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Abstract

Deterministic geologic modeling methods accurately characterize large-scale contin-

uous features of geological phenomena, but often fail in reproducing their inherent

short-scale variability. The opposite is the case with stochastic methods that lack

large-scale continuity yet contain reasonable short-scale variability. Both methods

are limited in their ability to account for a balanced amount of geologic variabil-

ity. Integrating both large and short scale geologic elements properly improves the

prediction of mineral resources and reserves.

This thesis develops a methodology that improves the characterization of the

geologic variability in mineral deposits. The central idea is to combine deterministic

and stochastic geologic interpretations and transfer the essential geological features

into geostatistical models. The multiple point statistics (MPS) simulation method is

suitable for this task. This technique utilizes training images for extracting and then

reproducing complicated geomorphological features in the models. The method has

been adapted to integrate information from different images. Generally, training

images are designed based on conceptual models of the geologic phenomena; in this

work, deterministic and stochastic geologic representations are used as data-driven
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training images, one comes from modeling the categories by an implicit geologic

approach, and another comes from the application of conventional sequential indi-

cator simulation (SIS) method. Such data-driven training images permit a robust

inference of spatial structure from reasonably spaced drillhole data.

This work establishes the principles to integrate multiple training images through

a scheme of data integration for conditional probabilities known as a linear opin-

ion pool. A methodology for calibrating the contribution of each training image is

developed based on the variability at the available drillholes. A measure of multi-

point entropy along the drillholes is matched by the combination of the two training

images. The resulting calibrated models integrate geologic features from both train-

ing images, reproducing the correct underlying continuity and variability of the

deposit, and reducing misclassified ore/waste material. Practical implementation

of the methodology shows improvement in the predicted profit relative to classical

geostatistical approaches.
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Chapter 1

Introduction

Economic appraisal of mineral deposits depends on a series of technical decisions.

To give engineering support to such decisions, numerical models that characterize

and quantify the subsurface geology are required.

Information from the subsurface is limited, and uncertainty in these geologi-

cal models is inevitable. Geostatistics provides reputable techniques for modeling

the geology and quantifying its uncertainty. The characterization of uncertainty is

possible thanks to the generation of a set of realizations that honor the subsurface

information and the spatial correlation of the geologic phenomenon.

Advances in Geostatistics should aim the development of methodologies that

improve the realism of numerical models accounting for complicated morphological

geologic features. These advances would help construct enhanced geologic models

that lead to improved mineral recoverable resources prediction, better risk assess-

ment and more informed models for decision-making.

1.1 Motivation

The development of mining projects is the product of a series of engineering anal-

yses that aim to determine the economic feasibility of mineral extraction. Figure

1.1 shows the stages involved in the economical appraisal of mining projects in the

format of a chain value diagram (Porter, 2008). Seven major stages are identified:
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(1) exploration, (2) resource estimation, (3) mine planning, (4) mine construction,

(5) mine operation, (6) mineral processing and (7) commercialization. Each stage

requires the application of distinct fields of engineering and geosciences. The cur-

rent thesis focuses on the importance of improved geologic modeling methods for the

stage of mineral resource estimation, and its effects on economic valuation through-

out the mining chain of value.

The resource estimation stage consists of numerical quantification of the min-

eral grades through the implementation of geostatistics techniques. These models

are required at early stages of appraisal for reliable mineral prediction; otherwise,

biased results will influence subsequent assessments affecting the basis for economic

decision-making perhaps leading to expensive mistakes.
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Figure 1.1: Schematic illustration of the chain of value in mining industry (Garcia and
Camus, 2011).

Geologic modeling has a significant influence on predicted future profits (Dimi-

trakopoulos, 1998). The estimation of recoverable resources and reserves is the input

upon which mining technical decisions for the extraction and processing of mate-

rial are made. These engineering definitions are known as mine planning and must

establish the selection and design of the mining method, alternatives for process-

ing treatment, metallurgical recovery functions, suitable assumptions on external

factors such as metal and energy prices, along with operational costs and capital

investment. As a result, a complete year-by-year schedule is constructed to establish

the amount of material to be removed, the plan determines the economic mining

limits and the optimal sequence of extraction based on the geostatistical models.
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1.1.1 Selective Mining Unit (SMU) Size Selection

The link between geostatistical models and mine planning is established through the

definition of a selective mining unit (SMU). The SMU corresponds to the minimum

volume to practically separate the ore from the waste material. The selection of

the size of the SMU will affect predictions of dilution and lost ore by internally

mixing grades (internal dilution) and combining the material from distinct domains

(external dilution). Figure 1.2 illustrates this using a schematic illustration of a gold

vein structure. The coarsest grid corresponds to the SMU and the finest grid to the

block model distribution of gold grades within the vein. Usually, the SMU size is

at a scale of 5 to 30 meters. Even though the example is based on a centimeter

scale, it is intended to illustrate mining conditions and demonstrate the importance

of dilution. Internal dilution refers to the mixing of high and low grades within the

vein. The reason is that the spatial distribution of gold grade is not homogeneous

due to different initial and boundary conditions at the time of deposition. External

dilution also known as geologic contact dilution, occurs when dealing with locations

near to domain boundaries. It depends on the same parameters as internal dilution,

but also on the geometric shape of the boundaries. The type of geologic contact

dilution affects the estimation of recoverable resources and reserves.

Figure 1.2: Schematic representation of internal and geologic contact dilution.

Dilution and lost ore bring associated costs due to misclassified ore/waste ma-

terial. As the size of the SMU increases, the cost of dilution and lost ore increases.
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The second element in the analysis corresponds to the cost of the extraction process.

Less selectivity, that is, larger block size reduces the mining cost due to economies of

scale. The selection of SMU must be optimized based on these two factors: dilution

and lost ore, and total costs. Figure 1.3 shows a schematic representation of the

costs as a function of the SMU size. An optimum SUM size minimizes the overall

mining cost of the project represented by the green curve which correspond to the

sum of the dilution and mining costs. Indeed, the determination of the SMU size is

a heuristic decision made by experienced geomodelers and mining engineers.

Mining Selectivity - SMU Size

B: Mining Cost

A: Dilution - Lost Ore Cost

 M
in

in
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Optimum SMU

Overall C
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Figure 1.3: Schematic illustration of dilution-ore lost cost and mining cost as function of
the SMU size. A minimum total cost criteria establishes its correct size.

The dilution-lost ore curve depends on the characteristic of the modeled geologic

contacts and the requirement for mimicking future ore control practices. The first is

the result of the geostatistical technique used; whereas the second is required given

the fact that the final mining is not performed on SMU scale, but on grade control

polygons. These polygonal areas define dig-limits where the mining is developed

searching for optimum profitability considering operational criteria. In consequence,

the selection of SMU must account for the grade control process in the sense that the

estimated tonnage and grades of ore should be close to the future practice of grade

control. The cost curve is based on design factors such as the mining extraction
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method, the size of equipment, blastholes spacing, mine operating conditions and

productivity.

As a result, the size of the SMU along with the variability of geologic contacts

and the spatial distribution of grades within these domains influence the estimation

of the dilution or lost ore. The character of the contact dilution and the distribution

of grades are critical aspect to be considered and reproduced in the geostatistical

models.

1.1.2 Mineral Resource Forecasting

Many geostatistical models consider of a two-step hierarchical implementation. First,

the boundaries of these domains are spatially established, and secondly, the spatial

distribution of grades is modeled within each domain. In practice, the geostatistical

models infer the mineral grades on a grid that discretizes the geologic interpreta-

tions of mineralized areas, and whose dimensions are determined by the selected

SMU size.

Deterministic methods are commonly used in the mining industry for model-

ing geologic domains (Cowan et al., 2003; Houlding, 1991; Silva and Deutsch, 2012;

Wilde and Deutsch, 2011). Despite the fact that the results do not account for the

spatial uncertainty, these methods have a large influence on resource/reserves es-

timation. There are geostatistical methods that represent the geologic phenomena

as a stochastic process with short-scale variability and a measure of uncertainty.

Such methods include Sequential Indicator Simulation (SIS) (Journel, 1983), pluri-

Gaussian simulation (Galli et al., 1994), object-based modeling (Bridge and Leeder,

1979), and more recently, surface-based modeling (Pyrcz et al., 2005). These meth-

ods provide equally probable representations of the geologic phenomena. They are

mostly limited to relatively simple two-point statistics and do not always capture the

complex variability of geologic scenarios. Some geologic depositional environments

are not well represented by these techniques. Moreover, the simulated models may

appear excessively unstructured, and it is not straightforward to control transitions

between domains (Deutsch, 2006). The resulting models may have an increased level
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of randomness along the boundaries and may be unrealistic.

After the definition of the geologic model, the inference of the spatial distribu-

tion of mineral grades may be carried out by a random function characterized by

a histogram and variogram (Journel and Huijbregts, 1978). Then, simulated real-

izations of both geologic domains and mineral grades offer several realizations of

the phenomenon. The set of equally probable realizations allow assessing the local

and global uncertainty in models. Transfer functions may be applied to the set of

realizations and distinct response variables characterized.

1.1.3 Importance of Geologic Domains Variability in Mineral

Resource Forecasting

To understand the influence of the SMU selection and the character of the geologic

limits on dilution, a schematic illustration is presented in Figure 1.4. The ordinate

axis corresponds to geologic models with different variability along the contacts;

each model reflects an increasing randomness on the boundaries yet the models are

based on the same data. Two geologic domains are considered (black and white)

and the grades estimated at point scale - the black domain represents the spatial

extension for high grades and the white (host rock) for low grades. One may be more

selective and design the extraction process based on a small SMU, or increase the

mine productivity by using a large SMU; the abscissa axis shows different SMU size.

The high and low grades are averaged according to the SMU, accounting for internal

and external dilution. The colored surface shows the relation between models with

increasing contact variability and the influence of the size of the SMU. It is clear

that increasing variability and SMU support augment the dilution. In particular,

as the geologic variability increases so does the dilution at whatever SMU support.

The randomness of the boundaries increases the mixing of high and low grades.

For the SMU selection, the dilution increases with the size of the SMU since more

material is being mixed.

Characterization of different levels of geologic variability are shown on the ab-

scissa axis of Figure 1.4 may not be obtained by current deterministic and geo-
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Figure 1.4: Response of the dilution due to the size of the selective mining unit (SMU)
and the geologic variability in the models.

statistical approaches. To expand on this point, consider the example based on a

vein structure shown in Figure 1.5. To simplify the analysis, an image processing

filtering technique allows generating a binary scale map of the vein and appreciating

the nature of the geologic variability of the contact (image in the middle). Both

deterministic and stochastic modeling alternatives were implemented to illustrate

the shortcomings related to reproduction of geologic contact variability. Neither

the deterministic method nor recent developments in geostatistical simulation of-

fer a realistic representation of the geologic domains if compared to the real vein.
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Figure 1.5: A vein outcrop and its filtered binary scale image at the top. Interpreted vein
models after applying deterministic and stochastic geostatistical techniques.

The deterministic model is overly continuous, whereas the geostatistical one has an

exaggerated random component.

The economic impact on the evaluation of mineral resources by the an inade-

quate modeling of the geologic variability may be substantial (Richards and Sides,

1991; Srivastava, 2005) leading to biased predictions in the mine plan, unexpected

cost in mining operations and deviations from expected revenues . Figure 1.6 shows

a schematic illustration of the effect on the distribution of grades contained within

the vein when using both approaches, the deterministic model (represented in green)

and the indicator stochastic approach (red model). At the top, the colored geologic

models compared to the true vein. In the middle, an illustration of the material

being mixed for a fixed selective mining unit (SMU) support, that is, the nature of

the contact within the block determine the degree of dilution or lost ore. At the

bottom, the distribution of mineral grade at SMU support for the geologic models

and the true vein. The painted area below the curves represent the proportion of

material above a relatively high cutoff grade. When considering the deterministic
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Figure 1.6: Illustration of the consequences for mineral resource estimates due to the lack
of geologic realism in the models.

geologic model, the green distribution of grades results more variable than the true

model (blue) since the mixing of high and low grade is less pronounced. Thus, the

green area below the curve corresponds to the material misclassified as ore above

the economic cutoff. The opposite happens for the stochastic geologic model, the

distribution has less variance than the true model due to excessive mixing of high

and low grades. The distribution based on the stochastic geologic model would over-

estimate the dilution reporting lower quantities of ore. The blue area corresponds to

the lost ore material that was misclassified as waste. Differences make be significant

depending on SMU size and the modeling method used.
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1.1.4 Problem Statement

Geostatistics has been introduced as a tool for geologic modeling and uncertainty

characterization of mineral deposits. The need for geostatistical methods that ac-

count for the correct level of geologic variability has been motivated. The thesis

addresses the problem of incorporating reasonable large/short scale variability into

numerical geological models. Reproducing the correct variability in the models

would improve engineering decision-making, specifically:

Thesis statement: Development of an approach for capturing realistic large

and short scale spatial variability of geologic domains will improve the prediction of

resources and reserves.

1.2 The Approach

The thesis proposes the development of a methodology that improves the realism

of the geologic contact variability in mineral deposits. Large and short scale spa-

tial structures may be reproduced by incorporating two or more feasible geologic

interpretations that portray different contact continuity. The treatment of the cor-

rect reproduction of geologic variability calls for the use of geostatistical techniques

able to integrate information of different sources beyond conventional geomodeling

methods.

The solution to this problem requires modeling complex geological features. In

the past, simulation techniques based on linear relationships and the benefits of the

Gaussian distribution were used (Deutsch and Wang, 1996; Goovaerts, 1997; Jour-

nel and Huijbregts, 1978). Nowadays, modeling complex features and patterns goes

beyond linear relationships. Multiple point statistics (MPS) simulation (Guardiano

and Srivastava, 1993; Strebelle and Journel, 2000) is an emerging technique de-

veloped to overcome limitations of conventional variogram-based simulation. High

order statistics are used to introduce complicated features and patterns into the

simulated realizations.
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These algorithms utilize training images for extracting and transferring essential

geological patterns to the simulated realizations. The training image replaces the

spatial tools based on two-point statistics such as variogram and covariance functions

and relies on the design of an explicit conceptual model of the geologic phenomena.

The multiple point statistics concept is utilized as the platform for the integra-

tion of two or more conceptual geologic models. What differentiates the algorithm

developed in this thesis from the standard multiple point applications is the in-

clusion and combination of data-driven training images to balance the large scale

structures of continuity adding the correct random short scale resolution in mineral

deposits. The overall methodology involves extensive numerical modeling with val-

idation and appraisal based on a real case study with exhaustive data. Advantages

and drawbacks are discussed.

1.3 Dissertation Outline

Chapter 2 discusses the theoretical and practical background of geologic modeling

methods. Deterministic and geostatistical approaches that support this thesis are

reviewed. Explicit and implicit deterministic alternatives are described. Background

on classical indicator-based and truncated Gaussian methods provide a perspective

of the limitations of current geostatistical techniques. Discussion on MPS demon-

strates its potential for being used in mineral deposits. The use of data-driven

training image requires discussion on aspects such as stationary, ergodicity and def-

inition of stochastic random functions. The foundations of the stochastic processes

provides the theoretical background for their implementation.

In Chapter 3, a novel implicit deterministic geologic modeling technique is

proposed and implemented. The method consists of an extension of the binary

signed distance function. The objective is to devise a geologic modeling method

to quickly and efficiently construct geological models without the need for time

consuming manual interpretation approaches. The distance function methodology

is based on the interpolation of a distance measure. The proposed extension may
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deal with a large number of domains and introduce a heuristic measure to assess

the related uncertainty. A practical implementation to correct global proportions is

also developed. The accuracy of the methodology is assessed by a case study and

examples.

Chapter 4 presents the theoretical support for combining training images based

on a weighted linear data integration scheme. Advantages of this additive aggre-

gation method for integrating data-driven training images are discussed. Classical

multiplicative aggregation methods do not work well with probabilities from mul-

tiple training images. Integrating the essential features of the deterministic and

stochastic training image linearly provides a useful framework to obtain more real-

istic models. A workflow based on an entropy measure from drillholes establishes a

procedure to calibrate the geologic variability from the two end member models.

Chapter 5 presents alternatives for integrating data-driven training images us-

ing the linear aggregative scheme for a non-stationary framework. Modifications to

the original algorithm allow obtaining models that extend the spectrum of features

from the training image. The modifications generate patterns not contained in the

training images. The geologic variability of the models may be extended without

losing the essential features of the training images.

Chapter 6 shows a case study based on data from an actual mining project.

Verification and confirmation of the methodology is evaluated using exhaustive in-

formation from the producing mine. Finally, Chapter 7 discusses advantages and

drawbacks of the proposed methodology, as well as conclusions and future avenues

of research for multiple point statistics techniques in the field of mineral deposit

modeling.
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Chapter 2

Geologic Modeling: Concepts

and Algorithms

Prior to the application of geostatistical techniques, the geological controls of a

deposit - commonly referred to as domains - must be understood and characterized in

terms of their physical, chemical and mineral properties. Geologic characterization

of domains is based on the interpretation of a series of geologic events identified by

mineralizing solution, rock type composition, alteration, and structural constraints.

A conceptual genetic geologic model supports the interpretation process by providing

a context for the local conditions of how the deposit was generated. Interpreting

the spatial continuity of these domains categories constitutes a critical step in the

resource estimation process: the extent, shape, volume and uncertainty will have a

large influence on the mineral resources.

2.1 Characterization of Domains

Mineral resources estimation is improved with a sound knowledge of the mineral de-

posit formation. Geologic conceptual models are developed to identify and describe

potential mineralized zones. The interpretative process aims to focus the analysis

and modeling efforts on certain domains within the deposit. The conceptual models

helps to translate the geologic mineralizing principles into geostatistical models.
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Areas of high and low grades commonly arise due to different geologic events and

may be considered separate populations from a statistical point of view. Geologic

domains correspond to a simplification of the mineralizing process by pooling data

into a number of statistical populations. Their spatial influence must be modeled

by considering the conceptual model and the distribution of data over the mineral

deposit. Domains must be large enough to contain a meaningful number of data,

but should not be so large as to mask important features.

2.2 Deterministic Geologic Modeling

Advances in computer graphics, information technology and computer processing

have allowed the implementation of 3-D computer-aided-design (CAD) for deter-

ministic geologic modeling. The first CAD software packages, traced back to the

early 80s, allowed generating wireframe curves and surfaces of objects based upon

parametric methods (Bezier, 1967, 1974), Karonen and Akatemia (1985) and Bak

and Mil (1989). Since then, mining software packages have improved in terms of

wireframing and displaying of 3-D geologic models. These methods are sometimes

called explicit geologic modeling.

2.2.1 Explicit Modeling

The classical CAD approach starts by digitizing 2-D polygons on cross-sectional

and plan views to define the shape of the geometric components of the 3-D model.

The digitalization process is time-consuming since all the polygons must be similar

on all sections. Then, the wireframing process of connecting polygons generates

3-D objects. This step is critical because the resulting 3-D object should have a

consistent geometry in all directions.

Figure 2.1 illustrates the modeling workflow; a simple binary case is considered.

The set of cross-section and plan views in A and B describe the spatial extent of the

domain. These sections and plans are triangulated to generate a reasonable geologic

object (image C). In the case that multiple domains are being modeled, the process
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Figure 2.1: Representation of the stages involved in the explicit geologic modeling workflow.
In A, the interpreted polygons on cross sections are presented. The plan views are illustrated
in B, while the resulting wireframed of the geologic domain is presented in C.

would be repeated for each domain in hierarchical order. One of the disadvantages

of manual digitalization of polygons is that increases the chances to overlapping and

generates inconsistencies between different objects causing problems when triangu-

lating. Other disadvantages include (1) significant professional interpretation time

required, and (2) subjectivity and non-repeatability.

2.2.2 Implicit Modeling

Mining software packages have provided computational tools to display drillhole

data and to speed the manual digitalization of cross sections and plan views. De-
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spite these advances, explicit modeling is still a tedious process. Furthermore, the

explicit approach lacks flexibility, reproducibility and is difficult to audit by external

personnel. Recently, novel techniques, referred to as implicit modeling, provide al-

gorithms that reduce the level of subjectivity by replacing the digitalization process

with some form of automatic estimation.

Volume Function

Cowan et al. (2003) introduced a novel grid-free approach to interpolate a volume

function for geologic modeling. The method is based on the work of Savchenko

et al. (1995) for modeling objects using interpolated volume functions. The volume

function defines the volume of 3-D objects and is constructed by implementing a fast

scattered interpolator method known as Radial Basis Function (RBF) (Franke, 1982;

Hardy, 1990). The interpolator is represented as the linear combination of basic

functions similarly as dual kriging (Journel, 1988). However, these basic functions

are standard and not inferred from the data as the case of the dual kriging. Thus, the

volume function is defined throughout the space at any resolution. The triangulation

of the function constructs the surfaces of the objects.

The advantage of implicit modeling is offering rapid 3-D interpretation of ge-

ologic domains due to the dual formalism of the interpolator. It is not necessary

to digitalize a complete set of polygons. Also, the parameterized volume function

reduces subjectivity. A sensitivity analysis could be rapidly performed with differ-

ent parameters. However, there are still issues with the results: 1) the interpolated

domains surfaces are smooth, 2) not reproduce trends and particular patterns that

trained professional might understand, and 3) the method does not account for

uncertainty in the boundaries.

Signed Distance Functions

The distance function methodology is an implicit modeling technique based on the

interpolation of signed distance functions among the data locations (McLennan and

Deutsch, 2006; McLennan, 2007; Hosseini, 2009). The signed distance function

16



measures the separation of domains with respect to each other. Anisotropic dis-

tance may be applied depending on the orientation, geologic shape and extension

of the domains. Positive and negative distances distinguish between inside/outside

domains. Interpolation methods including kriging could be used to estimate the

signed distance function values at unsampled locations; then, a zero cutoff rule sets

the boundaries between domains. The method offers repeatable geologic models

with smooth boundaries. A global search strategy with kriging avoids artifacts due

to relatively few data. Figure 2.2 illustrates the algorithm with a 3-D example. On

the left, the red samples within a particular domain; on the right, a triangulated

surface at zero cutoff.

Figure 2.2: An example of a geologic model based on the interpolation of signed distance
function values. On the left, the spatial configuration of samples; on the right, the resulting
wireframed model after interpolation is performed.

Among the disadvantages of the method, it does not directly account for volume

uncertainty, does not work well if there are short scale variations not intersected

by drillholes, and is not suited to more than two domains. Extended details of the

algorithm will be reviewed in Section 3.2.

Explicit and implicit modeling tend to converge to similar geologic representa-

tion when closely spaced drillhole information is available. Significant differences

might occur at an early stage of exploration when the data is scarce and the as-

sumptions made by the modeler become the most important element for domain
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characterization. Further details on the practical application to multiple coal seams

may be found in Deutsch and Wilde (2013).

2.2.3 Disadvantages of Deterministic Geologic Modeling

Deterministic geologic models do not quantify the uncertainty, that is, a single de-

posit model for mineral resources estimation is provided. There may be other plau-

sible interpretations that reproduce the same data and lead to different resources.

The estimation of recoverable resources depends on the extension and spatial ar-

rangements of geologic domains Rossi and Parker (1994). It is especially important

when small scale structural elements such as veins or faults control the location of

high and low grades. A manual interpolation of domain is always subjective. Sup-

pose that three teams propose distinct interpretations using the same four drillholes

in Figure 2.3. The red, yellow and green interpretations will report an increasing

quantity of metal due to extents of each model.

Surface

Drillhole

20 m0

20 m

Figure 2.3: Three subjective geologic interpretations of a lens-shaped orebody. The same
amount of drillhole information is considered. The red, yellow and green orebodies can be
seen as the result of conservative to optimistic interpretation that depends on the assumption
taken by the modeler.

At early stages of evaluation, there is relatively wide spacing between drillholes

in the deposit. This limited amount of data leads to smooth modeling of the do-

mains with little information on short scale variations for both explicit and implicit
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methods. In general, these type of models result in too optimistic and biased mineral

resource estimates (Srivastava, 2005) due to the misrepresentation of the variability

of contacts of domains, that is, the reality is more variable and would incur more

dilution and lost ore.

Updating of the geologic model is a continuous process fed by the addition of

more information. Richards and Sides (1991) shows an illustrative case study of the

evolution of the geologic modeling by the acquisition of additional data. The study

showed that the deterministic modeling was correct in representing the large-scale

geologic features; but, did not represent the short-scale features, leading to biased

resource estimates.

2.3 Spatial Stochastic Geologic Modeling

The large scale macro features of domains could be represented by the techniques

mentioned above. Yet, there is micro shorter scale element that appears random

with widely spaced data. The macro-micro duality (Christakos, 2012) reflects the

fact that in earth sciences phenomena there exist variability at all scales. Concepts

in probability theory, in particular in the area of stochastic processes, provide models

for this macro-micro duality. Doob (1953) defined a stochastic process as any process

in nature whose evolution may be characterized in terms of probability theory.

Modern probability theory rests on the concept of random variables. Geostatis-

tics was largely influenced by the developments around this idea and applied to

spatial prediction of natural variables. The presence of the macro-micro duality in

geologic deposits strongly suggests a treatment based on structured spatial stochas-

tic process. An illustrative example is showed in Figure 2.4 that recalls the vein-

binary image in Figure 1.5. A small portion of the contact is shown in detail. On

the right, three stochastic realizations provide plausible interpretations of the real

contact shown in the middle. The spatial prediction of the contact based on the fun-

damentals of random variables provides an accurate description of the uncertainty

in the contact.
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Figure 2.4: Macro-micro duality phenomenon observed on earth sciences field leads to
implement algorithms and techniques based on the probability theory. The illustration on
the right shows that the evolution of the vein-contact may be characterized by a stochastic
process.

2.3.1 Background: Overview of Geostatistics

The roots of geostatistics may be traced back to the pioneering work of D. G. Krige

in the late 1950’s faced with the problem of estimating grades in the Witwater-

srand gold fields in South Africa (Sichel, 1952; Krige, 1951). Matheron (1962, 1965)

formalized the field of geostatistics by providing theoretical support for the estima-

tion of unbiased mineral recoverable resources . The development of the estimation

technique known as kriging led to an improvement in the estimation at unsampled

locations using nearby correlated data. Kriging has the advantage over other es-

timation techniques since it accounts for information about the correlation of the

data, their configuration in space, and a measure of the error of estimation. How-

ever, despite its optimality, the estimates show a stronger spatial correlation than

the data, and a smaller variance than the global distribution

The introduction of simulation techniques (Matheron, 1973; Journel, 1974; David,
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1977) changed the original paradigm of geostatistics from the optimal estimation at

unsampled locations to (1) reproduction of the spatial structure of data and (2)

uncertainty characterization. The use of simulation provides equally probable re-

alizations of the grade distributions. Each location has a set of possible values

conditioned to surrounding data. The realizations reproduce the histogram as the

conditioning data and the variogram or correlation structure. Simulation methods

are not restricted to grades, but also provide techniques for geologic domain mod-

eling (Journel, 1983) through the developments of discrete geostatistical analysis.

Geostatistics is defined as the branch of applied statistics that provides meth-

ods to characterize the spatial distribution of natural variables and to assess their

underlying uncertainty. The concept of a regionalized variable was developed by

Matheron (1965) and constitutes the foundational element of geostatistics. It cor-

responds to a function defined in space that reflects macro correlated structures

with micro random behavior. Geostatistics models do not intend to understand the

complex natural system, but rather describes numerically the spatial behavior in a

statistical sense.

The Concept of Random Functions

Matheron (1962) established the theoretical formalism of geostatistics aimed at uni-

fying the observed spatial structure of natural variables with stochastic processes.

The concept of a random variable (RV) is introduced. A RV may take a set of

possible outcomes. The set of values is characterized by a probability distribution

function. In geostatistics, the RV depends on location within space, commonly a

domain D ⊂ R3. Typically, a random variable is denoted in upper case Z(u) at

location u and its outcome value as lower case z(u), where u ∈ D relates the lo-

cation of the RV in the space. Its distribution function is represented in terms of

cumulative probability:

FZ(u; z) = Prob{Z(u) ≤ z}
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A random function (RF) is defined as a family of correlated random variables

within the study area D such as {Z(u),u ∈ D}. The cumulative probability dis-

tribution function considering all locations simultaneously is known as the spatial

law:

FZ(u1),....,Z(un)(z1, ...., zn) = P{Z(u1) ≤ z1, ...., Z(un) ≤ zn}

∀uα ∈ D,α = 1, ...., n (2.1)

Random functions work under the same probability principles as random vari-

ables, except that they require the probability of many locations simultaneously.

