

[S02, *, R10] S01 1 S04 1 S08 1 S10 1

[S02, *, R11] S03 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

208

[S02, *, R12] S03 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S02, *, R13] S03 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S02, *, R14] S03 1 S08 1 S11 1 S14 1 S32 1 S35 1

[S03, *, R15] S02 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R16] S01 1 S05 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R17] S01 1 S04 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R18] S02 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R19] S02 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S03, *, R20] S01 1 S05 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R21] S01 1 S05 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S04, *, R22] S05 1 S07 1

[S04, *, R23] S05 1 S08 1 S10 1

[S04, *, R24] S01 1 S02 1 S07 1

[S04, *, R25] S01 1 S02 1 S08 1 S10 1

[S04, *, R26] S01 1 S03 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S04, *, R27] S01 1 S03 1 S10 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S04, *, R28] S01 1 S03 1 S10 1 S11 1 S14 1 S32 1 S35 1

[S05, *, R29] S04 1 S07 1

[S05, *, R30] S01 1 S02 1

[S05, *, R31] S04 1 S08 1 S10 1

[S05, *, R32] S01 1 S03 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S05, *, R33] S01 1 S03 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S05, *, R34] S01 1 S03 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S05, *, R35] S01 1 S03 1 S08 1 S11 1 S14 1 S32 1 S35 1

[S07, *, R36] S04 1 S05 1

[S07, *, R37] S08 1 S10 1

[S07, *, R38] S01 1 S02 1 S04 1

[S07, *, R39] S02 1 S03 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S07, *, R40] S01 1 S03 1 S05 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S07, *, R41] S02 1 S03 1 S10 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S07, *, R42] S01 1 S03 1 S05 1 S10 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S08, *, R43] S07 1 S10 1

[S08, *, R44] S04 1 S05 1 S10 1

[S08, *, R45] S01 1 S02 1 S04 1 S10 1

[S08, *, R46] S02 1 S03 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S08, *, R47] S01 1 S03 1 S05 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S08, *, R48] S02 1 S03 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S08, *, R49] S01 1 S03 1 S05 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S10, *, R50] S07 1 S08 1

[S10, *, R51] S04 1 S05 1 S08 1

[S10, *, R52] S01 1 S02 1 S04 1 S08 1

[S10, *, R53] S01 1 S03 1 S04 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S10, *, R54] S02 1 S03 1 S07 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S10, *, R55] S01 1 S03 1 S05 1 S07 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S10, *, R56] S01 1 S03 1 S04 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S11, *, R57] S12 1 S15 1

[S11, *, R58] S12 1 S13 1 S17 1 S22 1

[S11, *, R59] S12 1 S14 1 S16 1 S19 1

[S11, *, R60] S12 1 S13 1 S16 1 S18 1 S22 1

[S11, *, R61] S12 1 S14 1 S17 1 S21 1 S31 1

[S11, *, R62] S12 1 S14 1 S17 1 S21 1 S32 1 S34 1

[S11, *, R63] S12 1 S14 1 S17 1 S18 1 S19 1

[S12, *, R64] S11 1 S15 1

[S12, *, R65] S11 1 S13 1 S17 1 S22 1

[S12, *, R66] S11 1 S14 1 S16 1 S19 1

[S12, *, R67] S11 1 S13 1 S16 1 S18 1 S22 1

[S12, *, R68] S11 1 S14 1 S17 1 S21 1 S31 1

[S12, *, R69] S11 1 S14 1 S17 1 S21 1 S32 1 S34 1

[S12, *, R70] S11 1 S14 1 S17 1 S18 1 S19 1

[S13, *, R71] S15 1 S17 1 S22 1

[S13, *, R72] S15 1 S16 1 S18 1 S22 1

[S13, *, R73] S11 1 S12 1 S17 1 S22 1

[S13, *, R74] S14 1 S21 1 S22 1 S31 1

[S13, *, R75] S11 1 S12 1 S16 1 S18 1 S22 1

[S13, *, R76] S14 1 S21 1 S22 1 S32 1 S34 1

[S13, *, R77] S14 1 S18 1 S19 1 S22 1

[S14, *, R78] S15 1 S16 1 S19 1

[S14, *, R79] S15 1 S17 1 S21 1 S31 1

[S14, *, R80] S15 1 S17 1 S21 1 S32 1 S34 1

[S14, *, R81] S15 1 S17 1 S18 1 S19 1

[S14, *, R82] S11 1 S12 1 S16 1 S19 1

[S14, *, R83] S13 1 S21 1 S22 1 S31 1

[S14, *, R84] S13 1 S21 1 S22 1 S32 1 S34 1

[S15, *, R85] S11 1 S12 1

[S15, *, R86] S13 1 S17 1 S22 1

[S15, *, R87] S14 1 S16 1 S19 1

[S15, *, R88] S13 1 S16 1 S18 1 S22 1

[S15, *, R89] S14 1 S17 1 S21 1 S31 1

[S15, *, R90] S14 1 S17 1 S21 1 S32 1 S34 1

[S15, *, R91] S14 1 S17 1 S18 1 S19 1

[S16, *, R92] S17 1 S18 1

[S16, *, R93] S14 1 S15 1 S19 1

[S16, *, R94] S17 1 S19 1 S21 1 S31 1

[S16, *, R95] S13 1 S15 1 S18 1 S22 1

[S16, *, R96] S17 1 S19 1 S21 1 S32 1 S34 1

[S16, *, R97] S11 1 S12 1 S14 1 S19 1

[S16, *, R98] S11 1 S12 1 S13 1 S18 1 S22 1

[S17, *, R99] S16 1 S18 1

[S17, *, R100] S13 1 S15 1 S22 1

[S17, *, R101] S16 1 S19 1 S21 1 S31 1

[S17, *, R102] S16 1 S19 1 S21 1 S32 1 S34 1

[S17, *, R103] S11 1 S12 1 S13 1 S22 1

[S17, *, R104] S14 1 S15 1 S21 1 S31 1

[S17, *, R105] S14 1 S15 1 S21 1 S32 1 S34 1

[S18, *, R106] S16 1 S17 1

[S18, *, R107] S19 1 S21 1 S31 1

[S18, *, R108] S19 1 S21 1 S32 1 S34 1

[S18, *, R109] S13 1 S15 1 S16 1 S22 1

[S18, *, R110] S19 1 S21 1 S30 1 S32 1 S36 1 S38 1

[S18, *, R111] S14 1 S15 1 S17 1 S19 1

[S18, *, R112] S19 1 S21 1 S28 1 S32 1 S33 1

[S19, *, R113] S18 1 S21 1 S31 1

[S19, *, R114] S18 1 S21 1 S32 1 S34 1

[S19, *, R115] S14 1 S15 1 S16 1

[S19, *, R116] S16 1 S17 1 S21 1 S31 1

[S19, *, R117] S16 1 S17 1 S21 1 S32 1 S34 1

[S19, *, R118] S18 1 S21 1 S30 1 S32 1 S36 1 S38 1

[S19, *, R119] S14 1 S15 1 S17 1 S18 1

[S21, *, R120] S18 1 S19 1 S31 1

[S21, *, R121] S18 1 S19 1 S32 1 S34 1

[S21, *, R122] S16 1 S17 1 S19 1 S31 1

[S21, *, R123] S16 1 S17 1 S19 1 S32 1 S34 1

[S21, *, R124] S14 1 S15 1 S17 1 S31 1

[S21, *, R125] S18 1 S19 1 S30 1 S32 1 S36 1 S38 1

[S21, *, R126] S14 1 S15 1 S17 1 S32 1 S34 1

[S22, *, R127] S13 1 S15 1 S17 1

[S22, *, R128] S13 1 S15 1 S16 1 S18 1

[S22, *, R129] S11 1 S12 1 S13 1 S17 1

[S22, *, R130] S13 1 S14 1 S21 1 S31 1

[S22, *, R131] S11 1 S12 1 S13 1 S16 1 S18 1

[S22, *, R132] S13 1 S14 1 S21 1 S32 1 S34 1

[S22, *, R133] S13 1 S14 1 S18 1 S19 1

[S23, *, R134] S21 1 S22 1 S26 1 S29 1 S37 1

[S23, *, R135] S21 1 S22 1 S26 1 S34 1 S38 1 S39 1

[S23, *, R136] S21 1 S22 1 S26 1 S27 1 S30 1 S37 1

[S23, *, R137] S21 1 S22 1 S26 1 S30 1 S36 1 S39 1

[S23, *, R138] S21 1 S22 1 S26 1 S31 1 S32 1 S38 1 S39 1

[S23, *, R139] S21 1 S22 1 S26 1 S27 1 S34 1 S36 1 S37 1 S38 1

[S23, *, R140] S21 1 S22 1 S26 1 S27 1 S29 1 S36 1 S39 1

[S26, *, R141] S21 1 S22 1 S23 1 S29 1 S37 1

[S26, *, R142] S21 1 S22 1 S23 1 S34 1 S38 1 S39 1

[S26, *, R143] S21 1 S22 1 S23 1 S27 1 S30 1 S37 1

[S26, *, R144] S21 1 S22 1 S23 1 S30 1 S36 1 S39 1

[S26, *, R145] S21 1 S22 1 S23 1 S31 1 S32 1 S38 1 S39 1

[S26, *, R146] S21 1 S22 1 S23 1 S27 1 S34 1 S36 1 S37 1 S38 1

[S26, *, R147] S21 1 S22 1 S23 1 S27 1 S29 1 S36 1 S39 1

[S27, *, R148] S29 1 S30 1

[S27, *, R149] S36 1 S37 1 S39 1

[S27, *, R150] S29 1 S34 1 S36 1 S38 1

[S27, *, R151] S29 1 S31 1 S32 1 S36 1 S38 1

[S27, *, R152] S29 1 S34 1 S35 1 S36 1 S40 1

[S27, *, R153] S30 1 S34 1 S37 1 S38 1 S39 1

[S27, *, R154] S29 1 S31 1 S32 1 S35 1 S36 1 S40 1

[S28, *, R155] S33 1 S34 1

[S28, *, R156] S31 1 S32 1 S33 1

[S28, *, R157] S30 1 S33 1 S36 1 S38 1

[S28, *, R158] S27 1 S29 1 S33 1 S36 1 S38 1

[S28, *, R159] S30 1 S33 1 S35 1 S36 1 S40 1

[S28, *, R160] S18 1 S19 1 S21 1 S32 1 S33 1

[S28, *, R161] S16 1 S17 1 S19 1 S21 1 S32 1 S33 1

[S29, *, R162] S27 1 S30 1

[S29, *, R163] S27 1 S34 1 S36 1 S38 1

[S29, *, R164] S27 1 S31 1 S32 1 S36 1 S38 1

[S29, *, R165] S27 1 S34 1 S35 1 S36 1 S40 1

[S29, *, R166] S34 1 S37 1 S38 1 S39 1

[S29, *, R167] S30 1 S36 1 S37 1 S39 1

[S29, *, R168] S27 1 S31 1 S32 1 S35 1 S36 1 S40 1

[S30, *, R169] S34 1 S36 1 S38 1

[S30, *, R170] S27 1 S29 1

[S30, *, R171] S31 1 S32 1 S36 1 S38 1

209

[S30, *, R172] S34 1 S35 1 S36 1 S40 1

[S30, *, R173] S31 1 S32 1 S35 1 S36 1 S40 1

[S30, *, R174] S28 1 S33 1 S36 1 S38 1

[S30, *, R175] S29 1 S36 1 S37 1 S39 1

[S31, *, R176] S32 1 S34 1

[S31, *, R177] S30 1 S32 1 S36 1 S38 1

[S31, *, R178] S18 1 S19 1 S21 1

[S31, *, R179] S28 1 S32 1 S33 1

[S31, *, R180] S16 1 S17 1 S19 1 S21 1

[S31, *, R181] S27 1 S29 1 S32 1 S36 1 S38 1

[S31, *, R182] S30 1 S32 1 S35 1 S36 1 S40 1

[S32, *, R183] S31 1 S34 1

[S32, *, R184] S30 1 S31 1 S36 1 S38 1

[S32, *, R185] S28 1 S31 1 S33 1

[S32, *, R186] S18 1 S19 1 S21 1 S34 1

[S32, *, R187] S27 1 S29 1 S31 1 S36 1 S38 1

[S32, *, R188] S16 1 S17 1 S19 1 S21 1 S34 1

[S32, *, R189] S30 1 S31 1 S35 1 S36 1 S40 1

[S33, *, R190] S28 1 S34 1

[S33, *, R191] S28 1 S31 1 S32 1

[S33, *, R192] S28 1 S30 1 S36 1 S38 1

[S33, *, R193] S27 1 S28 1 S29 1 S36 1 S38 1

[S33, *, R194] S28 1 S30 1 S35 1 S36 1 S40 1

[S33, *, R195] S18 1 S19 1 S21 1 S28 1 S32 1

[S33, *, R196] S16 1 S17 1 S19 1 S21 1 S28 1 S32 1

[S34, *, R197] S31 1 S32 1

[S34, *, R198] S30 1 S36 1 S38 1

[S34, *, R199] S28 1 S33 1

[S34, *, R200] S27 1 S29 1 S36 1 S38 1

[S34, *, R201] S30 1 S35 1 S36 1 S40 1

[S34, *, R202] S18 1 S19 1 S21 1 S32 1

[S34, *, R203] S16 1 S17 1 S19 1 S21 1 S32 1

[S35, *, R204] S38 1 S40 1

[S35, *, R205] S30 1 S34 1 S36 1 S40 1

[S35, *, R206] S30 1 S31 1 S32 1 S36 1 S40 1

[S35, *, R207] S27 1 S29 1 S34 1 S36 1 S40 1

[S35, *, R208] S27 1 S29 1 S31 1 S32 1 S36 1 S40 1

[S35, *, R209] S28 1 S30 1 S33 1 S36 1 S40 1

[S35, *, R210] S29 1 S34 1 S37 1 S39 1 S40 1

[S36, *, R211] S30 1 S34 1 S38 1

[S36, *, R212] S27 1 S37 1 S39 1

[S36, *, R213] S30 1 S31 1 S32 1 S38 1

[S36, *, R214] S27 1 S29 1 S34 1 S38 1

[S36, *, R215] S30 1 S34 1 S35 1 S40 1

[S36, *, R216] S27 1 S29 1 S31 1 S32 1 S38 1

[S36, *, R217] S30 1 S31 1 S32 1 S35 1 S40 1

[S37, *, R218] S27 1 S36 1 S39 1

[S37, *, R219] S29 1 S34 1 S38 1 S39 1

[S37, *, R220] S29 1 S30 1 S36 1 S39 1

[S37, *, R221] S27 1 S30 1 S34 1 S38 1 S39 1

[S37, *, R222] S29 1 S31 1 S32 1 S38 1 S39 1

[S37, *, R223] S29 1 S34 1 S35 1 S39 1 S40 1

[S37, *, R224] S27 1 S30 1 S31 1 S32 1 S38 1 S39 1

[S38, *, R225] S35 1 S40 1

[S38, *, R226] S30 1 S34 1 S36 1

[S38, *, R227] S30 1 S31 1 S32 1 S36 1

[S38, *, R228] S27 1 S29 1 S34 1 S36 1

[S38, *, R229] S27 1 S29 1 S31 1 S32 1 S36 1

[S38, *, R230] S28 1 S30 1 S33 1 S36 1

[S38, *, R231] S29 1 S34 1 S37 1 S39 1

[S39, *, R232] S27 1 S36 1 S37 1

[S39, *, R233] S29 1 S34 1 S37 1 S38 1

[S39, *, R234] S29 1 S30 1 S36 1 S37 1

[S39, *, R235] S27 1 S30 1 S34 1 S37 1 S38 1

[S39, *, R236] S29 1 S31 1 S32 1 S37 1 S38 1

[S39, *, R237] S29 1 S34 1 S35 1 S37 1 S40 1

[S39, *, R238] S27 1 S30 1 S31 1 S32 1 S37 1 S38 1

[S40, *, R239] S35 1 S38 1

[S40, *, R240] S30 1 S34 1 S35 1 S36 1

[S40, *, R241] S30 1 S31 1 S32 1 S35 1 S36 1

[S40, *, R242] S27 1 S29 1 S34 1 S35 1 S36 1

[S40, *, R243] S27 1 S29 1 S31 1 S32 1 S35 1 S36 1

[S40, *, R244] S28 1 S30 1 S33 1 S35 1 S36 1

[S40, *, R245] S29 1 S34 1 S35 1 S37 1 S39 1;

210

Appendix E The MDNF Model

Appendix E.1 – AMPL codes of MDNF Model for Span Restoration Mechanism

Span-Restoration mechanism under dual failure scenario

March 2015 by Wenjing Wang

SETS

set SPANS;

set of all spans

set BACKUP_ROUTES{i in SPANS};

set of all backup routes for each span failure i

PARAMETERS

param Work{i in SPANS};

amount of working capacity placed on span i

param Cost{k in SPANS};

cost of each unit of capacity on span k

param Delta{i in SPANS, k in SPANS, b in BACKUP_ROUTES[i]} default 0;

binary, takes 1 if backup route b for failure of span i crosses span k

param Cinfinit;

a positive large constant

param Budget;

budget limit for dual failure restoration

VIRAIABLES

var spare{k in SPANS} >=0 integer, <=10000;

amount of spare capacity placeed on span j

var flow_single{i in SPANS, b in BACKUP_ROUTES[i]} >=0 integer, <=10000;

flow through backup route b for failure of span i

var flow_dual_i{i in SPANS, j in SPANS, b in BACKUP_ROUTES[i]: i <> j} >=0 integer, <=10000;

flow through backup route b for failure of span i under dual failure (i, j)

var flow_dual_j{i in SPANS, j in SPANS, b in BACKUP_ROUTES[j]: i <> j} >=0 integer, <=10000;

flow through backup route b for failure of span j under dual failure (i, j)

var non_restored{i in SPANS, j in SPANS: i <> j} >=0 integer;

amount of non-restored working capacity under dual failure (i, j)

var non_restored_i{i in SPANS, j in SPANS: i <> j} >=0 integer;

amount of non-restored working capacity on span i under dual failure (i, j)

var non_restored_j{i in SPANS, j in SPANS: i <> j} >=0 integer;

amount of non-restored working capacity on span j under dual failure (i, j)

OBJECTIVE FUNCTION

minimize tot_non_restored:

sum{i in SPANS, j in SPANS: i <> j} non_restored[i, j];

minimize amount of non-restored working capacity under all dual failure scenarios

CONSTRAINTS

subject to c_12{i in SPANS, j in SPANS: i <> j}:

 non_restored[i, j] = Work[i] + Work[j] - sum{b in BACKUP_ROUTES[i]} flow_dual_i[i, j, b] - sum{b in BACKUP_ROUTES[j]} flow_dual_j[i, j, b];

define non-restored working capacities under each dual failure (i, j)

subject to c_1201{i in SPANS, j in SPANS: i <> j}:

 non_restored_i[i, j] = Work[i] - sum{b in BACKUP_ROUTES[i]} flow_dual_i[i, j, b];

211

define non-restored working capacities on span i under each dual failure (i, j)

subject to c_1202{i in SPANS, j in SPANS: i <> j}:

 non_restored_j[i, j] = Work[j] - sum{b in BACKUP_ROUTES[j]} flow_dual_j[i, j, b];

define non-restored working capacities on span j under each dual failure (i, j)

subject to c_13{i in SPANS}: sum{b in BACKUP_ROUTES[i]} flow_single[i, b] >= Work[i];

guarantee enough restoration flow for full single failure restorability

subject to c_14{i in SPANS, k in SPANS: k <> i}:

 spare[k] >= sum{b in BACKUP_ROUTES[i]} (flow_single[i, b] * Delta[i, k, b]);

translate flow requirements in c_13 to each span

subject to c_15{i in SPANS, j in SPANS: i <> j}:

 sum{b in BACKUP_ROUTES[i]} flow_dual_i[i, j, b] <= Work[i];

assign restoration flow to failed span i under dual failure scenario (i, j)

subject to c_16{i in SPANS, j in SPANS: i <> j}:

 sum{b in BACKUP_ROUTES[j]} flow_dual_j[i, j, b] <= Work[j];

assign restoration flow to failed span j under dual failure scenario (i, j)

subject to c_17{i in SPANS, j in SPANS, k in SPANS: i <> j and j <> k and i <> k}:

 spare[k] >= sum{b in BACKUP_ROUTES[i]} (flow_dual_i[i, j, b] * Delta[i, k, b]) +

 sum{b in BACKUP_ROUTES[j]} (flow_dual_j[i, j, b] * Delta[j, k, b]);

translate flow requirements in (15)(16) on each span

subject to c_18{i in SPANS, j in SPANS, b in BACKUP_ROUTES[i]: i <> j}:

 flow_dual_i[i, j, b] <= Cinfinit * (1 - Delta[i, j, b]);

put limitation on restoration of failed span i under dual failure (i, j)

subject to c_19{i in SPANS, j in SPANS, b in BACKUP_ROUTES[j]: i <> j}:

 flow_dual_j[i, j, b] <= Cinfinit * (1 - Delta[j, i, b]);

put limitation on restoration of failed span j under dual failure (i, j)

subject to c_20:

 sum{k in SPANS} (Cost[k] * spare[k]) <= Budget;

put budget limitation on dual failure restoration

212

Appendix E.2 – An Example of *.Dat Files of MDNF Model for Span Restoration

Mechanism

*.dat file for 20-node 35-span network

MCSF model

Created in January 2015 by Wenjing

set SPANS := S01 S02 S03 S04 S05 S07 S08 S10 S11 S12 S13 S14 S15

 S16 S17 S18 S19 S21 S22 S23 S26 S27 S28 S29 S30 S31

 S32 S33 S34 S35 S36 S37 S38 S39 S40;

param Cost :=

S01 139.560

S02 179.360

S03 116.181

S04 167.601

S05 50.606

S07 134.302

S08 227.002

S10 136.356

S11 152.506

S12 127.475

S13 148.772

S14 260.923

S15 92.779

S16 86.822

S17 124.631

S18 145.055

S19 131.320

S21 99.705

S22 131.187

S23 173.118

S26 198.497

S27 82.970

S28 128.725

S29 166.066

S30 151.427

S31 130.173

S32 64.070

S33 204.924

S34 108.074

S35 104.805

S36 54.129

S37 121.037

S38 86.833

S39 156.984

S40 120.150;

param Work :=

S01 87

S02 69

S03 200

S04 26

S05 31

S07 2

S08 65

S10 63

S11 60

S12 154

S13 68

S14 20

S15 50

S16 85

S17 133

S18 36

S19 99

S21 236

S22 86

S23 73

S26 69

S27 52

S28 66

S29 71

S30 43

S31 22

S32 137

S33 37

S34 76

S35 126

S36 85

S37 47

S38 120

S39 85

S40 114;

set BACKUP_ROUTES[S01] := R1 R2 R3 R4 R5 R6 R7;

set BACKUP_ROUTES[S02] := R8 R9 R10 R11 R12 R13 R14;

set BACKUP_ROUTES[S03] := R15 R16 R17 R18 R19 R20 R21;

set BACKUP_ROUTES[S04] := R22 R23 R24 R25 R26 R27 R28;

set BACKUP_ROUTES[S05] := R29 R30 R31 R32 R33 R34 R35;

set BACKUP_ROUTES[S07] := R36 R37 R38 R39 R40 R41 R42;

set BACKUP_ROUTES[S08] := R43 R44 R45 R46 R47 R48 R49;