Moments of Random Functions

Important features related to the behavior of the probability distribution functions

may be characterized by its moments. In geostatistics, the first two moments are

often considered enough to characterize the spatial law. The first-order moment

correspond to the expected mean:

E{Z(u)} = m(u),u ∈ D (2.2)

The second-order moment is known as the variance:

V ar{Z(u)} = E{(Z(u)−m(u))2},u ∈ D (2.3)

in general, the expected mean and variance depend on the location u. The

second-order moment can also be defined between two locations, in this case the

moment is called the covariance:

Cov{Z(u1), Z(u2)} = E{(Z(u1)−m(u1))(Z(u2)−m(u2))},u1,u2 ∈ D (2.4)

Another second-order moment widely implemented in geostatistical models is
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the variogram defined as:

2γ(h) = V ar{Z(u1)− Z(u2)},u1,u2 ∈ D (2.5)

The spatial structure of a wide variety of natural phenomena in earth sciences

may be modeled using random functions described by second-order moments. These

statistics consider the two-point configuration of data, which is the simplest geomet-

ric arrangement possible.

Stationarity

To infer the spatial multivariate distribution of natural variables requires repetitions.

The problem consists of determining the probability distribution of the random

variables at each unsampled location conditioned and correlated to the surrounding

data. The uniqueness of natural phenomena precludes the inference of the distri-

bution function due to a single observation at each location. A weaker hypotheses

must be considered. The concept of stationarity allows the data to be considered as

replicates of the same random variable over the domain. The inference of the first

two-order moments then depends on all of the data taken together. The order of

moments are considered invariant under translation. Further discussion around this

hypothesis is developed when dealing with the concept of stationarity of training

images for multiple point statistics techniques in Subsection 2.5.1.

Ergodicity

The concept of ergodicity allows the inference of the random functions when dealing

with a unique phenomena. By definition, a random function is ergodic in the mean

if its average converges to the expected mean as long as the extension of the domain

tends to infinite:

lim
D→∞

1

|D|

∫
D
Z(u) du = E{Z(u)},u ∈ D (2.6)

In practice, deviations from the expected mean are observed due to the finite
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character of a practical domain. The concepts of stationarity and ergodicity are fun-

damental assumptions that make possible the inference and prediction of spatially

distributed variables in space.

Different assumptions may be made for the random function. The models are

classified based on the nature of their multivariate distribution. The spatial distribu-

tion may follow a parametric form as in the case of Disjunctive Kriging (Matheron,

1976) and multivariate Gaussian kriging (Verly, 1983). In early 1980s, a nonpara-

metric approach indicator formalism including Sequential Indicator Simulation (SIS)

was proposed by (Alabert, 1987; Journel, 1989). In this method, the conditional

probability functions are inferred directly from the data without any strong as-

sumption about the entire multivariate spatial distribution. Further background on

indicator-based method is presented here given its importance for the development

of the thesis.

2.3.2 Indicator-Based Geostatistical Approach

An intuitive approach to modeling the probability of occurrence of a value k at

an unsampled location consists of estimating the proportions of k according to the

information provided by surrounding data. This idea leads to consider indicator

random variables, that is, to codify the data as probabilities values for a set of

categories k = 1, ....,K:

i(u; k) = Prob(z(u) ∈ k) (2.7)

The indicator-based approach, proposed by Journel (1983), allows the direct es-

timation of the conditional probability distribution at an unsampled location u by

determining the indicator estimate conditioned to n indicator values. The method-

ology is based on the use of kriging to estimate the conditional probabilities for

each category. The kriging involves the construction of a linear estimator based on

conditioning data and the indicator mean (Eq 2.8). Two assumptions may be made

about the knowledge of the mean. In this first case, the mean is assumed stationary
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at all location u ∈ D, that is, E[I(u; k)] = F (u; k). This form of kriging is referred

to as simple kriging.

I(u; k)∗ =

n∑
α=1

λSK
α (u; k)i(uα; k) + F (u; k)

(
1−

n∑
α=1

λSK
α (u; k)

)
(2.8)

The weights λSK
α (u; k) assigned to each indicator datum i(uα; k) and the mean

F (u; k) are found by solving the system of kriging equations in Eq 2.9 for each

category k = 1, ....,K. The weights obtained are optimal in the sense that they

minimize the expected square error of the estimator I(u; k)∗.

n∑
β=1

λSK
β (u; k)CI(uα − uβ; k) = CI(u− uα; k), α = 1, ...., n, (2.9)

The indicator estimate accounts for the relations between the unsampled location

and the conditioning data locations, and the relation among the surrounding the

data itself through the characterization of the indicator covariance function CI(h).

A second approach considers the mean as unknown and subjected to local sur-

rounding data. This second version of kriging is referred to as ordinary kriging. As

the mean is unknown, the estimate of the indicator variable of Eq 2.8 becomes:

I∗(u; k) =
n∑

α=1

λOK
α (u; k)i(uα; k) (2.10)

and the constraint

n∑
β=1

λOK
β (u; k) = 1 is added to the minimization problem. As

consequence, the system has now n+1 unknowns, the n weights λOK
β (u; k) for each

datum and the Lagrange parameter for the added constraint. Thus, the system of

kriging equations for each category or threshold k = 1, ....,K leaves:

n∑
β=1

λOK
β (u; k)CI(uα − uβ; k) + µOK(u; k) = CI(u− uα; k), α = 1, ...., n

n∑
β=1

λOK
β (u; k) = 1 (2.11)
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The probability for each category is estimated individually. This may lead to

estimated probabilities that do not sum to 1, and, in some cases, they might /∈ [0, 1].

Post-processed corrections that involve averaging and standardization help to resolve

these issues (Deutsch and Journel, 1998).

Sequential Indicator Simulation (SIS)

The essence of the sequential indicator simulation approach is to use the conditional

probability distribution estimated through indicator kriging to draw a categorical

value by using Monte Carlo simulation. The conditional probabilities are estimated

using both the conditioning data and values simulated at previous locations. As a

consequence, the indicator covariance model is reproduced in the realizations. The

workflow proceeds as follows:

1. Generate a random path through the grid of nodes. At each node:

2. Search for conditioning data and previously simulated nodes

3. For each category k = 1, ....,K, estimate the conditional probability by simple

or ordinary kriging as appropriate

4. Correct the estimated probabilities to satisfy the axioms of probability, that

is, reset negative estimates to zero then restandarize the sum to one.

5. Simulate a categorical value from the set of probabilities

6. Go back to step 2 until all nodes of the grid have been visited

Sequential indicator simulation is a robust and straightforward technique for

transferring uncertainty into the numerical model. The method, however, considers

only two-point structural information which implies that the method is not suitable

to modeling complicated morphological geologic features. Furthermore, the geologic

models sometimes look patchy, and the domains appear unstructured. Finally, the

transitions between simulated domains are difficult to control.
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2.3.3 Truncated Gaussian Simulation (TGS)

Matheron et al. (1987) proposed an alternative method for geostatistical modeling of

categorical attributes based on the simulation of a standard Gaussian random func-

tion and its truncation according to specified thresholds. To simulate the Gaussian

function, the method requires the conversion of categorical data to normal scores

values. The truncation rule establishes the ordering of the contacts and controls the

proportions of the geologic domains.

An extended model was proposed by Galli et al. (1994). The idea is fundamen-

tally the same, but instead of using an individual Gaussian random function, the

method proposes the use of multiple functions. This model is referred to as Pluri-

Gaussian simulation, and the objective is to characterize more complicated geologic

domains interrelations. Normally, a maximum of two Gaussian functions are consid-

ered to represent relevant geological features in the models (Rondon, 2009; Carrasco

et al., 2007; Fontaine and Beucher, 2006). However, the extension of Gaussian func-

tions leads to the definition of a more sophisticated truncation rule; a large number

parameters need to be selected from limited drill hole information. Optimization

techniques (Deutsch and Deutsch, 2014) may help to setting up the thresholds and

manage the transition probabilities between domains accordingly.

Issues related to the connectivity of geologic domains are often observed in the

simulated models. This is due to the property of maximum entropy of the Gaussian

distribution function, which establishes a maximum variability of highest and lowest

quantiles. Whether the geologic phenomenon is characterized by highly connected

domains, object-based methods may be preferred.

2.3.4 Object-based Methods

Object-based modeling has been extensively applied in petroleum reservoir charac-

terization and offers an option to model more complicated morphological geological

features than SIS or TGS techniques. The method relies on the randomized allo-

cation of entire geologic objects in the simulated field (Bridge and Leeder, 1979).

The advantage of the method is that the final models reproduce the pre-conceived
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geologic objects such as large-scale curvilinear shapes, connectivity features and spa-

tial heterogeneity structures. Their geometric properties are parameterized through

distributions that can result in a difficult problem. Yet, the major disadvantage re-

lates to honouring conditioning data. Perturbation techniques that change the size,

shape and location of the object help to correct the conditioning problem (Deutsch

and Wang, 1996).

An alternative method, that introduced the concept of event-based process, was

proposed by Pyrcz et al. (2005) for modeling subsurface based models. Here, in-

stead of parameterizing the distribution function of the geologic objects, the method

simulates the physical process that led to the deposition of the geologic system. A

large variety of strataform sediments reservoir may be modeled, improving their

characterization since the method accounts for erosional features at multiple scales.

2.4 Multiple Point Statistics Simulation (MPS)

Multiple point statistics simulation was developed to overcome the limitations of

conventional variogram-based simulation methods. The novelty of the MPS meth-

ods consists of replacing the inference of two-point spatial statistics from the data

by multiple point configurations from training images. The conditional probabil-

ities are estimated considering a variety of multiple point configurations allowing

the reproduction of geologic features from training images at distinct scales and

orientations.

The method was originally proposed by Guardiano and Srivastava (1993). Sev-

eral methods of MPS and important advances on practical applications have been

developed since then. Almost ten years since its advent, (Strebelle and Journel,

2000) established the algorithm known as snesim, which popularized the use of MPS

by implementing a search tree storage procedure, addressing implementation details

and reducing computer requirements. There are other proposed methods based

on Gibbs Sampler iteration (Deutsch, 1992; Srivastava, 1992; Lyster and Deutsch,

2008) and neural networks (Strebelle and Journel, 1998; Caers, 2001). Ortiz (2003)
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introduced the integration of runs and indicator simulation to reproduce higher

order statistics. Dimitrakopoulos et al. (2010) introduced data-driven algorithms

based on higher order moments known as cumulants for reproducing complex ge-

ologic patterns without appealing to training images. Another approaches imple-

ment secondary information for handling the reproduction of trends in simulations

(Chugunova and Hu, 2008; Straubhaar et al., 2011). Recently, Mariethoz et al.

(2010) proposed a direct sampling technique, extensible to continuous variables,

that samples the higher order statistics directly from the training image avoiding

computing the conditional probabilities.

The snesim method is a flexible and robust MPS simulation technique. The al-

gorithm is important for this thesis. A detailed reviewed of theoretical and practical

aspects along with the terminology that will be used later are presented below.

Multiple Point Statistics Terminology

MPS algorithms have been designed for simulating categorical geologic attributes.

Consider that the variable S may take K possible states {sk, k = 1, ...,K} for all lo-

cations u ∈ D ⊂ R3. The following terminology will be used hereafter for describing

the theory and practice of snesim algorithm.

• A data event Dn describes the spatial configuration of n surrounding data

with respect to the centered location u. The locations are described by the

set of vectors {hα, α = 1, ..., n}, and their attributes {sk(u+hα), α = 1, ..., n}

The problem is to estimate the conditional probability of the indicator random

variable S(u) given an n-multiple spatial configuration of Dn.

2.4.1 Single Normal Equation Algorithm

The conditional probabilities are estimated based on the frequency of occurrence of

the data event Dn in the training image.

The indicator binary random variable A0 denotes the state sk of occurrence of
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S(u):

A0 =


1, if S(u) = sk

0, otherwise

(2.12)

In the same manner, the indicator binary variable D is set out for the joint state

of occurrence of conditioning data S(uα) = skα , α = 1, ..., n in the data event Dn:

D =


1, if S(uα) = skα ,∀α = 1, ..., n

0, otherwise

(2.13)

Alternatively, the indicator variable D may be decomposed into the product of

individual indicator variable Eq (2.12) associated to the n data:

D =

n∏
α=1

Aα, with Aα =


1, if S(uα) = skα

0, otherwise

(2.14)

Considering one datum at a time, as classical two-point algorithm, the condi-

tional probability is estimated by the simple indicator kriging equation:

Prob(A0 = 1|D = 1) = E{A0}+
n∑

α=1

λα[1− E{Aα}] (2.15)

Aα = 1 is the indicator value of datum at location uα corresponding to state skα ,

while E{Aα} = Prob(Aα) and E{A0} = Prob(A0) are the marginal probabilities.

Guardiano (1993) showed that the contribution of lower order events including the

{Aα, α = 1, ..., n−1} single-point indicators are redundant with respect to the infor-

mation provided by the joint indicator variable D. Thus, the conditional probability

may be expressed just in terms of the richer indicator of n data D:

Prob(A0 = 1|D = 1) = E{A0}+ λ[1−E{D}] (2.16)
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where E{D} = Prob

n∏
α=1

Aα is the probability of occurrence of D. Then, the

weight of the simple kriging is obtained by solving the single extended normal equa-

tion:

λV ar{D} = Cov{A0, D} (2.17)

Developing the common expressions for the indicator variance and covariance,

one has that:

V ar{D} = E{D}(1− E{D})

Cov{A0, D} = E{DA0} − E{D}E{A0}

Thus, replacing in Eq 2.17 λ =
E{DA0} − E{D}E{A0}

E{D}(1− E{D})
, and then, into equation

Eq 2.16:

Prob(A0 = 1|D = 1) =
E{DA0}
E{D}

(2.18)

The extended normal equation of the data event Dn establishes that the con-

ditional probability may be estimated by scanning and extracting its frequency of

occurrence from the training image.

The steps of the snesim implementation are summarized as follows:

1. Scan the training image and store the frequencies of occurrence of each multiple-

point configuration in a search-tree

2. Assign each conditioning data to the closest node of the grid

3. Visit each unsampled location following a random path

4. Compute the conditional probability from the search-tree conditioned to the

nearby data event Dn

5. Simulate a categorical value from the conditional probability distribution and

go back to step 3 until all nodes of the grid have been simulated
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The Training Image

The training image conceptualizes the spatial arrangements and interrelations of

the geological features that are expected to be found in the deposit. It represents a

richer structural tool and provides a direct and more intuitive understanding of the

geologic relations than variogram or covariance functions.

The primary concern of MPS simulation methods is to find a representative

training image for the phenomenon being modeled. An incorrect training image

may lead to severe bias in proportions and spatial features, compromising future

decision-making.

2.5 On the Stationary of Training Images

Multiple point statistics simulation methods rely on the assumption of stationarity

for allowing the inference of higher order multiple point events from the training

images. In early views, it was assumed that only stationary training images are

statistically valid to be used for MPS methods. The current subsection discusses

the concept of stationary training images for geologic modeling with the focus on

mineral deposits.

2.5.1 Stationary Random Function Model

A brief introduction to the concept of stationarity was provided in Section 2.3.1. A

detailed description of the assumptions of strong, weak and intrinsic stationarity for

random functions are presented in the following subsection. The concepts reviewed

here will be related to the stationary training images.

Strong Stationarity

The assumption of strong stationarity considers that the probability distribution

function for any spatial configuration of n data of the random function {Z(u),u ∈
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D}; remains the same for all locations:

Fu(z(u1), ...., z(un)) = Fu+h(z(u1 + h), ...., z(un + h)),

∀h (2.19)

Here, the distribution function of the stochastic sequence of n random variables

is measured as a whole. The assumption of strong stationarity cannot be directly

evaluated since it requires access to repetitions of the multiple configuration of n

data. A weaker hypothesis that considers a less restrictive configuration of data is

needed.

Weak Stationarity

For the case of weak stationarity, the configuration of multiple data is reduced to

a two-point relation. Even though this hypothesis restricts the capability of the

model for reproducing complicated geologic phenomena, it allows the statistical

inference of covariance/variogram functions. Weaker stationarity of the random

function {Z(u),u ∈ D} is defined by:

E[Z(u)] = E[Z(u+ h)] = m,m ∈ R

E[Z(u)2] = E[Z(u+ h)2] = σ2, σ2 ∈ R (2.20)

E[Z(u)Z(u+ h)] = C(h), ∀h

The mean and variance are constant for all locations u, and the covariance

function only depends on the separation vector h. In some cases, data shows a trend

behavior making the hypothesis of weak stationarity unreasonable. Strong structural

controls of the mineralizing solutions may condition the spatial distribution revealing

trends. An even weaker hypothesis would offer an alternative to modeling this type

of phenomenon; this is the intrinsic stationarity assumption.
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Intrinsic Stationarity

Nonstationary phenomenon are challenging for geostatistical methods. A useful ap-

proach consists of discomposing the data into an averaged trend that reproduces

the large scale nonstationary behavior, and a stationary residual which may fluc-

tuate around this trend, Eq (2.21). The intrinsic hypothesis intends to extract the

stationary residual directly from the data, avoiding the assumption of a specified

structure for the trend. The hypothesis does not work directly with the data, but

with its increments.

Z(u) = m(u) +R(u) =
k∑

l=1

alf
l(u) +R(u) (2.21)

The increments for a location u are defined as a linear combination of data,

that is, Zλ(u) =

m∑
α=1

λαZ(uα); where Z(uα) are the m number of observed data

involved in the increment of order k. The intrinsic hypothesis establishes that the

increments are second order stationarity, namely, its mean and variance are finite

over the domain D:

E[Zλ(u) =

m∑
α=1

λαZ(uα)] = 0

V ar[Zλ(u) = (

m∑
α=1

λαZ(uα))
2] = 2γk(h) (2.22)

In order to remove the trend m(u) from the data in Eq 2.21, the coefficients of

the increments must be configured such that

m∑
α=1

λα[

k∑
l=1

alf
l(u)] = 0, filtering the

trend from the data. Thus, the variogram analysis may be performed directly from

the stationary residuals.

The polynomial of degree k reflects the complexity of the trend. The simplest

case remains when the trend is constant, that is, a polynomial of order zero. This
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is the classic definition of the intrinsic model:

E[Z(uα)− Z(uα + h)] = 0

V ar[(Z(uα)− Z(uα + h))2] = 2γ(h) (2.23)

The hypothesis of the intrinsic model suffices for a wide range of natural variables

for mineral deposits.

2.5.2 Stationarity Multiple Point Statistics Simulation

In variogram-based geostatistical methods, the stationarity is an important assump-

tion that makes possible to perform statistical inference. Once the histogram and

variogram/covariance functions have been inferred, multiple realizations are drawn

from the random function. MPS simulation methods rely on a different paradigm.

Instead of characterizing the random function through covariance/variogram func-

tions before simulating, the inference of multiple point statistics is performed directly

from training images. Under this view, the stationarity plays a different role which

consists of allowing the estimation of local conditional probabilities given multiple

configurations of data, and not the inference of parameters of the random function.

Similarly to the hypotheses of strong and weak stationarity described for random

functions, one could define related concepts applied to MPS simulation methods.

The type of stationarity assumed determines the manner that the local conditional

probabilities are estimated.

Strong Stationary for MPS Methods

Under this assumption, one location is enough for estimating the conditional prob-

abilities associated to multiple point configurations. In geosciences, multiple images

of the same phenomenon are difficult to find. An artificial set of n ellipsoid-based

images are used to illustrate the idea of strong stationarity, see Figure 2.5. The

ellipses are placed randomly in the grid using the object-based program ellipsim of

GSLIB.

35



F
re

qu
en

cy
 (

%
)

F
re

qu
en

cy
 (

%
)

Location: x=100,y=100 Location: x=150,y=150

123n

Figure 2.5: Illustration of the extended definition of strong stationarity for training im-
ages. The set of ellipsoid-based image represents realizations of the same random process.
Independent of the location, the multiple density function remains equal; no assumption of
stationarity is needed for the conditional probability inference.

The distribution of the multivariate random function may be characterized through

the computation of multiple point density functions (Boisvert et al., 2010). Higher

order statistics depend on the configuration of points and the number of categories

contained in the training image, the relation is given by kn where k is the number

of categories and n the locations of the multiple point event. The multiple point

density functions determine the frequency of appearance of each configuration, and

each data event has associated a multiple point density function. Two locations in

the grid are considered (x = 100, y = 100) and (x = 150, y = 150), along with a

template of 2 by 2. The multiple point density functions are presented on the right

part of the figure. Independent of the location considered, the multiple point den-

sity function remains equal when compute it through the set of images. The strong

stationarity leads to practical assumptions to facilitate the statistical inference, and

the conditional probabilities may be estimated directly from the set of realizations

and for any location.

36



123n

F
re

qu
en

cy
I(

%
)

Location:Ix=100,y=100

F
re

qu
en

cy
I(

%
)

ScannedIfromITrainingIImage

Figure 2.6: Comparison of the multiple density functions when assuming strong training
image stationarity, and an individual training image assumed with the hypothesis of weak
stationarity.

Weak Stationary for MPS Methods

The weak stationarity of training images requires an assumption that alleviates the

lack of a set of realizations. Here, the estimation of local conditional probabilities of

multiple data configurations calls for the probabilities to be invariant by translation

over the image. Under this definition, the set of training images is replaced for

an individual image large enough to estimate the conditional probabilities. Figure

2.6 compares the multiple point density functions at using an individual and the

set of training images based on the previous two by two template. Both multiple

point density functions remain the same. The assumption of stationarity over an

individual training image is considered enough for most MPS methods in order to

derive the local conditional probabilities.
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Transference of Geologic Features from Training Images

An adequate estimation of local conditional probabilities ensures the correct trans-

ference and reproduction of geologic features from the training image to the simu-

lation grid. The richness of the information carried by the local conditional proba-

bilities is fundamental to obtain a reliable reproduction of the geologic features, or

at least, and adequate transference of the geologic essence of the training image.

However, the estimation of local conditional probabilities might lead to multiple

point geologic configurations not contained in the training image. This is due to the

MPS methods estimating the local conditional probabilities in a sequential stepwise

fashion in order to derive the simulation globally. In order to allow the estimation of

conditional probabilities for specific multiple point configurations not found in the

training image, remedial actions need to be undertaken. Solutions aim to modify the

configuration of the conditioning data event. In this respect, (Strebelle and Journel,

2000) proposes a heuristic alternative that consists of dropping off the furthest

data up to encounter the exact configuration that allow estimating the probability

distribution function.

For MPS simulation, the objective is the reproduction of the essence features of

the training image. These methods rely more on finding the exact multiple point

configuration in the training image than count with a larger number of occurrences

of it. This is a substantial difference with regard to variogram-based geostatistical

approaches where a large number of repetitions ensures the correct inference of the

parameters of the model.

Multiple-Scale Local Conditional Probability Estimation

To transfer the essence of the training image, it is necessary to consider the large

scale features first and then consider higher resolution small scale features. The MPS

simulation needs templates of a reasonable size for convergence. The template must

account for the estimation of conditional probabilities at multiple-scales. Templates

of dynamic size are considered by implementing the use of nested multigrids. The

configuration of the template remains the same, but, the scale changes according
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to the multigrid size. The MPS simulation depends on the multigrid and template

selected. The correct parameterization of these components is unclear. The size of

training images and templates is constrained by memory and CPU speed.

Simulation based on
one nested multigrid

Ellipsoid-based 
Training Image

Simulation based on
two nested multigrid

Simulation based on
three nested multigrid

Simulation based on
four nested multigrid

Simulation based on
five nested multigrid

Figure 2.7: Effect of the multigrid parameter upon the reproduction of the ellipsoid-based
training images on the left. An implementation of decreasing nested-multigrids ensures the
transference of the essence of the training image.

The effect of implementing a different number of nested multigrid is presented

in the example of Figure 2.7. For multigrid 1, that is, no rescaling, the simulated

features do not look like the ellipsoid-based training image. After increasing the

number of multigrids, the correct features start appearing in the realizations. In the

last example, by implementing five multigrids the essence of regular-spaced ellipsoids

of the training image is transferred to the simulation; the sequential scale reduction

of the features being modeled ensures a correct reproduction.

The Stationary Character of Training Images

In a geostatistical context, the concept of stationarity refers to the assumption that

statistical variation is invariant over the domain being modeled, that is, the geologic

phenomenon remains spatially homogeneous. This definition also applies for training

images. An image is said to be stationary if the geologic features are similar when
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looking at different locations; there is no strong relation between the features and

their location in the image. In early days, it was established that only training

images considered as stationary are statistically valid for a suitable implementation

of MPS methods (de Vries et al., 2009). This view is changing.

When dealing with a stationary training image, the idea of spatial homogeneity

is directly related to the scale of observation and the size of the training image.

Figure 2.8 illustrates this perception of stationary training images. Based on an

image composed of sinusoidal channels with strong stationary essence, three scales

of observation are considered. The red squares show three zoomed images from the

original sinusoidal image. If each image is deemed individually, our perception of the

idea of stationary increases along with the scale of observation due to replicates of

channels are found with more frequency. Even though the three images are part of

the same channel-based stationary image, not all of them are assumed as stationary.

In other words, stationarity is not a property attached to the data, but a hypothesis

of the stochastic model adopted; it is the process which is stationary, not the image.

The image, in turn, could manifest certain stationary aspects but this cannot be

proved.

Figure 2.8: Representation of how the scale of observation affects the perception of a
training image considered stationary.

A stationary process might generate non-stationary images, or inversely, a non-

stationary process could generate stationary images depending on the scale that
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the image is observed. Criteria for the invariant location of geologic features based

on the scale, orientation and regions of replicates of patterns allows checking if a

training image is considered suitable to the application of MPS methods Mirowski

et al. (2009). Stationary training images ensure reproducing their patterns as close

as possible in the simulations, but not restrict the use of MPS methods for non-

stationary images. The MPS algorithm, independent of the class of training images,

acts as a conveyor of geological features to the simulations grid. What is not ensured

is the suitable transportation, matching and reproduction of the essential features

of the image.

As pointed out, the previous view was that MPS techniques were designed to

modeling deposits with a strong stationary component. Any training image may

be seen as a repository of geologic multiple point configurations and used for MPS

simulation. Thus, the definition and field of application of MPS method may be

extended since they are no longer restricted to the stationary character of training

images.

2.5.3 Data-Driven Training Image: An Accurate Approach for MPS

Mineral Deposit Modeling

In the past, MPS methods have not been used in the field of mineral resources

modeling. Perhaps, reliance on the need for stationary training image discouraged

the use of these techniques. In particular, MPS for mineral deposits must account

for the considerable amount of data involved. The large amount of data helps to

characterize the interrelations of geologic domains. Thus, the focus is on relatively

small scale geologic features.

An Example

An application based on a porphyry deposit is used for illustrating the potential of

MPS methods for mineral deposits. The example considers an application performed

in 2-D. Figure 2.9 (top left) shows a schematic cross section of intrusive units for

a porphyry deposit used as training image. The host rocks are in green and cyan;
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two intrusive units in orange and red. The exercise consists of sampling the training

image and then using the data for simulating the porphyry. A scatter plot with the

sampled conditioning data is shown at the bottom left part. Four resulting MPS

simulations are presented on the right. Note that the essence of the training image is

transferred to the simulations. Both the intrusive and host rock units maintain their

structural geologic interrelations at large scale. The MPS simulation process may be

divided into two steps: first, the data delineates the large scale features, in particular,

the shape and size; second, the modeling of short scale features, specifically the

contacts between units, by matching the geologic features to the those contained in

the training image

Training Image
 Porphyry Deposit

Sampled Conditioning Data

MPS Simulations

Figure 2.9: MPS simulations using as training image a schematic cross-section of a porphyry
deposit. Data is sampled from the training image and used as conditioning data. On the
right, four realizations.

The use of data-driven training images is of special interest for mineral deposits

modeling. Account for a training image derived from data avoids future discrepan-

cies in the simulations and the presence of artifacts is reduced. Data-driven training

images along with the use of large amount of data guarantees the generation of
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models that inherit the conceptual design imposed in the training image.
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Chapter 3

Multiple Signed Distance

Function Implicit Geologic

Modeling

Implicit geologic modeling techniques aim for objective, repeatable and flexible mod-

els. One limitation of most current implicit methods is that they only work with

two domains at a time. The current chapter presents an algorithm to generalize the

use of an implicit function in the case of multiple domains. Examples illustrate the

advantages of the algorithm and practical implementation considerations describe

the robustness and limits of the technique.

3.1 Implicit Functions

The use of implicit modeling was first introduced in the field computer graphics

for the creation of objects of distinct geometry and complexities (Bloomenthal and

Bajaj, 1997). The core idea relies on the use of an implicit function to demarcate

regions in the space of diverse shape and extension.