set BACKUP_ROUTES[S10] := R50 R51 R52 R53 R54 R55 R56;

set BACKUP_ROUTES[S11] := R57 R58 R59 R60 R61 R62 R63;

set BACKUP_ROUTES[S12] := R64 R65 R66 R67 R68 R69 R70;

set BACKUP_ROUTES[S13] := R71 R72 R73 R74 R75 R76 R77;

set BACKUP_ROUTES[S14] := R78 R79 R80 R81 R82 R83 R84;

set BACKUP_ROUTES[S15] := R85 R86 R87 R88 R89 R90 R91;

set BACKUP_ROUTES[S16] := R92 R93 R94 R95 R96 R97 R98;

set BACKUP_ROUTES[S17] := R99 R100 R101 R102 R103 R104 R105;

set BACKUP_ROUTES[S18] := R106 R107 R108 R109 R110 R111 R112;

set BACKUP_ROUTES[S19] := R113 R114 R115 R116 R117 R118 R119;

set BACKUP_ROUTES[S21] := R120 R121 R122 R123 R124 R125 R126;

set BACKUP_ROUTES[S22] := R127 R128 R129 R130 R131 R132 R133;

set BACKUP_ROUTES[S23] := R134 R135 R136 R137 R138 R139 R140;

set BACKUP_ROUTES[S26] := R141 R142 R143 R144 R145 R146 R147;

set BACKUP_ROUTES[S27] := R148 R149 R150 R151 R152 R153 R154;

set BACKUP_ROUTES[S28] := R155 R156 R157 R158 R159 R160 R161;

set BACKUP_ROUTES[S29] := R162 R163 R164 R165 R166 R167 R168;

set BACKUP_ROUTES[S30] := R169 R170 R171 R172 R173 R174 R175;

set BACKUP_ROUTES[S31] := R176 R177 R178 R179 R180 R181 R182;

set BACKUP_ROUTES[S32] := R183 R184 R185 R186 R187 R188 R189;

set BACKUP_ROUTES[S33] := R190 R191 R192 R193 R194 R195 R196;

set BACKUP_ROUTES[S34] := R197 R198 R199 R200 R201 R202 R203;

set BACKUP_ROUTES[S35] := R204 R205 R206 R207 R208 R209 R210;

set BACKUP_ROUTES[S36] := R211 R212 R213 R214 R215 R216 R217;

set BACKUP_ROUTES[S37] := R218 R219 R220 R221 R222 R223 R224;

set BACKUP_ROUTES[S38] := R225 R226 R227 R228 R229 R230 R231;

set BACKUP_ROUTES[S39] := R232 R233 R234 R235 R236 R237 R238;

set BACKUP_ROUTES[S40] := R239 R240 R241 R242 R243 R244 R245;

param Delta :=

[S01, *, R1] S02 1 S05 1

[S01, *, R2] S02 1 S04 1 S07 1

[S01, *, R3] S02 1 S04 1 S08 1 S10 1

[S01, *, R4] S03 1 S05 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S01, *, R5] S03 1 S04 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S01, *, R6] S03 1 S05 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S01, *, R7] S03 1 S05 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S02, *, R8] S01 1 S05 1

[S02, *, R9] S01 1 S04 1 S07 1

213

[S02, *, R10] S01 1 S04 1 S08 1 S10 1

[S02, *, R11] S03 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S02, *, R12] S03 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S02, *, R13] S03 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S02, *, R14] S03 1 S08 1 S11 1 S14 1 S32 1 S35 1

[S03, *, R15] S02 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R16] S01 1 S05 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R17] S01 1 S04 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R18] S02 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R19] S02 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S03, *, R20] S01 1 S05 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R21] S01 1 S05 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S04, *, R22] S05 1 S07 1

[S04, *, R23] S05 1 S08 1 S10 1

[S04, *, R24] S01 1 S02 1 S07 1

[S04, *, R25] S01 1 S02 1 S08 1 S10 1

[S04, *, R26] S01 1 S03 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S04, *, R27] S01 1 S03 1 S10 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S04, *, R28] S01 1 S03 1 S10 1 S11 1 S14 1 S32 1 S35 1

[S05, *, R29] S04 1 S07 1

[S05, *, R30] S01 1 S02 1

[S05, *, R31] S04 1 S08 1 S10 1

[S05, *, R32] S01 1 S03 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S05, *, R33] S01 1 S03 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S05, *, R34] S01 1 S03 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S05, *, R35] S01 1 S03 1 S08 1 S11 1 S14 1 S32 1 S35 1

[S07, *, R36] S04 1 S05 1

[S07, *, R37] S08 1 S10 1

[S07, *, R38] S01 1 S02 1 S04 1

[S07, *, R39] S02 1 S03 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S07, *, R40] S01 1 S03 1 S05 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S07, *, R41] S02 1 S03 1 S10 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S07, *, R42] S01 1 S03 1 S05 1 S10 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S08, *, R43] S07 1 S10 1

[S08, *, R44] S04 1 S05 1 S10 1

[S08, *, R45] S01 1 S02 1 S04 1 S10 1

[S08, *, R46] S02 1 S03 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S08, *, R47] S01 1 S03 1 S05 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S08, *, R48] S02 1 S03 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S08, *, R49] S01 1 S03 1 S05 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S10, *, R50] S07 1 S08 1

[S10, *, R51] S04 1 S05 1 S08 1

[S10, *, R52] S01 1 S02 1 S04 1 S08 1

[S10, *, R53] S01 1 S03 1 S04 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S10, *, R54] S02 1 S03 1 S07 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S10, *, R55] S01 1 S03 1 S05 1 S07 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S10, *, R56] S01 1 S03 1 S04 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S11, *, R57] S12 1 S15 1

[S11, *, R58] S12 1 S13 1 S17 1 S22 1

[S11, *, R59] S12 1 S14 1 S16 1 S19 1

[S11, *, R60] S12 1 S13 1 S16 1 S18 1 S22 1

[S11, *, R61] S12 1 S14 1 S17 1 S21 1 S31 1

[S11, *, R62] S12 1 S14 1 S17 1 S21 1 S32 1 S34 1

[S11, *, R63] S12 1 S14 1 S17 1 S18 1 S19 1

[S12, *, R64] S11 1 S15 1

[S12, *, R65] S11 1 S13 1 S17 1 S22 1

[S12, *, R66] S11 1 S14 1 S16 1 S19 1

[S12, *, R67] S11 1 S13 1 S16 1 S18 1 S22 1

[S12, *, R68] S11 1 S14 1 S17 1 S21 1 S31 1

[S12, *, R69] S11 1 S14 1 S17 1 S21 1 S32 1 S34 1

[S12, *, R70] S11 1 S14 1 S17 1 S18 1 S19 1

[S13, *, R71] S15 1 S17 1 S22 1

[S13, *, R72] S15 1 S16 1 S18 1 S22 1

[S13, *, R73] S11 1 S12 1 S17 1 S22 1

[S13, *, R74] S14 1 S21 1 S22 1 S31 1

[S13, *, R75] S11 1 S12 1 S16 1 S18 1 S22 1

[S13, *, R76] S14 1 S21 1 S22 1 S32 1 S34 1

[S13, *, R77] S14 1 S18 1 S19 1 S22 1

[S14, *, R78] S15 1 S16 1 S19 1

[S14, *, R79] S15 1 S17 1 S21 1 S31 1

[S14, *, R80] S15 1 S17 1 S21 1 S32 1 S34 1

[S14, *, R81] S15 1 S17 1 S18 1 S19 1

[S14, *, R82] S11 1 S12 1 S16 1 S19 1

[S14, *, R83] S13 1 S21 1 S22 1 S31 1

[S14, *, R84] S13 1 S21 1 S22 1 S32 1 S34 1

[S15, *, R85] S11 1 S12 1

[S15, *, R86] S13 1 S17 1 S22 1

[S15, *, R87] S14 1 S16 1 S19 1

[S15, *, R88] S13 1 S16 1 S18 1 S22 1

[S15, *, R89] S14 1 S17 1 S21 1 S31 1

[S15, *, R90] S14 1 S17 1 S21 1 S32 1 S34 1

[S15, *, R91] S14 1 S17 1 S18 1 S19 1

[S16, *, R92] S17 1 S18 1

[S16, *, R93] S14 1 S15 1 S19 1

[S16, *, R94] S17 1 S19 1 S21 1 S31 1

[S16, *, R95] S13 1 S15 1 S18 1 S22 1

[S16, *, R96] S17 1 S19 1 S21 1 S32 1 S34 1

[S16, *, R97] S11 1 S12 1 S14 1 S19 1

[S16, *, R98] S11 1 S12 1 S13 1 S18 1 S22 1

[S17, *, R99] S16 1 S18 1

[S17, *, R100] S13 1 S15 1 S22 1

[S17, *, R101] S16 1 S19 1 S21 1 S31 1

[S17, *, R102] S16 1 S19 1 S21 1 S32 1 S34 1

[S17, *, R103] S11 1 S12 1 S13 1 S22 1

[S17, *, R104] S14 1 S15 1 S21 1 S31 1

[S17, *, R105] S14 1 S15 1 S21 1 S32 1 S34 1

[S18, *, R106] S16 1 S17 1

[S18, *, R107] S19 1 S21 1 S31 1

[S18, *, R108] S19 1 S21 1 S32 1 S34 1

[S18, *, R109] S13 1 S15 1 S16 1 S22 1

[S18, *, R110] S19 1 S21 1 S30 1 S32 1 S36 1 S38 1

[S18, *, R111] S14 1 S15 1 S17 1 S19 1

[S18, *, R112] S19 1 S21 1 S28 1 S32 1 S33 1

[S19, *, R113] S18 1 S21 1 S31 1

[S19, *, R114] S18 1 S21 1 S32 1 S34 1

[S19, *, R115] S14 1 S15 1 S16 1

[S19, *, R116] S16 1 S17 1 S21 1 S31 1

[S19, *, R117] S16 1 S17 1 S21 1 S32 1 S34 1

[S19, *, R118] S18 1 S21 1 S30 1 S32 1 S36 1 S38 1

[S19, *, R119] S14 1 S15 1 S17 1 S18 1

[S21, *, R120] S18 1 S19 1 S31 1

[S21, *, R121] S18 1 S19 1 S32 1 S34 1

[S21, *, R122] S16 1 S17 1 S19 1 S31 1

[S21, *, R123] S16 1 S17 1 S19 1 S32 1 S34 1

[S21, *, R124] S14 1 S15 1 S17 1 S31 1

[S21, *, R125] S18 1 S19 1 S30 1 S32 1 S36 1 S38 1

[S21, *, R126] S14 1 S15 1 S17 1 S32 1 S34 1

[S22, *, R127] S13 1 S15 1 S17 1

[S22, *, R128] S13 1 S15 1 S16 1 S18 1

[S22, *, R129] S11 1 S12 1 S13 1 S17 1

[S22, *, R130] S13 1 S14 1 S21 1 S31 1

[S22, *, R131] S11 1 S12 1 S13 1 S16 1 S18 1

[S22, *, R132] S13 1 S14 1 S21 1 S32 1 S34 1

[S22, *, R133] S13 1 S14 1 S18 1 S19 1

[S23, *, R134] S21 1 S22 1 S26 1 S29 1 S37 1

[S23, *, R135] S21 1 S22 1 S26 1 S34 1 S38 1 S39 1

[S23, *, R136] S21 1 S22 1 S26 1 S27 1 S30 1 S37 1

[S23, *, R137] S21 1 S22 1 S26 1 S30 1 S36 1 S39 1

[S23, *, R138] S21 1 S22 1 S26 1 S31 1 S32 1 S38 1 S39 1

[S23, *, R139] S21 1 S22 1 S26 1 S27 1 S34 1 S36 1 S37 1 S38 1

[S23, *, R140] S21 1 S22 1 S26 1 S27 1 S29 1 S36 1 S39 1

[S26, *, R141] S21 1 S22 1 S23 1 S29 1 S37 1

[S26, *, R142] S21 1 S22 1 S23 1 S34 1 S38 1 S39 1

[S26, *, R143] S21 1 S22 1 S23 1 S27 1 S30 1 S37 1

[S26, *, R144] S21 1 S22 1 S23 1 S30 1 S36 1 S39 1

[S26, *, R145] S21 1 S22 1 S23 1 S31 1 S32 1 S38 1 S39 1

[S26, *, R146] S21 1 S22 1 S23 1 S27 1 S34 1 S36 1 S37 1 S38 1

[S26, *, R147] S21 1 S22 1 S23 1 S27 1 S29 1 S36 1 S39 1

[S27, *, R148] S29 1 S30 1

[S27, *, R149] S36 1 S37 1 S39 1

[S27, *, R150] S29 1 S34 1 S36 1 S38 1

[S27, *, R151] S29 1 S31 1 S32 1 S36 1 S38 1

[S27, *, R152] S29 1 S34 1 S35 1 S36 1 S40 1

[S27, *, R153] S30 1 S34 1 S37 1 S38 1 S39 1

[S27, *, R154] S29 1 S31 1 S32 1 S35 1 S36 1 S40 1

[S28, *, R155] S33 1 S34 1

[S28, *, R156] S31 1 S32 1 S33 1

[S28, *, R157] S30 1 S33 1 S36 1 S38 1

[S28, *, R158] S27 1 S29 1 S33 1 S36 1 S38 1

[S28, *, R159] S30 1 S33 1 S35 1 S36 1 S40 1

[S28, *, R160] S18 1 S19 1 S21 1 S32 1 S33 1

[S28, *, R161] S16 1 S17 1 S19 1 S21 1 S32 1 S33 1

[S29, *, R162] S27 1 S30 1

[S29, *, R163] S27 1 S34 1 S36 1 S38 1

[S29, *, R164] S27 1 S31 1 S32 1 S36 1 S38 1

[S29, *, R165] S27 1 S34 1 S35 1 S36 1 S40 1

[S29, *, R166] S34 1 S37 1 S38 1 S39 1

[S29, *, R167] S30 1 S36 1 S37 1 S39 1

[S29, *, R168] S27 1 S31 1 S32 1 S35 1 S36 1 S40 1

[S30, *, R169] S34 1 S36 1 S38 1

214

[S30, *, R170] S27 1 S29 1

[S30, *, R171] S31 1 S32 1 S36 1 S38 1

[S30, *, R172] S34 1 S35 1 S36 1 S40 1

[S30, *, R173] S31 1 S32 1 S35 1 S36 1 S40 1

[S30, *, R174] S28 1 S33 1 S36 1 S38 1

[S30, *, R175] S29 1 S36 1 S37 1 S39 1

[S31, *, R176] S32 1 S34 1

[S31, *, R177] S30 1 S32 1 S36 1 S38 1

[S31, *, R178] S18 1 S19 1 S21 1

[S31, *, R179] S28 1 S32 1 S33 1

[S31, *, R180] S16 1 S17 1 S19 1 S21 1

[S31, *, R181] S27 1 S29 1 S32 1 S36 1 S38 1

[S31, *, R182] S30 1 S32 1 S35 1 S36 1 S40 1

[S32, *, R183] S31 1 S34 1

[S32, *, R184] S30 1 S31 1 S36 1 S38 1

[S32, *, R185] S28 1 S31 1 S33 1

[S32, *, R186] S18 1 S19 1 S21 1 S34 1

[S32, *, R187] S27 1 S29 1 S31 1 S36 1 S38 1

[S32, *, R188] S16 1 S17 1 S19 1 S21 1 S34 1

[S32, *, R189] S30 1 S31 1 S35 1 S36 1 S40 1

[S33, *, R190] S28 1 S34 1

[S33, *, R191] S28 1 S31 1 S32 1

[S33, *, R192] S28 1 S30 1 S36 1 S38 1

[S33, *, R193] S27 1 S28 1 S29 1 S36 1 S38 1

[S33, *, R194] S28 1 S30 1 S35 1 S36 1 S40 1

[S33, *, R195] S18 1 S19 1 S21 1 S28 1 S32 1

[S33, *, R196] S16 1 S17 1 S19 1 S21 1 S28 1 S32 1

[S34, *, R197] S31 1 S32 1

[S34, *, R198] S30 1 S36 1 S38 1

[S34, *, R199] S28 1 S33 1

[S34, *, R200] S27 1 S29 1 S36 1 S38 1

[S34, *, R201] S30 1 S35 1 S36 1 S40 1

[S34, *, R202] S18 1 S19 1 S21 1 S32 1

[S34, *, R203] S16 1 S17 1 S19 1 S21 1 S32 1

[S35, *, R204] S38 1 S40 1

[S35, *, R205] S30 1 S34 1 S36 1 S40 1

[S35, *, R206] S30 1 S31 1 S32 1 S36 1 S40 1

[S35, *, R207] S27 1 S29 1 S34 1 S36 1 S40 1

[S35, *, R208] S27 1 S29 1 S31 1 S32 1 S36 1 S40 1

[S35, *, R209] S28 1 S30 1 S33 1 S36 1 S40 1

[S35, *, R210] S29 1 S34 1 S37 1 S39 1 S40 1

[S36, *, R211] S30 1 S34 1 S38 1

[S36, *, R212] S27 1 S37 1 S39 1

[S36, *, R213] S30 1 S31 1 S32 1 S38 1

[S36, *, R214] S27 1 S29 1 S34 1 S38 1

[S36, *, R215] S30 1 S34 1 S35 1 S40 1

[S36, *, R216] S27 1 S29 1 S31 1 S32 1 S38 1

[S36, *, R217] S30 1 S31 1 S32 1 S35 1 S40 1

[S37, *, R218] S27 1 S36 1 S39 1

[S37, *, R219] S29 1 S34 1 S38 1 S39 1

[S37, *, R220] S29 1 S30 1 S36 1 S39 1

[S37, *, R221] S27 1 S30 1 S34 1 S38 1 S39 1

[S37, *, R222] S29 1 S31 1 S32 1 S38 1 S39 1

[S37, *, R223] S29 1 S34 1 S35 1 S39 1 S40 1

[S37, *, R224] S27 1 S30 1 S31 1 S32 1 S38 1 S39 1

[S38, *, R225] S35 1 S40 1

[S38, *, R226] S30 1 S34 1 S36 1

[S38, *, R227] S30 1 S31 1 S32 1 S36 1

[S38, *, R228] S27 1 S29 1 S34 1 S36 1

[S38, *, R229] S27 1 S29 1 S31 1 S32 1 S36 1

[S38, *, R230] S28 1 S30 1 S33 1 S36 1

[S38, *, R231] S29 1 S34 1 S37 1 S39 1

[S39, *, R232] S27 1 S36 1 S37 1

[S39, *, R233] S29 1 S34 1 S37 1 S38 1

[S39, *, R234] S29 1 S30 1 S36 1 S37 1

[S39, *, R235] S27 1 S30 1 S34 1 S37 1 S38 1

[S39, *, R236] S29 1 S31 1 S32 1 S37 1 S38 1

[S39, *, R237] S29 1 S34 1 S35 1 S37 1 S40 1

[S39, *, R238] S27 1 S30 1 S31 1 S32 1 S37 1 S38 1

[S40, *, R239] S35 1 S38 1

[S40, *, R240] S30 1 S34 1 S35 1 S36 1

[S40, *, R241] S30 1 S31 1 S32 1 S35 1 S36 1

[S40, *, R242] S27 1 S29 1 S34 1 S35 1 S36 1

[S40, *, R243] S27 1 S29 1 S31 1 S32 1 S35 1 S36 1

[S40, *, R244] S28 1 S30 1 S33 1 S35 1 S36 1

[S40, *, R245] S29 1 S34 1 S35 1 S37 1 S39 1;

215

Appendix F The MDNF-ml Model

Appendix F.1 – AMPL codes of MDNF-ml Model for Span Restoration Mechanism

Span-Restoration mechanism under dual failure scenario

March 2015 by Wenjing Wang

SETS

set SPANS;

set of all spans

set BACKUP_ROUTES{i in SPANS};

set of all backup routes for each span failure i

PARAMETERS

param Work{i in SPANS};

amount of working capacity placed on span i

param Cost{k in SPANS};

cost of each unit of capacity on span k

param Delta{i in SPANS, k in SPANS, b in BACKUP_ROUTES[i]} default 0;

binary, takes 1 if backup route b for failure of span i crosses span k

param Cinfinit;

a positive large constant

param Budget;

budget limit for dual failure restoration

param NWCmin;

limitation on NWC

VIRAIABLES

var spare{k in SPANS} >=0 integer, <=10000;

amount of spare capacity placed on span j

var flow_single{i in SPANS, b in BACKUP_ROUTES[i]} >=0 integer, <=10000;

flow through backup route b for failure of span i

var flow_dual_i{i in SPANS, j in SPANS, b in BACKUP_ROUTES[i]: i <> j} >=0 integer, <=10000;

flow through backup route b for failure of span i under dual failure (i, j)

var flow_dual_j{i in SPANS, j in SPANS, b in BACKUP_ROUTES[j]: i <> j} >=0 integer, <=10000;

flow through backup route b for failure of span j under dual failure (i, j)

var non_restored{i in SPANS, j in SPANS: i <> j} >=0 integer;

amount of non-restored working capacity under dual failure (i, j)

var non_restored_i{i in SPANS, j in SPANS: i <> j} >=0 integer;

amount of non-restored working capacity on span i under dual failure (i, j)

var non_restored_j{i in SPANS, j in SPANS: i <> j} >=0 integer;

amount of non-restored working capacity on span j under dual failure (i, j)

OBJECTIVE FUNCTION

minimize tot_non_restored:

sum{i in SPANS, j in SPANS: i <> j} non_restored[i, j];

minimize amount of non-restored working capacity under all dual failure scenarios

CONSTRAINTS

subject to Tot_NonRestored:

 sum{i in SPANS, j in SPANS: i <> j} non_restored[i, j] >= NWCmin;

216

Comfine the value of OBJ to get N(i, j) under different total non-restored working capacities.

subject to c_12{i in SPANS, j in SPANS: i <> j}:

 non_restored[i, j] = Work[i] + Work[j] - sum{b in BACKUP_ROUTES[i]} flow_dual_i[i, j, b] - sum{b in BACKUP_ROUTES[j]} flow_dual_j[i, j, b];

define non-restored working capacities under each dual failure (i, j)

subject to c_1201{i in SPANS, j in SPANS: i <> j}:

 non_restored_i[i, j] = Work[i] - sum{b in BACKUP_ROUTES[i]} flow_dual_i[i, j, b];

define non-restored working capacities on span i under each dual failure (i, j)

subject to c_1202{i in SPANS, j in SPANS: i <> j}:

 non_restored_j[i, j] = Work[j] - sum{b in BACKUP_ROUTES[j]} flow_dual_j[i, j, b];

define non-restored working capacities on span j under each dual failure (i, j)

subject to c_13{i in SPANS}: sum{b in BACKUP_ROUTES[i]} flow_single[i, b] >= Work[i];

guarantee enough restoration flow for full single failure restorability

subject to c_14{i in SPANS, k in SPANS: k <> i}:

 spare[k] >= sum{b in BACKUP_ROUTES[i]} (flow_single[i, b] * Delta[i, k, b]);

translate flow requirements in c_13 to each span

subject to c_15{i in SPANS, j in SPANS: i <> j}:

 sum{b in BACKUP_ROUTES[i]} flow_dual_i[i, j, b] <= Work[i];

assign restoration flow to failed span i under dual failure scenario (i, j)

subject to c_16{i in SPANS, j in SPANS: i <> j}:

 sum{b in BACKUP_ROUTES[j]} flow_dual_j[i, j, b] <= Work[j];

assign restoration flow to failed span j under dual failure scenario (i, j)

subject to c_17{i in SPANS, j in SPANS, k in SPANS: i <> j and j <> k and i <> k}:

 spare[k] >= sum{b in BACKUP_ROUTES[i]} (flow_dual_i[i, j, b] * Delta[i, k, b]) +

 sum{b in BACKUP_ROUTES[j]} (flow_dual_j[i, j, b] * Delta[j, k, b]);

translate flow requirements in (15)(16) on each span

subject to c_18{i in SPANS, j in SPANS, b in BACKUP_ROUTES[i]: i <> j}:

 flow_dual_i[i, j, b] <= Cinfinit * (1 - Delta[i, j, b]);

put limitation on restoration of failed span i under dual failure (i, j)

subject to c_19{i in SPANS, j in SPANS, b in BACKUP_ROUTES[j]: i <> j}:

 flow_dual_j[i, j, b] <= Cinfinit * (1 - Delta[j, i, b]);

put limitation on restoration of failed span j under dual failure (i, j)

subject to c_20:

 sum{k in SPANS} (Cost[k] * spare[k]) <= Budget;

put budget limitation on dual failure restoration

217

Appendix F.2 – An Example of *.Dat File of MDNF-ml Model for Span Restoration

Mechanism

*.dat file for 20-node 35-span network

MNDF-ml model

Created in January 2015 by Wenjing

set SPANS := S01 S02 S03 S04 S05 S07 S08 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S21 S22 S23 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36