The implicit functions are an alternative to the classical formalism f(x) = x.

In the implicit definition, the multiple n arguments and its image are placed on

the same side of the equation in the form ϕ(x1, ...., xn) = 0. This allows defining
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a contour at 0 in n + 1 dimensions in a lower dimensional space n. The contour

determines the regions where the sign of the value of the implicit function changes,

that is, negative for inside and positive outside. The classical equation of the circle

ϕ(x, y) = x2 + y2 − 1 serves as an illustrative example, see Figure 3.1. On the left,

the function f(x, y) = x2 + y2 is plotted for the region [-2,2]x[-2,2]; on the right

the projection of function ϕ(x, y) = x2 + y2 − 1 into the plane xy. This projection

is equivalent to the circle of radius 1 intersected by the black plane at f(x, y) = 1

as shown on the right of the figure. The circle of radius 1 establishes the limits

where the function ϕ(x, y) changes sign . Different size circles may be constructed

by changing the level where the function f(x, y) is defined.

x

y

Φ(x,y)>0

Φ(x,y)<0

Φ(x,y)=0

||(
x,y

)|| 2
=1

Figure 3.1: Definition of regions in space by an implicit function. On the left, the surface-
image of the function f(x, y) = x2 + y2. The black plane is located at f(x) = 1; on the
right, the intersection of the plane and the surface that represents a circle of radium 1. The
sign of the implicit function ϕ(x, y) establishes the boundary of the circle.

This example is a simple case based on a parametric function and, in general,

would not be suitable for geological features. The following section describes how

45



implicit functions are adapted, constructed and applied to operate in a geological

perspective.

3.2 The Signed Distance Function Algorithm

The signed distance function methodology (Osher and Fedkiw, 2003) is an implicit

modeling technique where the function is constructed by interpolating a distance

measure based on the conditioning data. For each sample, an anisotropic distance

between itself and the nearest sample belonging to an opposite domain is computed

and assigned. Negative values represent the distance to the boundary for samples

within the domain, and positive values are used for the distance to the boundary

for samples outside the domain. The interface that separates the regions in space

is determined by the sign of the estimated signed values. Specifically, the algorithm

proceeds as follows.

First, the set of data {z(uα), α = 1, ...., n} is coded as a binary indicator in order

to specify the samples that belong to inside or outside domains, see Eq 3.1. Note

that the selection of which domain is considered inside is arbitrary and does not

affect the proceeding.

i(uα) =


1, if z(uα) is inside

0, if z(uα) is outside

(3.1)

Then, signed distance values are calculated for each sample according to Eq

(3.2). If the sample is inside the domain, the distance is set as negative; otherwise,

the distance is positive. The location uβ correspond to the closest sample of the

opposite domain to uα. The Euclidean norm is used to measure the distance.

d(uα) =


−||uα − uβ||, if i(uα) = 1

+||uα − uβ||, if i(uα) = 0

(3.2)

The signed implicit function is then interpolated to all locations of interest. Krig-
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ing is preferred for this task due to its ability to account for directions of continuity

and the spatial configuration of data. Other techniques such as inverse distance

could also be utilized.

d∗(u) =

n∑
α=1

λOK
α (u)d(uα) (3.3)

The interpolation technique of ordinary kriging is robust and widely used. The

kriging estimator is presented in Eq 3.3. In particular, implementation of global

ordinary kriging is recommended. This method does not search for data, using all

the available data to estimate distance values at all locations, avoiding the presence

of artifacts in the resulting models. The main disadvantage relates to the capac-

ity of computer processors for handling large amount of data which could lead to

computational intractability.

i∗(u) =


1, if d∗(u) ≤ 0

0, otherwise

(3.4)

At the end, the domains are classified at the unsampled location u in function

of the sign of the signed distance estimates, Eq 3.4. If the estimate is negative, the

location is classified as inside; otherwise, the domain is considered as outside, and

the boundary remains established.

2-D Signed Distance Modeling Example

Figure 3.2 shows an artificial example of the signed distance method. On the left

side, the two domains considered (white and black); each sample is flagged with

the distance to its closest opposite sample according to Eq (3.2). Global ordinary

kriging is performed at all locations, and colored estimates may be seen in B. The

classified domains are presented in C. The sign of the kriged estimate defines the

domains, positive for white and negative for black. Note how the smoothness of the

estimates ensures the smooth transitions and a well-delineated boundary between

the classified domains.

47



A B

C

Figure 3.2: Three fundamental steps that summarize the signed implicit geologic modeling.
On the left, the samples on the plane xy flagged with the signed distance; on the right, the
distances estimated by ordinary kriging, and at the bottom, the implicit model. In black,
the estimates lower than zero, in white the opposite.

3.2.1 Discussion

The signed distance function modeling is a reliable technique that aids the geo-

logic interpretation process. The use of an implicit function ensures a reasonable

characterization of geological features into numerical models. Some advantages and

disadvantages of the method:

Advantages:

• Geologic models are updated easily when additional data becomes available.

The method saves time since manually updating is avoided by the interpolation

procedure.
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• Using the same parameters, the models are reproduced with exactitude. This

makes auditing and checking the models more straightforward.

• A variety of sensitivity analyses may be performed in the models by modifying

the parameters involved in the interpolation of the implicit function.

• The process is fast. Geologists may focus their time on understanding the

geological processes instead of the tedious construction of cross-sections and

plan views.

Among the Disadvantages:

• The interpolation of signed distances does not consider that a trained profes-

sional can often understand important trends and specific features that may

lead to improved results.

• The algorithm is built on kriging so only linear relations between domains are

modeled. More complex geometries such as folded structures or curvilinear

shapes call for other geostatistical techniques.

• The non-stationarity behavior of the signed distance makes variogram infer-

ence arbitrary and questionable.

• There are often edge effects, that is, how far away from the geologic feature

are positive data kept? That will change the final model.

• It does not account for uncertainty.

• When dealing with multiple geologic domains, a hierarchical implementation

that manages each unit individually provides a satisfactory solution. However,

post-processing is needed due to overlapping issues.

Depending on the amount of data involved, the algorithm will provide of in-

terpretations that increase in complexity as data is increasingly collected. When

dealing with scarce and widely spaced information, no other arrangements than

linear relations may be reproduced. Whether a large amount of data is available,
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the algorithm can reproduce more complicated geometries since the drillholes have

intersected more details of the deposit.

In what follows, an extension of the distance function algorithm for multiple

domains is presented.

3.3 Distance Function Approach for Multiple Geologic

Domains

The geologic modeling of mineral deposits involves the interpretation of multiple

domains. However, the described signed implicit geologic modeling may only be ap-

plied for binary cases. The algorithm presented in this section proposes an extension

to multiple domains.

3.3.1 The Algorithm

Suppose there exists K multiple domains in the deposit. For all samples locations

{z(uα), α = 1, ...., n}, an indicator vector of K elements is coded according to:

ik(uα) =


1, if z(uα) = k

0, otherwise

k = 1, ....,K (3.5)

Thus, the k − element of the vector is one while the remainder K − 1 elements

are set to code 0.

In the same manner as Eq 3.2, the signed distance value to the closest opposite

domain is computed individually for each k element of the vector. By convenience,

the signs of the distance remain equal as the binary case: negative for inside and

positive for outside:

dk(uα) =


−||uα − uβ||, if ik(uα) = 1

+||uα − uβ||, if ik(uα) = 0

k = 1, ....,K (3.6)

Depending on the information from exploratory data analysis, different anisotropies

50



could be incorporated for each indicator. No correlations among the distance values

are considered.

The interpolation is performed individually for each element k. Ordinary kriging

is applied multiple times:

d∗k(u) =
n∑

α=1

λOK
α (u)dk(uα) k = 1, ....,K (3.7)

When the multiple variograms appear similar, a single variogram may be consid-

ered. This would reduce substantially the processing time since the kriging equations

are solved at once for all indicators. Then the final rock type model is determined:

i∗(u) = k′ such that d∗k′(u) = min{d∗k(u)}Kk=1 (3.8)

The estimated distance provides a measure of proximity to the closest opposite

domain. In this sense, the minimum estimated signed distance value may be seen

as the most probable domain to be found at an unsampled location. The classifier

presented in Eq 3.8 summarizes this idea. The indicator associated with the smallest

estimate determines the domain present at that location.

3.3.2 A Heuristic Measure of Uncertainty for Signed Distance

Estimates

The proposed geologic distance-based algorithm does not characterize uncertainty.

Practical notions of uncertainty may be coupled with the implicit modeling formal-

ism. This heuristic representation of uncertainty is not the consequence of multiple

realizations drawn from a random function; it is derived from a post-processing

transformation method.

There exist applications where uncertainty have been incorporated in the implicit

framework. McLennan and Deutsch (2006) proposed a methodology for quantify-

ing the uncertainty in the volume function of geologic objects. In this approach,

the uncertainty in the mean of the volume function is characterized by the boot-

strap sampling technique, and it is established prior to interpolation of the distance
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function. The interpolated function honors the expected values of the mean from

the bootstrap distribution; the geometry and volume will depend on the sampled

quantile.

Munroe (2012) proposed to calibrate a bandwidth of uncertainty along the

boundary of domains with two parameters C and β. C controls the thickness of the

bandwidth and β the position and tonnage distribution within the bandwidth.

A similar idea was implemented by Wilde and Deutsch (2011) where uncertainty

is considered directly in the kriging formalism by adding a constant C to the esti-

mates. The value of the constant represent an uncertainty bandwidth. Then, a set

of uniform values are simulated within the bandwidth using a p-field simulation ap-

proach; the classification of domains involves the estimated distance and simulated

uniform values. Cross validation allows calibrating the value of the constant C.

When implementing the proposed multiple signed distance function algorithm,

additional information might be retrieved from the estimated distances. As pointed

out, the set of estimated distances provides a predicted measure of proximity to the

closest boundary. This Euclidean distance measure may be carried out to a more

amenable transformed variable within 0 and 1 scale and used as a practical measure

of uncertainty.

Transformed Estimated Distance Values

A widely used approach for multiple class classification methods is the softmax

activation function or also called multiple logistic regression function (McCullagh

and Nelder, 1989). The idea is to transform the estimated signed distance into

outputs that could be interpreted as posterior probabilities. The transformed values

lie between 0 and 1 and to sum to 1. The function is commonly used to provide of

probability meaning classification methods of multiple outputs as linear discriminant

analysis and multinomial logistic regression.

P (i(u) = k) =
e

−d∗k(u)

γ∑K
k′=1 e

−d∗
k′

(u)

γ

, {k = 1, ....,K} (3.9)
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Probability 
Maps

Figure 3.3: Posterior probability estimation based on distance values. At the top on the
left, the samples configuration of multiple domains; at the top on the right, the domains
classified according to Eq 3.8. In the middle, an example of the softmax transformation
function. At the bottom, illustrations of the posterior probability for each domain after
applying the softmax function.
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The softmax activation function is presented in Equation 3.9. P (i(u) = k) rep-

resents the probability at location u to belong to category k, −d∗k(u) the estimated

signed distance for category k and γ is a parameter that regulates the interrela-

tion among the probabilities of the K categories, a large parameter leads to greater

differences in the probabilities.

To illustrate the application of the softmax function, consider the two-dimensional

example in Figure 3.3. At the top on the left, samples of four domains colored in

blue, red, green and magenta; on its right the geologic model given the minimum

estimated distance value according to Eq 3.8. The location A exemplifies the soft-

max transformation. The red arrow on the left shows the estimated distance for

each category in a bar graph, and on the right, the transformed estimates on values

scaled 0 to 1. The four maps at the bottom present the probabilities associated to

each domain after transformation is applied.

3.3.3 Use of Transformed Distances for Global Domain Proportion

Correction

In geostatistical modeling, one of the main concern is to avoid the introduction

of bias in the geologic models. The bias may be introduced through interactions

between the algorithm and parameters, geologic variability, trends models and local

particular geologic configurations.

Typically, drilling campaigns focus on areas of high grades as future profits

are expected to be obtained during the first years of mining operation and more

information is desired in these areas. This is known as preferential sampling, and

may lead to biased global proportions of geologic domains in the deposit if not

properly treated. There are several declustering techniques that account for the

preferential sampling problem such as polygonal, cell declustering, nearest neighbor

and kriging weights.

This section proposes an extension of the algorithm to generating geologic models

that matches these representative statistics of domains. The algorithm is based on

the probabilities obtained after softmax activation function is applied, and follows
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the principles of the servosystem correction tool proposed by Strebelle and Journel

(2000).

Servo System Correction

The servosystem is a mechanism that allow gaining control over the reproduction

of pre-established set of target marginal distribution of domains. The core of the

algorithm consists of updating the probabilities of the domains based on the dif-

ference between the target and current marginal distributions. The amount of the

correction is proportional to the magnitude of the difference. Eq 3.10 shows the

servosystem equation.

P (i(u) = k)updated = P (i(u) = k) + µ(p(k)− pck(u)) (3.10)

The current probability pck(u) denotes the proportions of previous estimates

nodes classified as domain k when visiting the location u; p(k) corresponds to the

target marginal distribution and µ is the servosystem correction parameter defined

as µ =
λ

1− λ
, there is more of a correction when λ is closer to one.

The Algorithm for Domain Proportion Correction

The servosystem correction is embedded in the multiple distance function algorithm.

The difference relies in the use of the transformed estimate probabilities after apply-

ing the softmax function in Eq 3.10. After the probabilities have been updated, the

classification of domains is no longer determined by the minimum estimated signed

distance, but by the maximum posterior probability. Thus, the classifier presented

in Eq 3.8 becomes:

i∗(u) = argmaxP
k
(i(u) = k)updated (3.11)

Algorithm 1 summarizes the methodology. First, the nodes are visited randomly,

this does not alter the final estimates, but avoids the introduction of artifacts when

updating the probabilities. At each node location ui, the kriged signed distance is
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determined and transformed into posterior probabilities using Eq 3.9. The next step

considers the computation of the marginal distributions for each domain including

all previous estimates up to location ui. Then, the transformed probabilities are

updated according to Eq 3.10. Finally, the domains are classified based on the

maximum updated probability. The process ends when all the nodes have been

classified.

Algorithm 1 Multiple Signed Distance Function Implicit Algorithm Equipped with
Servo System Correction

Input: Samples database, variography of domains, estimation parameters and tar-
geted proportions of domains

Output: Models of geologic domains
1: Code the samples for each domain k as ik(uα)
2: For all samples, compute the signed distance measure dk(uα)
3: Generate random path throughout the grid node
4: for each node ui {i = 1, ..., (nxnxnx)} in the grid do
5: for each domain k do
6: Estimate the distance using ordinary kriging: d∗k(ui)
7: Update posterior probabilities, P (i(ui) = k)updated, using Eq 3.10
8: end for
9: if argmaxP

k
(i(ui) = k)updated = k then

10: Node ui is classified as domain i∗(ui) = k
11: end if
12: end for

A Fortran-based program in GSLIB-like format called dfmod was written to im-

plement the algorithm; details of the code may be found on Appendix B.1. The use

of servosystem in the flowchart modeling is optional and its activation is determined

by the user.

3.3.4 Discussion

The proposed algorithm is an extension of the binary signed implicit distance ver-

sion. A classifier based on the minimum estimated distance allows establishing

boundaries between geologic domains. The improvements of the proposed exten-

sion:

• Multiple signed distance function algorithm is straightforward, fast and avail-
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able for multiple rock type modeling in an implicit framework. It is not longer

necessary to contour a complete set of sections and plan views of multiple

domains.

• The extension from binary to multiple domains is computationally efficient.

In the case that a single variogram is used, the ordinary kriging system of

equations is solved once for all domains.

• The distance function approach avoids overlapping issues among domains. No

priority criterion is needed.

• A post-processing transformation of the estimated distance provides of a heuris-

tic measure of uncertainty.

• The softmax transformation of estimated distances offers a platform for han-

dling representative global proportions in the resulting implicit geologic do-

mains.

Smooth boundaries are produced in the models due to the implementation of

ordinary kriging. Although there are no complex short scale geologic features, the

large geologic features are adequately addressed.

3.4 Application: Multiple Domain Porphyry Deposit

A multi-domain porphyry deposit serves as a case study for demonstrating the

algorithm. In order to maintain the confidentiality of the project, there is no mention

of its geographical location, grades values, and geologic domain mapping. The

example is used only for illustrative purposes.

The deposit is composed of five domains, three intrusive bodies and two oxide-

sulphide hosted domains. The spatial distribution of samples colored by domains

is shown in Figure 3.4. In yellow, magenta and cyan, the intrusives 1, 2 and 3

respectively; in green and red, the oxide and sulphide domains.
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Figure 3.4: Samples scattered plot. In cyan, magenta and yellow the intrusive mineralized
domains; in green and red, the oxide and sulphide host rock.

3.4.1 Parameter Selection

Geologic modeling for mineral deposits is often performed on a gridded model. The

grid for this case is presented in Table 3.1.

Direction Number of Blocks Size of Blocks (fts)

Northing (fts) 52 25
Easting (fts) 48 25
Elevation (fts) 90 15

Table 3.1: Parameters of block model for distance function estimation and classifi-
cation of domains.

Figure 3.5 shows five plots of the data colored by signed distance values com-

puted according to Eq 3.6. Note the trends of the signed distance and the spatial

distribution of high and low values. Special care is needed for this situation, the

non-stationary may lead to extrapolation problems at the edge of the block model.
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Figure 3.5: Scattered plot of the samples colored by signed distance. The distance is
negative when the sample belongs to the current domain and positive in the contrary case.

Figure 3.6 shows the experimental and modeled variograms for each domain.

Omnihorizontal and vertical directions are considered, no preferential directions

were found. Due to non-stationarity of the distance values, the variograms do not

have stationary sills. Also, the linearity of the distance make that the origin behave
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Figure 3.6: Experimental and modeled variogram for each domain. The linear nature of the
signed distance provoke that the variograms present a square growth at the origin; Gaussian
models were used. In red, the omnihorizontal variogram; in blue, the vertical direction.

close to a quadratic form. The gaussian model is a well-suited structure for this

type of variograms. Table 3.2 shows the nugget effect, the range, and the sill of the

variogram models. Two structures are used to model all directions.
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Mode Nugget Effect First Structure Second Structure

Rangexy Rangez Sill Rangexy Rangez Sill
Intrusive 1 0.0 320 500 4,000 820 ∞ 15,000
Intrusive 2 0.0 400 800 7,000 ∞ 800 20,000
Intrusive 3 0.0 300 400 4,000 900 ∞ 15,000

Oxide 0.0 250 500 4,000 820 ∞ 15,000
Sulphide 0.0 320 500 4,000 820 ∞ 15,000

Table 3.2: Parameters of variogram models for each geologic domain.

3.4.2 Implementation

Before the implementation, a practical aspect involved in the use of global ordinary

kriging need to be clarified. Computational requirements restrict the implementa-

tion of global kriging for projects that involve a large amount of samples. Typically,

kriging related programs may deal up to a maximum of 10,000 samples at once in

order to maintain mathematical stability of computations. Instead, a large neigh-

borhood is considered.

A total of 224,640 blocks were estimated. Table 3.3 summarizes the parameters

used for kriging estimation. The dimension of the search neighborhood is approx-

imately half of the area under study. All domains use the same parameters, this

provides consistency to the models; even though, different parameters could be used

if desired.

Estimation Parameters Radiusx Radiusx Radiusx Number of Samples

All Domains 700 1,000 1,000 128

Table 3.3: Ordinary kriging estimation parameters.

Isometric views of the modeled intrusive and hosted rock domains are presented

in Figure 3.7. The models in A, B and C display the intrusives individually; image

D summarizes the entire model with the oxide and sulphide hosted units at the

background. The intrusives appear rather continuous, and no artifacts are observed

in these simple views. The transition between domains does not show abrupt changes

or artificial geologic arrangements. The continuity of domains shown by the samples

is maintained in the models, and isolated objects are minimized. The oxide-sulphide

61



A B

C D

Figure 3.7: Implicit geologic model for the porphyry deposit constructed by the proposed
multiple distance function algorithm. Each intrusive domain is represented individually, and
the entire model portrayed on the bottom-right corner.

boundary presents a natural transition at distinct depth.

Figure 3.8 complements the analysis providing of six cross-sections oriented along

east-west and north-south directions. Intrusives are well modeled, maintaining a

representative spatial organization for this type of deposits. The samples are also

displayed for comparison purposes; the data are reproduced. There is no bias in

proportions and the shape, extension and geologic variability of the domains do not

show artifacts or anomalous features.

A second illustration in Figure 3.9 shows maps of the estimated transformed

probability values based on the softmax function (Eq 3.9). Transitions between
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Figure 3.8: Six North and East cross sections of the model in Figure 3.7. In cyan, magenta
and yellow the intrusive domain; the green and red correspond to the oxide sulphide contact.
The samples are also deployed. No visual evidence related to the introduction of bias in the
model is observed.

domains are well described by the probability maps. To evaluate the effectiveness

of the posterior probability, the samples are also displayed; in black, the data that

belong to the actual domain, in white the samples of remainder domains. The ap-
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Figure 3.9: Representation of the estimated posterior probability. The cross section in the
middle on the left of Figure 3.8 was used. The black dots represent the samples that belong
to the current domain and the white ones the samples of any opposite domain.

proach serves as a heuristic complementary analysis and provides a general reference

to aspects of uncertainty.
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3.4.3 Example of Global Domain Proportion Correction

In this example, the performance of the servosystem method is evaluated. The

target proportions for the corrections of the five domains are set up to different

values and the servosystem applied. Three cases are assessed; the same variogram

models and estimation parameters are used for all the cases. Table 3.4 shows the

resulting proportions in the models compared to their targets for each domain. Case

1 and 3 match perfectly the target, subtle differences are observed in Case 2 for the

oxide and sulphide domains.

Global Proportion Servo System Correction Results
Domains (%) Oxide Sulphide Intrusive 1 Intrusive 2 Intrusive 3

Case 1
Target 40 38 4 8 10
Reached 40 38 4 8 10

Case 2
Target 35 33 7 11 14
Reached 36 34 6 10 14

Case 3
Target 48 45 1 2 4
Reached 48 45 1 2 4

Table 3.4: Resulting global proportion of geologic domains after servo system cor-
rection.

Figure 3.10 presents the geologic models for the three cases. Each column rep-

resent one target setting of domain proportions. The models are compared to the

original model considered in Section 3.4. Case 1 shows similar results since the tar-

get proportions were set to the same proportions as the original model. Different

results are seen for cases 2 and 3. Case 2 considers models where the proportions

of intrusive units are increased. From the images observed (second column), all

intrusive units shown a substantial increase in their size. The target proportions

of the intrusives are decreased in Case 3. The size of the intrusive is constrained

to small areas around the conditioning data. Issues related to conditioning of the

samples may appear if the models are corrected significantly. The algorithm relies

on coupling the servosystem correction with representative statistics determined by

well-established declustering methods.
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Figure 3.10: Geologic models for three different configurations of global domain propor-
tions; an isometric view and two cross sections for each case are presented. The first column
corresponds to the global proportions: 40%, 38%, 4%, 8%, 10%; the second column set to
35%, 33%, 7%, 11%, 14%, and the third column the model set to 48%, 45%, 1%, 2%, 4%
for the oxide, sulphide, intrusive 1, 2 and 3 respectevely.

3.4.4 Accounting for Boundary Extrapolation of Domains

A concern of the multiple distance function approach relates to the extrapolation

of the estimated domains influence of samples. This requires a sound knowledge of

the characteristics of the deposit. There exist situations where the domains need to

be constrained to control excessive extrapolation and to avoid the introduction of

bias in the models.

In particular, the spatial configuration of samples plays a fundamental role in the
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Figure 3.11: Example based on a gold deposit. On the left, isometric view of the scattered
samples; four domains are included red, orange and yellow represent the folded sedimentary
units, the smaller black dots the host rock. On the right, a zoomed view of the blue rectangle
of figure A. The samples within the black ellipse represent a risk of extrapolation.

extrapolation of distance estimates. Depending on this, there may exist situations

where the extrapolation may not be controlled satisfactorily. A real case example

based on a folded-sedimentary gold deposit is introduced in order to analyze the

causes and to propose alternatives for handling the extrapolation problem.

Figure 3.11 on the left presents an isometric view of the samples. The red, yellow

and orange samples portray three folded-sedimentary domains, the small black dots

represent the host rock. The blue rectangle B on the left is zoomed in on the right to

enhance the visualization of the configuration of samples at the edge of the model.

The set of red samples inside the circle is an illustrative example of a potential area

of uncontrolled extrapolation. The drillholes within the circle do not have samples

of host rock nearby. This situation may occur repeatable times in the deposit and

typically will produce extrapolation problems beyond the limits of the grid node.

To observe the consequences of uncontrolled extrapolation, the multiple signed

distance function algorithm was applied, see Figure 3.12 on the left for the illus-
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Figure 3.12: On the left, the entire model in three-dimension, the blue cross sections A
and A’ are plotted on the right of the figure. Extrapolation of domains red and yellow is
highlighted.

tration. The image also shows an exaggerated representation of the red domain on

the north-east corner. Two blue slices that cut the model are shown as sections A

and A’ on the right. The final model and the scattered samples are also plotted

for visual inspection. Both sections show how the red and yellow domains depart

excessively from the limits of the model.

Extrapolation depends on the kriging weights applied to the local conditioning

samples, see Eq 3.7. Thus, when locations far away from samples are estimated, the

kriged signed distance estimates become relatively constant. This situation causes

the issues described above.

An alternative treatment consists of implementing a restriction upon the esti-

mates beyond the range of the variogram, and applying the proposed servosystem

correction. The approach proceeds as follows: all the nodes beyond the range of the

variogram are automatically assigned to the host rock limiting the extrapolation.

Local problems as the tendency to generate isolated structures and abrupt transi-
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Figure 3.13: Same model as Figure 3.12. The nodes beyond the limit of the variogram are
not estimated and directly assigned to the host rock domain.

tions are solved by a servosystem. Figure 3.13 shows an example of the proposed

corrector. Sections A and A’ show how the extrapolation is controlled up to 150

meters (the range of the variogram), and the application of servosystem helps to

maintain the coherence in the model.

Other alternatives could also be considered such as the implementation of ar-

tificial controlling samples at the edge of the models. The major disadvantage of

this is that, without proper geologic knowledge, artifacts could be introduced mak-

ing the models even worse. Another alternative consists of applying the distance

function algorithm in its primal binary version hierarchically, Section 3.1, change to

simple kriging and manipulate artificially the mean to manage the extrapolation.

However in both cases, the additional manipulation would harm the simplicity of

the algorithm.
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3.4.5 Discussion

The proposed multiple signed distance implicit algorithm is able to reproduce and

transfer large scale geological features into numerical models. The method is not

restricted by the number of domains considered. The geological information is in-

corporated through the calculation of signed distance, but also, by the directions of

continuity in the variograms models. The use of large searching parameters for the

estimation process approximates the results as if global kriging were applied. Some

additional practical considerations are addressed below.

3.5 Assessment and Practical Considerations of the

Algorithm

Geologic modeling algorithms must satisfy certain principles to be considered as

reliable. A detailed investigation developed by McLennan (2007) established six

principles related to concepts including simplicity, speed, objectivity, data integration,

access to uncertainty and geologic realism. The multiple signed distance function is

evaluated in the light of these principles, pointing out its strengths and weakness.

Simplicity : The implementation of the algorithm is straightforward. No com-

plicated mathematical functions are needed. The idea of a signed distance to a

different domain is easy to understand.

Speed: The core of the algorithm relies on the implementation of kriging, and

kriging methods are quite fast. Some limitation comes from the use of a large

number of samples.

Objectivity: The approach was devised to overcome the subjectivity involved

in explicit geologic modeling methods. Reproducible models are expected when

estimation parameters remain constant. The models are not subject to arbitrariness

of one modeler.

Data Integration: The algorithm is flexible to incorporate additional informa-

tion of the same type; however, it has not been designed to account for secondary

information.
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Access to Uncertainty: The algorithm does not account for uncertainty. An

alternative based on the transformation of the distance values allow incorporating

an heuristic measure of uncertainty into the models.

Geologically Realistic: Models are considered to be realistic when they provide

an acceptable level of agreement to geologic interpretation and the evidence gathered

by the modeler. The agreement comes from the fact that the spatial continuity of ge-

ologic domain is properly reproduced, that is, reproduction of large scale structures

and their placement in the space. However, the short scale resolution is question-

able. The smoothness property of kriging leads to geologic models with smooth

transitions that may not be realistic.

The algorithms are dependent on the input parameters and may show instability.

In this sense, a seventh principle is added to the assessment: the robustness of the

algorithm.