S37 S38 S39 S40;

param Cost :=

S01 139.560

S02 179.360

S03 116.181

S04 167.601

S05 50.606

S07 134.302

S08 227.002

S10 136.356

S11 152.506

S12 127.475

S13 148.772

S14 260.923

S15 92.779

S16 86.822

S17 124.631

S18 145.055

S19 131.320

S21 99.705

S22 131.187

S23 173.118

S26 198.497

S27 82.970

S28 128.725

S29 166.066

S30 151.427

S31 130.173

S32 64.070

S33 204.924

S34 108.074

S35 104.805

S36 54.129

S37 121.037

S38 86.833

S39 156.984

S40 120.150;

param Work :=

S01 87

S02 69

S03 200

S04 26

S05 31

S07 2

S08 65

S10 63

S11 60

S12 154

S13 68

S14 20

S15 50

S16 85

S17 133

S18 36

S19 99

S21 236

S22 86

S23 73

S26 69

S27 52

S28 66

S29 71

S30 43

S31 22

S32 137

S33 37

S34 76

S35 126

S36 85

S37 47

S38 120

S39 85

S40 114;

set BACKUP_ROUTES[S01] := R1 R2 R3 R4 R5 R6 R7;

set BACKUP_ROUTES[S02] := R8 R9 R10 R11 R12 R13 R14;

set BACKUP_ROUTES[S03] := R15 R16 R17 R18 R19 R20 R21;

set BACKUP_ROUTES[S04] := R22 R23 R24 R25 R26 R27 R28;

set BACKUP_ROUTES[S05] := R29 R30 R31 R32 R33 R34 R35;

set BACKUP_ROUTES[S07] := R36 R37 R38 R39 R40 R41 R42;

set BACKUP_ROUTES[S08] := R43 R44 R45 R46 R47 R48 R49;

set BACKUP_ROUTES[S10] := R50 R51 R52 R53 R54 R55 R56;

set BACKUP_ROUTES[S11] := R57 R58 R59 R60 R61 R62 R63;

set BACKUP_ROUTES[S12] := R64 R65 R66 R67 R68 R69 R70;

set BACKUP_ROUTES[S13] := R71 R72 R73 R74 R75 R76 R77;

set BACKUP_ROUTES[S14] := R78 R79 R80 R81 R82 R83 R84;

set BACKUP_ROUTES[S15] := R85 R86 R87 R88 R89 R90 R91;

set BACKUP_ROUTES[S16] := R92 R93 R94 R95 R96 R97 R98;

set BACKUP_ROUTES[S17] := R99 R100 R101 R102 R103 R104 R105;

set BACKUP_ROUTES[S18] := R106 R107 R108 R109 R110 R111 R112;

set BACKUP_ROUTES[S19] := R113 R114 R115 R116 R117 R118 R119;

set BACKUP_ROUTES[S21] := R120 R121 R122 R123 R124 R125 R126;

set BACKUP_ROUTES[S22] := R127 R128 R129 R130 R131 R132 R133;

set BACKUP_ROUTES[S23] := R134 R135 R136 R137 R138 R139 R140;

set BACKUP_ROUTES[S26] := R141 R142 R143 R144 R145 R146 R147;

set BACKUP_ROUTES[S27] := R148 R149 R150 R151 R152 R153 R154;

set BACKUP_ROUTES[S28] := R155 R156 R157 R158 R159 R160 R161;

set BACKUP_ROUTES[S29] := R162 R163 R164 R165 R166 R167 R168;

set BACKUP_ROUTES[S30] := R169 R170 R171 R172 R173 R174 R175;

set BACKUP_ROUTES[S31] := R176 R177 R178 R179 R180 R181 R182;

set BACKUP_ROUTES[S32] := R183 R184 R185 R186 R187 R188 R189;

set BACKUP_ROUTES[S33] := R190 R191 R192 R193 R194 R195 R196;

set BACKUP_ROUTES[S34] := R197 R198 R199 R200 R201 R202 R203;

set BACKUP_ROUTES[S35] := R204 R205 R206 R207 R208 R209 R210;

set BACKUP_ROUTES[S36] := R211 R212 R213 R214 R215 R216 R217;

set BACKUP_ROUTES[S37] := R218 R219 R220 R221 R222 R223 R224;

set BACKUP_ROUTES[S38] := R225 R226 R227 R228 R229 R230 R231;

set BACKUP_ROUTES[S39] := R232 R233 R234 R235 R236 R237 R238;

set BACKUP_ROUTES[S40] := R239 R240 R241 R242 R243 R244 R245;

param Delta :=

[S01, *, R1] S02 1 S05 1

[S01, *, R2] S02 1 S04 1 S07 1

[S01, *, R3] S02 1 S04 1 S08 1 S10 1

[S01, *, R4] S03 1 S05 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S01, *, R5] S03 1 S04 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S01, *, R6] S03 1 S05 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S01, *, R7] S03 1 S05 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S02, *, R8] S01 1 S05 1

[S02, *, R9] S01 1 S04 1 S07 1

[S02, *, R10] S01 1 S04 1 S08 1 S10 1

[S02, *, R11] S03 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S02, *, R12] S03 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S02, *, R13] S03 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

218

[S02, *, R14] S03 1 S08 1 S11 1 S14 1 S32 1 S35 1

[S03, *, R15] S02 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R16] S01 1 S05 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R17] S01 1 S04 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R18] S02 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R19] S02 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S03, *, R20] S01 1 S05 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S03, *, R21] S01 1 S05 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S04, *, R22] S05 1 S07 1

[S04, *, R23] S05 1 S08 1 S10 1

[S04, *, R24] S01 1 S02 1 S07 1

[S04, *, R25] S01 1 S02 1 S08 1 S10 1

[S04, *, R26] S01 1 S03 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S04, *, R27] S01 1 S03 1 S10 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S04, *, R28] S01 1 S03 1 S10 1 S11 1 S14 1 S32 1 S35 1

[S05, *, R29] S04 1 S07 1

[S05, *, R30] S01 1 S02 1

[S05, *, R31] S04 1 S08 1 S10 1

[S05, *, R32] S01 1 S03 1 S08 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S05, *, R33] S01 1 S03 1 S07 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S05, *, R34] S01 1 S03 1 S08 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S05, *, R35] S01 1 S03 1 S08 1 S11 1 S14 1 S32 1 S35 1

[S07, *, R36] S04 1 S05 1

[S07, *, R37] S08 1 S10 1

[S07, *, R38] S01 1 S02 1 S04 1

[S07, *, R39] S02 1 S03 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S07, *, R40] S01 1 S03 1 S05 1 S10 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S07, *, R41] S02 1 S03 1 S10 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S07, *, R42] S01 1 S03 1 S05 1 S10 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S08, *, R43] S07 1 S10 1

[S08, *, R44] S04 1 S05 1 S10 1

[S08, *, R45] S01 1 S02 1 S04 1 S10 1

[S08, *, R46] S02 1 S03 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S08, *, R47] S01 1 S03 1 S05 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S08, *, R48] S02 1 S03 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S08, *, R49] S01 1 S03 1 S05 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S10, *, R50] S07 1 S08 1

[S10, *, R51] S04 1 S05 1 S08 1

[S10, *, R52] S01 1 S02 1 S04 1 S08 1

[S10, *, R53] S01 1 S03 1 S04 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S10, *, R54] S02 1 S03 1 S07 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S10, *, R55] S01 1 S03 1 S05 1 S07 1 S12 1 S16 1 S19 1 S32 1 S35 1

[S10, *, R56] S01 1 S03 1 S04 1 S12 1 S17 1 S21 1 S34 1 S35 1

[S11, *, R57] S12 1 S15 1

[S11, *, R58] S12 1 S13 1 S17 1 S22 1

[S11, *, R59] S12 1 S14 1 S16 1 S19 1

[S11, *, R60] S12 1 S13 1 S16 1 S18 1 S22 1

[S11, *, R61] S12 1 S14 1 S17 1 S21 1 S31 1

[S11, *, R62] S12 1 S14 1 S17 1 S21 1 S32 1 S34 1

[S11, *, R63] S12 1 S14 1 S17 1 S18 1 S19 1

[S12, *, R64] S11 1 S15 1

[S12, *, R65] S11 1 S13 1 S17 1 S22 1

[S12, *, R66] S11 1 S14 1 S16 1 S19 1

[S12, *, R67] S11 1 S13 1 S16 1 S18 1 S22 1

[S12, *, R68] S11 1 S14 1 S17 1 S21 1 S31 1

[S12, *, R69] S11 1 S14 1 S17 1 S21 1 S32 1 S34 1

[S12, *, R70] S11 1 S14 1 S17 1 S18 1 S19 1

[S13, *, R71] S15 1 S17 1 S22 1

[S13, *, R72] S15 1 S16 1 S18 1 S22 1

[S13, *, R73] S11 1 S12 1 S17 1 S22 1

[S13, *, R74] S14 1 S21 1 S22 1 S31 1

[S13, *, R75] S11 1 S12 1 S16 1 S18 1 S22 1

[S13, *, R76] S14 1 S21 1 S22 1 S32 1 S34 1

[S13, *, R77] S14 1 S18 1 S19 1 S22 1

[S14, *, R78] S15 1 S16 1 S19 1

[S14, *, R79] S15 1 S17 1 S21 1 S31 1

[S14, *, R80] S15 1 S17 1 S21 1 S32 1 S34 1

[S14, *, R81] S15 1 S17 1 S18 1 S19 1

[S14, *, R82] S11 1 S12 1 S16 1 S19 1

[S14, *, R83] S13 1 S21 1 S22 1 S31 1

[S14, *, R84] S13 1 S21 1 S22 1 S32 1 S34 1

[S15, *, R85] S11 1 S12 1

[S15, *, R86] S13 1 S17 1 S22 1

[S15, *, R87] S14 1 S16 1 S19 1

[S15, *, R88] S13 1 S16 1 S18 1 S22 1

[S15, *, R89] S14 1 S17 1 S21 1 S31 1

[S15, *, R90] S14 1 S17 1 S21 1 S32 1 S34 1

[S15, *, R91] S14 1 S17 1 S18 1 S19 1

[S16, *, R92] S17 1 S18 1

[S16, *, R93] S14 1 S15 1 S19 1

[S16, *, R94] S17 1 S19 1 S21 1 S31 1

[S16, *, R95] S13 1 S15 1 S18 1 S22 1

[S16, *, R96] S17 1 S19 1 S21 1 S32 1 S34 1

[S16, *, R97] S11 1 S12 1 S14 1 S19 1

[S16, *, R98] S11 1 S12 1 S13 1 S18 1 S22 1

[S17, *, R99] S16 1 S18 1

[S17, *, R100] S13 1 S15 1 S22 1

[S17, *, R101] S16 1 S19 1 S21 1 S31 1

[S17, *, R102] S16 1 S19 1 S21 1 S32 1 S34 1

[S17, *, R103] S11 1 S12 1 S13 1 S22 1

[S17, *, R104] S14 1 S15 1 S21 1 S31 1

[S17, *, R105] S14 1 S15 1 S21 1 S32 1 S34 1

[S18, *, R106] S16 1 S17 1

[S18, *, R107] S19 1 S21 1 S31 1

[S18, *, R108] S19 1 S21 1 S32 1 S34 1

[S18, *, R109] S13 1 S15 1 S16 1 S22 1

[S18, *, R110] S19 1 S21 1 S30 1 S32 1 S36 1 S38 1

[S18, *, R111] S14 1 S15 1 S17 1 S19 1

[S18, *, R112] S19 1 S21 1 S28 1 S32 1 S33 1

[S19, *, R113] S18 1 S21 1 S31 1

[S19, *, R114] S18 1 S21 1 S32 1 S34 1

[S19, *, R115] S14 1 S15 1 S16 1

[S19, *, R116] S16 1 S17 1 S21 1 S31 1

[S19, *, R117] S16 1 S17 1 S21 1 S32 1 S34 1

[S19, *, R118] S18 1 S21 1 S30 1 S32 1 S36 1 S38 1

[S19, *, R119] S14 1 S15 1 S17 1 S18 1

[S21, *, R120] S18 1 S19 1 S31 1

[S21, *, R121] S18 1 S19 1 S32 1 S34 1

[S21, *, R122] S16 1 S17 1 S19 1 S31 1

[S21, *, R123] S16 1 S17 1 S19 1 S32 1 S34 1

[S21, *, R124] S14 1 S15 1 S17 1 S31 1

[S21, *, R125] S18 1 S19 1 S30 1 S32 1 S36 1 S38 1

[S21, *, R126] S14 1 S15 1 S17 1 S32 1 S34 1

[S22, *, R127] S13 1 S15 1 S17 1

[S22, *, R128] S13 1 S15 1 S16 1 S18 1

[S22, *, R129] S11 1 S12 1 S13 1 S17 1

[S22, *, R130] S13 1 S14 1 S21 1 S31 1

[S22, *, R131] S11 1 S12 1 S13 1 S16 1 S18 1

[S22, *, R132] S13 1 S14 1 S21 1 S32 1 S34 1

[S22, *, R133] S13 1 S14 1 S18 1 S19 1

[S23, *, R134] S21 1 S22 1 S26 1 S29 1 S37 1

[S23, *, R135] S21 1 S22 1 S26 1 S34 1 S38 1 S39 1

[S23, *, R136] S21 1 S22 1 S26 1 S27 1 S30 1 S37 1

[S23, *, R137] S21 1 S22 1 S26 1 S30 1 S36 1 S39 1

[S23, *, R138] S21 1 S22 1 S26 1 S31 1 S32 1 S38 1 S39 1

[S23, *, R139] S21 1 S22 1 S26 1 S27 1 S34 1 S36 1 S37 1 S38 1

[S23, *, R140] S21 1 S22 1 S26 1 S27 1 S29 1 S36 1 S39 1

[S26, *, R141] S21 1 S22 1 S23 1 S29 1 S37 1

[S26, *, R142] S21 1 S22 1 S23 1 S34 1 S38 1 S39 1

[S26, *, R143] S21 1 S22 1 S23 1 S27 1 S30 1 S37 1

[S26, *, R144] S21 1 S22 1 S23 1 S30 1 S36 1 S39 1

[S26, *, R145] S21 1 S22 1 S23 1 S31 1 S32 1 S38 1 S39 1

[S26, *, R146] S21 1 S22 1 S23 1 S27 1 S34 1 S36 1 S37 1 S38 1

[S26, *, R147] S21 1 S22 1 S23 1 S27 1 S29 1 S36 1 S39 1

[S27, *, R148] S29 1 S30 1

[S27, *, R149] S36 1 S37 1 S39 1

[S27, *, R150] S29 1 S34 1 S36 1 S38 1

[S27, *, R151] S29 1 S31 1 S32 1 S36 1 S38 1

[S27, *, R152] S29 1 S34 1 S35 1 S36 1 S40 1

[S27, *, R153] S30 1 S34 1 S37 1 S38 1 S39 1

[S27, *, R154] S29 1 S31 1 S32 1 S35 1 S36 1 S40 1

[S28, *, R155] S33 1 S34 1

[S28, *, R156] S31 1 S32 1 S33 1

[S28, *, R157] S30 1 S33 1 S36 1 S38 1

[S28, *, R158] S27 1 S29 1 S33 1 S36 1 S38 1

[S28, *, R159] S30 1 S33 1 S35 1 S36 1 S40 1

[S28, *, R160] S18 1 S19 1 S21 1 S32 1 S33 1

[S28, *, R161] S16 1 S17 1 S19 1 S21 1 S32 1 S33 1

[S29, *, R162] S27 1 S30 1

[S29, *, R163] S27 1 S34 1 S36 1 S38 1

[S29, *, R164] S27 1 S31 1 S32 1 S36 1 S38 1

[S29, *, R165] S27 1 S34 1 S35 1 S36 1 S40 1

[S29, *, R166] S34 1 S37 1 S38 1 S39 1

[S29, *, R167] S30 1 S36 1 S37 1 S39 1

[S29, *, R168] S27 1 S31 1 S32 1 S35 1 S36 1 S40 1

[S30, *, R169] S34 1 S36 1 S38 1

[S30, *, R170] S27 1 S29 1

[S30, *, R171] S31 1 S32 1 S36 1 S38 1

[S30, *, R172] S34 1 S35 1 S36 1 S40 1

[S30, *, R173] S31 1 S32 1 S35 1 S36 1 S40 1

219

[S30, *, R174] S28 1 S33 1 S36 1 S38 1

[S30, *, R175] S29 1 S36 1 S37 1 S39 1

[S31, *, R176] S32 1 S34 1

[S31, *, R177] S30 1 S32 1 S36 1 S38 1

[S31, *, R178] S18 1 S19 1 S21 1

[S31, *, R179] S28 1 S32 1 S33 1

[S31, *, R180] S16 1 S17 1 S19 1 S21 1

[S31, *, R181] S27 1 S29 1 S32 1 S36 1 S38 1

[S31, *, R182] S30 1 S32 1 S35 1 S36 1 S40 1

[S32, *, R183] S31 1 S34 1

[S32, *, R184] S30 1 S31 1 S36 1 S38 1

[S32, *, R185] S28 1 S31 1 S33 1

[S32, *, R186] S18 1 S19 1 S21 1 S34 1

[S32, *, R187] S27 1 S29 1 S31 1 S36 1 S38 1

[S32, *, R188] S16 1 S17 1 S19 1 S21 1 S34 1

[S32, *, R189] S30 1 S31 1 S35 1 S36 1 S40 1

[S33, *, R190] S28 1 S34 1

[S33, *, R191] S28 1 S31 1 S32 1

[S33, *, R192] S28 1 S30 1 S36 1 S38 1

[S33, *, R193] S27 1 S28 1 S29 1 S36 1 S38 1

[S33, *, R194] S28 1 S30 1 S35 1 S36 1 S40 1

[S33, *, R195] S18 1 S19 1 S21 1 S28 1 S32 1

[S33, *, R196] S16 1 S17 1 S19 1 S21 1 S28 1 S32 1

[S34, *, R197] S31 1 S32 1

[S34, *, R198] S30 1 S36 1 S38 1

[S34, *, R199] S28 1 S33 1

[S34, *, R200] S27 1 S29 1 S36 1 S38 1

[S34, *, R201] S30 1 S35 1 S36 1 S40 1

[S34, *, R202] S18 1 S19 1 S21 1 S32 1

[S34, *, R203] S16 1 S17 1 S19 1 S21 1 S32 1

[S35, *, R204] S38 1 S40 1

[S35, *, R205] S30 1 S34 1 S36 1 S40 1

[S35, *, R206] S30 1 S31 1 S32 1 S36 1 S40 1

[S35, *, R207] S27 1 S29 1 S34 1 S36 1 S40 1

[S35, *, R208] S27 1 S29 1 S31 1 S32 1 S36 1 S40 1

[S35, *, R209] S28 1 S30 1 S33 1 S36 1 S40 1

[S35, *, R210] S29 1 S34 1 S37 1 S39 1 S40 1

[S36, *, R211] S30 1 S34 1 S38 1

[S36, *, R212] S27 1 S37 1 S39 1

[S36, *, R213] S30 1 S31 1 S32 1 S38 1

[S36, *, R214] S27 1 S29 1 S34 1 S38 1

[S36, *, R215] S30 1 S34 1 S35 1 S40 1

[S36, *, R216] S27 1 S29 1 S31 1 S32 1 S38 1

[S36, *, R217] S30 1 S31 1 S32 1 S35 1 S40 1

[S37, *, R218] S27 1 S36 1 S39 1

[S37, *, R219] S29 1 S34 1 S38 1 S39 1

[S37, *, R220] S29 1 S30 1 S36 1 S39 1

[S37, *, R221] S27 1 S30 1 S34 1 S38 1 S39 1

[S37, *, R222] S29 1 S31 1 S32 1 S38 1 S39 1

[S37, *, R223] S29 1 S34 1 S35 1 S39 1 S40 1

[S37, *, R224] S27 1 S30 1 S31 1 S32 1 S38 1 S39 1

[S38, *, R225] S35 1 S40 1

[S38, *, R226] S30 1 S34 1 S36 1

[S38, *, R227] S30 1 S31 1 S32 1 S36 1

[S38, *, R228] S27 1 S29 1 S34 1 S36 1

[S38, *, R229] S27 1 S29 1 S31 1 S32 1 S36 1

[S38, *, R230] S28 1 S30 1 S33 1 S36 1

[S38, *, R231] S29 1 S34 1 S37 1 S39 1

[S39, *, R232] S27 1 S36 1 S37 1

[S39, *, R233] S29 1 S34 1 S37 1 S38 1

[S39, *, R234] S29 1 S30 1 S36 1 S37 1

[S39, *, R235] S27 1 S30 1 S34 1 S37 1 S38 1

[S39, *, R236] S29 1 S31 1 S32 1 S37 1 S38 1

[S39, *, R237] S29 1 S34 1 S35 1 S37 1 S40 1

[S39, *, R238] S27 1 S30 1 S31 1 S32 1 S37 1 S38 1

[S40, *, R239] S35 1 S38 1

[S40, *, R240] S30 1 S34 1 S35 1 S36 1

[S40, *, R241] S30 1 S31 1 S32 1 S35 1 S36 1

[S40, *, R242] S27 1 S29 1 S34 1 S35 1 S36 1

[S40, *, R243] S27 1 S29 1 S31 1 S32 1 S35 1 S36 1

[S40, *, R244] S28 1 S30 1 S33 1 S35 1 S36 1

[S40, *, R245] S29 1 S34 1 S35 1 S37 1 S39 1;

param Cinfinit := 10000000000000;

param Budget := 396588;

param NWCmin := 27216;

220

Appendix G Path Restoration

Appendix G.1 – AMPL codes of Path Restoration Mechanism

Path-restoration mechanism under full single failure scenario

June 2016 by Wenjing Wang

TOPOLOGY DEFINITION

set SPANS;

set DEMANDS;

param Cost{k in SPANS};

DESCRIPTION OF WORKING DEMANDS AND THEIR NORMAL ROUTING

param DemUnits{r in DEMANDS} default 0;

set WORK_ROUTES{r in DEMANDS};

set WORK_ROUTE_VECTORS{r in DEMANDS, p in WORK_ROUTES[r]} within {j in SPANS};

param MaxFlow := sum {r in DEMANDS} DemUnits[r];

Used for upper bounds on flow and capacity variables.