3.5.1 Robustness of Algorithm

The robustness of the algorithm is checked through sensitivity analysis on the pa-

rameters. In particular, the concept of robustness refers to the generation of slightly

less efficient models, but that still provide acceptable results when large deviations

are applied to the parameters.

Variograms models and estimation parameters are considered for sensitivity anal-

ysis. Global proportions of domains and visual inspection are used to evaluate the

robustness of the algorithm. Comparisons are made with the porphyry case study

shown in Section 3.4. Three scenarios are proposed: 1) change the sill and range

for all domains simultaneously, 2) modify the variogram model for an individual

domain and 3) change the number of samples considered for estimation.

Variation of Variograms Model for All Domains: The nugget effect of the vari-

ogram model is modified in 10%, 30% and 50%, whereas the range changed in 50%

and 200%. Table 3.5 presents a summary of the global proportions for each domain

after the modifications are applied; the global proportion of the base case is also

presented in the first column. Figures 3.14 and 3.15 provides isometric views of
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Figure 3.14: Models for three different nugget effect in the variogram model. The values
used were 10%, 30% and 50% of the original nugget effect.

the models. In general, the spatial organization among domains remains similar to

the base case (Figure 3.7). The large scale general shape and orientation remain

the same. However, some changes in the models may be linked to the nugget and

variogram range parameters. The increment to the nugget effect disconnects the

intrusive domains. This is illustrated by the purple domain in Figure 3.14 that

tends to disconnect from the rising trunk as the nugget effect increases. Thus, less

continuous variogram models lead to disconnected bodies. Table 3.5 quantifies the

previous effect, the global proportion of all intrusive domains decreases. The same

effect is noted when augmenting the range of the variogram models. Table 3.5 and

Figure 3.15 shows similar results, an increment in the proportions of the intrusive.

Variation of Variogram Model for Intrusive 3: Here, the variogram model is
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Percentage Domain (%) Base Case
Nugget Effect Range

10% 30% 50% 50% 200%

Intrusive 1 2.1 1.8 1.6 1.4 1.9 1.7
Intrusive 2 5.7 5.8 5.8 5.8 5.6 6.1
Intrusive 3 8.4 7.6 6.7 6.0 6.5 9.9

Oxide 42.8 43.4 44.0 44.4 44.3 41.3
Sulphide 40.9 41.3 41.8 42.2 41.6 40.9

Table 3.5: Resulting global proportion of geologic domains when modifying vari-
ogram models.

Figure 3.15: Geologic models when the range of the variogram for all the domains is
changed to 50% and 200% respect to the original variogram.

modified individually for intrusive 3. Results are shown in Figure 3.16 and Table

3.6. The intrusives 1 and 2 remains equal in terms of global proportion if compared

to the base case. The major change is related to the relation between the intrusive

3 and the host rock. The proportion of intrusive 3 decreases when the range is

modified to 50% of the original range, the contrary is observed when using 200 %

of the range. The changes to intrusive 3 may be seen on the right side of the Figure

3.16 where the absence of conditioning samples allows spreading the intrusive.

Variogram models influence the shape and spatial extension of the geologic do-

mains. High nugget effect and low range in the variograms lead to generating isolated

geologic objects. On the contrary, continuous variogram models generate larger ob-

jects.

Number of Samples: A third element to be considered is the number of sam-
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Percentage Domain (%) Base Case
Range

50% 200%

Intrusive 1 2.1 2.1 2.1
Intrusive 2 5.7 5.8 5.8
Intrusive 3 8.4 7.9 8.6

Oxide 42.8 41.1 40.1
Sulphide 40.9 43.1 42.8

Table 3.6: Resulting global proportion when modifying variogram model of domain
intrusive 3.

Figure 3.16: Same case as Figure 3.15, but the range of the variogram was only changed
for the intrusive purple domain. The objective is to analyse how sensitive is the model when
one individual domain variogram model is altered.

Percentage Domain (%) Base Case (128 Samples)
Number of Samples
32 64 96

Intrusive 1 2.1 2.1 2.1 2.1
Intrusive 2 5.7 5.8 5.7 5.8
Intrusive 3 8.4 8.8 8.2 8.3

Oxide 42.8 43.2 43.1 42.8
Sulphide 40.9 39.9 40.6 40.9

Table 3.7: Resulting global proportion when modifying the number of conditioning
samples for signed distance estimation.

ples used for signed distances estimation. The effect of the number samples upon

the models may be observed in Figure 3.17 and Table 3.7. A maximum number of

samples of 32, 64 and 96 was applied. Visually, unrealistic edges and transitions

of objects are observed when using 32 and 64 samples; the domains deviate sub-

stantially from the base case Figure in 3.7. In the case of 96 samples, the global
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Figure 3.17: Geologic models using 32, 64 and 96 samples for ordinary kriging estimation.

proportions of domains remain similar to the base case.

Variograms models and estimation parameters may affect the final proportions

of the geologic domains. This is important since there is some risk of introducing

bias in the models. Bias in the global proportions of domains might affect the

quantification of tonnage and grade of minerals attributes.

3.6 Discussion

An alternative geologic modeling approach based on signed distance function esti-

mates has been presented. The method accounts for objectivity, reduces the time-

consuming interpretative work, facilitates auditable revisions and offers an easy

manner to update geologic modeling with new information. It is straightforward
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to be implemented and does not require heavy parameterization. A post-processing

correction for global proportions of the geologic domains is proposed. It adds model-

ing flexibility and allows maintaining coherence in the models by matching previous

established representative global geologic domain proportions.

The proposed implicit geologic modeling algorithm shows promise results for

mineral resource evaluation. Future avenues of research would include the imple-

mentation of a grid-free scheme that facilitates the construction of wireframes at any

resolution. The introduction of local trends maps for non-stationary modeling. De-

veloping hybrid techniques considering explicit, implicit and stochastic approaches

also remains an interesting path of investigation.
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Chapter 4

MPS Simulation with Multiple

Data-Driven Training Images

This chapter discusses the use of multiple data-driven training images for spatial

modeling of geologic domains through a scheme of data integration of conditional

probabilities known as a linear opinion pool. The proposed methodology reproduces

features from the training images with the correct amount of geologic continuity and

variability.

Section 4.1 presents an introduction to the concept of data-driven training

images and discusses the advantage of their integration in the context of geologic

variability reproduction.

Section 4.2 provides a general description of the proposed methodology. Details

are presented and discussed in the subsequent three sections. In particular, Section

4.3 describes the process of constructing data-driven training images. Section 4.4

explains the fundamentals of the integration of data-driven training images based

on the linear opinion pool scheme. Section 4.5 describes the calibration process

for determining the correct degree of mixing between the training images.

The last two sections are devoted to the analysis of the realizations generated

by the methodology. Section 4.6 reviews the reproduction of expected geologic

features when considering the linear integration of training images and Section 4.7
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evaluates the performance of the geostatistical model.

Finally, a brief discussion of the results and final remarks of the method are

presented in Section 4.8.

4.1 Introduction

One concern with multiple point statistics methods is find a valid and suitable train-

ing image that reflects the level of prior geologic knowledge of the reservoir/deposit.

Reproduction of geologic structures contained in the training image is not guaran-

teed if the conditioning data are not consistent with the image (Journel, 2004). If

the link between the data and training image is not strongly supported by geologic

knowledge, the models may not correctly represent the spatial variability. Jour-

nel and Zhang (2006) demonstrated large differences in flow performance of models

with the same histogram and covariance function, but differing multiple point ge-

ological structures. The prior geologic model defined by a training image requires

a minimum level of agreement with the data to ensure a consistent reproduction of

data and prior features. Thus, generating a training image based on data would

guarantee consistency and local relevance, providing strong site-specific geological

support.

To use training images conditioned by data is particularly interesting in mining

projects since there are many more data than most petroleum reservoirs. The ap-

plication of MPS methods is not particularly popular in mining partially due to the

difficulty of obtaining a representative training image where the depositional and al-

teration processes are quite complex. Some methods have been proposed. (Boisvert,

2007) developed a genetic geologic modeling process for vein type and weathered

lateritic type deposits. The use of exhaustive amount of data (blastholes) to model

nearby zones that share common geologic structures has been also applied (Perez,

2011; Boisvert, 2007). However, these approaches do not explicitly account for the

risk of a mismatch between the data and the training image. In this respect, the

following chapter develops the concept of a data-driven training image to the task
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of establishing geologically acceptable realizations.

This chapter presents an innovative method that incorporates valuable infor-

mation from two valid, but individually unrealistic, deterministic and stochastic

geologic interpretations (data-driven training images). The advantage of utilizing

more than one training image is the ability to capture distinct heterogeneities, vari-

ability and multiple point configurations from each image and combine them. The

proposed methodology reproduces the correct geologic spatial variability and conti-

nuity of domains supported by the conditioning data. By combining the conditional

probabilities estimated from both images, the approach is able to model high-order

relations that range from the original deterministic to stochastic training images.

4.2 Description of the Method

A variant of Multiple Point Statistics simulation is developed to use multiple (two in

practice, but the methodology is flexible) training images. The general outline of the

proposed methodology is summarized in Figure 4.1. It consists of four stages: (1)

the construction of data-driven training images, (2) the generation of realizations

based on the integration of training images using the linear opinion pool (LOP)

(Stone, 1961), (3) the calibration process, and (4) the simulation based on cali-

brated weights. A detailed description of each stage involved is provided in separate

sections.

(1) Construction of Training Images:

Deterministic and stochastic data-driven training images are constructed based on

the same conditioning data.

(2) Generate a Set of Combined Simulations:

The idea of the proposed method is the integration of the conditional probabilities

inferred from both training images using the linear opinion pool combination scheme

in the sequential MPS simulation framework. Algorithm 2 in Section 4.4.3 provides
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Figure 4.1: Schematic flowchart of the proposed algorithm. Four major areas are involved:
in red, the process of construction of training images; the green shows the integration of
multiple images for MPS simulation; in light blue, the calibration of the geologic variability
between realizations and the drillholes; and in cyan, the generation of calibrated MPS
realizations.

a detailed description of this process.

This second stage involves the generation of multiple realizations with a different

combination of the training images. Each realization is the result of a particular

linear combination based on weights set up in intervals determined by the user; these

weights are specified within the [0, 1] range.
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(3) Calibration:

This stage will be reviewed in detail in Section 4.5. The concept of entropy (Journel

and Deutsch, 1993) is introduced as a measure of the spatial variability of the

geology. The set of realizations generated in the previous step are calibrated with

respect to the spatial variability of the conditioning data.

(4) Generating Calibrated MPS Simulations:

Once the weights have been calibrated, the method generates realizations that re-

produce the same amount of geologic variability as shown by the conditioning data.

No other technique in current usage guarantees the correct modeling in the context

of geologic variability reproduction.

4.3 Construction of Data-Driven Training Images

Both deterministic and stochastic training images represent interpretations based on

the available data; the difference lies in the principles assumed for their construction.

The LOP integration scheme unifies those principles in a flexible manner.

4.3.1 Geologic Deterministic Training Image (DTI)

A deterministic training image is generated by a smooth interpretative process.

Both the explicit and implicit approaches described in Section 2 could be used. The

first uses manual cross-sectional and plan view interpretations; the second generates

three-dimensional objects by defining implicit functions in space. These approaches

efficiently model large scale geological structures. The relation among distinct do-

mains is well understood and the spatial arrangements are correctly set out, consti-

tuting reasonable large scale morphological arrangements.

The implicit geologic modeling technique based on signed distance functions de-

veloped and presented in Section 3.3 will be used. The method is incorporated into

the flowchart of the algorithm to provide quick and geologically plausible determin-

istic models.
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4.3.2 Geologic Stochastic Training Image (STI)

The construction of the stochastic training image is based on the use of SIS, but

other geostatistical methods could be used. Even though the method can appear

somewhat patchy and unstructured (Deutsch, 2006), it gives a good approach for

simulating models with somewhat random geological transitions. A completely dif-

ferent training image in terms of continuity is produced by SIS. Unlike the distance

function approach, the SIS methodology and applications are well documented in

the geostatistics literature (Chilès and Delfiner, 1999; Deutsch and Journel, 1998;

Goovaerts, 1997; Journel, 1983; Journel and Isaaks, 1984); however, the details are

not reproduced here.

4.4 Integrating Training Images for Reproduction of

Geologic Variability

This section addresses the problem of integrating multiple training images. The

objective is to develop a MPS algorithm that allows combining the geologic features

from deterministic and stochastic training images. Both linear and multiplicative

data integration methods are explored. Examples provide insights into the linear

integration of training images and the proposed method.

4.4.1 Problem Statement

Based on the terminology developed in Section 2.4, consider a data event Dm,n

centered at location u surrounded by n conditioning data that may take K values

from the set of categories {sk, k = 1, ....,K}. Now, consider that the data event is

related to the training image m from the set of images {m = 1, ....,M}, that is,

the inference of the conditional probability must be computed using the training

image m. By definition the conditional probability of the indicator variable S(u)
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that takes the state sk conditioned to the data event Dm,n is given by:

P (S(u) = sk|Dm,n) =
P (S(u) = sk, Dm,n)

P (Dm,n)
(4.1)

As reviewed in Section 2.4.1, this conditional probability is the ratio of the

frequency of appearance of the joint event {S(u) = sk, Dm,n} and the data event

Dm,n in the training image m. In the same manner, the conditional probability

could be extended to the case of considering M multiple training images. Now, the

problem consists of how to integrate the information from these multiple training

images, that is, provide a solution for the posterior conditional probability:

P (S(u) = sk|D1,n, ...., Dm,n). (4.2)

The correct solution would require knowledge of the joint multivariate distribu-

tions of {D1,n, ...., Dm,n} and {S(u) = sk, D1,n, ...., Dm,n}. This information is not

available because we do not have a repetition of multiple training images.

Integration of multiple data sources as in Eq 4.2 has been widely studied in

the field of geostatistics (Allard et al., 2012; Hong, 2010; Journel, 2002; Polyakova

and Journel, 2007). The limited and sometimes poor understanding among the

sources of information calls for assumptions that considers each individual source in

a suitable theoretical and practical framework. Different approaches have been pro-

posed with different assumptions for different objectives. Two classes of probability

combination models to solve Eq 4.2 may be found in the literature: those based

on multiplicative and additive aggregation operators (Allard et al., 2012). In the

context of combining training images, special attention has been placed on the addi-

tive linear method, specifically a branch of management science known as consensus

theory (Winkler, 1968), where a weighted linear opinion pool offers a scheme with

desirable properties. In particular, consensus theory considers the importance of

weighting expert opinions to combine the conditional probabilities from each source

of information.
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4.4.2 Additive Aggregation: Linear Opinion Pool

Instead of estimating the unaccessible joint multivariate distribution in Eq 4.2, one

could consider the integration of the conditional probabilities inferred from each

training image m = {1, ....,M} by a function f(D1,n, .., Dm,n). A reasonable option

for this function would consists of using a weighted linear integration; this scheme

is known as linear opinion pool (Stone, 1961):

P (S(u) = sk|D1,n, .., Dm,n) = f(D1,n, .., Dm,n) =
m∑
i=1

wiP (S(u) = sk|Di,n), (4.3)

where wi ≥ 0 and
∑m

i=1wi = 1. The result must be a consistent probability

value between 0 to 1 and satisfy the closure property, that is, sum to unity. The

linear opinion pool assumes that each training images is conditioned to the opinion

of an expert. The problem is to quantify the weights wi for each training image.

These weights can be based on the expertise of the decision maker, determined by

some previous mathematical model or, as presented here, calibrated based on the

geologic variability of the conditioning data.

The linear opinion pool (Eq 4.3) is convex, which is a good property in the con-

text of geologic variability reproduction. The combined probability falls inside the

range of the individual probabilities computed from the training images. The con-

vexity of the combined probabilities corresponds to a mixture model. The individual

conditional probabilities have access to the same information but are considered dif-

ferently. This redundancy justifies using the linear opinion pool for mixing geologic

features instead of commonly used multiplicative aggregative methods in earth sci-

ences, which sometimes lead to a non-convex solution due to the distinct information

within each source of information.

4.4.3 Linear Opinion Pool MPS Combination Scheme Algorithm

Algorithm 2 summarizes the steps involved for MPS simulation based on the inte-

gration of training images using the LOP scheme. The grid node is defined (Line

1). All the nodes of the grid are randomly visited; this is represented by the loop
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between Line 2 and Line 11. To simulate a node, the set of n hard data surrounding

the current location is found, that is, the data event Dm,n associated to location

u (Line 3). At this point, the original MPS algorithm is modified; the data event

is used to compute the conditional probabilities derived from all training images

m = {1, ....,M}; a second loop that visits the M training images is defined between

Lines 4 and 7. Given the unique evidence provided by the data event, the condi-

tional probabilities express distinct information from each training image (Line 5).

These probabilities are computed for each training image (Line 6). Then, the condi-

tional probabilities are combined linearly according to weights wi allocated to each

image (Line 8), Eq 4.3. The posterior probabilities are updated and a categorical

value drawn from the set of probabilities (Line 9), the value is added to the location

and the process continues (Line 10). The simulation ends when all nodes have been

simulated (Line 12).

Algorithm 2 MPS Simulation with Multiple Training Images

Input: Samples database, Data-Driven Training Images
Output: Simulations that combine geological features from both training images
1: Set up a regular grid of nx, ny, nz and the size of nodes xsiz, ysiz, zsiz over the

area to be modeled
2: for each node along the random path {i = 1, ..., (nxnynz)} do
3: Retrieve the data event Dn(u) associated to the spatial configuration of n

data
4: for each training image m = 1, ....,M do
5: Associate the data event to the training image m, Dm,n(u) = Dn(u)
6: Compute the conditional probability P (S(u) = sk|Di,n)
7: end for
8: Integrate the conditional probabilities by the linear combination scheme

P (S(u) = sk|D1,n, ...., Dm,n) =
∑n

i=1wiP (S(u) = sk|Di,n)
9: Draw the categorical variable from the posterior probability P (S(u) =

sk|D1,n, ...., Dm,n)
10: Add the simulated value sk at location u and move to the next node
11: end for
12: Return or repeat the process for anew simulation

The previous algorithm was implemented by the program snesimmti written in

ANSI standard Fortran 90. The snesim algorithm developed by Strebelle (2002)

is used as the platform for the linear integration of the conditional probabilities.
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Many parameters related to snesim apply to snesimmti including global and vertical

target proportions for the servosystem correction, training image parameterization,

template set up, the minimum number of data events, definition of multigrids and

conditioning data searching parameters.

4.4.4 Application: A 2-D Example

Three examples based on training images of different nature are used to illustrate

the proposed algorithm.

Geologic DTI 90% DTI−10% STI 80% DTI−20% STI 70% DTI−30% STI 

60% DTI−40% STI 50% DTI−50% STI 40% DTI−60% STI 30% DTI−70% STI 

20% DTI−80% STI 10% DTI−90% STI Geologic STI

Figure 4.2: Realizations generated by the integration of multiple training images using the
LOP scheme. The example consists of an artificial exercise using spheres. The first and last
images correspond to the training images. The nine simulations in between correspond to
configurations of weigths in intervals of 10%.

The size and configuration of the data event Dm,n must be considered in the

examples. A large data event probably will not find enough replicates to estimate
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the conditional probability. Conversely, a too specific and smaller data event will

not capture larger scale features between the data points. The size and configuration

of the data event should be chosen to capture the main features, but at the same

time, to permit stable calculations.

Geologic DTI 90% DTI−10% STI 80% DTI−20% STI 70% DTI−30% STI 

60% DTI−40% STI 50% DTI−50% STI 40% DTI−60% STI 30% DTI−70% STI 

20% DTI−80% STI 10% DTI−90% STI Geologic STI

Figure 4.3: Realizations generated by the integration of multiple training images using the
LOP scheme. The example is based on training images of a fluvial reservoir. The first and
last images correspond to the training images. The nine simulations in between correspond
to configurations of weigths in intervals of 10%.

Examples are shown in Figures 4.2, 4.3 and 4.4. Random samples were extracted

from training images and used as conditioning data. Nine scenarios in intervals of

10% were generated. To make the comparison among simulation easier, the same

random path was used.

The convex nature of the linear data integration scheme is reflected in the re-

sulting simulations. For the three cases, the models transit from one well-structured
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Geologic DTI 90% DTI−10% STI 80% DTI−20% STI 70% DTI−30% STI 

60% DTI−40% STI 50% DTI−50% STI 40% DTI−60% STI 30% DTI−70% STI 

20% DTI−80% STI 10% DTI−90% STI Geologic STI

Figure 4.4: Realizations generated by the integration of multiple training images using the
LOP scheme. The example is based on a reservoir characterized by turbidite lobes. The
first and last images correspond to the training images. The nine simulations in between
correspond to configurations of weigths in intervals of 10%.

and continuous realization to another where the patterns are increasingly randomly

arranged. The resultant models respond to essential features from both training

images according the level of mixing. In all the cases, the models are in between

the two training images.

A reasonable amount of continuity and randomness are reproduced in the mod-

els. The realizations preserve the geologic structures from both training images by

maintaining large scale structures of the deterministic, but incorporating the ran-

domness of SIS at different rates as required. The generation of geologic features in

the realization is not exclusively reserved to patterns contained in the training im-

ages. By combining the conditional probabilities, the linear opinion pool updates the
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information modifying the underlying random function, generating novel geological

features not contained in the images. These unique features result in realizations

with a controllable degree of randomness in the spatial arrangements of geologic

domains.

4.4.5 Issues with Multiplicative Aggregation Methods

The second branch of aggregation probability methods are based on the multiplica-

tive integration of individual conditional probabilities. Among these methods, there

exist approaches to weight the sources of information. Journel (2002) proposed

the permanence of ratio model based on the conditional independence of the sec-

ondary information. The data sources are not entirely conditionally independent,

thus, the Tau model Journel (2002) and other weighted combination models (Hong,

2010; Polyakova and Journel, 2007) account for this redundancy and improve the

predictive capabilities of the models.

The weighted combination models provide convex and non-convex combined

probabilities depending on the specific probabilities and weights. It offers a robust

framework for dealing with probabilities from unique data sources and varying lev-

els of reliability and information. As discussed earlier, the multiple training images

correspond to two valid interpretations of the same geological phenomenon subject

to the same level of information. Even though the Tau model was proposed to

deal with redundant sources of information, the redundancy of the training image

may be treated better by the linear opinion pool. Here, the convex property of the

aggregation method becomes an important requirement when combining probabili-

ties from different training images. The proposed methodology aims at generating

realizations in between both training images.

The non-convex property reduces the uncertainty of the primary attributes by

increasing its certainty of occurrence. In other words, the combined probabilities

tend to be closer to 0 or 1. This property is not desirable when the sources of infor-

mation are particularly redundant as the case of the proposed data-driven training

images. To illustrate this point, let us suppose that no weighting scheme is adopted,
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Figure 4.5: Three realizations resulting from the integration of two training images based
on the multiplicative approach of pernanence of ratio. Same examples of Figure 4.2, 4.3
and 4.4 are used. The first and last column represent the training images, in the middle the
realizations.

and the weights of the Tau model are unity (equally weighted sources). This con-

figuration assumes no redundancy between the training images, turning into the

well-known permanence of ratio model. Given a data event Dn, both training im-

ages provide unbiased predictions of occurrence of the primary attribute. As both

images are highly correlated, it is likely that the combined probabilities over or un-

der estimate the probability of the attribute. Besides, the nature of the features of

the training images comes into play an important role in the behavior of the com-

bined probabilities. The training image derived from the SIS will turn into a less

certain probability, given the high entropy nature of the image, than the smooth one.

Therefore, one would expect that correct (true) probability would be far from the

probability estimated from the SIS, but closer to the probability estimated from the

smooth image. Thereby, the combined probability should be placed outside the in-
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terval of conditional secondary probabilities, but closer to the smooth one. Thus, the

non-convex character accentuates even more the tendency to predict the posterior

probabilities smaller and greater than the probability computed from the smooth

image, pushing the probabilities even closer to the extremes. Figure 4.5 shows an

example of applying the permanence of ratios approach when combining training

images. Three distinct training image are used, both represented by the first and

last column. The column in the middle shows a realization with the same smooth

character than the training images on the left, which is not the expected result in

the current context. The multiplicative integration of the conditional probabilities

accentuated the probability computed from the smooth training image.

The setup of the weights for the tau model is unclear and the assumptions un-

derlying the method are not satisfied. The linear opinion pool is the straightforward

and correct technique to combine probabilities in our context of balance the geologic

variability in the models, but certainly not in all circumstances.

4.5 Calibration of the Training Images

A data-based approach to calibrate the weights for each training image is proposed.

As mentioned before, the assignment of weights could be imposed directly by the

expertise of the geomodeler and the resulting realizations validated according to the

geological variability expected by the expert. However, one would wish to select

the correct mixture between the training images using an objective and practical

approach based on available conditioning data. The goal is to correctly reproduce

the geological variability, that is, the spatial disorder of the geologic attribute. Thus,

a measure of entropy appears as a natural tool for calibrating the mixture model.

4.5.1 Entropy as a Measure of Spatial Disorder

Entropy was introduced in geostatistics by Christakos (1990) as a measure of un-

certainty of probability density functions. In the case of discrete variable with n
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different probabilities, it is defined as:

H = −
n∑

k=1

pk ln(pk), (4.4)

with pk being the probability of occurrence of each of the n possible outcomes

of the random function and
∑n

k=1 pk = 1. In the case of continues variables, the pk

is replaced by the probability density function and the summation by the integral.

The entropy is a summary statistic similar to the variance, but aimed at categorical

variables that have no intrinsic numerical value.

H = 0.507 H = 0.554

H = 1.203

Figure 4.6: Multiple point density functions for three training images. In red, the computed
entropy associated with each image. At the top on the left, a well-shaped fluvial image; on
its right, a stochastic image generate by SIS. The case of maximum entropy is given by the
image at the bottom.
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The concept of entropy in a spatial disorder framework was first introduced by

Journel and Deutsch (1993) for assessing the resulting response distributions assum-

ing different random functions given the same level of known spatial statistics. In

this work, the entropy is used for assessing the spatial disorder of simulated real-

izations. The spatial entropy allows evaluating the degree of disorder of a training

image by using templates of distinct size and configurations.

To illustrate the entropy as a measure of spatial disorder, the example in Figure

4.6 is presented. At the top, two training images with significant differences in

terms of continuity. The image on the left shows well-defined limits of channel-like

structures; the case of the image on the right evidences a more random behavior in

the contacts. The entropy depends on the size of the template and the number of

categories in the image; the number of combinations that one may generate from a

template of size K and N categories is given by KN . Thus, for a 2 by 2 template

24 = 16 configurations could be generated. For the case of the continuous channels

image, only 14 out of 16 configurations were found; the patterns labeled as 15 and

16 do not appear in the image, and the entropy reaches 0.507. As may be expected,

the second training image shows an increased level of spatial disorder reflected in

a greater entropy of 0.554. For comparison, the extreme case of a spatially non-

correlated image is presented at the bottom of the figure. The image corresponds

to the random case where the histogram of the multiple point configurations follows

a uniform distribution. This case corresponds to the case of maximum entropy or

complete randomness.

4.5.2 Linking Drillholes Entropy to two/three-dimensional

Training Image Spatial Entropy

The spatial entropy has been devised as a structural tool for calibrating realizations;

however, a major issue arises when dealing with two/three-dimensional training im-

ages, and the limited one-dimensional information of the drilling campaign. The

spatial entropy comparison and calibration is not straightforward. The assessment

of spatial entropy requires the use of multipoint templates that must be computed
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Figure 4.7: All possible multiple point configurations based on three examples of one-
dimensional templates when considering two indicator variable for geologic categories. The
examples are based on templates of two, three and four locations.

from both the drillholes and the training images; therefore, one-dimensional tem-

plates must be considered. Figure 4.7 shows a template for two, three and four

locations given two categories. To determine the entropy of the set of drillholes,

each drillhole is treated separately based on one-dimensional template. Figure 4.8

shows an example of all templates configuration found along a set of 10 drillholes;

then, the entropies of each drillhole are averaged to obtain the expected entropy

from the set of drillholes according to:

Hdrillholes = − 1

nd

nd∑
i=1

N l∑
j=1

pi,j ln(pi,j), (4.5)

where nd is the number of drillholes and N l the number of possible template

configurations. A comparison of Hdrillholes with the entropy of the training images
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is needed. To obtain an adequate entropy comparison from both training images and

drillholes the same configuration of template is required. Given the spatial restric-

tions this comparison must be performed in one-dimensional template dimensional

basis.

Figure 4.8: At the bottom, a cross section with a spatial configuration for 10 drillholes. At
the top, the number of replication for each configuration found along each drillhole. The
global entropy is equal to 0.88.
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Even though the one-dimensional spatial entropy does not completely define the

spatial disorder compared to a two-dimensional of three-dimensional template, it

represents, at least partially, the spatial order of geologic structures.

Figure 4.9: Fluvial training image and an artificial configuration of a drilling campaign.

The direction that the entropy is computed is relevant. Figure 4.9 presents a

well-known fluvial training image to be used to illustrate this last point. A total of 10

drillholes were sampled from the training image in different directions, and their one-

dimensional entropy computed and plotted in Figure 4.10. Changes in the entropy

value responds to variations in the direction of the drillholes intersecting specific

patterns of the training image. To verify the dependency of entropy according to

the dip, the experiment was repeated, but this time sampling 100 drillholes. Figure

4.11 compares the entropy of each drillhole with respect to its dip, as close to

vertical provides larger entropy values. It is a reflection of the structure of channels

in the training image. If a drillhole is sampled along the vertical, it has to go

through more channels that the case when the dip is close to 45 or 135 degrees

where several channels split into two channels for a short distance before merging

anew into one channel. This demonstrates that the one-dimensional entropy is able

to describe structural-oriented patterns from two/three-dimensional training image,

and its accuracy as an element to calibrate training images.

The orientation of the drillholes must be accounted for when computing the spa-

tial entropy. The problem arises how to compute the spatial entropy from two/three-

dimensional training images subject to a set of drillholes. To overcome this issue
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Figure 4.10: One-dimensional entropy of each drillhole sampled from training image in
Figure 4.9.

a one-dimensional sampling procedure is proposed upon the training image. The

orientation of each drillhole sampling is applied at several locations on the training
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image. The average of the results provides a measure of entropy from the training

image that is comparable to the entropy of the drillholes.

Figure 4.11: One-dimensional entropy subjected to dip of 100 sampled drillholes from
training image in Figure 4.9.

The strategy looks for a regular sampling over the training image based on the

orientation of each drillhole. For instance, consider a set of 10 drillholes as in Figure

4.12 at the top. In the middle, the figure shows the regular sampling procedure with

different orientations of drillholes 1, 2 and 4 on a two-dimensional training image. At

the bottom, the resulting sampled replicates with their assigned categories. Then,

the entropy of the 1-D replicates sampled from the training image are shown at the

bottom. The entropy of the training image corresponding to the entropy’s average

of each single-orientated drillholes:

HTraininImage = − 1

nd

nd∑
α=1

(
1

nsdα

nsdα∑
i=1

n
Nl∑

j=1

pi,j ln(pi,j)), (4.6)

Again, nd is the number of drillholes but nsdα the number of orientated replicates

within the training image for each nd.

Consider an example of calibrating the spatial disorder from the drillholes to the
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Figure 4.12: Sampling process of drillholes 1,2 and 4 over the training image. The entropy
of the training image is calculated over the replicates shown at the bottom.

training image weights. Using the training images from the example of Figure 4.4, a

total of 101 realizations were simulated. Each realization corresponds to a change in

the weights by 1%. Thus, it starts with weights of 100% and 0% up to the opposite

scenario of 0% and 100%. The same two-dimensional configuration of 10 drillholes is

used to sampling each training image and utilizing them as a true reference. Later,

the entropy for each drillhole is computed and plotted to compare with the reference

entropy, see Figure 4.13 . The entropy of the drillholes is accurately corresponded by

sampled entropy of the training images. Thus, the entropy of the drillholes can be

used to select suitable weights for the training images, matching the same entropy
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as the drillholes.

Figure 4.13: Scatter plot between the entropy of 100 training images, and the entropy
computed from the replicates of drillholes based on the proposed sampling process.

A program called caliti written in ANSI standard Fortran 90 consistent with

GSLIB was developed to perform the calibration process. The program reads the

set of combined realizations, samples the drillholes, computes the entropy, and then

calibrates them.

4.6 Analysis of Reproduction of Geological Features in

the Models

When using MPS simulation methods, the primary concern relates to the reliable

reproduction of input statistics and geological features of the training image in

the realizations. However, when dealing with the combination of multiple training

images the challenge is no longer to evaluate whether these models reproduce the

input statistics, but understanding the mixing process. In what follows, a series of

quantitative methods are used to evaluate which features are preserved along with

how the multiple point statistics change as the training images are being combined.

These techniques assess the reproduction of univariate statistics and the distribution
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of multiple point statistics through the use of multiple density functions.

4.6.1 Quantitative Measures to Assess Geologic Features

Reproduction

Checking the reproduction of high order statistics from training images is quite

difficult due to the high dimensionality of the configurations that may be generated.

Boisvert et al. (2010) suggested a set of metrics to assess the reproduction of high

order statistics including elements as the first two order statistics, trends, multiscale

histogram, multiple point density functions, and missing bins in the multiple point

density function. The goal was to establish a minimum criteria of approval with

respect to the reproduction of patterns retrieved from the input training image. In

the same manner, three statistics of this set of measures are proposed for evaluating

the mixing of geologic features from multiple training images, these are: the use of

multiple point density function, a measure of similarity and the entropy.

Multiple Point Density Function

Originally proposed by Boisvert (2007), the multiple point density functions corre-

spond to the distribution of the set of multiple points configurations encountered

in an image. The distribution depends on the size of the template and the number

of categories in the image; recall that the number of combinations is given by KN ,

where K is the number of categories, and N is the locations used in the template.

An illustrative example is showed in Figure 4.14, the training image represents a

binary (shale and sand) fluvial reservoir. A template of 4 locations (2x2) is consid-

ered. The template is scanned over the training image counting for the appearance

of each configuration; then, a histogram is constructed.

Various distributions may be constructed using different templates. However,

the dimensionality of the template may be a serious obstacle for summarizing the

statistics and its visualization. Typically, when dealing with complex geological

environments, the size of the template has to be large enough to characterize the

complexity of the categorical arrangements and the amount of multiple point con-
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15 16

Multiple point configurations 
not found in the training image

Figure 4.14: Multiple point density function of the two-category image above. The his-
togram correspond to the frequency of appearance of 14 multiple point configurations using
a four-location template.

figurations may be huge; a histogram that involves millions of classes could not be

understood. The advantage of multiple point density functions lies in the capacity

for checking if the patterns in the realizations have a similar frequency to those in

the input training image.

Similarity

The second measure relates to the concept of similarity. This statistics compares

if multiple point configurations are found in both the training image and the real-

izations without considering its frequency of appearance. A similarity measure was

proposed by Manchuk and Deutsch (2012), and is presented in Eq 4.7. Nsim∈TI

corresponds to the number of multiple point configurations in the simulation that

are also present in the training image (TI), and NTI is the total amount of multiple

point configurations in the training image.

Ssim,TI =
Nsim∈TI

NTI
(4.7)

This measure lies between 0 and 1, as closer to 1 means that more multiple

point configurations are shared between the realization and the training image. The
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Figure 4.15: The red curve shows the similarity measure between the image on the left and
rotated representations of itself; increasing angles from 10 to 90 degrees on the right were
used. As large the rotation less similar the images.

similarity also depends on the template used. Special care must be taken when the

comparison is realized over images that share a high proportion of certain category;

in this cases, the similarity tends to increase despite that the patterns related to

categories of low proportions do not fit.

An example of the similarity measure is shown in Figure 4.15. The exercise

consists of comparing the training image on the left with rotated images from itself;

nine angles ranging from 10◦ to 90◦ were used. On the right, the similarity measure

curve shows how the images loss similarity as the angle of rotation increases. The

number of shared patterns decreases up to reach around 15% of the total number

of multiple point configurations in the training image.

4.6.2 Expected Geological Features in the Combined Models

A convex data integration scheme is a desired quality when combining training

images of the same geological phenomenon for calibrating geologic variability. As

depicted by Figures 4.2, 4.3 and 4.4 the spatial variability of the geologic arrange-

ments may be balanced. To understand the generation of geological features and the

changes in the multivariate distribution, the previous measures are used to compare

the resultant geological features in the realizations to those originally contained in
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the training images.
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Figure 4.16: Comparison of the cumulative multiple point density function curves between
the deterministic, stochastic and combined realizations. Nine examples are shown using
weights in intervals of 10%.

The fluvial example in Figure 4.3 is reconsidered for the analysis. The same nine

scenarios when combining the images in intervals of 10% are utilized.

Multiple Point Density Function: Figure 4.16 compares the cumulative distri-

bution of multiple point configurations of the deterministic (DTI) and stochastic

training images (STI). A template of 4x4 was used; this implies a set of 216 = 65, 536

possible configurations considering two categories (sand and shale). In the abscissa

axis the multiple point configurations numbered from 1 to 65,536; the labeling does

not consider any special ordering. On the ordinate axis, the cumulative frequency

curves. The blue curve represents the distribution of the multiple point configura-

tions contained in the deterministic training image, in red, the distribution of the

stochastic one, and in green the distribution of the combined simulations. The nine
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Figure 4.17: At the top, the similarity measure based on the deterministic training image
on the left. At the bottom, a second similarity measure, but with respect to the stochastic
training image on the left. The nine small images above the curves correspond to realizations
based on weights in intervals of 10%. The weight of the deterministic image increases from
left to right.

figures correspond to configurations of weights in intervals of 10%. Closer curves

imply greater similarity in the combined realizations and the training images. Note

how the green cumulative frequency curve transits from the STI to the DTI curves

as the images are combined. The convex property of the linear combination makes

that the resulting cumulative multiple point density functions of the realizations

fall in between those corresponding to the training images. The realizations are

balanced within the range of variability established by the training images.
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Similarity: Figure 4.17 illustrates how the realizations become more similar to

the training images when changing the configuration of their weights. At the top

on the right, the similarity measure based on the training image on its left. The

similarity is computed for each configuration where the weight of the deterministic

image increases from 10% to 90%. The small images represent the resulting com-

bined realizations. At the bottom, the same similarity curve, but this time, based

on the stochastic training image on its left. One interesting aspect of the results is

the confirmation that the linear combination of multiple point statistics produces

geological features in the realizations that change linearly in terms of the similarity

measure. The former may be expected given the nature of LOP training image

integration; it confirms what is visually observed in the realizations.

Figure 4.18: The measure of entropy. The first and last values correspond to the entropy
of the deterministic and stochastic training images. In the middle, the nine entropy values
for the nine realizations based on configurations of weights in intervals of 10%.The weight
of the deterministic image increases from left to right.

Entropy: like the similarity measure, the spatial entropy of the simulations (Eq

4.4) follows a linear behavior, see Figure 4.18. That is, the geologic variability of

the fluvial simulated reservoir changes linearly as the multiple point statistics are

being combined. In terms of spatial disorder, the entire spectrum of variability

may be visited just by setting up the correct set of weights. An essential part of the

proposed methodology consists of generating training images that represent extreme

scenarios of geologic variability; then, the linear combination guarantees generating

106



realizations with the correct amount of geologic variability.

Training Images

Figure 4.19: On the left the deterministic and stochastic training images. On the right,
the curve that shows the percentage of multiple point configurations found in these training
images that are also present in the nine realizations. This percentage increases with the
weight associated to the deterministic training images.

The previous analysis relates to general aspects of the expected geological fea-

tures in the realizations. However to completely understand the process of combin-

ing multiple point statistics, it is also necessary quantify the nature of the resulting

patterns, that is, how many are inherited from the training image and how many

correspond to novel features generated by the merging process. For doing this, the

same previous fluvial example is utilized. The analysis consists of comparing each

simulated multiple point configuration to the configurations contained in the train-

ing images, and quantify the proportion of them that correspond to novel features.

This measure differs from the similarity in that the number of multiple point con-

figurations is computed using both training images. Figure 4.19 on the right shows

the proportion of patterns in the realizations that are found either in the determin-

istic or stochastic training images. It may be observed that as the weight of the
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deterministic training image increases, the proportion of inherited multiple point

configurations also increases. In other words, when just a 10% of the deterministic

image is used almost the half of the multiple point configurations in the realizations

correspond to novel configurations not contained in the training images; the opposite

occurs when using 90%, in this case, the 10% of the configurations are new.

The generation of novel multiple point configurations that are not contained

in the training images is increased when using training images with a considerable

level spatial disorder. A larger set of multiple point configurations leads to novel

multiple point configurations in the simulated realizations; it is always feasible to

find configurations that match, even though, its frequency is limited to a few number

of appearances. For the deterministic training image, there are fewer new patterns

due to the restricted set of multiple point configurations available when simulating.

A lack of similarity in the input training images also leads to more novel patterns.

Consider the example of Figure 4.20. Here, the fluvial training image is rotated by

angles of 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦. The exercise consists of combining the

original and rotated training images, represented by the first and last column in

the figure. Intuitively, the lower the rotation, the more similar the training images.

The three columns in the middle represent configurations of weights at 75% - 25%,

50% - 50% and 25% - 75%. Visually, it is possible to observe that increasing the

rotation of the image affects the reproduction of features in the realizations making

them less similar to the training images. The extreme case corresponds to the last

row where the lack of continuity of the channels is evident, especially for the 50%

- 50% case. In fact, the channels start losing continuity when the second training

image presents a rotation of 60◦. The cases for the images rotated at 15◦, 30◦ and

45◦ are interesting since the simulated channels maintain the continuity with subtle

alterations. For all the scenarios, the angle of the simulated channels are mildly

elevated, for instance, in the case of 75% - 25%, the horizontal direction of the

channels increases when being combined with a more rotated training image. Note

that due to the LOP integration, the angle of the simulated channels is always in

between the angle shown by the training images.
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Fluvial-
Training-Image-(FLTI)

Simulations-combined-by-LOP Rotated-Fluvial-
Training-Image-(RFLTI)

75%FLTI---25%RFLTI 50%FLTI---50%RFLTI 25%FLTI---75%RFLTI

Figure 4.20: An illustration that shows how the level of similarity between training images
implies realizations with similar characteristics to the training images features. On the first
column, the fluvial training image; on the last column, a rotated version. On each row, the
training image is rotated in 15◦. The three column in the middle correspond to simulations
based on the configurations of weights of 75% FLTI - 25% RFLTI, 50% FLTI - 50% RFLTI
and 25% FLTI - 75% RFLTI.
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TI1 

TI2 

Figure 4.21: The curves on the right represent the percentage of patterns shared for the
realizations in Figure 4.20 and the training images presented on the abscissa axis. The red,
the green, and the blue curves correspond to the configuration of weights of 75% TI1 - 25%
TIRotated, 50% TI1 - 50% TIRotated and 25% TI1 - 75% TIRotated respectively.

Figure 4.21 shows the measure of similarity for scenarios of 75% - 25%, 50%

- 50% and 25% - 75%. As expected, the lower the rotation, the more similar the

images and more multiple point configurations are shared. The similarity measure

between training images helps to understand the expected patterns obtained in the

realizations and plays an essential role in the success of features reproduction.

4.6.3 Accounting for Multiple Stochastic Training Images

A key assumption of the proposed methodology relies on the randomness of this

training image to attain the correct amount of geologic variability. However, the

image is a realization of a stochastic process, and the question is whether the use

of this unique representation is enough to find the correct geologic variability. The

current subsection is devoted to analyse the reproduction of multiple point configura-

tions accounting for multiple stochastic training images, all of them are realizations

of the same geostatistical method.

The analysis consists of applying the proposed algorithm in the same manner

as described in Algorithm 2, but assuming that for each realization (100 in total)
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Figure 4.22: Cumulative multiple point density functions curves for 100 simulations. The
first column represents the simulations based on one deterministic and 100 stochastic train-
ing images generated by SIS. The second column also corresponds to 100 simulations, but
this time, using one deterministic and one stochastic training image. The last column shows
the averaged cumulative frequency curves for the 100 simulations. Each row represents the
settings 25% DTI - 75% STI, 50% DTI - 50% STI and 75% DTI - 25% STI respectively.

an independent stochastic training image generated by SIS is considered. Then, the

exercise is repeated in its original version, that is, considering an unique stochastic

training image. The first column of Figure 4.22 shows the cumulative frequency

curves for each combined simulation when using an independent stochastic training

image. The second column also shows the multiple point density function cumula-

tive curves but for those simulations based on a unique stochastic training image.

The third column summarizes the previous two columns by plotting the average of

the cumulative curves. The rows represent the cases when the training image are be-

ing combined using configurations of weights of 25%-75%, 50%-50% and 75%-25%,

respectively. In expected value, the distribution of multiple point configurations for
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all realizations are quite similar for both cases and configurations of weights, see

the third column. The variability of the cumulative multiple point density func-

tions is also similar. The introduction of multiple stochastic training image does

not necessarily imply an increase in the variability of the simulated realizations.

Figure 4.23: Entropy boxplot computed from the 100 simulations. On the left of each
figure, the distribution of the entropy when using 100 STI; on the right, the case of an
individual STI. The entropy was calculated based on the multiple point density functions
using a template of 4 by 4. Three settings at 25% DTI - 75% STI, 50% DTI - 50% STI and
75% DTI - 25% STI are examined.

For a more detailed comparison, the variability of the realizations was evaluated

by computing their entropy. Boxplots of the distribution of the entropy for each

simulation, and for each weighting scenario are presented in Figure 4.23. Again, the

entropy distributions look similar independent of the number of stochastic training

images used. A subtle larger variance may be observed in favor of the case when

using 100 training images. This is because more multiple point configurations are
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available and incorporated to the simulations; the consequence is a subtle increase

in the entropy. Despite the huge number of multiple point configurations available

when using multiple stochastic training images, minor differences in terms of the

reproduced patterns are observed. The use of only one stochastic training image is

acceptable to produce the target level of geologic variability in the realizations.

4.7 Model Checking

In order to accept the proposed method as a reliable tool for geologic modeling,

it should be validated; however, this is not a straightforward task. The idea of

validation calls for the true spatial distribution of the geologic phenomenon, but

in earth sciences this distribution remains unknown (Oreskes et al., 1994). Thus,

direct comparison between the phenomenon and the model is not possible. Despite

this limitation, cross-validation permits some checking of the proposed method.

4.7.1 Measures of Checking for Geostatistical Uncertainty

Distributions

In what follows, a series of measures are presented. Issues related to their use in

the context of the LOP scheme are shown through an artificial example. Then,

an alternative measure for assessing the geostatistical uncertainty distributions is

proposed.

Accuracy and Precision

The goodness of a stochastic rock type modeling method must be assessed in terms

of its accuracy and precision (Deutsch and Wang, 1996). An adequate categorical

geostatistical technique should correctly predict the proportion of samples assigned

to a category k according to the predicted probabilities specified for that given

proportion Deutsch (2002). Accuracy plots Deutsch and Deutsch (2012) are a good

tool for displaying and evaluating the goodness of the resulting uncertainty models.

In practice, accuracy refers to the fraction of locations in the model that were
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effectively predicted by the estimated probabilities, e.g. if considering all locations

with a 50% chance to be indicator k, at least 50% of those locations must belong to

that indicator. Precision is measured by the closeness to the estimated probability,

that is, when the experimental proportion of the respective quantile k is equal to

predicted, then the model is precise.

Closeness of Conditional Probability to the True

The second measure quantifies the closeness of the estimated conditional probabil-

ities to the true. Eq 4.8 corresponds to the average of the estimated probabilities

of the true category k; ideally, it would be close to one. It gives a measure of the

certainty of the probabilistic model.

C =
1

N

N∑
i=1

{pk(ui)|k = true}, (4.8)

Where N is the number of locations considered, and pk(ui) the probability to

belong to the category k at location ui.

The Informative Level of the Model

The third measure relates to how informative the probabilities are for prediction.

This measure is the difference between the averaged probabilities when the indicator

is true and false:

B =
1

N

N∑
i=1

{pk(ui)|k = true} − 1

N

N∑
i=1

{pk(ui)|k = false}, (4.9)

The larger the B value, the better the model in predicting where rock types are

and where they are not.

4.7.2 An Example

The objective of the example is to evaluate the uncertainty in the models when

applying the proposed MPS method. As access to the true distribution is unattain-
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able, an individual realization is assumed as the reference model; then, the resulting

uncertainty distributions are compared to it.

The exercise considers the case of the turbidite reservoir of Figure 4.4. The same

nine configurations of weights in intervals of 10% are considered. One hundred re-

alizations are performed for each configuration. Figure 4.24 shows the probability

maps computed from the 100 realizations. Note the increasing certainty for the tur-

bidite lobes when augmenting the percentage allocated to the deterministic training

image. This can be noted by the systematic reduction of probabilities in the inter-

mediate quantiles.

Computation of Accuracy and Precision: The reference model corresponds

to a realization using 50% of the deterministic and 50% of the stochastic training

image. Figure 4.25 summarizes the accuracy plots when evaluating the conditional

probabilities respect to this model. The fraction of locations for each quantile on the

abscissa must lie above the diagonal to be accurate. The model is precise when the

dots are close to the diagonal. The resulting geostatistical models are reasonably

accurate and precise when using a large percentage of the stochastic training image;

in particular, minimum differences are appreciated for the cases when using 90%,

80% and 70% of STI. On the contrary, the accuracy curve starts deviating from the

diagonal when increasing the proportion of DTI in the models. Specifically, a loss

of accuracy is observed from the case 40% DTI up to 90% DTI. This is due to the

concentration of the conditional probabilities towards the extreme quantiles, which

can be seen in the probability maps of Figure 4.24. As the percentage of the DTI

increases, the probabilities tend to zero or one which leads to a loss of accuracy and

precision.
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Figure 4.24: Probability maps computed over 100 simulations for the indicator category 1.
Each image represents configurations of weights in intervals of 10%.
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Figure 4.25: Accuracy plots considering the reference model set up at 50% DTI-50% STI.
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Determination of Predictive Capability (B Measure): The second assess-

ment consists of the computation of the B measure, Eq 4.9. Figure 4.26 illustrates

its computation when considering the extremes cases of 10% DTI and 90% DTI. For

the case of 10% DTI, the conditional probabilities tend to be more uniformly dis-

tributed; the opposite happens when using 90% DTI. In this case, the probabilities

tend to be a highly concentrated close to 0 and 1, and the B measure increases from

0.52 to 0.58.

B = 0.52 B = 0.58

Figure 4.26: Distribution of estimated conditional probabilities when the actual reference
model is true and false. Extremes scenarios of 10% DTI-90% STI and 90% DTI-10% STI
are considered.

The computation of the B measure is extended to the nine configurations as

plotted in Figure 4.27. The B measure increases with the proportion of the DTI.

The individual use of the deterministic training image provides a better estimation

of the probabilities when the indicator is true. However, the probabilistic model
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seems to certain, that is, probabilities close to 0 and 1 appear too common given

the level of knowledge provided by the conditioning data.

10 20 30 40 50 60 70 80 90
0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

% of weight for Deterministic Training Image

B

Figure 4.27: Computation of B measure for the nine models considered in Figure 4.24.

For the reasons above, the assessment of the geologic models generated by the

integration of training images is not straightforward. The accuracy plots and the

computation of the B measure do not constitute of reliable tools for evaluating the

uncertainty in the models in the current context. The fact of having probabilities

nearby the extremes does not necessarily imply a better model. Both criteria must

be combined to express the adequacy of the models .

4.7.3 A Combined Measure of Accuracy, Precision and Predictive

Capability

A performance measure is needed that captures an acceptable level of accuracy,

precision, and predictive capability. The proposed measure relates the results of

accuracy and precision from accuracy plots with the B measure. To summarize the

accuracy and precision in one component, the slope of the linear regression between

the predicted probability and the true probability is proposed; this corresponds

to the regression between fractional interval and probability interval in Figure 4.25.

Typically the slope of a linear function f(y) = mx+n can be defined bym = Cov[y,x]
V ar[x] .
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Thus, consider:

BSlope =
Cov[p, p′]

V ar[p′]
∗B (4.10)

Where p corresponds to the predicted probability (y axis) and the p′ the true

(x axis), and B is the measure of closeness (Eq 4.9). An interesting property of

this measure is that belongs to the interval [0,1]; a large implies greater accuracy,

precision and predictive capability.

B

A

C

B
S
lo
pe

B
S
lo
pe

B
S
lo
pe

Figure 4.28: BSlope curve for three different reference models. Case A based on 50% DTI
and 50% DTI; case B based on 20% DTI and 80% DTI, and C based on 80% DTI and 20%
DTI.

The BSlope statistic is computed for the nine configurations of Figure 4.24. Recall

that the reference was conceived from a realization combining the training images

using configurations of weights of 50% DTI - 50% STI. The resulting curve of BSlope

is plotted in Figure 4.28 A. In this case, the BSlope is able to associate the most
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accurate and informative geostatistical model to its respective reference model (50%

DTI - 50% STI), that is, the BSlope reaches the maximum at 50% DTI. To extends

the analysis, curves B and C illustrates the correct association of the MPS geosta-

tistical models when the reference is changed to cases based on a configuration of

20% DTI - 80% STI, and 80% DTI - 20% STI. In both cases, BSlope reaches the

maximum at 20% DTI and 80% DTI, predicting correctly the reference model.

The BSlope summarizes the accuracy, precision and predictive ability of the model

within a checking framework. However, it does not constitute by itself an absolute

measure of judgment. The proposed measure is one among the set of available

checking tools.

4.8 Remarks

Although the algorithm was applied for training images constructed using variogram-

based techniques, the methodology is extensible to training images of different char-

acter. The deterministic training image might be created from a classical hand-

drawn approach, some basic geologic sketch, or a object-based technique. On the

other hand, any geostatistical method may be used for the training images with

greater variability. The combining process may be put into practice with any class

of training images. The integration of conditional probabilities by a weighted linear

function inevitably leads to features in the images that are a combination of both

training images.

The original snesim code was modified to process multiple training images and

compute conditional probabilities based on the same data event. The processing

time is proportional to the number of training images used. The required memory

also increases according to the number of training images. For the original snesim

code for instance, the amount of memory necessary to store and simulate a block

model of 256x256x256 using a training image of 256x256x256 is approximately 500

MB, depending on the complexity of the contained patterns in the image. An

additional training image doubles the required memory.
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The implementation of the method is flexible with respect to the number of

images that could be used. The LOP could provide solutions to other geologic mod-

eling problems. For instance, combining multiple training images using the linear

opinion pool scheme might address solutions either for non-stationary phenomena or

provide alternatives for modeling increasingly complex geologic environments start-

ing from simplified versions. Further research could be undertaken on these paths

and alternative algorithms explored.

The proposed methodology is useful for mineral resources estimation since repro-

ducing the correct spatial arrangement variability is important for accurately esti-

mating dilution and lost ore in the mining process. The estimated resources/reserves

are directly affected by the large/short scale domains features. An incorrect predic-

tion of dilution and lost ore by classical deterministic or geostatistical techniques

would result in a gap between predicted and true economic performance. This will

be reviewed in the case study in Chapter 6.
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Chapter 5

Special Topics of MPS

Simulation with Multiple

Training Images

A series of advances related to the integration of multiple training images based

on the LOP scheme for MPS simulation are presented in this chapter. Section

5.1 describes an extension of the LOP where the combination of training images is

implemented by distinguishing different scales of geologic features. The assignment

of weights to the training images varies throughout the simulation using a function

based on data spacing. The approach gains some flexibility to handle geologic

variability at specific scales.

Section 5.2 explores the use of the LOP to model non-stationary geological en-

vironments; two algorithms are proposed. The first couples multiple training images

guided by a range field. This field establishes which training image are combined

and the area where the combination takes place. For a correct performance, a cer-

tain level of similarity among training images is required. The second algorithm

proposes to couple training images by building one search-tree that stores patterns

from all the images; this incorporates training images of different character avoiding

the requirement of similarity and reproducing correct patterns as needed.

123



Finally, Section 5.3 analyses the use of an interpreted geologic model as a

training image. The introduction of local proportion models and post-processing

methods for treating inconsistencies in the realizations are also discussed.

5.1 Dynamic Training Image Integration based on

Data-Spacing

In this section, the method of multiple training images MPS simulation is extended.

Instead of considering a fixed configuration of weights for each training image, the

weights are determined using a function that depends on the scale of the features sim-

ulated. The proposed method offers an alternative for reproducing large-medium-

short scale geologic features slightly different than the LOP scheme. The results

provides flexibility as to the geologic features reproduced at multiple scales.

5.1.1 Overview of Sequential MPS Simulation

Section 2.5.2 discusses the importance of the conditional probabilities for a reliable

reproduction of features from the training image. In particular, the hierarchical and

sequential character of MPS simulation ensures the reproduction of large and short

scales features.