FAILURE SCENARIO DEFINITIONS

set DEMANDS_AFFECTED{i in SPANS} := {r in DEMANDS : exists {p in WORK_ROUTES[r], k in WORK_ROUTE_VECTORS[r,p]} k = i };

set WORK_ROUTES_AFFECTED{i in SPANS, r in DEMANDS_AFFECTED[i]} := {p in WORK_ROUTES[r] : exists {k in

WORK_ROUTE_VECTORS[r,p]} k = i };

ELIGIBLE ROUTES FOR PATH-LEVEL RESTORATION OF O-D PAIRS

set REST_ROUTES{r in DEMANDS};

set REST_ROUTE_VECTORS{r in DEMANDS, b in REST_ROUTES[r]} within {j in SPANS};

set SPECIFIC_REST_ROUTES{r in DEMANDS, i in SPANS} := {b in REST_ROUTES[r]: forall {j in REST_ROUTE_VECTORS[r,b]} j <> i};

VARIABLES

var wf{r in DEMANDS, p in WORK_ROUTES[r]} integer >=0, <=MaxFlow;

var bf {i in SPANS, r in DEMANDS_AFFECTED[i], p in WORK_ROUTES_AFFECTED[i, r], b in REST_ROUTES[r]} integer >=0, <=MaxFlow;

var spare{j in SPANS} >=0, <=MaxFlow integer;

var work{j in SPANS} >=0, <=MaxFlow integer;

var Stub_release{i in SPANS, k in SPANS: i <> k} >=0, <=MaxFlow;

OBJECTIVE FUNCTION

minimize TotalCost: sum{k in SPANS} (work[k] * Cost[k] + spare[k] * Cost[k]);

CONSTRAINTS

subject to c_01{r in DEMANDS}:

sum{p in WORK_ROUTES[r]} wf[r,p] = DemUnits[r];

subject to c_02{k in SPANS}:

work[k] = sum{r in DEMANDS, p in WORK_ROUTES[r]: exists {j in WORK_ROUTE_VECTORS[r, p]} j = k} wf[r, p];

221

subject to c_03 {i in SPANS, r in DEMANDS_AFFECTED[i], p in WORK_ROUTES_AFFECTED[i, r]}:

sum{b in SPECIFIC_REST_ROUTES[r, i]} bf[i,r,p,b] = wf[r,p];

subject to c_04 {i in SPANS, k in SPANS: i <> k}:

spare[k] >= sum {r in DEMANDS_AFFECTED[i], p in WORK_ROUTES_AFFECTED[i, r], b in SPECIFIC_REST_ROUTES[r, i]: exists {j in

REST_ROUTE_VECTORS[r,b]} j = k} bf[i,r,p,b] - Stub_release[i,k];

subject to c_05 {i in SPANS, k in SPANS: i <> k}:

Stub_release[i,k] = sum {r in DEMANDS_AFFECTED[i], p in WORK_ROUTES_AFFECTED[i,r]: exists {j in WORK_ROUTE_VECTORS[r,p]} j = k }

wf[r,p];

222

Appendix G.2 – An Example of *.Data Files for Path Restoration Model

Note: only part of the dapa is shown here but full seat of data is available upon request.

This data prep file is for Path-Restoration model file

Created by Wenjing Wang in June 2016

10-node 15-span netowrk, routeLimit=5

set SPANS := S01 S02 S03 S04 S05 S06 S07 S08 S09 S10

 S11 S12 S13 S14 S15;

param Cost :=

 S01 208.5857

 S02 242.6706

 S03 245.1775

 S04 289.1730

 S05 617.1102

 S06 286.9042

 S07 283.4255

 S08 211.5490

 S09 269.2675

 S10 398.3780

 S11 306.8061

 S12 199.0226

 S13 304.8442

 S14 243.7724

 S15 366.1598;

set DEMANDS := D01 D02 D03 D04 D05 D06 D07 D08 D09 D10

 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30

 D31 D32 D33 D34 D35 D36 D37 D38 D39 D40

 D41 D42 D43 D44 D45;

param DemUnits :=

 D01 2.0000

 D02 9.0000

 D03 4.0000

 D04 1.0000

 D05 3.0000

 D06 10.0000

 D07 1.0000

 D08 6.0000

 D09 6.0000

 D10 5.0000

 D11 7.0000

 D12 2.0000

 D13 8.0000

 D14 9.0000

 D15 10.0000

 D16 2.0000

 D17 1.0000

 D18 2.0000

 D19 1.0000

 D20 4.0000

 D21 3.0000

 D22 8.0000

 D23 2.0000

 D24 1.0000

 D25 9.0000

 D26 1.0000

 D27 9.0000

 D28 5.0000

 D29 9.0000

 D30 10.0000

 D31 4.0000

 D32 7.0000

 D33 4.0000

 D34 3.0000

 D35 5.0000

 D36 1.0000

 D37 10.0000

 D38 10.0000

 D39 4.0000

 D40 10.0000

 D41 7.0000

 D42 7.0000

 D43 8.0000

 D44 8.0000

 D45 10.0000;

set WORK_ROUTES[D01] := PR0001 PR0002 PR0003 PR0004 PR0005;

set REST_ROUTES[D01] := BR0001 BR0002 BR0003 BR0004 BR0005 BR0006 BR0007 BR0008 BR0009;

set WORK_ROUTE_VECTORS[D01, PR0001] := S01;

set WORK_ROUTE_VECTORS[D01, PR0002] := S01;

set WORK_ROUTE_VECTORS[D01, PR0003] := S03 S08 S04;

set WORK_ROUTE_VECTORS[D01, PR0004] := S02 S06 S05;

set WORK_ROUTE_VECTORS[D01, PR0005] := S01;

set REST_ROUTE_VECTORS[D01, BR0001] := S03 S08 S04;

set REST_ROUTE_VECTORS[D01, BR0002] := S02 S06 S05;

set REST_ROUTE_VECTORS[D01, BR0003] := S03 S09 S14 S10 S04;

set REST_ROUTE_VECTORS[D01, BR0004] := S02 S07 S13 S11 S05;

set REST_ROUTE_VECTORS[D01, BR0005] := S03 S08 S10 S15 S11 S05;

set REST_ROUTE_VECTORS[D01, BR0006] := S01;

set REST_ROUTE_VECTORS[D01, BR0007] := S02 S07 S13 S15 S10 S04;

set REST_ROUTE_VECTORS[D01, BR0008] := S02 S07 S12 S09 S08 S04;

set REST_ROUTE_VECTORS[D01, BR0009] := S03 S09 S12 S13 S11 S05;

set WORK_ROUTES[D02] := PR0006 PR0007 PR0008 PR0009 PR0010;

set REST_ROUTES[D02] := BR0010 BR0011 BR0012 BR0013 BR0014 BR0015 BR0016 BR0017 BR0018 BR0019 BR0020;

set WORK_ROUTE_VECTORS[D02, PR0006] := S02;

set WORK_ROUTE_VECTORS[D02, PR0007] := S02;

set WORK_ROUTE_VECTORS[D02, PR0008] := S02;

set WORK_ROUTE_VECTORS[D02, PR0009] := S01 S05 S06;

set WORK_ROUTE_VECTORS[D02, PR0010] := S03 S09 S12 S07;

set REST_ROUTE_VECTORS[D02, BR0010] := S01 S05 S06;

set REST_ROUTE_VECTORS[D02, BR0011] := S03 S09 S12 S07;

set REST_ROUTE_VECTORS[D02, BR0012] := S03 S08 S04 S05 S06;

set REST_ROUTE_VECTORS[D02, BR0013] := S01 S05 S11 S13 S07;

223

set REST_ROUTE_VECTORS[D02, BR0014] := S03 S08 S10 S15 S13 S07;

set REST_ROUTE_VECTORS[D02, BR0015] := S02;

set REST_ROUTE_VECTORS[D02, BR0016] := S03 S08 S10 S15 S11 S06;

set REST_ROUTE_VECTORS[D02, BR0017] := S03 S08 S10 S14 S12 S07;

set REST_ROUTE_VECTORS[D02, BR0018] := S01 S04 S08 S09 S12 S07;

set REST_ROUTE_VECTORS[D02, BR0019] := S01 S04 S10 S15 S13 S07;

set REST_ROUTE_VECTORS[D02, BR0020] := S03 S09 S12 S13 S11 S06;

set WORK_ROUTES[D03] := PR0011 PR0012 PR0013 PR0014 PR0015;

set REST_ROUTES[D03] := BR0021 BR0022 BR0023 BR0024 BR0025 BR0026 BR0027 BR0028 BR0029;

set WORK_ROUTE_VECTORS[D03, PR0011] := S03;

set WORK_ROUTE_VECTORS[D03, PR0012] := S03;

set WORK_ROUTE_VECTORS[D03, PR0013] := S03;

set WORK_ROUTE_VECTORS[D03, PR0014] := S01 S04 S08;

set WORK_ROUTE_VECTORS[D03, PR0015] := S03;

set REST_ROUTE_VECTORS[D03, BR0021] := S01 S04 S08;

set REST_ROUTE_VECTORS[D03, BR0022] := S02 S07 S12 S09;

set REST_ROUTE_VECTORS[D03, BR0023] := S02 S06 S05 S04 S08;

set REST_ROUTE_VECTORS[D03, BR0024] := S01 S04 S10 S14 S09;

set REST_ROUTE_VECTORS[D03, BR0025] := S02 S07 S13 S15 S10 S08;

set REST_ROUTE_VECTORS[D03, BR0026] := S03;

set REST_ROUTE_VECTORS[D03, BR0027] := S02 S07 S13 S15 S14 S09;

set REST_ROUTE_VECTORS[D03, BR0028] := S02 S07 S12 S14 S10 S08;

set REST_ROUTE_VECTORS[D03, BR0029] := S02 S06 S11 S13 S12 S09;

…

set WORK_ROUTES[D45] := PR0221 PR0222 PR0223 PR0224 PR0225;

set REST_ROUTES[D45] := BR0377 BR0378 BR0379 BR0380 BR0381 BR0382 BR0383 BR0384 BR0385 BR0386;

set WORK_ROUTE_VECTORS[D45, PR0221] := S15;

set WORK_ROUTE_VECTORS[D45, PR0222] := S15;

set WORK_ROUTE_VECTORS[D45, PR0223] := S13 S12 S14;

set WORK_ROUTE_VECTORS[D45, PR0224] := S15;

set WORK_ROUTE_VECTORS[D45, PR0225] := S13 S12 S14;

set REST_ROUTE_VECTORS[D45, BR0377] := S13 S12 S14;

set REST_ROUTE_VECTORS[D45, BR0378] := S11 S05 S04 S10;

set REST_ROUTE_VECTORS[D45, BR0379] := S13 S12 S09 S08 S10;

set REST_ROUTE_VECTORS[D45, BR0380] := S11 S06 S07 S12 S14;

set REST_ROUTE_VECTORS[D45, BR0381] := S13 S07 S06 S05 S04 S10;

set REST_ROUTE_VECTORS[D45, BR0382] := S15;

set REST_ROUTE_VECTORS[D45, BR0383] := S11 S06 S02 S03 S08 S10;

set REST_ROUTE_VECTORS[D45, BR0384] := S11 S06 S02 S03 S09 S14;

set REST_ROUTE_VECTORS[D45, BR0385] := S13 S07 S02 S03 S08 S10;

set REST_ROUTE_VECTORS[D45, BR0386] := S13 S07 S02 S03 S09 S14;

224

Appendix H Multi-flow SBPP

Appendix H.1 – AMPL codes of New Multi-flow SBPP Mechanism

SBPP mechanism under full single failure scenario

October 2015 by Wenjing Wang

TOPOLOGY DEFINITION

set SPANS;

Set of all physical spans in the network.

set DEMANDS;

Set of all demands that exist.

param Cost{k in SPANS};

The cost of a unit of working or spare capacity on span k.