To illustrate this point, consider the 1-D conceptualization of the MPS simulation

process in Figure 5.1. The simulation schematically performs from left to right, and

the arrow at the top refers to the random path followed when simulating the nodes

along the grid. In the middle, configurations A, B, C and D represent the reduction

in the scale of the features in the grid. By directly considering the scale of features,

the geologic variability could be treated in a more flexible manner. Under certain

circumstances, the modeler could maintain control over large scale geologic features

such as those represented by the deterministic training image, but adding more

variability at some scales. The geologic variability may be controlled by the type of

function adopted; the red and green line at the bottom of the figure represent two

different alternatives. For the red function, the influence of the stochastic training
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Figure 5.1: Schematic illustration of the sequential MPS simulation. At the top, a repre-
sentation of the random path. In the middle, an illustration that shows the reduction of data
event throughout the simulating path. At the bottom, two functions (red and green) that
establish how the training images will be combined depending on the scale of the geologic
features.

image is increasingly incorporated into the simulation; the last nodes of the grid

are simulated almost exclusively making use of this image. This scheme ensures

the increasing addition of randomness from large to short-scale features. If the

opposite case is desired, the green function should be used. Here, the influence of

the stochastic training image decreases along the simulation path. The resultant

realization would be characterized by short scale features extracted almost entirely

from the deterministic training image.

5.1.2 The Method

The method considers two modifications to the proposed MPS algorithm for the

combination of training images presented in Section 4.4.3. First, the introduction

of a measure that accounts for the scale of geologic features; secondly, the selection

of functions for the assignment of weights to each training image.
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Data-Spacing Measure

A widely used measure for characterizing the spacing between adjacent data consists

of determining the number of nearby data around the location u, nsamples(u), within

a volume V . In particular, the measure is given by the cube root of the ratio

V/nsamples(u); in the case of two dimensions, the volume is replaced by an area A

and a square root is used. A two dimensional illustration is presented in Figure

5.2. Two different areas A and A′ are considered; both contain the same number of

samples. For the area A′, the adjacent samples are closer if compared to the samples

of the area A, that is, A/nsamples(u) > A′/nsamples(u).

dataspacing(u) =
1

3

√
V

numbersamples(u)

(5.1)

A
A'dA

dA'

dA>dA'

u

u

Figure 5.2: Data spacing measure illustration.

For convenience, the data-spacing relation V/nsamples(u) is inverted (Eq 5.1),

and thus represented as an increasing function, that is, as large its value closer

adjacent nodes. In this manner, the data-spacing value can be easily integrated into

the weighting function as presented in 5.3. The volume is constant and directly

related to the size and configuration of the template used for MPS simulation. The

measure goes from zero, when there is no samples found, to one in the case that the

template is completely occupied by data.
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The Weighting Function

The second modification consists of defining the function that relates the data-

spacing dataspacing(u) with the weights to be assigned to each training image. An

interesting function commonly used in Geostatistics for tail extrapolation model-

ing is the power model f(z) = zw. The function requires the definition of two

parameters: the power w, and the type of model adopted. Both will be reviewed

below.

Two Models: The power model establishes the manner that the weights will be

assigned to the training images based on the data-spacing dataspacing(u) measure.

Two configurations could be adopted, an increasing and decreasing power model,

see Figure 5.3 for illustration.

w=1

w>1

w<1

w
=1

w>1

w<1

Figure 5.3: Power models proposed for the assignment of weights of the training images.
The shape of the function depends on the value of the power w and the data spacing measure
given by Eq 5.1.

Note that according to Eq 5.1, the dataspacing(u) increases as the grid of simula-

tion becomes denser; in other words, it increases while the scale of geologic features

being simulated is smaller. For instance, if the increasing type is adopted, the

weights assigned for simulating large scale geologic structures relies on the stochas-

tic training image. The configuration changes when the last nodes of the grid are

simulated; in this case, the deterministic training image becomes relevant and pro-

vides most of the features for short scale modeling. On the contrary, if the large
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scale structures are required to be as continuous like the deterministic training im-

age, the decreasing model is adopted. The value of the power w controls the shape

of the function and the type of model allows managing the ordering of the geologic

features introduced in the models.

Tuning the power w of the Model: The increasing and decreasing power

models are presented in Eq 5.2. wDTI(u) corresponds to the weight assigned to

the deterministic training image at location u; the weight of the stochastic training

image wSTI(u) is given by 1-wDTI(u).

wDTI(u) =


dataspacing(u)

w= 1
wc
DTI

−1
, if increasing type is adopted

1− dataspacing(u)
w=

wc
DTI

1−wc
DTI , if decreasing type is adopted

(5.2)

A relation between the calibrated weight wc
DTI as presented in Section 4.5 and

power w of the functions described above must be established. The relation is given

in terms of the expected value of the increasing and decreasing functions. Whether

the power w is assumed to be equal to w = 1
wc

DTI
− 1 and w =

wc
DTI

1−wc
DTI

for the

increasing and decreasing models respectively, then, E[wDTI(u)] = wc
DTI , that is,

the expected value of the increasing or decreasing function correspond to the weights

assigned after calibration.

5.1.3 Comparison to Original LOP Integration Scheme

Realizations generated based on the increasing or decreasing power functions are

compared to the original LOP scheme. Three configurations are evaluated, the

cases of 20% DTI - 80% STI, 50% DTI - 50% STI and 80% DTI - 20% STI. It is

assumed that these configurations are the result of a calibration process as presented

in Section 4.5. For each case, the increasing and decreasing models are considered.

The realizations are presented on the right of Figures 5.4, 5.5 and 5.6. Deterministic

and stochastic training images are shown at the top of each figure. The three

function on the left represent the LOP, the increasing and the decreasing models.

All realizations are characterized by an increment in the geologic variability when
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Calibration Process resulted in 
a configuration of 20% DTI  -  80% STI

Deterministic Training Image 
(DTI)

Stochastic Training Image 
(STI)

Simulations
20% DTI  -  80% STI 

DTI

DTI

DTI

Figure 5.4: Some realizations when applying the increasing, decreasing and LOP functions
based on a configuration of 20% DTI - 80% STI. At the top, the training images. On the
left, the LOP, the increasing and the decreasing functions.
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Calibration Process resulted in 
a configuration of 50% DTI  -  50% STI

Deterministic Training Image 
(DTI)

Stochastic Training Image 
(STI)

Simulations
50% DTI  -  50% STI DTI

DTI

DTI

Figure 5.5: Some realizations when applying the increasing, decreasing and LOP functions
based on a configuration of 50% DTI - 50% STI. Note that the power model whose expected
value is 0.5 is given by linear functions.
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Calibration Process resulted in 
a configuration of 80% DTI  -  20% STI

Deterministic Training Image 
(DTI)

Stochastic Training Image 
(STI)

Simulations
80% DTI  -  20% STI DTI

DTI

DTI

Figure 5.6: Some realizations when applying the increasing, decreasing and LOP functions
based on a configuration of 80% DTI - 20% STI.
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increasing the proportion of stochastic training image; however, some differences

may be observed. In particular, the change of the geologic variability at different

scales. In the case of the LOP, the realizations are constructed by combining both

large and short scale geologic features of the training images equally at all scales. In

the increasing and decreasing models cases, the realizations show how the large and

short scale features are subjected to the order of the training images adopted. For

instance, consider the decreasing model. Here, the large scale structures are mostly

retrieved form the deterministic training image with percentages of 50% DTI - 50%

STI, 20% DTI - 80% STI and 80% DTI - 20% STI, the realizations maintain their

large scale structures; however, their short scale variability is controlled by the

stochastic training images. The opposite occurs when considering the increasing

model.

5.1.4 Characterization of Geologic Variability at Multiple Scales

This section quantifies the differences in the realizations generated by the increas-

ing/decreasing power models and the LOP combination scheme. The differences are

quantified in terms of entropy. A geologic multiple scale spatial relation may be

established by comparing entropies based on configurations of templates of different

size.

Two templates are used, one of 4 by 4, and a second template with the same

configuration but rescaled eight times, that is, the nodes are separated by eight units.

The example presented above is considered, and nine scenarios are evaluated. Each

of them is based on an increment in the weights of the training images in intervals of

10%. For each scenario, a total of 10 realizations were generated. Figure 5.7 shows

a scatter diagram between the entropies computed using the 4 by 4 template and its

upscaled version. The nine scenarios are plotted from left to right, that is, the first

correspond to the configuration 90% DTI - 10% STI, and the last to 10% DTI - 90%

STI. The blue and cyan curves are associated to the increasing and decreasing power

model respectively, the red corresponds to the LOP integration. The increasing

and decreasing functions modifies the reproduction of large scale features. This is
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Figure 5.7: A scatter diagram of entropy at short and large scale for the increasing, de-
creasing and LOP scheme. On the x−axis, the entropy using a short four by four template;
on the y − axis, the entropy of a larger upscaled template.

reflected by the deviations of the curves with respect to the original LOP (diagonal).

The short scale entropy does not change much. Thus, the introduction of a weighting

scheme based on a data spacing measure provides some control over the large scale

features in the realizations by changing the combination of training images at early

stages of simulation.

5.2 Non-Stationary Modeling by Coupling Training

Images using Range Fields

A number of Multiple Point Statistics simulation techniques have been proposed to

deal with non-stationary geologic modeling. Most of them follow the same principle

by decomposing the non-stationary phenomenon into stationary regions and tran-

sitions zones. Strebelle (2002) and Harding et al. (2005) introduce a probability

field as a secondary information for updating the posterior conditional probability.
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The field favors the simulation of certain categories at particular locations. Boucher

(2009) considers the partition of complex training images into several classes that

guarantee smooth transitions between stationary regions. In a similar manner, Wu

et al. (2008) investigates an approach that incorporates stationary multiple training

images at different regions in space.

The problem with transition zones in a non-stationary framework is that artifacts

could appear when training images change quickly. Due to the LOP combination

scheme is specially attractive when combining multiple training images, this section

focuses on non-stationary modeling of geological phenomena by coupling training

images using this scheme. A range field establishes the transition zones and the

degree of mixing of the training images.

The effectiveness of the proposed approach depends on a reasonable degree of

similarity in the training images. To provide greater flexibility, a second approach

is presented in Section 5.2.2. This method considers training images that are quite

different.

5.2.1 The Linear Opinion Pool Approach

The linear opinion pool approach for simulating non-stationary geologic models is

developed. The methodology considers the integration of multiple stationary train-

ing images by a range field. The objective consists of generating a non-stationary

realization that adequately reproduces the different heterogeneities presented in mul-

tiple training images.

The use of a range model for integrating a sequence of training images was

originally proposed by Manchuk and Deutsch (2012). The weights of each training

image are associated to a specific location u within the range field. This field

determines the stationary regions and transitions zones

Algorithm 3 describes the steps involved in the simulation of non-stationary

models by LOP integration. First, the range field is defined (Line 1); this field and

the simulation grid must have the same resolution. ConsiderM training images, each

of them associated to one location within the range field (Line 2). The simulation
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starts by visiting all the nodes of the grid (Line 3 to 13). For the current location

uα, the two adjacent training images i and i + 1 are selected (Line 4). Then, the

data event Dn surrounded by n conditioning data is retrieved (Line 5), and the

conditional probability computed from training images i and i + 1 (Line 6 to 8).

At this point, the weights of the range field assigned to the training images are

standardized (Line 9), and the, the probabilities are integrated linearly (Line 10).

Finally, the categorical value is drawn from the updated conditional probability, and

the value added to the grid. The simulation ends when all nodes have been visited

and simulated.

Algorithm 3 Non-stationary MPS Simulation based on a range model, Manchuk
and Deutsch (2012)

Input: Set of training images, range field
Output: Non-stationary realizations
1: Construct a range model with the same resolution that the grid model
2: Allocate the set of training images M to locations i = 1, ....,M in the range

model
3: for each node uα of the random path {α = 1, ..., (nxnynz)} do
4: Obtain the range value r(uα) and select the adjacent training images at con-

secutive locations ri and ri+1

5: Retrieve the data event Dn(uα)
6: for each training image i and i+ 1 do
7: Compute the conditional probability P (sk = k|Di) and P (sk = k|Di+1)
8: end for
9: Based on the range value r(uα) determine the weights for each training image

by the standardization procedure: w = r(uα)−ri
ri+1−ri

10: Integrate the conditional probabilities by LOP scheme P (S = sk|Di, Di+1) =
wP (s = sk|Di) + (1− w)P (s = sk|Di+1)

11: Draw the categorical variable from P (S = sk|Di, Di+1)
12: Add the simulated value sk(uα) and move to the next node uα+1

13: end for

An example based on ellipsoid-based training images is used to illustrate the

process, see Figure 5.8. The example is based on the integration of training images

whose ellipsoids are oriented at different angles; the sequence chosen considers ellip-

soids at 50◦, 25◦, 0◦, 25◦, 50◦, 75◦ and 90◦ (top of the figure). The training images

are placed at equally spaced intervals from left to right along the range field. The

resultant simulation is show at the bottom of the figure. The ellipsoids smoothly
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change their orientation according to the range field. The convex property of LOP

allows generating realizations in between the training images. The linear opinion

pool offers a suitable framework to model non-stationary phenomena by combining

the training images guided by transition zones.

Figure 5.8: A non-stationary realization by LOP integration based on training images with
ellipsoids oriented at different angles. At the top, the range field that establishes which
training images will be combined. At the bottom, a non-stationary realization.

As discussed in Section 4.6.2, a central element of this LOP implementation is

the similarity between adjacent training images. The integration of training images

with a low level of similarity lead to unpredictable results. This is shown by an

unjustified increment of the spatial disorder in the realizations (see Figure 4.20). A

second example illustrating this point is shown in Figure 5.9. As in the previous

example, the same range field and ellipsoid-based training images are used. Two

training images are placed at the extremes of the range field. These images contain

ellipsoids oriented at 0◦ and 90◦. The MPS simulation based on the LOP scheme

is performed and the realization plotted at the bottom of the figure. The lack of
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similarity between the training images introduces features that do not relate to those

contained in the training images. The effect is even stronger in the middle of the

range field where the training images are combined with equal proportions. The

requirement of a minimum degree of similarity between training images could be

limiting for certain circumstances. One would desire a MPS method that integrates

dissimilar training images and still provides of suitable models. This is discussed

in the following section, where a second algorithm for non-stationary modeling is

presented.

Figure 5.9: Same example as Figure 5.8, but considering training images with ellipsoids ori-
ented at angles separated by 90 degrees. At the bottom, the realization when implementing
the LOP.

5.2.2 Search-Tree Replicates Combination Algorithm (STRC)

The algorithm presented in this section differs from the previous LOP method in that

the training images are integrated before computing their conditional probabilities.

The algorithm is based on the search-tree storage procedure of the snesim method;
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detailed insights on its construction and processing may be found in Appendix A.

The idea is to store the multiple point configurations from both training images in

the same search-tree, but instead of integrating the conditional probabilities, the

number of replicates are combined first.

Consider the data event Dm,n of n conditioning data associated to the training

image m from the set of images {m = 1, ....,M}. The data event may take {sk, k =

1, ....,K} values. Now, consider that the training imagem is scanned and the search-

tree constructed. The notation cmsk(Dm,n) denotes the node of the search-tree that

stores the number of replicates of the data event Dm,n found in the training image

m whose center location u takes the state sk. Then, the total number of replicates

in the node considering all the categorical values {sk, k = 1, ....,K} is given by:

cm(Dm,n) =
K∑
k=1

cmsk(Dm,n) (5.3)

Instead of using the weights for the linear combination of the conditional prob-

abilities, the weights are used for combining the number of replicates in each node

of the search-tree. In the case that the pattern is shared by both training images,

the final number of replicates will be given by Eq 5.4. Whether the patterns belong

to just one of the training images, the weights are still applied, even though the

number of replicates for the remainder training images is zero.

c(Dm,n) =

⌈
M∑
i=1

wic
i(Dm,n)

⌉
(5.4)

with wi > 0 and
M∑
i=1

wi = 1. Note that what is being combined is the number

of replicates so that the result may not be an integer number, for this reason the

ceiling function ⌈·⌉ is used. Algorithm 4 describes the methodology in a step-by-step

manner. First, the range field is constructed and the training images allocated within

it (Line 1 to 2). Each training image m is scanned, and the patterns found stored in
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Figure 5.10: Same training images of the Figure 5.9 are used; then, the search-tree replicate
combination algorithm is implemented. At the bottom, a realization guided by the range
field at the top.

an individual search-tree (Line 3). Each node of the tree contains M values (one for

each scanned training image). These values correspond to the number of replicates

cm(Dm,n) found for the data event Dm,n in each training image m. Similarly to

Algorithm 3, the two adjacent training images i and i + 1 are selected, and the

weights of the range field standardized (Line 5 to 6). Then , the data event Dn is

retrieved (Line 7). On Line 8 the number of replicates of the search-tree are linearly

combined. Based on the updated tree, the conditional probability P (S = sk|Dn)

is computed (Line 9), the categorical value drawn from it (Line 10), and the next

location is visited (Line 11). Special care must be taken if the training images are

quite different and particularly large; in this case, the resultant search-tree may be

excessively large leading to reduced computer speed and increased memory.

The example of Figure 5.9 is recalled. The same range field and training images
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are adopted. A realization of the proposed algorithm is presented at the bottom of

Figure 5.10. In this case the ellipsoids are not combined, but the ellipsoids of both

image are simulated and overlapped over the same area. The weights are directly

related to the frequency of appearance of 0◦ and 90◦ oriented ellipsoids in the grid.

Note how the number of ellipsoids oriented at 0◦ and 90◦ increases to the extremes

of the range field, that is, where the weights tend to 0 and 1 respectively. Thus, the

major advantage of the algorithm is that the simulated features mostly belong to

one of the training images.

Algorithm 4 Non-stationary MPS Simulation by Search-Tree Combination

Input: Set of training images, range field
Output: Non-stationary realizations
1: Construct a range model with the same resolution that the grid model
2: Allocate the set of training images M to locations i = 1, ....,M in the range

model
3: Construct an individual search-tree by scanning the M training images. Each

node of the search-tree contains the number of replicates cm(Dm,n) of the data
event Dn found in the training image m.

4: for each node uα of the random path {α = 1, ..., (nxnynz)} do
5: Obtain the range value r(uα) and select the adjacent training images at con-

secutive locations ri and ri+1

6: Based on the range value r(uα) determine the weights for each training image

by the standardization procedure: w = r(uα)−ri
ri+1−ri

7: Retrieve the data event Dn

8: Combine linearly the number of replicates found in each training image

c(Dm,n) =

⌈
wic

i(Dm,n) + wi+1c
i+1(Dm,n)

⌉
9: Compute the conditional probability P (S = sk|Dn) from the updated node

c(Dm,n)
10: Drawn the categorical variable from P (S = sk|Dn)
11: Add the simulated value sk(uα) and move to the next node uα+1

12: end for

The algorithm is suitable for generating non-stationary realizations based on

quite different training images. Two examples based on different geologic deposi-

tional environments are developed. The first combines training images that rep-

resent deposits of fluvial origin, see at the top of Figure 5.11. Both images share

three facies: Flood Plain (code 0), Channel Fill (code 1), and Channel outline (code
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Figure 5.11: At the top, the training images; at the bottom on the left, two realizations
by implementing the search-tree combination algorithm, and on the right, two realizations
based on the LOP.

2), a fourth facies is added in the second training image on the right: Leeve (code

3). Beneath them, the range field that conditions the mixing process. At the bot-

tom, four realizations are presented. On the left column, two realization based on
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Figure 5.12: An example of a non-stationary realization using STRC of a turbidite reservoir.
At the top, four training images; at the bottom, three realizations guided by the range field
in the middle.

the proposed search-tree combination algorithm. Here, the features of the training

images are coupled by the range field; this can be noted by the continuity of the
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channels. As a comparison, the column on the right shows two realizations based

on the LOP. In this case, the training images are well-reproduced close to the edges

of the range field. However, the LOP scheme gives rise to features that are not

originally contained in the training images, which is seen in a lack of continuity in

the channels.

The second example presented in Figure 5.12 simulates a reservoir of deep water

depositional origin. The training images characterize turbidite lobes of different

geometry and size, seen at the top of the figure. The four images are placed at 0.2,

0.4, 0.6 and 0.8 along the range field. Three realizations are shown at the bottom. A

smooth transition of the turbidite lobes through the range field is observed. There

are no abrupt changes in between, and the non-stationarity of the phenomenon is

reproduced.

5.3 MPS Non-Stationary Modeling using a Local Con-

ditioned Training Image

The idea of using an individual data-driven training image for modeling mineral

deposits is revisited, see Section 2.5.3 for a brief introduction. A series of practi-

cal modifications to remedy inconsistencies in the models due to non-stationarity

are presented. The purpose of the current section is to explore the use of a local

conditioned training image for the improvement of non-stationary MPS realization.

Two approaches are investigated. The first uses local proportion models to con-

trol the location of geologic domains in space. The second approach introduces a

post-processing methodology based on a simulated annealing technique with the

objective of improving the reproduction of multiple point statistics in the realiza-

tions. An example based on a sedimentary gold deposit is used for illustrating the

advances.
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5.3.1 Implementation of snesim in a Sedimentary Folded Gold

Deposit

The deposit is characterized by a set of sedimentary folded structures. Figure 5.13

shows an isometric view of the geologic model; in orange and yellow, the sedimen-

tary upper and mean sill domains, in red, the intrusive unit called sage basalt.

Both drillholes dataset and the geologic model are provided by mine professional

personnel.

Figure 5.13: Geologic model of the gold deposit. Folded sedimentary structures and in-
trusive domains control the mineralization process. In orange and yellow, the sedimentary
upper and mean sill domains, in red, the intrusive unit called sage basalt.

This geologic model is used as the training image for the implementation of the

snesim algorithm. A maximum number of samples of 128, a neighborhood of 750

by 750 by 750 meters and template of 5 by 5 by 5 were used for simulating. Neither

servosystem for correcting global proportions of domains nor local proportion models

were implemented. Figure 5.14 shows three cross sections and two plan views of

a resultant realization. Even though the folding features are transfered from the

training image, a series of inconsistencies such as some unforeseen noise and a lack of

continuity in certain locations may be observed. This is because some configurations

in the realizations are not necessarily contained in the training images. For handling

these issues, the use of local proportions models and a post-processing technique is
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developed.

Figure 5.14: An MPS realization using the geologic model of Figure 5.13 as a training
image. The black circles denote two major problems: unwanted noise and lack of continuity
for certain domains.

5.3.2 Integration of Local Proportion Models

Local proportions models provide of secondary information to deal with the lack

of continuity. The models establish a level of knowledge about the presence and

absence of particular domains in the deposit. The information of these domains is

contained in the form of proportions and integrated into the conditional probabilities

when simulating.

The local proportion models may be constructed by computing the proportions

of domains of surrounding data within a moving window. The user must define
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the size and orientation of the window. Figure 5.15 shows three cross sections for

the upper sill, mean sill, sage basalt and host rock domains. The proportions were

computed based on an isotropic local mobile window of 45 by 45 by 45 meters.

A heuristic method for integrating the local proportion models into the MPS

framework is proposed. The method is similar to the servosystem correction tech-

nique reviewed in Section 3.3.3. The updated posterior conditional probability is

based on the prior probability computed from the MPS and the likelihood infor-

mation assumed as the ratio between the local proportion model and the target

marginal distribution of domains, see Eq 5.5. PMPS(u; k) corresponds to the con-

ditional probability computed from the training image and PLocal(u; k) the local

proportion at location u; P Target(k) is the target proportion of domain k estab-

lished by the user. The power factor γ increases or decreases the influence of the

local proportion model in the updated conditional probability PUpdated(u; k). When

γ is equal to zero no correction is applied.

PUpdated(u; k) = PMPS(k)
(PLocal(u; k)

P Target(k)

)γ
(5.5)

This updating scheme offers an accurate manner to handle local proportions

models since there is no assumption among sources as in the case of Bayesian Up-

dating Deutsch (2002), permanence of ratios or Tau model Journel (2002). These

methods show a reliance on the global proportion of domains, that is, the posterior

conditional probability PUpdated(u; k) is updated considering the global proportion

instead of the local model as the prior, which could lead to biased proportions in

the realizations.

Figure 5.16 illustrates an example of the integration process. On the left column,

the same three sections showed in Figure 5.13; on the right, a realization considering

a local proportion model. The use of this secondary information allows overcoming

the lack of continuity of certain domains; see for instance the sage basalt (red do-

main) in the middle. Due to the introduction of a local model, the realization on
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Figure 5.15: Local proportion models based on a mobile window of 45 mts by 45 mts by
45 mts. Three cross-sections show the proportions for all domains.
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MPS (snesim) snesim + Local Trend Map

Figure 5.16: On the left, the same realization of the Figure 5.14. On the right, a snesim
realization using the local proportion model of the Figure 5.15 as secondary information.

the right looks closer to the features of the training image. The correction factor

has a direct consequence on the global proportions of domains; its application must

be checked.

5.3.3 Multiple Point Statistics Random Perturbation (MPS-RP)

Post-processing

The objective of a post-processing implementation is to eliminate inconsistencies

and unwanted noise from realizations. Once snesim is performed, a second MPS

simulation based on simulated annealing is implemented. The MPS annealing tech-

nique proposed by Deutsch (2011) is considered. This algorithm is straightforward

and requires a low level of parameterization. The method minimizes an objective

function (OF) based on the difference of three statistics retrieved from the training

image and the realization: a local proportion model, two-point transition probabil-
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ities and multiple point statistics.

Local Proportion Model: The first component of the objective function re-

lates to the reproduction of a local category proportion model. Introduction of local

models is relevant in the non-stationary modeling since they provide a framework

to generate realizations with different proportions than the training image.

Op =
K∑
k=1

np∑
i=1

(nTrainingImage
k,i − nRealization

k,i )2 (5.6)

The local proportion model is divided into np equally spaced proportions. K

corresponds to the number of geologic domains considered. Thus, the objective

function ensures to reproduce the correct number of cells by classifying all the nodes

of the model into one of the np classes.

Two-Point Transition Probabilities: This function ensures the reproduction

of the K2 two-point transitions probabilities for each lag considered. The function

is given by:

Otp =

nl∑
l=1

K∑
k=1

K∑
k′=1

(pTrainingImage
l,k,k′ − pRealization

l,k,k′ )2 (5.7)

where l correspond to oriented lag vectors. This transition probabilities are

especially advantageous when considering large distances and different anisotropies.

Multiple Point Statistics: The last component of the objective function re-

lates to the correct reproduction of multiple point configurations in the realizations.

Om =

K∑
k=1

M∑
m=1

(pTrainingImage
k,m − pRealization

k,m )2 (5.8)

where M correspond to the number of locations of the multiple point config-

uration considered. Recall that the number of possible configurations is given by

KM , which depending on the complexity of the training image and the number of
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locations may be extremely large. In order to reduce the dimension of the problem,

Deutsch (2011) proposed to not consider the location of the category within the con-

figuration, but simply observe the frequency of appearance within the M locations

of each category; this reduces the dimension of the problem to KxM .

Each component of the objective function is weighted to ensure their contribution

to the ultimate convergence.

O =

n∑
i=1

wiOi (5.9)

The weights may be set up differently to provide more relevance to one particular

component, but commonly, they are configured so that all component contribute

equally to the objective function. Different strategies can be adopted, and additional

components may be considered if desired.

Algorithm 5 MPS Random Perturbation (MPS-RP) Post-Processing

Input: snesim MPS realization
Output: Post-processed MPS realization
1: for each loop. Number of times the program will visit all grid nodes in the

realization do
2: for each node uα of the grid {α = 1, ..., (nxnynz)} do
3: Perturb the category k of the node
4: Compute each component of the objective function: Op,Otp and Om

5: Accept the change if the objective function value O =

n∑
i=1

wiOi is lesser

than before
6: end for
7: end for

Algorithm 5 describes the MPS random perturbation post-processing method-

ology. The method proceeds as follows: each node of the grid is visited, and the

corresponding simulated category perturbed several times; the objective function is

evaluated and the perturbation accepted if the value of the function decreases. The

iteration continues visiting the nodes up to the number of loops is completed. Due

to the nodes may be visited several times, the time to reach the minimum may be

150



considerable, especially when dealing with grid of several millions of nodes.

Figure 5.17 shows a resultant realization after the annealing post-processing is

applied. The same local proportion model of Figure 5.15 is used. The annealing

post processing focuses on local scale improvements by filtering the noise, making

the features of the post-processed realization more similar to the training image.

MPS (snesim) snesim + Local Trend Map 
+ Annealing Post-Processing

Figure 5.17: On the left, the snesim realization of the Figure 5.14. On the right, a realiza-
tion considering the local proportion model of Figure 5.15 along with the application of the
simulated annealing post-processing.

The annealing post-processing partially addresses unwanted noise arising in the

snesim algorithm. The method is practical and easily embedded within the snesim

algorithm due to its straightforward parameterization. Post-processing techniques

based on the local averaging of domains have the risk of altering and filtering the

essence of the multiple point configurations in the models. In this sense, the MPS

annealing is statistically consistent since the multiple point configurations of the

training image are still reproduced after post-precessed the realization. Besides, the
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requirement of conditioning of data in the realizations is satisfied, that is, no change

of category at drillholes locations.

5.4 Remarks

The proposed multiple training image MPS algorithm was modified to control the

geologic variability to specific scales. The method incorporates flexibility in the

models by allowing the user to determine the ordering and the sequencing of the

reproduction of geologic features. Even though the realizations look slightly different

relative to the original LOP algorithm, the contribution of the approach relies in

the dynamic assignment of weights subject to a measure of information content.

In the past, the characterization of the sequential path based on information from

the data has shown improvements in the reproduction of large scale structures (Liu

and Journel, 2004). A similar approach could be adopted, and characterize the

sequential path for the local conditioning of training images. Resultant models can

be extended in terms of the spatial arrangements of the patterns reproduced. The

use of functions, local maps and a structured path have the potential to extend the

application into different geological environments.

A local map for the assignment of the weights is introduced in the second part.

This map is used as a range field to guide the use of multiple training images for

non-stationary modeling. In order to generate suitable realizations, the training

images have to be similar. A second algorithm was proposed to deal with training

images with different heterogeneities. It is based on the construction of an individ-

ual search-tree that contains multiple point configurations from multiple training

images. There are fewer unrealistic transitions. Special care must be taken when

dealing with several training images with a high level of complexity; under these

circumstances, the search-tree may become too large.

Finally, the last approach considers the use of local trend maps and post-

processing for improving realizations of mineral deposits. The use of trend maps

help to maintain the continuity in the models and the post-processing corrects un-
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wanted noise. The local trend constrains the final realizations in terms of spatial

variability. There is a risk the models are overly constrained.
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Chapter 6

Case Study: Red Dog Mine

This chapter shows a case study based on data from the Red Dog mine, Alaska. The

objective is to evaluate the forecasting of mineral resources with uncertain geologic

domains through the combination of multiple data-driven training images.

Section 6.1 provides a description of the data used, the geology and the geologic

domains of the Red Dog mineral deposit.

Section 6.2 reviews the implementation of the proposed multiple data-driven

training image MPS simulation; while Section 6.3 shows the procedure for cali-

brating the geologic variability.

The geostatistical models are evaluated in terms of accuracy, precision and pre-

diction of the geologic domains in Section 6.4. In turn, Section 6.5 presents

the improvements in mineral grade prediction. Results are compared to production

data.

Finally, Section 6.6 provides remarks of the proposed methodology for modeling

of mineral deposits with respect to classical geostatistical techniques.

6.1 Overview of Geology and Available Data

The Red Dog deposit consists of a number of sulphide ore zones of sedimentary

exhalative and replacement origin (Ayuso et al., 2004; De Vera et al., 2004; Moore

et al., 1986). Structural and sedimentary characteristics define four mineralized
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plates: the upper, median, lower and sub-lower units. Four geologic domains will

be modeled, all of them, contained the upper and median plates. These domains

are the low iron siliceous (LIS), high iron siliceous (HIS), baritic (BA), and their

associated overlying waste rock denominated as HRU.

Figure 6.1: Available drillhole and blasthole data displayed on a plan view and an East-
West cross section.

The case study is centered in the area where Teck Resources Limited (Teck) has

provided production data (blastholes). Figure 6.1 shows projections of the drillholes

and blastholes onto the North-East plan and Elevation-East section. The volume of

interest is approximately 1,250 ft by 1,250 ft by 100 ft. The drillholes are composed

of samples of 5 ft support spaced about 100 ft. For the blastholes, the spacing is 10

ft by 12.5 ft placed on 4 benches separated by 20 ft.

Direction Origin Block Model Number of Blocks Size of Blocks (fts)

Northing (ft) 586,350 100 12.5
Easting (ft) 145,350 95 12.5
Elevation (ft) 877 20 5

Table 6.1: Dimension parameters of the block model utilized for the construction of
the training images and the implementation of the MPS modeling algorithm.

Table 6.1 presents the parameters of the block model used in the construction of

the training images and MPS simulation. Since drillholes and blastholes are sampled

at different supports, this model is later upscaled in the vertical from 5 ft to 20 ft.

The models of Zn grades are constructed in a two-stage process. First, realiza-

155



tions of the geologic domains are generated by implementing the proposed multiple

data-driven training image MPS simulation. Secondly, the Zn grades are simulated

independently for each domain. Finally, the Zn grades are merged in a unique model

on a by domain basis.
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Figure 6.2: Variogram analysis of the distance function variable for each domain. In blue,
the onmihorizontal experimental variogram, in red, the vertical direction. All variograms
are fitted by Gaussian structures.

6.2 Implementation of MPS Simulation using Multiple

Data-Driven Training Images

6.2.1 Construction of Deterministic Training Image (DTI)

Four ore type domains are modeled: low iron siliceous (LIS), high iron siliceous

(HIS), baritic (BA) and the host rock (HRU). For each domain, the experimental

signed distance values variograms and their models are presented in Figure 6.2. No
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particular direction of continuity is observed in the horizontal plane; in red, the

omnihorizontal variogram, in blue, the vertical direction. Note the difference be-

tween the vertical and horizontal directions; this is an indicative of the sedimentary

nature of the mineralization. Gaussian models are used for fitting the experimental

variograms.

Figure 6.3: Isometric illustration of the deterministic training image. In red the baritic
domain (BA), in green the Low Iron Siliceous (LIS), in yellow the High Iron Siliceous (HIS),
and in cyan the Host Rock Unit (HRU).

The multiple distance function algorithm presented in Section 3.3 is used to

generate the deterministic training image, see Figure 6.3 for illustration. No blast-

hole information was used. In red the baritic domain (BA), in green the Low Iron

Siliceous (LIS), in yellow the High Iron Siliceous (HIS), and in cyan the Host Rock

Unit (HRU).

6.2.2 Construction of Stochastic Training Image (STI)

The stochastic training image was constructed with Sequential Indicator Simulation.

The indicator variograms are presented in Figure 6.4. The LIS and HIS domains

follows the same directions of anisotropy as the signed distance values. In the

case of BA and HRU domains, a zonal anisotropy is detected at an azimuth of 90

degrees; however, it is not particularly significant. A trend is identified in the baritic

157



domain, which is depicted by the indicator variogram values above the sill. All the

experimental indicator variograms are modeled using spherical structures.
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Figure 6.4: Indicator experimental variograms and their respective models. In blue and
red the onmihorizontal and vertical directions for HIS and LIS. For the Baritic and Host
Rock a zonal anisotropy between the N0E (red line) and N90E (green line) directions is
observed.

The training image is shown in Figure 6.5. This image maintains the main large-

scale structures observed in the drillhole data and the deterministic training image,

but also, shows characteristics short scale variability.

6.3 Geologic Variability Calibration

This section is devoted to determining the correct weights for the integration of

both training images. The proposed calibration method which includes the sampling

process and the computation of the entropy are described in Section 4.5.
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Figure 6.5: Isometric illustration of the stochastic training image. The model corresponds
to an individual realization of the Sequential Indicator Simulation algorithm. In red the
baritic domain (BA), in green the Low Iron Siliceous (LIS), in yellow the High Iron Siliceous
(HIS), and in cyan the Host Rock Unit (HRU).

Generation of Multiple-Weighted MPS Simulations

A sequence of realizations that integrate both training images are generated. Each

realization is constructed by considering weights in intervals of 5% when combining

the DTI and STI training images. A total of 19 realizations were generated.

The set of realizations is presented in Figure 6.6. In general, the global geologic

structures such as the spatial arrangements of domains and their proportions remain

the same in all the realizations. Expected geologic structures from both training im-

ages are preserved, keeping large scale structures of the deterministic but including

variability of the stochastic.

Entropy Sampling Process and Geologic Variability Matching

A sampling process is implemented as part of the variability calibration. Figure 6.7

provides an illustrative image of the sampling process for an individual drillhole. At

the top, the placement of one drillhole (just at the intersection of the two panels);

in the middle, the locations of its replicates. A mesh of 50 ft by 50 ft is chosen.

At the bottom of the figure, a representation of the replicates of the drillhole with
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5% DTI - 95% STI

20% DTI - 80% STI

35% DTI - 75% STI

50% DTI - 50% STI

65% DTI - 35% STI

80% DTI - 20% STI 85% DTI - 15% STI

70% DTI - 30% STI

55% DTI - 45% STI

40% DTI - 60% STI

25% DTI - 75% STI

10% DTI - 90% STI 15% DTI - 85% STI

30% DTI - 70% STI

54% DTI - 55% STI

60% DTI - 40% STI

75% DTI - 25% STI

90% DTI - 10% STI

Figure 6.6: Some realizations based on the proposed MPS algorithm. The training images
are combined using weights in intervals of 5%. Models present the same scale as Figures 6.3
and 6.5, that is, 1,250 fts from East to West, 1,190 fts from South to North and 100 fts in
the vertical.
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Figure 6.7: Overview of the sampling process utilized for the training image calibration.
An example based on an individual drillhole is presented. At the top, the location of the
drillhole. In the middle, the sampling over the training image on a regular basis each
50ft. At the bottom, The replicates resulting from the sampling process colored by their
respective domains. The entropy associated to the drillhole is computed from the set of
sampled replicates. The calibration ends when all drillholes have been sampled and their
entropies averaged.
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the geologic domains assigned. Then, a 1-D template of two locations is used to

compute the entropy of the set of replicates and its averaged value assigned to the

corresponding drillhole at the top. The process is repeated for each drillhole, and

the entropy of the realization is computed as the average over the set of drillholes,

Eq 4.6.

The calibration curve resulting from the 19 configurations is shown on the left

of Figure 6.8. The entropy computed from the drillholes reaches 0.62, it is plotted

by the blue line on the ordinate axis. Then, the calibration consists of establishing

the realization that provides the same geologic variability shown by the drillholes.

This configuration corresponds to 80% from DTI and 20% from STI. On the right,

a simulation based on this configuration.

Figure 6.8: The calibration curve used for determining the correct degree of mixing of the
training images. On the right, a realization whose weights were set out to 80% DTI - 20%
STI, which corresponds to the same geologic variability present in the drillholes.

Comments on the Geologic Calibration Process

The calibration leads to a deposit-specific result. The assumption of stationarity is

important, that is, the geologic variability of the set of drillholes is assumed spatially

homogeneous in the area being evaluated. The results obtained appear reasonable

but the use of local entropy could also be applied. A future path of research could

be to adapt the training image integration based on local geologic conditions.

162



Figure 6.9: At the top, two columns representing the spatial configuration of the data used
for cross-validation. Below them, 10 probability maps associated to the LIS domain for 10
different configuration of weights.
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Figure 6.10: Categorical accuracy plots for evaluating the capacity of prediction of the
probabilistic models. Each plot is determined by comparing the predicted domain with the
set of data kept aside for validation.
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6.4 Probabilistic Assessment of the Method

One aspect of checking geostatistical model is to compare the predicted values with

the known data in cross-validation mode. From the set of 1,260 samples considered

in the study area, 646 correspond to samples utilized as conditioning data and 614

are left-out for comparison purposes. Nine cases are evaluated, considering setting

weights in intervals of 10 %. Figure 6.9 at the top shows scattered illustrations of

the reference and left-out data; beneath them, the probability maps derived from

50 realizations.

The method was applied on a grid basis while the set of reference data are located

at scattered positions. In order to make the results comparable, the closest nodes

of the grid are assigned to the locations of the reference data.
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Figure 6.11: BSlope curve. The optimum result is obtained when the data-driven training
images are combined using the configuration of weights 50%-50%.

Local distributions of uncertainty of the reference data are assessed through

the analysis of accuracy plots, see Figure 6.10. As discussed in Section 4.7, if the

estimated probabilities are above the 45 degrees line, the model is accurate; the

model is precise if the probabilities are close enough to the diagonal. Two issues

are observed. The first relates to a systematic loss of accuracy as the weight of the
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deterministic training image increases. The second corresponds to the increment of

the B measure (Eq 4.9) - difference between the averaged conditional probabilities

when the reference data is true and false. These issues were previously discussed

and an alternative dimensionless measure proposed in Section 4.7.3.

The measure, named BSlope, combines the information of the accuracy plots

and the B measure, see Eq 4.10 for details. The BSlope for each combined model

is presented in Figure 6.11. The configuration of 50% DTI and 50% STI provides

models that maximize its accuracy, precision and predict the true values correctly.

These models improve the estimates of local conditional probabilities, and perform

better than implementing the SIS algorithm or the deterministic geologic model

individually. Even though the deterministic/stochastic approaches look geologically

unrealistic, the combination of both incorporates elements that allow improving the

geologic representation of the models.

6.5 Validation of the Grade Model: Measuring the

Performance of Mineral Resource Forecasting

To further understand of the proposed method, the uncertainty characterization

of grades of Zn must be also assessed. The objective is to demonstrate that the

suitable characterization of the geologic variability in the models leads to enhanced

predictions of mineral resources. The validation considers the univariate analysis of

Zn grade; no multivariate relations among grades of other minerals are considered.

A set of 50 realizations of Zn grades are constructed. The validation consists of

comparing the realizations with the grade of blastholes (production data). A limited

number of benches were used in the analysis; further, market prices and operational

costs do not correspond to those used by Red Dog mine personnel.

6.5.1 Geostatistical Simulation of Zn Grade

Sequential Gaussian Simulation (SGS) is used to simulate the Zn grades. Further

theoretical and practical insights of the methodology may be found in Chilès and
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Delfiner (1999); Deutsch and Journel (1998). The method relies on the assumption

that the data may be fully characterized by the Multivariate Gaussian distribution.

Commonly, the grades do not present a Gaussian distribution so a normal score

transformation is applied first. The normal scores values are used for variogram

modeling. The data are simulated in Gaussian units and then back-transformed to

original values.
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Figure 6.12: Variogram analysis for Zn grade. A zonal anisotropy at N45E with a slight
dipping of 10 degrees is detected from the variogram maps. The experimental variograms
were fitted by exponential and spherical models.

Normal Score Transformation

Normal score transformation is a one-to-one relation that consists of converting

values in the original distribution of Zn grades into a standard Gaussian distribution.
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Depending on the distribution of original units, a despiking procedure may be needed

in the case of multiple data with the same values (below detection limit grades for

example).

Variogram Modeling of Normal Scores Values

Figure 6.12 on the right presents the variogram map for the planes XY , Y Z and

XZ. A strong zonal anisotropy is observed along the azimuth 45◦ dipping at 10◦.

The experimental and model variograms are plotted on the left. In red and green,

the directions of 45◦ and 135◦, respectively; in blue, the vertical variogram.

Parameters for Gaussian Simulation

The realizations are generated using the GSLIB program sgsim, Deutsch and Jour-

nel (1998). The set of parameters required for the simulation relate to defining the

dimension of the search and the number of samples used. The selected search radii

was set up to 250 x 250 x 100, and the minimum and maximum number of samples

to 8 and 64 respectively.
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Figure 6.13: Histogram reproduction checking of Zn grades. On the left, the reference
distribution; on the right, the histogram of an individual realization.

Validation of Simulated Zn Grades Models

Non-stationarity issues and the incorrect selection of parameters might generate bi-

ased realizations. The realizations must reproduce the conditioning data as well as
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Figure 6.14: Histograms of the mean and standard deviation for all realizations.

the histogram and variogram. These checks are standard practice. The data are

reproduced exactly.

Reproduction of Histogram: Histograms of simulated values after back trans-

formation should be close to the reference distribution of conditioning data. Figure

6.13 compares the reference distribution with one obtained from an individual re-

alization. Both the shape of the histograms and its basic statistics including the

mean and the standard deviation are well reproduced. A more general comparison

is shown in Figure 6.14. Here, the histogram of the means and standard deviation

for the set of realizations show that the distribution of the conditioning data is re-

produced in the realizations.

Reproduction of Variograms: Experimental variograms are computed over the

set of realizations for the same directions found in the exploratory analysis of data.

Variogram reproduction is checked in Figure 6.15. Three directions of continuity are

plotted; in red, the variograms of each realization and in black the corresponding

model for that direction. A slight bias may be observed for the first and the last

figures, but the effective reproduction of the variogram within expected deviations.
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Figure 6.15: Variogram reproduction checking. The major, minor and vertical directions
are considered. The set of red dash lines correspond to the experimental variograms of the
realizations; the model is presented by the continuous black line.

6.5.2 Local Mineral Resources Forecasting Performance

The analysis focuses on assessing the local prediction of Zn grades. The simulated

grades are compared with the grades of blastholes. Two measures are implemented,

the correlation coefficient, and the accuracy and precision of the estimated condi-

tional distributions obtained from the set of Zn realizations.

The grades are originally simulated using the block model parameters described
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Figure 6.16: Three realizations of Zn grade for an individual bench. On the left, the model
at a resolution of 12.5ft by 12.5ft by 5ft; on the right, the upscaled model at 12.5ft by 12.5ft
by 25ft (same scale that the blasthole data).
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Figure 6.17: Blastholes colored by Zn grade. On the left, the original values; on the right,
the expected value of Zn of all realizations. For the latter, the simulated values in the grid
were paired to the closest blastholes.
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in Table 6.1. The calibrated model of 80 % DTI - 20% STI is implemented. The

column on the left of Figure 6.16 illustrates three realizations for the bench at level

877 ft. The model is upscaled from the sample to the blastholes support, that is, the

realizations are upscaled from (12.5ft,12.5ft,5ft) to (12.5ft,12.5ft,25ft) support. The

column on the right shows the same upscaled 877ft bench. Note that the variability

of the Zn grades decreases due to the upscaling in the vertical direction.

Correlation of Simulated Zn Grades and Blastholes

The blastholes are commonly drilled on a regular mesh independent of the block

model mesh, both the realizations and the blastholes are paired according to near-

est neighbor. A total of 21,347 blastholes distributed on four benches have been

considered for the analysis. The column on the left of Figure 6.17 displays the spa-

tial configuration of the blastholes. The column on the right corresponds to the

average of grades of Zn over the set of 50 realizations.
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Figure 6.18: Correlation coefficient between the blastholes of the Figure 6.17 and the set
of expected values of the set of realizations.

Given that the set of realizations offers 50 simulated values to be compared

against the blastholes, their expected value is used as an unique representation that

summarizes the information contained in the realizations. The correlation coefficient
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between the blastholes and averaged Zn grades is presented in Figure 6.18. At

the extremes there are also plotted the coefficients for the cases when SIS and

the deterministic model are implemented individually. The maximum correlation

corresponds to the configuration of 50% DTI - 50% STI. It is interesting to note

that the combined models present better correlations than considering the SIS and

DTI models individually. The increase of the correlations coefficient confirm that

combining multiple point configurations from two training images allow a relative

small improvement in the local prediction of mineral resources.

Local Accuracy and Precision of Models

Another measure of local performance relates to the goodness of the local uncer-

tainty distributions of the probabilistic models of grades of Zn. The same definition

when evaluating a categorical model, detailed in Section 4.7.1, applies, but for the

continuous variable Zn. Recall that a statistical model is deemed accurate if the

fraction of true values falling within a given p symmetric interval exceeds or is equal

to p. Precision, in turn, relates to the closeness to the p interval; as the fraction of

true values equals p, the model is considered more precise.
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Figure 6.19: Accuracy plot of Zn grades.
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A scatter plot using p symmetric increasing interval of 5% against the true

fraction of values is presented in Figure 6.19. The difference in average is around

7% being close enough to consider that the Zn grades were estimated with accuracy

and precision.

6.5.3 Assessment of Global Forecasting of Recoverable Resources

This subsection evaluates the ability of the proposed method for predicting mineral

recoverable resources in global terms.

The ore tonnage and grades is crucial for decision-making. A series of operational

and economical parameters are involved including the grade of zinc, the metallur-

gical recovery, the price in the international market for one tonnage of zinc, and

mining the cost associated to the extraction process for one tonnage of material. All

these elements are embedded in a profit-oriented function to set the minimum grade

(marginal cut-off) needed for an estimated block of Zn to be considered profitable.

The marginal cut-off corresponds to the minimum value for the grade of Zn from

which one may obtain zero revenues. Then, all material above this cut-off may be

considered as economically profitable. To maintain the reserve of the economic and

operational parameters used in the Red Dog mine, the cut-off grade was arbitrarily

established to 15% of Zn.

The marginal cut-off is applied over the set realization individually; then, a

distribution function of the global amount of ore is obtained.

The distribution of global recoverable resources that result from the calibrated

model (80% DTI - 20% STI) is evaluated. To complement the analysis other two

models are added, the one based on SIS and that that uses the geologic interpretation

provided by the DTI model. For the latter the geologic model remains unique.

The Figure 6.20 provides the distribution of global mineral resources in terms of

quantity of metal for each case; fitted distributions curve and general statistics are

also plotted as a reference. To facilitate the evaluation, the red line plots the mean

of the distribution and the blue the content of metal computed from the blastholes.

The calibrated model is considered accurate since the mean of the distribution is
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Figure 6.20: Distributions of the quantity of metal for the SIS, DTI and 80% DTI - 20%
STI models. The blue line represents the quantity of metal computed directly from the
blastholes. The red line corresponds to the mean of the distribution. As close these two
lines more accurate the model.

close to the amount of metal obtained from the blastholes, but also precise due to

the distributed values are fairly concentrated around the mean. The model based

on the DTI interpretation cannot be assessed for accuracy. The SIS model appears

neither accurate nor precise.

6.5.4 Economic Impact on Decision-Making

The last assessment consists of attempting to quantify the economic impact of the

proposed methodology. The ore-waste classification of the blastholes after apply-

ing the marginal cut-off is compared with conventional mineral resources evaluation

approaches. Since all models have the same simulated grades, the ore-waste clas-

sification is only affected for the geologic variability of simulated domains. Figure
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DTI

DTI

Figure 6.21: Ore-waste classification maps for SIS, DTI and 80% DTI - 20% STI models.
The true classification based on blastholes (reference model) is also plotted on the top left
corner.

6.21 displays the ore-waste classification for an individual bench; in black the blocks

considered as the ore, and in gray those send to waste dumps. Note how the 80%

DTI - 20% STI model inherits geologic features from DTI and STI that results in

an improved version of ore-waste classification.

Sisim Model 80%-20% DTI
Classification Ore Waste Ore Waste Ore Waste

OreBlastholes 1,863 757 1,917 703 1,833 787
WasteBlastholes 397 4,336 412 4,321 403 4,330

Table 6.2: Ore-waste classification results for SIS, DTI and 80% DTI - 20% STI
models.

The Table 6.2 provides a quantification of the classification process. The com-

parison is based on the classification of the true model relative to the number of
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blocks classified as ore and waste for each methodology. The misclassification of

material for the SIS and DTI methods resulted in 15.7% and 16.2% respectively; a

lesser percentage of 15.1% is achieved when the proposed method is applied. An-

other important measure consists of the percentage of ore correctly predicted. From

the total of true profit, the SIS approach forecasts adequately 71.1%, the DTI 69.9%,

while the MPS proposed method predicts 73.2%. Depending on the area evaluated,

the grades of Zn involved and the metallurgical treatment this 2% of difference

may translate to millions of dollars in revenue. In this case, the improvement of 2%

amounts to an improvement of $14M and $13M in the predicted profit (based on cur-

rent Zn price) of the proposed methodology relative to the DTI and SIS approaches.

6.6 Remarks

The MPS integration of data-driven training images leads to an improvement in

the classification of ore and a reduction of misclassified material. A comparison of

the multiple training image MPS approach relative to classical geostatistical im-

plementation approaches show an improvement in profit. The technique integrates

information in a manner that better captures the intrinsic geologic variability of

the deposit. Improved mine design and planning may be undertaken by mining

engineers.
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Chapter 7

Concluding Remarks

Resource and reserve estimation of mineral deposits requires high resolution models

of the spatial configuration of geologic domains. A realistic representation of the

variability of these domains may not be obtained either by currently used geologic de-

terministic method or recent developments in geostatistical simulation. Determinis-

tic models are overly continuous, whereas geostatistical approaches are characterized

by a lack of large-scale continuity and an exaggerated random component. These

issues lead to biased predictions on the evaluation of mineral resources (Richards

and Sides, 1991; Srivastava, 2005).

Geostatistical techniques can be improved upon. This thesis proposes a method-

ology that improves the realism of the geologic contact variability in mineral de-

posits. Numerical models are constructed based on a MPS simulation approach that

integrates two geologic interpretations represented by multiple data-driven training

images. The resulting models lead to an improvement in modeling the geologic

variability, providing of better estimates of dilution and lost ore, and an improved

forecasting of mineral resources and reserves.

7.1 Summary of Contributions

The main contribution of this thesis consists of a methodology for the correct mod-

eling of the geologic variability in mineral deposits. Specifically, the original contri-
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butions include: (1) a procedure for constructing data-driven training images, (2)

the integration of these multiple data-driven training images based on the linear

opinion pool scheme, and (3) the calibration of the geologic variability observed in

conditioning data.

7.1.1 Construction of Multiple Data-Driven Training Images

The use of training images derived from available information is an essential element

of the proposed methodology; the introduction of conceptual geological models is

avoided. One image comes from modeling the categories by a deterministic ap-

proach and another comes from the application of stochastic method. The first is

too continuous and the second too random. Both training images represent inter-

pretation of the mineral deposit; the difference relies in the principles assumed for

their construction.

In the case of the stochastic training images, the sequential indicator simula-

tion was used; its theoretical and practical aspects have been widely documented

(Chilès and Delfiner, 1999; Deutsch and Journel, 1998; Goovaerts, 1997; Journel,

1983; Journel and Isaaks, 1984), and do not constitute a contribution of this thesis.

Its relevance relies on the resultant characteristics of these models when integrated

with the deterministic training image.

On the contrary, for the deterministic training image, an implicit geologic mod-

eling approach based on the estimation of signed distance values was developed.

The method provides a quick manner to generate deterministic geologic models and

training images. It is straightforward and does not require heavy parameterization;

it is reasonably objective, works with multiple geologic domains simultaneously, re-

duces the time for interpretation and alleviates the workload when doing auditable

revisions. It allows geologists to focus on understanding the geological process in-

stead of tedious manual digitalization of cross-sections and planviews. Introduction

of the softmax transformation function allows obtaining a heuristic representation

of the uncertainty of the boundaries. This heuristic measure is the basis for the

implementation of a post-processing technique that corrects the global proportions
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of the geologic domains. These modifications provide flexibility and consistency in

the resulting models.

7.1.2 Integration of Multiple Data-Driven Training Images

The proposed methodology integrates information from the training images based

on the linear opinion pool scheme. The theoretical support relies on its convex

property, that is, the combined probability falls inside the range of probabilities

computed individually from each training image. The convexity ensures the con-

struction of a mixture model with the correct amount of continuity and variability.

The linear opinion pool is a straightforward and an appropriate framework to com-

bine probabilities in our context of finding a reasonable geologic variability.

The MPS integration of data-driven training images reduces misclassified ore/waste

material. A mining case study served as the basis to compare the performance of

the method relative to classical geostatistical implementation approaches. Results

show an improvement in the predicted profit. The technique integrates informa-

tion in a manner that models honor the intrinsic geologic variability of the deposit.

Then, improved decisions related to mine design and planning may be undertaken

by mining engineers.

Although the algorithm was applied for training images constructed using variogram-

based techniques, the methodology is extensible to training images of different na-

ture. The deterministic training image might be created, for instance, from the

classical hand-drawn approach, some basic geologic sketch, or an object-based tech-

nique. On the other hand, any geostatistical method may be used for generating

the training image with larger variability. The combining process may be put into

practice with any class of training images. The integration of conditional probabil-

ities by a weighted linear function leads to combined features from both training

images.
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7.1.3 Calibration of Data-Driven Training Images by a Measure of

Geologic Variability

The calibration procedure of training images is an important contribution that aims

to generate geologic models with a similar variability as shown by the condition-

ing data. The weighting of the two training images is established by calibrating

the weights to match the multipoint entropy of the realizations and the drillholes.

There is no need for a conceptual training image from another modeling technique.

Resulting realizations reflects the degree of spatial disorder found in the drillholes.

The entropy is used to characterize the spatial arrangement of geologic domains.

This measure serves as a structural tool for calibrating mixture model when inte-

grating multiple training images. A major issue arises when dealing with two/three-

dimensional training images, and the limited one-dimensional information of the

drilling campaign. As a solution, a sampling process allows assessing the entropy

of the training images and calibrating the weights to match the entropy of the

drillholes. The idea takes advantage of the abundant drillholes involved in most

mining projects. Even though the result depends on the particular arrangement of

drillholes, its simplicity makes it an efficient measure.