DESCRIPTION OF WORKING DEMANDS AND THEIR NORMAL ROUTING

param DemUnits{r in DEMANDS} default 0;

Number of demand units between node pair r.

set WORK_ROUTES{r in DEMANDS};

set WORK_ROUTE_VECTORS{r in DEMANDS, p in WORK_ROUTES[r]} within {j in SPANS};

param MaxFlow := sum {r in DEMANDS} DemUnits[r];

Used for upper bounds on flow and capacity variables.

FAILURE SCENARIO DEFINITIONS

set DEMANDS_AFFECTED{i in SPANS} := {r in DEMANDS : exists {p in WORK_ROUTES[r], k in WORK_ROUTE_VECTORS[r, p]} k = i};

This builds a set of the demand pairs that are damaged by each possible span failure i

set WORK_ROUTES_AFFECTED{i in SPANS, r in DEMANDS_AFFECTED[i]} := {p in WORK_ROUTES[r] : exists {k in

WORK_ROUTE_VECTORS[r, p]} k = i};

This generates the list of working routes affected by failure of span i.

ELIGIBLE ROUTES FOR PATH-LEVEL RESTORATION OF O-D PAIRS

set REST_ROUTES{r in DEMANDS, p in WORK_ROUTES[r]};

set REST_ROUTE_VECTORS{r in DEMANDS, p in WORK_ROUTES[r], b in REST_ROUTES[r, p]} within {j in SPANS};

VARIABLES

var wf{r in DEMANDS, p in WORK_ROUTES[r]} >=0, <=MaxFlow integer;

The amount of working flow routed over working route q for demand relation r.

var bf{r in DEMANDS, p in WORK_ROUTES[r], b in REST_ROUTES[r, p]} >=0, <=MaxFlow integer;

There is one restoration flow assignment variable for each REST_ROUTES with

regard to each primary working route.

var spare{j in SPANS} >=0, <=MaxFlow integer;

Total number of spare links placed on span j.

var work{j in SPANS} >=0, <=MaxFlow integer;

Number of working wavelengths placed on span j.

OBJECTIVE FUNCTION

minimize TotalCost: sum{k in SPANS} (work[k] * Cost[k] + spare[k] * Cost[k]);

CONSTRAINTS

225

subject to c_01{r in DEMANDS}:

sum{p in WORK_ROUTES[r]} wf[r, p] = DemUnits[r];

subject to c_02{k in SPANS}:

work[k] = sum{r in DEMANDS, p in WORK_ROUTES[r]: exists {j in WORK_ROUTE_VECTORS[r, p]} j = k} wf[r, p];

subject to c_03 {r in DEMANDS, p in WORK_ROUTES[r]}:

sum{b in REST_ROUTES[r, p]} bf[r, p, b] = wf[r, p];

subject to c_04 {i in SPANS, k in SPANS: i <> k}:

spare[k] >= sum {r in DEMANDS_AFFECTED[i], p in WORK_ROUTES_AFFECTED[i, r], b in REST_ROUTES[r, p]:

exists {j in REST_ROUTE_VECTORS[r, p, b]} j = k} bf[r, p, b];

226

Appendix H.2 – An Example of *.Dat Files for New SBPP Model

Note: only part of the dapa is shown here but full seat of data is available upon request.

This data prep file is for SBPP model file

Created by Wenjing Wang in October 2015

10-node 15-span netowrk, routeLimit=5

set SPANS := S01 S02 S03 S04 S05 S06 S07 S08 S09 S10

 S11 S12 S13 S14 S15;

param Cost :=

 S01 208.5857

 S02 242.6706

 S03 245.1775

 S04 289.1730

 S05 617.1102

 S06 286.9042

 S07 283.4255

 S08 211.5490

 S09 269.2675

 S10 398.3780

 S11 306.8061

 S12 199.0226

 S13 304.8442

 S14 243.7724

 S15 366.1598;

set DEMANDS := D01 D02 D03 D04 D05 D06 D07 D08 D09 D10

 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30

 D31 D32 D33 D34 D35 D36 D37 D38 D39 D40

 D41 D42 D43 D44 D45;

param DemUnits :=

 D01 2.0000

 D02 9.0000

 D03 4.0000

 D04 1.0000

 D05 3.0000

 D06 10.0000

 D07 1.0000

 D08 6.0000

 D09 6.0000

 D10 5.0000

 D11 7.0000

 D12 2.0000

 D13 8.0000

 D14 9.0000

 D15 10.0000

 D16 2.0000

 D17 1.0000

 D18 2.0000

 D19 1.0000

 D20 4.0000

 D21 3.0000

 D22 8.0000

 D23 2.0000

 D24 1.0000

 D25 9.0000

 D26 1.0000

 D27 9.0000

 D28 5.0000

 D29 9.0000

 D30 10.0000

 D31 4.0000

 D32 7.0000

 D33 4.0000

 D34 3.0000

 D35 5.0000

 D36 1.0000

 D37 10.0000

 D38 10.0000

 D39 4.0000

 D40 10.0000

 D41 7.0000

 D42 7.0000

 D43 8.0000

 D44 8.0000

 D45 10.0000;

set WORK_ROUTES [D01] := PR0001 PR0002 PR0003 PR0004 PR0005;

set REST_ROUTES[D01, PR0001] := BR0001;

set REST_ROUTES[D01, PR0002] := BR0001;

set REST_ROUTES[D01, PR0003] := BR0002;

set REST_ROUTES[D01, PR0004] := BR0002;

set REST_ROUTES[D01, PR0005] := BR0001;

set WORK_ROUTE_VECTORS[D01, PR0001] := S01;

set WORK_ROUTE_VECTORS[D01, PR0002] := S01;

set WORK_ROUTE_VECTORS[D01, PR0003] := S03 S08 S04;

set WORK_ROUTE_VECTORS[D01, PR0004] := S02 S06 S05;

set WORK_ROUTE_VECTORS[D01, PR0005] := S01;

set REST_ROUTE_VECTORS[D01, PR0001, BR0001] := S03 S08 S04;

set REST_ROUTE_VECTORS[D01, PR0002, BR0001] := S03 S08 S04;

set REST_ROUTE_VECTORS[D01, PR0003, BR0002] := S01;

set REST_ROUTE_VECTORS[D01, PR0004, BR0002] := S01;

set REST_ROUTE_VECTORS[D01, PR0005, BR0001] := S03 S08 S04;

set WORK_ROUTES [D02] := PR0006 PR0007 PR0008 PR0009 PR0010;

set REST_ROUTES[D02, PR0006] := BR0003;

set REST_ROUTES[D02, PR0007] := BR0003;

set REST_ROUTES[D02, PR0008] := BR0003;

set REST_ROUTES[D02, PR0009] := BR0004;

set REST_ROUTES[D02, PR0010] := BR0004;

set WORK_ROUTE_VECTORS[D02, PR0006] := S02;

set WORK_ROUTE_VECTORS[D02, PR0007] := S02;

set WORK_ROUTE_VECTORS[D02, PR0008] := S02;

set WORK_ROUTE_VECTORS[D02, PR0009] := S01 S05 S06;

set WORK_ROUTE_VECTORS[D02, PR0010] := S03 S09 S12 S07;

set REST_ROUTE_VECTORS[D02, PR0006, BR0003] := S01 S05 S06;

set REST_ROUTE_VECTORS[D02, PR0007, BR0003] := S01 S05 S06;

set REST_ROUTE_VECTORS[D02, PR0008, BR0003] := S01 S05 S06;

set REST_ROUTE_VECTORS[D02, PR0009, BR0004] := S02;

set REST_ROUTE_VECTORS[D02, PR0010, BR0004] := S02;

set WORK_ROUTES [D03] := PR0011 PR0012 PR0013 PR0014 PR0015;

set REST_ROUTES[D03, PR0011] := BR0005;

set REST_ROUTES[D03, PR0012] := BR0005;

set REST_ROUTES[D03, PR0013] := BR0005;

227

set REST_ROUTES[D03, PR0014] := BR0006;

set REST_ROUTES[D03, PR0015] := BR0005;

set WORK_ROUTE_VECTORS[D03, PR0011] := S03;

set WORK_ROUTE_VECTORS[D03, PR0012] := S03;

set WORK_ROUTE_VECTORS[D03, PR0013] := S03;

set WORK_ROUTE_VECTORS[D03, PR0014] := S01 S04 S08;

set WORK_ROUTE_VECTORS[D03, PR0015] := S03;

set REST_ROUTE_VECTORS[D03, PR0011, BR0005] := S01 S04 S08;

set REST_ROUTE_VECTORS[D03, PR0012, BR0005] := S01 S04 S08;

set REST_ROUTE_VECTORS[D03, PR0013, BR0005] := S01 S04 S08;

set REST_ROUTE_VECTORS[D03, PR0014, BR0006] := S03;

set REST_ROUTE_VECTORS[D03, PR0015, BR0005] := S01 S04 S08;

…

set WORK_ROUTES [D45] := PR0221 PR0222 PR0223 PR0224 PR0225;

set REST_ROUTES[D45, PR0221] := BR0101;

set REST_ROUTES[D45, PR0222] := BR0101;

set REST_ROUTES[D45, PR0223] := BR0102;

set REST_ROUTES[D45, PR0224] := BR0101;

set REST_ROUTES[D45, PR0225] := BR0102;

set WORK_ROUTE_VECTORS[D45, PR0221] := S15;

set WORK_ROUTE_VECTORS[D45, PR0222] := S15;

set WORK_ROUTE_VECTORS[D45, PR0223] := S13 S12 S14;

set WORK_ROUTE_VECTORS[D45, PR0224] := S15;

set WORK_ROUTE_VECTORS[D45, PR0225] := S13 S12 S14;

set REST_ROUTE_VECTORS[D45, PR0221, BR0101] := S13 S12 S14;

set REST_ROUTE_VECTORS[D45, PR0222, BR0101] := S13 S12 S14;

set REST_ROUTE_VECTORS[D45, PR0223, BR0102] := S15;

set REST_ROUTE_VECTORS[D45, PR0224, BR0101] := S13 S12 S14;

set REST_ROUTE_VECTORS[D45, PR0225, BR0102] := S15;

228

Appendix I – Selection of Span’s Failure Rate

In order to demonstrate that any value in the range of 2.0×10-7~8.0×10-7 is reasonable for a span’s failure rate,

we will use 2.0×10-7 and 8.0×10-7 separately in span restoration analysis as well. Figure Appendix H – 1

through Appendix H – 3 show network availability for the 30-node network family with span’s unit failure

rate being 3.4×10-7, 2.0×10-7, and 8.0×10-7, respectively. As the figures shown, the trends of network

availability for these three situations are exactly the same.

Figure Appendix H – 1 network availability for the 30-node network family with span’s unit failure rate being 3.4×10-7

Figure Appendix H – 2 network availability for the 30-node network family with span’s unit failure rate being 2.0×10-7

0.999900

0.999902

0.999904

0.999906

0.999908

0.999910

0.999912

0.999914

0.999916

0.999918

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

unit failure rate 3.4e-7

0.9999700

0.9999705

0.9999710

0.9999715

0.9999720

0.9999725

0.9999730

0.9999735

0.9999740

0.9999745

0.9999750

0.9999755

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

unit failure rate 2.0e-7

229

Figure Appendix H – 3 network availability for the 30-node network family with span’s unit failure rate being 8.0×10-7

0.999520

0.999530

0.999540

0.999550

0.999560

0.999570

0.999580

0.999590

0.999600

0.999610

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

A
v
ai

la
b

il
it

y

Network average nodal degree

unit failure rate 8.0e-7