Analysis on multiple point distributions related to expected geologic features in

the models after combination has shown the benefits of the convex property. Real-

izations are balanced within the range of variability established by the training im-

ages. The linear combination guarantees generating realizations with an adjustable

amount of geologic variability.

Reproduction of the geologic variability depends on the randomness of the stochas-

tic training image, which in turn, corresponds to a realization of sequential indicator

simulation. The use of multiple realizations as training images was also considered.

Further analysis showed minor differences in terms of the reproduced patterns. The

use of only one stochastic training image is acceptable to produce the target level

of geologic variability in the realizations.

The method is a step forward in the generation of models that incorporate

multiple sources and add realistic geological elements to the models. Resulting
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simulated realizations have a level of determinism that is warranted by the data and

provides a model of uncertainty that is checkable and reliable for decision making

7.2 Areas of Applications

Besides the analysis on the reproduction of the geologic variability of mineral de-

posits, the idea of integrating multiple training images may be extended. Two areas

of applications emerged throughout this thesis: (1) the use of the LOP to model

non-stationary geological environments, and (2) modifications to MPS simulation

to use local conditioned geologic model as a training image.

Integration of Multiple Training Images for Modeling Non-Stationary

Geological Phenomena: The integration of multiple training images based on

the LOP combination scheme has the potential to provide an alternative for non-

stationary geologic modeling as demonstrated by Manchuk and Deutsch (2012).

The implementation of local maps that controls the integration of multiple training

images is an important benefit of the LOP in this context.

The similarity between training images is fundamental for a suitable construction

of non-stationary models. To provide a method that does not need similar training

images, a more generalized algorithm is proposed. It is based on the construction of

an individual search-tree that contains multiple point configurations of the training

images. Here, the training images are loaded into the same search-tree before the

computation of conditional probabilities. Results showed a significant reduction of

artifacts when training images are coupled within non-stationary transition zones.

Practical MPS Simulation Using Data-Driven Geologic Models as

Training Image: Applications of MPS methods for modeling mineral deposits

based on data-driven training images is not common practice due to non-stationarity

issues such as lack of continuity and unwanted noise in realizations. Practical mod-

ifications as local trend maps and MPS post-processing mitigate these issues.

Local proportions models provide of secondary information to deal with the

lack of continuity. The models establish a level of knowledge about the presence
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and absence of particular domains in the deposit, and are embedded into the MPS

framework by a heuristic method. The method is similar to the servosystem cor-

rection technique. This updating scheme offers an accurate manner to handle local

proportions models since there is no assumption among sources, and show a re-

liance on the local proportions. However, there is a risk of generating models overly

constrained.

Inconsistencies and unwanted noise are eliminated from realizations by introduc-

ing a second MPS simulation based on simulated annealing. The annealing post-

processing partially addresses unwanted noise produced when using snesim based

on local conditioned training images. The method is practical and easily embed-

ded within the snesim algorithm due to its straightforward parameterization. The

MPS annealing is statistically consistent since the multiple point configurations of

the training image are still reproduced after post-precessed and does not present

problems about conditioning data.

7.3 Future Work

Future applications are grouped based on the design of an implicit geologic modeling

technique, and the integration of data-driven training images.

Multiple Signed Distance Function Implicit Geologic Modeling: The

geologic implicit distance function method may be extended to a grid-free frame-

work. This would facilitate the construction of geologic wireframes at arbitrary

resolution. A wireframing method could be incorporated directly. The use of dual

kriging for estimating the distance values would alleviate the estimation process in

terms of memory and computer speed.

Geologic models are non-stationary. Further elements including local trend maps

could address the conditioning of specific geologic features in the deposit. Specifi-

cally, a data integration technique that account for secondary variables and signed

distances would be an interesting avenue of future research.
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Implicit modeling of geologic domains does not always offer a satisfactory result

when specific trends and continuity of certain domains are desired. In this case, the

understanding of a trained professional becomes essential for obtaining improved

results. Developing hybrid techniques considering methodologies that incorporate

this understanding also remains an attractive path of investigation.

Even though the implicit distance function method provides reasonable models,

the resultant geologic domains depends on the volume used during estimation. In

other words, the global proportion changes with the extension of the model consid-

ered in the analysis, despite the fact that the configuration of data remains the same.

This dependency might lead to edge effects and bias in the proportions of geologic

domains. The lack of an effective methodology for representing global proportions of

domains calls for further research in declustering techniques for categorical variables

and modifications to signed distance modeling for unbiased models.

Geologic modeling relies on the analysis and interpretation of data. Data is

usually represented by samples of an arbitrary dimension. In the case of continuous

variables as mineral grades, this discretization makes sense since zones of high-

medium-low grades need to be identified and separately modeled. The resolution of

such samples has an impact upon the prediction of mineral resources and reserves.

However, the case for categorical variables is different; the discretization for char-

acterizing the geologic domains is unnecessary. Geologic description based on both

classical indicator formalism and signed distance could be fully described by con-

tinuous functions. There is no need for discretized samples or compositing. Further

investigation could establish the principles required to change the data representa-

tion from arbitrary point or composite samples to functions defined in space.

MPS with Multiple Data-Driven Training Images: In the current thesis,

the weights are determined to reflect the geologic variability of the drillholes in

the resultant realizations. An interesting research alternative consists of considering

uncertainty in the weights, that is, their assignment is the result of a random function

model. The weights could be drawn from this model before the integration of the
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training images. This double stochastic process would allow a wider assessment of

the space of uncertainty since the variability in the weights would extend to the

geologic domains in the models.

In general, future research in geologic modeling should aim for the construction

of hybrid models that integrate multiple interpretations. In this respect, the linear

opinion pool is a suitable framework for this task. The LOP could be extended to

more than just two training images. Two approaches could be conceived: 1) assign

the weights to multiple training images or 2) select training images as the result of a

stochastic function prior to their combination. The use of multiple training images

adds flexibility and extends the range and type of geologic environment that can be

modeled. Perhaps a scenario based scheme would be appropriate.

More information could be considered in the calibration of weights for the train-

ing images. The introduction of continuous variables such as grades and geometal-

lurgical attributes could help incorporate more geology into the numerical models.

With respect to the computation of the measure of entropy, evidence has shown

that the entropy depends on direction. This encourages the development of al-

gorithms that consider local measures of geologic variability. In this scheme, the

combination of training images could vary locally improving the models.

Adjustments to the simulation path has shown advantages for generating more

flexible geologic models. The use of information from conditioning data to control

this is another interesting area of future research. Models can be adapted to certain

geological environments. Optimization technique would aid to determine phases

within the simulation path for combination of training images based on particular

conditions.

Finally, both the computer memory and speed are proportional to the number

of training images used. Even though there is no theoretical restriction as to the

number of training images, there are computer constrains when treating a large

number of them, and efficient algorithms would be required in this situation. It

may be also considered to adapt the proposed method to other MPS techniques

as Impala (Straubhaar et al., 2011) or direct MPS sampling method (Mariethoz
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et al., 2010) that do not demand for memory-expensive storage procedure as the

search-tree.
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Appendix A

The snesim Algorithm

The following appendix describes the practical steps to implement the snesim al-

gorithm. A detailed review will be presented including the scanning procedure of

training images, which involves the search-tree construction and template selection,

pseudo-random path generation, conditioning to hard data and data event selection

criteria, reproduction of large and short scale features by the implementation of

multigrids, and correction of marginal probability of categorical proportions.

A.1 Multigrids

Before describing the snesim algorithm the basis of multigrids are explained. The

snesim algorithm applies the same essential steps for each multigrid. The concept of

multigrid was introduced by Gomez-Hernandez (1991) and consists of a discretiza-

tion of the grid into M increasingly nested finer grids. The multigrids may range

from 1≤ m ≤ M with m = 1 corresponding to the final simulation grid, and the

multigrid m to grid of nodes separated by 2m−1 nodes of the final simulation grid.

An example of 4 nested multigrids is presented in Figure A.1. It is a nested

structure since the nodes of the current multigrid m fills in the empty spaces of the

previous M-m multigrids. The multigrids allow reproduction of spatial features in

the training image at different scales, offering an organized scheme that links the

large and short scale patterns.
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At multigrid m, the template is rescaled according to the scale of 2m−1 nodes.

The scanning of the training image, computing of conditional probability and simu-

lation of nodes is performed for each multigrid independently. The simulated nodes

of the previous multigrids are added as conditioning data for the next multigrids;

in this manner, the large multiple point events are related to the shorter ones facil-

itating the reproduction of large scale features.

Figure A.1: Illustration of four nested 2D multigrids.

A.2 Algorithm

The snesim algorithm was devised to infer the conditional probabilities from training

images and simulate categorical attributes given specific multiple point data event.

The snesim algorithm is based on sequential simulation paradigm where locations
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are simulated one at a time and each simulated values becomes a conditioning data

for the next locations to be simulated. At each unsampled location, the surrounding

conditioning data give rise to a data event Dn. Given the data event, the conditional

probability is computed, and the Monte Carlo method simulates the categorical

attribute. The simulated value is added to the conditioning data, and the algorithm

goes to the next unsampled location. The process finishes when all the nodes of the

grid have been simulated.

The Figure A.2 shows a flowchart of the MPS simulation based on the snesim

algorithm. Further details are provided in following subsections, but the main steps

are briefly described as follows:

Build Search Tree: This step is done before the simulation starts. The training

image is scanned once based on the adopted template configuration. Every single

node of the training image is visited and the multiple data events stored in a search-

tree.

Multigrid Nodes Set up: All conditioning data are temporarily translated to

their closest multigrid node. This maximizes the use of the conditioning data and

enforces their reproduction in the final realizations.

Generate a Pseudo-random Path: All the nodes of the grid are visited

randomly with some modification to visit the most informed nodes first without

altering substantially the randomness of the process.

Data Event Selection: When a data event is not found sufficiently often in the

search-tree, the farthest conditioning data is dropped and the updated data event

is considered.

Compute Conditional Probability: The conditional probability of the data

event is computed from the proportions extracted from the search-tree.

Draw Simulated Attribute: The categorical attribute is simulated by Monte

Carlo Simulation and added to the conditioning data.

When all nodes of the multigrid have been simulated, the algorithm moves to

the next multigrid and repeats all previous steps. The simulation ends when the

finest multigrid has been completely simulated. In the following sections, each step
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Figure A.2: Flowchart of snesim algorithm.
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of the snesim flowchart will be described and explained in details.

The snesim algorithm was implemented in Fortran following the Gslib format.

The snesim package is composed by the executable file ”snesim.exe” and its pa-

rameter file ”snesim.par”. The input parameters will be related to the following

subsections for having a full comprehension of the snesim algorithm. These pa-

rameters include global and vertical target proportions for servosystem correction,

training image, template set up, the minimum number of data events, definition of

multigrids and conditioning data searching parameters.

A.3 Storing Patterns of Training Image

A.3.1 Template

The template is an essential component for conditional probability estimation and

pattern reproduction in the final models. The template consists on an arrangement

of nodes in 2-D and 3-D with respect to a central location. Its size and design may

take any shape. The design of the template is a user-defined parameter, and its size

may range from one individual node to the size of the training image. Figure A.3

shows several examples of templates configuration.

u0 u0 u0 u0 u0

Figure A.3: Some examples of templates’ configuration.

The size of the template along with the complexity of the multiple point events

and the size of the training image affect the computer requirements including mem-

202



ory and processing time.

Prob(S(u) = sk|template) (A.1)

The template affects directly the reproduction of multiple point events from

the training image. A small template might not retrieve the underlying spatial

arrangements contained in the training image; on the contrary, a large template

might not find even one single replicate given the size of the template, affecting

the reproduction of the patterns. In the original version, Guardiano and Srivastava

(1993)considered scanning the training image before simulating every unsampled

location. The introduction of the search-tree algorithm by Strebelle (2002) speeds

up the simulation process and reduces computer requirements.

[sk,u0]

[sk,u1]

[sk,u1]

[sk,u1]
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.
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Figure A.4: Search tree general scheme. The number of nodes along the horizontal depends
on the size of the template. The amount of children of each node is subjected to the
categories to be modeled. The complexity of the training image determines the size of the
search tree, and consequently the memory RAM requirements.
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A.3.2 Search-Tree

The search-tree is an efficient dynamic storage algorithm that allows storing the

multiple point events contained in the training image. It consists of a series of

linked nodes that relate the multiple and sub-multiple point events according to

the location of data in the template. Each node represents a unique data event

configuration. Figure A.4 shows a schematic configuration of a search-tree. Each

column of nodes from 1 to n (Figure A.4.A) represent the location of a node of the

template. The n column nodes are sorted from the closest to farthest with respect

to the center location. Each node is linked to one previous single node, but might

be connected to K following nodes depending on the number of states sk that the

attributes may take. The search-tree is a dynamic structure whose size will depends

on the number of categorical attributes, the size of the template and the complexity

of the geologic relations in the training image. On each node, an array of size k

stores the number of replicates founded in the training image according to the state

sk of the center location, see Figure A.4B.

The Figure A.5 presents a detailed flowchart of the search-tree building process

in the snesim algorithm. For any multigrid n the construction starts by sorting and

rescaling the template nodes to the multigrid size. At each multigrid node, retrieve

the state sk of the center location of the template. Then, go to the next closest node,

if the node is not within the training image then move to the next multigrid node;

otherwise, check if that multiple point event is in the search tree. If not, add a node

to the search-tree, in the other case, add a replicate to the search-tree node. Later,

move to the next closest template node and repeat the previous updating process.

After visiting the last node with information, go to the next multigrid node. The

search-tree construction ends when all nodes of the multigrid have been visited. For

the next multigrid, an independent search-tree must be built.

Figure A.6 shows a small example of search-tree construction based on training

image of 5 by 5, with two categories (green and yellow) and the cross-shape-template

of five nodes. First, the nodes of the template are labeled from 1 to 4 according

to the closeness to the center location u. Suppose that the scanning process starts
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Figure A.5: Flowchart of search tree storage procedure of training image features.
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Figure A.6: Brief example of search tree construction.
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Figure A.7: Representation of multiple point events contained within each generated node
of the search tree.
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at the lowest-left corner of the training image. The root of the tree corresponds

to the global pdf of categories green and yellow in the training image based on

a single-point event. The two children of the root represent the two-point event

composed by the center location u and the node u1. Thus, e.g, the upper children

stores 6 replicates where both the center location u and u1 take the state yellow,

and 7 replicates where the center location u takes the state green. The bottom

children stores 3 replicates where both the center location u and u1 take the state

green, and 4 when the node u1 change the state to yellow. A loop over the four

nodes of the template allows updating and adding new nodes to the search-tree, the

process finishes when all nodes of the training image have been visited. Figure A.7

illustrates the set multiple point events contained in each node of the tree.

Figure A.8: Example of allocation of conditioning data to closest node of a fourth multigrid.

A.4 Multigrid Node Conditioning

The implementation of multigrids in snesim provides an organized scheme for linking

and ensuring the correct reproduction of large and short multiple point events of the

training image. The multigrids correspond to a series of nested regular grids spaced

each 2m−1 nodes with respect to the simulation grid. Each multigrid is treated
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independently based on the same user-define searching parameters. Once all nodes

of the multigrid have been simulated these are added as conditioning data for the

following multigrid. The conditioning data might not match the location of a grid

node. To illustrate this point Figure A.8 presents an example of a fourth multigrid.

From the 9 data (black dots on the left), just one is placed at the exact location of

a multigrid node. Because of this, when the rescaled template scans the multigrid

node will find just one data, affecting the reproduction of the multiple point events.

To overcome this issue, the conditioning data is translated temporarily to the closest

multigrid node, as shown on Figure A.8 to the right. After simulating a multigrid,

the data is considered back at their original location leaving the multigrid nodes

empty for the next multigrid.

LookVforVclosestVV
VmultigridVnodeV
toVcurrentVdata

AssignVdataVtoV
multigridVnode

IsVthisVlocationValreadyV
haveVaVsimulatedVvalue?

AtVmultigridVn

No

Yes

ReplaceVsimulatedV
valueVbyVdataV

HaveVallVconditioningV
dataVbeenVchecked?

Yes

Done

No

VisitVconditioningVdata

G
oVtoVnextVconditioningVdata

Figure A.9: Flowchart of multigrid nodes conditioning.

Figure A.9 shows the flowchart of the multigrid conditioning process. The loop is
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performed over the conditioning data looking for the closest multigrid node location.

In the case that the closest node has already a simulated value, it is replaced by the

conditioning data. Once all data have been assigned, the simulation of the multigrid

starts.

The relocation of the data might lead to some artifacts in the simulated results.

The relocation process might require the data to be moved by a substantial distance.

To avoid this, commonly the first two multigrids are implemented by using the

original algorithm of , namely, no multigrid is needed and the template is scanned

using the original configuration at each unsampled location. Then, the snesim mode

is turned on for simulating the finest multigrids.

A.5 Pseudo-random Path

The MPS is a sequential simulation method that visits each node of the grid in

a random fashion. In the case of the snesim algorithm, an informative element is

incorporated to the random path generation. The most informative nodes are visited

first without significantly altering the required randomness of the simulations.

Figure A.10 illustrates the flowchart for building the pseudo-random path. The

process starts generating the random path by assigning a random value from a

uniform distribution to each node of the grid. All the nodes are then visited to

count and store the number of conditioning data within the search ellipsoid. After

all nodes have been visited, the number of conditioning data in the neighborhood are

added to the random values of the path. Finally, the pseudo-random path is obtained

by sorting the updated random sequence in a descending order. This ensures visiting

the best informed nodes first in the simulation sequence. The pseudo-random path

does not lose the random character since for every realization an original random

path is constructed first, resulting in a different random path.
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Figure A.10: Pseudo-random path building process.
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A.6 Conditioning to Hard Data

The conditioning of hard data to the template depends upon two conditions, the

multiple point event is in the search-tree and the number of replicates is greater or

equal than numcd. Suppose n conditioning data are retained within the template,

giving arise to the data eventDn(u). The computation of the conditional probability

for the data event starts from the premise that its configuration is represented by

a node in the search-tree; however, this might not necessarily occur. In this case, a

practical solution consists on dropping off the farthest data with respect to the center

location and evaluate anew the updated data event Dn−1(u). The data dropping

process continues until the data event exists in the search-tree and its number of

replicates is greater or equal to the user defined minimum number of replicates

numcd. Figure A.11 shows a complete flowchart of the process.

GenerateNaNdataNeventNDnα
(u)N

retainingNnαNdataNinNtheNtemplate

AtNnodeNofNmultigridNn

IfNNnumberNofNreplicatesN
isNgreaterNthanNnumcd 

RetrieveNnumberNofNreplicatesN
Ck,nα

fromNsearchNtreeN

Yes

No DropNoffNtheNfurthestN
conditioningNdata,NleavingNDnα-1

andNCk,nα-1

RetrieveNcpdfNofNCk,nβN
fromNserachNtree

Figure A.11: Multiple point event construction by allocation conditioning data and previ-
ous simulated nodes to template.

The numcd influences the accuracy of the multiple point event reproduction,

specially those in the coarsest multigrid since the number of replicates is considerably
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lower and the variety of patters is substantially greater. A greater numcd does not

allow finding the enough number of replicates, triggering to drop away too many

nodes affecting the reproduction of large-scale features. The solution might be to

set up a smaller numcd and find more replicates; however, some sensitivity analysis

Liu (2006) has showed that the lack of large-scale reproduction persists. The reason

is that the data events are not contained even once in the search-tree.

A.7 Compute cpdf of Data Event

The search-tree allows an efficient computation of the conditional probabilities by

inquiring the information contained in the nodes. An array in each node of the tree

stores the number of replicates founded in the training image. Thus, the conditional

probability may be efficiently computed consulting the replicates of the array. For

illustrating the process, the same example of Figure A.6 is used. The root of the tree

provides the array for computing the global pdf. The proportions are 15/25 = 0.6

and 10/25 = 0.4 for yellow and green state respectively. In the same manner, the

conditional probabilities for its two children are computed as follows:

Upper children:

Prob(S(u) = yellow|S(u1) = yellow) = 6/13 = 0.46

Prob(S(u) = green|S(u1) = yellow) = 7/13 = 0.54

Bottom children:

Prob(S(u) = yellow|S(u1) = green) = 4/7 = 0.57

Prob(S(u) = green|S(u1) = green) = 3/7 = 0.43

A.8 Correction of Marginal Distribution: Servosystem

The relation between the marginal distributions (rock type proportions) of realiza-

tions and the training images is not straightforward. Without taking specific steps,
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the the differences might be important. Ideally, the proportions of the training im-

age should be as close as possible to the desired proportions for the realizations;

however, generating training images for such specific constraints is not an easy task.

To gain control over the reproduction of the marginal distribution Strebelle (2002)

proposed a correction scheme known as a servosystem to reach a pre-established set

of target proportions. The procedure updates the estimated conditional probabilities

before simulating the category for the locaiton.

The servosystem correction updates the conditional probability as the simulation

progress from one node to the next. The idea is to modify the conditional probability

based on the difference between the target and current probability. The current

probability P c(u) at node location u corresponds to the proportions of all attributes

previously simulated nodes. Thus, the estimated conditional probability is updated

as follows:

P∗(A|B) = P(A|B) + µ(P(A)− P c(u)) (A.2)

where P(A) is the target pdf and µ is the servosystem correction parameter

defined as µ =
λ

1− λ
. As λ is closer to one, the more significant the difference

between the target and current pdf, the stronger is the correction of the original

conditional probability P (A|B). After updating the conditional probability, the

Monte Carlo method samples the categorical attribute from the distribution. The

simulated node is added to the conditioning data and the algorithm moves to the

next multigrid node. This parameter has to be properly set up since too much weight

on the reproduction of the proportions might affect considerably the reproduction

of patterns in the simulations.
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Appendix B

Programs for Multiple

Data-Driven Training Image

MPS Modeling

This section covers the usage of the programs suited for implementing the multiple

data-driven MPS simulation. Three programs were coded: the first details the steps

involved in the generation of an implicit geologic model based on the use of distance

functions measures. The second corresponds to a modification of the original snesim

algorithm proposed by Strebelle (2002) to process and integrate multiple training

images. The last program allows calibrating the geologic variability from the training

images with respect to the drillholes.

B.1 Distance Function Implicit Modeling: dfmod

This program provides a quick and efficient manner of obtaining geologic models

for multiple domains. Even though these models are later used as training images

in the context of the current research, its application is rather general becoming

in a suitable competitor for well-established implicit modeling approaches. The

parameter file is presented in Figure B.1 and the details are described below:
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Figure B.1: Parameter file of dfmod program.

• Line 5: this corresponds to the name of the file with the conditioning data

• Line 6: here, the columns of the previous file are associated to samples coor-

dinates and the geologic variable used for the implicit modeling

• Line 7: trimming limits for selected variable

• Line 8: number of categories or geologic domains

• Line 9: code of domains

• Line 10: column associated to the host rock. This parameter is used for

avoiding extrapolation issues

• Line 11: target global proportions for geologic domains

• Line 12: 0 if servosystem is not used, 1 on the contrary. The second parameter

corresponds to the degree of correction desired.

• Line 13: name of the output file that contains the distance function values

for each domain

• Line 14: name of the output file for the implicit geologic model
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• Line 15: option for performing the distance function modeling. (0) based on

a gridded mode, (1) on cross validation or (2) applying jackknife.

• Line 16: name of the file for jackknife

• Line 17: columns that describe the content of the jackknife file

• Line 18 to 20: dimension of the grid model.

• Line 21: discretization of the block size for kriging estimation.

• Line 22: minimum and maximum number of samples for kriging

• Line 23: number of samples used by octant. (0) if octants are not applied

• Line 24: dimension of searching neighborhood

• Line 25: angles for search ellipsoid

• Line 26: type of kriging used, (0) for simple and (1) for ordinary kriging

• Line 27: number of structures for the variogram model and the value of

nugget effect

• Line 28: type of model, value of the sill and angles of anisotropy

• Line 29: ranges of the variogram model

B.2 Multiple Training Image MPS: snemimmti

This program allows integrating multiple training images using the linear opinion

pool scheme in the context of MPS simulation. Same parameters as snesim algorithm

applies, the novelty relies on the use of multiple training images. Figure B.2 presents

the parameter file.

• Line 5: name of the file that contains the conditioning data

• Line 6: columns of the previous file for samples coordinates and the geologic

domain variable

• Line 7: number of categories or geologic domains

• Line 8: code of domains
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Figure B.2: Parameter file of snesimmti program.

• Line 9: target global proportions for geologic domains

• Line 10: 0 if vertical target proportions are used

• Line 11: name of the file if vertical proportions are used

• Line 12: 0 if servosystem is not used, 1 on the contrary. The second parameter

corresponds to the degree of correction desired

• Line 13: name of the output file

• Line 14: number of realizations to simulate

• Line 15 to 17: dimension of the grid model

• Line 18: seed value for random number generator
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• Line 19: name of the template file. This file requires the locations that

conform the configuration of the template and has to be set up previously to

the simulation.

• Line 20: maximum number of conditioning data within the template to com-

pute the conditional probability from the training images

• Line 21: maximum number of conditioning data used if a search by octant is

applied

• Line 22: minimum number of replicates of data event to compute the con-

ditional probability. If there are not found enough replicates, the furthest

sample is dropped off and the a new data event is considered

• Line 23: number of training images to use. In this research a maximum of two

are considered; however, the number of image may be extended as required by

the user

• Line 24: weights assigned to each training image used when integrating their

conditional probabilities by the LOP scheme (linear function)

• Line 25: number of multigrids considered. The first parameter refers to the

use of multigrid without search-trees. The second parameters corresponds to

the multigrids simulated using search-trees

• Line 26: name of the input file that contains the first training image.

• Line 27: dimension of the training image

• Line 28: column associated to geologic domains in the training image file.

• Line 29: maximum size of the search ellipsoid

• Line 30: angles of anisotropy of the search ellipsoid

• Line 31 to 36: the lines from 25 to 30 are repeated for the second training

image

• Line 37 to 39: correspond to the dimension of the grid for the local propor-

tion mode
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• Line 40: option that activates the use of the local proportion model

• Line 41: parameter associated to the Tau model. This is used for the integra-

tion of the local proportion model with the conditional probability computed

from the training images.

• Line 42: name of the file that contains the local proportion model

• Line 43: columns of the previous file for the coordinates and the geologic

domain

• Line 44: option that actives the simulated annealing post-processing method

• Line 45: seed value for random number generator

• Line 46: the first parameter corresponds to how often the program will write

the value of the objective function to standard output. The second parameters

corresponds to the number of times that the program looks over all grid nodes

• Line 47: the first number is the number of lags for the computation of two-

point transition probabilities, the second corresponds to a factor that increases

the importance of two-point transition provabilities associated to conditioning

data

• Line 48: angles and ranges of anisotropy for the computation of two-point

transition probabilities

• Line 49: this corresponds to the size of the multiple histogram cube. The

size fluctuates between 2 to 5 nodes

• Line 50: consider the option of using the local proportion model for the

post-processing simulated annealing

B.3 Calibration of Geologic Variability: caliti

The following program calibrates the geologic variability between the integrated

training images and the drillholes. The calibration is realized based on the measure

of entropy. To make comparable this measure between objects dimensionality dif-
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ferent, a sampling process over the training image is proposed. Parameters related

to this process are presented in Figure B.3.

Figure B.3: Parameter file of caliti program.

• Line 5: number of categories (geologic domains) used. The categories con-

sidered must be the same for the training images and the drillholes

• Line 6: code of domains

• Line 7: size of the one-dimensional template. Recall that the number of

possible configurations is given by KN , where K is the number of location of

the template and N the number of categories. As large the template, greater

the computation of the entropy

• Line 8: name of the input file with drillhole information

• Line 9: columns in the previous file for drillhole ID, coordinates and geologic

domain

• Line 10 to 12: dimension of the grid model. This has to consider the training

image grid dimension
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• Line 13: dimension of the regular sampling mesh. This corresponds to the

mesh that will be used for sampling the training image

• Line 14: option for exporting the sampled replicated. This file may be large

if the sampling mesh is too fine

• Line 15: name of the output file that contains the sampled replicates

• Line 16: name of the output file with the entropy of the drillholes and the

resultant entropy after sampling the training images

• Line 17: number of training images to be sampled according to the mesh of

Line 13 and the template designed in Line 7

• Line 18 to 29: on each line the name of the file of training images is intro-

duced. The second line corresponds to the column of the file related to the

geologic domains
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